

The LaTEX Companion
Second Edition

Addison-Wesley Series on
Tools and Techniques for Computer Typesetting

This series focuses on tools and techniques needed for computer typesetting and informa-
tion processing with traditional and new media. Books in the series address the practical
needs of both users and system developers. Initial titles comprise handy references for
LaTEX users; forthcoming works will expand that core. Ultimately, the series will cover other
typesetting and information processing systems, as well, especially insofar as those sys-
tems offer unique value to the scientific and technical community. The series goal is to
enhance your ability to produce, maintain, manipulate, or reuse articles, papers, reports,
proposals, books, and other documents with professional quality.

Ideas for this series should be directed to the editor: mittelbach@aw.com.
Send all other comments to the publisher: awprofessional@aw.com.

Series Editor

Frank Mittelbach
Manager LATEX3 Project, Germany

Editorial Board

Jacques André
Irisa/Inria-Rennes, France

Barbara Beeton
Editor, TUGboat, USA

David Brailsford
University of Nottingham,

UK

Tim Bray
Textuality Services, Canada

Peter Flynn
University College, Cork,

Ireland

Leslie Lamport
Creator of LATEX, USA

Chris Rowley
Open University, UK

Richard Rubinstein
Human Factors

International, USA

Paul Stiff
University of Reading, UK

Series Titles

Guide to LATEX, Fourth Edition, by Helmut Kopka and Patrick W. Daly

The LATEX Companion, Second Edition, by Frank Mittelbach and Michel Goossens
with Johannes Braams, David Carlisle, and Chris Rowley

The LATEX Graphics Companion, by Michel Goossens, Sebastian Rahtz, and Frank Mittelbach

The LATEX Web Companion, by Michel Goossens and Sebastian Rahtz

Also from Addison-Wesley:

LATEX: A Document Preparation System, Second Edition, by Leslie Lamport

The Unicode Standard, Version 4.0, by the Unicode Consortium

The LaTEX Companion
Second Edition

Frank Mittelbach
LATEX3 Project, Mainz, Germany

Michel Goossens
CERN, Geneva, Switzerland

with Johannes Braams, David Carlisle,
and Chris Rowley

and contributions by
Christine Detig and Joachim Schrod

Boston • San Francisco • New York • Toronto • Montreal
London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed with
initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases
and special sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact:

International Sales
international@pearsoned.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

Mittelbach, Frank.
The LaTeX Companion.– 2nd ed. / Frank Mittelbach and Michel Goossens,

with Johannes Braams, David Carlisle, and Chris Rowley.
p. cm.

Goossens’ name appears first on the earlier edition.
Includes bibliographical references and index.
ISBN 0-201-36299-6 (pbk. : alk. paper)

1. LaTeX (Computer file) 2. Computerized typesetting. I. Goossens,
Michel. II. Rowley, Chris, 1948- III. Title.

Z253.4.L38G66 2004
686.2’2544536–dc22 2003070810

Copyright © 2004 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior consent of the publisher.
The foregoing notwithstanding, the examples contained in this book, and included on the
accompanying CD-ROM, are made available under the LaTEX Project Public License (for
information on the LPPL, see www.latex-project.org/lppl).

For information on obtaining permission for use of material from this work, please
submit a written request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 0-201-36299-6
Text printed in the United States on recycled paper at Courier in Westford Massachusetts.

Fourth printing (with corrections), September 2005

We dedicate this book to the memory of Michael Downes (1958–2003),
a great friend and wonderful colleague on the LaTEX Team.
His thoughtful contributions to our work and our lives are diverse
and profound. Moreover, he brightens the lives of countless grateful
(LA)TEX users through the wisdom built into his support for all
aspects of mathematical typesetting—very many masterpieces of the
publishing art will stand for ever as superb memorials to his quiet
but deep insights.

This page intentionally left blank

Contents

List of Figures xix

List of Tables xxi

Preface xxv

1 Introduction 1
1.1 A brief history . 1
1.2 Today’s system . 6
1.3 Working with this book . 10

1.3.1 What’s here . 10
1.3.2 Typographic conventions . 11
1.3.3 Using the examples . 14

2 The Structure of a LATEX Document 15
2.1 The structure of a source file . 15

2.1.1 Processing of options and packages 17
2.1.2 Splitting the source file into parts 18
2.1.3 Combining several files . 20
2.1.4 optional—Providing variants in the document source . . . 21

2.2 Sectioning commands . 22
2.2.1 Numbering headings . 24
2.2.2 Formatting headings . 27
2.2.3 Changing fixed heading texts 34
2.2.4 fncychap—Predefined chapter heading layouts 34
2.2.5 quotchap—Mottos on chapters 35
2.2.6 titlesec—A different approach to headings 36

viii Contents

2.3 Table of contents structures . 45
2.3.1 Entering information into the contents files 46
2.3.2 Typesetting a contents list . 49
2.3.3 Combining contents lists . 52
2.3.4 Providing additional contents files 54
2.3.5 shorttoc—Summary table of contents 55
2.3.6 minitoc—Multiple tables of contents 56
2.3.7 titletoc—A different approach to contents lists 58

2.4 Managing references . 66
2.4.1 showkeys—Displaying the reference keys 68
2.4.2 varioref—More flexible cross-references 68
2.4.3 prettyref—Adding frills to references 75
2.4.4 titleref—Non-numerical references 76
2.4.5 hyperref—Active references 78
2.4.6 xr—References to external documents 78

3 Basic Formatting Tools 79
3.1 Phrases and paragraphs . 80

3.1.1 xspace—Gentle spacing after a macro 80
3.1.2 ellipsis, lips—Marks of omission 81
3.1.3 amsmath—Nonbreaking dashes 83
3.1.4 relsize—Relative changes to the font size 83
3.1.5 textcase—Change case of text intelligently 85
3.1.6 ulem—Emphasize via underline 87
3.1.7 soul—Letterspacing or stealing sheep 88
3.1.8 url—Typesetting URLs, path names, and the like 93
3.1.9 euro—Converting and typesetting currencies 96
3.1.10 lettrine—Dropping your capital 99
3.1.11 Paragraph justification in LaTEX 102
3.1.12 ragged2e—Enhancing justification 105
3.1.13 setspace—Changing interline spacing 106
3.1.14 picinpar—Making rectangular holes 108

3.2 Footnotes, endnotes, and marginals 109
3.2.1 Using standard footnotes . 110
3.2.2 Customizing standard footnotes 112
3.2.3 ftnright—Right footnotes in a two-column environment . . 114
3.2.4 footmisc—Various footnotes styles 114
3.2.5 perpage—Resetting counters on a “per-page” basis 120
3.2.6 manyfoot—Independent footnotes 122
3.2.7 endnotes—An alternative to footnotes 125
3.2.8 Marginal notes . 126

3.3 List structures . 128
3.3.1 Modifying the standard lists 128
3.3.2 paralist—Extended list environments 132

Contents ix

3.3.3 amsthm—Providing headed lists 138
3.3.4 Making your own lists . 144

3.4 Simulating typed text . 151
3.4.1 Simple verbatim extensions 152
3.4.2 upquote—Computer program style quoting 153
3.4.3 fancyvrb—Highly customizable verbatim environments . . 155
3.4.4 listings—Pretty-printing program code 168

3.5 Lines and columns . 175
3.5.1 lineno—Numbering lines of text 176
3.5.2 parallel—Two text streams aligned 181
3.5.3 multicol—A flexible way to handle multiple columns . . . 184
3.5.4 changebar—Adding revision bars to documents 189

4 The Layout of the Page 193
4.1 Geometrical dimensions of the layout 193
4.2 Changing the layout . 197

4.2.1 layouts—Displaying your layout 199
4.2.2 A collection of page layout packages 202
4.2.3 typearea—A traditional approach 203
4.2.4 geometry—Layout specification with auto-completion . . . 206
4.2.5 lscape—Typesetting individual pages in landscape mode . 211
4.2.6 crop—Producing trimming marks 212

4.3 Dynamic page data: page numbers and marks 215
4.3.1 LaTEX page numbers . 215
4.3.2 lastpage—A way to reference it 216
4.3.3 chappg—Page numbers by chapters 216
4.3.4 LaTEX mark commands . 217
4.3.5 extramarks—Providing new marks 220

4.4 Page styles . 221
4.4.1 The low-level page style interface 223
4.4.2 fancyhdr—Customizing page styles 224
4.4.3 truncate—Truncate text to a given length 232

4.5 Visual formatting . 234
4.5.1 nextpage—Extensions to \clearpage 235

4.6 Doing layout with class . 236
4.6.1 KOMA-Script—A drop-in replacement for article et al. . . . 236
4.6.2 memoir—Producing complex publications 237

5 Tabular Material 239
5.1 Standard LaTEX environments . 240

5.1.1 Using the tabbing environment 241
5.1.2 Using the tabular environment 242

5.2 array—Extending the tabular environments 243
5.2.1 Examples of preamble commands 244

x Contents

5.2.2 Defining new column specifiers 248
5.3 Calculating column widths . 249

5.3.1 Explicit calculation of column widths 250
5.3.2 tabularx—Automatic calculation of column widths 251
5.3.3 tabulary—Column widths based on content 253
5.3.4 Differences between tabular* , tabularx , and tabulary 255

5.4 Multipage tabular material . 255
5.4.1 supertabular—Making multipage tabulars 256
5.4.2 longtable—Alternative multipage tabulars 259

5.5 Color in tables . 264
5.6 Customizing table rules and spacing 265

5.6.1 Colored table rules . 265
5.6.2 Variable-width rules . 266
5.6.3 hhline—Combining horizontal and vertical lines 266
5.6.4 arydshln—Dashed rules . 267
5.6.5 tabls—Controlling row spacing 269
5.6.6 booktabs—Formal ruled tables 269

5.7 Further extensions . 272
5.7.1 multirow—Vertical alignment in tables 273
5.7.2 dcolumn—Decimal column alignments 274

5.8 Footnotes in tabular material . 277
5.8.1 Using minipage footnotes with tables 277
5.8.2 threeparttable—Setting table and notes together 278

5.9 Applications . 279
5.9.1 Managing tables with wide entries 279
5.9.2 Tables inside tables . 280

6 Mastering Floats 283
6.1 Understanding float parameters . 284
6.2 Float placement control . 286

6.2.1 placeins—Preventing floats from crossing a barrier 288
6.2.2 afterpage—Taking control at the page boundary 289
6.2.3 endfloat—Placing figures and tables at the end 289

6.3 Extensions to LaTEX’s float concept . 291
6.3.1 float—Creating new float types 291
6.3.2 caption—For nonfloating figures and tables 295
6.3.3 rotating—Rotating floats . 296
6.3.4 rotfloat—Combining float and rotating 298

6.4 Inline floats . 298
6.4.1 wrapfig—Wrapping text around a figure 299
6.4.2 picins—Placing pictures inside the text 302

6.5 Controlling the float caption . 306
6.5.1 caption—Customizing your captions 308
6.5.2 subfig—Substructuring floats 315

Contents xi

6.5.3 subfloat—Sub-numbering floats 321
6.5.4 sidecap—Place captions sideways 323
6.5.5 fltpage—Captions on a separate page 325

7 Fonts and Encodings 327
7.1 Introduction . 327

7.1.1 The history of LaTEX’s font selection scheme (NFSS) 327
7.1.2 Input and output encodings 329

7.2 Understanding font characteristics . 331
7.2.1 Monospaced and proportional fonts 331
7.2.2 Serifed and sans serif fonts 332
7.2.3 Font families and their attributes 333
7.2.4 Font encodings . 336

7.3 Using fonts in text . 337
7.3.1 Standard LaTEX font commands 338
7.3.2 Combining standard font commands 343
7.3.3 Font commands versus declarations 344
7.3.4 Accessing all characters of a font 345
7.3.5 Changing the default text fonts 346
7.3.6 LaTEX 2.09 font commands . 347

7.4 Using fonts in math . 347
7.4.1 Special math alphabet identifiers 348
7.4.2 Text font commands in math 351
7.4.3 Mathematical formula versions 352

7.5 Standard LaTEX font support . 353
7.5.1 Computer Modern—The LaTEX standard fonts 353
7.5.2 inputenc—Selecting the input encoding 357
7.5.3 fontenc—Selecting font encodings 361
7.5.4 textcomp—Providing additional text symbols 362
7.5.5 exscale—Scaling large operators 368
7.5.6 tracefnt—Tracing the font selection 368
7.5.7 nfssfont.tex—Displaying font tables and samples 369

7.6 PSNFSS—PostScript fonts with LaTEX 370
7.6.1 Font samples for fonts supported by PSNFSS 373
7.6.2 mathptmx—Times Roman in math and text 376
7.6.3 mathpazo—Palatino in math and text 377
7.6.4 pifont—Accessing Pi and Symbol fonts 378

7.7 A collection of font packages . 381
7.7.1 eco—Old-style numerals with Computer Modern 381
7.7.2 ccfonts, concmath—The Concrete fonts 383
7.7.3 cmbright—The Computer Modern Bright fonts 385
7.7.4 luximono—A general-purpose typewriter font 386
7.7.5 txfonts—Alternative support for Times Roman 388
7.7.6 pxfonts—Alternative support for Palatino 390

xii Contents

7.7.7 The Fourier-GUTenberg fonts 391
7.7.8 The URW Antiqua and Grotesk fonts 393
7.7.9 yfonts—Typesetting with Old German fonts 394
7.7.10 euler, eulervm—Accessing the Euler fonts 396

7.8 The LaTEX world of symbols . 399
7.8.1 dingbat—A selection of hands 400
7.8.2 wasysym—Waldi’s symbol font 401
7.8.3 marvosym—Interface to the MarVoSym font 401
7.8.4 bbding—A METAFONT alternative to Zapf Dingbats 403
7.8.5 ifsym—Clocks, clouds, mountains, and other symbols . . . 403
7.8.6 tipa—International Phonetic Alphabet symbols 405
7.8.7 Typesetting the euro symbol (€) 407

7.9 The low-level interface . 412
7.9.1 Setting individual font attributes 413
7.9.2 Setting several font attributes 417
7.9.3 Automatic substitution of fonts 418
7.9.4 Using low-level commands in the document 418

7.10 Setting up new fonts . 419
7.10.1 Overview . 419
7.10.2 Naming those thousands of fonts 420
7.10.3 Declaring new font families and font shape groups 421
7.10.4 Modifying font families and font shape groups 429
7.10.5 Declaring new font encoding schemes 430
7.10.6 Internal file organization . 431
7.10.7 Declaring new fonts for use in math 432
7.10.8 Example: Defining your own .fd files 437
7.10.9 The order of declaration . 439

7.11 LaTEX’s encoding models . 440
7.11.1 Character data within the LaTEX system 440
7.11.2 LaTEX’s internal character representation (LICR) 442
7.11.3 Input encodings . 443
7.11.4 Output encodings . 447

7.12 Compatibility packages for very old documents 463
7.12.1 oldlfont, rawfonts, newlfont—Processing old documents . 463
7.12.2 latexsym—Providing symbols from LaTEX 2.09 lasy fonts . 464

8 Higher Mathematics 465
8.1 Introduction toAMS-LaTEX . 466
8.2 Display and alignment structures for equations 468

8.2.1 Comparison with standard LaTEX 470
8.2.2 A single equation on one line 471
8.2.3 A single equation on several lines: no alignment 471
8.2.4 A single equation on several lines: with alignment 473
8.2.5 Equation groups without alignment 474

Contents xiii

8.2.6 Equation groups with simple alignment 475
8.2.7 Multiple alignments: align and flalign 475
8.2.8 Display environments as mini-pages 477
8.2.9 Interrupting displays: \intertext 479
8.2.10 Vertical space and page breaks in and around displays . . 479
8.2.11 Equation numbering and tags 482
8.2.12 Fine-tuning tag placement . 483
8.2.13 Subordinate numbering sequences 484
8.2.14 Resetting the equation counter 485

8.3 Matrix-like environments . 485
8.3.1 The cases environment . 486
8.3.2 The matrix environments . 486
8.3.3 Stacking in subscripts and superscripts 487
8.3.4 Commutative diagrams . 488
8.3.5 delarray—Delimiters surrounding an array 489

8.4 Compound structures and decorations 490
8.4.1 Decorated arrows . 490
8.4.2 Continued fractions . 490
8.4.3 Boxed formulas . 491
8.4.4 Limiting positions . 491
8.4.5 Multiple integral signs . 492
8.4.6 Modular relations . 492
8.4.7 Fractions and generalizations 493
8.4.8 Dottier accents . 494
8.4.9 amsxtra—Accents as superscripts 495
8.4.10 Extra decorations . 495

8.5 Variable symbol commands . 495
8.5.1 Ellipsis . 496
8.5.2 Horizontal extensions . 497
8.5.3 Vertical extensions . 498

8.6 Words in mathematics . 499
8.6.1 The \text command . 499
8.6.2 Operator and function names 499

8.7 Fine-tuning the mathematical layout 502
8.7.1 Controlling the automatic sizing and spacing 502
8.7.2 Sub-formulas . 503
8.7.3 Big-g delimiters . 504
8.7.4 Radical movements . 504
8.7.5 Ghostbusters™ . 505
8.7.6 Horizontal spaces . 507

8.8 Fonts in formulas . 508
8.8.1 Additional math font commands 509
8.8.2 bm—Making bold . 510
8.8.3 A collection of math font set-ups 513

xiv Contents

8.9 Symbols in formulas . 524
8.9.1 Mathematical symbol classes 524
8.9.2 Letters, numerals, and other Ordinary symbols 526
8.9.3 Mathematical accents . 529
8.9.4 Binary operator symbols . 529
8.9.5 Relation symbols . 531
8.9.6 Punctuation . 535
8.9.7 Operator symbols . 536
8.9.8 Opening and Closing symbols 537

9 LATEX in a Multilingual Environment 539
9.1 TEX and non-English languages . 539

9.1.1 Language-related aspects of typesetting 541
9.1.2 Culture-related aspects of typesetting 542
9.1.3 Babel—LaTEX speaks multiple languages 542

9.2 The babel user interface . 543
9.2.1 Setting or getting the current language 544
9.2.2 Handling shorthands . 547
9.2.3 Language attributes . 549

9.3 User commands provided by language options 550
9.3.1 Translations . 550
9.3.2 Available shorthands . 550
9.3.3 Language-specific commands 558
9.3.4 Layout considerations . 564
9.3.5 Languages and font encoding 566

9.4 Support for non-Latin alphabets . 569
9.4.1 The Cyrillic alphabet . 569
9.4.2 The Greek alphabet . 574
9.4.3 The Hebrew alphabet . 576

9.5 Tailoring babel . 579
9.5.1 Hyphenating in several languages 580
9.5.2 The package file . 581
9.5.3 The structure of the babel language definition file 582

9.6 Other approaches . 591
9.6.1 More complex languages . 591
9.6.2 Omega . 592

10 Graphics Generation and Manipulation 593
10.1 Producing portable graphics and ornaments 595

10.1.1 boxedminipage—Boxes with frames 595
10.1.2 shadow—Boxes with shadows 595
10.1.3 fancybox—Ornamental boxes 596
10.1.4 epic—An enhanced picture environment 600
10.1.5 eepic—Extending the epic package 607
10.1.6 Special-purpose languages . 611

Contents xv

10.2 LaTEX’s device-dependent graphics support 613
10.2.1 Options for graphics and graphicx 614
10.2.2 The \includegraphics syntax in the graphics package . 616
10.2.3 The \includegraphics syntax in the graphicx package . 618
10.2.4 Setting default key values for the graphicx package 623
10.2.5 Declarations guiding the inclusion of images 624
10.2.6 A caveat: Encapsulation is important 627

10.3 Manipulating graphical objects in LaTEX 628
10.3.1 Scaling a LaTEX box . 628
10.3.2 Resizing to a given size . 629
10.3.3 Rotating a LaTEX box . 630
10.3.4 rotating—Revisited . 633

10.4 Display languages: PostScript, PDF, and SVG 634
10.4.1 The PostScript language . 635
10.4.2 The dvips PostScript driver 637
10.4.3 pspicture—An enhanced picture environment for dvips . 638
10.4.4 The Portable Document Format 642
10.4.5 Scalable Vector Graphics . 644

11 Index Generation 647
11.1 Syntax of the index entries . 648

11.1.1 Simple index entries . 650
11.1.2 Generating subentries . 650
11.1.3 Page ranges and cross-references 651
11.1.4 Controlling the presentation form 651
11.1.5 Printing special characters . 652
11.1.6 Creating a glossary . 653
11.1.7 Defining your own index commands 653
11.1.8 Special considerations . 654

11.2 makeindex—A program to format and sort indexes 654
11.2.1 Generating the formatted index 655
11.2.2 Detailed options of the MakeIndex program 655
11.2.3 Error messages . 658
11.2.4 Customizing the index with MakeIndex 659
11.2.5 MakeIndex pitfalls . 665

11.3 xindy—An alternative to MakeIndex 666
11.3.1 Generating the formatted index with xindy 668
11.3.2 International indexing with xindy 669
11.3.3 Modules for common tasks 671
11.3.4 Style files for individual solutions 673

11.4 Enhancing the index with LaTEX features 679
11.4.1 Modifying the layout . 679
11.4.2 showidx, repeatindex, tocbibind, indxcite—Little helpers . 680
11.4.3 index—Producing multiple indexes 681

xvi Contents

12 Managing Citations 683
12.1 Introduction . 683

12.1.1 Bibliographical reference schemes 684
12.1.2 Markup structure for citations and bibliography 686
12.1.3 Using BIBTEX to produce the bibliography input 687

12.2 The number-only system . 691
12.2.1 Standard LaTEX—Reference by number 691
12.2.2 cite—Enhanced references by number 693
12.2.3 notoccite—Solving a problem with unsorted citations . . . 697

12.3 The author-date system . 698
12.3.1 Early attempts . 699
12.3.2 natbib—Customizable author-date references 700
12.3.3 bibentry—Full bibliographic entries in running text 710

12.4 The author-number system . 712
12.4.1 natbib—Revisited . 712

12.5 The short-title system . 715
12.5.1 jurabib—Customizable short-title references 715
12.5.2 camel—Dedicated law support 743

12.6 Multiple bibliographies in one document 745
12.6.1 chapterbib—Bibliographies per included file 747
12.6.2 bibunits—Bibliographies for arbitrary units 749
12.6.3 bibtopic—Combining references by topic 753
12.6.4 multibib—Separate global bibliographies 755

13 Bibliography Generation 757
13.1 The BIBTEX program and some variants 758

13.1.1 bibtex8—An 8-bit reimplementation of BIBTEX 759
13.1.2 Recent developments . 759

13.2 The BIBTEX database format . 761
13.2.1 Entry types and fields . 762
13.2.2 The text part of a field explained 764
13.2.3 Abbreviations in BIBTEX . 769
13.2.4 The BIBTEX preamble . 771
13.2.5 Cross-referencing entries . 772

13.3 On-line bibliographies . 773
13.4 Bibliography database management tools 774

13.4.1 biblist—Printing BIBTEX database files 774
13.4.2 bibtools—A collection of command-line tools 775
13.4.3 bibclean, etc.—A second set of command-line tools . . . 777
13.4.4 bibtool—A multipurpose command-line tool 778
13.4.5 pybliographer—An extensible bibliography manager 784
13.4.6 JBibtexManager—A BIBTEX database manager in Java 787
13.4.7 BibTexMng—A BIBTEX database manager for Windows . . . 789

Contents xvii

13.5 Formatting the bibliography with BIBTEX styles 790
13.5.1 A collection of BIBTEX style files 791
13.5.2 custom-bib—Generate BIBTEX styles with ease 798

13.6 The BIBTEX style language . 805
13.6.1 The BIBTEX style file commands and built-in functions . . . 805
13.6.2 The documentation style btxbst.doc 806
13.6.3 Introducing small changes in a style file 809

14 LATEX Package Documentation Tools 813
14.1 doc—Documenting LaTEX and other code 813

14.1.1 General conventions for the source file 814
14.1.2 Describing new macros and environments 815
14.1.3 Cross-referencing all macros used 817
14.1.4 The documentation driver . 818
14.1.5 Conditional code in the source 819

14.2 docstrip.tex—Producing ready-to-run code 824
14.2.1 Invocation of the docstrip utility 825
14.2.2 docstrip script commands 826
14.2.3 Installation support and configuration 830
14.2.4 Using docstrip with other languages 833

14.3 ltxdoc—A simple LaTEX documentation class 834
14.3.1 Extensions provided by ltxdoc 834
14.3.2 Customizing the output of documents that use ltxdoc . . 835

14.4 Making use of version control tools 836
14.4.1 rcs—Accessing individual keywords 837
14.4.2 rcsinfo—Parsing the Id keyword 838

A A LATEX Overview for Preamble, Package, and Class Writers 841
A.1 Linking markup and formatting . 841

A.1.1 Command and environment names 842
A.1.2 Defining new commands . 843
A.1.3 Defining new environments 847
A.1.4 Defining and changing counters 851
A.1.5 Defining and changing space parameters 854

A.2 Page markup—Boxes and rules . 860
A.2.1 LR boxes . 860
A.2.2 Paragraph boxes . 862
A.2.3 Rule boxes . 866
A.2.4 Manipulating boxed material 868
A.2.5 Box commands and color . 870

A.3 Control structure extensions . 871
A.3.1 calc—Arithmetic calculations 871
A.3.2 ifthen—Advanced control structures 872

xviii Contents

A.4 Package and class file structure . 877
A.4.1 The identification part . 877
A.4.2 The initial code part . 880
A.4.3 The declaration of options . 880
A.4.4 The execution of options . 881
A.4.5 The package loading part . 882
A.4.6 The main code part . 883
A.4.7 Special commands for package and class files 883
A.4.8 Special commands for class files 886
A.4.9 A minimal class file . 888

B Tracing and Resolving Problems 889
B.1 Error messages . 890

B.1.1 Dying with memory exceeded 915
B.2 Warnings and informational messages 920
B.3 TEX and LaTEX commands for tracing 931

B.3.1 Displaying command definitions and register values 932
B.3.2 Diagnosing page-breaking problems 935
B.3.3 Diagnosing and solving paragraph-breaking problems . . . 939
B.3.4 Other low-level tracing tools 943
B.3.5 trace—Selectively tracing command execution 945

C LATEX Software and User Group Information 947
C.1 Getting help . 947
C.2 How to get those TEX files? . 948
C.3 Using CTAN . 950

C.3.1 Finding files on the archive 950
C.3.2 Using the TEX file catalogue 950
C.3.3 Getting multiple files . 952

C.4 Finding the documentation on your TEX system 954
C.4.1 texdoc—Command-line interface for a search by name . . 954
C.4.2 texdoctk—Panel interface for a search by subject 955

C.5 TEX user groups . 956

D TLC2 TEX CD 959

Bibliography 963

Index of Commands and Concepts 983

People 1080

Biographies 1083

Production Notes 1089

List of Figures

1.1 Data flow in the LaTEX system . 9

2.1 The layout for a display heading . 28
2.2 The layout for a run-in heading . 29
2.3 Parameters defining the layout of a contents file 51

3.1 Schematic layout of footnotes . 113
3.2 The placement of text and footnotes with the ftnright package 115
3.3 Parameters used by the list environment 145

4.1 Page layout parameters and visualization 194
4.2 Schematic overview of how LaTEX’s marker mechanism works 219

6.1 Spacing layout of the subfig package . 317

7.1 Major font characteristics . 332
7.2 Comparison of serifed and sans serif letters 332
7.3 Comparison between upright and italic shapes 333
7.4 Comparison between caps and small caps 334
7.5 Outline and shaded shapes . 335
7.6 Scaled and designed fonts (Computer Modern) 336

8.1 Sample page typeset with Computer Modern fonts 513
8.2 Sample page typeset with Concrete fonts 514
8.3 Sample page typeset with Concrete and Euler fonts 514

xx List of Figures

8.4 Sample page typeset with Fourier fonts 515
8.5 Sample page typeset with Times and Symbol 516
8.6 Sample page typeset with Times and TX fonts 516
8.7 Sample page typeset with Times and TM Math fonts 517
8.8 Sample page typeset with Palatino and Math Pazo 518
8.9 Sample page typeset with Palatino and PX fonts 518
8.10 Sample page typeset with Palatino and PA Math fonts 519
8.11 Sample page typeset with Baskerville fonts 520
8.12 Sample page typeset with Charter fonts 520
8.13 Sample page typeset with Lucida Bright 521
8.14 Sample page typeset with CM Bright fonts 522
8.15 Sample page typeset with Helvetica Math fonts 522
8.16 Sample page typeset with Info Math fonts 523

9.1 A Hebrew document . 577

10.1 The contents of the file w.eps . 616
10.2 A LaTEX box and possible origin reference points 632
10.3 SVG generated from a dvi file . 646

11.1 The sequential flow of index processing 648
11.2 Stepwise development of index processing 649
11.3 Example of \index commands and the showidx package 656
11.4 Printing the index and the output of the showidx option 656
11.5 Example of the use of special characters with MakeIndex 663
11.6 Example of customizing the output format of an index 663
11.7 Adding leaders to an index . 664
11.8 xindy process model . 674

12.1 Data flow when running BIBTEX and LaTEX 688
12.2 Sample BIBTEX database tex.bib . 690
12.3 Sample BIBTEX database jura.bib . 717

13.1 Output of the program printbib . 776
13.2 Output of the program bib2html . 777
13.3 The pybliographic work space . 785
13.4 Native editing in pybliographic . 786
13.5 The JBibtexManager work space . 788
13.6 The BibTexMng work space . 790

A.1 An example of a class file extending article 886

C.1 The TEX Users Group web home page . 949
C.2 Using the CTAN web interface . 951
C.3 Graham Williams’ TEX catalogue on the web 952
C.4 Finding documentation with the texdoctk program 955

List of Tables

1.1 Major file types used by TEX and LaTEX . 8

2.1 LaTEX’s standard sectioning commands . 23
2.2 Language-dependent strings for headings 34
2.3 A summary of the minitoc parameters . 57

3.1 ISO currency codes of the euro and the 12 euro-zone countries 97
3.2 Parameters used by ragged2e . 106
3.3 Effective \baselinestretch values for different font sizes 108
3.4 Footnote symbol lists predefined by footmisc 117
3.5 Commands controlling an itemize list environment 128
3.6 Commands controlling an enumerate list environment 130
3.7 Languages supported by listings (Winter 2003) 169
3.8 Length parameters used by multicols 185
3.9 Counters used by multicols . 186

4.1 Standard paper size options in LaTEX . 195
4.2 Default values for the page layout parameters (letterpaper) 196
4.3 Page style defining commands in LaTEX . 223

5.1 The preamble options in the standard LaTEX tabular environment . . 243
5.2 Additional preamble options in the array package 244
5.3 The preamble options in the tabulary package 254

7.1 Standard size-changing commands . 342
7.2 Standard font-changing commands and declarations 344

xxii List of Tables

7.3 Font attribute defaults . 346
7.4 Predefined math alphabet identifiers in LaTEX 349
7.5 Classification of the Computer Modern font families 354
7.6 Commands made available with textcomp 363
7.6 Commands made available with textcomp (cont.) 364
7.7 Fonts used by PSNFSS packages . 371
7.8 Classification of font families in the PSNFSS distribution 372
7.9 Glyphs in the PostScript font Zapf Dingbats 379
7.10 Glyphs in the PostScript font Symbol . 382
7.11 Classification of the Concrete font families 384
7.12 Classification of the Computer Modern Bright font families 385
7.13 Classification of the LuxiMono font family 387
7.14 Classification of the TX font families . 388
7.15 Classification of the PX font families . 391
7.16 Classification of the Fourier-GUTenberg font families 392
7.17 Classification of the URW Antiqua and Grotesk fonts 393
7.18 Classification of the Euler math font families 397
7.19 Glyphs in the wasy fonts . 400
7.20 Glyphs in the MarVoSym font . 402
7.21 Glyphs in the METAFONT font bbding . 404
7.22 TIPA shortcut characters . 406
7.23 Classification of the EuroSym font family 409
7.24 Classification of the Adobe euro font families 411
7.25 Weight and width classification of fonts 414
7.26 Shape classification of fonts . 415
7.27 Standard font encodings used with LaTEX 416
7.28 Karl Berry’s font file name classification scheme 420
7.29 Glyph chart for msbm10 produced by the nfssfont.tex program 434
7.30 Math symbol type classification . 435
7.31 LICR objects represented with single characters 441
7.32 Glyph chart for a T1-encoded font (ecrm1000) 449
7.33 Standard LICR objects . 455

8.1 Display environments in the amsmath package 469
8.2 Default rule thickness in different math styles 494
8.3 Vertically extensible symbols . 498
8.4 Predefined operators and functions . 500
8.5 Mathematical styles in sub-formulas . 502
8.6 Mathematical spacing commands . 508
8.7 Space between symbols . 525
8.8 Latin letters and Arabic numerals . 526
8.9 Symbols of class \mathord (Greek) . 527
8.10 Symbols of class \mathord (letter-shaped) 527
8.11 Symbols of class \mathord (miscellaneous) 528

List of Tables xxiii

8.12 Mathematical accents, giving sub-formulas of class \mathord 529
8.13 Symbols of class \mathbin (miscellaneous) 530
8.14 Symbols of class \mathbin (boxes) . 530
8.15 Symbols of class \mathbin (circles) . 531
8.16 Symbols of class \mathrel (equality and order) 532
8.17 Symbols of class \mathrel (equality and order—negated) 532
8.18 Symbols of class \mathrel (sets and inclusion) 533
8.19 Symbols of class \mathrel (sets and inclusion—negated) 533
8.20 Symbols of class \mathrel (arrows) . 534
8.21 Symbols of class \mathrel (arrows—negated) 534
8.22 Symbols of class \mathrel (negation and arrow extensions) 535
8.23 Symbols of class \mathrel (miscellaneous) 535
8.24 Symbols of class \mathpunct , \mathord , \mathinner (punctuation) . 536
8.25 Symbols of class \mathop . 536
8.26 Symbol pairs of class \mathopen and \mathclose (extensible) 537
8.27 Symbol pairs of class \mathopen and \mathclose (non-extensible) . . 537

9.1 Language options supported by the babel system 543
9.2 Language-dependent strings in babel (English defaults) 547
9.3 Language-dependent strings in babel (French, Greek, Polish, Russian) 551
9.4 Different methods for representing numbers by letters 560
9.5 Alternative mathematical operators for Eastern European languages . 564
9.6 Glyph chart for a T2A-encoded font (larm1000) 572
9.7 Glyph chart for an LGR-encoded font (grmn1000) 575
9.8 Greek transliteration with Latin letters for the LGR encoding 576
9.9 LGR ligatures producing single-accented glyphs 576
9.10 Available composite spiritus and accent combinations 576
9.11 Glyph chart for an LHE-encoded font (shold10) 578
9.12 Hebrew font-changing commands . 579

10.1 Overview of color and graphics capabilities of device drivers 615
10.2 Arguments of \DeclareGraphicsRule 626
10.3 Major options of the dvips program . 638

11.1 Input style parameters for MakeIndex . 660
11.2 Output style parameters for MakeIndex 661
11.3 Languages supported by texindy . 670
11.4 xindy standard modules . 672

12.1 Gender specification in jurabib . 735
12.2 Comparison of packages for multiple bibliographies 746

13.1 BIBTEX’s entry types as defined in most styles 763
13.2 BIBTEX’s standard entry fields . 765

xxiv List of Tables

13.3 Predefined journal strings in BIBTEX styles 771
13.4 Selected BIBTEX style files . 791
13.5 Requirements for formatting names . 798
13.6 Language support in custom-bib (summer 2003) 800
13.7 BIBTEX style file commands . 807
13.8 BIBTEX style file built-in functions . 808

14.1 Overview of doc package commands . 820

A.1 LaTEX’s units of length . 855
A.2 Predefined horizontal spaces . 856
A.3 Predefined vertical spaces . 857
A.4 Default values for TEX’s rule primitives 868
A.5 LaTEX’s internal \boolean switches . 875
A.6 Commands for package and class files . 879

Preface

A full decade has passed since the publication of the first edition of The LATEX
Companion—a decade during which some people prophesied the demise of TEX
and LaTEX and predicted that other software would take over the world. There have
been a great many changes indeed, but neither prediction has come to pass: TEX
has not vanished and the interest in LaTEX has not declined, although the approach
to both has gradually changed over time.

When we wrote the Companion in 1993 [55], we intended to describe what
is usefully available in the LaTEX world (though ultimately we ended up describing
what was available at CERN in those days). As an unintentional side effect, the first
edition defined for most readers what should be available in a then-modern LaTEX
distribution. Fortunately, most of the choices we made at that time proved to be
reasonable, and the majority (albeit not all) of the packages described in the first
edition are still in common use today. Thus, even though “the book shows its age,
it still remains a solid reference in most parts”, as one reviewer put it recently.

Nevertheless, much has changed and a lot of new and exciting functionality
has been added to LaTEX during the last decade. As a result, while revising the
book we ended up rewriting 90% of the original content and adding about 600
additional pages describing impressive new developments.

What you are holding now is essentially a new book—a book that we hope
preserves the positive aspects of the first edition even as it greatly enhances them,
while at the same time avoiding the mistakes we made back then, both in content
and presentation (though doubtless we made some others). For this book we used
the CTAN archives as a basis and also went through the comp.text.tex news
group archives to identify the most pressing questions and queries.

xxvi Preface

In addition to highlighting a good selection of the contributed packages avail-
able on the CTAN archives, the book describes many aspects of the basic LaTEX
system that are not fully covered in the LATEX Manual, Leslie Lamport’s LATEX: A
Document Preparation System [104]. Note, however, that our book is not a replace-
ment for the LATEX Manual but rather a companion to it: a reader of our book is
assumed to have read at least the first part of that book (or a comparable introduc-
tory work, such as the Guide to LATEX [101]) and to have some practical experience
with producing LaTEX documents.

The second edition has seen a major change in the authorship; Frank took
over as principal author (so he is to blame for all the faults in this book) and
several members of the LaTEX3 project team joined in the book’s preparation, en-
riching it with their knowledge and experience in individual subject areas.

The preparation of the book was overshadowed by the sudden death of ourThanks to a great
guy! good friend, colleague, and prospective co-author Michael Downes, whose great

contributions to LaTEX, andAMS-LaTEX in particular, are well known to many people.
We dedicate this book to him and his memory.

∗ ∗ ∗
We first of all wish to thank Peter Gordon, our editor at Addison-Wesley, who

not only made this book possible, but through his constant encouragement also
kept us on the right track (just a few years late). When we finally went into produc-
tion, Elizabeth Ryan was unfailingly patient with our idiosyncrasies and steered
us safely to completion.

We are especially indebted to Barbara Beeton, David Rhead, Lars Hellström,
and Walter Schmidt for their careful reading of individual parts of the manuscript.
Their numerous comments, suggestions, corrections, and hints have substantially
improved the quality of the text.

Our very special thanks go to our contributing authors Christine Detig and
Joachim Schrod for their invaluable help with Chapter 11 on index preparation.

Those who keep their ears to the ground for activities in the LaTEX world may
Haunted package

authors
have noticed an increased number of new releases of several well-established
packages in 2002 and 2003. Some of these releases were triggered by our ques-
tions and comments to the package authors as we were preparing the manuscript
for this second edition. Almost all package authors responded favorably to our
requests for updates, changes, and clarifications, and all spent a considerable
amount of time helping us with our task. We would particularly like to thank
Jens Berger (jurabib), Axel Sommerfeldt (caption), Steven Cochran (subfig), Mel-
chior Franz (soul, euro), and Carsten Heinz (listings) who had to deal with the
bulk of the nearly 6000 e-mail messages that have been exchanged with various
package authors.

Hearty thanks for similar reasons go to Alexander Rozhenko (manyfoot),
Bernd Schandl (paralist), David Kastrup (perpage), Donald Arseneau (cite,
relsize, threeparttable, url), Fabrice Popineau (TEX Live CD), Frank Bennett, Jr.
(camel), Gerd Neugebauer (bibtool), Harald Harders (subfloat), Hideo Umeki

Preface xxvii

(geometry), Hubert Gäßlein (sidecap, pict2e), Javier Bezos (titlesec, titletoc), Jean-
Pierre Drucbert (minitoc), Jeffrey Goldberg (endfloat, lastpage), John Lavagnino
(endnotes), Markus Kohm (typearea), Martin Schröder (ragged2e), Matthias Eck-
ermann (parallel), Michael Covington (upquote), Michel Bovani (fourier), Patrick
Daly (custom-bib, natbib), Peter Heslin (ellipsis), Peter Wilson (layouts), Piet van
Oostrum (extramarks, fancyhdr), Rei Fukui (tipa), Robin Fairbairns (footmisc), Rolf
Niepraschk (sidecap, pict2e), Stephan Böttcher (lineno), Thomas Esser (teTEX dis-
tribution), Thomas Henlich (marvosym), Thorsten Hansen (bibunits, multibib), and
Walter Schmidt (fix-cm, PSNFSS). Our apologies if we missed someone.

We gratefully recognize all of our many colleagues in the (LA)TEX world who
developed the packages—not only those described here, but also the hundreds
of others—that aim to help users meet the typesetting requirements for their
documents. Without the continuous efforts of these enthusiasts, LaTEX would not
be the magnificent and flexible tool it is today.

We would also like to thank Blenda Horn from Y&Y and Michael Vulis from
MicroPress for supplying the fonts used to typeset the pages of this book.

The picture of Chris Rowley, taken after a good lunch at the Hong Kong Inter-
national Airport, appears courtesy of Wai Wong. The picture of Michael Downes,
taken at the TEX 2000 conference, Oxford, appears courtesy of Alan Wetmore.

∗ ∗ ∗
Any mistake found and reported is a gain for all readers of our book. We

To Err is Humanwould therefore like to thank those readers who reported any of the mistakes
which had been overlooked so far. The latest version of the errata file can be found
on the LaTEX project site at http://www.latex-project.org/guides/tlc2.err
where you will also find an on-line version of the index and other extracts from
the book.

∗ ∗ ∗
We would like to thank our families and friends for the support given during

the preparation of this book—though this may sound like an alibi sentence to
many, it never felt truer than with this book.

Chris would like to thank the Open University, United Kingdom, for support-
ing his work on LaTEX and the School of Computer Science and Engineering, Univer-
sity of New South Wales, for providing a most pleasant environment in which to
complete his work on this book.

Frank Mittelbach
Michel Goossens
Johannes Braams

David Carlisle
Chris Rowley

August 2004

This page intentionally left blank

C H A P T E R 1

Introduction

LaTEX is not just a system for typesetting mathematics. Its applications span the
one-page memorandum, business and personal letters, newsletters, articles, and
books covering the whole range of the sciences and humanities, . . . right up to
full-scale expository texts and reference works on all topics. Nowadays, versions
of LaTEX exist for practically every type of computer and operating system. This
book provides a wealth of information about its many present-day uses but first
provides some background information.

The first section of this chapter looks back at the origins and subsequent
development of LaTEX.

1 The second section gives an overview of the file types used
by a typical current LaTEX system and the rôle played by each. Finally, the chapter
offers some guidance on how to use the book.

1.1 A brief history

In May 1977, Donald Knuth of Stanford University [94] started work on the text-
In the Beginning . . .processing system that is now known as “TEX and METAFONT” [82–86]. In the

foreword of The TEXbook [82], Knuth writes: “TEX [is] a new typesetting system in-
tended for the creation of beautiful books—and especially for books that contain
a lot of mathematics. By preparing a manuscript in TEX format, you will be telling
a computer exactly how the manuscript is to be transformed into pages whose
typographic quality is comparable to that of the world’s finest printers.”

1A more personal account can be found in The LATEX legacy: 2.09 and all that [148].

2 Introduction

In 1979, Gordon Bell wrote in a foreword to an earlier book, TEX and META-
FONT, New Directions in Typesetting [80]: “Don Knuth’s Tau Epsilon Chi (TEX) is
potentially the most significant invention in typesetting in this century. It intro-
duces a standard language in computer typography and in terms of importance
could rank near the introduction of the Gutenberg press.”

In the early 1990s, Donald Knuth officially announced that TEX would not
undergo any further development [96] in the interest of stability. Perhaps unsur-
prisingly, the 1990s saw a flowering of experimental projects that extended TEX in
various directions; many of these are coming to fruition in the early 21st century,
making it an exciting time to be involved in automated typography.

The development of TEX from its birth as one of Don’s “personal productivity
tools” (created simply to ensure the rapid completion and typographic quality
of his then-current work on The Art of Computer Programming) [88] was largely
influenced and nourished by the American Mathematical Society on behalf of U.S.
research mathematicians.

While Don was developing TEX, in the early 1980s, Leslie Lamport started work
. . . and Lamport

saw that it was
Good.

on the document preparation system now called LaTEX, which used TEX’s typeset-
ting engine and macro system to implement a declarative document description
language based on that of a system called Scribe by Brian Reid [142]. The appeal
of such a system is that a few high-level LaTEX declarations, or commands, allow
the user to easily compose a large range of documents without having to worry
much about their typographical appearance. In principle at least, the details of the
layout can be left for the document designer to specify elsewhere.

The second edition of LATEX: A Document Preparation System [104] begins as
follows: “LaTEX is a system for typesetting documents. Its first widely available
version, mysteriously numbered 2.09, appeared in 1985.” This release of a stable
and well-documented LaTEX led directly to the rapid spread of TEX-based document
processing beyond the community of North American mathematicians.

LaTEX was the first widely used language for describing the logical structure
of a large range of documents and hence introducing the philosophy of logical
design, as used in Scribe. The central tenet of “logical design” is that the author
should be concerned only with the logical content of his or her work and not
its visual appearance. Back then, LaTEX was described variously as “TEX for the
masses” and “Scribe liberated from inflexible formatting control”. Its use spread
very rapidly during the next decade. By 1994 Leslie could write, “LaTEX is now
extremely popular in the scientific and academic communities, and it is used ex-
tensively in industry.” But that level of ubiquity looks quite small when compared
with the present day when it has become, for many professionals on every conti-
nent, a workhorse whose presence is as unremarkable and essential as the work-
station on which it is used.

The worldwide availability of LaTEX quickly increased international interest in
Going global TEX and in its use for typesetting a range of languages. LaTEX 2.09 was (deliberately)

not globalized but it was globalizable; moreover, it came with documentation
worth translating because of its clear structure and straightforward style. Two

1.1 A brief history 3

pivotal conferences (Exeter UK, 1988, and Karlsruhe Germany, 1989) established
clearly the widespread adoption of LaTEX in Europe and led directly to International
LaTEX [151] and to work led by Johannes Braams [25] on more general support for
using a wide variety of languages and switching between them (see Chapter 9).

Note that in the context of typography, the word language does not refer ex-
clusively to the variety of natural languages and dialects across the universe; it
also has a wider meaning. For typography, “language” covers a lot more than just
the choice of “characters that make up words”, as many important distinctions
derive from other cultural differences that affect traditions of written communi-
cation. Thus, important typographic differences are not necessarily in line with
national groupings but rather arise from different types of documents and dis-
tinct publishing communities.

Another important contribution to the reach of LaTEX was the pioneering work
The Next Generationof Frank Mittelbach and Rainer Schöpf on a complete replacement for LaTEX’s in-

terface to font resources, the New Font Selection Scheme (NFSS) (see Chapter 7).
They were also heavily involved in the production of the AMS-LaTEX system that
added advanced mathematical typesetting capabilities to LaTEX (see Chapter 8).

As a reward for all their efforts, which included a steady stream of bug reports
(and fixes) for Leslie, by 1991 Frank and Rainer had “been allowed” to take over
the technical support and maintenance of LaTEX. One of their first acts was to
consolidate International LaTEX as part of the kernel

1 of the system, “according to
the standard developed in Europe”. Very soon Version 2.09 was formally frozen
and, although the change-log entries continue for a few months into 1992, plans
for its demise as a supported system were already far advanced as something new
was badly needed. The worldwide success of LaTEX had by the early 1990s led in a

Too much of a
Good ThingTM

sense to too much development activity: under the hood of Leslie’s “family sedan”
many TEXnicians had been laboring to add such goodies as super-charged, turbo-
injection, multi-valved engines and much “look-no-thought” automation. Thus, the
announcement in 1994 of the new standard LaTEX, christened LaTEX2ε , explains its
existence in the following way:

“Over the years many extensions have been developed for LaTEX. This
is, of course, a sure sign of its continuing popularity but it has had one
unfortunate result: incompatible LaTEX formats came into use at different
sites. Thus, to process documents from various places, a site maintainer
was forced to keep LaTEX (with and without NFSS), SLITEX,AMS-LaTEX, and
so on. In addition, when looking at a source file it was not always clear
for which format the document was written.

To put an end to this unsatisfactory situation a new release of LaTEX
was produced. It brings all such extensions back under a single format
and thus prevents the proliferation of mutually incompatible dialects of
LaTEX 2.09.”

1Kernel here means the core, or center, of the system.

4 Introduction

The development of this “New Standard LaTEX” and its maintenance system
Standard LATEX was started in 1993 by the LaTEX3 Project Team [126], which soon comprised Frank

Mittelbach, Rainer Schöpf, Chris Rowley, Johannes Braams, Michael Downes, David
Carlisle, Alan Jeffrey, and Denys Duchier, with some encouragement and gentle
bullying from Leslie. Although the major changes to the basic LaTEX system (the
kernel) and the standard document classes (styles in 2.09) were completed by
1994, substantial extra support for colored typography, generic graphics, and fine
positioning control were added later, largely by David Carlisle. Access to fonts for
the new system incorporated work by Mark Purtill on extensions of NFSS to better
support variable font encodings and scalable fonts [30–32].

Although the original goal for this new version was consolidation of the wide
The 21st century range of models carrying the LaTEX marquee, what emerged was a substantially

more powerful system with both a robust mechanism (via LaTEX packages) for ex-
tension and, importantly, a solid technical support and maintenance system. This
provides robustness via standardization and maintainability of both the code base
and the support systems. This system remains the current standard LaTEX system
that is described in this book. It has fulfilled most of the goals for “a new LaTEX for
the 21st Century”, as they were envisaged back in 1989 [129,131].

The specific claims of the current system are “. . . better support for fonts,
graphics and color; actively maintained by the LaTEX3 Project Team”. The details
of how these goals were achieved, and the resulting subsystems that enabled the
claims to be substantially attained, form a revealing study in distributed software
support: The core work was done in at least five countries and, as is illustrated by
the bugs database [106], the total number of active contributors to the technical
support effort remains high.

Although the LaTEX kernel suffered a little from feature creep in the late 1990s,
The package system the package system together with the clear development guidelines and the le-

gal framework of the LaTEX Project Public License (LPPL) [111] have enabled LaTEX
to remain almost completely stable while supporting a wide range of extensions.
These have largely been provided by a similarly wide range of people who have, as
the project team are happy to acknowledge and the on-line catalogue [169] bears
witness, enhanced the available functionality in a vast panoply of areas.

All major developments of the base system have been listed in the regular
Development work issues of LATEX News [107]. At the turn of the century, development work by the

LaTEX3 Project Team focused on the following areas: supporting multi-language
documents [120]; a “Designer Interface for LaTEX” [123]; major enhancements to
the output routine [121]; improved handling of inter-paragraph formatting; and
the complex front-matter requirements of journal articles. Prototype code has
been made available; see [124].

One thing the project team steadfastly refused to do was to unnecessarily “en-
No new features . . . hance” the kernel by providing additional features as part of it, thereby avoiding

the trap into which LaTEX 2.09 fell in the early 1990s: the disintegration into incom-
patible dialects where documents written at one site could not be successfully
processed at another site. In this discussion it should not be forgotten that LaTEX

1.1 A brief history 5

serves not only to produce high-quality documents, but also to enable collabora-
tion and exchange by providing a lingua franca for various research communities.

With LaTEX2ε , documents written in 19961 can still be run with today’s LaTEX.
New documents run on older kernel releases if the additional packages used are
brought up-to-date—a task that, in contrast to updating the LaTEX kernel software,
is easily manageable even for users working in a multiuser environment (e.g., in a
university or company setting).

But a stable kernel is not identical to a standstill in software development; of
. . . but no standstillequally crucial importance to the continuing relevance and popularity of LaTEX is

the diverse collection of contributed packages building on this stable base. The
success of the package system for non-kernel extensions is demonstrated by the
enthusiasm of these contributors—many thanks to all of them! As can be easily ap-
preciated by visiting the highly accessible and stable Comprehensive TEX Archive
Network (see Appendix C) or by reading this book (where more than 250 of these
“Good Guys”2 are listed on page 1080), this has supported the existence of an
enormous treasure trove of LaTEX packages and related software.

The provision of services, tools, and systems-level support for such a highly
The back officedistributed maintenance and development system was itself a major intellectual

challenge, because many standard working methods and software tools for these
tasks assume that your colleagues are in the next room, not the next continent
(and in the early days of the development, e-mail and FTP were the only reliable
means of communication). The technical inventiveness and the personalities of
everyone involved were both essential to creating this example of the friendly
face of open software maintenance, but Alan Jeffrey and Rainer Schöpf deserve
special mention for “fixing everything”.

A vital part of this system that is barely visible to most people is the regres-
sion testing system with its vast suite of test files [119]. It was devised and set up
by Frank and Rainer with Daniel Flipo; it has proved its worth countless times in
the never-ending battle of the bugs.

Some members of the project team have built on the team’s experience to
Researchextend their individual research work in document science beyond the current

LaTEX structures and paradigms. Some examples of their work up to 2003 can be
found in the following references: [33–36,117,127,138,147,149].

Meanwhile, the standard LaTEX system will have two major advantages over
Until 2020?anything else that will emerge in the next 10 years to support fully automated

document processing. First, it will efficiently provide high-quality formatting of a
large range of elements in very complex documents of arbitrary size. Second, it
will be robust in both use and maintenance and hence will have the potential to
remain in widespread use for at least a further 15 years.3

1The time between 1994 and 1996 was a consolidation time for LaTEX2ε , with major fixes and
enhancements being made until the system was thoroughly stable.

2Unfortunately, this is nearly the literal truth: You need a keen eye to spot the nine ladies listed.
3One of the authors has publicly staked a modest amount of beer on TEX remaining in general

use (at least by mathematicians) until at least 2010.

6 Introduction

An important spin-off from the research work was the provision of some in-
. . . and into the

future
terfaces and extensions that are immediately usable with standard LaTEX. As more
such functionality is added, it will become necessary to assess the likelihood that
merely extending LaTEX in this way will provide a more powerful, yet still robust
and maintainable, system. This is not the place to speculate further about the fu-
ture of LaTEX but we can be sure that it will continue to develop and to expand its
areas of influence whether in traditional publishing or in electronic systems for
education and commerce.

1.2 Today’s system

This section presents an overview of the vast array of files used by a typical LaTEX
system with its many components. This overview will also involve some descrip-
tions of how the various program components interact. Most users will never need
to know anything of this software environment that supports their work, but this
section will be a useful general reference and an aid to understanding some of the
more technical parts of this book.

Although modern LaTEX systems are most often embedded in a project-
oriented, menu-driven interface, behind the scenes little has changed from the
file-based description given here. The stability of LaTEX over time also means that
an article by Joachim Schrod on The Components of TEX [153] remains the best
source for a more comprehensive explanation of a TEX-based typesetting system.
The following description assumes familiarity with a standard computer file sys-
tem in which a “file extension” is used to denote the “type of a file”.

In processing a document, the LaTEX program reads and writes several files,
some of which are further processed by other applications. These are listed in
Table 1.1, and Figure 1.1 shows schematically the flow of information behind the
scenes (on pages 8 and 9).

The most obviously important files in any LaTEX-based documentation project
Document

input
are the input source files. Typically, there will be a master file that uses other
subsidiary files (see Section 2.1). These files most often have the extension .tex
(code documentation for LaTEX typically carries the extension .dtx; see Chapter 14);
they are commonly known as “plain text files” since they can be prepared with
a basic text editor. Often, external graphical images are included in the typeset
document utilizing the graphics interface described in Section 10.2.

LaTEX also needs several files containing structure and layout definitions: class
Structure
and style

files with the extension .cls; option files with the extension .clo; package files
with the extension .sty (see Appendix A). Many of these are provided by the basic
system set-up, but others may be supplied by individual users. LaTEX is distributed
with five standard document classes: article, report, book, slides, and letter. These
document classes can be customized by the contents of other files specified either
by class options or by loading additional packages as described in Section 2.1. In
addition, many LaTEX documents will implicitly input language definition files of

1.2 Today’s system 7

the babel system with the extension .ldf (see Chapter 9) and encoding definition
files of the inputenc/fontenc packages with the extension .def (see Chapter 7).

The information that LaTEX needs about the glyphs to be typeset is found in
Font resourcesTEX font metric files (extension .tfm). This does not include information about

the shapes of glyphs, only about their dimensions. Information about which font
files are needed by LaTEX is stored in font definition files (extension .fd). Both types
are loaded automatically when necessary. See Chapter 7 for further information
about font resources.

A few other files need to be available to TEX, but you are even less likely to
The LATEX formatcome across them directly. An example includes the LaTEX format file latex.fmt

that contains the core LaTEX instructions, precompiled for processing by the
TEX formatter. There are some situations in which this format needs to be
recompiled—for example, when changing the set of hyphenation rules available to
LaTEX (configured in language.dat; see Section 9.5.1) and, of course, when a new
LaTEX kernel is made available. The details regarding how such formats are gener-
ated differ from one TEX implementation to the next, so they are not described in
this book.

The output from LaTEX itself is a collection of internal files (see below), plus
one very important file that contains all the information produced by TEX about
the typeset form of the document.

TEX’s own particular representation of the formatted document is that of a
Formatted outputdevice-independent file (extension .dvi). TEX positions glyphs and rules with a

precision far better than 0.01μm (1/4,000,000 inch). Therefore, the output gener-
ated by TEX can be effectively considered to be independent of the abilities of any
physical rendering device—hence the name. Some variants of the TEX program,
such as pdfTEX [159, 161] and VTEX [168], can produce device-independent file
formats including the Portable Document Format (PDF) (extension .pdf), which is
the native file format of Adobe Acrobat.

The .dvi file format specifies only the names/locations of fonts and their
glyphs—it does not contain any rendering information for those glyphs. The .pdf
file format can contain such rendering information.

Some of the internal files contain code needed to pass information from Cross-references

one LaTEX run to the next, such as for cross-references (the auxiliary file, exten-
sion .aux; see Section 2.3) and for typesetting particular elements of the docu-
ment such as the table of contents (extension .toc) and the lists of figures (exten-
sion .lof) and of tables (extension .lot). Others are specific to particular pack-
ages (such as minitoc, Section 2.3.6, or endnotes, Section 3.2.7) or to other parts
of the system (see below).

Finally, TEX generates a transcript file of its activities with the extension .log.
Errors, warnings,
and information

This file contains a lot of information, such as the names of the files read, the
numbers of the pages processed, warning and error messages, and other pertinent
data that is especially useful when debugging errors (see Appendix B).

A file with the extension .idx contains individual unsorted items to be in-
Indexingdexed. These items need to be sorted, collated, and unified by a program like

makeindex or xindy (see Chapter 11). The sorted version is typically placed into

8 Introduction

File Type Common File Extension(s)

Document Input text .tex .dtx .ltx
bibliography .bbl
index / glossary .ind / .gnd

Graphics internal .tex
external .ps .eps .tif .png .jpg .gif .pdf

Other Input layout and structure .clo .cls .sty
encoding definitions .def
language definitions .ldf
font access definitions .fd
configuration data .cfg

Internal Communication auxiliary .aux
(Input and Output) table of contents .toc

list of figures / tables .lof / .lot

Low-level TEX Input format .fmt
font metrics .tfm

Output formatted result .dvi .pdf
transcript .log

Bibliography (BIBTEX) input / output .aux / .bbl
database / style / transcript .bib / .bst / .blg

Index (MakeIndex) input / output .idx / .ind
style / transcript .ist / .ilg

Table 1.1: Overview of the file types used by TEX and LaTEX

a file (extension .ind) that is itself input to LaTEX. For makeindex, the index style
information file has an extension of .ist and its transcript file has an extension
.ilg; in contrast xindy appears not to use any predefined file types.

Information about bibliographic citations (see Chapter 12) in a document is
Citations and
bibliography

normally output by LaTEX to the auxiliary file. This information is used first to
extract the necessary information from a bibliographic database and then to sort
it; the sorted version is put into a bibliography file (extension .bbl) that is itself
input to LaTEX. If the system uses BIBTEX (see Chapter 13) for this task, then the
bibliographic database files will have an extension of .bib, and information about
the process will be in a bibliography style file (extension .bst). Its transcript file
has the extension .blg.

Because of the limitations of TEX, especially its failure to handle graphics, it
is often necessary to complete the formatting of some elements of the typeset
document after TEX has positioned everything and written this information to

Using \specials the .dvi file. This is normally done by attaching extra information and handling
instructions at the correct “geometrical position in the typeset document”, using

1.2 Today’s system 9

kernel code (latex.ltx)
hyphen patterns (language.dat)

. . . other stuff

TEX
processing a

LaTEX document

LaTEX format (fmt)

Structure, style, language (cls sty ldf)

Font metrics (tfm)

Font definitions (fd)

Input encoding definitions (def)

Formatted output (dvi pdf)

Document input (tex)

Transcript (log)

Internal files

bbl
ind
...

PostScript (ps) Screen Printer On-line

Related
applications

...
lof
toc
aux

Figure 1.1: Data flow in the LaTEX system

TEX’s \special primitive that simply puts this information at the correct place
in the .dvi file (see Chapter 10). This information may be simply the name of a
graphics file to be input; or it may be instructions in a graphics language. Cur-
rently the most common such secondary formatter is a PostScript interpreter. To

PostScriptuse this method, all information output by TEX to the .dvi file, including that in
the \specials, must be transformed into PostScript code; applications to do this
form part of all LaTEX systems.

Once the document has been successfully processed by TEX (and possibly
Seeing is believingtransformed into PostScript), you will probably want to take a look at the format-

ted text. This is commonly done on screen, but detailed inspection of printed
output should always be performed via printing on paper at the highest available
resolution. The applications available for viewing documents on screen still (as of
late 2003) vary quite a lot from system to system. Some require a .dvi file, while
others use a .ps file. A current favorite approach is to use a .pdf file, especially
when electronic distribution of the formatted document is required. Occasionally
you will find that some applications will produce much better quality screen out-
put than others; this is due to limitations of the different technologies and the
availability of suitable font resources.

10 Introduction

1.3 Working with this book

This final section of Chapter 1 gives an overview of the structure of this book, the
typographic conventions used, and ways to use the examples given throughout
the book.

1.3.1 What’s here

Following is a summary of the subject areas covered by each chapter and appendix.
In principle, the remaining chapters can be read independently since, when nec-
essary, pointers are given to where necessary supplementary information can be
found in other parts of the book.

Chapter 1 gives a short introduction to the LaTEX system and this book.

Chapter 2 discusses document structure markup, including sectioning com-
mands and cross-references.

Chapter 3 describes LaTEX’s basic typesetting commands.

Chapter 4 explains how to influence the visual layout of the pages in various
ways.

Chapter 5 shows how to lay out material in columns and rows, on single and
multiple pages.

Chapter 6 discusses floating material and caption formatting.

Chapter 7 discusses in detail LaTEX’s Font Selection Scheme and shows how to
access new fonts.

Chapter 8 reviews mathematical typesetting, particularly the packages sup-
ported by the American Mathematical Society.

Chapter 9 describes support for using LaTEX with multiple languages, particu-
larly the babel system.

Chapter 10 covers the simpler extensions of LaTEX for graphics, including the
use of PostScript.

Chapter 11 discusses the preparation and typesetting of an index; the pro-
grams makeindex and xindy are described.

Chapter 12 describes LaTEX’s support for the different bibliographical reference
schemes in common use.

Chapter 13 explains how to use bibliographical databases in conjunction with
LaTEX and how to generate typeset bibliographies according to pub-
lishers’ expectations.

1.3 Working with this book 11

Chapter 14 shows how to document LaTEX files and how to use such files pro-
vided by others.

Appendix A reviews how to handle and manipulate the basic LaTEX programming
structures and how to produce class and package files.

Appendix B discusses how to trace and resolve problems.

Appendix C explains how to obtain the packages and systems described in this
book and the support systems available.

Appendix D briefly introduces the TLC2 TEX CD-ROM (at the back of the book).

Some of the material covered in the book may be considered “low-level” TEX
that has no place in a book about LaTEX. However, to the authors’ knowledge, much
of this information has never been described in the “LaTEX” context though it is
important. Moreover, we do not think that it would be helpful simply to direct
readers to books like The TEXbook, because most of the advice given in books
about Plain TEX is either not applicable to LaTEX or, worse, produces subtle errors
if used with LaTEX. In some sections we have, therefore, tried to make the treatment
as self-contained as possible by providing all the information about the underlying
TEX engine that is relevant and useful within the LaTEX context.

1.3.2 Typographic conventions

It is essential that the presentation of the material conveys immediately its func-
tion in the framework of the text. Therefore, we present below the typographic
conventions used in this book.

Throughout the text, LaTEX command and environment names are set in mono- Commands,
environments,
packages, . . .

spaced type (e.g., \caption , enumerate, \begin{tabular}), while names of pack-
age and class files are in sans serif type (e.g., article). Commands to be typed by the
user on a computer terminal are shown in monospaced type and are underlined
(e.g., This is user input).

The syntax of the more complex LaTEX commands is presented inside a rectan- Syntax descriptions

gular box. Command arguments are shown in italic type:

\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}[right-sep]

In LaTEX, optional arguments are denoted with square brackets and the star in-
dicates a variant form (i.e., is also optional), so the above box means that the
\titlespacing command can come in four different incarnations:

\titlespacing{cmd}{left-sep}{before-sep}{after-sep}
\titlespacing{cmd}{left-sep}{before-sep}{after-sep}[right-sep]
\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}
\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}[right-sep]

12 Introduction

For some commands, not all combinations of optional arguments and/or star
forms are valid. In that case the valid alternatives are explicitly shown together,
as, for example, in the case of LaTEX’s sectioning commands:

\section*{title} \section[toc-entry]{title}

Here the optional toc-entry argument can be present only in the unstarred form;
thus, we get the following valid possibilities:

\section*{title}
\section{title}
\section[toc-entry]{title}

Lines containing examples with LaTEX commands are indented and are typesetCode examples . . .

in a monospaced type at a size somewhat smaller than that of the main text:

\addtocontents{lof}{\protect\addvspace{10pt}}
\addtocontents{lot}{\protect\addvspace{10pt}}

However, in the majority of cases we provide complete examples together with. . . with output . . .

the output they produce side by side:

The right column shows the input text
to be treated by LATEX with preamble ma-
terial shown in blue. In the left column
one sees the result after typesetting.

\usepackage{ragged2e}

The right column shows the input text to be treated by
\LaTeX{} with preamble material shown in blue. In the
left column one sees the result after typesetting. 1-3-1

Note that all preamble commands are always shown in blue in the example source.
In case several pages need to be shown to prove a particular point, (partial). . . with several

pages . . . “page spreads” are displayed and usually framed to indicate that we are showing
material from several pages.

1 A TEST

1 A test
Some text for our page
which might get reused
over and over again.

Page 6 of 7

1 A TEST

Some text for our
page which might get
reused over and over
again.

Page 7 of 7

\usepackage{fancyhdr,lastpage}
\pagestyle{fancy}
\fancyhf{} % --- clear all fields
\fancyhead[RO,LE]{\leftmark}
\fancyfoot[C]{Page \thepage\

of \pageref{LastPage}}

% \sample defined as before
\section{A test}
\sample \par \sample

1-3-2

A number of points should be noted here:

• We usually arrange the examples to show pages 6 and 7 so that a double
spread is displayed.

1.3 Working with this book 13

• We often use the command \sample to hold a short piece of text to keep the
example code short (the definition for this command is either given as part of
the example or, as indicated here, repeated from an earlier example—which
in this example is simply a lie as \sample is not defined).

• The output may or may not show a header and footer. In the above case it
shows both.

For large examples, where the input and output cannot be shown conveniently . . . with large
output . . .alongside each other, the following layout is used:

\usepackage{ragged2e}

This is a wide line, whose input commands and output result cannot
be shown nicely in two columns.

Depending on the example content, some additional explanation might appear
between input and output (as in this case).

1-3-3
This is a wide line, whose input commands and output result cannot be

shown nicely in two columns.

Chapter 8 shows yet another example format, where the margins of the ex- . . . or with lines
indicating the
margins

ample are explicitly indicated with thin blue vertical rules. This is done to better
show the precise placement of displayed formulas and their tags in relation to the
text margins.

1-3-4 (1) (a + b)2 = a2 + 2ab + b2
\usepackage[leqno]{amsmath}

\begin{equation} (a+b)^2 = a^2+2ab+b^2 \end{equation}

All of these examples are “complete” if you mentally add a \documentclass
line (with the article class1 as an argument) and surround the body of the example
with a document environment. In fact, this is how all of the (nearly 1000) examples
in this book were produced. When processing the book, special LaTEX commands
take the source lines for an example and write them to an external file, thereby
automatically adding the \documentclass and the document environment lines.
This turns each example into a small but complete LaTEX document. These docu-
ments are then externally processed (using a mechanism that runs each example
as often as necessary, including the generation of a bibliography through BIBTEX).
The result is converted into small EPS graphics, which are then loaded in the ap-
propriate place the next time LaTEX is run on the whole book. More details on the
actual implementation of this scheme can be found in Section 3.4.3 on page 162.

Throughout the book, blue notes are sprinkled in the margin to help you
easily find certain information that would otherwise be hard to locate. In a few �Watch

out for thesecases these notes exhibit a warning sign, indicating that you should probably read
this information even if you are otherwise only skimming through the particular
section.

1Except for examples involving the \chapter command, which need the report or book class.

14 Introduction

1.3.3 Using the examples

Our aim when producing this book was to make it as useful as possible for our
readers. For this reason the book contains nearly 1000 complete, self-contained
examples of all aspects of typesetting covered in the book.

These examples are made available in source format on CTAN in info/
examples/tlc2 and are also provided on the accompanying CD-ROM in Books/
tlc2/examples. The examples are numbered per section, and each number is
shown in a small box in the inner margin (e.g., 1-3-4 for the example on the preced-
ing page). These numbers are also used for the external file names by appending
.ltx (single-page examples) or .ltx2 (double-page examples).

To reuse any of the examples it is usually sufficient to copy the preamble code
(typeset in blue) into the preamble of your document and, if necessary, adjust the
document text as shown. In some cases it might be more convenient to place the
preamble code into your own package (or class file), thus allowing you to load this
package in multiple documents using \usepackage . If you want to do the latter,
there are two points to observe:

• Any use of \usepackage in the preamble code should be replaced by
\RequirePackage , which is the equivalent command for use in package and
class files (see Section A.4.5).

• Any occurrence of \makeatletter and \makeatother must be removed from
the preamble code. This is very important because the \makeatother would
stop correct reading of such a file.

So let us assume you wish to reuse the code from the following example:

1 Equations. . .

(a + b)2 = a2 + 2ab + b2 (1.1)

(a− b)2 = a2 − 2ab + b2 (1.2)

2 . . . per section

(a + b)(a− b) = a2 − b2 (2.1)

\makeatletter % ‘@’ now normal "letter"
\@addtoreset{equation}{section}
\makeatother % ‘@’ is restored as "non-letter"
\renewcommand\theequation{\oldstylenums{\thesection}%

.\oldstylenums{\arabic{equation}}}

\section{Equations\ldots}
\begin{equation} (a+b)^2 = a^2 + 2ab + b^2\end{equation}
\begin{equation} (a-b)^2 = a^2 - 2ab + b^2\end{equation}

\section{\ldots per section}
\begin{equation} (a+b)(a-b) = a^2 - b^2 \end{equation}

1-3-5

You have two alternatives: You can copy the preamble code (i.e., code colored
blue) into your own document preamble or you can place that code—but without
the \makeatletter and \makeatother—in a package file (e.g., reseteqn.sty)
and afterwards load this “package” in the preamble of your own documents with
\usepackage{reseteqn}.

C H A P T E R 2

The Structure of a LATEX
Document

One of the ideas behind LaTEX is the separation between layout and structure (as far
as possible), which allows the user to concentrate on content rather than having to
worry about layout issues [104]. This chapter explains how this general principle
is implemented in LaTEX.

The first section of this chapter shows how document class files, packages, op-
tions, and preamble commands can affect the structure and layout of a document.
The logical subdivisions of a document are discussed in general, before explaining
in more detail how sectioning commands and their arguments define a hierarchi-
cal structure, how they generate numbers for titles, and how they produce running
heads and feet. Different ways of typesetting section titles are presented with the
help of examples. It is also shown how the information that is written to the table
of contents can be controlled and how the look of this table, as well as that of the
lists of tables and figures, can be customized. The final section introduces LaTEX
commands for managing cross-references and their scoping rules.

2.1 The structure of a source file

You can use LaTEX for several purposes, such as writing an article or a letter, or pro-
ducing overhead slides. Clearly, documents for different purposes may need dif-
ferent logical structures, i.e., different commands and environments. We say that
a document belongs to a class of documents having the same general structure
(but not necessarily the same typographical appearance). You specify the class to
which your document belongs by starting your LaTEX file with a \documentclass

16 The Structure of a LATEX Document

command, where the mandatory parameter specifies the name of the document
class. The document class defines the available logical commands and environ-
ments (for example, \chapter in the report class) as well as a default formatting
for those elements. An optional argument allows you to modify the formatting of
those elements by supplying a list of class options. For example, 11pt is an option
recognized by most document classes that instructs LaTEX to choose eleven point
as the basic document type size.

Many LaTEX commands described in this book are not specific to a single class
but can be used with several classes. A collection of such commands is called a
package and you inform LaTEX about your use of certain packages in the document
by placing one or more \usepackage commands after \documentclass .

Just like the \documentclass declaration, \usepackage has a mandatory ar-
gument consisting of the name of the package and an optional argument that can
contain a list of package options that modify the behavior of the package.

The document classes and the packages reside in external files with the ex-
tensions .cls and .sty, respectively. Code for options is sometimes stored in
external files (in the case of class files with the extension .clo) but is normally
directly specified in the class or package file (see Appendix A for information on
declaring options in classes and packages). However, in case of options, the file
name can differ from the option name. For example, the option 11pt is related to
size11.clo when used in the article class and to bk11.clo inside the book class.

Commands placed between \documentclass and \begin{document} are in
The document

preamble
the so-called document preamble. All style parameters must be defined in this
preamble, either in package or class files or directly in the document before the
\begin{document} command, which sets the values for some of the global pa-
rameters. A typical document preamble could look similar to the following:

\documentclass[twocolumn,a4paper]{article}
\usepackage{multicol}
\usepackage[german,french]{babel}
\addtolength\textheight{3\baselineskip}
\begin{document}

This document preamble defines that the class of the document is article and
that the layout is influenced by the formatting request twocolumn (typeset in two
columns) and the option a4paper (print on A4 paper). The first \usepackage
declaration informs LaTEX that this document contains commands and structures
provided by the package multicol. In addition, the babel package with the options
german (support for German language) and french (support for French language)
is loaded. Finally, the default height of the text body was enlarged by three lines
for this document.

Generally, nonstandard LaTEX package files contain modifications, extensions,
or improvements1 with respect to standard LaTEX, while commands in the pream-

1Many of these packages have become de facto standards and are described in this book. This

2.1 The structure of a source file 17

ble define changes for the current document. Thus, to modify the layout of a
document, you have several possibilities:

• Change the standard settings for parameters in a class file by options defined
for that class.

• Add one or more packages to your document and make use of them.

• Change the standard settings for parameters in a package file by options de-
fined for that package.

• Write your own local packages containing special parameter settings and load
them with \usepackage after the package or class they are supposed to mod-
ify (as explained in the next section).

• Make final adjustments inside the preamble.

If you want to get deeper into LaTEX’s internals, you can, of course, define your
own general-purpose packages that can be manipulated with options. You will
find additional information on this topic in Appendix A.

2.1.1 Processing of options and packages

Today’s LaTEX makes a clear distinction between declared options (of a class or
package) and general-purpose package files. The latter have to be specified using
the \usepackage command. Think of options as properties of the whole docu-
ment (when used in \documentclass) or as properties of individual packages (if
specified in \usepackage).

You can specify options in a \usepackage command only if these options are
declared by the package. Otherwise, you will receive an error message, informing
you that your specified option is unknown to the package in question. Options to
the \documentclass are handled slightly differently. If a specified option is not
declared by the class, it will be assumed to be a “global option”.

All options to \documentclass (both declared and global ones) are automati-
cally passed as class options to all \usepackage declarations. Thus, if a package
file loaded with a \usepackage declaration recognizes (i.e., declares) some of the
class options, it can take appropriate actions. If not, the class options will be ig-
nored while processing that package. Because all options have to be defined inside
the class or package file, their actions are under the control of the class or package
(an action can be anything from setting internal switches to reading an external
file). For this reason their order in the optional argument of \documentclass or
\usepackage is (usually) irrelevant.

does not mean, however, that packages that are not described here are necessarily less important
or useful, of inferior quality, or should not be used. We merely concentrated on a few of the more
established ones; for others, we chose to explain what functionality is possible in a given area.

18 The Structure of a LATEX Document

If you want to use several packages, all taking the same options (for example,
none), it is possible to load them all with a single \usepackage command by spec-
ifying the package names as a comma-separated list in the mandatory argument.
For example,

\usepackage[german]{babel} \usepackage[german]{varioref}
\usepackage{multicol} \usepackage{epic}

is equivalent to

\usepackage[german]{babel,varioref} \usepackage{multicol,epic}

Specifying german as a global option to the class can further shorten the
\usepackage declaration as german will be passed to all loaded packages and
thus will be processed by those packages that declare it.

\documentclass[german]{book}
\usepackage{babel,varioref,multicol,epic}

Of course, this assumes that neither multicol nor epic changes its behavior when
german is passed as a class option.

Finally, when the \begin{document} is reached, all global options are
checked to see whether each has been used by at least one package; if not, a
warning message is displayed. It is usually a spelling mistake if your option name
is never used; another possibility is the removal of a \usepackage command load-
ing a package that used this option previously.

If you want to make some modifications to a document class or a package (for
example, changing parameter values or redefining some commands), you should
put the relevant code into a separate file with the extension .sty. Then load this
file with a \usepackage command after the package whose behavior you wish to
modify (or the document class, if your modifications concern class issues).

Alternatively, you can insert the modifications directly into the preamble of
your document. In that case, you may have to bracket them with \makeatletter
and \makeatother if they contain internal LaTEX commands (i.e., those with an @
sign in their names). For more details see the discussion on page 843 concerning
internal commands in the preamble.

2.1.2 Splitting the source file into parts

LaTEX source documents can be conveniently split into several parts by using
\include commands. Moreover, documents can be reformatted piecewise by spec-

Partial processing ifying as arguments of an \includeonly command only those files LaTEX has to re-
process. For the other files that are specified in \include statements, the counter
information (page, chapter, table, figure, equation, . . .) will be read from the cor-
responding .aux files as long as they have been generated during a previous run.

2.1 The structure of a source file 19

In the following example, the user wants to reprocess only files chap1.tex and
appen1.tex:

\documentclass{book} % the document class ‘‘book’’
\includeonly{chap1,appen1} % only include chap1 and appen1
\begin{document}
\include{chap1} % input chap1.tex
\include{chap2} % input chap2.tex
\include{chap3} % input chap3.tex
\include{appen1} % input appen1.tex
\include{appen2} % input appen2.tex
\end{document}

Be aware that LaTEX only issues a warning message like "No file xxx.tex"
when it cannot find a file specified in an \include statement, not an error mes-
sage, and continues processing.

If the information in the .aux files is up-to-date, it is possible to process
only part of a document and have all counters, cross-references, and pages be
corrected in the reformatted part. However, if one of the counters (including the
page number for cross-references) changes in the reprocessed part, then the com-
plete document might have to be rerun to get the index, table of contents, and
bibliographic references consistently correct.

Note that each document part loaded via \include starts on a new page and
finishes by calling \clearpage; thus, floats contained therein will not move out-
side the pages produced by this part. So natural candidates for \include are
whole chapters of a book but not necessarily small fractions of text.

While it is certainly an advantage to split a larger document into smaller parts
and to work on more manageable files with a text editor, partial reformatting
should be used only with great care and when still in the developing stage for
one or more chapters. When a final and completely correct copy is needed, the
only safe procedure is to reprocess the complete document. If a document is too
large to process in a single run, it can be subdivided into parts that can be run
separately. However, in this case, the pieces must be processed in the correct
sequence (if necessary several times), to ensure that the cross-references and page
numbers are correct.

If you intend to work with \include commands, consider using the small
Interactive inclusionpackage askinclude created by Pablo Straub. It interactively asks you which files

to include. You can then specify the files as a comma-separated list (i.e., what you
would put into the \includeonly argument). If the Enter button is pressed in
response, then the files from the previous run are included automatically (except
on the first run, where this response means to include all files). If the answer is
a *, then all files are included; a - means no files should be included. This way
you do not have to modify your master source to process different parts of your
document (a very useful feature during the production of this book).

20 The Structure of a LATEX Document

An extension to the \include mechanism is provided by the package
Excluding instead

of including
excludeonly created by Dan Luecking and Donald Arseneau. It offers the com-
mand \excludeonly , which takes a comma-separated list of \include file names
and prevents their inclusion. If both \includeonly and \excludeonly are used,
then only the files permitted by both declarations are used. For example,

\includeonly{chap1,chap2,chap3,appen1}
\excludeonly{chap2,chap3,appen2}

results in only chap1 and appen1 being included. This behavior actually contra-
dicts the package name, which indicates that “only” the given list is excluded. You
can achieve this effect by calling the package with the option only, in which case
an \includeonly declaration is ignored.

This package redefines the internal \@include command, so it will not work
with packages or classes that redefine this command as well. Known conflicts are
with the document classes paper and thesis by Wenzel Matiaske.

2.1.3 Combining several files

When sending a LaTEX document to another person you may have to send local or
uncommon package files (e.g., your private modifications to some packages) along
with the source. In such cases it is often helpful if you can put all the information
required to process the document into a single file.

For this purpose, LaTEX provides the environment filecontents. This environ-
ment takes one argument, the name of a file;1 its body consists of the contents
of this file. It is only allowed to appear before a \documentclass declaration. The
\begin and \end tags should be placed on lines of their own in the source. In
particular, there should be no material following them, or you will get LaTEX errors.

If LaTEX encounters such an environment, it will try to find the mentioned file
name. If it cannot, it will write the body of the environment verbatim into a file
in the current directory and inform you about this action. Conversely, if a file
with the given name was found by LaTEX, it will inform you that it has ignored this
instance of the filecontents environment because the file is already present on
the file system.

The generated file will get a few comment lines (using % as a comment char-
acter) added to the top to announce that this file was written by a filecontents
environment:

%% LaTeX2e file ‘foo.txt’
%% generated by the ‘filecontents’ environment
%% from source ‘test’ on 2003/04/16.

1If no extension is specified, the actual external file name will be the one LaTEX would read if you
used this name as an argument to \input , i.e., typically adding the extension .tex.

2.1 The structure of a source file 21

If this is not appropriate—for example, if the file is not a LaTEX file—use the
filecontents* environment instead, which does not produce such extra lines.

To get a list of (nearly) all files used in your document (so that you know
what you might have to pack together), specify the command \listfiles in the
preamble.

2.1.4 optional—Providing variants in the document source

Sometimes it is useful to keep several versions of a document together in a single
source, especially if most of the text is shared between versions. This functionality
is provided by the optional package created by Donald Arseneau.

The variant text parts are specially marked in the source using the command
\opt , and during formatting some of them are selected. The command takes two
arguments: a label (or a comma-separated list of labels) that describes to which
variant the optional text belongs, and the text to be conditionally printed. Because
the text is given in an argument, it cannot contain \verb commands and must
have balanced braces. This approach works well enough for shorter texts. With
longer parts to be optionally printed, however, it is usually best to store them in
an external file and conditionally load this file using the \opt command, as was
done in the example below.

There are a number of ways to select which variants are to be printed. The
following example shows the non-interactive way, where the variants to be printed
are specified by selecting them as options on the \usepackage declaration.

2-1-1

Typeset this if option code was de-
clared. Typeset this for either doc or
code. Typeset this always.

\usepackage[code]{optional}

\opt{doc}{Typeset this if option doc was declared.}
\opt{code}{Typeset this if option code was declared.}
\opt{doc,code}{Typeset this for either doc or code.}
Typeset this always. \opt{}{and this never!}
\opt{doc}{\input{examples}}

Alternatively, you can prompt the user each time for a list of options by in-
cluding the declaration \AskOptions in the preamble, though that can become
tedious if used too often. To help the person select the right options interactively
you can define the command \ExplainOptions—if defined, its replacement text
will be displayed on the terminal prior to asking for a list of options.

If your LaTEX implementation supports passing LaTEX code instead of a file name
to the program, there is a third way to select the variants. If you invoke LaTEX with
the line

latex "\newcommand\UseOption{doc,code}\input{file}"

then the variants with the labels doc and code will be used (in addition to those
specified on the \usepackage , if any). The example command line above would be
suitable for a UN*X system; on other platforms, you might need different quotes.

22 The Structure of a LATEX Document

The optional package selects the variants to process during the LaTEX format-
ting. Depending on the application, it might be better to use a different approach
involving a preprocessor that extracts individual variants from the master source.
For example, the docstrip program can be successfully used for this purpose; in
contrast to other preprocessors, it has the advantage that it will be usable at every
site that has an installed LaTEX system (see Section 14.2 for details).

2.2 Sectioning commands

The standard LaTEX document classes (i.e., article, report, and book) contain com-
mands and environments to define the different hierarchical structural units of
a document (e.g., chapters, sections, appendices). Each such command defines a
nesting level inside a hierarchy and each structural unit belongs to some level.

A typical document (such as an article) consists of a title, some sections
with probably a multilevel nested substructure, and a list of references. To de-
scribe such a structure the title-generating command \maketitle , sectioning
commands such as \section and \subsection , and the thebibliography en-
vironment are used. The commands should be correctly nested. For example, a
\subsection command should be issued only after a previous \section .

Longer works (such as reports, manuals, and books) start with more complex
title information, are subdivided into chapters (and parts), provide cross-reference
information (table of contents, list of figures, list of tables, and indexes), and prob-
ably have appendices. In such a document you can easily distinguish the front mat-
ter, body, and back matter. In LaTEX’s book class these three parts can be explicitly
marked up using the commands \frontmatter , \mainmatter , and \backmatter .
In other classes you often find only the command \appendix , which is used to
separate the body matter from the back matter.

In the front matter the so-called starred form of the \section or \chapter
sectioning command is normally used. This form suppresses the numbering of a
heading. Sectional units with fixed names, such as “Introduction”, “Index”, and
“Preface”, are usually not numbered. In the standard classes, the commands
\tableofcontents , \listoftables , and \listoffigures , and the theindex
and thebibliography environments internally invoke the command (\section
or \chapter) using their starred form.

Standard LaTEX provides the set of sectioning commands shown in Table 2.1.
The \chapter command defines level zero of the hierarchical structure of a doc-
ument, \section defines level one, and so on, whereas the optional \part com-
mand defines the level minus one (or zero in classes that do not define \chapter).
Not all of these commands are defined in all document classes. The article class
does not have \chapter and the letter class does not support sectioning com-
mands at all. It is also possible for a package to define other sectioning commands,
allowing either additional levels or variants for already supported levels.

2.2 Sectioning commands 23

\part (in book and report) level −1 \part (in article) level 0
\chapter (only book and report) level 0 \section level 1
\subsection level 2 \subsubsection level 3
\paragraph level 4 \subparagraph level 5

Table 2.1: LaTEX’s standard sectioning commands

Generally, the sectioning commands automatically perform one or more of
the following typesetting actions:

• Produce the heading number reflecting the hierarchical level.

• Store the heading as an entry for a table of contents (into the .toc file).

• Save the contents of the heading to be (perhaps) used in a running head
and/or foot.

• Format the heading.

All sectioning commands have a common syntax as exemplified here by the
\section command:

\section*{title} \section[toc-entry]{title}

The starred form (e.g., \section*{...}) suppresses the numbering for a title and
does not produce an entry in the table of contents or the running head. In the
second form the optional argument toc-entry is used when the text string for the
table of contents and the running head and/or foot is different from the printed
title. If this variant is used, numbering depends on the current value of the counter
secnumdepth (discussed in the next section).

If you try to advise TEX on how to split the heading over a few lines using
Problems with
explicit formatting

the “~” symbol or the \\ command, then side effects may result when formatting
the table of contents or generating the running head. In this case the simplest
solution is to repeat the heading text without the specific markup in the optional
parameter of the sectioning command.

The remainder of this section discusses how the appearance of headings can
be modified. It explains how to define a command like \section that has the
above syntax, produces a table of contents entry if desired, but has a thick rule
above its heading text or uses a normal-sized italic font rather than a large bold
one.

First, some examples show how to change the numbering of headings. Next,
examples demonstrate how to enter information about headings into the table of
contents. Finally, changes to the general layout of headings are discussed, showing
what LaTEX offers to define them.

24 The Structure of a LATEX Document

2.2.1 Numbering headings

To support numbering, LaTEX uses a counter for each sectional unit and composes
the heading number from these counters.

Perhaps the change desired most often concerning the numbering of titles
is to alter the nesting level up to which a number should be produced. This is
controlled by a counter named secnumdepth, which holds the highest level with
numbered headings. For example, some documents have none of their headings

Numbering no
headings

numbered. Instead of always using the starred form of the sectioning commands,
it is more convenient to set the counter secnumdepth to -2 in the document
preamble. The advantages of this method are that an entry in the table of con-
tents can still be produced, and that arguments from the sectioning commands
can produce information in running headings. As discussed above, these features
are suppressed in the starred form.

To number all headings down to \subparagraph or whatever the deepest sec-
Numbering all

headings
tioning level for the given class is called, setting the counter to a high enough value
(e.g., a declaration such as \setcounter{secnumdepth}{10} should normally be
sufficient).

Finally, the \addtocounter command provides an easy way of numbering
more or fewer heading levels without worrying about the level numbers of the
corresponding sectioning commands. For example, if you need one more level
with numbers, you can place \addtocounter{secnumdepth}{1} in the preamble
of your document without having to look up the right value.

Every sectioning command has an associated counter, which by convention
has the same name as the sectioning command (e.g., the command \subsection
has a corresponding counter subsection). This counter holds the current (for-
matted) number for the given sectioning command. Thus, in the report class, the
commands \chapter , \section , \subsection , and so on represent the hierar-
chical structure of the document and a counter like subsection keeps track of
the number of \subsections used inside the current \section . Normally, when
a counter at a given hierarchical level is stepped, then the next lower-level counter
(i.e., that with the next higher-level number) is reset. For example, the report class
file contains the following declarations:

\newcounter{part} % (-1) parts
\newcounter{chapter} % (0) chapters
\newcounter{section}[chapter] % (1) sections
\newcounter{subsection}[section] % (2) subsections
\newcounter{subsubsection}[subsection]% (3) subsubsections
\newcounter{paragraph}[subsubsection] % (4) paragraphs
\newcounter{subparagraph}[paragraph] % (5) subparagraphs

These commands declare the various counters. The level one (section) counter
is reset when the level zero (chapter) counter is stepped. Similarly, the level
two (subsection) counter is reset whenever the level one (section) counter is

2.2 Sectioning commands 25

stepped. The same mechanism is used down to the \subparagraph command.
Note that in the standard classes the part counter is decoupled from the other
counters and has no influence on the lower-level sectioning commands. As a con-
sequence, \chapters in the book or report class or \sections in article will be
numbered consecutively even if a \part command intervenes. Changing this is
simple—you just replace the corresponding declaration of the chapter counter
with:

\newcounter{chapter}[part]

The behavior of an already existing counter can be changed with the command
\@addtoreset (see Appendix A.1.4), for example,

\@addtoreset{chapter}{part}

Recall that the latter instruction, because of the presence of the @ character,
can be issued only inside a package file or in the document preamble between
\makeatletter and \makeatother commands, as explained on page 843.

Every counter in LaTEX, including the sectioning counters, has an associated
command constructed by prefixing the counter name with \the , which generates
a typeset representation of the counter in question. In case of the sectioning com-
mands this representation form is used to produce the full number associated
with the commands, as in the following definitions:

\renewcommand\thechapter{\arabic{chapter}}
\renewcommand\thesection{\thechapter.\arabic{section}}
\renewcommand\thesubsection{\thesection.\arabic{subsection}}

In this example, \thesubsection produces an Arabic number representation of
the subsection counter prefixed by the command \thesection and a dot. This
kind of recursive definition facilitates modifications to the counter representa-
tions because changes do not need to be made in more than one place. If, for
example, you want to number sections using capital letters, you can redefine the
command \thesection:

2-2-1

A Different-looking section

A.1 Different-looking subsection

Due to the default definitions not only the numbers
on sections change, but lower-level sectioning com-
mands also show this representation of the section
number.

\renewcommand\thesection{\Alph{section}}

\section{Different-looking section}
\subsection{Different-looking subsection}
Due to the default definitions not only the
numbers on sections change, but lower-level
sectioning commands also show this
representation of the section number.

Thus, by changing the counter representation commands, it is possible to
change the number displayed by a sectioning command. However, the representa-

26 The Structure of a LATEX Document

tion of the number cannot be changed arbitrarily by this method. Suppose you
want to produce a subsection heading with the number surrounded by a box.
Given the above examples one straightforward approach would be to redefine
\thesubsection , e.g.,

\renewcommand\thesubsection{\fbox{\thesection.\arabic{subsection}}}

But this is not correct, as one sees when trying to reference such a section.

3.1 A mistake

Referencing a subsection in this format produces a
funny result as we can see looking at subsection 3.1 .
We get a boxed reference.

\renewcommand\thesubsection
{\fbox{\thesection.\arabic{subsection}}}

\setcounter{section}{3}
\subsection{A mistake}\label{wrong}
Referencing a subsection in this format
produces a funny result as we can see
looking at subsection~\ref{wrong}.
We get a boxed reference. 2-2-2

In other words, the counter representation commands are also used by LaTEX’s
cross-referencing mechanism (the \label , \ref commands; see Section 2.4).
Therefore, we can only make small changes to the counter representation com-
mands so that their use in the \ref command still makes sense. To produce
the box around the heading number without spoiling the output of a \ref , we
have to redefine LaTEX’s internal command \@seccntformat , which is responsi-
ble for typesetting the counter part of a section title. The default definition of
\@seccntformat typesets the \the representation of the section counter (in the
example above, it uses the \thesection command), followed by a fixed horizon-
tal space of 1em. Thus, to correct the problem, the previous example should be
rewritten as follows:

1 This is correct

Referencing a section using this definition generates
the correct result for the section reference 1.

\makeatletter
\renewcommand\@seccntformat[1]{\fbox

{\csname the#1\endcsname}\hspace{0.5em}}
\makeatother

\section{This is correct}\label{sec:OK}
Referencing a section using this
definition generates the correct result
for the section reference~\ref{sec:OK}. 2-2-3

The framed box around the number in the section heading is now defined only
in the \@seccntformat command, and hence the reference labels come out cor-
rectly.1 Also note that we reduced the space between the box and the text to 0.5em

1The command \@seccntformat takes as an argument the section level identifier, which is ap-
pended to the \the prefix to generate the presentation form needed via the \csname , \endcsname
command constructor. In our example, the \@seccntformat command is called with the section ar-
gument and thus the replacement text \fbox{\csname thesection\endcsname}\hspace{0.5em}
is generated. See the TEXbook [82] for more details about the \csname command.

2.2 Sectioning commands 27

(instead of the default 1em). The definition of \@seccntformat applies to all head-
ings defined with the \@startsection command (which is described in the next
section). Therefore, if you wish to use different definitions of \@seccntformat
for different headings, you must put the appropriate code into every heading
definition.

2.2.2 Formatting headings

LaTEX provides a generic command called \@startsection that can be used to de-
fine a wide variety of heading layouts. To define or change a sectioning command
one should find out whether \@startsection can do the job. If the desired lay-
out is not achievable that way, then \secdef can be used to produce sectioning
formats with arbitrary layout.

Headings can be loosely subdivided into two major groups: display and run-in
headings. A display heading is separated by a vertical space from the preceding
and the following text—most headings in this book are of this type.

A run-in heading is characterized by a vertical separation from the preceding
text, but the text following the title continues on the same line as the heading
itself, only separated from the latter by a horizontal space.

2-2-4

Run-in headings. This example shows how a run-
in heading looks like. Text in the paragraph follow-
ing the heading continues on the same line as the
heading.

\paragraph{Run-in headings.}
This example shows how a run-in heading
looks like. Text in the paragraph
following the heading continues on the
same line as the heading.

The generic command \@startsection allows both types of headings to be
defined. Its syntax and argument description are as follows:

\@startsection{name}{level}{indent}{beforeskip}{afterskip}{style}

name The name used to refer to the heading counter1 for numbered headings
and to define the command that generates a running header or footer (see
page 218). For example, name would be the counter name, \thename would
be the command to display the current heading number, and \namemark
would be the command for running headers. In most circumstances the name
will be identical to the name of the sectioning command being defined, with-
out the preceding backslash—but this is no requirement.

level A number denoting the depth level of the sectioning command. This level
is used to decide whether the sectioning command gets a number (if the level
is less than or equal to secnumdepth; see Section 2.2.1 on page 24) or shows
up in the table of contents (if the value is less or equal to tocdepth, see Sec-
tion 2.3.2 on page 49). It should therefore reflect the position in the command

1This counter must exist; it is not defined automatically.

28 The Structure of a LATEX Document

second line of text following the heading . . .
This is the start of the after-heading text, which continues on . . .

3.5 Heading Title

. . . end of last line of preceding text.

�

‖beforeskip‖ + \parskip (of text font) + \baselineskip (of heading font)

�indent

�

afterskip + \parskip (of heading font) + \baselineskip (of text font)

2-2-5

Figure 2.1: The layout for a display heading (produced by layouts)

hierarchy of sectioning commands, where the outermost sectioning command
has level zero.1

indent The indentation of the heading with respect to the left margin. By mak-
ing the value negative, the heading will start in the outer margin. Making it
positive will indent all lines of the heading by this amount.

beforeskip The absolute value of this parameter defines the space to be left in
front of the heading. If the parameter is negative, then the indentation of the
paragraph following the heading is suppressed. This dimension is a rubber
length, that is, it can take a stretch and shrink component. Note that LaTEX
starts a new paragraph before the heading, so that additionally the value of
\parskip is added to the space in front.

afterskip The space to be left following a heading. It is the vertical space after a
display heading or the horizontal space after a run-in heading. The sign of af-
terskip controls whether a display heading (afterskip > 0) or a run-in heading
(afterskip ≤ 0) is produced. In the first case a new paragraph is started so that
the value of \parskip is added to the space after the heading. An unpleas-
ant side effect of this parameter coupling is that it is impossible to define a
display heading with an effective “after space” of less than \parskip using
the \@startsection command. When you try to compensate for a positive
\parskip value by using a negative afterskip, you change the display heading
into a run-in heading.

style The style of the heading text. This argument can take any instruction
that influences the typesetting of text, such as \raggedright , \Large , or
\bfseries (see the examples below).

1In the book and report classes, the \part command actually has level −1 (see Table 2.1).

2.2 Sectioning commands 29

2-2-6
second line of text following the heading . . .

3.5 Heading Title Start of text . . .

. . . end of last line of preceding text.

�

‖beforeskip‖ + \parskip (of text font) + \baselineskip (of heading font)

�
indent

�
afterskip (< 0)

Figure 2.2: The layout for a run-in heading (produced by layouts)

Figures 2.1 and 2.2 show these parameters graphically for the case of display and
run-in headings, respectively.

Next we show how these arguments are used in practice to define new section-
ing commands. Suppose that you want to change the \subsection command of
a class like article to look roughly like this:

2-2-7

. . . some text above.

4.1 Example of a Section Heading

The heading is set in normal-sized italic and the sep-
aration from the preceding text is exactly one base-
line. The separation from the text following is one-
half baseline and this text is not indented.

% redefinition of \subsection shown below
\setcounter{section}{4} % simulate previous

% sections

\ldots\ some text above.
\subsection{Example of a Section Heading}
The heading is set in normal-sized italic
and the separation from the preceding text
is exactly one baseline. The separation
from the text following is one-half
baseline and this text is not indented.

In this case the following redefinition for \subsection is needed:

\makeatletter
\renewcommand\subsection{\@startsection
{subsection}{2}{0mm}% % name, level, indent
{-\baselineskip}% % beforeskip
{0.5\baselineskip}% % afterskip
{\normalfont\normalsize\itshape}}% % style

\makeatother

The first argument is the string subsection to denote that we use the corre-
sponding counter for heading numbers. In the sectional hierarchy we are at level
two. The third argument is 0mm because the heading should start at the left
margin. The absolute value of the fourth argument (beforeskip) specifies that a
distance equal to one baseline must be left in front of the heading and, because
the parameter is negative, that the indentation of the paragraph following the

30 The Structure of a LATEX Document

heading should be suppressed. The absolute value of the fifth parameter (after-
skip) specifies that a distance equal to one-half baseline must be left following the
heading and, because the parameter is positive, that a display heading has to be
produced. Finally, according to the sixth parameter, the heading should be typeset
in an italic font using a size equal to the normal document type size.

In fact, the redefinition is a bit too simplistic because, as mentioned earlier,
on top of the absolute value of beforeskip and afterskip, LaTEX always adds the
current value of \parskip . Thus, in layouts where this parameter is nonzero, we
need to subtract it to achieve the desired separation.

Another layout, which is sometimes found in fiction books, is given by the
following definition:

\makeatletter
\renewcommand\section{\@startsection
{section}{1}{1em}% % name, level, indent
{\baselineskip}% % beforeskip
{-\fontdimen2\font % afterskip

plus -\fontdimen3\font
minus -\fontdimen4\font

}%
{\normalfont\normalsize\scshape}}% % style

\makeatother

This defines a run-in heading using small capitals. The space definition for
the horizontal afterskip deserves an explanation: it is the value of the stretchable
space between words taken from the current font, negated to make a run-in head-
ing. Details about \fontdimens can be found in Section 7.10.3 on page 428. The
result is shown in the next example.

. . . some text above.

THE MAN started to run away from the truck. He
saw that he was followed by

% redefinition of \section shown above
\setcounter{secnumdepth}{-2}

\ldots\ some text above.
\section{The man}
started to run away from the truck. He
saw that he was followed by 2-2-8

Of course, for such a layout one should turn off numbering of the headings
by setting the counter secnumdepth to -2.

Which commands can be used for setting the styles of the heading texts in theSimple heading style
changes style argument of the \@startsection command? Apart from the font-changing

directives (see Chapter 7), few instructions can be used here. A \centering
command produces a centered display heading and a \raggedright declaration
makes the text left justified. The use of \raggedleft is possible, but may give
somewhat strange results. You can also use \hrule , \medskip , \newpage , or

2.2 Sectioning commands 31

similar commands that introduce local changes. The next example shows some
possible variations.

2-2-9

1 A very long heading that
shows the default behavior
of LATEX’s sectioning com-
mands

1.1 A subsection heading

The heading is centered using an italic font.

1.2 A subsection heading

The heading is left-justified using a sans serif
font.

1.3 A SUBSECTION HEADING

The heading is right-justified and uses upper-
case letters.

1.4 A subsection heading

This heading has a horizontal rule above the
text.

\makeatletter
\newcommand\Csub{\@startsection{subsection}{2}%
{0pt}{-\baselineskip}{.2\baselineskip}%
{\centering\itshape}}

\newcommand\Lsub{\@startsection{subsection}{2}%
{0pt}{-\baselineskip}{.2\baselineskip}%
{\raggedright\sffamily}}

\newcommand\Rsub{\@startsection{subsection}{2}%
{0pt}{-\baselineskip}{.2\baselineskip}%
{\raggedleft\MakeUppercase}}

\newcommand\Hsub{\@startsection{subsection}{2}%
{0pt}{-\baselineskip}{.2\baselineskip}%
{\hrule\medskip\itshape}}

\makeatother

\section{A very long heading that shows
the default behavior of \LaTeX’s
sectioning commands}

\Csub{A subsection heading}
The heading is centered using an italic font.
\Lsub{A subsection heading}
The heading is left-justified using a sans
serif font.
\Rsub{A subsection heading}
The heading is right-justified and uses
uppercase letters.
\Hsub{A subsection heading}
This heading has a horizontal rule above
the text.

In the standard LaTEX document classes, words in long headings are justified
Hyphenation
and line breaks
in headings

and, if necessary, hyphenated as can be seen in the previous example. If this is
not wanted, then justification can be turned off by using \raggedright in the
style part of the \@startsection command. If line breaks are manually adjusted
using \\ , then one has to repeat the heading title, without the extra formatting
instruction, in the optional argument. Otherwise, the line breaks will also show up
in the table of contents.

2-2-10

1 A very long heading that
shows the default
behavior of LATEX’s
sectioning commands

\makeatletter
\renewcommand\section{\@startsection{section}%
{1}{0pt}{-\baselineskip}{.2\baselineskip}%
{\normalfont\Large\bfseries\raggedright}}

\makeatother

\section{A very long heading that shows
the default behavior of \LaTeX’s
sectioning commands}

32 The Structure of a LATEX Document

Finally, a few words about the suppression of the indentation for the firstIndentation after
a heading paragraph after a display heading. Standard LaTEX document classes, following

(American) English typographic tradition, suppress the indentation in this case.
All first paragraphs after a display heading can be indented by specifying the
package indentfirst (David Carlisle).

In the standard LaTEX classes the highest-level sectioning commands \part
Complex heading
layout definitions

and \chapter produce their titles without using \@startsection since their lay-
out cannot be produced with that command. Similarly, you may also want to con-
struct sectioning commands without limitations. In this case you must follow a
few conventions to allow LaTEX to take all the necessary typesetting actions when
executing them.

The command \secdef can help you when defining such commands by pro-
viding an easy interface to the three possible forms of section headings, as shown
in the case of the \part command. With the definition

\newcommand\part{\secdef\cmda\cmdb}

the following actions take place:

\part{title} will invoke \cmda[title]{title}
\part[toc-entry]{title} will invoke \cmda[toc-entry]{title}
\part*{title} will invoke \cmdb{title}

The commands you have to provide are a (re)definition1 of \part and a definition
of the commands labeled \cmda or \cmdb , respectively. Note that \cmda has an
optional argument containing the text to be entered in the table of contents .toc
file, while the second (mandatory) argument, as well as the single argument to
\cmdb, specifies the heading text to be typeset. Thus, the definitions must have
the following structure:

\newcommand\part{ ... \secdef \cmda \cmdb }
\newcommand\cmda[2][default]{ ... }
\newcommand\cmdb[1]{ ... }

An explicit example is a simplified variant of \appendix . It redefines the
\section command to produce headings for appendices (by invoking either the
command \Appendix or \sAppendix), changing the presentation of the section
counter and resetting it to zero. The modified \section command also starts a
new page, which is typeset with a special page style (see Chapter 4) and with top
floats suppressed. The indentation of the first paragraph in a section is also sup-
pressed by using the low-level kernel command \@afterheading and setting the
Boolean switch @afterindent to false. For details on the use of these commands
see the \chapter implementation in the standard classes (file classes.dtx).

1Redefinition in case you change an existing heading command such as \part in the preamble of
your document.

2.2 Sectioning commands 33

\makeatletter
\renewcommand\appendix{%

\renewcommand\section{% % Redefinition of \section...
\newpage\thispagestyle{plain}% % new page, folio bottom
\suppressfloats[t]\@afterindentfalse % no top floats, no indent
\secdef\Appendix\sAppendix}% % call \Appendix or \sAppendix

\setcounter{section}{0}\renewcommand\thesection{\Alph{section}}}

In the definition below you can see how \Appendix advances the section
counter using the \refstepcounter command (the latter also resets all sub-
sidiary counters and defines the “current reference string”; see Section 2.4). It
writes a line into the .toc file with the \addcontentsline command, performs
the formatting of the heading title, and saves the title for running heads and/or
feet by calling \sectionmark . The \@afterheading command handles the inden-
tation of the paragraph following the heading.

\newcommand\Appendix[2][?]{% % Complex form:
\refstepcounter{section}% % step counter/ set label
\addcontentsline{toc}{appendix}% % generate toc entry

{\protect\numberline{\appendixname~\thesection}#1}%
{\raggedleft\large\bfseries \appendixname\ % typeset the title
\thesection\par \centering#2\par}% % and number

\sectionmark{#1}% % add to running header
\@afterheading % prepare indentation handling
\addvspace{\baselineskip}} % space after heading

The \sAppendix command (starred form) performs only the formatting.

\newcommand\sAppendix[1]{% % Simplified (starred) form
{\raggedleft\large\bfseries\appendixname\par \centering#1\par}%
\@afterheading\addvspace{\baselineskip}}

\makeatother

Applying these definitions will produce the following output:

2-2-11

Appendix A
The list of all commands

Then follows the text of the first section in the
appendix. Some more text in the appendix.
Some more text in the appendix.

% Example needs commands introduced above!

\appendix
\section{The list of all commands}

Then follows the text of the first section in
the appendix. Some more text in the appendix.
Some more text in the appendix.

Do not forget that the example shown above represents only a simplified ver-
sion of a redefined \section command. Among other things, we did not take into
account the secnumdepth counter, which contains the numbering threshold. You
might also have to foresee code dealing with various types of document formats,
such as one- and two-column output, or one- and two-sided printing.

34 The Structure of a LATEX Document

Command Default

\abstractname Abstract
\appendixname Appendix
\bibname Bibliography
\chaptername Chapter
\contentsname Contents
\indexname Index
\listfigurename List of Figures
\listtablename List of Tables
\partname Part
\refname References

Table 2.2: Language-dependent strings for headings

2.2.3 Changing fixed heading texts

Some of the standard heading commands produce predefined texts. For example,
\chapter produces the string “Chapter” in front of the user-supplied text. Simi-
larly, some environments generate headings with predefined texts. For example,
by default the abstract environment displays the word “Abstract” above the text
of the abstract supplied by the user. LaTEX defines these strings as command se-
quences (see Table 2.2) so that you can easily customize them to obtain your
favorite names. This is shown in the example below, where the default name “Ab-
stract”, as defined in the article class, is replaced by the word “Summary”.

Summary

This book describes how to modify the
appearance of documents produced with the
LATEX typesetting system.

\renewcommand\abstractname{Summary}

\begin{abstract}
This book describes how to modify the
appearance of documents produced with
the \LaTeX{} typesetting system.

\end{abstract} 2-2-12

The standard LaTEX class files define a few more strings. See Section 9.1.3, and
especially Table 9.2 on page 547, for a full list and a discussion of the babel sys-
tem, which provides translations of these strings in more than twenty languages.

2.2.4 fncychap—Predefined chapter heading layouts

For those who wish to have fancy chapter headings without much work there
exists the package fncychap (Ulf Lindgren). It provides six distinctive layout styles
for the \chapter command that can be activated by loading the package with one
of the following options: Sonny, Lenny, Glenn, Conny, Rejne, or Bjarne. Because
the package is intended for modifying the \chapter command, it works only with

2.2 Sectioning commands 35

document classes that provide this command (e.g., report and book, but not article
and its derivatives). As an example we show the results of using the option Lenny.

2-2-13

Chapter 1
A Package Test \usepackage[Lenny]{fncychap}

\chapter{A Package Test}

The package also offers several commands to modify the layouts in various
ways. It comes with a short manual that explains how to provide your own layouts.

2.2.5 quotchap—Mottos on chapters

Another way to enhance \chapter headings is provided by the quotchap package
created by Karsten Tinnefeld. It allows the user to specify quotation(s) that will
appear on the top left of the chapter title area.

The quotation(s) for the next chapter are specified in a savequote environ-
ment; the width of the quotation area can be given as an optional argument
defaulting to 10cm. Each quotation should finish with a \qauthor command to
denote its source, though it would be possible to provide your own formatting
manually.

The default layout produced by the package can be described as follows:
the quotations are placed flush left, followed by vertical material stored in the
command \chapterheadstartvskip . It is followed by a very large chapter num-
ber, typeset flush right in 60% gray, followed by the chapter title text, also type-
set flush right. After a further vertical separation, taken from the command
\chapterheadendvskip , the first paragraph of the chapter is started without in-
dentation.

The number can be printed in black by specifying the option nogrey to the
package. To print the chapter number in one of the freely available PostScript
fonts, you can choose among a number of options, such as charter for Bit-
stream’s Charter BT or times for Adobe’s Times. By default, Adobe’s Bookman is
chosen. Alternatively, you could redefine the \chapnumfont command, which is
responsible for selecting the font for the chapter number. Finally, the font for the
chapter title can be influenced by redefining the \sectfont command as shown
in the example.

This, together with the possibilities offered by redefining the commands
\chapterheadstartvskip and \chapterheadendvskip , allows you to produce
a number of interesting layouts. The example below uses a negative vertical skip

36 The Structure of a LATEX Document

to move the quotation on the same level as the number (in Avantgarde) and set
the title and quotation in Helvetica.

Cookies! Give me some cookies!

Cookie Monster 1
A Package Test

Adding this package changes the chapter heading
dramatically.

\usepackage[avantgarde]{quotchap}
\renewcommand\chapterheadstartvskip

{\vspace*{-5\baselineskip}}
% select Helvetica for title and quote
\usepackage{helvet}
\renewcommand\sectfont{\sffamily\bfseries}

\begin{savequote}[10pc]
\sffamily
Cookies! Give me some cookies!
\qauthor{Cookie Monster}

\end{savequote}
\chapter{A Package Test}

Adding this package changes the
chapter heading dramatically. 2-2-14

If you want quotations on your chapters but prefer one of the layouts pro-
vided by fncychap, you can try to combine both packages. Load the latter package
after quotchap. Of course, the customization possibilities described above are
then no longer available but savequote will still work, although the quotations
will appear always in a fixed position above the heading.

2.2.6 titlesec—A different approach to headings

The information presented so far in this chapter has focused on the tools and
mechanisms provided by the LaTEX kernel for defining and manipulating headings,
as well as a few packages that provide some extra features, such as predefined
layouts, built on top of the standard tools.

The titlesec package created by Javier Bezos approaches the topic differently
by providing a complete reimplementation for the heading commands. Javier’s
approach overcomes some of the limitations inherent in the original tools and
provides a cleaner and more generic interface. The disadvantage is that this pack-
age might introduce some incompatibilities with extensions based on the original
interfaces. Whether this possibility turns out to be a real issue clearly depends on
the task at hand and is likely to vanish more or less completely the moment this
interface comes into more widespread use.

The package supports two interfaces: a simple one for smaller adjustments,
which is realized mainly by options to the package, and an extended interface to
make more elaborate modifications.

2.2 Sectioning commands 37

The basic interface

The basic interface lets you modify the font characteristics of all headings by
specifying one or more options setting a font family (rm, sf, tt), a font series (md,
bf), or a font shape (up, it, sl, sc). The title size can be influenced by selecting one
of the following options: big (same sizes as for standard LaTEX classes), tiny (all
headings except for chapters in text size), or medium or small, which are layouts
between the two extremes. The alignment is controlled by raggedleft, center, or
raggedright, while the vertical spacing can be reduced by specifying the option
compact.

To modify the format of the number accompanying a heading, the command
\titlelabel is available. Within it \thetitle refers to the current sectioning
number, such as \thesection or \thesubsection . The declaration applies to all
headings, as can be seen in the next example.

2-2-15

1. A section

1.1. A subsection

1.1.1. A subsubsection

Three headings following each other, a
situation you will not see often . . .

\usepackage[sf,bf,tiny,center]{titlesec}
\titlelabel{\thetitle.\enspace}

\section{A section}
\subsection{A subsection}
\subsubsection{A subsubsection}
Three headings following each other, a situation you
will not see often \ldots

\titleformat*{cmd}{format}

The basic interface offers one more command, \titleformat* , that takes two ar-
guments. The first argument (cmd) is a sectioning command we intend to modify.
The second argument (format) contains the formatting instruction that should be
applied to this particular heading. This declaration works on individual section-
ing commands, and its use overwrites all font or alignment specifications given as
options to the package (i.e., the options rm, it, and raggedleft in the following
example). The last command used in the second argument can be a command with
one argument—it will receive the title text if present. In the next example we use
this feature to set the \subsubsection title in small capitals (though this looks
rather ugly with full-sized numbers).

2-2-16

1 A section

1.1 A subsection

1.1.1 A SUBSUBSECTION

Three headings following each other, a
situation you will not see often . . .

\usepackage[rm,it,raggedleft,tiny,compact]{titlesec}
\titleformat*{\subsubsection}{\scshape\MakeLowercase}

\section{A section}
\subsection{A subsection}
\subsubsection{A subsubsection}
Three headings following each other, a situation you
will not see often \ldots

The \part heading is not influenced by settings for the basic interface. If you
want to modify it, you must use the extended interface described below.

38 The Structure of a LATEX Document

The extended interface

The extended interface consists of two major commands, \titleformat and
\titlespacing . They allow you to declare the “inner” format (i.e., fonts, label,
alignment, . . .) and the “outer” format (i.e., spacing, indentation, etc.), respectively.
This scheme was adopted because people often wish to alter only one or the other
aspect of the layout.

\titleformat{cmd}[shape]{format}{label}{sep}{before-code}[after-code]

The first argument (cmd) is the heading command name (e.g., \section) whose
format is to be modified. In contrast to \@startsection this argument requires
the command name—that is, with the backslash in front. The remaining argu-
ments have the following meaning:

shape The basic shape for the heading. A number of predefined shapes are avail-
able: hang, the default, produces a hanging label (like \section in standard
classes); display puts label and heading text on separate lines (like standard
\chapter); while runin produces a run-in title (like standard \paragraph).
In addition, the following shapes, which have no equivalents in standard LaTEX,
are provided: frame is similar to display but frames the title; leftmargin
puts the title into the left margin; while rightmargin places it into the right
margin. The last two shapes might conflict with \marginpar commands, that
is, they may overlap.
A general-purpose shape is block , which typesets the heading as a single
block. It should be preferred to hang for centered layouts.
Both drop and wrap wrap the first paragraph around the title, with drop using
a fixed width for the title and wrap using the width of the widest title line (au-
tomatically breaking the title within the limit forced by the left-sep argument
of \titlespacing).
As the interface is extensible (for programmers), additional shapes may be
available with your installation.

format The declarations that are applied to the whole title—label and text. They
may include only vertical material, which is typeset following the space above
the heading. If you need horizontal material, it should be entered in the label
or before-code argument.

label The formatting of the label, that is, the heading number. To refer to the
number itself, use \thesection or whatever is appropriate. For defining
\chapter headings the package offers \chaptertitlename , which produces
\chaptername or \appendixname , depending on the position of the heading
in the document.

sep Length whose value determines the distance between the label and title text.
Depending on the shape argument, it might be a vertical or horizontal separa-

2.2 Sectioning commands 39

tion. For example, with the frame shape, it specifies the distance between the
frame and heading text.

before-code Code executed immediately preceding the heading text. Its last com-
mand can take one argument, which will pick up the heading text and thus
permits more complicated manipulations (see Example 2-2-19).

after-code Optional code to be executed after formatting the heading text (still
within the scope of the declarations given in format). For hang, block, and
display, it is executed in vertical mode; with runin, it is executed in horizon-
tal mode. For other shapes, it has no effect.

If the starred form of a heading is used, the label and sep arguments are ignored
because no number is produced.

The next example shows a more old-fashioned run-in heading, for which we
define only the format, not the spacing around the heading. The latter is manipu-
lated with the \titlespacing command.

2-2-17

§ 1. The Title. The heading is sep-
arated from the section text by a dot
and a space of one quad.

\usepackage{titlesec}
\titleformat{\section}[runin]{\normalfont\scshape}

{\S\,\oldstylenums{\thesection}.}{.5em}{}[.\quad]

\section{The Title}
The heading is separated from the section text by
a dot and a space of one quad.

By default, LaTEX’s \section headings are not indented (they are usually of
shape hang). If you prefer a normal paragraph indentation with such a heading,
you could add \indent before the \S sign or specify the indentation with the
\titlespacing declaration, described next.

\titlespacing*{cmd}{left-sep}{before-sep}{after-sep}[right-sep]

The starred form of the command suppresses the paragraph indentation for the
paragraph following the title, except with shapes where the heading and para-
graph are combined, such as runin and drop. The cmd argument holds the head-
ing command name to be manipulated. The remaining arguments are as follows:

left-sep Length specifying the increase of the left margin for headings with the
block, display, hang, or frame shape. With ...margin or drop shapes it
specifies the width of the heading title, with wrap it specifies the maximum
width for the title, and with runin it specifies the indentation before the title
(negative values would make the title hang into the left margin).

before-sep Length specifying the vertical space added above the heading.

after-sep Length specifying the separation between the heading and the following
paragraph. It can be a vertical or horizontal space depending on the shape
deployed.

40 The Structure of a LATEX Document

right-sep Optional length specifying an increase of the right margin, which is
supported for the shapes block, display, hang, and frame.

The before-sep and after-sep arguments usually receive rubber length values to
allow some flexibility in the design. To simplify the declaration you can alterna-
tively specify *f (where f is a decimal factor). This is equivalent to f ex with
some stretchability as well as a small shrinkability inside before-sep, and an even
smaller stretchability and no shrinkability inside after-sep.

. . . some text before . . .

SECTION 1

A Title Test

Some text to prove that this paragraph
is not indented and that the title has a
margin of 1pc on either side.

\usepackage{titlesec}
\titleformat{\section}[frame]{\normalfont}

{\footnotesize \enspace SECTION \thesection
\enspace}{6pt}{\large\bfseries\filcenter}

\titlespacing*{\section}{1pc}{*4}{*2.3}[1pc]

\ldots some text before \ldots
\section{A Title Test}
Some text to prove that this paragraph is not indented
and that the title has a margin of 1pc on either side. 2-2-18

The previous example introduced \filcenter , but there also exist \filleft ,
Spacing tools for

headings
\filright , and \fillast—the latter produces an adjusted paragraph but cen-
ters the last line. These commands should be preferred to \raggedleft or
\raggedright inside \titleformat , as the latter would cancel left-sep or right-
sep set up by the \titlespacing command. Alternatively, you can use \filinner
or \filouter , which resolve to \filleft or \filright , depending on the cur-
rent page. However, due to TEX’s asynchronous page makeup algorithm, they are
only supported for headings that start a new page—for example, \chapter in
most designs. See Example 2-2-21 on page 43 for a solution to this problem for
other headings. Another useful spacing command is \wordsep , which refers to
the interword space (including stretch and shrink) of the current font.

The paragraph indentation for the first paragraph following the headingsIndentation after
heading can alternatively be globally specified using the package options indentafter or

noindentafter, bypassing the presence or absence of a star in \titlespacing .
By default, the spacing between two consecutive headings is defined to beSpacing between

consecutive
headings

the after-sep of the first one. If this result is not desired you can change it by
specifying the option largestsep, which will put the spacing to the maximum of
after-sep from the first heading and before-sep of the second.

After a heading LaTEX tries to ensure that at least two lines from the following
Headings at page

bottom
paragraph appear on the same page as the heading title. If this proves impossible
the heading is moved to the next page. If you think that two lines are not enough,
try the option nobottomtitles or nobottomtitles*, which will move headings
to a new page whenever the remaining space on the page is less than the current
value of \bottomtitlespace . (Its default is .2\textheight ; to change its value,
use \renewcommand rather than \setlength .) The starred version is preferred,
as it computes the remaining space with more accuracy, unless you use headings

2.2 Sectioning commands 41

with drop, margin, or wrap shapes, which may get badly placed when deploying
the starred option.

In most heading layouts the number appears either on top or to the left
Handling unusual
layouts

of the heading text. If this placement is not appropriate, the label argument of
\titleformat cannot be used. Instead, one has to exploit the fact that the before-
code can pick up the heading text. In the next example, the command \secformat
has one argument that defines the formatting for the heading text and number;
we then call this command in the before-code argument of \titleformat . Note
that the font change for the number is kept local by surrounding it with braces.
Without them the changed font size might influence the title spacing in some
circumstances.

2-2-19

A Title
on Two Lines 1

In this example the heading number appears
to the right of the heading text.

\usepackage{titlesec}
\newcommand\secformat[1]{%
\parbox[b]{.5\textwidth}{\filleft\bfseries #1}%
\quad\rule[-12pt]{2pt}{70pt}\quad
{\fontsize{60}{60}\selectfont\thesection}}

\titleformat{\section}[block]
{\filleft\normalfont\sffamily}{}{0pt}{\secformat}

\titlespacing*{\section}{0pt}{*3}{*2}[1pc]

\section{A Title\\ on Two Lines}
In this example the heading number appears to
the right of the heading text.

The same technique can be applied to change the heading text in other ways.
For example, if we want a period after the heading text we could define

\newcommand\secformat[1]{#1.}

and then call \secformat in the before-code of the \titleformat declaration as
shown in the previous example.

The wrap shape has the capability to measure the lines in the title text and Measuring the width
of the titlereturn the width of the widest line in \titlewidth . This capability can be ex-

tended to three other shapes (block, display, and hang) by loading the package
with the option calcwidth and then using \titlewidth within the arguments of
\titleformat , as needed.

For rules and leaders the package offers the \titlerule command. Used Rules and leaders

without any arguments it produces a rule of height .4pt spanning the full width
of the column (but taking into account changes to the margins as specified with
the \titlespacing declaration). An optional argument lets you specify a height
for the produced rule. The starred form of \titlerule is used to produce leaders
(i.e., repeated objects) instead of rules. It takes an optional width argument and a
mandatory text argument. The text is repeatedly typeset in boxes with its natural
width, unless a different width is specified in the optional argument. In that case,

42 The Structure of a LATEX Document

only the first and the last boxes retain their natural widths to allow for proper
alignment on either side.

The command \titleline lets you add horizontal material to arguments of
\titleformat that expect vertical material. It takes an optional argument speci-
fying the alignment and a mandatory argument containing the material to typeset.
It produces a box of fixed width taking into account the marginal changes due to
the \titlespacing declaration. Thus, either the material needs to contain some
rubber space, or you must specify an alignment through the optional argument
(allowed values are l, r, and c).

The \titleline* variant first typesets the material from its mandatory argu-
ment in a box of width \titlewidth (so you may have to add rubber space to this
argument) and then uses this box as input to \titleline (i.e., aligns it accord-
ing to the optional argument). Remember that you may have to use the option
calcwidth to ensure that \titlewidth contains a sensible value.

In the next somewhat artificial example, which is worth studying though bet-
ter not used in real life, all of these tools are applied together:

Section 1
Rules and Leaders
LATEXLATEXLATEXLATEXLATEXLATEXLATEX

Note that the last \titleline* is surrounded
by braces. Without them its optional argument
would prematurely end the outer optional ar-
gument of \titleformat.

\usepackage[noindentafter,calcwidth]{titlesec}
\titleformat{\section}[display]
{\filright\normalfont\bfseries\sffamily}
{\titleline[r]{Section \Huge\thesection}}{1ex}
{\titleline*[l]{\titlerule[1pt]}\vspace{1pt}%
\titleline*[l]{\titlerule[2pt]}\vspace{2pt}}

[{\titleline*[l]{\titlerule*{\tiny\LaTeX}}}]
\titlespacing{\section}{1pc}{*3}{*2}

\section{Rules and Leaders}
Note that the last \verb=\titleline*= is
surrounded by braces. Without them its
optional argument would prematurely end the
outer optional argument of \verb=\titleformat=. 2-2-20

Standard LaTEX considers the space before a heading to be a good place to
Breaking before a

heading
break the page unless the heading immediately follows another heading. The
penalty to break at this point is stored in the internal counter \@secpenalty
and in many classes it holds the value -300 (negative values are bonus places for
breaking). As only one penalty value is available for all heading levels, there is
seldom any point in modifying its setting. With titlesec, however, you can exert
finer control: whenever a command \namebreak is defined (where \name is the
name of a sectioning command, such as \sectionbreak), the latter will be used
instead of adding the default penalty. For example,

\newcommand\sectionbreak{\clearpage}

would result in sections always appearing on top of a page with all pending floats
being typeset first.

2.2 Sectioning commands 43

In some layouts the space above a heading must be preserved, even if the Always keeping the
space above a
heading

heading appears on top of a page (by default, such spaces vanish at page breaks).
This can be accomplished using a definition like the following:

\newcommand\sectionbreak{\addpenalty{-300}\vspace*{0pt}}

The \addpenalty command indicates a (good) break point, which is followed by
a zero space that cannot vanish. Thus, the “before” space from the heading will
appear as well at the top of the page if a break is taken at the penalty.

Conditional heading layouts

So far we have seen how to define fixed layouts for a heading command using
\titleformat and \titlespacing . The titlesec package also allows you to con-
ditionally change the layout on verso and recto pages, and to use special layouts
for numberless headings (i.e., those produced by the starred form of the heading
command).

This is implemented through a keyword/value syntax in the first argument
of \titleformat and \titlespacing . The available keys are name, page (values
odd or even), and numberless (values true or false). In fact, the syntax we have
seen so far, \titleformat{\section}{..}... , is simply an abbreviation for the
general form \titleformat{name=\section}{..}... .

In contrast to the spacing commands \filinner and \filouter , which can
only be used with headings that start a new page, the page keyword enables you to
define layouts that depend on the current page without any restriction. To specify
the layout for a verso (left-hand) page, use the value even; for a recto (right-hand)
page, use the value odd. Such settings only affect a document typeset in twoside
mode. Otherwise, all pages are considered to be recto in LaTEX. In the following
example we use a block shape and shift the heading to one side, depending on
the current page. In a similar fashion you could implement headings that are
placed in the margin by using the shapes leftmargin and rightmargin.

2-2-21

1. A Head

Some text to fill
the page. Some
text to fill the
page.

Some text to
fill the page.

2. Another

Some text to fill
the page.

\usepackage{titlesec}
\titleformat{name=\section,page=odd}[block]

{\normalfont}{\thesection.}{6pt}{\bfseries\filleft}
\titleformat{name=\section,page=even}[block]

{\normalfont}{\thesection.}{6pt}{\bfseries\filright}

\section{A Head}
Some text to fill the page. Some text to fill the page.
\newpage
Some text to fill the page.
\section{Another}
Some text to fill the page.

Similarly, the numberless key is used to specify that a certain \titleformat
or \titlespacing declaration applies only to headings with (or without) numbers.
By default, a heading declaration applies to both cases, so in the example the

44 The Structure of a LATEX Document

second declaration actually overwrites part of the first declaration. To illustrate
what is possible the example uses quite different designs for the two cases—do
not mistake this for an attempt to show good taste. It is important to realize
that neither the label nor the sep argument is ignored when numberless is set to
true as seen in the example—in normal circumstances you would probably use
{}{0pt} as values.

1. A Head

Some text to fill the page. Some
text to fill the page.

*** Another

Some text to fill this line.

\usepackage{titlesec}
\titleformat{name=\section}[block]
{\normalfont}{\thesection.}{6pt}{\bfseries\filright}

\titleformat{name=\section,numberless=true}[block]
{\normalfont}{***}{12pt}{\itshape\filcenter}

\section{A Head}
Some text to fill the page. Some text to fill the page.
\section*{Another}
Some text to fill this line. 2-2-22

Changing the heading hierarchy

The commands described so far are intended to adjust the formatting and spacing
of existing heading commands. With the \titleclass declaration it is possible to
define new headings.

\titleclass{cmd}{class}
\titleclass{cmd}{class}[super-level-cmd]
\titleclass{cmd}[start-level]{class} (with loadonly option)

There are three classes of headings: the page class contains headings that fill a
full page (like \part in LaTEX’s report and book document classes); the top class
contains headings that start a new page and thus appear at the top of a page; and
all other headings are considered to be part of the straight class.

Used without any optional argument the \titleclass declaration simply
changes the heading class of an existing heading cmd. For example,

\titleclass\section{top}

would result in sections always starting a new page.
If this declaration is used with the optional super-level-cmd argument, you

introduce a new heading level below super-level-cmd. Any existing heading com-
mand at this level is moved one level down in the hierarchy. For example,

\titleclass\subchapter{straight}[\chapter]

introduces the heading \subchapter between \chapter and \section . The dec-
laration does not define any layout for this heading (which needs to be defined by
an additional \titleformat and \titlespacing command), nor does it initialize

2.3 Table of contents structures 45

the necessary counter. Most likely you also want to update the counter represen-
tation for \section:

\titleformat{\subchapter}{..}... \titlespacing{\subchapter}{..}...
\newcounter{subchapter}
\renewcommand\thesubchapter{\thechapter.\arabic{subchapter}}
\renewcommand\thesection{\thesubchapter.\arabic{section}}

The third variant of \titleclass is needed only when you want to build
a heading structure from scratch—for example, when you are designing a com-
pletely new document class that is not based on one of the standard classes. In
that case load the package with the option loadonly so that the package will
make no attempt to interpret existing heading commands so as to extract their
current layout. You can then start building heading commands, as in the follow-
ing example:

\titleclass\Ahead[0]{top}
\titleclass\Bhead{straight}[\Ahead]
\titleclass\Chead{straight}[\Bhead]
\newcounter{Ahead} \newcounter{Bhead} \newcounter{Chead}
\renewcommand\theBhead{\theAhead-\arabic{Bhead}
\renewcommand\theChead{\theBhead-\arabic{Chead}
\titleformat{name=\Ahead}{..}... \titlespacing{name=\Ahead}{..}...
\titleformat{name=\Bhead}{..}... ...

The start-level is usually 0 or -1; see the introduction in Section 2.2 for its meaning.
There should be precisely one \titleclass declaration that uses this particular
optional argument.

If you intend to build your own document classes in this way, take a look
at the documentation accompanying the titlesec package. It contains additional
examples and offers further tips and tricks.

2.3 Table of contents structures

A table of contents (TOC) is a special list in which the titles of the section units are
listed, together with the page numbers indicating the start of the sections. This
list can be rather complicated if units from several nesting levels are included, and
it should be formatted carefully because it plays an important rôle as a navigation
aid for the reader.

Similar lists exist containing reference information about the floating ele-
ments in a document—namely, the list of tables and the list of figures. The struc-
ture of these lists is simpler, as their contents, the captions of the floating ele-
ments, are normally all on the same level (but see Section 6.5.2).

46 The Structure of a LATEX Document

Standard LaTEX can automatically create these three contents lists. By default,
LaTEX enters text generated by one of the arguments of the sectioning commands
into the .toc file. Similarly, LaTEX maintains two more files, one for the list of
figures (.lof) and one for the list of tables (.lot), which contain the text specified
as the argument of the \caption command for figures and tables.

The information written into these files during a previous LaTEX run is read
and typeset (normally at the beginning of a document) during a subsequent LaTEX
run by invoking these commands: \tableofcontents , \listoffigures , and
\listoftables .

To generate these cross-reference tables, it is always necessary to run LaTEX at
A TOC needs two,

sometimes even
three, LATEX runs

least twice—once to collect the relevant information, and a second time to read
back the information and typeset it in the correct place in the document. Because
of the additional material to be typeset in the second run, the cross-referencing
information may change, making a third LaTEX run necessary. This is one of the
reasons for the tradition of using different page-numbering systems for the front
matter and the main text: in the days of hand typesetting any additional iteration
made the final product much more expensive.

The following sections will discuss how to typeset and generate these con-
tents lists. It will also be shown how to enter information directly into one of
these auxiliary files and how to open and write into a supplementary file com-
pletely under user control.

2.3.1 Entering information into the contents files

Normally the contents files are generated automatically by LaTEX. With some care
this interface, which consists of the \addcontentsline and \addtocontents
commands, can also be used to enter information directly.

\addcontentsline{ext}{type}{text}

The \addcontentsline command writes the text together with some additional
information, such as the page number of the current page, into a file with the
extension ext (usually .toc, .lof, or .lot). Fragile commands within text need to
be protected with \protect . The type argument is a string that specifies the kind
of contents entry that is being made. For the table of contents (.toc), it is usually
the name of the heading command without a backslash; for .lof or .lot files,
figure or table is normally specified.

The \addcontentsline instruction is normally invoked automatically by the
document sectioning commands or by the \caption commands within the float
environments. Unfortunately, the interface has only one argument for the variable
text, which makes it awkward to properly identify an object’s number if present.
Since such numbers (e.g., the heading number) typically need special formatting
in the contents lists, this identification is absolutely necessary. The trick used by
the current LaTEX kernel to achieve this goal is to surround such a number with the

2.3 Table of contents structures 47

command \numberline within the text argument as follows:

\protect\numberline{number}heading

For example, a \caption command inside a figure environment saves the cap-
tion text for the figure using the following line:

\addcontentsline{lof}{figure}
{\protect\numberline{\thefigure}caption text}

Because of the \protect command, \numberline will be written unchanged into
the external file, while \thefigure will be executed along the way so that the
actual figure number will end up in the file.

Later on, during the formatting of the contents lists, \numberline can be
used to format the number in a special way, such as by providing extra space or
a different font. The downside of this approach is that it is less general than a
version that takes a separate argument for this number (e.g., you cannot easily
do arbitrary transformation on this number) and it requires a suitable definition
for \numberline—something that is unfortunately not always available (see the
discussion in Section 2.3.2 on page 49).

Sometimes \addcontentsline is used in the source to complement the ac-
tions of standard LaTEX. For instance, in the case of the starred form of the section
commands, no information is written to the .toc file. If you do not want a head-
ing number (starred form) but you do want an entry in the .toc file, you can
use \addcontentsline with or without \numberline as shown in the following
example.

2-3-1

Contents

Foreword 1

1 Thoughts 2
1.1 Contact info . . 2

References 2

Foreword

A starred heading with the TOC
entry manually added. Com-
pare this to the form used for
the bibliography.

1

1 Thoughts

We find all in [1].

1.1 Contact info

E-mail Ben at [2].

References

[1] Ben User, Some day will
never come, 2010

[2] BUser@earth.info

2

\tableofcontents
\section*{Foreword}
\addcontentsline{toc}{section}
{\protect\numberline{}Foreword}

A starred heading with the TOC
entry manually added. Compare
this to the form used for the
bibliography.
\section{Thoughts}
We find all in \cite{k1}.
\subsection{Contact info}
E-mail Ben at \cite{k2}.
\begin{thebibliography}{9}
\addcontentsline{toc}

{section}{\refname}
\bibitem{k1} Ben User, Some

day will never come, 2010
\bibitem{k2} BUser@earth.info
\end{thebibliography}

48 The Structure of a LATEX Document

Using \numberline as in the “Foreword” produces an indented “section” en-
try in the table of contents, leaving the space where the section number would
go free. Omitting the \numberline command (as was done for the bibliography
entry) would typeset the heading flush left instead. Adding a similar line after the
start of the theindexmeans that the “Index” will be listed in the table of contents.
Unfortunately, this approach cannot be used to get the list of figures or tables
into the table of contents because \listoffigures or \listoftables might gen-
erate a listing of several pages and consequently the page number picked up by
\addcontentsline might be wrong. And putting it before the command does
not help either, because often these list commands start a new page. One po-
tential solution is to copy the command definition from the class file and put
\addcontentsline directly into it.

In case of standard classes or close derivatives you can use the tocbibind
Bibliography or
index in table of

contents

package created by Peter Wilson to get the “List of. . . ”, “Index”, or “Bibliography”
section listed in the table of contents without further additions to the source. The
package offers a number of options such as notbib, notindex, nottoc, notlof,
and notlot (do not add the corresponding entry to the table of contents) as well
as numbib and numindex (number the corresponding section). By default the “Con-
tents” section is listed within the table of contents, which is seldom desirable; if
necessary, use the nottoc option to disable this behavior.

\addtocontents{ext}{text}

The \addtocontents command does not contain a type parameter and is in-
tended to enter special formatting information not directly related to any con-
tents line. For example, the \chapter command of the standard classes places
additional white space in the .lof and .lot files to separate entries from differ-
ent chapters as follows:

\addtocontents{lof}{\protect\addvspace{10pt}}
\addtocontents{lot}{\protect\addvspace{10pt}}

By using \addvspace at most 10 points will separate the entries from different
chapters without producing strange gaps if some chapters do not contain any
figures or tables.

This example, however, shows a certain danger of the interface: while the
Potential problems

with \addvspace
commands \addcontentsline , \addtocontents , and \addvspace appear to be
user-level commands (they do not contain any @ signs in their names), they can
easily produce strange errors.1 In particular, \addvspace can be used only in
vertical mode, which means that a line like the above works correctly only if an
earlier \addcontentsline ends in vertical mode. Thus, you need to understand

1For an in-depth discussion of \addvspace , see Appendix A.1.5, page 858.

2.3 Table of contents structures 49

how such lines are actually processed to be able to enter arbitrary formatting
instructions between them. This is the topic of the next section.

If either \addcontentsline or \addtocontents is used within the source
Potential problems
with \include

of a document, one important restriction applies: neither command can be used
at the same level as an \include statement. That means, for example, that the
sequence

\addtocontents{toc}{\protect\setcounter{tocdepth}{1}}
\include{sect1}

with sect1.tex containing a \section command would surprisingly result in a
.toc file containing

\contentsline {section}{\numberline {1}Section from sect1}{2}
\setcounter {tocdepth}{1}

showing that the lines appear out of order. The solution is to move the
\addtocontents or \addcontentsline statement into the file loaded via
\include or to avoid \include altogether.

2.3.2 Typesetting a contents list

As discussed above, contents lists are generated by implicitly or explicitly using
the commands \addcontentsline and \addtocontents . The exact effect of

\addcontentsline{ext}{type}{text}

is to place the line

\contentsline{type}{text}{page}

into the auxiliary file with extension ext, where page is the current page number in
the document. The command \addtocontents{ext}{text} is simpler: it just puts
text into the auxiliary file. Thus, a typical contents list file consists of a number of
\contentsline commands, possibly interspersed with further formatting instruc-
tions added as a result of \addtocontents calls. It is also possible for the user to
create a table of contents by hand with the help of the command \contentsline .

A typical example is shown below. Note that most (though not all) heading
numbers are entered as a parameter of the \numberline command to allow for-
matting with the proper indentation. LaTEX is unfortunately not consistent here; the

�Inconsistency
with \part

standard classes do not use \numberline for \part headings but instead specify
the separation between number and text explicitly. Since the 2001/06/01 release
you can also use \numberline in this place, but with older releases the formatting
will be unpredictable.

50 The Structure of a LATEX Document

I Part 2

1 A-Head 2
1.1 B-Head 3

1.1.1 C-Head 4
With Empty Number . 5

Unnumbered C-Head 6

\setcounter{tocdepth}{3}

\contentsline {part}{I\hspace{1em}Part}{2}
\contentsline{chapter}{\numberline{1}A-Head}{2}
\contentsline{section}{\numberline{1.1}B-Head}{3}
\contentsline{subsection}%

{\numberline{1.1.1}C-Head}{4}
\contentsline{subsection}%

{\numberline{}With Empty Number}{5}
\contentsline{subsection}{Unnumbered C-Head}{6} 2-3-2

The \contentsline command is implemented to take its first argument type,
and then use it to call the corresponding \l@type command, which does the actual
typesetting. One separate command for each of the types must be defined in the
class file. For example, in the report class you find the following definitions:

\newcommand\l@section {\@dottedtocline{1}{1.5em}{2.3em}}
\newcommand\l@subsection {\@dottedtocline{2}{3.8em}{3.2em}}
\newcommand\l@subsubsection{\@dottedtocline{3}{7.0em}{4.1em}}
\newcommand\l@paragraph {\@dottedtocline{4}{10em}{5em}}
\newcommand\l@subparagraph {\@dottedtocline{5}{12em}{6em}}
\newcommand\l@figure {\@dottedtocline{1}{1.5em}{2.3em}}
\newcommand\l@table {\l@figure}

By defining \l@type to call \@dottedtocline (a command with five arguments)
and specifying three arguments (level, indent, and numwidth), the remaining argu-
ments, text and page, of \contentsline will be picked up by \@dottedtocline
as arguments 4 and 5.

Note that some section levels build their table of contents entries in a some-
what more complicated way, so that the standard document classes have defini-
tions for \l@part and \l@chapter (or \l@section with article) that do not use
\@dottedtocline . Generally they use a set of specific formatting commands, per-
haps omitting the ellipses and typesetting the title in a larger font.

So to define the layout for the contents lists, we have to declare the appro-
priate \l@type commands. One easy way to do this, as shown above, is to use
\@dottedtocline , an internal command that we now look at in some detail.

\@dottedtocline{level}{indent}{numwidth}{text}{page}

The last two parameters of \@dottedtocline coincide with the last parameters of
\contentsline , which itself usually invokes a \@dottedtocline command. The
other parameters are the following:

level The nesting level of the entry. With the help of the counter tocdepth the
user can control how many nesting levels will be displayed. Levels greater
than the value of this counter will not appear in the table of contents.

indent The total indentation from the left margin.

2.3 Table of contents structures 51

\linewidth

indent numwidth This is heading text that generates \@tocrmarg

three lines in the entry in the table

of contents \@pnumwidth

Figure 2.3: Parameters defining the layout of a contents file

indent The total indentation from the left margin.

numwidth The width of the box that contains the number if text has a
\numberline command. It is also the amount of extra indentation added to
the second and later lines of a multiple-line entry.

Additionally, the command \@dottedtocline uses the following global format-
ting parameters, which specify the visual appearance of all entries:

\@pnumwidth The width of the box in which the page number is set.

\@tocrmarg The indentation of the right margin for all but the last line of
multiple-line entries. Dimension, but changed with \renewcommand! It can be
set to a rubber length, which results in the TOC being set unjustified.

\@dotsep The separation between dots, in mu (math units).1 It is a pure number
(like 1.7 or 2). By making this number large enough you can get rid of the
dots altogether. To be changed with \renewcommand!

A pictorial representation of the effects described is shown in Figure 2.3. The
field identified by numwidth contains a left-justified section number, if present.
You can achieve the proper indentation for nested entries by varying the settings
of indent and numwidth.

One case in which this is necessary, while using a standard class (article,
Problem with many
headings on one
level

report, or book), arises when you have ten or more sections and within the later
ones more than nine subsections. In that case numbers and text will come too
close together or even overlap if the numwidth argument on the corresponding
calls to \@dottedtocline is not extended, as seen in the following example.

2-3-3

10 A-Head 3
10.9 B-Head 4
10.10B-Head 4

\contentsline{section}{\numberline{10}A-Head}{3}
\contentsline{subsection}{\numberline{10.9}B-Head}{4}
\contentsline{subsection}{\numberline{10.10}B-Head}{4}

1There are 18 mu units to an em, where the latter is taken from the \fontdimen2 of the math
symbol font symbols. See Section 7.10.3 for more information about \fontdimens.

52 The Structure of a LATEX Document

Redefining \l@subsection to leave more space for the number (third argu-
ment to \@dottedtocline) gives a better result in this case. You will probably
have to adjust the other commands, such as \l@subsubsection , as well to pro-
duce a balanced look for the whole table.

10 A-Head 3
10.9 B-Head 4
10.10 B-Head 4

\makeatletter
\renewcommand\l@subsection{\@dottedtocline{2}{1.5em}{3em}}
\makeatother

\contentsline{section}{\numberline{10}A-Head}{3}
\contentsline{subsection}{\numberline{10.9}B-Head}{4}
\contentsline{subsection}{\numberline{10.10}B-Head}{4} 2-3-4

Another example that requires changes is the use of unusual page numbering.
For example, if the pages are numbered by part and formatted as “A–78”, “B–328”,
and so on, then the space provided for the page number is probably too small,
resulting at least in a large number of annoying “Overfull hbox” warnings, but
more likely in some bad spacing around them. In that case the remedy is to set
\@pnumwidth to a value that fits the widest entry—for example, via

\makeatletter \settowidth\@pnumwidth{\textbf{A--123}} \makeatother

When adjusting \@pnumwidth this way it is likely that the value of \@tocrmarg
needs to be changed as well to keep the layout of the table of contents consistent.

The level down to which the heading information is displayed in the table of
contents is controlled by the counter tocdepth. It can be changed, for example,
with the following declaration:

\setcounter{tocdepth}{2}

In this case section heading information down to the second level (e.g., in the
report class part, chapter, and section) will be shown.

2.3.3 Combining contents lists

By default, LaTEX produces separate lists for the table of contents, the list of fig-
ures, and the list of tables, available via \tableofcontents , \listoffigures ,
and \listoftables , respectively. None of the standard classes support combin-
ing those lists, such as having all tables and figures in a single list, or even com-
bining all three in a single table of contents as is sometimes requested.

How could such a request be fulfilled? The first requirement is that
we make LaTEX write to the appropriate auxiliary file when it internally uses
\addcontentsline . For example, all \caption commands need to write to a sin-
gle file if we want to combine figures and tables in a single list. Looking at the LaTEX
sources reveals that this goal is easy to achieve: figure captions write to a file with
the extension specified by \ext@figure , while table captions use \ext@table for
this purpose.

2.3 Table of contents structures 53

So using an appropriate redefinition of, say, \ext@table we can force LaTEX to
assemble all references to figures and tables in the .lof file. But is this enough?
The example clearly shows that it is probably not enough to force the entries
together. When looking at the generated list we cannot tell which entry refers to
a figure or a table. The only indication that something is amiss is given by the
identical numbers on the left.

2-3-5

A figure

Figure 1: Figure-Caption

Figures and Tables

1 Figure-Caption 1
1 Table-Caption 1

1 A Section

Some text . . . Some text referencing figure 1 . . .

A table

Table 1: Table-Caption

\makeatletter
\renewcommand\ext@table{lof}
\makeatother
\renewcommand\listfigurename

{Figures and Tables}

\listoffigures
\section{A Section}
Some text \ldots
\begin{table}[b]
\centering
\fbox{\scriptsize A table}
\caption{Table-Caption}

\end{table}
Some text referencing
figure~\ref{fig} \ldots
\begin{figure}
\centering
\fbox{\scriptsize A figure}
\caption{Figure-Caption}\label{fig}

\end{figure}

The situation would be slightly better if the figures and tables share the same
counter, so that we do not end up with identical numbers in the left column of
the list. Unfortunately, this result is fairly difficult to achieve, because one must
directly manipulate the low-level float definitions.

Another possible remedy is to define \l@figure and \l@table in such a way
that this information is present. The example on the following page shows a possi-
ble solution that appends the string “(figure)” or “(table)” to each entry. In theory
it would also be possible to annotate the number to indicate the type of float, but
that would require redefining a lot of LaTEX’s internals such as \numberline .

What happens if we force all entries into a single list—that is, into the table
of contents? In that case we get a list ordered according to the final appearance
of the objects in the document, which may not be what we would expect to see.
In the next example, the figure, which actually came last in the source, shows up
before the section in which it is referenced, because the float algorithm places it
on the top of the page. This outcome might be acceptable within books or reports
where the major heading starts a new page and prevents top floats on the heading
page, but is probably not desirable in other cases.

54 The Structure of a LATEX Document

A figure

Figure 1: Figure-Caption

Contents

1 Figure-Caption (figure) 1

1 A Section 1
1 Table-Caption (table) 1

1 A Section

Some text . . . Some text referencing figure 1 . . .

A table

Table 1: Table-Caption

\makeatletter
\renewcommand\ext@figure{toc}
\renewcommand\ext@table{toc}
\renewcommand\l@figure[2]{\@dottedtocline

{1}{1.5em}{2.3em}{#1~(figure)}{#2}}
\renewcommand\l@table [2]{\@dottedtocline

{1}{1.5em}{2.3em}{#1~(table)}{#2}}
\makeatother

\tableofcontents
\section{A Section}
Some text \ldots
\begin{table}[b]
\centering \fbox{\scriptsize A table}
\caption{Table-Caption}

\end{table}
Some text referencing
figure~\ref{fig} \ldots
\begin{figure}
\centering \fbox{\scriptsize A figure}
\caption{Figure-Caption}\label{fig}

\end{figure} 2-3-6

In summary, while it is possible to combine various types of contents lists, the
results may not be what one would expect. In any case such an approach requires
a careful redesign of all \l@type commands so that the final list will be useful to
the reader.

2.3.4 Providing additional contents files

If you want to make a list comprising all of the examples in a book, you need
to create a new contents file and then make use of the facilities described above.
First, two new commands must be defined. The first command, \ecaption , as-
sociates a caption with the current position in the document by writing its argu-
ment and the current page number to the contents file. The second command,
\listofexamples , reads the information written to the contents file on the pre-
vious run and typesets it at the point in the document where the command is
called.

The \listofexamples command invokes \@starttoc{ext} , which reads
the external file (with the extension ext) and then reopens it for writing. This
command is also used by the commands \tableofcontents , \listoffigures ,
and \listoftables . The supplementary file could be given an extension such
as xmp. A command like \chapter*{List of examples} can be put in front
or inside of \listofexamples to produce a title and, if desired, a command
\addcontentsline can signal the presence of this list to the reader by entering it
into the .toc file.

2.3 Table of contents structures 55

The actual typesetting of the individual entries in the .xmp file is controlled
by \l@example , which needs to be defined. In the example below, the captions are
typeset as paragraphs followed by an italicized page number.

2-3-7

1 Selection of recordings
Ravel’s Boléro by Jacques Loussier Trio.

Davis’ Blue in Green by Cassandra
Wilson.

Comments
Loussier: A strange experience, 1
Wilson: A wonderful version, 1

\newcommand\ecaption[1]
{\addcontentsline{xmp}{example}{#1}}

\makeatletter \newcommand\listofexamples
{\section*{Comments}\@starttoc{xmp}}

\newcommand\l@example[2]
{\par\noindent#1,~\textit{#2}\par} \makeatother

\section{Selection of recordings}
Ravel’s Bol\’ero by Jacques Loussier
Trio.\ecaption{Loussier: A strange experience}

Davis’ Blue in Green by Cassandra
Wilson.\ecaption{Wilson: A wonderful version}
\listofexamples

The float package described in Section 6.3.1 on page 291 implements the
above mechanism with the command \listof , which generates a list of floats
of the type specified as its argument.

2.3.5 shorttoc—Summary table of contents

With larger documents it is sometimes helpful to provide a summary table of
contents (with only the major sections listed) as well as a more detailed one. This
can be accomplished with the shorttoc package created by Jean-Pierre Drucbert.

\shorttableofcontents{title}{depth}

This \shorttableofcontents command (or \shorttoc as a synonym) must be
specified before the \tableofcontents command; otherwise, the summary table
of contents will be empty. The table’s heading is given by the title argument and
the depth down to which contents entries are shown is defined by the second ar-
gument. Thus, to show only chapters and sections in the summary and everything
down to subsubsections in the detailed table of contents, you would specify:

\shorttableofcontents{Summary table of contents}{1}
\setcounter{tocdepth}{3}
\tableofcontents

The package supports two options, loose (default) and tight, that deal with the
vertical spacing of the summary table.

56 The Structure of a LATEX Document

2.3.6 minitoc—Multiple tables of contents

The minitoc package, originally written by Nigel Ward and Dan Jurafsky and com-
pletely redesigned by Jean-Pierre Drucbert, enables the creation of mini-tables of
contents (a “minitoc”) for chapters, sections, or parts. It also supports the creation
of mini-tables for the list of figures and list of tables contained in a chapter, sec-
tion, or part. A similar functionality, albeit using a completely different approach,
is provided by the titletoc package described in Section 2.3.7.

Here we describe in some detail the use of the package to generate such tables
on a per-chapter basis. The generation of per-section or per-part tables is com-
pletely analogous (using differently named commands); an overview appears at
the end of the section.

The package supports almost all language options of the babel system (see
Section 9.1.3), which predefine the heading texts used. In addition, the format-
ting of the generated tables can be influenced by the options loose (default) or
tight and dotted (default) or undotted. Further control over the appearance is
provided by a number of parameters that can be set in the preamble (see Table 2.3
on the next page).

To initialize the minitoc system, you place a \dominitoc command before the
\tableofcontents command. If you do not want a full table of contents but only
mini-tables, replace the latter command with \faketableofcontents . Mini-lists
of figures or tables are initialized similarly, by using \dominilof or \dominilot ,
if necessary together with \fakelistoffigures or \fakelistoftables .

The \domini... commands accept one optional argument to denote the po-
sition of the table titles: l for left (default), c for center, r for right, or n for no
title (a supported synonym is e for empty). The declaration is global for all tables
in the document.

The actual mini-tables of contents are then generated by putting the com-
mand \minitoc in suitable places (typically directly after a \chapter command)
inside the document. The actual placement is at your discretion. For instance, you
may put some text before it or place a box around it. If one of the tables is empty,
the package suppresses the heading and issues a warning to alert you about possi-
ble formatting problems due to the material added by you around the command.

If you want to generate mini-lists of figures or tables, you use \minilof or
\minilot after initializing the system as explained above.

For each mini-table of contents, an auxiliary file with the extension .mtc〈n〉,
where 〈n〉 is the chapter number, will be created.1 For mini-lists of figures and
tables, files with the extensions .mlf〈n〉 and .mlt〈n〉 are created, respectively.

By default, the mini-tables contain only references to sections and subsec-
tions. The minitocdepth counter, similar to tocdepth, allows the user to modify
this behavior. The fonts used for individual entries can also be modified by chang-

1A different scheme is automatically used for operating systems in which file extensions are
limited to three characters, like MS-DOS. It can be explicitly requested using the option shortext on
the \usepackage command.

2.3 Table of contents structures 57

minitocdepth A LaTEX counter that indicates how many levels of head-
ings will be displayed in the mini-table (default value is
2).

\mtcindent The length of the left/right indentation of the mini-
table (default value is 24pt).

\mtcfont Command defining the default font that is used for the
mini-table entries (default definition is a small Roman
font).

\mtcSfont Command defining the font that is used for \section
entries (default definition is a small bold Roman font).

\mtcSSfont If defined, font used for \subsection entries (default
is to use \mtcfont for this and the following).

\mtcSSSfont If defined, font used for \subsubsection entries.

\mtcPfont If defined, font used for \paragraph entries.

\mtcSPfont If defined, font used for \subparagraph entries.

\mtctitle Title text for the mini-table of contents (preset by lan-
guage option).

\nomtcrule Declaration that disables rules above and below the
mini-tables (\mtcrule enables them).

\nomtcpagenumbers Declaration that suppresses page numbers in the mini-
tables (\mtcpagenumbers enables them).

Table 2.3: A summary of the minitoc parameters

ing the definitions of \mtcfont and its companions shown in Table 2.3. You can
influence the use of rules around the mini-tables by specifying \mtcrule (default)
or \nomtcrule in the preamble or before individual mini-tables. Similarly, you can
request the use of page numbers in the mini-table by using the \mtcpagenumbers
declaration (default) or their suppression by using \nomtcpagenumbers .

As the mini-tables and mini-lists take up room within the document, their
use will alter the page numbering. Therefore, three runs normally are needed to
ensure correct information in the mini-table of contents.

For mini-tables and mini-lists on the \part level, commands similar to those
Mini-tables on part
or section level

in Table 2.3 are provided. The only difference is that their names contain the string
part instead of mini or ptc instead of mtc. Thus, you would use \doparttoc to
initialize the system, \parttoc to print a mini-table, \noptcrules to suppress
rules, and so on. The only addition is the declaration \ptcCfont , which defines
the font to use for chapter entries and which naturally has no equivalent.

For mini-tables and mini-lists on the \section command level, the situation is
again similar: replace mini by sect or mtc by stc— for example, use \dosecttoc ,

58 The Structure of a LATEX Document

\secttoc , and \stcfont . If \sectlof or \sectlot commands are used, you may
want to try the option placeins, which confines floats to their sections by using
the placeins package with its options below and section (see Section 6.2.1 on
page 288).

1 Afghanistan

1.1 Geography . . 1
1.1.1 Total area . . 1

1.1.2 Land area . . 1

1.2 History 2

1.1 Geography

1.1.1 Total area

647,500 km2

1.1.2 Land area

647,500 km2

1

1.2 History

. . .

2 Albania

2.1 Geography . . 2
2.1.1 Total area . . 2

2.1.2 Land area . . 3

2.2 History 3

2.1 Geography

2.1.1 Total area

28,750 km2

2

\usepackage{minitoc}
\setlength\stcindent{0pt}
\renewcommand\stctitle{}
\renewcommand\stcfont

{\footnotesize}
\setcounter{secttocdepth}{3}

\dosecttoc \faketableofcontents

\section{Afghanistan}\secttoc
\subsection{Geography}
\subsubsection{Total area}

647,500 km2
\subsubsection{Land area}

647,500 km2
\subsection{History} \ldots

\section{Albania} \secttoc
\subsection{Geography}
\subsubsection{Total area}

28,750 km2
\subsubsection{Land area}

27,400 km2
\subsection{History} \ldots 2-3-8

To turn off the \minitoc commands, merely replace the package minitoc with
mtcoff on your \usepackage command. This step ensures that all minitoc-related
commands in the source will be ignored.

2.3.7 titletoc—A different approach to contents lists

The titletoc package written by Javier Bezos was originally developed as a compan-
ion package to titlesec but can be used on its own. It implements its own interface
to lay out contents structures, thereby avoiding some of the limitations of the
original LaTEX code.

The actual generation of external contents files and their syntax is left
Relation to standard

LATEX
unchanged so that it works nicely with other packages generating such files.
There is one exception, however: contents files should end with the command
\contentsfinish . For the standard file extensions .toc, .lof, and .lot, this
is handled automatically. But if you provide your own type of contents lists (see

2.3 Table of contents structures 59

Section 2.3.4), you have to announce it to titletoc, as in the following example:

\contentsuse{example}{xmp}

As explained in Section 2.3.2 a contents file consists of \contentsline com-
mands that are sometimes separated by some arbitrary code due to the use of
\addtocontents . To format such contents lines with standard LaTEX we had to
define commands of the form \l@type ; with titletoc, this step is no longer needed.
Instead, we declare the desired formatting using the \titlecontents declaration
(for vertically oriented entries) or its starred form (for run-in entries).

\titlecontents{type}[left-indent]{above-code}{numbered-entry-format}
{numberless-entry-format}{page-format}[below-code]

The first argument of \titlecontents contains the type of contents line
for which we set up the layout—it corresponds to the first argument of
\contentsline . In other words, for each type of sectioning command that can
appear in the document, we need one \titlecontents declaration.1 The remain-
ing arguments have the following meaning:

left-indent Argument that specifies the indentation from the left margin for all
lines of the entry. It is possible to place material (e.g., the heading number) in
this space. Even though this argument has to be given in square brackets, it
is not optional in the current package release!

above-code Code to be executed before the entry is typeset. It can be used to
provide vertical space, such as by using \addvspace , and to set up format-
ting directives, such as font changes, for the whole entry. You can also use
\filleft , \filright , \filcenter , or \fillast , already known from the
titlesec package, at this point.

numbered-entry-format Code to format the entry including its number. It is ex-
ecuted in horizontal mode (after setting up the indentation). The last token
can be a command with one argument, in which case it will receive the entry
text as its argument. The unformatted heading number is available in the com-
mand \thecontentslabel , but see below for other possibilities to access and
place it.

numberless-entry-format Code to format the entry if the current entry does not
contain a number. Again the last tokenmay be a command with one argument.

page-format Code that is executed after formatting the entry but while still being
in horizontal mode. It is normally used to add some filling material, such as a
dotted line, and to attach the page number stored in \thecontentspage . You
can use the \titlerule command, discussed on page 41, to produce leaders.

1The package honors existing \l@type declarations made, for example, by the document class.
Thus, it can be used to change the layout of only some types.

60 The Structure of a LATEX Document

below-code An (optional) argument used to specify code to be executed in vertical
mode after the entry is typeset—for example, to add some extra vertical space
after the entry.

To help with placing and formatting the heading and page numbers, the
titletoc package offers two useful tools: \contentslabel and \contentspage .

\contentslabel[text]{size}

The purpose of the \contentslabel command is to typeset the text (which by
default contains \thecontentslabel) left aligned in a box of width size and to
place that box to the left of the current position. Thus, if you use this command in
the numbered-entry-format argument of \titlecontents , then the number will
be placed in front of the entry text into the margin or indentation set up by left-
indent. For a more refined layout you can use the optional argument to specify
your own formatting usually involving \thecontentslabel .

The package offers three options to influence the default outcome of
Package options the \contentslabel command when used without the text argument. With

rightlabels the heading number is right aligned in the space. The default,
leftlabels, makes it left aligned. With dotinlabels a period is added after the
number.

\contentspage[text]

In similar fashion \contentspage typesets text (which by default contains
\thecontentspage) right aligned in a box and arranges for the box to be placed
to the right of the current position but without taking up space. Thus, if placed at
the right end of a line, the box will extend into the margin. In this case, however,
no mandatory argument specifies the box size: it is the same for all entries. Its
value is the same as the space found to the right of all entries and can be set by
the command \contentsmargin described below.

For the examples in this section we copied some parts of the original .toc
�A note on the

examples in this
section

file generated by LaTEX for this book (Chapter 2 and parts of Chapter 3) into the
file partial.toc . Inside the examples we then loaded this file with \input and
manually added \contentsfinish . Of course, in a real document you would use
the command \tableofcontents instead, so that the .toc file for your document
is loaded and processed.

In our first example we provide a new formatting for chapter entries, while
keeping the formatting for the section entries as defined by the standard LaTEX
document class. The chapter entries are now set ragged right (\filright) in bold
typeface, get one pica space above, followed by a thick rule. The actual entry
is indented by six picas. In that space we typeset the word “Chapter” in small
caps followed by a space and the chapter number (\thecontentslabel) using
the \contentslabel directive with its optional argument. There is no special han-
dling for entries without numbers, so they would be formatted with an indenta-

2.3 Table of contents structures 61

tion of six picas. We fill the remaining space using \hfill and typeset the page
number in the margin via \contentspage . Finally, after the entry we add another
two points of space so that the entry is slightly separated from any section entry
following.

2-3-9

CHAPTER 2 The Structure of a LATEX Document 15
2.1. The structure of a source file 15
2.2. Sectioning commands 22
2.3. Table of contents structures 45
2.4. Managing references 66

CHAPTER 3 Basic Formatting Tools 79
3.1. Phrases and paragraphs 80
3.2. Footnotes, endnotes, and marginals 109
3.3. List structures 128
3.4. Simulating typed text 151

\usepackage[dotinlabels]{titletoc}
\titlecontents{chapter} [6pc]

{\addvspace{1pc}\bfseries
\titlerule[2pt]\filright}

{\contentslabel
[\textsc{\chaptername}\
\thecontentslabel]{6pc}}

{}{\hfill\contentspage}
[\addvspace{2pt}]

% Show only chapter/section entries:
\setcounter{tocdepth}{1}

\input{partial.toc}
\contentsfinish

Instead of indenting the whole entry and then moving some material into
the left margin using \contentslabel , you can make use of \contentspush to
achieve a similar effect.

\contentspush{text}

This command typesets text and then increases the left-indent by the width of text
for all additional lines of the entry (if any). As a consequence, the indentation will
vary if the width of the text changes. In many cases such variation is not desirable,
but in some cases other solutions give even worse results. Consider the case of
a document with many chapters, each containing dozens of sections. A rigid left-
indent needs to be able to hold the widest number, which may have five or six
digits. In that case a label like “1.1” will come out unduly separated from its entry
text. Given below is a solution that grows with the size of the entry number.

2-3-10

12.8 Some section that is
wrapped in the TOC . 87

12.9 Another section 88

12.10 And yet another
wrapping section . . 90

12.11 Final section 92

\usepackage{titletoc}
\titlecontents{section}[0pt]{\addvspace{2pt}\filright}

{\contentspush{\thecontentslabel\ }}
{}{\titlerule*[8pt]{.}\contentspage}

\contentsline{section}{\numberline{12.8}Some section that
is wrapped in the TOC}{87}

\contentsline{section}{\numberline{12.9}Another section}{88}
\contentsline{section}{\numberline{12.10}And yet another

wrapping section}{90}
\contentsline{section}{\numberline{12.11}Final section}{92}
\contentsfinish

62 The Structure of a LATEX Document

\contentsmargin[correction]{right-sep}

The right margin for all entries can be set to right-sep using the \contentsmargin
declaration. The default value for this margin is \@pnumwidth , which is set by the
standard classes to be wide enough to contain up to three digits. The optional
correction argument will be added to all lines of an entry except the last. This
argument can, for example, be used to fine-tune the contents layout, so that dots
from a row of leaders align with the text of previous lines in a multiple-line entry.

Contents entries combined in a paragraph

Standard LaTEX only supports contents entries formatted on individual lines. In
some cases, however, it is more economical to format lower-level entries together
in a single paragraph. With the titletoc package this becomes possible.

\titlecontents*{type}[left-indent]{before-code}{numbered-entry-format}
{numberless-entry-format}{page-format}[mid-code]

\titlecontents*{type}. . . {page-format}[mid-code][final-code]
\titlecontents*{type}. . . {page-format}[start-code][mid-code][final-code]

The \titlecontents* declaration is used for entries that should be formatted to-
gether with other entries of the same or lower level in a single paragraph. The first
six arguments are identical to those of \titlecontents described on page 59. But
instead of a vertically oriented below-code argument, \titlecontents* provides
one to three optional arguments that handle different situations that can happen
when entries are about to be joined horizontally. All three optional arguments are
by default empty. The joining works recursively as follows:

• If the current entry is the first entry to participate in joining, then its start-
code is executed before typesetting the entry.

• Otherwise, there has been a previous entry already participating.

– If both entries are on the same level, then the mid-code is inserted.

– Otherwise, if the current entry is of a lower level, then the start-code for
it is inserted and we recur.

– Otherwise, the current entry is of a higher level. First, we execute for each
level that has ended the final-code (in reverse order). Then, if the current
entry is not participating in joining, we are done. Otherwise, the mid-code
for the entry is executed, as a previous entry of the same level should
already be present (assuming a hierarchically structured document).

If several levels are to be joined, then you have to specify any paragraph
layout information in the before-code of the highest level participating. Otherwise,
the scope of your settings will not include the paragraph end and thus will not
be applied. In the following example, \footnotesize applies only to the section
entries—the \baselineskip for the whole paragraph is still set in \normalsize .

2.3 Table of contents structures 63

This artificial example shows how one can join two different levels using the three
optional arguments. Note in particular the spaces added at the beginning of some
arguments to get the right result when joining.

2-3-11

A first, 1 • A second, 4 {sec-A; sec-B} •
A third, 8 {sec-C} ¶

\usepackage{titletoc}
\contentsmargin{0pt}
\titlecontents*{chapter}[0pt]{\sffamily}

{}{}{, \thecontentspage}[\textbullet\][~\P]
\titlecontents*{section}[0pt]{\footnotesize\slshape}

{}{}{}[\{][;][\}]

\contentsline{chapter}{\numberline{1}A first}{1}
\contentsline{chapter}{\numberline{2}A second}{4}
\contentsline{section}{\numberline{2.1}sec-A}{5}
\contentsline{section}{\numberline{2.2}sec-B}{6}
\contentsline{chapter}{\numberline{3}A third}{8}
\contentsline{section}{\numberline{3.1}sec-C}{8}
\contentsfinish

Let us now see how this works in practice. In the next example we join the
section level, separating entries by a bullet surrounded by some stretchable space
(\xquad) and finishing the list with a period. The chapter entries are interesting as
well, because we move the page number to the left. Both types omit the heading
numbers completely in this design. As there are no page numbers at the right, we
also set the right margin to zero.

2-3-12

15 The Structure of a LATEX Document
The structure of a source file, 15 • Sectioning commands, 22
• Table of contents structures, 45 • Managing
references, 66.

79 Basic Formatting Tools
Phrases and paragraphs, 80 • Footnotes, endnotes, and
marginals, 109 • List structures, 128 • Simulating typed
text, 151.

\usepackage{titletoc}
\contentsmargin{0pt}
\titlecontents{chapter}[0pt]

{\addvspace{1.4pc}\bfseries}
{{\Huge\thecontentspage\quad}}{}{}

\newcommand\xquad
{\hspace{1em plus.4em minus.4em}}

\titlecontents*{section}[0pt]
{\filright\small}{}{}
{,~\thecontentspage}
[\xquad\textbullet\xquad][.]

\setcounter{tocdepth}{1}

\input{partial.toc}\contentsfinish

As a second example we look at a set-up implementing a layout close to the
one used in Methods of Book Design [170]. This design uses non-lining digits, some-
thing we achieve by using the eco package. The \chapter titles are set in small
capitals. To arrange that we use \scshape and turn all letters in the title to lower-
case using \MakeLowercase (remember that the last token of the numbered-entry-
format and the numberless-entry-format arguments can be a command with one
argument to receive the heading text). The sections are all run together in a para-
graph with the section number getting a § sign prepended. Separation between

64 The Structure of a LATEX Document

entries is a period followed by a space, and the final section is finished with a
period as well.

2 the structure of a LATEX document 15

§2.1 The structure of a source file, 15. §2.2 Sectioning
commands, 22. §2.3 Table of contents structures, 45. §2.4
Managing references, 66.

3 basic formatting tools 79

§3.1 Phrases and paragraphs, 80. §3.2 Footnotes, endnotes,
and marginals, 109. §3.3 List structures, 128. §3.4 Simulat-
ing typed text, 151.

\usepackage{eco,titletoc}
\contentsmargin{0pt}
\titlecontents{chapter}[1.5pc]

{\addvspace{2pc}\large}
{\contentslabel{2pc}%
\scshape\MakeLowercase}
{\scshape\MakeLowercase}
{\hfill\thecontentspage}
[\vspace{2pt}]

\titlecontents*{section}[1.5pc]
{\small}{\S\thecontentslabel\ }{}
{,~\thecontentspage}[.][.]

\setcounter{tocdepth}{1}

\input{partial.toc}
\contentsfinish 2-3-13

Generating partial table of contents lists

It is possible to generate partial contents lists using the titletoc package; it pro-
vides four commands for this purpose.

\startcontents[name]

A partial table of contents is started with \startcontents . It is possible to collect
data for several partial TOCs in parallel, such as one for the current \part as well
as one for the current \chapter . In that case the optional name argument allows
us to distinguish between the two (its default value is the string default). Concur-
rently running partial TOCs are allowed to overlap each other, although normally
they will be nested. All information about these partial TOCs is stored in a single
file with the extension .ptc; this file is generated once a single \startcontents
command is executed.

\printcontents[name]{prefix}{start-level}{toc-code}

This command prints the current partial TOC started earlier by \startcontents;
if the optional name argument is used, then a partial contents list with that name
must have been started.1

It is quite likely that you want to format the partial TOC differently from the
main table of contents. To allow for this the prefix argument is prepended to any
entry type when looking for a layout definition provided via \titlecontents or
its starred form. In the example below we used p- as the prefix and then defined a
formatting for p-subsection to format \subsection entries in the partial TOC.

1The package is currently (as of 2003) quite unforgiving if you try to print a contents list without
first starting it—you will receive an unspecific low-level TEX error.

2.3 Table of contents structures 65

The start-level argument defines the first level that is shown in the partial TOC;
in the example we used the value 2 to indicate that we want to see all subsections
and lower levels.

The depth to which we want to include entries in the partial TOC can be set
in toc-code by setting the tocdepth to a suitable value. Other initializations for
typesetting the partial TOC can be made there as well. In the example we cancel
any right margin, because the partial TOC is formatted as a single paragraph.

Integrating partial TOCs in the heading definitions so that there is no need
to change the actual document is very easy when titletoc is used together with
the titlesec package. Below we extend Example 2-2-18 from page 40 so that the
\section command now automatically prints a partial TOC of all its subsections.
This is done by using the optional after-code argument of the \titleformat
declaration. We first add some vertical space, thereby ensuring that no page
break can happen at this point. We next (re)start the default partial TOC with
\startcontents . We then immediately typeset it using \printcontents ; its ar-
guments have been explained above. Finally, we set up a formatting for subsec-
tions in a partial TOC using \titlecontents* to run them together in a justified
paragraph whose last line is centered (\fillast). Stringing this all together gives
the desired output without any modification to the document source. Of course, a
real design would also change the look and feel of the subsection headings in the
document to better fit those of the sections.

2-3-14

SECTION 1

A Title Test

A first — A longer second — An even longer
fourth.

Some text to prove that this paragraph is
not indented.

1.1 A first

Some text . . .

\usepackage{titlesec,titletoc}
\titleformat{\section}[frame]{\normalfont}

{\footnotesize \enspace SECTION \thesection
\enspace}{6pt}{\large\bfseries\filcenter}

[\vspace*{5pt}\startcontents
\printcontents{p-}{2}{\contentsmargin{0pt}}]

\titlespacing*{\section}{1pc}{*4}{*2.3}[1pc]
\titlecontents*{p-subsection}[0pt]

{\small\itshape\fillast}{}{}{}[---][.]

\section{A Title Test}
Some text to prove that this paragraph is not indented.
\subsection{A first} Some text \ldots \newpage
\subsection{A longer second} Some more text.
\stopcontents \subsection{A third} \resumecontents
\subsection{An even longer fourth}

If necessary, one can temporarily (or permanently) stop collecting entries for
a partial TOC. We made use of this feature in the previous example by suppressing
the third subsection.

\stopcontents[name] \resumecontents[name]

The \stopcontents command stops the entry collection for the default par-
tial TOC or, if used with the name argument, for the TOC with that name. At a

66 The Structure of a LATEX Document

later point the collection can be restarted using \resumecontents . Note that this
is quite different from calling \startcontents, which starts a new partial TOC,
thereby making the old entries inaccessible.

2.4 Managing references

LaTEX has commands that make it easy to manage references in a document. In par-
ticular, it supports cross-references (internal references between elements within
a document), bibliographic citations (references to external documents), and in-
dexing of selected words or expressions. Indexing facilities will be discussed in
Chapter 11, and bibliographic citations in Chapters 12 and 13.

To allow cross-referencing of elements inside a document, you should assign
a “key” (consisting of a string of ASCII letters, digits, and punctuation) to the given
structural element and then use that key to refer to that element elsewhere.

\label{key} \ref{key} \pageref{key}

The \label command assigns the key to the currently “active” element of the
document (see below for determining which element is active at a given point).
The \ref command typesets a string, identifying the given element—such as the
section, equation, or figure number—depending on the type of structural element
that was active when the \label command was issued. The \pageref command
typesets the number of the page where the \label command was given. The key
strings should, of course, be unique. As a simple aid it can be useful to prefix them
with a string identifying the structural element in question: sec might represent
sectional units, fig would identify figures, and so on.

4 A Section

A reference to this section looks like this: “see sec-
tion 4 on page 6”.

\section{A Section} \label{sec:this}

A reference to this section looks
like this: ‘‘see section~\ref{sec:this}
on page~\pageref{sec:this}’’. 2-4-1

There is a potential danger when using punctuation characters such as a

�Restrictions
on the characters

used in keys

colon. In certain language styles within the babel system (see Chapter 9), some
of these characters have special meanings and behave essentially like commands.
The babel package tries hard to allow such characters as part of \label keys
but this can fail in some situations. Similarly, characters outside the ASCII range,
made available through packages such as inputenc, are not officially supported in
such keys and are likely to produce errors if used.

For building cross-reference labels, the “currently active” structural element
of a document is determined in the following way. The sectioning commands
(\chapter , \section , . . .), the environments equation, figure, table, and the
theorem family, as well as the various levels of the enumerate environment, and

2.4 Managing references 67

\footnote set the current reference string, which contains the number generated
by LaTEX for the given element. This reference string is usually set at the beginning
of an element and reset when the scope of the element is exited.

Notable exceptions to this rule are the table and figure environments,

�Problems with
wrong references

on floats

where the reference string is defined by the \caption commands. This allows sev-
eral \caption and \label pairs inside one environment.1 As it is the \caption
directive that generates the number, the corresponding \label command must
follow the \caption command in question. Otherwise, an incorrect number will
be generated. If placed earlier in the float body, the \label command will pick
up the current reference string from some earlier entity, typically the current sec-
tional unit.

The problem is shown clearly in the following example, where only the labels
“fig:in2” and “fig:in3” are placed correctly to generate the needed reference
numbers for the figures. In the case of “fig:in4” it is seen that environments (in
this case, center) limit the scope of references, since we obtain the number of the
current section, rather than the number of the figure.

2-4-2

3 A section

3.1 A subsection

Text before is referenced as ‘3.1’.

. . . figure body . . .

Figure 1: First caption

. . . figure body . . .

Figure 2: Second caption

The labels are: ‘before’ (3.1), ‘fig:in1’ (3.1),
‘fig:in2’ (1), ‘fig:in3’ (2), ‘fig:in4’ (3.1),
‘after’ (3.1).

\section{A section}
\subsection{A subsection}\label{sec:before}
Text before is referenced as ‘\ref{sec:before}’.

\begin{figure}[ht] \label{fig:in1}
\begin{center}
\fbox{\ldots{} figure body \ldots}
\caption{First caption} \label{fig:in2}
\bigskip
\fbox{\ldots{} figure body \ldots}
\caption{Second caption} \label{fig:in3}

\end{center} \label{fig:in4}
\end{figure}
\label{sec:after}

\raggedright
The labels are: ‘before’ (\ref{sec:before}),
‘fig:in1’ (\ref{fig:in1}), ‘fig:in2’
(\ref{fig:in2}), ‘fig:in3’ (\ref{fig:in3}),
‘fig:in4’ (\ref{fig:in4}), ‘after’
(\ref{sec:after}).

For each key declared with \label{key} , LaTEX records the current reference
string and the page number. Thus, multiple \label commands (with different key
identifiers key) inside the same sectional unit will generate an identical reference
string but, possibly, different page numbers.

1There are, however, good reasons for not placing more than one \caption command within
a float environment. Typically proper spacing is difficult to achieve and, more importantly, future
versions of LaTEX might make this syntax invalid.

68 The Structure of a LATEX Document

2.4.1 showkeys—Displaying the reference keys

When writing a larger document many people print intermediate drafts. With such
drafts it would be helpful if the positions of \label commands as well as their
keys could be made visible. This becomes possible with the showkeys package
written by David Carlisle.

When this package is loaded, the commands \label , \ref , \pageref , \cite ,
and \bibitem are modified in a way that the used key is printed. The \label and
\bibitem commands normally cause the key to appear in a box in the margin,
while the commands referencing a key print it in small type above the formatted
reference (possibly overprinting some text). The package tries hard to position the
keys in such a way that the rest of the document’s formatting is kept unchanged.
There is, however, no guarantee for this, and it is best to remove or disable the
showkeys package before attempting final formatting of the document.

1 An example
sec

Section
sec
1 shows the use of the showkeys

package with a reference to equation (
eq
1).

a = b (1) eq

\usepackage{showkeys}

\section{An example}\label{sec}
Section~\ref{sec} shows the use of the
\texttt{showkeys} package with a
reference to equation~(\ref{eq}).
\begin{equation}

a = b \label{eq}
\end{equation} 2-4-3

The package supports the fleqn option of the standard classes and works
together with the packages of theAMS-LaTEX collection, varioref, natbib, and many
other packages. Nevertheless, it is nearly impossible to ensure its safe working
with all packages that hook into the reference mechanisms.

If you want to see only the keys on the \label command in the margin, you
can suppress the others by using the package option notref (which disables the
redefinition of \ref , \pageref , and related commands) or the option notcite
(which does the same for \cite and its cousins from the natbib and harvard
packages). Alternatively, you might want to use the option color to make the
labels less obstructive.

Finally, the package supports the options draft (default) and final. While
the latter is useless when used on the package level, because you can achieve the
same result by not specifying the showkeys package, it comes in handy if final
is specified as a global option on the class.

2.4.2 varioref—More flexible cross-references

In many cases it is helpful, when referring to a figure or table, to put both a \ref
and a \pageref command into the document, especially when one or more pages

2.4 Managing references 69

separate the reference and the object. Some people use a command like

\newcommand\fullref[1]{\ref{#1} on page~\pageref{#1}}

to reduce the number of keystrokes necessary to make a complete reference. But
because one never knows with certainty where the referenced object finally falls,
this method can result in a citation to the current page, which is disturbing and
should therefore be avoided. The package varioref, written by Frank Mittelbach,
tries to solve that problem. It provides the commands \vref and \vpageref to
deal with single references, as well as \vrefrange and \vpagerefrange to handle
multiple references. In addition, its \labelformat declaration offers the ability to
format references differently depending on the counter used in the reference.

\vref*{key}

The command \vref is like \ref when the reference and \label are on the
same page. If the label and reference differ by one page, \vref creates one of
these strings: “on the facing page”, “on the preceding page”, or “on the following
page”. The word “facing” is used when both label and reference fall on a double
spread. When the difference is larger than one page, \vref produces both \ref
and \pageref . Note that when a special page numbering scheme is used instead
of the usual Arabic numbering (for example, \pagenumbering{roman}), there will
be no distinction between being one or many pages off.

There is one other difference between \ref and \vref: the latter removes
any preceding space and inserts its own. In some cases, such as after an opening
parenthesis, this is not desirable. In such cases, use \vref* , which acts like \vref
but does not add any space before the generated text.

\vpageref*[samepage][otherpage]{key}

Sometimes you may only want to refer to a page number. In that case, a reference
should be suppressed if you are citing the current page. For this purpose the
\vpageref command is defined. It produces the same strings as \vref except that
it does not start with \ref , and it produces the string saved in \reftextcurrent
if both label and reference fall on the same page.

Defining \reftextcurrent to produce something like “on this page” ensures
that text like

... see the diagram \vpageref{ex:foo} which shows ...

does not come out as “. . . see the diagram which shows . . . ”, which could be
misleading.

You can put a space in front of \vpageref; it will be ignored if the command
does not create any text at all. If some text is added, an appropriate space is
automatically placed in front of the text. The variant form \vpageref* removes

70 The Structure of a LATEX Document

preceding white space before the generated text but does not reinsert its own. Use
it if the space otherwise generated poses a problem.

In fact, \vpageref and \vpageref* allow even more control when used with
their two optional arguments. The first argument specifies the text to be used if
the label and reference fall on the same page. This is helpful when both are close
together, so that they may or may not be separated by a page break. In such a
case, you will usually know whether the reference comes before or after the label
so that you can code something like the following:

... see the diagram \vpageref[above]{ex:foo} which shows ...

The resultant text will be “. . . see the diagram above which shows . . . ” when both
are on the same page, or “. . . see the diagram on the page before which shows . . . ”
(or something similar, depending on the settings of the \reftext..before and
\reftext..after commands) if they are separated by a page break. Note, how-
ever, that if you use \vpageref with the optional argument to refer to a figure or
table, depending on the float placement parameters, the float may show up at the
top of the current page and therefore before the reference, even if it follows the
reference in the source file.1

Maybe you even prefer to say “. . . see the above diagram” when both diagram
and reference fall on the same page—that is, reverse the word order compared
to our previous example. In fact, in some languages the word order automatically
changes in that case. To allow for this variation the second optional argument
otherpage can be used. It specifies the text preceding the generated reference if
both object and reference do not fall on the same page. Thus, one would write

... see the \vpageref[above diagram][diagram]{ex:foo} which shows ...

to achieve the desired effect.
The amsmath package provides a \eqref command to reference equations.

It automatically places parentheses around the equation number. To utilize this,
one could define

\newcommand\eqvref[1]{\eqref{#1}\ \vpageref{#1}}

to automatically add a page reference to it.

\vrefrange[here-text]{start-key}{end-key}

This command is similar to \vref but takes two mandatory arguments denoting
a range of objects to refer to (e.g., a sequence of figures or a sequence of equa-
tions). It decides what to say depending on where the two labels are placed in

1To ensure that a floating object always follows its place in the source use the flafter package,
which is described in Section 6.2.

2.4 Managing references 71

relation to each other; it is essentially implemented using \vpagerefrange (de-
scribed below). The optional argument that the command may take is the text to
use in case both labels appear on the current page. Its default is the string stored
in \reftextcurrent .

2-4-4

1 Test

Observe equations 1.1
to 1.3 on pages 6–7
and in particular equa-
tions 1.2 to 1.3 on the
facing page.

a = b + c (1.1)

6

Here is a second equa-
tion. . .

b = a + c (1.2)

. . . and finally one more
equation:

c = a + b (1.3)

7

\usepackage{varioref}
\renewcommand\theequation

{\thesection.\arabic{equation}}

\section{Test}
Observe equations~\vrefrange{A}{C} and
in particular equations~\vrefrange{B}{C}.
\begin{equation}

a=b+c\label{A} \end{equation}
Here is a second equation\ldots
\begin{equation}

b=a+c\label{B} \end{equation}
\ldots and finally one more equation:
\begin{equation}

c=a+b\label{C} \end{equation}

\vpagerefrange*[here-text]{start-key}{end-key}

This command is similar to \vpageref but takes two mandatory arguments—
two labels denoting a range. If both labels fall on the same page, the command
acts exactly like \vpageref (with a single label); otherwise, it produces something
like “on pages 15–18” (see the customization possibilities described below). Like
\vrefrange it has an optional argument that defaults to the string stored in
\reftextcurrent and is used if both labels appear on the current page.

Again there exists a starred form, \vpagerefrange* , which removes preced-
ing white space before the generated text without reinserting its own space.

A reference via \ref produces, by default, the data associated with the corre-
Fancy labelssponding \label command (typically a number); any additional formatting must

be provided by the user. If, for example, references to equations are always to be
typeset as “equation (number)”, one has to code “equation (\ref{key})”.

\labelformat{counter}{formatting-code}

With \labelformat the varioref package offers a possibility to generate such frills
automatically.1 The command takes two arguments: the name of a counter and its
representation when referenced. Thus, for a successful usage, one has to know the
counter name being used for generating the label, though in practice this should
not pose a problem. The current counter number (or, more exactly, its representa-
tion) is picked up as an argument, so the second argument should contain #1.

1This command is also available separately with the fncylab package written by Robin Fairbairns.

72 The Structure of a LATEX Document

A side effect of using \labelformat is that, depending on the defined for-
matting, it becomes impossible to use \ref at the beginning of a sentence (if its
replacement text starts with a lowercase letter). To overcome this problem varioref
introduces the commands \Ref and \Vref (including starred forms) that behave
like \ref and \vref except that they uppercase the first token of the generated
string. In the following example (which you should compare to Example 2-4-3 on
page 68), you can observe this behavior when “section” is turned into “Section”.

1 An example

Section 1 shows the use of the \labelformat
declaration with a reference to equation (1).

a = b (1)

\usepackage{varioref}
\labelformat{section}{section~#1}
\labelformat{equation}{equation~(#1)}

\section{An example}\label{sec}
\Ref{sec} shows the use of the \verb=\labelformat=
declaration with a reference to \ref{eq}.
\begin{equation} a = b \label{eq} \end{equation} 2-4-5

To make \Ref or \Vref work properly the first token in the second argument
of \labelformat has to be a simple ASCII letter; otherwise, the capitalization will
fail or, even worse, you will end up with some error messages. If you actually
need something more complicated in this place (e.g., an accented letter), you have
to explicitly surround it with braces, thereby identifying the part that needs to
be capitalized. For example, for figure references in the Hungarian language you
might want to write \labelformat{figure}{{\’a}bra~\thefigure}.

As a second example of the use of \labelformat consider the following situ-
ation: in the report or book document class, footnotes are numbered per chapter.
Referencing them would normally be ambiguous, given that it is not clear whether
we refer to a footnote in the current chapter or to a footnote from a different chap-
ter. This ambiguity can be resolved by always adding the chapter information in
the reference, or by comparing the number of the chapter in which the \label
occurred with the current chapter number and adding extra information if they
differ. This is achieved by the following code:

\usepackage{ifthen,varioref}
\labelformat{footnote}{#1\protect\iscurrentchapter{\thechapter}}
\newcommand\iscurrentchapter[1]{%

\ifthenelse{\equal{#1}{\thechapter}}{}{ in Chapter~#1}}

The trick is to use \protect to prevent \iscurrentchapter from being eval-
uated when the label is formed. Then when the \ref command is executed,
\iscurrentchapter will compare its argument (i.e., the chapter number current
when the label was formed) to the now current chapter number and, when they
differ, typeset the appropriate information.

The package also provides the \vrefpagenum command, which allows youProviding your own
reference

commands
to write your own small commands that implement functions similar to those
provided by the two previous commands. It takes two arguments: the second is a

2.4 Managing references 73

label (i.e., as used in \label or \ref) and the first is an arbitrary command name
(make sure you use your own) that receives the page number related to this label.
Thus, if you have two (or more) labels, you could retrieve their page numbers,
compare them, and then decide what to print.

The next example shows a not very serious application that compares two
equation labels and prints out text depending on their relative positions. Compare
the results of the tests on the first page with those on the second.

2-4-6

Test: the equa-
tions 1 and 2 on this
page

Test: the equa-
tion 1 on the cur-
rent page and 3 on
page 8

a = b + c (1)

b = a + c (2)

6

Test: the equa-
tions 1 and 2 on the
preceding page

Test: the equa-
tion 1 on the facing
page and 3 on the
next page

7

\usepackage{varioref,ifthen}
\newcommand\veqns[2]{%
\vrefpagenum\firstnum{#1}%
\vrefpagenum\secondnum{#2}%
the equation%
\ifthenelse

{\equal\firstnum\secondnum}%
{s \ref{#1}}%
{ \ref{#1}\vpageref{#1}}%

\space and \ref{#2}\vpageref{#2}%
}

Test: \veqns{A}{B} \par Test: \veqns{A}{C}
\begin{equation} a=b+c \label{A}\end{equation}
\begin{equation} b=a+c \label{B}\end{equation}
\newpage
Test: \veqns{A}{B} \par Test: \veqns{A}{C}
\newpage
\begin{equation} c=a+b \label{C}\end{equation}

The package supports the options defined by the babel system (see Sec-
Package optionstion 9.1.3); thus a declaration like \usepackage[german]{varioref} will pro-

duce texts suitable for the German language. In addition, the package supports
the options final (default) and draft; the latter changes certain error messages
(described on page 75) into warnings. This ability can be useful during the devel-
opment of a document.

To allow further customization, the generated text strings (which will be Individual
customizationpredefined by the language options) are all defined via macros. Backward refer-

ences use \reftextbefore if the label is on the preceding page but invisible, and
\reftextfacebefore if it is on the facing page (that is, if the current page num-
ber is odd).

Similarly, \reftextafter is used when the label comes on the next page but
one has to turn the page, and \reftextfaceafter when it is on the next, but
facing, page. These four strings can be redefined with \renewcommand .

The command \reftextfaraway is used when the label and reference differ
by more than one page, or when they are non-numeric. This macro is a bit different
from the preceding ones because it takes one argument, the symbolic reference
string, so that you can make use of \pageref in its replacement text. For instance,

74 The Structure of a LATEX Document

if you wanted to use your macros in German language documents, you would
define something like:

\renewcommand\reftextfaraway[1]{auf Seite~\pageref{#1}}

The \reftextpagerange command takes two arguments and produces the
text that describes a page range (the arguments are keys to be used with
\pageref). See below for the English language default.

Similarly, \reftextlabelrange takes two arguments and describes the range
of figures, tables, or whatever the labels refer to. The default for English is
“\ref{#1} to~\ref{#2}”.

To allow some random variation in the generated strings, you can use the
command \reftextvario inside the string macros. This command takes two ar-
guments and selects one or the other for printing depending on the number of
\vref or \vpageref commands already encountered in the document.

The default definitions of the various macros described in this section are
shown below:

\newcommand\reftextfaceafter
{on the \reftextvario{facing}{next} page}

\newcommand\reftextfacebefore
{on the \reftextvario{facing}{preceding} page}

\newcommand\reftextafter
{on the \reftextvario{following}{next} page}

\newcommand\reftextbefore
{on the \reftextvario{preceding page}{page before}}

\newcommand\reftextcurrent
{on \reftextvario{this}{the current} page}

\newcommand\reftextfaraway [1]{on page~\pageref{#1}}
\newcommand\reftextpagerange [2]{on pages~\pageref{#1}--\pageref{#2}}
\newcommand\reftextlabelrange[2]{\ref{#1} to~\ref{#2}}

If you want to customize the package according to your own preferences, just
write appropriate redefinitions of the above commands in a file with the extension
.sty (e.g., vrflocal.sty). If you also put \RequirePackage{varioref} (see Sec-
tion A.4 on page 877) at the beginning of this file, then your local package will au-
tomatically load the varioref package. If you use the babel system, redefinitions for
individual languages should be added using \addto , as explained in Section 9.5.

Some people do not like textual references to pages but want to automatically
suppress a page reference when both label and reference fall on the same page.
This can be achieved with the help of the \thevpagerefnum command as follows:

\renewcommand\reftextfaceafter {on page~\thevpagerefnum}
\renewcommand\reftextfacebefore{on page~\thevpagerefnum}
\renewcommand\reftextafter {on page~\thevpagerefnum}
\renewcommand\reftextbefore {on page~\thevpagerefnum}

2.4 Managing references 75

Within one of the \reftext... commands, \thevpagerefnum evaluates to the
current page number if known, or to two question marks otherwise.

Defining commands, like the ones described above, poses some interesting
A few warningsproblems. Suppose, for example, that a generated text like “on the next page”

gets broken across pages. If this happens, it is very difficult to find an acceptable
algorithmic solution and, in fact, this situation can even result in a document that
will always change from one state to another (i.e., inserting one string; finding that
this is wrong; inserting another string on the next run which makes the first string
correct again; inserting . . .). The current implementation of the package varioref
considers the end of the generated string as being relevant. For example,

Table 5 on the current 〈page break〉 page

would be true if Table 5 were on the page containing the word “page”, not the
one containing the word “current”. However, this behavior is not completely sat-
isfactory, and in some cases may actually result in a possible loop (where LaTEX is
requesting an additional run over and over again). Therefore, all such situations
will produce a LaTEX error message, so that you can inspect the problem and per-
haps decide to use a \ref command in that place.

Also, be aware of the potential problems that can result from using
\reftextvario: if you reference the same object several times in nearby places,
the change in wording every second time will look strange.

A final warning: every use of \vref or \vpageref internally generates two
macro names. As a result, you may run out of name space or main memory if you
make heavy use of this command on a small TEX installation. For this reason the
command \fullref is also provided. It can be used whenever you are sure that
both label and reference cannot fall on nearby pages.

2.4.3 prettyref—Adding frills to references

One problem with LaTEX’s cross-referencing mechanism is that it only produces the
element number (or the page number) but leaves the surrounding formatting as
the responsibility of the author. This means that uniform references are difficult
to achieve. For example, if the publisher’s house style requires that figures be
referenced as “Fig.xx” one has to manually go through the source document and
change all references to that format.

The prettyref package written by Kevin Ruland provides automatic support for
such additional formatting strings, provided the keys used on the \label com-
mands obey a certain structure. They have to be of the form “〈prefix〉:〈name〉”
with neither prefix nor name containing a colon (e.g., fig:main), a form used by
many people anyway. The extra formatting strings are produced when using the
command \prettyref; standard \ref and \pageref are not affected by the pack-
age. Note that this is different from the \labelformat declaration, as provided by
varioref, which changes the display of the reference labels in all circumstances.

76 The Structure of a LATEX Document

\newrefformat{prefix}{code}

This command defines the formatting for references having the prefix as the prefix
in their key. The code argument uses #1 to refer to the key used so that it can be
passed to \ref , \vref , and so on. This format can be accessed when using the
key with the command \prettyref .

4 A Section

A reference to the equation in this sec-
tion looks like: “see (1) in Section 4”.

a = b (1)

\usepackage{prettyref}
\newrefformat{sec}{Section~\ref{#1}}

\section{A Section}\label{sec:this}
A reference to the equation in this section looks like:
‘‘see \prettyref{eq:a} in \prettyref{sec:this}’’.
\begin{equation} a = b \label{eq:a} \end{equation} 2-4-7

The example shows that the prettyref package has formatting for the 〈prefix〉
“eq” already built in. In fact, it knows about several other predefined formats, but
since most of them allow breaking between the generated text and the number
you should probably define your own.

Because this package does not make any distinction between references used
at the beginning of a sentence and references used in mid-sentence, it may not
be usable in all circumstances. It is also impossible to replace the colon that sep-
arates 〈prefix〉 and 〈name〉, which means that it cannot be combined with some
language packages that use the colon in special ways. In that case you might con-
sider using the fancyref package written by Axel Reichert, which provides a similar
functionality but internally uses a much more complex set-up.

2.4.4 titleref—Non-numerical references

In some documents it is required to reference sections by displaying their title
texts instead of their numbers, either because there is no number to refer to or be-
cause the house style asks for it. This functionality is available through the titleref
package written by Donald Arseneau, which provides the command \titleref to
cross-reference the titles of sections and float captions.

For numbered sections and floats with captions, the titles are those that would
be displayed in the contents lists (regardless of whether such a list is actually
printed). That is, if a short title is provided via the optional argument of a section-
ing command or caption, then this title is printed by \titleref . Unnumbered
sections take their title reference from the printed title. As a consequence, the ar-�Unnumbered

sections get
moving arguments

guments of unnumbered sectioning commands are turned into moving arguments,
which will cause weird errors if they contain un\protected fragile commands.

A \titleref to a label unrelated to a title (e.g., a label in a footnote, or an
enumeration item) will simply pick up any earlier title, typically the one from the
surrounding section.

2.4 Managing references 77

As shown in the next example, the title of the current section is available
through \currenttitle , independently of whether it was associated with a
\label key. The example also shows that \titleref and \ref can coexist.

2-4-8

1 Textual References

In section “Textual References” we prove that
it is possible to reference unnumbered sections
by referencing section “Example”.

A Small Example

The current section is referenced in section 1.

\usepackage{titleref}
\setcounter{secnumdepth}{1}

\section{Textual References}\label{num}
In section ‘‘\currenttitle{}’’ we prove that
it is possible to reference unnumbered sections
by referencing section ‘‘\titleref{ex}’’.

\subsection[Example]{A Small Example}\label{ex}
The current section is referenced in
section~\ref{num}.

The format of the title reference can be controlled by redefining the command
\theTitleReference . It takes two arguments: a number as it would be displayed
by \ref , and a title. If a document contains references to unnumbered titles, the
number argument should not be used in the replacement text as it will contain
an arbitrary number. For instance, the \titleref command in the next example
displays “1”, even though the reference is to an unnumbered section.

2-4-9

1 Textual References

In section 1 Textual References we prove that
it is possible to reference unnumbered sections
by referencing section 1 Example.

A Small Example

The current section is referenced in section 1.

\usepackage{titleref}
\renewcommand\theTitleReference[2]{\emph{#1\ #2}}
\setcounter{secnumdepth}{1}

\section{Textual References}\label{num}
In section \currenttitle{} we prove that
it is possible to reference unnumbered
sections by referencing section \titleref{ex}.

\subsection[Example]{A Small Example}\label{ex}
The current section is referenced in
section~\ref{num}.

By default, the package works by inserting additional code into commands
Conflicts with other
packages

that are typically used to build headings, captions, and other elements. If com-
bined with other packages that provide their own methods for typesetting titles,
it might create conflicts. In that case you can tell the package to use a completely
different approach by specifying the option usetoc. As the name implies, it di-
rects the package to record the titles from the data written to the contents lists by
redefining \addcontentsline . A consequence of this approach is that the \label
command is not allowed within the title argument but has to follow it. In addition,
no unrelated \addcontentsline command is allowed to intervene between head-
ing and label. As starred sectioning commands do not generate contents entries,
they are still redefined. This can be prevented by additionally specifying the op-
tion nostar, although then one can no longer refer to their titles.

78 The Structure of a LATEX Document

2.4.5 hyperref—Active references

Sebastian Rahtz (with contributions by Heiko Oberdiek and David Carlisle) has de-
veloped the package hyperref, which makes it possible to turn all cross-references
(citations, table of contents, and so on) into hypertext links. It works by extending
the existing commands with functionality to produce \special commands that
suitably equipped drivers can use to turn the references into hypertext links. The
package is described in detail in [56, pp.35–67] and comes with its own manual,
which itself contains hypertext links produced using the package.

The usage of hyperref can be quite easy. Just including it in your list of loaded
packages (as the last package) suffices to turn all cross-references in your docu-
ment into hypertext links. The package has a number of options to change the way
the hypertext links look or work. The most important options are colorlinks,
which makes the text of the link come out in color instead of with a box around it,
and backref, which inserts links in the bibliography pointing to the place where
an entry was cited.

The package offers a number of ways to influence the behavior of the PDF file
produced from your document as well as ways to influence the behavior of the
PDF viewer, such as the Adobe Reader.

2.4.6 xr—References to external documents

David Carlisle, building on earlier work of Jean-Pierre Drucbert, developed a pack-
age called xr, which implements a system for external references.

If, for instance, a document needs to refer to sections of another document—
say, other.tex—then you can specify the xr package in the main file and give the
command \externaldocument{other} in the preamble. Then you can use \ref
and \pageref to refer to anything that has been defined with a \label command
in either other.tex or your main document. You may declare any number of such
external documents.

If any of the external documents or the main document uses the same \label
key, then a conflict will occur because the key will have been multiply defined.
To overcome this problem, \externaldocument takes an optional argument. If
you declare \externaldocument[A-]{other} , then all references from the file
other.tex are prefixed by A- . So, for instance, if a section in the file other.tex
had a \label{intro} , then it could be referenced with \ref{A-intro} . The pre-
fix need not be A- ; it can be any string chosen to ensure that all the labels im-
ported from external files are unique.

Note, however, that if one of the packages you are using declares certain active
characters (e.g., : in French or " in German), then these characters should not be
used inside \label commands. Similarly, you should not use them in the optional
argument to \externaldocument .

The package does not work together with the hyperref package because both
modify the internal reference mechanism. Instead, you can use the xr-hyper pack-
age, which is a reimplementation tailored to work with hyperref.

C H A P T E R 3

Basic Formatting Tools

The way information is presented visually can influence, to a large extent, the
message as it is understood by the reader. Therefore, it is important that you use
the best possible tools available to convey the precise meaning of your words.
It must, however, be emphasized that visual presentation forms should aid the
reader in understanding the text, and should not distract his or her attention. For
this reason, visual consistency and uniform conventions for the visual clues are a
must, and the way given structural elements are highlighted should be the same
throughout a document. This constraint is most easily implemented by defining
a specific command or environment for each document element that has to be
treated specially and by grouping these commands and environments in a package
file or in the document preamble. By using exclusively these commands, you can
be sure of a consistent presentation form.

This chapter explains various ways for highlighting parts of a document. The
first part looks at how short text fragments or paragraphs can be made to stand
out and describes tools to manipulate such elements.

The second part deals with the different kind of “notes”, such as footnotes,
marginal notes, and endnotes, and explains how they can be customized to con-
form to different styles, if necessary.

Typesetting lists is the subject of the third part. First, the various parame-
ters and commands controlling the standard LaTEX lists, enumerate, itemize, and
description, are discussed. Then, the extensions provided by the paralist pack-
age and the concept of “headed lists” exemplified by the amsthm package are
presented. These will probably satisfy the structure and layout requirements of
most readers. If not, then the remainder of this part introduces the generic list

80 Basic Formatting Tools

environment and explains how to build custom layouts by varying the values of
the parameters controlling it.

The fourth part explains how to simulate “verbatim” text. In particular, we
have a detailed look at the powerful packages fancyvrb and listings.

The final part presents packages that deal with line numbering, handling of
columns, such as parallel text in two columns, or solving the problem of producing
multiple columns.

3.1 Phrases and paragraphs

In this section we deal with small text fragments and explain how they can be
manipulated and highlighted in a consistent manner by giving them a visual ap-
pearance different from the one used for the main text.

We start by discussing how to define commands that take care of the space
after them, then show a way to produce professional-looking marks of omission.

For highlighting text you can customize the font shape, weight, or size (see
Section 7.3.1 on page 338). Text can also be underlined, or the spacing between
letters can be varied. Ways for performing such operations are offered by the four
packages relsize, textcase, ulem, and soul.

The remainder of this section then turns to paragraph-related issues, such as
producing large initial letters at the start of a paragraph, modifying paragraph
justification, altering the vertical spacing between lines of a paragraph, and in-
troducing rectangular holes into it, that can be filled with small pictures, among
other things.

3.1.1 xspace—Gentle spacing after a macro

The small package xspace (by David Carlisle) defines the \xspace command, for
use at the end of macros that produce text. It adds a space unless the macro is
followed by certain punctuation characters.

The \xspace command saves you from having to type \� or {} after most
occurrences of a macro name in text. However, if either of these constructs follows
\xspace , a space is not added by \xspace . This means that it is safe to add
\xspace to the end of an existing macro without making too many changes in
your document. Possible candidates for \xspace are commands for abbreviations
such as “e.g.,” and “i.e.,”.

\newcommand\eg{e.g.,\xspace}
\newcommand\ie{i.e.,\xspace}
\newcommand\etc{etc.\@\xspace}

Notice the use of the \@ command to generate the correct kind of space. If used to
the right of a punctuation character, it prevents extra space from being added: the

3.1 Phrases and paragraphs 81

dot will not be regarded as an end-of-sentence symbol. Using it on the left forces
LaTEX to interpret the dot as an end-of-sentence symbol.

Sometimes \xspace may make a wrong decision and add a space when it is
not required. In such cases, follow the macro with {}, which will suppress this
space.

3-1-1

Great Britain was unified in 1707.
Great Britain, the United States of America,
and Canada have close cultural links.

\usepackage{xspace}
\newcommand\USA{United States of America\xspace}
\newcommand\GB {Great Britain\xspace}

\GB was unified in 1707.\\ \GB, the \USA, and
Canada have close cultural links.

3.1.2 ellipsis, lips—Marks of omission

Omission marks are universally represented by three consecutive periods (also
known as an ellipsis). Their spacing, however, depends on house style and typo-
graphic conventions, and significant difference are observed. In French, according
to Hart [63] or The Chicago Manual of Style [38], “points de suspension” are set
close together and immediately follow the preceding word with a space on the
right:

C’est une chose. . . bien difficile.

In German, according to the Duden [44], “Auslassungspunkte” have space on the
left and right unless they mark missing letters within a word or a punctuation
after them is kept:

Du E. . . du! Scher dich zum . . . !

Elsewhere, such as in British and American typography, the dots are sometimes
set with full word spaces between them and rather complex rules determine how
to handle other punctuation marks at either end.

LaTEX offers the commands \dots and \textellipsis to produce closely
spaced omission marks. Unfortunately, the standard definition (inherited from
plain TEX) produces uneven spacing at the left and right—unsuitable to typeset
some of the above examples properly. The extra thin space at the right of the el-
lipsis is correct in certain situations (e.g., when a punctuation character follows).
If the ellipsis is followed by space, however, it looks distinctly odd and is best can-
celed as shown in the example below (though removing the space in the second
instance brings the exclamation mark a bit too close).

3-1-2

Compare the following:
Du E. . . du! Scher dich zum . . . !
Du E. . . du! Scher dich zum . . .!

\newcommand\lips{\dots\unkern}

Compare the following:\\
Du E\dots\ du! Scher dich zum \dots!\\
Du E\lips\ du! Scher dich zum \lips!

82 Basic Formatting Tools

This problem is addressed in the package ellipsis written by Peter Heslin,
which redefines the \dots command to look at the following character to decide
whether to add a final separation. An extra space is added if the following charac-
ter is listed in the command \ellipsispunctuation , which defaults to “,.:;!?”.
When using some of the language support packages that make certain characters
active, this list may have to be redeclared afterwards to enable the package to still
recognize the characters.

The spacing between the periods and the one possibly added after the ellipsis
can be controlled through the command \ellipsisgap . To allow for automatic
adjustments depending on the font size use a font-dependent unit like em or a
fraction of a \fontdimen (see page 428).

Compare the following:
Du E. . . du! Scher dich zum . . . !
Du E. . . du! Scher dich zum . . . !
Du E. . . du! Scher dich zum . . . !

\usepackage{ellipsis}

Compare the following:\\
Du E\dots\ du! Scher dich zum \dots!\\

\renewcommand\ellipsisgap{1.5\fontdimen3\font}
Du E\dots\ du! Scher dich zum \dots!\\

\renewcommand\ellipsisgap{0.3em}
Du E\dots\ du! Scher dich zum \dots! 3-1-3

For the special case when you need an ellipsis in the middle of a word (or for
other reasons want a small space at either side), the package offers the command
\midwordellipsis . If the package is loaded with the option mla (Modern Lan-
guage Association style), the ellipsis is automatically bracketed without any extra
space after the final period.

If one follows The Chicago Manual of Style [38], then an ellipsis is set with full
word spaces between the dots. For this, one can deploy the lips package1 by Matt
Swift. It implements the command \lips , which follows the recommendations
in this reference book. For example, an ellipsis denoting an omission at the end
of a sentence should, according to [38, §10.48–63], consist of four dots with the
first dot being the sentence period.2 The \lips command implements this by
interpreting “\lips.” like “.\lips”, as can be seen in the next example.

Elsewhere . . . the dots are normally set
with full word spaces between them. . . . An
example would be this paragraph.

\usepackage{moredefs,lips}

Elsewhere \lips the dots are normally set with
full word spaces between them \lips. An example
would be this paragraph. 3-1-4

The \lips command looks for punctuation characters following it and en-
sures that in case of ,:;?!)’]/ the ellipsis and the punctuation are not separated
by a line break. In other cases (e.g., an opening parenthesis), a line break would
be possible. The above list is stored in \LPNobreakList and can be adjusted if

1lips is actually part of a larger suite of packages. If used on a stand-alone basis, you also have to
load the package moredefs by the same author.

2Not that the authors of this book can see any logic in this.

3.1 Phrases and paragraphs 83

necessary. To force an unbreakable space following \lips , follow the command
with a tie (~).

When applying the mla option the ellipsis generated will be automatically
bracketed and a period after the \lips command will not be moved to the front.
If necessary, \olips will produce the original unbracketed version.

3-1-5

Elsewhere . . . the dots are normally set
with full word spaces between them [. . .]. An
example would be this paragraph.

\usepackage{moredefs}\usepackage[mla]{lips}

Elsewhere \olips the dots are normally set with
full word spaces between them \lips. An example
would be this paragraph.

3.1.3 amsmath—Nonbreaking dashes

The amsmath package, extensively discussed in Chapter 8, also offers one com-
mand for use within paragraphs. The command \nobreakdash suppresses any
possibility of a line break after the following hyphen or dash. A very common use
of \nobreakdash is to prevent undesirable line breaks in usages such as “p-adic”
but here is another example: if you code “Pages 3–9” as Pages 3\nobreakdash--9
then a line break will never occur between the dash and the 9.

This command must be used immediately before a hyphen or dash (- , -- ,
or ---). The following example shows how to prohibit a line break after the hy-
phen but allow normal hyphenation in the following word (it suffices to add a
zero-width space after the hyphen). For frequent use, it’s advisable to make ab-
breviations, such as \p . As a result “dimension” is broken across the line, while a
break after “p-” is prevented (resulting in a overfull box in the example) and “3–9”
is moved to the next line.

3-1-6

The generalization to the n-dimen-
sional case (using the standard p-adic
topology) can be found on Pages
3–9 of Volume IV.

\usepackage{amsmath}
\newcommand\p{p\nobreakdash}% "\p-adic"
\newcommand\Ndash{\nobreakdash--}% "3\Ndash 9"
\newcommand\n[1]{n\nobreakdash-\hspace{0pt}}

% "\n-dimensional"

\noindent The generalization to the \n-dimensional
case (using the standard \p-adic topology) can be found
on Pages 3\Ndash 9 of Volume IV.

3.1.4 relsize—Relative changes to the font size

Standard LaTEX offers 10 predefined commands that change the overall font size
(see Table 7.1 on page 342). The selected sizes depend on the document class but
are otherwise absolute in value. That is, \small will always select the same size
within a document regardless of surrounding conditions.

84 Basic Formatting Tools

However, in many situations it is desirable to change the font size relative
to the current size. This can be achieved with the relsize package, originally de-
veloped by Bernie Cosell and later updated and extended for LaTEX2ε by Donald
Arseneau and Matt Swift.

The package provides the declarative command \relsize , which takes a num-
ber as its argument denoting the number of steps by which to change the size.
For example, if the current size is \Large then \relsize{-2} would change to
\normalsize . If the requested number of steps is not available then the small-
est (i.e., \tiny) or largest (i.e., \Huge) size command is selected. This means that
undoing a relative size change by negating the argument of \relsize is not guar-
anteed to bring you back to the original size—it is better to delimit such changes
by a brace group and let LaTEX undo the modification.

The package further defines \smaller and \larger , which are simply ab-
breviations for \relsize with the arguments -1 and 1, respectively. Convenient
variants are \textsmaller and \textlarger , whose argument is the text to re-
duce or enlarge in size. These four commands take as an optional argument the
number of steps to change if something different from 1 (the default) is needed.

Some large text with a

few small words inside.

SMALL CAPS (faked)
Small Caps (real; compare the run-
ning length and stem thickness to
previous line).

\usepackage{relsize}

\Large Some large text with a few
{\relsize{-2}small words} inside.

\par\medskip
\normalsize\noindent
S\textsmaller[2]{MALL} C\textsmaller[2]{APS} (faked)\\
\textsc{Small Caps} (real; compare the running length

and stem thickness to previous line). 3-1-7

In fact, the above description for \relsize is not absolutely accurate: it tries
to increase or decrease the size by 20% for each step and selects the LaTEX font
size command that is closest to the resulting target size. It then compares the
selected size and target size. If they differ by more than the current value of
\RSpercentTolerance (interpreted as a percentage), the package calls \fontsize
with the target size as one of the arguments. If this happens it is up to LaTEX’s font
selection scheme to find a font matching this request as closely as possible. By
default, \RSpercentTolerance is an empty macro, which is interpreted as 30
(percent) when the current font shape group is composed of only discrete sizes
(see Section 7.10.3), and as 5when the font shape definition covers ranges of sizes.

Using a fixed factor of 1.2 for every step may be too limiting in certain cases.
For this reason the package additionally offers the more general declarative com-
mand \relscale{factor} and its variant \textscale{factor}{text} , to select the
size based on the given factor , such as 1.3 (enlarge by 30%).

There are also two commands, \mathsmaller and \mathlarger , for use
in math mode. LaTEX recognizes only four different math sizes, of which two
(\displaystyle and \textstyle) are nearly identical for most symbols, so the
application domain of these commands is somewhat limited. With exscale addi-

3.1 Phrases and paragraphs 85

tionally loaded the situation is slightly improved: the \mathlarger command,
when used in \displaystyle , will then internally switch to a larger text font
size and afterwards select the \displaystyle corresponding to that size.

3-1-8

∑
�=
∑

and 1
2 �= 1

2 but N = N

\usepackage{exscale,relsize}

\[\sum \neq \mathlarger{\sum} \]
and $\frac{1}{2} \neq \frac{\mathlarger 1}
{2}$ but $N = \mathlarger {N}$

These commands will attempt to correctly attach superscripts and subscripts
to large operators. For example,

3-1-9
∑n

i=1 �=
n∑

i=1

�=
n∑

i=1

∫∞
0
�=
∫ ∞

0

�=
∫ ∞

0

\usepackage{exscale,relsize}

\[\mathsmaller\sum_{i=1}^n \neq
\sum_{i=1}^n \neq \mathlarger\sum_{i=1}^n

\qquad \mathsmaller\int_0^\infty \neq
\int_0^\infty \neq \mathlarger\int_0^\infty

\]

Be aware that the use of these commands inside formulas will hide the true
nature of the math atoms inside the argument, so that the spacing in the formula,
without further help, might be wrong. As shown in following example, you may
have to explicitly use \mathrel , \mathbin , or \mathop to get the correct spacing.

3-1-10 a× b �= a×b �= a× b
\usepackage{exscale,relsize}

\[a \times b \neq a \mathlarger{\times} b \neq
a \mathbin{\mathlarger\times} b \]

Due to these oddities, the \mathlarger and \mathsmaller commands should not
be trusted blindly, and they will not be useful in every instance.

3.1.5 textcase—Change case of text intelligently

The standard LaTEX commands \MakeUppercase and \MakeLowercase change the
characters in their arguments to uppercase or lowercase, respectively, thereby
expanding macros as needed. For example,

\MakeUppercase{On \today}

will result in “ON 2ND AUGUST 2004”. Sometimes this will change more characters
than desirable. For example, if the text contains a math formula, then uppercas-
ing this formula is normally a bad idea because it changes its meaning. Similarly,
arguments to the commands \label , \ref , and \cite represent semantic infor-
mation, which, if modified, will result in incorrect or missing references, because
LaTEX will look for the wrong labels.

86 Basic Formatting Tools

\MakeTextUppercase{text} \MakeTextLowercase{text}

The package textcase by David Carlisle overcomes these defects by providing two
alternative commands, \MakeTextUppercase and \MakeTextLowercase , which
recognize math formulas and cross-referencing commands and leave them alone.

1 Textcase example

TEXT IN SECTION 1, ABOUT a = b AND α �= a

\usepackage{textcase}

\section{Textcase example}\label{exa}
\MakeTextUppercase{Text in section~\ref{exa},

about $a=b$ and \(\alpha \neq a \) } 3-1-11

Sometimes portions of text should be left unchanged for one reason or an-
other. With \NoCaseChange the package provides a generic way to mark such
parts. For instance:

SOME TEXT Some More TEXT

\usepackage{textcase}

\MakeTextUppercase{Some text
\NoCaseChange{Some More} text} 3-1-12

If necessary, this method can be used to hide syntactic information, such as

\NoCaseChange{\begin{tabular}{ll}} ... \NoCaseChange{\end{tabular}}

thereby preventing tabular and ll from incorrectly being uppercased.
All this works only as long as the material is on the top level. Anything that is

inside a group of braces (other than the argument braces to \label , \ref , \cite ,
or \NoCaseChange) will be uppercased or lowercased regardless of its nature.

BOTH OF THESE WILL FAIL A + B = C
UNFORTUNATELY

\usepackage{textcase}

\MakeTextUppercase{Both of these will
\textbf{fail $a+b=c$}
\emph{\NoCaseChange{unfortunately}}} 3-1-13

In the above case you could avoid this pitfall by taking the formula out of the
argument to \textbf and moving \emph inside the argument to \NoCaseChange .
In other situations this kind of correction might be impossible. In such a case
the (somewhat cumbersome) solution is to hide the problem part inside a private
macro and protect it from expansion during the case change; this method works
for the standard LaTEX commands as well, as shown in the next example.

BUT THIS WILL WORK a + b = c ALWAYS

\newcommand\mymath{$a+b=c$}
\MakeUppercase{But this will

\textbf{work \protect\mymath} always} 3-1-14

Some classes and packages employ \MakeUppercase internally—for example,
in running headings. If you wish to use \MakeTextUppercase instead, you should

3.1 Phrases and paragraphs 87

load the textcase package with the option overload. This option will replace the
standard LaTEX commands with the variants defined by the package.

3.1.6 ulem—Emphasize via underline

LaTEX encourages the use of the \emph command and the \em declaration for mark-
ing emphasis, rather than explicit font-changing declarations, such as \bfseries
and \itshape . The ulem package (by Donald Arseneau) redefines the command
\emph to use underlining, rather than italics. It is possible to have line breaks and
even primitive hyphenation in the underlined text. Every word is typeset in an
underlined box, so automatic hyphenation is normally disabled, but explicit dis-
cretionary hyphens (\-) can still be used. The underlines continue between words
and stretch just like ordinary spaces do. As spaces delimit words, some difficulty
may arise with syntactical spaces (e.g., "2.3 pt"). Some effort is made to handle
such spaces. If problems occur you might try enclosing the offending command
in braces, since everything inside braces is put inside an \mbox . Thus, braces sup-
press stretching and line breaks in the text they enclose. Note that nested empha-
sis constructs are not always treated correctly by this package (see the gymnastics
performed below to get the interword spaces correct in which each nested word
is put separately inside an \emph expression).

3-1-15

No, I did not act in the movie The
Persecution and Assassination of Jean-Paul
Marat, as performed by the Inmates of the
Asylum of Charenton under the direction of
the Marquis de Sade! But I did see it.

\usepackage{ulem}

No, I did \emph{not} act in the movie
\emph{\emph{The} \emph{Persecution} \emph{and}
\emph{Assassination} \emph{of} \emph{Jean-Paul}
\emph{Marat}, as performed by the Inmates of
the Asylum of Charenton under the direc\-tion of
the Marquis de~Sade!} But I \emph{did} see it.

Alternatively, underlining can be explicitly requested using the \uline com-
mand. In addition, a number of variants are available that are common in editorial
markup. These are shown in the next example.

3-1-16

Double underlining (under-line),
a wavy underline (

���������
under-wave),

a line through text (strike out),
crossing out text (/////cross/////out,///X/////out),

\usepackage{ulem}

Double underlining (\uuline{under-line}),\\
a wavy underline (\uwave{under-wave}), \\
a line through text (\sout{strike out}), \\
crossing out text (\xout{cross out, X out}),

The redefinition of \emph can be turned off and on by using \normalem and
\ULforem . Alternatively, the package can be loaded with the option normalem to
suppress this redefinition. Another package option is UWforbf, which replaces
\textbf and \bfseries by \uwave whenever possible.

The position of the line produced by \uline can be set explicitly by specifying
a value for the length \ULdepth . The default value is font-dependent, denoted

88 Basic Formatting Tools

by the otherwise senile value \maxdimen . Similarly, the thickness of the line can
be controlled via \ULthickness , which, for some historical reason, needs to be
redefined using \renewcommand .

3.1.7 soul—Letterspacing or stealing sheep

Frederic Goudy supposedly said, “Anyone who would letterspace black letter
would steal sheep”. Whether true or a myth, the topic of letterspacing clearly pro-
vokes heated discussions among typographers and is considered bad practice in
most situations because it changes the “grey” level of the text and thus disturbs
the flow of reading. Nevertheless, there are legitimate reasons for undertaking
letterspacing. For example, display type often needs a looser setting and in most
fonts uppercased text is improved this way. You may also find letterspacing being
used to indicate emphasis, although this exhibits the grey-level problem.

TEX is ill equipped when it comes to supporting letterspacing. In theory, the
best solution is to use specially designed fonts rather than trying to solve the
problem with a macro package. But as this requires the availability of such fonts,
it is not an option for most users. Thus, in practice, the use of a macro-based so-
lution is usually easier to work with, even though it means dealing with a number
of restrictions. Some information about the font approach can be found in the
documentation for the fontinst package [74,75].

The soul package written by Melchior Franz provides facilities for letterspac-
ing and underlining, but maintains TEX’s ability to automatically hyphenate words,
a feature not available in ulem. The package works by parsing the text to be let-
terspaced or underlined, token by token, which results in a number of peculiarities
and restrictions. Thus, users who only wish to underline a few words and do not
need automatic hyphenation are probably better off with ulem, which is far less
picky about its input.

\caps{text} \hl{text} \so{text} \st{text} \ul{text}

The use of the five main user commands of soul are shown in the next example. In
cases where TEX’s hyphenation algorithm fails to find the appropriate hyphenation
points, you can guide it as usual with the \- command. If the color package is
loaded, \hl will work like a text marker, coloring the background using yellow as
the default color; otherwise, it will behave like \ul and underline its argument.

With the soul package you can l e t t e r -
s p a c e w o r d s a n d p h r a s e s. Capi-
tals are LETTERSPACED with a different
command. Interfaces for underlining, strike-
outs, and highlighting are also provided.

\usepackage{soul,color}

With the \texttt{soul} package you can
\so{letter\-space words and phrases}. Capitals
are \caps{LETTERSPACED} with a different
command. Interfaces for \ul{underlining},
\st{strikeouts}, and \hl{highlighting} are
also provided. 3-1-17

3.1 Phrases and paragraphs 89

Normally, the soul package interprets one token after another in the argument
of \so , \st , and so on. However, in case of characters that are represented by
more than one token (e.g., accented characters) this might fail with some low-level
TEX error messages. Fortunately, the package already knows about all common
accent commands, so these are handled correctly. For others, such as those pro-
vided by the textcomp package, you can announce them to soul with the help of a
\soulaccent declaration. The alternative is to surround the tokens by braces.

3-1-18 ä ù Õ X̀ �Y
\usepackage{soul} \usepackage{textcomp}
\soulaccent{\capitalgrave}

\Huge \st{\"a \‘u \~O \capitalgrave X {\capitalbreve Y}}

The soul package already knows that quotation characters, en dash, and em
dash consist of several tokens and handles them correctly. In case of other syn-
tactical ligatures, such as the Spanish exclamation mark, you have to help it along
with a brace group.

3-1-19

“ S o t h e r e , ” he said.
¡HOLA—MY FRIEND!

\usepackage{soul}

\so{‘‘So there,’’} he said. \caps{{!‘}Hola---my \textbf{friend}!}

The soul package also knows about math formulas as long as they are sur-
rounded by $ signs (the form \(. . .\) is not supported) and it knows about all
standard font-changing commands, such as \textbf . If you have defined your
own font-switching command or use a package that provides additional font com-
mands, you have to register them with soul using \soulregister . This declara-
tion expects the font command to be registered as its first argument and the num-
ber of arguments (i.e., 0 or 1) for that command to appear as its second argument.
Within the soul commands none of the font commands inserts any (necessary)
italic correction. If needed, one has to provide it manually using \/ .

3-1-20

H e r e w e s e e s o u l
i n a c t i o n: x �= y O K ?

\newcommand\textsfbf[1]{\textsf{\bfseries#1}}
\usepackage{soul} \soulregister{\textsfbf}{1}

\so{Here we see \textsfbf{soul} in \emph{action}: $x\neq y$ OK?}

If you look carefully, you will see that the font commands suppress letterspac-
ing directly preceding and following them, such as between “action” and the colon.
This can be corrected by adding \> , which forces a space.

3-1-21 b lo od y v i z . b l o o d y
\usepackage{soul}

\so{bl\textbf{oo}dy viz. bl\>\textbf{oo}\>dy}

Text inside a brace group is regarded as a single object during parsing and
is therefore not spaced out. This is handy if certain ligatures are to be kept in-
tact inside spaced-out text. However, this method works only if the text inside
the brace group contains no hyphenation points. If it does, you will receive the
package error message “Reconstruction failed”. To hide such hyphenation points

90 Basic Formatting Tools

you need to put the text inside an \mbox , as shown in the second text line of the
next example (TEX would hyphenate this as “Es-cher”—that is, between the “sch”
that we try to keep together). You can also use \soulomit to achieve this effect,
but then your text will work only when the soul package is loaded.

S Ě u Ń v o r r i Ě t u n g
G ö d e l , E sch e r , B a c h
Temporarily disabling the scanner

\usepackage{soul,yfonts} \usepackage[latin1]{inputenc}

\textfrak{\so{S{ch}u{tz}vorri{ch}tung}} \par
\so{Gödel, E\mbox{sch}er, Bach} \par
\ul{Temporarily dis\soulomit{abl}ing the scanner} 3-1-22

One of the most important restrictions of the above commands is that they
cannot be nested; any attempt to nest soul commands will result in low-level TEX
errors. If you really need nesting you will have to place the inner material in a box,
which means you lose the possibility to break the material at a line ending.

This i s h e l l for all of us!

\usepackage{soul} \newsavebox\soulbox

\sbox\soulbox{\so{ is hell }}
\ul{This\mbox{\usebox{\soulbox}}for all of us!} 3-1-23

A few other commands are special within the argument of \so and friends.
Spacing out at certain points can be canceled using \< or forced with \> as we
saw above. As usual with LaTEX a ~ will produce an unbreakable space. The \\
command is supported, though only in its basic form—no star, no optional argu-
ment. You can also use \linebreak to break a line at a certain point, but again
the optional argument is not supported. Other LaTEX commands are likely to break
the package—some experimentation will tell you what is safe and what produces
havoc. The next example shows applications of these odds and ends.

“S o t h e r e” h e s a i d . L e t ’ s
p r o d u c e a s p a c e d o u t l i n e ,
O K ?

\usepackage{soul}

\so{‘‘\<So there\<’’ he said. Let’s\\
produce a spaced out line\>,\linebreak OK?} 3-1-24

\sodef{cmd}{font}{inter-letter space}{word space}{outer space}

The \sodef declaration allows you to define your own letterspacing commands. It
can also be used to overwrite the defaults for \so .

The letterspacing algorithm works by putting a certain inter-letter space be-
tween characters of a word, a certain word space between words, and a certain
outer space at the beginning and end of the letterspaced text section. The latter
space is added only if it is appropriate at that point. The default values for these
spaces are adjusted for typesetting texts in Fraktur fonts but with the help of the
\sodef declaration it is easy to adjust them for your own needs. The font argu-
ment allows you to specify font attributes; in most cases it will be empty. Rather
than using explicit dimensions in the other arguments it is advisable to resort to

3.1 Phrases and paragraphs 91

em values, thereby making your definition depend on the current font and its size.

3-1-25 Here we e m p h a s i z e w o r d s a lot.

\usepackage{soul}

\sodef\sobf{\bfseries}{.3em}{1em plus .1em}
{1.3em plus.1em minus.2em}

Here we \sobf{emphasize words} a lot.

While \so or any new command defined via \sodef simply retrieves and ex-
ecutes its stored definition, the \caps command works somewhat differently. It
examines the current font and tries to find it (or a close match) in an internal
database. It then uses the letterspacing values stored there. You can extend this
database using the \capsdef declaration by providing values for individual fonts
or groups of fonts. In this way you can fine-tune the letterspacing—for example,
for text in headings. It is even possible to keep several such databases and change
them on the fly within a document.

\capsdef{match spec}{font}{inter-letter space}{word space}{outer space}

Apart from the first argument, which is totally different, the other arguments to
\capsdef are identical to those of \sodef . The first argument,match spec, defines
the font (or fonts) to which the current declaration applies.

Its syntax is encoding, family, series, shape, and size separated by slashes
using the naming conventions of NFSS. Empty values match anything, so ////
matches any font, /ptm///10 matches all Times fonts in 10 points, and
OT1/cmr/m/n/ matches Computer Modern (cmr) medium series (m) normal shape
(n) encoded in OT1 in any size. It is also possible to specify size ranges. For exam-
ple, 5-14means 5pt ≤ size < 14pt and 14-matches all sizes equal or greater 14pt.
Refer to the tables in Chapter 7 for details on the NFSS font naming conventions.

As with \sodef , in most declarations the font argument will be empty. On
some occasions it may make sense to use \scshape in this place, such as to
change the font shape to small caps before applying letterspacing.

Because \caps uses the first matching entry in its database, the order of
\capsdef declarations is important. Later declarations are examined first so that
it is possible to overwrite or extend existing declarations.

3-1-26

A S A M P L E H E A D I N G

The \capsdef declaration ap-
plies here, because the heading
definition specifies sans serif and
our examples are typeset with
Times and Helvetica (phv).

\usepackage{titlesec,soul}
\newcommand\allcaps[1]{\MakeUppercase{\caps{#1}}}
\titleformat{\section}[block]{\centering\sffamily}

{\thesection.}{.5em}{\allcaps}
\titlespacing*{\section}{0pt}{8pt}{3pt}
\capsdef{/phv///}{\scshape}{.17em}{.55em}{.4em}

\section*{A Sample Heading}
The \verb=\capsdef= declaration applies here, because the
heading definition specifies sans serif and our examples
are typeset with Times and Helvetica (\texttt{phv}).

92 Basic Formatting Tools

The previous example also contained an interesting combination of \caps and
\MakeUppercase: the command \allcaps changes its argument to uppercase and
then uses \caps to letterspace the result.

\capssave{name} \capsselect{name} \capsreset

With \capsreset the database is restored to its initial state containing only a
generic default. You can then add new entries using \capsdef . The current stateCustomized

letterspacing for
different occasions

of the \caps database can be stored away under a name by using \capssave .
You can later retrieve this state by recalling it with \capsselect . If you use the
capsdefault option when loading the package, then all uses of \caps that have
no matching declaration are flagged by underlining the text.

A S A M P L E H E A D I N G

Notice the different letterspac-
ing in the heading and RUNNING

TEXT. For Times we have no def-
inition above so that the DEFAULT

will match.

\usepackage{titlesec} \usepackage[capsdefault]{soul}
\capsdef{/phv///}{\scshape}{.17em}{.55em}{.4em}
\capssave{display} \capsreset
\capsdef{/phv///}{\scshape}{.04em}{.35em}{.35em}
\titlespacing*{\section}{0pt}{8pt}{3pt}
\titleformat{\section}[block]{\centering\sffamily}

{\thesection.}{.5em}{\capsselect{display}\caps}

\section*{A Sample Heading}
Notice the different letterspacing in the heading and
\textsf{\caps{Running Text}}. For Times we have no
definition above so that the \caps{default} will match. 3-1-27

The position and the height of the line produced by the \ul command can
Customizing
underlining

be customized using either \setul or \setuldepth . The command \setul takes
two dimensions as arguments: the position of the line in relation to the baseline
and the height of the line. Alternatively, \setuldepth can be used to specify that
the line should be positioned below the text provided as an argument. Finally,
\resetul will restore the default package settings.

Here we test
a number of
different settings.
And back to normal!

\usepackage{soul}

\setul{0pt}{.4pt} \ul{Here we test} \par
\setul{-.6ex}{.3ex} \ul{a number of} \par
\setuldepth{g} \ul{different settings.} \par
\resetul \ul{And back to normal!} 3-1-28

Both \ul and \st use a black rule by default. If you additionally load the color
package, you can use colored rules instead and, if desired, modify the highlighting
color as demonstrated below:

Rules can be in black blue.

\usepackage{soul,color}
\sethlcolor{green} \setulcolor{blue} \setstcolor{red}

Rules \hl{can} be in \st{black} \ul{blue}. 3-1-29

3.1 Phrases and paragraphs 93

3.1.8 url—Typesetting URLs, path names, and the like

E-mail addresses, URLs, path or directory names, and similar objects usually re-
quire some attention to detail when typeset. For one thing, they often contain
characters with special significance to LaTEX, such as ~ , # , & , { , or } . In addition,
breaking them across lines should be avoided or at least done with special care.
For example, it is usually not wise to break at a hyphen, because then it is not
clear whether the hyphen was inserted because of the break (as it would be the
case with normal words) or was already present. Similar reasons make breaks at
a space undesirable. To help with these issues, Donald Arseneau wrote the url
package, which attempts to solve most of these problems.

\url{text} \url!text! \path{text} \path=text=

The base command provided by the package is \url , which is offered in two
syntax variants: the text argument either can be surrounded by braces (in which
case the text must not contain unbalanced braces) or, like \verb , can be delimited
by using an arbitrary character on both sides that is not used inside text. (The
syntax box above uses ! and = but these are really only examples.) In that second
form one can have unbalanced braces in the argument.

The \path command is the same except that it always uses typewriter fonts
(\ttfamily), while \url can be customized as we will see below. The argument to
both commands is typeset pretty much verbatim. For example, \url{~} produces
a tilde. Spaces are ignored by default, as can be seen in the following example.

3-1-30

The LATEX project web pages are at http:
//www.latex-project.org and my home
directory is ~frank (sometimes).

\usepackage{url}

The \LaTeX{} project web pages are at
\url{http://www . latex-project . org} and my
home directory is \path+~frank+ (sometimes).

Line breaks can happen at certain symbols (by default, not between letters
or hyphens) and in no case can the commands add a hyphen at the break point.
Whenever the text contains either of the symbols % or # , or ends with \ , it cannot
be used in the argument to another command without producing errors (just like
the \verb command). Another case that does not work properly inside the argu-
ment of another command is the use of two ^ characters in succession. However,
the situation is worse in that case because one might not even get an error but
simply incorrect output1 as the next example shows.

3-1-31

^frank and ^frank (OK)
^^frank but &rank (bad)

\usepackage{url}

\url{^frank} and \mbox{\url{^frank}} (OK)\par
\url{^^frank} but \mbox{\url{^^frank}} (bad)

1It depends on the letter that is following. An uppercase F instead of the lowercase f would
produce an error.

94 Basic Formatting Tools

Even if the text does not contain any critical symbols, it is always forbidden
to use such a command inside a moving argument—for instance, the argument of
a \section. If used there, you will get the error message

! Undefined control sequence.
\Url Error ->\url used in a moving argument.

followed by many strange errors. Even the use of \protect will not help in that
case. So what can be done if one needs to cite a path name or a URL in such a
place? If you are prepared to be careful and only use “safe” characters inside text,
then you can enable the commands for use in moving arguments by specifying the
option allowmove when loading the package. But this does not help if you actually
need a character like “#”. In that case the solution is to record the information first
using \urldef and then reuse it later.

\urldef{cmd}{url-cmd}{text} \urldef{cmd}{url-cmd}=text=

The declaration \urldef defines a new command cmd to contain the url-cmd
(which might be \url , \path , or a newly defined command—see below) and the
text in a way such that they can be used in any place, including a moving argument.
The url-cmd is not executed at this point, which means that style changes can
still affect the typesetting (see Example 3-1-33 on the facing page). Technically,
what happens is that the \catcodes of characters in text are frozen during the
declaration, so that they cannot be misinterpreted in places like arguments.

1 ^^frank~#$\ works?

It does—in contrast to the earlier example.

\usepackage{url}
\urldef\test\path{^^frank~#$\}

\section{\test{} works?}
It does---in contrast to the earlier example. 3-1-32

\urlstyle{style}

We have already mentioned style changes. For this task the url package offers
the \urlstyle command, which takes one mandatory argument: a named style.
Predefined styles are rm, sf, tt, and same. The first three select the font family of
that name, while the same style uses the current font and changes only the line
breaking.

The \url command uses whatever style is currently in force (the default is
tt, i.e., typewriter), while \path internally always switches to the tt style. In the
following example we typeset a URL saved in \lproject several times using differ-
ent styles. The particular example may look slightly horrifying, but imagine how

3.1 Phrases and paragraphs 95

it would have looked if the URL had not been allowed to split at all in this narrow
measure.

3-1-33

Zapf Chancery! http://www.
latex-project.org (default set-

up) http://www.latex-project.org
(CM Roman) http://www.latex-
project.org (CM Sans Serif) http://
www.latex-project.org (CM Type-

writer) http:// www.latex-project.org

(Zapf Chancery)

\usepackage[hyphens]{url}
\urldef\lproject\url{http://www.latex-project.org}

\fontfamily{pzc}\selectfont Zapf Chancery!
\lproject\ (default set-up) \quad

\urlstyle{rm}\lproject\ (CM Roman) \quad
\urlstyle{sf}\lproject\ (CM Sans Serif) \quad
\urlstyle{tt}\lproject\ (CM Typewriter) \quad
\urlstyle{same}\lproject\ (Zapf Chancery)

If you studied the previous example closely you will have noticed that the
option hyphens was used. This option allows breaking at explicit hyphens, some-
thing normally disabled for \url-like commands. Without this option breaks
would have been allowed only at the periods, after the colon, or after “//”.

As mentioned earlier spaces inside text are ignored by default. If this is not
Spaces in the
argument

desired one can use the option obeyspaces. However, this option may introduce
spurious spaces if the \url command is used inside the argument of another
command and text contains any “\” character. In that case \urldef solves the
problem. Line breaks at spaces are not allowed unless you also use the option
spaces.

The package automatically detects which font encoding is currently in use. In
case of T1 encoded fonts it will make use of the additional glyphs available in this
encoding, which improves the overall result.

The package offers two hooks, \UrlLeft and \UrlRight , that by default do
Appending material
at left or right

nothing but can be redefined to typeset material at the left or right of text. The
material is typeset in the same fashion as the text. For example, spaces are ignored
unless one uses \� or specifies obeyspaces as an option. If the commands are
redefined at the top level, they act on every \url-like command. See Example 3-1-
34 on the next page for a possibility to restrict their scope.

\DeclareUrlCommand{cmd}{style-information}

It is sometimes helpful to define your own commands that work similarly to \url
Defining URL-like
commands

or \path but use their own fonts, and so on. The command \DeclareUrlCommand
can be used to define a new \url-like command or to modify an existing one. It
takes two arguments: the command to define or change and the style-information
(e.g., \urlstyle).

In the next example, we define \email to typeset e-mail addresses in rm style,
prepending the string “e-mail: ” via \UrlLeft . The example clearly shows that the
scope for this redefinition is limited to the \email command. If you look closely,

http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org
http://www.latex-project.org

96 Basic Formatting Tools

you can see that a space inside \UrlLeft (as in the top-level definition) has no
effect, while \� produces the desired result.

<url:http://www.latex-project.org>
e-mail: frank.mittelbach@latex-project.org
<url:$HOME/figures> oops, wrong!

\usepackage{url}
\renewcommand\UrlLeft{<url: }
\renewcommand\UrlRight{>}
\DeclareUrlCommand\email{\urlstyle{rm}%

\renewcommand\UrlLeft{e-mail:\ }%
\renewcommand\UrlRight{}}

\url{http://www.latex-project.org} \par
\email{frank.mittelbach@latex-project.org} \par
\path{$HOME/figures} oops, wrong! 3-1-34

The url package offers a number of other hooks that influence line breaking,
among them \UrlBreaks , \UrlBigBreaks , and \UrlNoBreaks . These hooks can
be redefined in the style-information argument of \DeclareUrlCommand to set up
new or special conventions. For details consult the package documentation, which
can be found at the end of the file url.sty.

3.1.9 euro—Converting and typesetting currencies

To ease the calculations needed to convert between national units and the euro,
Melchior Franz developed the package euro. In fact, the package converts arbi-
trary currencies using the euro as the base unit. The calculations are done with
high precision using the fp package written by Michael Mehlich. The formatting
is highly customizable on a per-currency basis, so that this package can be used
for all kind of applications involving currencies whether or not conversions are
needed.

\EURO{from-currency}[to-currency]{amount}

The main command \EURO converts an amount in from-currency into to-currency
or, if this optional argument is missing, into euros. The arguments from-currency
and to-currency are denoted in ISO currency codes, as listed in Table 3.1 on the fac-
ing page. When inputting the amount a dot must separate the integer value from
any fractional part, even if the formatted number uses a different convention.

With the default settings the amount is displayed in the from-currency with
the converted value in the to-currency shown in parentheses.

7 DM (23,48 FRF) 23,48 FRF (7 DM)
10 Euro (19,56 DM) 20 DM (10,23 Euro)

\usepackage{euro}

\EURO{DEM}[FRF]{7}\quad \EURO{FRF}[DEM]{23.48}
\\
\EURO{EUR}[DEM]{10.00}\quad \EURO{DEM}{20} 3-1-35

http://www.latex-project.org

3.1 Phrases and paragraphs 97

EUR Europe GRD Greece
ATS Austria IEP Ireland
BEF Belgium ITL Italy
DEM Germany LUF Luxembourg
ESP Spain NLG The Netherlands
FIM Finland PTE Portugal
FRF France

Table 3.1: ISO currency codes of the euro and the 12 euro-zone countries

The package offers a number of options to influence the general style of the
The package optionsoutput (unless overwritten by the more detailed formatting declarations discussed

below). With eco the ISO codes precede the value and no customized symbols are
used; with dots a period is inserted between every three-digit group (the default
is to use a small space).

By default, integer amounts are printed as such, without adding a decimal
separator and a (zero) fractional part. If the table option is specified this behavior
is globally changed and either a — (option emdash, also the default), a – (option
endash), or the right number of zeros (option zeros) is used.

3-1-36

DEM 7,– (FRF 23,48) FRF 23,48 (DEM 7,–)
EUR 10,– (DEM 19,56) DEM 20,– (EUR 10,23)

\usepackage[eco,table,endash]{euro}

\EURO{DEM}[FRF]{7}\quad \EURO{FRF}[DEM]{23.48}
\\ \EURO{EUR}[DEM]{10.00}\quad \EURO{DEM}{20}

The more detailed output customizations, which we discuss below, can be
placed anywhere in the document. It is, however, advisable to keep them together
in the preamble, or even to put them into the file euro.cfg, which is consulted
upon loading the package.

The monetary symbols typeset can be adjusted with a \EUROSYM declaration;
as defaults the package uses the ISO codes for most currencies. The example
below changes the presentation for lira and euro using the currency symbols from
the textcomp package. It also uses dots to help with huge lira amounts.

3-1-37 10.000 ₤ (5,16 €) 1.000 DM (989.999 ₤)

\usepackage{textcomp}\usepackage[dots]{euro}
\EUROSYM{ITL}{\textlira}\EUROSYM{EUR}{\texteuro}

\EURO{ITL}{10000}\quad \EURO{DEM}[ITL]{1000}

The package is well prepared for new countries to join the euro-zone. In fact,
it is well prepared to deal with conversions from and to any currency as long as
the conversion rate to the euro is known. To add a new currency use the \EUROADD
declaration, which takes three arguments: the ISO currency code, the symbol or
text to display for the currency, and the conversion rate to the euro. The next

98 Basic Formatting Tools

example makes the British pound available. Note the abbreviation \GBP , which
makes the input a bit easier.

14,90 £ (23,29 €)
10 £ (102,54 FRF)
10 € (6,40 £)

\usepackage{eurosans,euro}
\EUROADD{GBP}{\textsterling}{0.6397} % 2002/12/21
\newcommand*\GBP{\EURO{GBP}} \EUROSYM{EUR}{\euro}

\noindent \GBP{14.9}\\ \GBP[FRF]{10}\\ \EURO{EUR}[GBP]{10} 3-1-38

The conversion rates for the national currencies of the euro-zone countries
are fixed (and predefined by the package). With other currencies the rates may
change hourly, so you have to be prepared for frequent updates.

The package allows you to tailor the presentation via \EUROFORMAT declara-
tions, either to provide new defaults or to adjust the typesetting of individual
currencies. The first argument specifies which part of the formatting should be
adjusted, and the second argument describes the formatting.

The main format specifies how the source and target currencies are to be
arranged using the reserved keywords \in and \out to refer to the source and
target currencies, respectively. In the example below the first line implements a
format close to the default, the second line displays the result of the conversion,
and the third line does not show the conversion at all (although it happens behind
the scenes). The latter is useful if you want to make use of the currency formatting
features of the package without being interested in any conversion.

1 000 DM (= 3 353,85 FRF)
3 353,85 FRF
1 000 DM

\usepackage{euro}

\EUROFORMAT{main}{\in\ (=\,\out)} \EURO{DEM}[FRF]{1000}\par
\EUROFORMAT{main}{\out} \EURO{DEM}[FRF]{1000}\par
\EUROFORMAT{main}{\in} \EURO{DEM} {1000} 3-1-39

The in and out formats specify how the source and target currencies should
be formatted using the reserved keywords \val (monetary amount), \iso (cur-
rency code), and \sym (currency symbol if defined; ISO code otherwise).

DM 1 000 (FRF 3 353,85)

\usepackage{euro}
\EUROFORMAT{in}{\sym~\val} \EUROFORMAT{out}{\iso~\val}

\EURO{DEM}[FRF]{1000} 3-1-40

Perhaps more interesting are the possibilities to influence the formatting of
monetary amounts, for which the package offers five declarations to be used in
the second argument to \EUROFORMAT . The \round declaration specifies where
to round the monetary amount: positive values round to the integer digits and
negative values to the fractional digits. For example, \round{-3}means show and
round to three fractional digits. The \form declaration takes three arguments: the
integer group separator (default \,), the decimal separator (default a comma), and
the fractional group separator (default \,).

3.1 Phrases and paragraphs 99

The first argument can be either all to define the default number formatting
or an ISO currency code to modify the formatting for a single currency.

3-1-41

1,022·5838 Euro
−335·3855 FRF
9,900,000 Lit.

\usepackage{euro} \EUROFORMAT{main}{\out}
\EUROFORMAT{all}{\round{-4}\form{,}{\textperiodcentered}{}}
\EUROFORMAT{ITL}{\round{2}}

\noindent \EURO{DEM}{2000}\\ \EURO{DEM}[FRF]{-100}\\
\EURO{DEM}[ITL]{10000}

The \minus declaration formats negative values by executing its first
argument before the number and its second argument after it (default
\minus{$-$}{}). The number itself is typeset unsigned, so that a minus sign has
to be supplied by the declaration. The \plus declaration is the analogue for deal-
ing with positive numbers (default \plus{}{}).

3-1-42 +1 022,58 Euro −335,39 FRF

\usepackage{color,euro} \EUROFORMAT{main}{\out}
\EUROFORMAT{all}{\plus{$+$}{}\minus{\color{blue}$-$}{}}

\EURO{DEM}{2000}\quad \EURO{DEM}[FRF]{-100}

The \zero declaration takes three arguments to describe what to do if every-
thing is zero, the integer part is zero, or the fractional part is zero. In the first
and third arguments, the decimal separator has to be entered as well, so it should
correspond to the default or the value given in the \form command.

3-1-43 0,00 € 0,51 € 1,– €

\usepackage{eurosans,euro}
\EUROFORMAT{main}{\out} \EUROSYM{EUR}{\euro}
\EUROFORMAT{all}{\zero{0,00}{0}{,--}}

\EURO{DEM}{0}\quad \EURO{DEM}{1}\quad \EURO{EUR}{1}

3.1.10 lettrine—Dropping your capital

In certain types of publications you may find the first letter of some paragraphs
being highlighted by means of an enlarged letter often dropped into the paragraph
body (so that the paragraph text flows around it) and usually followed by the
first phrase or sentence being typeset in a special font. Applications range from
chapter openings in novels, or indications of new thoughts in the text, to merely
decorative elements to produce lively pages in a magazine. This custom can be
traced back to the early days of printing, when such initials were often hand-
colored after the printing process was finished. It originates in the manuscripts of
the Middle Ages; that is, it predates the invention of printing.

\lettrine[key/val-list]{initial}{text}

The package lettrine written by Daniel Flipo lets you create such initials by pro-
viding the command \lettrine . In its simplest form it takes two arguments: the

100 Basic Formatting Tools

letter to become an initial and the follow-up text to be typeset in a special font, by
default in \scshape .

LA MOITIÉ DES PASSAGERS, affai-
blis, expirants de ces angoisses in-

concevables que le roulis d’un vais-
seau porte dans les nerfs et dans toutes
les humeurs du corps agitées en sens
contraire, . . .

\usepackage{lettrine} \usepackage[latin1]{inputenc}
\usepackage[french]{babel}

\lettrine{L}{a moitié des passagers,} affaiblis,
expirants de ces angoisses inconcevables que le
roulis d’un vaisseau porte dans les nerfs et
dans toutes les humeurs du corps agitées en sens
contraire, \ldots 3-1-44

The font used for the initial is, by default, a larger size of the current
text font. Alternatively, you can specify a special font family by redefining the
command \LettrineFontHook using standard NFSS commands. Similarly, the
font used for the text in the second argument can be modified by changing
\LettrineTextFont .

Because the \lettrine command calculates the initial size to fit a certain
number of lines, you need scalable fonts to obtain the best results. As the exam-
ples in this book are typeset in Adobe Times and Helvetica by default, we have no
problems here. Later examples use Palatino, which is also a scalable Type 1 font.
But if you use a bitmapped font, such as Computer Modern, you might have to
use special .fd files (see Chapter 7, pages 419ff) to achieve acceptable results.

LA MOITIÉ DES PASSAGERS, affai-
blis, expirants de ces angoisses

inconcevables que le roulis d’un vais-
seau porte dans les nerfs et dans toutes
les humeurs du corps agitées en sens
contraire, . . .

\usepackage{lettrine} \usepackage[latin1]{inputenc}
\usepackage[french]{babel}
\renewcommand\LettrineFontHook{\sffamily\bfseries}
\renewcommand\LettrineTextFont{\sffamily\scshape}

\lettrine{L}{a moitié des passagers,} affaiblis,
expirants de ces angoisses inconcevables que le
roulis d’un vaisseau porte dans les nerfs et
dans toutes les humeurs du corps agitées en sens
contraire, \ldots 3-1-45

Many books on typography give recommendations about how to best set large
initials with respect to surrounding text. For highest quality it is often necessary
to manually adjust the placement depending on the shape of the initial. For exam-
ple, it is often suggested that letters with a projecting left stem should overhang
into the margin. The \lettrine command caters to this need by supporting an
optional argument in which you can specify adjustments in the form of a comma-
separated list of key/value pairs.

The size of the initial is calculated by default to have a height of two text lines
(stored in \DefaultLines); with the keyword lines you can change this value to
a different number of lines. There is an exception: if you specify lines=1 the
initial is still made two lines high, but instead of being dropped is placed onto the
baseline of the first text line.

3.1 Phrases and paragraphs 101

If you want a dropped initial that also extends above the first line of text, then
use the keyword loversize. A value of .2 would enlarge the initial by 20%. The
default value for this keyword is stored in \DefaultLoversize. This keyword is
also useful in conjunction with lraise (default 0 in \DefaultLraise). In case of
an initial with a large descender such as a “Q” you may have to raise the initial to
avoid it overprinting following lines. In that case loversize can be used to reduce
the height so as to align the initial properly.

With the keyword lhang you specify how much the initial extends into the
margin. The value is specified as a fraction—that is, between 0 and 1. Its document
default is stored in \DefaultLhang .

3-1-46

QUAND ILS FURENT revenus un
peu à eux, ils marchèrent
vers Lisbonne ; il leur restait

quelque argent, avec lequel ils es-
péraient se sauver de la faim après
avoir échappé à la tempête . . .

\usepackage{palatino,lettrine}
\usepackage[latin1]{inputenc}
\usepackage[french]{babel}

\lettrine[lines=3, loversize=-0.1, lraise=0.1,
lhang=.2]{Q}{uand ils furent} revenus un peu à eux,

ils marchèrent vers Lisbonne ; il leur restait quelque
argent, avec lequel ils espéraient se sauver de la
faim après avoir échappé à la tempête \ldots

The distance between the initial and the following text in the first line is con-
trolled by the command \DefaultFindent (default 0pt) and can be overwritten
using the keyword findent. The indentation of following lines is by default 0.5em
(stored in \DefaultNindent) but can be changed through the keyword nindent.
If you want to specify a sloped indentation you can use the keyword slope, which
applies from the third line onward. Again the default value can be changed via
the command \DefaultSlope , though it seems questionable that you would ever
want anything different than 0pt since a slope is normally only used for letters
like “A” or “V”.

3-1-47

ÀPEINE ONT-ILS MIS le pied
dans la ville en pleurant la
mort de leur bienfaiteur,
qu’ils sentent la terre

trembler sous leurs pas ; . . .

\usepackage{palatino,lettrine}
\usepackage[latin1]{inputenc}
\usepackage[french]{babel}

\lettrine[lines=4, slope=0.6em, findent=-1em,
nindent=0.6em]{À} { peine ont-ils mis} le pied dans

la ville en pleurant la mort de leur bienfaiteur,
qu’ils sentent la terre trembler sous leurs pas; \ldots

The example above clearly demonstrates that the size calculation for the ini-
tial does not take accents into account, which is normally the desired behavior. It
is nevertheless possible to manually adjust the size using loversize.

To attach material to the left of the initial, such as some opening quote, you
can use the keyword ante. It is the only keyword for which no command exists to
set the default.

By modifying the default settings you can easily adapt the package to typeset
initials the way you like. This can be done either in the preamble or in a file with
the name lettrine.cfg, which is loaded if found.

102 Basic Formatting Tools

3.1.11 Paragraph justification in LATEX

For formatting paragraphs LaTEX deploys the algorithms already built into the TEX
program, which by default produce justified paragraphs. In other words, spaces
between words will be slightly stretched or shortened to produce lines of equal
length. TEX achieves this outcome with an algorithm that attempts to find an opti-
mal solution for a whole paragraph, using the current settings of about 20 internal
parameters. They include aspects such as trying to produce visually compatible
lines, such that a tight line is not followed by one very loosely typeset, or con-
sidering several hyphens in a row as a sign of bad quality. The interactions be-
tween these parameters are very subtle and even experts find it difficult to predict
the results when tweaking them. Because the standard settings are suitable for
nearly all applications, we describe only some of the parameters in this book. Ap-
pendix B.3.3 discusses how to trace the algorithm. If you are interested in delving
further into the matter of automatic paragraph breaking, refer to The TEXbook
[82, chap.14], which describes the algorithm in great detail, or to the very interest-
ing article by Michael Plass and Donald Knuth on the subject, which is reprinted
in Digital Typography [98].

The downside of the global optimizing approach of TEX, which you will en-
counter sooner or later, is that making small changes, like correcting a typo near
the end of a paragraph, can have drastic and surprising effects, as it might affect
the line breaking of the whole paragraph. It is possible, and not even unlikely, that,
for example, the removal of a word might actually result in making a paragraph
one line longer. This behavior can be very annoying if you are near the end of
finishing an important project (like the second edition of this book) and a cor-
rection wreaks havoc on your already manually adjusted page breaks. In such a
situation it is best to place \linebreak or \pagebreak commands into strategic
places to force TEX to choose a solution that it would normally consider inferior.
To be able to later get rid of such manual corrections you can easily define your
own commands, such as

\newcommand\finallinebreak{\linebreak}

rather than using the standard LaTEX commands directly. This helps you to distin-
guish the layout adjustments for a particular version from other usages of the
original commands—a method successfully used in the preparation of this book.

The interword spacing in a justified paragraph (the white space between
individual words) is controlled by several TEX parameters—the most important
ones are \tolerance and \emergencystretch . By setting them suitably for your
document you can prevent most or all of the “Overfull box” messages without any
manual line breaks. The \tolerance command is a means for setting how much
the interword space in a paragraph is allowed to diverge from its optimum value.1

This command is a TEX (not LaTEX) counter and therefore it has an uncommon

1The optimum is font defined; see Section 7.10.3 on page 428.

3.1 Phrases and paragraphs 103

assignment syntax—for example, \tolerance=500. Lower values make TEX try
harder to stay near the optimum; higher values allow for loose typesetting. The
default value is often 200. When TEX is unable to stay in the given tolerance you
will find overfull boxes in your output (i.e., lines sticking out into the margin like this).
Enlarging the value of \tolerance means that TEX will also consider poorer
but still acceptable line breaks, instead of turning the problem over to
you for manual intervention. Sensible values are between 50 and 9999. Do �Careful with

TEX’s idea about
infinitely bad

not use 10000 or higher, as it allows TEX to produce arbitrarily bad lines
(like this one).
If you really need fully automated line breaking, it is better to set the length
parameter \emergencystretch to a positive value. If TEX cannot break a para-
graph without producing overfull boxes (due to the setting of \tolerance) and
\emergencystretch is positive, it will add this length as stretchable space to
every line, thereby accepting line-breaking solutions that have been rejected
before. You may get some underfull box messages because all the lines are now
set in a loose measure, but this result will still look better than a single horrible
line in the middle of an otherwise perfectly typeset paragraph.

LaTEX has two predefined commands influencing the above parameters:
\fussy , which is the default, and \sloppy , which allows for relatively bad lines.
The \sloppy command is automatically applied by LaTEX in some situations (e.g.,
when typesetting \marginpar arguments or p columns in a tabular environment)
where perfect line breaking is seldom possible due to the narrow measure.

Unjustified text

While the theory on producing high-quality justified text is well understood (even
though surprisingly few typesetting systems other than TEX use algorithms that
can produce high quality other than by chance), the same cannot be said for the
situation when unjustified text is being requested. This may sound strange at
first hearing. After all, why should it be difficult to break a paragraph into lines
of different length? The answer lies in the fact that we do not have quantifiable
quality measures that allow us to easily determine whether a certain breaking is
good or bad. In comparison to its work with justified text, TEX does a very poor job
when asked to produce unjustified paragraphs. Thus, to obtain the highest quality
we have to be prepared to help TEX far more often by adding explicit line breaks
in strategic places. A good introduction to the problems in this area is given in an
article by Paul Stiff [154].

The main type of unjustified text is the one in which lines are set flush left
but are unjustified at the right. For this arrangement LaTEX offers the environment
flushleft. It typesets all text in its scope “flush left” by adding very stretch-
able white space at the right of each line; that is, it sets the internal parameter
\rightskip to 0pt plus 1fil. This setting often produces very ragged-looking
paragraphs as it makes all lines equally good independent of the amount of text
they contain. In addition, hyphenation is essentially disabled because a hyphen

104 Basic Formatting Tools

adds to the “badness” of a line and, as there is nothing to counteract it, TEX’s
paragraph-breaking algorithm will normally choose line breaks that avoid them.

“The LATEX document preparation
system is a special version of
Donald Knuth’s TEX program.
TEX is a sophisticated program
designed to produce high-quality
typesetting, especially for
mathematical text.”

\begin{flushleft}
‘‘The \LaTeX{} document preparation system is a special
version of Donald Knuth’s \TeX{} program. \TeX{} is a
sophisticated program designed to produce high-quality
typesetting, especially for mathematical text.’’
\end{flushleft} 3-1-48

In summary, LaTEX’s flushleft environment is not particularly well suited to
continuous unjustified text, which should vary at the right-hand boundary only
to a certain extent and where appropriate should use hyphenation (see the next
section for alternatives). Nevertheless, it can be useful to place individual objects,
like a graphic, flush left to the margin, especially since this environment adds
space above and below itself in the same way as list environments do.

Another important restriction is the fact that the settings chosen by this en-
vironment have no universal effect, because some environments (e.g., minipage
or tabular) and commands (e.g., \parbox , \footnote , and \caption) restore
the alignment of paragraphs to full justification. That is, they set the \rightskip
length parameter to 0pt and thus cancel the stretchable space at the right line
endings. A way to automatically deal with this problem is provided by the pack-
age ragged2e (see next section).

Other ways of typesetting paragraphs are flush right and centered, with the
flushright and center environments, respectively. In these cases the line breaks
are usually indicated with the \\ command, whereas for ragged-right text (the
flushleft environment discussed above) you can let LaTEX do the line breaking
itself (if you are happy with the resulting quality).

The three environments discussed in this section work by changing declara-
tions that control how TEX typesets paragraphs. These declarations are also avail-
able as LaTEX commands, as shown in the following table of correspondence:

environment: center flushleft flushright
command: \centering \raggedright \raggedleft

The commands neither start a new paragraph nor add vertical space, unlike
the corresponding environments. Hence, the commands can be used inside other
environments and inside a \parbox, in particular, to control the alignment in
p columns of an array or tabular environment. Note, however, that if they are
used in the last column of a tabular or array environment, the \\ is no longer
available to denote the end of a row. Instead, the command \tabularnewline can
be used for this purpose (see also Section 5.2.1).

3.1 Phrases and paragraphs 105

3.1.12 ragged2e—Enhancing justification

The previous subsection discussed the deficiencies of LaTEX’s flushleft and
flushright environments. The package ragged2e written by Martin Schröder sets
out to provide alternatives that do not produce such extreme raggedness. This ven-
ture is not quite as simple as it sounds, because it is not enough to set \rightskip
to something like 0pt plus 2em. Notwithstanding the fact that this would result
in TEX trying hard to keep the line endings within the 2em boundary, there remains
a subtle problem: by default, the interword space is also stretchable for most fonts.
Thus, if \rightskip has only finite stretchability, TEX will distribute excess space
equally to all spaces. As a result, the interword spaces will have different width,
depending on the amount of material in the line. The solution is to redefine the
interword space so that it no longer can stretch or shrink by specifying a suitable
(font-dependent) value for \spaceskip . This internal TEX parameter, if nonzero,
represents the current interword space, overwriting the default that is defined by
the current font.

By default, the package does not modify the standard LaTEX commands and
environments discussed in the previous section, but instead defines its own using
the same names except that some letters are uppercased.1 The new environments
and commands are given in the following correspondence table:

environment: Center FlushLeft FlushRight
command: \Centering \RaggedRight \RaggedLeft

They differ from their counterparts of the previous section not only in the fact
that they try to produce less ragged output, but also in their attempt to provide
additional flexibility by easily letting you change most of their typesetting aspects.

As typing the mixed-case commands and environments is somewhat te-
Overloading the
original commands

dious, you can overload the original commands and environments, such as
\raggedright, with the new definitions by supplying the newcommands option
when loading the package.

The package offers a large number of parameters to define the exact behav-
ior of the new commands and environments (see Table 3.2 on the next page).
For \RaggedRight or FlushLeft the white space added at the right of each line
can be specified as \RaggedRightRightskip , the one at the left can be speci-
fied as \RaggedRightLeftskip , the paragraph indentation to use is available as
\RaggedRightParindent , and even the space added to fill the last line is avail-
able as \RaggedRightParfillskip . Similarly, the settings for \Centering and
\RaggedLeft can be altered; just replace RaggedRight in the parameter names
with either Centering or RaggedLeft.

To set a whole document unjustified, specify document as an option to Unjustified setting
as the defaultthe ragged2e package. For the purpose of justifying individual paragraphs the

1This is actually against standard naming conventions. In most packages mixed-case commands
indicate interface commands to be used by designers in class files or in the preamble, but not
commands to be used inside documents.

106 Basic Formatting Tools

\RaggedLeftParindent 0pt \RaggedLeftLeftskip 0pt plus 2em
\RaggedLeftRightskip 0pt \RaggedLeftParfillskip 0pt

\CenteringParindent 0pt \CenteringLeftskip 0pt plus 2em
\CenteringRightskip 0pt plus 2em \CenteringParfillskip 0pt

\RaggedRightParindent 0pt \RaggedRightLeftskip 0pt
\RaggedRightRightskip 0pt plus 2em \RaggedRightParfillskip 0pt plus 1fil

\JustifyingParindent 1 em \JustifyingParfillskip 0pt plus 1fil

Table 3.2: Parameters used by ragged2e

package offers the command \justifying and the environment justify. Both
can be customized using the length parameters \JustifyingParindent and
\JustifyingParfillskip .

Thus, to produce a document with a moderate amount of raggedness and
paragraphs indented by 12pt, you could use a setting like the one in the following
example (compare it to Example 3-1-48 on page 104).

“The LATEX document prepa-
ration system is a special version
of Donald Knuth’s TEX program.
TEX is a sophisticated program
designed to produce high-quality
typesetting, especially for mathe-
matical text.”

\usepackage[document]{ragged2e}
\setlength\RaggedRightRightskip{0pt plus 1cm}
\setlength\RaggedRightParindent{12pt}

‘‘The \LaTeX{} document preparation system is a special
version of Donald Knuth’s \TeX{} program. \TeX{} is a
sophisticated program designed to produce high-quality
typesetting, especially for mathematical text.’’ 3-1-49

In places with narrow measures (e.g., \marginpars, \parboxes, minipage en-
Unjustified settings
in narrow columns

vironments, or p-columns of tabular environments), the justified setting usually
produces inferior results. With the option raggedrightboxes, paragraphs in such
places are automatically typeset using \RaggedRight . If necessary, \justifying
can be used to force a justified paragraph in individual cases.

The use of em values in the defaults (see Table 3.2) means that special care is
The default values needed when loading the package, as the em is turned into a real dimension at this

point! The package should therefore be loaded after the body font and size have
been established—for example, after font packages have been loaded.

Instead of using the defaults listed in Table 3.2, one can instruct the
package to mimic the original LaTEX definitions by loading it with the option
originalparameters and then changing the parameter values as desired.

3.1.13 setspace—Changing interline spacing

The \baselineskip command is TEX’s parameter for defining the leading (normal
vertical distance) between consecutive baselines. Standard LaTEX defines a leading
approximately 20% larger than the design size of the font (see Section 7.9.1 on

3.1 Phrases and paragraphs 107

page 413). Because it is not recommended to change the setting of \baselineskip
directly, LaTEX2ε provides the \linespread declaration to allow for changing
\baselineskip at all sizes globally. After \linespread{1.5}\selectfont the
leading will increase immediately.1

The package setspace (by Geoffrey Tobin and others) provides commands
and environments for typesetting with variable spacing (primarily double and
one-and-a-half). Three commands—\singlespacing , \onehalfspacing , and
\doublespacing—are available for use in the preamble to set the overall spac-
ing for the document. Alternatively, a different spacing value can be defined by
placing a \setstretch command in the preamble. It takes the desired spacing
factor as a mandatory argument. In the absence of any of the above commands,
the default setting is single spacing.

To change the spacing inside a document three specific environments—
singlespace , onehalfspace , and doublespace—are provided. They set the spac-
ing to single, one-and-a-half, and double spacing, respectively. These environ-
ments cannot be nested.

3-1-50

In the beginning God created the heaven and the

earth. Now the earth was unformed and void, and

darkness was upon the face of the deep; and the

spirit of God hovered over the face of the waters.

\usepackage{setspace}

\begin{doublespace}
In the beginning God created the heaven
and the earth. Now the earth was unformed
and void, and darkness was upon the face
of the deep; and the spirit of God
hovered over the face of the waters.

\end{doublespace}

For any other spacing values the generic environment spacing should be
used. Its mandatory parameter is the value of \baselinestretch for the text
enclosed by the environment.

3-1-51

In the beginning God created the heaven and the

earth. Now the earth was unformed and void, and

darkness was upon the face of the deep; and the

spirit of God hovered over the face of the waters.

\usepackage{setspace}

\begin{spacing}{2.0}
In the beginning God created the heaven
and the earth. Now the earth was unformed
and void, and darkness was upon the face
of the deep; and the spirit of God
hovered over the face of the waters.

\end{spacing}

In the above example the coefficient “2.0” produces a larger leading than
the “double spacing” (doublespace environment) required for some publications.
With the spacing environment the leading is effectively increased twice—once
by \baselineskip (which LaTEX already sets to about 20% above the font size)
and a second time by setting \baselinestretch . “Double spacing” means that
the vertical distance between baselines is about twice as large as the font size.

1In contrast the obsolete LaTEX2.09 solution \renewcommand\baselinestretch{1.5} requires a
following font size changing command (e.g., \small , \Large) to make the new value take effect.

108 Basic Formatting Tools

spacing 10pt 11pt 12pt

one and one-half 1.25 1.21 1.24

double 1.67 1.62 1.66

Table 3.3: Effective \baselinestretch values for different font sizes

Since \baselinestretch refers to the ratio between the desired distance and the
\baselineskip , the values of \baselinestretch for different document base
font sizes (and at two different optical spacings) can be calculated and are pre-
sented in Table 3.3.

3.1.14 picinpar—Making rectangular holes

The package picinpar (created by Friedhelm Sowa based on earlier work by Alan
Hoenig) allows “windows” to be typeset inside paragraphs. The basic environment
is window. It takes one mandatory argument specified in contrast to LaTEX conven-
tions in square brackets, in the form of a comma-separated list of four elements.
These elements are the number of lines before the window starts; the alignment
of the window inside the paragraph (l for left, c for centered, and r for right);
the material shown in the window; and explanatory text about the contents in the
window (e.g., the caption).

In this case we center a word printed vertically
inside the paragraph.
understand that tables
included with the
ment.
ends, like here, and

H
e
l
l
o

It is not difficult to
can also be easily
tabwindow environ-
When a paragraph
the window is not yet

finished, then it just continues past the paragraph
boundary, right into the next one(s).

\usepackage{picinpar}

\begin{window}[1,c,%
\fbox{\shortstack{H\\e\\l\\l\\o}},]

In this case we center a word printed
vertically inside the paragraph. It is not
difficult to understand that tables can also
be easily included with the \texttt{tabwindow}
environment.\par When a paragraph ends, like
here, and the window is not yet finished,
then it just continues past the paragraph
boundary, right into the next one(s).

\end{window} 3-1-52

If you look at the above example you will notice that the second paragraph is
not properly indented. You can fix this defect by requesting an explicit indentation
using \par\indent , if necessary.

Centering a window as in the previous example works only if the remaining
text width on either side is still suitably wide (where “suitably” means larger than
one inch). Otherwise, the package will simply fill it with white space.

The package also provides two variant environments, figwindow and
tabwindow. They can format the explanatory text as a caption, by adding a cap-
tion number. You should, however, be careful when mixing such “nonfloating”

3.2 Footnotes, endnotes, and marginals 109

floats with standard figure or table environments, because the latter might get
deferred and this way mess up the numbering of floats.

The next example shows such an embedded figure—a map of Great Britain
placed inside a paragraph. Unfortunately, the caption formatting is more or less
hard-wired into the package; if you want to change it, you have to modify an
internal command named \@makewincaption .

3-1-53

Is this a dagger which I see before me, The
handle toward my hand? Come, let me clutch
thee. I have thee not, and yet I see thee still. Art

Figure 1: United Kingdom

thou not, fatal vision, sen-
sible To feeling as to sight?
or art thou but A dagger
of the mind, a false cre-
ation, Proceeding from the
heat-oppressed brain? I see
thee yet, in form as pal-
pable As this which now I
draw. Thou marshall’st me
the way that I was going;
And such an instrument I
was to use. Mine eyes are

made the fools o’ the other senses, Or else worth
all the rest; I see thee still, And on thy blade and
dudgeon gouts of blood, Which was not so before.
(Macbeth, Act II, Scene 1).

\usepackage{picinpar,graphicx}

\begin{figwindow}[3,l,%
\fbox{\includegraphics[width=30mm]{ukmap}},%

{United Kingdom}]
Is this a dagger which I see before me, The
handle toward my hand? Come, let me clutch
thee. I have thee not, and yet I see thee
still. Art thou not, fatal vision,
sensible To feeling as to sight? or art
thou but A dagger of the mind, a false
creation, Proceeding from the
heat-oppressed brain? I see thee yet, in
form as palpable As this which now I draw.
Thou marshall’st me the way that I was
going; And such an instrument I was to use.
Mine eyes are made the fools o’ the other
senses, Or else worth all the rest; I see
thee still, And on thy blade and dudgeon
gouts of blood, Which was not so before.
(\emph{Macbeth}, Act II, Scene 1).

\end{figwindow}

3.2 Footnotes, endnotes, and marginals

LaTEX has facilities to typeset “inserted” text, such as marginal notes, footnotes,
figures, and tables. The present section looks more closely at different kinds of
notes, while Chapter 6 describes floats in more detail.

We start by discussing the possibilities offered through standard LaTEX’s foot-
note commands and explain how (far) they can be customized. For two-column
documents, a special layout for footnotes is provided by the ftnright package,
which moves all footnotes to the bottom of the right column. This is followed by a
presentation of the footmisc package, which overcomes most of the limitations of
the standard commands and offers a wealth of additional features. The manyfoot
package (which can be combined with footmisc) extends the footnote support for
disciplines like linguistics by providing several independent footnote commands.

Support for endnotes is provided through the package endnotes, which al-
lows for mixing footnotes and endnotes and can also be used to provide chapter

110 Basic Formatting Tools

notes, as required by some publishers. The section concludes with a discussion of
marginal notes, which are already provided by standard LaTEX.

3.2.1 Using standard footnotes

A sharp distinction is made between footnotes in the main text and footnotes
inside a minipage environment. The former are numbered using the footnote
counter, while inside a minipage the \footnote command is redefined to use the
mpfootnote counter. Thus, the representation of the footnote mark is obtained by
the \thefootnote or the \thempfootnote command depending on the context.
By default, it typesets an Arabic number in text and a lowercase letter inside a
minipage environment. You can redefine these commands to get a different rep-
resentation by specifying, for example, footnote symbols, as shown in the next
example.

text text text∗ text text† text.

∗The first
†The second

\renewcommand\thefootnote
{\fnsymbol{footnote}}

text text text\footnote{The first}
text text\footnote{The second} text. 3-2-1

Footnotes produced with the \footnote command inside a minipage envi-
Peculiarities inside a

minipage
ronment use the mpfootnote counter and are typeset at the bottom of the parbox
produced by the minipage. However, if you use the \footnotemark command in
a minipage, it will produce a footnote mark in the same style and sequence as
the main text footnotes—that is, stepping the footnote counter and using the
\thefootnote command for the representation. This behavior allows you to pro-
duce a footnote inside your minipage that is typeset in sequence with the main
text footnotes at the bottom of the page: you place a \footnotemark inside the
minipage and the corresponding \footnotetext after it.

. . . main text . . .

Footnotes in a minipage are num-
bered using lowercase letters.a

This text references a footnote at the
bottom of the page.1 And anotherb

note.
aInside minipage
bInside again

1At bottom of page

\noindent\ldots{} main text \ldots
\begin{center}
\begin{minipage}{.7\linewidth}
Footnotes in a minipage are numbered using
lowercase letters.\footnote{Inside minipage}
\par This text references a footnote at the
bottom of the page.\footnotemark{}
And another\footnote{Inside again} note.

\end{minipage}\footnotetext{At bottom of page}
\end{center}
\ldots{} main text \ldots 3-2-2

As the previous example shows, if you need to reference a minipage footnote
several times, you cannot use \footnotemark because it refers to footnotes type-

3.2 Footnotes, endnotes, and marginals 111

set at the bottom of the page. You can, however, load the package footmisc and
then use \mpfootnotemark in place of \footnotemark . Just like \footnotemark ,
the \mpfootnotemark command first increments its counter and then displays its
value. Thus, to refer to the previous value you typically have to decrement it first,
as shown in the next example.

3-2-3

Main text . . .

Footnotes in a minipage are num-
bered using lowercase letters.a

This text references the previous
footnote.a And anotherb note.

aInside minipage
bInside as well

\usepackage{footmisc}

\noindent Main text \ldots \begin{center}
\begin{minipage}{.7\linewidth}
Footnotes in a minipage are numbered using
lowercase letters.\footnote{Inside minipage}
\par This text references the previous
footnote.\addtocounter{mpfootnote}{-1}%

\mpfootnotemark{}
And another\footnote{Inside as well} note.
\end{minipage}

\end{center} \ldots{} main text \ldots

LaTEX does not allow you to use a \footnote inside another \footnote
command, as is common in some disciplines. You can, however, use the
\footnotemark command inside the first footnote and then put the text of the
footnote’s footnote as the argument of a \footnotetext command. For other
special footnote requirements consider using the manyfoot package (described
below).

3-2-4

Some1 text and some more text.

1A sample2 footnote.
2A subfootnote.

Some\footnote{A sample\footnotemark{}
footnote.}\footnotetext{A subfootnote.}
text and some more text.

What if you want to reference a given footnote? You can use LaTEX’s normal
\label and \ref mechanism, although you may want to define your own com-
mand to typeset the reference in a special way. For instance:

3-2-5

This is some text.1

. . . as shown in footnote (1) on page 6,. . .

1Text inside referenced footnote.

\newcommand\fnref[1]{\unskip~(\ref{#1})}

This is some text.\footnote{Text inside
referenced footnote\label{fn:myfoot}.}\par
\ldots as shown in footnote\fnref{fn:myfoot}
on page~\pageref{fn:myfoot},\ldots

Standard LaTEX does not allow you to construct footnotes inside tabular mate-
rial. Section 5.8 describes several ways of tackling that problem.

112 Basic Formatting Tools

3.2.2 Customizing standard footnotes

Footnotes in LaTEX are generally simple to use and provide a quite powerful mech-
anism to typeset material at the bottom of a page.1 This material can consist of
several paragraphs and can include lists, inline or display mathematics, tabular
material, and so on.

LaTEX offers several parameters to customize footnotes. They are shown
schematically in Figure 3.1 on the next page and are described below:

\footnotesize The font size used inside footnotes (see also Table 7.1 on
page 342).

\footnotesep The height of a strut placed at the beginning of every footnote.
If it is greater than the \baselineskip used for \footnotesize , then addi-
tional vertical space will be inserted above each footnote. See Appendix A.2.3
for more information about struts.

\skip\footins A low-level TEX length parameter that defines the space between
the main text and the start of the footnotes. You can change its value with the
\setlength or \addtolength command by putting \skip\footins into the
first argument:

\addtolength{\skip\footins}{10mm plus 2mm}

\footnoterule A macro to draw the rule separating footnotes from the main
text that is executed right after the vertical space of \skip\footins. It should
take zero vertical space; that is, it should use a negative skip to compensate
for any positive space it occupies. The default definition is equivalent to the
following:

\renewcommand\footnoterule{\vspace*{-3pt}%
\hrule width 2in height 0.4pt \vspace*{2.6pt}}

Note that TEX’s \hrule command and not LaTEX’s \rule command is used. Be-
cause the latter starts a paragraph, it would be difficult to calculate the spaces
needed to achieve a net effect of zero height. For this reason producing a
fancier “rule” is perhaps best done by using a zero-sized picture environment
to position the rule object without actually adding vertical space.

In the report and book classes, footnotes are numbered inside chapters;
in article, footnotes are numbered sequentially throughout the document. You
can change the latter default by using the \@addtoreset command (see Ap-
pendix A.1.4). However, do not try to number your footnotes within pages with

1An interesting and complete discussion of this subject appeared in the French TEX Users’ Group
magazine Cahiers GUTenberg [10,133].

3.2 Footnotes, endnotes, and marginals 113

Main body text

\skip\footins\footnoterule
\footnotesep

1

\footnotesep

2

\@makefntext

\@makefntext

produced by \@makefnmark

produced by \@makefnmark

Figure 3.1: Schematic layout of footnotes

the help of this mechanism. LaTEX is looking ahead while producing the final pages,
so your footnotes would most certainly be numbered incorrectly. To number foot-
notes on a per-page basis, use the footmisc or perpage package (described below).

The command \@makefnmark is normally used to generate the footnote mark.
One would expect this command to take one argument (the current footnote num-
ber), but in fact it takes none. Instead, it uses the command \@thefnmark to indi-
rectly refer to that number. The reason is that depending on the position (inside
or outside of a minipage) a different counter needs to be accessed. The definition,
which by default produces a superscript mark, looks roughly as follows:

\renewcommand\@makefnmark
{\mbox{\normalfont\@thefnmark}}

The \footnote command executes \@makefntext inside a \parbox , with a
width of \columnwidth . The default version looks something like:

\newcommand\@makefntext[1]
{\noindent\makebox[1.8em][r]{\@makefnmark}#1}

This will place the footnote mark right aligned into a box of width 1.8em directly
followed by the footnote text. Note that it reuses the \@makefnmarkmacro, so any
change to it will, by default, modify the display of the mark in both places. If you
want the text set flush left with the number placed into the margin, then you could
use the redefinition shown in the next example. Here we do not use \@makefnmark
to format the mark, but rather access the number via \@thefnmark . As a result,

114 Basic Formatting Tools

the mark is placed onto the baseline instead of being raised. Thus, the marks in
the text and at the bottom are formatted differently.

text text text1 text text2 text.

1. The first
2. The second

\makeatletter
\renewcommand\@makefntext[1]%

{\noindent\makebox[0pt][r]{\@thefnmark.\,}#1}
\makeatother

text text text\footnote{The first}
text text\footnote{The second} text. 3-2-6

3.2.3 ftnright—Right footnotes in a two-column environment

It is sometimes desirable to group all footnotes in a two-column document at the
bottom of the right column. This can be achieved by specifying the ftnright pack-
age written by Frank Mittelbach. The effect of this package is shown in Figure 3.2
on the facing page—the first page of the original documentation (including its
spelling errors) of the ftnright implementation. It is clearly shown how the vari-
ous footnotes collect in the lower part of the right-hand column.

The main idea for the ftnright package is to assemble the footnotes of all
columns on a page and place them all together at the bottom of the right column.
The layout produced allows for enough space between footnotes and text and, in
addition, sets the footnotes in smaller type.1 Furthermore, the footnote markers
are placed at the baseline instead of raising them as superscripts.2

This package can be used together with most other class files for LaTEX. Of
course, the ftnright package will take effect only with a document using a two-
column layout specified with the twocolumn option on the \documentclass com-
mand. In most cases, it is best to use ftnright as the very last package to make
sure that its settings are not overwritten by other options.

3.2.4 footmisc—Various footnotes styles

Since standard LaTEX offers only one type of footnotes and only limited (and
somewhat low-level) support for customization, several people developed small
packages that provided features otherwise not available. Many of these earlier ef-
forts were captured by Robin Fairbairns in his footmisc package, which supports,
among other things, page-wise numbering of footnotes and footnotes formatted
as a single paragraph at the bottom of the page. In this section we describe the fea-
tures provided by this package, showing which packages it supersedes whenever
applicable.

1Some journals use the same size for footnotes and text, which sometimes makes it difficult to
distinguish footnotes from the main text.

2Of course, this is done only for the mark preceding the footnote text and not the one used
within the main text, where a raised number or symbol set in smaller type will help to keep the flow
of thoughts uninterrupted.

3.2 Footnotes, endnotes, and marginals 115

Footnotes in a multi-column layout�

Frank Mittelbach

August 10, 1991

1 Introduction

The placement of footnotes in a multi-column layout
always bothered me. The approach taken by LATEX
(i.e., placing the footnotes separately under each column)
might be all right if nearly no footnotes are present. But
it looks clumsy when both columns contain footnotes,
especially when they occupy different amounts of space.

In the multi-column style option [5], I used page-wide
footnotes at the bottom of the page, but again the result
doesn’t look very pleasant since short footnotes produce
undesired gaps of white space. Of course, the main goal
of this style option was a balancing algorithm for columns
which would allow switching between different numbers
of columns on the same page. With this feature, the
natural place for footnotes seems to be the bottom of the
page� but looking at some of the results it seems best to
avoid footnotes in such a layout entirely.

Another possibility is to turn footnotes into endnotes,
i.e., printing them at the end of every chapter or the end
of the entire document. But I assume everyone who has
ever read a book using such a layout will agree with me,
that it is a pain to search back and forth, so that the reader
is tempted to ignore the endnotes entirely.

When I wrote the article about “Future extensions of
TEX” [6] I was again dissatisfied with the outcome of
the footnotes, and since this article should show certain
aspects of high quality typesetting, I decided to give the
footnote problem a try and modified the LATEX output
routine for this purpose. The layout I used was inspired
by the yearbook of the Gutenberg Gesellschaft Mainz
[1]. Later on, I found that it is also recommended by Jan
White [9]. On the layout of footnotes I also consulted
books by Jan Tschichold [8] and Manfred Simoneit [7],
books, I would recommend to everyone being able to
read German texts.

1.1 Description of the new layout

The result of this effort is presented in this paper and the
reader can judge for himself whether it was successful
or not.� The main idea for this layout is to assemble the
footnotes of all columns on a page and place them all

together at the bottom of the right column. Allowing for
enough space between footnotes and text, and in addition,
setting the footnotes in smaller type� I decided that one
could omit the footnote separator rule which is used in
most publications prepared with TEX.� Furthermore, I
decided to place the footnote markers� at the baseline
instead of raising them as superscripts.�

All in all, I think this generates a neat layout, and
surprisingly enough, the necessary changes to the LATEX
output routine are nevertheless astonishingly simple.

1.2 The use of the style option

This style option might be used together with any other
style option for LATEX which does not change the three
internals changed by ftnright.sty.� In most cases,
it is best to use this style option as the very last option in
the \documentstyle command to make sure that its
settings are not overwritten by other options.�

�� The LATEX style option ftnright which is described in this ar-
ticle has the version number v1.0d dated 92/06/19. The documentation
was last revised on 92/06/19.

�� You can not use column footnotes at the bottom, since the number
of columns can differ on one page.

�� Please note, that this option only changed the placement of foot-
notes. Since this article also makes use of the doc option [4], that
assigns tiny numbers to code lines sprincled throughout the text, the
resulting design is not perfect.

�� The standard layout in TUGboat uses the same size for foot-
notes and text, giving the footnotes, in my opinion, much too much
prominence.

�� People who prefer the rule can add it by redefining the command
\footnoterule [2, p. 156]. Please, note, that this command should
occupy no space, so that a negative space should be used to compensate
for the width of the rule used.

�� The tiny numbers or symbols, e.g., the ‘5’ in front of this footnote.

�� Of course, this is only done for the mark preceeding the footnote
text and not the one used within the main text where a raised number
or symbol set in smaller type will help to keep the flow of thoughts,
uninterrupted.

�� These are the macros \@startcolumn, \@makecol and
\@outputdblcol as we will see below. Of course, the option will
take only effect with a document style using a twocolumn layout (like
ltugboat) or when the user additionally specifies twocolumn as a
document style option in the \documentstyle command.

�� The ltugboat option (which is currently set up as a style option
instead of a document style option which it actually is) will overwrite

1

Figure 3.2: The placement of text and footnotes with the ftnright package

The interface for footmisc is quite simple: nearly everything is customized
by specifying options when the package is loaded, though in some cases further
control is possible via parameters.

In the article class, footnotes are numbered sequentially throughout the doc-
ument; in report and book, footnotes are numbered inside chapters. Sometimes,

116 Basic Formatting Tools

however, it is more appropriate to number footnotes on a per-page basis. This can
be achieved by loading footmisc with the option perpage. The package footnpag
(by Joachim Schrod) provides the same feature with a somewhat different imple-
mentation as a stand-alone package. A generalized implementation for resetting
counters on a per-page basis is provided by the package perpage (see Section 3.2.5
on page 120). Since TEX’s page-building mechanism is asynchronous, it is always
necessary to process the document at least twice to get the numbering correct.
Fortunately, the package warns you via “Rerun to get cross-references right” if the
footnote numbers are incorrect. The package stores information between runs in
the .aux file, so after a lot of editing this information is sometimes not even close
to reality. In such a case deleting the .aux file helps the package to find the correct
numbering faster.1

Some text∗ with a
footnote. More† text.

∗First.
†Second.

Even more text.∗ And
even† more text. Some

∗Third.
†Fourth.

\usepackage[perpage,symbol]{footmisc}

Some text\footnote{First.} with a footnote.
More\footnote{Second.} text. Even more
text.\footnote{Third.} And even\footnote
{Fourth.} more text. Some final text. 3-2-7

For this special occasion our example shows two pages side by side, so you
can observe the effects of the perpage option. The example also shows the effect

Counter too large
errors

of another option: symbol will use footnote symbols instead of numbers. As only
a limited number of such symbols are available, you can use this option only
if there are few footnotes in total or if footnote numbers restart on each page.
There are six different footnote symbols and, by duplicating some, standard LaTEX
supports nine footnotes. By triplicating some of them, footmisc supports up to
16 footnotes (per page or in total). If this number is exceeded you will get a LaTEX
error message.

In particular with the perpage option, this behavior can be a nuisance because
the error could be spurious, happening only while the package is still trying to
determine which footnotes belong on which page. To avoid this problem, you
can use the variant option symbol* , which also produces footnote symbols but
numbers footnotes for which there are no symbols left with Arabic numerals. In
that case you will get a warning at the end of the run that some footnotes were
out of range and detailed information is placed in the transcript file.

\setfnsymbol{name} \DefineFNsymbols*{name}[type]{symbol-list}

If the symbol or symbol* option is selected, a default sequence of footnote sym-
bols defined by Leslie Lamport is used. Other authorities suggest different se-

1In fact, during the preparation of this chapter we managed to confuse footmisc (by changing the
\textheight in an example) so much that it was unable to find the correct numbering thereafter
and kept asking for a rerun forever. Removing the .aux file resolved the problem.

3.2 Footnotes, endnotes, and marginals 117

lamport ∗ † ‡ § ¶ ‖ ∗∗ †† ‡‡ §§ ¶¶ ∗∗∗ † † † ‡ ‡ ‡ §§§ ¶¶¶
bringhurst ∗ † ‡ § ‖ ¶
chicago ∗ † ‡ § ‖ #
wiley ∗ ∗∗ † ‡ § ¶ ‖

Table 3.4: Footnote symbol lists predefined by footmisc

quences, so footmisc offers three other sequences to chose from using the dec-
laration \setfnsymbol (see Table 3.4).

In addition, you can define your own sequence using the \DefineFNsymbols
declaration in the preamble. It takes two mandatory arguments: the name to ac-
cess the list later via \setfnsymbol and the symbol-list. From this list symbols are
taken one after another (with spaces ignored). If a symbol is built from more than
one glyph, it has to be surrounded by braces. If the starred form of the declaration
is used, LaTEX issues an error message if it runs out of symbols. Without it, you will
get Arabic numerals and a warning at the end of the LaTEX run.

Due to an unfortunate design choice, footnote symbols (as well as some other
text symbols) were originally added to the math fonts of TEX, rather than to the
text fonts, with the result that they did not change when the text font was mod-
ified. In LaTEX this flaw was partly corrected by adding these symbols to the text
symbol encoding (TS1; see Section 7.5.4). However, for compatibility reasons the
footnote symbols are still taken by default from the math fonts, even though this
choice is not appropriate if one has changed the text font from Computer Modern
to some other typeface. By using the optional type argument with the value text,
you can tell footmisc that your list consists of text symbols. Note that all prede-
fined symbol lists consist of math symbols and may need redeclaring if used with
fonts other than Computer Modern.

3-2-8

Some text* with a footnote. More** text.
Even more text.*** And even**** more text.
Some more text to finish up.

*First.
**Second.

***Third.
****Fourth.

\usepackage[symbol]{footmisc}
\DefineFNsymbols{stars}[text]{* {**} {***} {****}}
\setfnsymbol{stars}

Some text\footnote{First.} with a footnote.
More\footnote{Second.} text. Even more
text.\footnote{Third.} And even\footnote{Fourth.}
more text. Some more text to finish up.

If you have many short footnotes then their default placement at the bottom
of the page, stacked on top of each other, is perhaps not completely satisfactory.
A typical example would be critical editions, which contain many short footnotes.1

The layout of the footnotes can be changed using the para option, which formats

1See, for example, the ledmac package [171] for the kinds of footnotes and endnotes that are
common in critical editions. This package is a reimplementation of the EDMAC system [112] for LaTEX
and was recently made available by Peter Wilson. See also the bigfoot package by David Kastrup.

118 Basic Formatting Tools

them into a single paragraph. If this option is chosen then footnotes never split
across pages. The code for this option is based on work by Chris Rowley and
Dominik Wujastyk (available as the package fnpara), which in turn was inspired
by an example in The TEXbook by Donald Knuth.

Some text with a footnote.1 More text.2 Even
more text.3 Some final text.

1 A first. 2 A second. 3 A third.

\usepackage[para]{footmisc}

Some text with a footnote.\footnote{A first.}
More text.\footnote{A second.} Even more
text.\footnote{A third.} Some final text. 3-2-9

Another way to deal with footnotes is given by the option side. In this case
footnotes are placed into the margin, if possible on the same line where they
are referenced. What happens internally is that special \marginpar commands
are used to place the footnote text, so everything said in Section 3.2.8 about the
\marginpar commands is applicable. This option cannot be used together with
the para option, described earlier, but can be combined with most others.

Some text with a footnote.1 A lot1A first.

of additional text here with a footnote.22A second.

Even more text and then another foot-
note.3 Some more text.4 A lot of ad-3A third.

4A fourth. ditional lines of text here to fill up the
space on the left.

\usepackage[side,flushmargin]{footmisc}

Some text with a footnote.\footnote{A first.}
A lot of additional text here with a
footnote.\footnote{A second.}
Even more text and then another
footnote.\footnote{A third.}
Some more text.\footnote{A fourth.} A lot of
additional lines of text here to fill up the
space on the left. 3-2-10

The option flushmargin used in the previous example makes the footnote
text start at the left margin with the footnote marker protruding into the margin;
by default, the footnote text is indented. For obvious reasons this option is incom-
patible with the para option. A variant form is called marginal. If this option is
used then the marker sticks even farther into the margin, as shown in the example
below.

Some text1 with a footnote. More text.2 Even
more text.3 Some final text.

1 A first.
2 A second.
3 A third.

\usepackage[marginal]{footmisc}

Some text\footnote{A first.} with a
footnote. More text.\footnote{A second.}
Even more text.\footnote{A third.} Some
final text. 3-2-11

Instead of using one of the above options, the position of the footnote marker
can be directly controlled using the parameter \footnotemargin . If set to a neg-
ative value the marker is positioned in the margin. A value of 0pt is equivalent
to using the option flushmargin. A positive value means that the footnote text

3.2 Footnotes, endnotes, and marginals 119

is indented by this amount and the marker is placed flush right in the space pro-
duced by the indentation.

3-2-12

Some text1 with a footnote. More text.2 Even
more text.3 Some final text.

1A first.
2A second.
3A third.

\usepackage{footmisc}
\setlength\footnotemargin{10pt}

Some text\footnote{A first.} with a
footnote. More text.\footnote{A second.}
Even more text.\footnote{A third.} Some
final text.

By default, the footnote text is justified but this does not always give satis-
factory results, especially with the options para and side. In case of the para
option nothing can be done, but for other layouts you can switch to ragged-
right typesetting by using the option ragged. The next example does not spec-
ify flushmargin, so we get an indentation of width \footnotemargin—compare
this to Example 3-2-10 on the preceding page.

3-2-13

Some text1 with a footnote1In the margin
ragged right often
looks better.

A lot of additional text here to
fill up the space in the example.
A lot of additional text here to
fill up the space in the example.

\usepackage[side,ragged]{footmisc}

Some text\footnote{In the margin ragged
right often looks better.} with a footnote
A lot of additional text here to fill
up the space in the example. A lot of
additional text here to fill up the space
in the example.

The two options norule and splitrule (courtesy of Donald Arseneau) mod-
ify the rule normally placed between text and footnotes. If norule is speci-
fied, then the separation rule will be suppressed. As compensation the value of
\skip\footins is slightly enlarged. If a footnote does not fit onto the current
page it will be split and continued on the next page, unless the para option
is used (as it does not support split footnotes). By default, the rule separating
normal and split footnotes from preceding text is the same. If you specify the
option splitrule, however, it becomes customizable: the rule above split foot-
notes will run across the whole column while the one above normal footnotes
will retain the default definition given by \footnoterule . More precisely, this
option will introduce the commands \mpfootnoterule (for use in minipages),
\pagefootnoterule (for use on regular pages), and \splitfootnoterule (for
use on pages starting with a split footnote). By modifying their definitions, similar
to the example given earlier for the \footnoterule command, you can customize
the layout according to your needs.

3-2-14

Some text with a footnote.1 More text.2 Even
more text.3 Some final text.

1 A first. 2 A second. 3 A third.

\usepackage[norule,para]{footmisc}

Some text with a footnote.\footnote{A first.}
More text.\footnote{A second.} Even more
text.\footnote{A third.} Some final text.

120 Basic Formatting Tools

In classes such as article or report in which \raggedbottom is in effect, so
that columns are allowed to be of different heights, the footnotes are attached at
a distance of \skip\footins from the column text. If you prefer them aligned at
the bottom, so that any excess space is put between the text and the footnotes,
specify the option bottom. In classes for which \flushbottom is in force, such as
book, this option does nothing.

In some documents, e.g., literary analysis, several footnotes may appear at a
single point. Unfortunately, LaTEX’s standard footnote commands are not able to
handle this situation correctly: the footnote markers are simply clustered together
so that you cannot tell whether you are to look for the footnotes 1 and 2, or for
the footnote with the number 12.

Some text12 with two footnotes. Even
more text.3

1 A first. 2 A second. 3 A third.

\usepackage[para]{footmisc}

Some text\footnote{A first.}\footnote{A second.} with
two footnotes. Even more text.\footnote{A third.} 3-2-15

This problem will be resolved by specifying the option multiple, which en-
sures that footnotes in a sequence will display their markers separated by com-
mas. The separator can be changed to something else, such as a small space, by
changing the command \multfootsep .

Some text1,2 with two footnotes. Even
more text.3

1 A first. 2 A second. 3 A third.

\usepackage[multiple,para]{footmisc}

Some text\footnote{A first.}\footnote{A second.} with
two footnotes. Even more text.\footnote{A third.} 3-2-16

The footmisc package deals with one other potential problem: if you put a
footnote into a sectional unit, then it might appear in the table of contents or
the running header, causing havoc. Of course, you could prevent this dilemma
(manually) by using the optional argument of the heading command; alternatively,
you could specify the option stable, which prevents footnotes from appearing in
such places.

3.2.5 perpage—Resetting counters on a “per-page” basis

As mentioned earlier, the ability to reset arbitrary counters on a per-page basis is
implemented in the small package perpage written by David Kastrup.

\MakePerPage[start]{counter}

The declaration \MakePerPage defines counter to be reset on every page, option-
ally requesting that its initial starting value be start (default 1). For demonstration

3.2 Footnotes, endnotes, and marginals 121

we repeat Example 3-2-7 on page 116 but start each footnote marker sequence
with the second symbol (i.e., “†” instead of “*”).

3-2-17

Some text† with a
footnote. More‡ text.

†First.
‡Second.

Even more text.† And
even‡ more text. Some

†Third.
‡Fourth.

\usepackage[symbol]{footmisc}
\usepackage{perpage}
\MakePerPage[2]{footnote}

Some text\footnote{First.} with a footnote.
More\footnote{Second.} text. Even more
text.\footnote{Third.} And even\footnote
{Fourth.} more text. Some final text.

The package synchronizes the numbering via the .aux file of the document,
thus requiring at least two runs to get the numbering correct. In addition, you may
get spurious “Counter too large” error messages on the first run if \fnsymbol or
\alph is used for numbering (see the discussion of the symbol* option for the
footmisc package on page 116).

Among LaTEX’s standard counters probably only footnote can be sensibly
modified in this way. Nevertheless, one can easily imagine applications that pro-
vide, say, numbered marginal notes, which could be defined as follows:

\newcounter{mnote}
\newcommand\mnote[1]{{\refstepcounter{mnote}%
\marginpar[\itshape\small\raggedleft\themnote.\ #1]%

{\itshape\small\raggedright\themnote.\ #1}}}
\usepackage{perpage} \MakePerPage{mnote}

We step the new counter mnote outside the \marginpar so that it is executed
only once;1 we also need to limit the scope of the current redefinition of \label
(through \refstepcounter) so we put braces around the whole definition. Notes
on left-hand pages should be right aligned, so we use the optional argument of
\marginpar to provide different formatting for this case.

3-2-18

Some text with a1. First.
footnote. More1 text.
Even more text. And2. Third!

1Second as footnote.

even more text. Some 1. Fourth.
final text.2

2Fifth!

% code as above

Some text\mnote{First.} with a
footnote. More\footnote{Second
as footnote.} text. Even more
text.\mnote{Third!} And even
more\mnote {Fourth.} text. Some
final text.\footnote{Fifth!}

Another application for the package is given in Example 3-2-24 on page 125,
where several independent footnote streams are all numbered on a per-page basis.

1If placed in both arguments of \marginpar it would be executed twice. It would work if placed
in the optional argument only, but then we would make use of an implementation detail (that the
optional argument is evaluated first) that may change.

122 Basic Formatting Tools

3.2.6 manyfoot—Independent footnotes

Most documents have only a few footnotes, if any. For them LaTEX’s standard com-
mands plus the enhancements offered by footmisc are usually sufficient. However,
certain applications, such as critical editions, require several independently num-
bered footnote streams. For these situations the package manyfoot by Alexander
Rozhenko can provide valuable help.1

\DeclareNewFootnote[fn-style]{suffix}[enum-style]

This declaration can be used to introduce a new footnote level. In its simplest
form you merely specify a suffix such as “B”. This allocates a new counter
footnote〈suffix〉 that is used to automatically number the footnotes on the new
level. The default is to use Arabic numerals; by providing the optional argument
enum-style, some other counter style (e.g., roman or alph) can be selected.

The optional fn-style argument defines the general footnote style for the new
level; the default is plain. If the package was loaded with the para or para*
option, then para can also be selected as the footnote style.

The declaration will then automatically define six commands for you. The first
three are described here:

\footnote〈suffix〉[number]{text} Same as \footnote but for the new level.
Steps the footnote〈suffix〉 counter unless the optional number argument is
given. Generates footnote markers and puts text at the bottom of the page.

\footnotemark〈suffix〉[number] Same as \footnotemark but for the new level.
Steps the corresponding counter (if no optional argument is used) and prints
a footnote marker corresponding to its value.

\footnotetext〈suffix〉[number]{text} Same as \footnotetext but for the
new level. Puts text at the bottom of the page using the current value of
footnote〈suffix〉 or the optional argument to generate a footnote marker in
front of it.

In all three cases the style of the markers depends on the chosen enum-style.
The remaining three commands defined by \DeclareNewFootnote for

use in the document are \Footnote〈suffix〉 , \Footnotemark〈suffix〉 , and
\Footnotetext〈suffix〉 (i.e., same names as above but starting with an upper-
case F). The important difference to the previous set is the following: instead of
the optional number argument, they require a mandatory marker argument allow-
ing you to specify arbitrary markers if desired. Some examples are given below.

The layout of the footnotes can be influenced by loading the footmisc package
in addition to manyfoot, except that the para option of footmisc cannot be used.
In the next example we use the standard footnote layout for top-level footnotes
and the run-in layout (option para) for the second level. Thus, if all footnote
levels should produce run-in footnotes, the solution is to avoid top-level footnotes

1A more comprehensive package, bigfoot, is currently being developed by David Kastrup.

3.2 Footnotes, endnotes, and marginals 123

completely (e.g., \footnote) and provide all necessary levels through manyfoot.
Note how footmisc’s multiple option properly acts on all footnotes.

3-2-19

Some text1,a with footnotes. Even
more text.b Some text2,* with footnotes.
Even more text.c

1A first.
2Another main note.

aB-level. bA second. *A manual marker.
cAnother B note.

\usepackage[multiple]{footmisc}
\usepackage[para]{manyfoot}
\DeclareNewFootnote[para]{B}[alph]

Some text\footnote{A first.}\footnoteB{B-level.}
with footnotes. Even more text.\footnoteB{A second.}
Some text\footnote{Another main note.}%
\FootnoteB{*}{A manual marker.} with footnotes.
Even more text.\footnoteB{Another B note.}

In the following example the top-level footnotes are moved into the margin by
loading footmisc with a different set of options. This time manyfoot is loaded with
the option para* , which differs from the para option used previously in that it
suppresses any indentation for the run-in footnote block. In addition, the second-
level notes are now numbered with Roman numerals. For comparison the example
typesets the same input text as Example 3-2-19 but it uses a different measure, as
we have to show marginal notes now.

3-2-20

Some text1,i with footnotes.1A first.

Even more text.ii Some text2,* with2Another
main note. footnotes. Even more text.iii

iB-level. iiA second. *A manual marker.
iiiAnother B note.

\usepackage[side,flushmargin,ragged,multiple]
{footmisc}

\usepackage[para*]{manyfoot}
\DeclareNewFootnote[para]{B}[roman]

Some text\footnote{A first.}\footnoteB{B-level.}
with footnotes. Even more text.\footnoteB{A
second.} Some text\footnote{Another main note.}%
\FootnoteB{*}{A manual marker.} with footnotes.
Even more text.\footnoteB{Another B note.}

The use of run-in footnotes, with either the para or the para* option, is likely
to produce one particular problem: very long footnotes near a page break will
not be split. To resolve this problem the manyfoot package offers a (semi)manual
solution: at the point where you wish to split your note you place a \SplitNote
command and end the footnote. You then place the remaining text of the footnote
one paragraph farther down in the document in a \Footnotetext〈suffix〉 using
an empty marker argument.

3-2-21

Some1 text with two
footnotes.i More text.ii

Even more text.

1A first.

iA second. iiThis is a
very very long footnote that

Some text here and2

even more there. Some
text for this block to fill
the page.

2Another first.

is continued here.

\usepackage[para]{manyfoot}
\DeclareNewFootnote[para]{B}[roman]

Some\footnote{A first.} text with two
footnotes.\footnoteB{A second.} More
text.\footnoteB{This is a very very long
footnote that\SplitNote} Even more text.

Some\FootnotetextB{}{is continued here.}
text here and\footnote{Another first.}
even more there. \sample % as elsewhere

124 Basic Formatting Tools

If both parts of the footnote fall onto the same page after reformatting the
document, the footnote parts get correctly reassembled, as we prove in the next
example, which uses the same example text but a different measure. However, if
the reformatting requires breaking the footnote in a different place, then further
manual intervention is unavoidable. Thus, such work is best left until the last
stage of production.

Some1 text with two footnotes.i More text.ii Even
more text.

Some text here and2 even more there. Some text for
this block to fill the page.

1A first.
2Another first.

iA second. iiThis is a very very long footnote that is continued
here.

\usepackage[para]{manyfoot}
\DeclareNewFootnote[para]{B}[roman]

Some\footnote{A first.} text with two
footnotes.\footnoteB{A second.} More
text.\footnoteB{This is a very very long
footnote that\SplitNote} Even more text.

Some\FootnotetextB{}{is continued here.}
text here and\footnote{Another first.}
even more there. \sample % as elsewhere 3-2-22

The vertical separation between a footnote block and the previous one is spec-
ified by \skip\footins〈suffix〉 . By default, it is equal to \skip\footins (i.e., the
separation between main text and footnotes). Initially the extra blocks are only
separated by such spaces, but if the option ruled is included a \footnoterule is
used as well. In fact, arbitrary material can be placed in that position by redefining
the command \extrafootnoterule—the only requirement being that the typeset
result from that command does not take up any additional vertical space (see the
discussion of \footnoterule on page 112 for further details). It is even possi-
ble to use different rules for different blocks of footnotes; consult the package
documentation for details.

Some text1,∗ with a footnote. Even more
text.A Some text† with a footnote.B Some
more text for the example.

1 A first.

∗ A second.
† A sample.

A A third.
B Another sample.

\usepackage[marginal,multiple]{footmisc}
\usepackage[ruled]{manyfoot}
\DeclareNewFootnote{B}[fnsymbol]
\DeclareNewFootnote{C}[Alph]
\setlength{\skip\footinsB}{5pt minus 1pt}
\setlength{\skip\footinsC}{5pt minus 1pt}

Some text\footnote{A first.}\footnoteB{A second.}
with a footnote. Even more text.\footnoteC{A third.}
Some text\footnoteB{A sample.} with a
footnote.\footnoteC{Another sample.} Some more
text for the example. 3-2-23

The previous example deployed two additional enum-styles, Alph and
Number the

footnotes per page
fnsymbol. However, as only a few footnote symbols are available in both styles,
that choice is most likely not a good one, unless we ensure that these footnote
streams are numbered on a per-page basis. The perpage option of footmisc will
not help here, as it applies to only the top-level footnotes. We can achieve the

3.2 Footnotes, endnotes, and marginals 125

desired effect either by using \MakePerPage from the perpage package on the
counters footnoteB and footnoteC (as done below), or by using the perpage
option of manyfoot (which calls on the perpage package to do the job, which will
number all new footnote levels defined on a per-page basis). Note that the top-level
footnotes are still numbered sequentially the way the example was set up.

3-2-24

Some text1 with
a footnote. Even
more∗,A text. Some

1A first.

∗Second.

AThird.

textA with a foot-
note here.B Some
more text. And2,∗ a

2Again.

∗A last.

AA sample.
BAnother sample.

\usepackage[multiple]{footmisc}
\usepackage{manyfoot,perpage}
\DeclareNewFootnote{B}[fnsymbol]
\DeclareNewFootnote{C}[Alph]
\MakePerPage{footnoteB}\MakePerPage{footnoteC}

Some text\footnote{A first.} with a footnote.
Even more\footnoteB{Second.}\footnoteC{Third.}
text. Some text\footnoteC{A sample.} with a
footnote here.\footnoteC{Another sample.} Some
more text. And\footnote{Again.}\footnoteB{A
last.} a last note.

3.2.7 endnotes—An alternative to footnotes

Scholarly works usually group notes at the end of each chapter or at the end of
the document. Such notes are called endnotes. Endnotes are not supported in
standard LaTEX, but they can be created in several ways.

The package endnotes (by John Lavagnino) provides its own \endnote com-
mand, thus allowing footnotes and endnotes to coexist.

The document-level syntax is modeled after the footnote commands if you re-
place footwith end—for example, \endnote produces an endnote, \endnotemark
produces just the mark, and \endnotetext produces just the text. The counter
used to hold the current endnote number is called endnote and is stepped when-
ever \endnote or \endnotemark without an optional argument is used.

All endnotes are stored in an external file with the extension .ent and are
made available when you issue the command \theendnotes .

3-2-25

This is simple text.1 This is simple
text.2 Some more text with a mark.1

Notes
1The first endnote.
2The second endnote.

\usepackage{endnotes}

This is simple text.\endnote{The first endnote.}
This is simple text.\endnote{The second endnote.}
Some more text with a mark.\endnotemark[1]

\theendnotes % output endnotes here

This process is different from the way the table of contents is built; the end-
notes are written directly to the file, so that you will see only those endnotes which
are defined earlier in the document. The advantage of this approach is that you
can have several calls to \theendnotes , for example, at the end of each chapter.

126 Basic Formatting Tools

To additionally restart the numbering you have to set the endnote counter to zero
after calling \theendnotes .

The heading produced by \theendnotes can be controlled in several ways.
The text can be changed by modifying \notesname (default is the string Notes).
If that is not enough you can redefine \enoteheading , which is supposed to pro-
duce the sectioning command in front of the notes.

The layout for endnote numbers is controlled through \theendnote , which
is the standard way LaTEX handles counter formatting. The format of the mark is
produced from \makeenmark with \theenmark , holding the formatted number
for the current mark.

This is simple text.a) This is
simple text.b) Some more text
with a mark.a)

Chapter Notes
a)The first endnote.
b)The second endnote.

\usepackage{endnotes}
\renewcommand\theendnote{\alph{endnote}}
\renewcommand\makeenmark{\theenmark)}
\renewcommand\notesname {Chapter Notes}

This is simple text.\endnote{The first endnote.}
This is simple text.\endnote{The second endnote.}
Some more text with a mark.\endnotemark[1]
\theendnotes 3-2-26

The font size for the list of endnotes is controlled through \enotesize , which
defaults to \footnotesize . Also, by modifying \enoteformat you can change the
display of the individual endnotes within their list. This command is supposed to
set up the paragraph parameters for the endnotes and to typeset the note number
stored in \theenmark . In the example we start with no indentation for the first
paragraph and with the number placed into the margin.

This is simple text.1 This is
simple text.2 Some more text
with a mark.1

Notes
1. The first endnote with a lot of text to

produce two lines.
And even a second paragraph.

2. The second endnote.

\usepackage{endnotes}
\renewcommand\enoteformat{\noindent\raggedright
\setlength\parindent{12pt}\makebox[0pt][r]{\theenmark.\,}}

\renewcommand\enotesize{\scriptsize}

This is simple text.\endnote{The first endnote with a lot
of text to produce two lines.\par And even a second
paragraph.}

This is simple text.\endnote{The second endnote.}
Some more text with a mark.\endnotemark[1]
\theendnotes 3-2-27

3.2.8 Marginal notes

The standard LaTEX command \marginpar generates a marginal note. This com-
mand typesets the text given as its argument in the margin, with the first line
being at the same height as the line in the main text where the \marginpar com-
mand occurs. When only the mandatory argument is specified, the text goes to the
right margin for one-sided printing; to the outside margin for two-sided printing;

3.2 Footnotes, endnotes, and marginals 127

and to the nearest margin for two-column formatting. When you also specify an
optional argument, its text is used if the left margin is chosen, while the second
(mandatory) argument is used for the right margin.

This placement strategy can be reversed (except for two-column formatting)
using \reversemarginpar , which acts on all marginal notes from there on. You
can return to the default behavior with \normalmarginpar .

There are a few important things to understand when using marginal notes.
First, the \marginpar command does not start a paragraph. Thus, if it is used
before the first word of a paragraph, the vertical alignment will not match the
beginning of the paragraph. Second, the first word of its argument is not auto-
matically hyphenated. Thus, for a narrow margin and long words (as in German),
you may have to precede the first word by a \hspace{0pt} command to allow hy-
phenation of that word. These two potential problems can be eased by defining a
command like \marginlabel , which starts with an empty box \mbox{}, typesets
a marginal note ragged right, and adds a \hspace{0pt} in front of the argument.

3-2-28

Some text with a ASuperLongFirstWord
with problemsmarginal note. Some

more text. Another ASuperLong-
Firstword
without
problems

text with a marginal
note. Some more
text. A lot of addi-
tional text here to fill
up the space in the ex-
ample on the left.

\newcommand\marginlabel[1]{\mbox{}\marginpar
{\raggedright\hspace{0pt}#1}}

Some\marginpar{ASuperLongFirstWord with problems}
text with a marginal note. Some more text.
Another\marginlabel{ASuperLongFirstword without
problems} text with a marginal note. Some more
text. A lot of additional text here to fill
up the space in the example on the left.

Of course, the above definition can no longer produce different texts depend-
ing on the chosen margin. With a little more finesse this problem could be solved,
using, for example, the \ifthenelse constructs from the ifthen package.

The LaTEX kernel tries hard (without producing too much processing overhead)
Incorrectly placed
\marginpars

to ensure that the contents of \marginpar commands always show up in the cor-
rect margin and in most circumstances will make the right decisions. In some
cases, however, it will fail. If you are unlucky enough to stumble across one of
them, a one-off solution is to add an explicit \pagebreak to stop the page genera-
tion from looking too far ahead. Of course, this has the disadvantage that the cor-
rection means visual formatting and has to be undone if the document changes.
A better solution is to load the package mparhack written by Tom Sgouros and
Stefan Ulrich. Once this package is loaded all \marginpar positions are tracked
(internally using a label mechanism and writing the information to the .aux file).
You may then get a warning “Marginpars may have changed. Rerun to get them
right”, indicating that the positions have changed in comparison to the previous
LaTEX run and that a further run is necessary to stabilize the document.

As explained in Table 4.2 on page 196, there are three length parameters to
customize the style of marginal notes: \marginparwidth , \marginparsep , and
\marginparpush .

128 Basic Formatting Tools

Command Default Definition Representation

First Level \labelitemi \textbullet •
Second Level \labelitemii \normalfont\bfseries \textendash –

Third Level \labelitemiii \textasteriskcentered ∗
Fourth Level \labelitemiv \textperiodcentered ·

Table 3.5: Commands controlling an itemize list environment

3.3 List structures

Lists are very important LaTEX constructs and are used to build many of LaTEX’s
display-like environments. LaTEX’s three standard list environments are discussed
in Section 3.3.1, where we also show how they can be customized. Section 3.3.2
starting on page 132 provides an in-depth discussion of the paralist package,
which introduces a number of new list structures and offers comprehensive meth-
ods to customize them, as well as the standard lists. It is followed by a discus-
sion of “headed lists”, such as theorems and exercises. Finally, Section 3.3.4 on
page 144 discusses LaTEX’s general list environment.

3.3.1 Modifying the standard lists

It is relatively easy to customize the three standard LaTEX list environments
itemize, enumerate, and description, and the next three sections will look at
each of these environments in turn. Changes to the default definitions of these
environments can either be made globally by redefining certain list-defining pa-
rameters in the document preamble or can be kept local.

Customizing the itemize list environment

For a simple unnumbered itemize list, the labels are defined by the commands
shown in Table 3.5. To create a list with different-looking labels, you can redefine
the label-generating command(s). You can make that change local for one list, as
in the example below, or you can make it global by putting the redefinition in the
document preamble. The following simple list is a standard itemize list with a
marker from the PostScript Zapf Dingbats font (see Section 7.6.4 on page 378) for
the first-level label:

☞ Text of the first item in the list.

☞ Text of the first sentence in the
second item of the list. And the
second sentence.

\usepackage{pifont}
\newenvironment{MYitemize}{\renewcommand\labelitemi

{\ding{43}}\begin{itemize}}{\end{itemize}}

\begin{MYitemize}
\item Text of the first item in the list.
\item Text of the first sentence in the second

item of the list. And the second sentence.
\end{MYitemize} 3-3-1

3.3 List structures 129

Customizing the enumerate list environment

LaTEX’s enumerated (numbered) list environment enumerate is characterized by
the commands and representation forms shown in Table 3.6 on the next page.
The first row shows the names of the counter used for numbering the four pos-
sible levels of the list. The second and third rows are the commands giving the
representation of the counters and their default definition in the standard LaTEX
class files. Rows four, five, and six contain the commands, the default definition,
and an example of the actual enumeration string printed by the list.

A reference to a numbered list element is constructed using the \theenumi ,
\theenumii , and similar commands, prefixed by the commands \p@enumi ,
\p@enumii , etc., respectively. The last three rows in Table 3.6 on the following
page show these commands, their default definition, and an example of the repre-
sentation of such references. It is important to consider the definitions of both the
representation and reference-building commands to get the references correct.

We can now create several kinds of numbered description lists simply by ap-
plying what we have just learned.

Our first example redefines the first- and second-level counters to use capital
Roman digits and Latin characters. The visual representation should be the value
of the counter followed by a dot, so we can use the default value from Table 3.6
on the next page for \labelenumi .

3-3-2

I. Introduction

A. Applications
Motivation for research and appli-
cations related to the subject.

B. Organization
Explain organization of the report,
what is included, and what is not.

II. Literature Survey

q1=I q2=IA q3=IB q4=II

\renewcommand\theenumi {\Roman{enumi}}
\renewcommand\theenumii {\Alph{enumii}}
\renewcommand\labelenumii{\theenumii.}

\begin{enumerate}
\item \textbf{Introduction} \label{q1}
\begin{enumerate}

\item \textbf{Applications} \\
Motivation for research and applications
related to the subject. \label{q2}

\item \textbf{Organization} \\
Explain organization of the report, what
is included, and what is not. \label{q3}

\end{enumerate}
\item \textbf{Literature Survey} \label{q4}

\end{enumerate}
q1=\ref{q1} q2=\ref{q2} q3=\ref{q3} q4=\ref{q4}

After these redefinitions we get funny-looking references; to correct this we
have to adjust the definition of the prefix command \p@enumii . For example, to
get a reference like “I–A” instead of “IA” as in the previous example, we need

\makeatletter \renewcommand\p@enumii{\theenumi--} \makeatother

because the reference is typeset by executing \p@enumii followed by \theenumii .

130 Basic Formatting Tools

First Level Second Level Third Level Fourth Level

Counter enumi enumii enumiii enumiv
Representation \theenumi \theenumii \theenumiii \theenumiv

Default Definition \arabic{enumi} \alph{enumii} \roman{enumiii} \Alph{enumiv}
Label Field \labelenumi \labelenumii \labelenumiii \labelenumiv

Default Form \theenumi. (\theenumii) \theenumiii. \theenumiv.
Numbering Example 1., 2. (a), (b) i., ii. A., B.

Reference representation

Prefix \p@enumi \p@enumii \p@enumiii \p@enumiv
Default Definition {} \theenumi \theenumi(\theenumii) \p@enumiii\theenumiii

Reference Example 1, 2 1a, 2b 1(a)i, 2(b)ii 1(a)iA, 2(b)iiB

Table 3.6: Commands controlling an enumerate list environment

Note that we need \makeatletter and \makeatother because the command
name to redefine contains an @ sign. Instead of this low-level method, consider
using \labelformat from the varioref package described in Section 2.4.2.

You can also decorate an enumerate field by adding something to the label
field. In the example below, we have chosen for the first-level list elements the
paragraph sign (§) as a prefix and a period as a suffix (omitted in references).

§1. text inside list, more text in-
side list

§2. text inside list, more text in-
side list

§3. text inside list, more text in-
side list

w1=§1 w2=§2 w3=§3

\renewcommand\labelenumi{\S\theenumi.}
\usepackage{varioref} \labelformat{enumi}{\S#1}

\begin{enumerate}
\item \label{w1} text inside list, more text inside list
\item \label{w2} text inside list, more text inside list
\item \label{w3} text inside list, more text inside list
\end{enumerate}
w1=\ref{w1} w2=\ref{w2} w3=\ref{w3} 3-3-3

You might even want to select different markers for consecutive labels. For in-
stance, in the following example, characters from the PostScript font ZapfDingbats
are used. In this case there is no straightforward way to automatically make the
\ref commands produce the correct references. Instead of \theenumi simply pro-
ducing the representation of the enumi counter, we define it to calculate from the
counter value which symbol to select. The difficulty here is to create this definition
in a way such that it survives the label-generating process. The trick is to add the
\protect commands so that \setcounter and \ding are not executed when the
label is written to the .aux file, yet to ensure that the current value of the counter
is stored therein. The latter goal is achieved by prefixing \value by the (internal)

3.3 List structures 131

TEX command \the within \setcounter (but not within \ding!); without it the
references would all show the same values.1

3-3-4

① text inside list, text inside list, text
inside list, more text inside list;

② text inside list, text inside list, text
inside list, more text inside list;

③ text inside list, text inside list, text
inside list, more text inside list.

l1=① l2=② l3=③

\usepackage{calc,pifont} \newcounter{local}
\renewcommand\theenumi{\protect\setcounter{local}%
{171+\the\value{enumi}}\protect\ding{\value{local}}}

\renewcommand\labelenumi{\theenumi}

\begin{enumerate}
\item text inside list, text inside list, \label{l1}

text inside list, more text inside list;
\item text inside list, text inside list, \label{l2}

text inside list, more text inside list;
\item text inside list, text inside list, \label{l3}

text inside list, more text inside list.
\end{enumerate}
l1=\ref{l1} l2=\ref{l2} l3=\ref{l3}

The same effect is obtained with the dingautolist environment defined
in the pifont package, which is part of the PSNFSS system (see Section 7.6.4 on
page 378).

Customizing the description list environment

With the description environment you can change the \descriptionlabel com-
mand that generates the label. In the following example the font for typesetting
the labels is changed from boldface (default) to sans serif.

3-3-5

A. text inside list, text inside list, text
inside list, more text inside list;

B. text inside list, text inside list, text
inside list, more text inside list;

\renewcommand\descriptionlabel[1]%
{\hspace{\labelsep}\textsf{#1}}

\begin{description}
\item[A.] text inside list, text inside list,

text inside list, more text inside list;
\item[B.] text inside list, text inside list,

text inside list, more text inside list;
\end{description}

The standard LaTEX class files set the starting point of the label box in a
description environment at a distance of \labelsep to the left of the left mar-
gin of the enclosing environment. Thus, the \descriptionlabel command in the
example above first adds a value of \labelsep to start the label aligned with the
left margin (see page 147 for detailed explanations).

1For the TEXnically interested: LaTEX’s \value command, despite its name, does not produce the
“value” of a LaTEX counter but only its internal TEX register name. In most circumstances this can
be used as the value but unfortunately not inside \edef or \write , where the internal name rather
than the “value” will survive. By prefixing the internal register name with the command \the , we get
the “value” even in such situations.

132 Basic Formatting Tools

3.3.2 paralist—Extended list environments

The paralist package created by Bernd Schandl provides a number of new list
environments and offers extensions to LaTEX’s standard ones that make their cus-
tomization much easier. Standard and new list environments can be nested within
each other and the enumeration environments support the \label/\ref mecha-
nism.

Enumerations

All standard LaTEX lists are display lists; that is, they leave some space at their
top and bottom as well as between each item. Sometimes, however, one wishes
to enumerate something within a paragraph without such visual interruption. The
inparaenum environment was developed for this purpose. It supports an optional
argument that you can use to customize the generated labels, the exact syntax of
which is discussed later in this section.

We may want to enumerate items
within a paragraph to (a) save space
(b) make a less prominent statement, or
(c) for some other reason.

\usepackage{paralist}

We may want to enumerate items within a paragraph to
\begin{inparaenum}[(a)]
\item save space
\item make a less prominent statement, or
\item for some other reason.

\end{inparaenum} 3-3-6

But perhaps this is not precisely what you are looking for. A lot of people
like to have display lists but prefer them without much white space surrounding
them. In that case compactenum might be your choice, as it typesets the list like
enumerate but with all vertical spaces set to 0pt.

On the other hand we may want to
enumerate like this:

i) still make a display list
ii) format items as usual but with less

vertical space, that is
iii) similar to normal enumerate.

\usepackage{paralist}

On the other hand we may want to enumerate like this:
\begin{compactenum}[i)]
\item still make a display list
\item format items as usual but with less

vertical space, that is
\item similar to normal \texttt{enumerate}.

\end{compactenum} 3-3-7

Actually, our previous statement was not true—you can customize the verti-
cal spaces used by compactenum. Here are the parameters: \pltopsep is the space
above and below the environment, \plpartopsep is the extra space added to the
previous space when the environment starts a paragraph on its own, \plitemsep
is the space between items, and \plparsep is the space between paragraphs
within an item.

3.3 List structures 133

A final enumeration alternative is offered with the asparaenum environment,
which formats the items as individual paragraphs. That is, their first line is in-
dented by \parindent and following lines are aligned with the left margin.

3-3-8

Or perhaps we may want to enumer-
ate like this:

1) still make a display list
2) format items as paragraphs with

turnover lines not indented, that is
3) similar to normal enumerate.

\usepackage{paralist}

Or perhaps we may want to enumerate like this:
\begin{asparaenum}[1)]
\item still make a display list \item format items
as paragraphs with turnover lines not indented,
that is \item similar to normal \texttt{enumerate}.

\end{asparaenum}

As seen in the previous examples all enumeration environments support one
optional argument that describes how to format the item labels. Within the argu-
ment the tokens A, a, I, i, and 1 have a special meaning: they are replaced by
the enumeration counter displayed in style \Alph , \alph , \Roman , \roman , or
\arabic , respectively. All other characters retain their normal meanings. Thus,
the argument [(a)] will result in labels like (a), (b), (c), and so on, while [\S i:]
will produce §i:, §ii:, §iii:, and so on.

You have to be a bit careful if your label contains text strings, such as la-
bels like Example 1, Example 2, . . . In this case you have to hide the “a” inside a
brace group—that is, use an argument like [{Example} 1]. Otherwise, you will
get strange results, as shown in the next example.

3-3-9

Item b shows what can go wrong:
Example a: On the first item we

will not notice it but
Exbmple b: the second item then

shows what happens if a special char-
acter is mistakenly matched.

\usepackage{paralist}

Item~\ref{bad} shows what can go wrong:
\begin{asparaenum}[Example a:]
\item On the first item we will not notice it
but \item the second item then shows what
happens if a special character is mistakenly
matched. \label{bad}
\end{asparaenum}

Fortunately, the package usually detects such incorrect input and will issue
a warning message. A consequence of hiding special characters by surrounding
them with braces is that an argument like [\textbf{a)}] will not work either,
because the “a” will not be considered as special any more. A workaround for this
case is to use something that does not require braces, such as \bfseries .

As can be seen above, referencing a \label will produce only the counter
value in the chosen representation but not any frills added in the optional argu-
ment. This is the case for all enumeration environments.

It is not possible with this syntax to specify that a label should show the outer
as well as the inner enumeration counter, because the special characters always
refer to the current enumeration counter. There is one exception: if you load the

134 Basic Formatting Tools

package with the option pointedenum or with the option pointlessenum, you will
get labels like those shown in the next example.

1. First level.
1.1. Second level.

1.1.1. Third level.
1.2. Second level again.

\usepackage[pointedenum]{paralist}

\begin{compactenum}
\item First level.
\begin{compactenum}
\item Second level.
\begin{compactenum} \item Third level. \end{compactenum}
\item Second level again.
\end{compactenum}

\end{compactenum} 3-3-10

The difference between the two options is the presence or absence of the
trailing period. As an alternative to the options you can use the commands
\pointedenum and \pointlessenum . They enable you to define your own envi-
ronments that format labels in this way while other list environments show labels
in different formats. If you need more complicated labels, such as those involving
several enumeration counters from different levels, then you have to construct
them manually using the methods described in Section 3.3.1 on page 129.

The optional argument syntax for specifying the typesetting of enumeration
labels was first implemented in the enumerate package by David Carlisle, who
extended the standard enumerate environment to support such an optional ar-
gument. With paralist the optional argument is supported for all enumeration
environments, including the standard enumerate environment (for which it is an
upward-compatible extension).

If an optional argument is used on any of the enumeration environments,
then by default the left margin will be made only as wide as necessary to hold
the labels. More exactly, the indentation is adjusted to the width of the label as
it would be if the counter value is currently seven. This produces a fairly wide
number (vii) if the numbering style is “Roman” and does not matter otherwise.
This behavior is shown in the next example. For some documents this might be
the right behavior, but if you prefer a more uniform indentation use the option
neverdecrease, which will ensure that the left margin is always at least as wide
as the default setting.

The left margin may vary if we are not
careful.

1. An item in a normal enumerate.

1. Same left margin in
2. this case.

i) But a different one
ii) here.

\usepackage{paralist}

The left margin may vary if we are not careful.
\begin{enumerate}
\item An item in a normal \texttt{enumerate}.
\end{enumerate}
\begin{compactenum}
\item Same left margin in \item this case.
\end{compactenum}
\begin{compactenum}[i)]
\item But a different one \item here.
\end{compactenum} 3-3-11

3.3 List structures 135

On the other hand, you can always force that kind of adjustment, even for envi-
ronments without an optional argument, by specifying the option alwaysadjust.

3-3-12

Here we force the shortest possible
indentation always:

1. An item in a normal enumerate.

i) But a different
ii) indentation

iii) here.
1. Same left margin as
2. in the first case.

\usepackage[alwaysadjust]{paralist}

Here we force the shortest possible indentation always:
\begin{enumerate}
\item An item in a normal \texttt{enumerate}.
\end{enumerate}
\begin{compactenum}[i)]
\item But a different \item indentation \item here.
\end{compactenum}
\begin{compactenum}[1.]
\item Same left margin as \item in the first case.
\end{compactenum}

Finally, with the option neveradjust the standard indentation is used in all
cases. Thus, labels that are too wide will extend into the left margin.

3-3-13

With this option the label is
pushed into the margin.

1. An item in a normal
enumerate.

Task A) Same left indentation in
Task B) this case.

1) And the same indentation
2) here.

\usepackage[neveradjust]{paralist}

With this option the label is pushed into the margin.
\begin{enumerate}
\item An item in a normal\\ \texttt{enumerate}.
\end{enumerate}
\begin{compactenum}[{Task} A)]
\item Same left indentation in \item this case.
\end{compactenum}
\begin{compactenum}[1)]
\item And the same indentation \item here.
\end{compactenum}

Itemizations

For itemized lists the paralist package offers the environments compactitem,
which is a compact version of the standard itemize environment; asparaitem
which formats the items as paragraphs; and inparaitem, which produces an in-
line itemization. The last environment was added mainly for symmetry reasons.
All three environments accept an optional argument, that specifies the label to be
used for each item.

3-3-14

Producing itemized lists with spe-
cial labels is easy.

� This example uses the package
option neverdecrease.

� Without it the left margin would
be smaller.

\usepackage[neverdecrease]{paralist}

Producing itemized lists with special labels is easy.
\begin{compactitem}[\star]
\item This example uses the package option

\texttt{neverdecrease}.
\item Without it the left margin would be smaller.
\end{compactitem}

136 Basic Formatting Tools

The three label justification options neverdecrease, alwaysadjust, and
neveradjust are also valid for the itemized lists, as can be seen in the previ-
ous example. When the paralist package is loaded, LaTEX’s itemize environment is
extended to also support that type of optional argument.

Descriptions

For descriptions the paralist package introduces three additional environments:
compactdesc, which is like the standard LaTEX description environment but with
all vertical spaces reduced to zero (or whatever you specify as a customization);
asparadesc, which formats each item as a paragraph; and inparadesc, which
allows description lists within running text.

Because description-type environments specify each label at the \item com-
mand, these environments have no need for an optional argument.

Do you like inline description lists?
Try them out!
paralist A useful package as it sup-

ports compact. . . environments
that have zero vertical space, as-
para. . . environments formatted
as paragraphs, and inpara. . . en-
vironments as inline lists.

enumerate A package that is super-
seded now.

\usepackage{paralist}

Do you like inline description lists? Try them out!
\begin{compactdesc}
\item[paralist] A useful package as it supports
\begin{inparadesc} \item[compact\ldots] environments
that have zero vertical space, \item[aspara\ldots]
environments formatted as paragraphs, and
\item[inpara\ldots] environments as inline lists.
\end{inparadesc}

\item[enumerate] A package that is superseded now.
\end{compactdesc} 3-3-15

Adjusting defaults

Besides providing these useful new environments the paralist package lets you
customize the default settings of enumerated and itemized lists.

You can specify the default labels for different levels of itemized lists with
the help of the \setdefaultitem declaration. It takes four arguments (as four
levels of nesting are possible). In each argument you specify the desired label
(just as you do with the optional argument on the environment itself) or, if you
are satisfied with the default for the given level, you specify an empty argument.

• Outer level is using the de-
fault label.
• On the second level

we use again a bullet.
� And on the third

level a star.

\usepackage{paralist} \setdefaultitem{}{\textbullet}{\star}{}

\begin{compactitem}
\item Outer level is using the default label.
\begin{compactitem}
\item On the second level we use again a bullet.

\begin{compactitem}
\item And on the third level a star.
\end{compactitem}

\end{compactitem}
\end{compactitem} 3-3-16

3.3 List structures 137

The changed defaults apply to all subsequent itemized environments. Nor-
mally, such a declaration is placed into the preamble, but you can also use it to
change the defaults mid-document. In particular, you can define environments
that contain a \setdefaultitem declaration which would then apply only to that
particular environment—and to lists nested within its body.

You will probably not be surprised to learn that a similar declaration exists
for enumerations. By using \setdefaultenum you can control the default look
and feel of such environments. Again, there are four arguments corresponding to
the four levels. In each you either specify your label definition (using the syntax
explained earlier) or you leave it empty to indicate that the default for this level
should be used.

3-3-17

1) All levels get a closing
parenthesis in this example.

a) Lowercase letters
here.

i) Roman numerals
here.

ii) Really!

\usepackage{paralist} \setdefaultenum{1)}{a)}{i)}{A)}

\begin{compactenum}
\item All levels get a closing parenthesis in this example.
\begin{compactenum}
\item Lowercase letters here.

\begin{compactenum}
\item Roman numerals here. \item Really!
\end{compactenum}

\end{compactenum}
\end{compactenum}

There is also the possibility of adjusting the indentation for the various list
levels using the declaration \setdefaultleftmargin . However, this command
has six arguments (there are a total of six list levels in the standard LaTEX classes),
each of which takes either a dimension denoting the increase of the indention at
that level or an empty argument indicating to use the current value as specified by
the class or elsewhere. Another difference from the previous declarations is that in
this case we are talking about the absolute list levels and not about relative levels
related to either enumerations or itemizations (which can be mixed). Compare the
next example with the previous one to see the difference.

3-3-18

1) All levels get a closing paren-
thesis in this example.
a) Lowercase letters here.

i) Roman numerals here.
ii) Really!

\usepackage{paralist}
\setdefaultenum{1)}{a)}{i)}{A)}
\setdefaultleftmargin{\parindent}{\parindent}

{\parindent}{}{}{}

\begin{compactenum}
\item All levels get a closing parenthesis in this example.
\begin{compactenum}
\item Lowercase letters here.

\begin{compactenum}
\item Roman numerals here. \item Really!
\end{compactenum}

\end{compactenum}
\end{compactenum}

138 Basic Formatting Tools

By default, enumeration and itemized lists set their labels flush right. This
behavior can be changed with the help of the option flushleft.

As described earlier, the label of the standard description list can be ad-
justed by modifying \descriptionlabel , which is also responsible for format-
ting the label in a compactdesc environment. With inparadesc and asparadesc,
however, a different command, \paradescriptionlabel , is used for this pur-
pose. As these environments handle their labels in slightly different ways, they
do not need adjustments involving \labelsep (see page 147). Thus, its default
definition is simply:

\newcommand*\paradescriptionlabel[1]{\normalfont\bfseries #1}

Finally, the paralist package supports the use of a configuration file named
paralist.cfg , which by default is loaded if it exists. You can prevent this by
specifying the option nocfg.

3.3.3 amsthm—Providing headed lists

The term “headed lists” describes typographic structures that, like other lists such
as quotations, form a discrete part of a section or chapter and whose start and fin-
ish, at least, must be clearly distinguished. This is typically done by adjusting the
vertical space at the start or adding a rule, and in this case also by including some
kind of heading, similar to a sectioning head. The end may also be distinguished
by a rule or other symbol, maybe within the last paragraph, and by extra vertical
space.

Another property that distinguishes such lists is that they are often num-
bered, using either an independent system or in conjunction with the sectional
numbering.

Perhaps one of the more fruitful sources of such “headed lists” is found in
the so-called “theorem-like” environments. These had their origins in mathemat-
ical papers and books but are equally applicable to a wide range of expository
material, as examples and exercises may take this form whether or not they con-
tain mathematical material.

Because their historical origins lie in the mathematical world, we choose to
describe the amsthm package [7] by Michael Downes from the American Mathe-
matical Society (AMS) as a representative of this kind of extension.1 This package
provides an enhanced version of standard LaTEX’s \newtheorem declaration for
specifying theorem-like environments (headed lists).

As in standard LaTEX, environments declared in this way take an optional ar-
gument in which extra text, known as “notes”, can be added to the head of the
environment. See the example below for an illustration.

1When the amsthm package is used with a non-AMS document class and with the amsmath pack-
age, amsthm must be loaded after amsmath. The AMS document classes incorporate both packages.

3.3 List structures 139

\newtheorem*{name}{heading}

The \newtheorem declaration has two mandatory arguments. The first is the envi-
ronment name that the author would like to use for this element. The second is
the heading text.

If \newtheorem* is used instead of \newtheorem , no automatic numbers will
be generated for the environments. This form of the command can be useful if
you have only one lemma or exercise and do not want it to be numbered; it is also
used to produce a special named variant of one of the common theorem types.

3-3-19

Lemma 1 (Main). The LATEX Compan-
ion complements any LATEX introduction.

Mittelbach’s Lemma. The LATEX Com-
panion contains packages from all ap-
plication areas.

\usepackage{amsthm}
\newtheorem{lem}{Lemma}
\newtheorem*{ML}{Mittelbach’s Lemma}

\begin{lem}[Main] The \LaTeX{} Companion
complements any \LaTeX{} introduction.

\end{lem}
\begin{ML} The \LaTeX{} Companion contains
packages from all application areas.

\end{ML}

In addition to the two mandatory arguments, \newtheorem has two mutually
exclusive optional arguments. They affect the sequencing and hierarchy of the
numbering.

\newtheorem{name}[use-counter]{heading}
\newtheorem{name}{heading}[number-within]

By default, each kind of theorem-like environment is numbered independently.
Thus, if you have lemmas, theorems, and some examples interspersed, they will
be numbered something like this: Example 1, Lemma 1, Lemma 2, Theorem 1,
Example 2, Lemma 3, Theorem 2. If, for example, you want the lemmas and the-
orems to share the same numbering sequence—Example 1, Lemma 1, Lemma 2,
Theorem 3, Example 2, Lemma 4, Theorem 5—then you should indicate the de-
sired relationship as follows:

\newtheorem{thm}{Theorem} \newtheorem{lem}[thm]{Lemma}

The optional use-counter argument (value thm) in the second statement means
that the lem environment should share the thm numbering sequence instead of
having its own independent sequence.

To have a theorem environment numbered subordinately within a sectional
unit—for example, to get exercises numbered Exercise 2.1, Exercise 2.2, and so on,
in Section 2—put the name of the parent counter in square brackets in the final
position:

\newtheorem{exa}{Exercise}[section]

140 Basic Formatting Tools

With the optional argument [section], the exa counter will be reset to 0 when-
ever the parent counter section is incremented.

Defining the style of headed lists

The specification part of the amsthm package supports the notion of a current
theorem style, which determines the formatting that will be set up by a collection
of \newtheorem commands.1

\theoremstyle{style}

The three theorem styles provided by the package are plain, definition, and
remark; they specify different typographical treatments that give the environ-
ments a visual emphasis corresponding to their relative importance. The details of
this typographical treatment may vary depending on the document class, but typ-
ically the plain style produces italic body text and the other two styles produce
Roman body text.

To create new theorem-like environments in these styles, divide your
\newtheorem declarations into groups and preface each group with the appro-
priate \theoremstyle . If no \theoremstyle command is given, the style used
will be plain. Some examples follow:

Definition 1. A typographical chal-
lenge is a problem that cannot be
solved with the help of The LATEX
Companion.

Theorem 2. There are no typo-
graphical challenges.

Remark. The proof is left to the
reader.

\usepackage{amsthm}
\theoremstyle{plain} \newtheorem{thm}{Theorem}
\theoremstyle{definition} \newtheorem{defn}[thm]{Definition}
\theoremstyle{remark} \newtheorem*{rem}{Remark}

\begin{defn}
A typographical challenge is a problem that cannot be
solved with the help of \emph{The \LaTeX{} Companion}.

\end{defn}
\begin{thm}There are no typographical challenges.\end{thm}
\begin{rem}The proof is left to the reader.\end{rem} 3-3-20

Note that the fairly obvious choice of “def” for the name of a “Definition” environ-
ment does not work, because it conflicts with the existing low-level TEX command
\def .

A fairly common style variation for theorem heads is to have the theorem
Number swapping number on the left, at the beginning of the heading, instead of on the right.

As this variation is usually applied across the board regardless of individual
\theoremstyle changes, swapping numbers is done by placing a \swapnumbers
declaration at the beginning of the list of \newtheorem statements that should be
affected.

1This was first introduced in the now-superseded theorem package by Frank Mittelbach.

3.3 List structures 141

Advanced customization

More extensive customization capabilities are provided by the package through
the \newtheoremstyle declaration and through a mechanism for using package
options to load custom theorem style definitions.

\newtheoremstyle{name}{space-above}{space-below}{body-style}{indent}
{head-style}{head-after-punct}{head-after-space}{head-full-spec}

To set up a new style of “theorem-like” headed list, use this declaration with the
nine mandatory arguments described below. For many of these arguments, if they
are left empty, a default is used as listed here.

name The name used to refer to the new style.

space-above The vertical space above the headed list, a rubber length (default
\topsep).

space-below The vertical space below the headed list, a rubber length (default
\topsep).

body-style A declaration of the font and other aspects of the style to use for the
text in the body of the list (default \normalfont).

indent The extra indentation of the first line of the list, a non-rubber length (de-
fault is no extra indent).

head-style A declaration of the font and other aspects of the style to use for the
text in the head of the list (default \normalfont).

head-after-punct The text (typically punctuation) to be inserted after the head
text, including any note text.

head-after-space The horizontal space to be inserted after the head text and
“punctuation”, a rubber length. It cannot be completely empty. As two very
special cases it can contain either a single space character to indicate that
just a normal interword space is required or, more surprisingly, just the com-
mand \newline to indicate that a new line should be started for the body of
the list.

head-full-spec A non-empty value for this argument enables a complete specifica-
tion of the setting of the head itself to be supplied; an empty value means that
the layout of the “plain” theorem style is used. See below for further details.

Any extra set-up code for the whole environment is best put into the body-
style argument, although care needs to be taken over how it will interact with
what is set up automatically. Anything that applies only to the head can be put in
head-style.

142 Basic Formatting Tools

In the example below we define a break theorem style, which starts a new line
after the heading. The heading text is set in bold sans serif, followed by a colon
and outdented into the margin by 12pt. Since the book examples are typeset in a
very small measure, we added \raggedright1 to the body-style argument.

Exercise 1 (Active author):
Find the author
responsible for the largest
number of packages
described in The LATEX
Companion.

\usepackage{amsthm}
\newtheoremstyle{break}%
{9pt}{9pt}% Space above and below
{\itshape\raggedright}% Body style
{-12pt}% Heading indent amount
{\sffamily\bfseries}{:}% Heading font and punctuation after it
{\newline}% Space after heading (\newline = linebreak)
{}% Head spec (empty = same as ‘plain’ style)

\theoremstyle{break}
\newtheorem{exa}{Exercise}

\begin{exa}[Active author]
Find the author responsible for the largest number of
packages described in The \LaTeX{} Companion.

\end{exa} 3-3-21

The head-full-spec argument, if non-empty, becomes the definition part of an
Specifying the

heading format
internal command that is used to typeset the (up to) three bits of information
contained in the head of a theorem-like environment: its number (if any), its name,
and any extra notes supplied by the author when using the environment. Thus, it
should contain references to three arguments that will then be replaced as follows:

#1 The fixed text that is to be used in the head (for example, “Exercises”), It
comes from the \newtheorem used to declare an environment.

#2 A representation of the number of the element, if it should be numbered. It
is conventionally left empty if the environment should not be numbered.

#3 The text for the optional note, from the environment’s optional argument.

Assuming all three parts are present, the contents of the head-full-spec argument
could look as follows:

#1 #2 \textup{(#3)}

Although you are free to make such a declaration, it is normally best not to use
these arguments directly as this might lead to unwanted extra spaces if, for exam-
ple, the environment is unnumbered.

To account for this extra complexity, the package offers three additional com-
mands, each of which takes one argument: \thmname , \thmnumber , and \thmnote .
These three commands are redefined at each use of the environment so as to pro-
cess their arguments in the correct way. The default for each of them is simply to
“typeset the argument”. Nevertheless, if, for example, the particular occurrence is

1The example does not work if ragged2e is loaded (as of 2005), so \RaggedRight cannot be used.

3.3 List structures 143

unnumbered, then \thmnumber gets redefined to do no typesetting. Thus, a better
definition for the head-full-spec argument would be

\thmname{#1}\thmnumber{ #2}\thmnote{ \textup{(#3)}}

which corresponds to the set-up used by the default plain style. Note the spaces
within the last two arguments: they provide the interword spaces needed to sepa-
rate the parts of the typeset head but, because they are inside the arguments, they
are present only if that part of the head is typeset.

In the following example we provide a “Theorem” variation in which the whole
theorem heading has to be supplied as an optional note, such as for citing theo-
rems from other sources.

3-3-22

Theorem 3.16 in [87]. By fo-
cusing on small details, it is possi-
ble to understand the deeper sig-
nificance of a passage.

\usepackage{amsthm}
\newtheoremstyle{citing}% Name
{3pt}{3pt}% Space above and below
{\itshape}% Body font
{\parindent}{\bfseries}% Heading indent and font
{.}% Punctuation after heading
{ }% Space after head (" " = normal interword space)
{\thmnote{#3}}% Typeset note only, if present

\theoremstyle{citing} \newtheorem*{varthm}{}

\begin{varthm}[Theorem 3.16 in \cite{Knuth90}]
By focusing on small details, it is possible to
understand the deeper significance of a passage.
\end{varthm}

Proofs and the QED symbol

Of more specifically mathematical interest, the package defines a proof environ-
ment that automatically adds a “QED symbol” at the end. This environment pro-
duces the heading “Proof” with appropriate spacing and punctuation.1

An optional argument of the proof environment allows you to substitute a
different name for the standard “Proof”. If you want the proof heading to be, for
example, “Proof of the Main Theorem”, then put this in your document:

\begin{proof}[Proof of the Main Theorem]
...

\end{proof}

A “QED symbol” (default) is automatically appended at the end of a proof
environment. To substitute a different end-of-proof symbol, use \renewcommand
to redefine the command \qedsymbol . For a long proof done as a subsection or

1The proof environment is primarily intended for short proofs, no more than a page or two
in length. Longer proofs are usually better done as a separate \section or \subsection in your
document.

144 Basic Formatting Tools

section, you can obtain the symbol and the usual amount of preceding space by
using the command \qed where you want the symbol to appear.

Automatic placement of the QED symbol can be problematic if the last part
of a proof environment is, for example, tabular or a displayed equation or list. In
that case put a \qedhere command at the somewhat earlier place where the QED
symbol should appear; it will then be suppressed from appearing at the logical end
of the proof environment. If \qedhere produces an error message in an equation,
try using \mbox{\qedhere} instead.

Proof (sufficiency). This proof involves
a list:

1. because the proof comes in two
parts —

2. — we need to use \qedhere.

\usepackage{amsthm}

\begin{proof}[Proof (sufficiency)]
This proof involves a list:
\begin{enumerate}
\item because the proof comes in two parts ---
\item --- we need to use \verb|\qedhere|. \qedhere

\end{enumerate}
\end{proof} 3-3-23

3.3.4 Making your own lists

Most lists in LaTEX, including those we have seen previously, are internally built
using the generic list environment. It has the following syntax:

\begin{list}{default-label}{decls} item-list \end{list}

The argument default-label is the text to be used as a label when an \item com-
mand is found without an optional argument. The second argument, decls, can
be used to modify the different geometrical parameters of the list environment,
which are shown schematically in Figure 3.3 on the next page.

The default values of these parameters typically depend on the type size and
the level of the list. Those being vertically oriented are rubber lengths, meaning
that they can stretch or shrink. They are set by the list environment as fol-
lows: upon entering the environment the internal command \@list〈level〉 is exe-
cuted, where 〈level〉 is the list nesting level represented as a Roman numeral (e.g.,
\@listi for the first level, \@listii for the second, \@listiii for the third, and
so on). Each of these commands, defined by the document class, holds appropri-
ate settings for the given level. Typically, the class contains separate definitions
for each major document size available via options. For example, if you select
the option 11pt, one of its actions is to change the list defaults. In the standard
classes this is done by loading the file size11.clo , which contains the definitions
for the 11pt document size.

In addition, most classes contain redefinitions of \@listi (i.e., first-level
list defaults) within the size-changing commands \normalsize , \small , and
\footnotesize , the assumption being that one might have lists within “small”

3.3 List structures 145

3-3-24
Following Text

Item 2

Label

Item 1, Paragraph 2

�
\listparindent

�
\leftmargin

�
\rightmargin

Item 1

Label
�

\itemindent

�
\labelsep�

\labelwidth

Preceding Text

�

\topsep + \parskip [+ \partopsep]

�

\itemsep + \parsep

�
\parsep

�

\topsep + \parskip [+ \partopsep]

\topsep rubber space between first item and pre-
ceding paragraph.

\partopsep extra rubber space added to \topsep
when environment starts a new paragraph.

\itemsep rubber space between successive items.

\parsep rubber space between paragraphs within
an item.

\leftmargin space between left margin of enclos-
ing environment (or of page if top-level list) and
left margin of this list. Must be non-negative. Its
value depends on the list level.

\rightmargin similar to \leftmargin but for the
right margin. Its value is usually 0pt.

\listparindent extra indentation at beginning of
every paragraph of a list except the one started
by \item . Can be negative, but is usually 0pt.

\itemindent extra indentation added to the hori-
zontal indentation of the text part of the first
line of an item. The starting position of the la-
bel is calculated with respect to this reference
point by subtracting the values of \labelsep and
\labelwidth . Its value is usually 0pt.

\labelwidth the nominal width of the box con-
taining the label. If the natural width of the la-
bel is ≤\labelwidth , then by default the la-
bel is typeset flush right inside a box of width
\labelwidth . Otherwise, a box of the natural
width is employed, which causes an indentation
of the text on that line. It is possible to modify
the way the label is typeset by providing a defini-
tion for the \makelabel command.

\labelsep the space between the end of the label
box and the text of the first item. Its default value
is 0.5em.

Figure 3.3: Parameters used by the list environment

146 Basic Formatting Tools

or “footnote-sized” text. However, since this is a somewhat incomplete set-up,
strange effects are possible if you

• Use nested lists in such small sizes (the nested lists get the standard defaults
intended for \normalsize) ,

• Jump from \small or \footnotesize directly to a large size, such as \huge
(a first-level list now inherits the defaults from the small size, since in this
set-up \huge does not reset the list defaults).

With a more complex set-up these defects could be mended. However, since the
simpler set-up works well in most practical circumstances, most classes provide
only this restricted support.

Because of this size- and nesting-dependent set-up for the list parameters, it
Global changes are

difficult
is not possible to change any of them globally in the preamble of your document.
For global changes you have to provide redefinitions for the various \@list..
commands discussed above or select a different document class.

Page breaking around and within a list structure is controlled by three TEX
Page breaking

around lists
counters: \@beginparpenalty (for breaking before the list), \@itempenalty (for
breaking before an item within the list), and \@endparpenalty (for breaking the
page after a list). By default, all three are set to a slightly negative value, meaning
that it is permissible (and even preferable) to break a page in these places com-
pared to other break points. However, this outcome may not be appropriate. You
may prefer to discourage or even prevent page breaks directly before a list. To
achieve this, assign a high value to \@beginparpenalty (10000 or more prohibits
the break in all circumstances), for example:

\makeatletter \@beginparpenalty=9999 \makeatother

TEX counters need this unusual assignment form and since all three contain
an @ sign in their name, you have to surround them with \makeatletter and
\makeatother if the assignment is done in the preamble.

It is important to realize that such a setting is global to all environments
based on the generic list environment (unless it is made in the decls argument)
and that several LaTEX environments are defined with the help of this environmentMany environments

are implemented as
lists

(for example, quote, quotation, center, flushleft, and flushright). These
environments are “lists” with a single item, and the \item[] command is specified
in the environment definition. The main reason for them to be internally defined
as lists is that they then share the vertical spacing with other display objects and
thus help achieve a uniform layout.

As an example, we can consider the quote environment, whose definition
gives the same left and right margins. The simple variant Quote, shown below,
is identical to quote apart from the double quote symbols added around the
text. Note the special precautions, which must be taken to eliminate undesirable
white space in front of (\ignorespaces) and following (\unskip) the text. We also
placed the quote characters into boxes of zero width to make the quotes hang into

3.3 List structures 147

the margin. (This trick is worth remembering: if you have a zero-width box and
align the contents with the right edge, they will stick out to the left.)

3-3-25

. . . text before.

“Some quoted text, followed
by more quoted text.”

Text following . . .

\newenvironment{Quote}%
{\begin{list}{}%

{\setlength\rightmargin{\leftmargin}}%
\item[]\makebox[0pt][r]{‘‘}\ignorespaces}%
{\unskip\makebox[0pt][l]{’’}\end{list}}

\ldots\ text before.
\begin{Quote}

Some quoted text, followed by more quoted text.
\end{Quote}
Text following \ldots

In the remainder of this section we will construct a number of different
“description” lists, thereby explaining the various possibilities offered by the
generic list environment. We start by looking at the default definition of the
description environment as it can be found in LaTEX’s standard classes such as
article or report.1

\newenvironment{description}
{\begin{list}{}{\setlength\labelwidth{0pt}%

\setlength\itemindent{-\leftmargin}%
\let\makelabel\descriptionlabel}}

{\end{list}}

To understand the reasoning behind this definition recall Figure 3.3 on page 145,
which explains the relationship between the various list parameters. The param-
eter settings start by setting \labelwidth to zero, which means that we do not
reserve any space for the label. Thus, if the label is being typeset, it will move the
text of the first line to the right to get the space it needs. Then the \itemindent
parameter is set to the negation of \leftmargin . As a result, the starting point
for the first text line is moved to the enclosing margin but all turnover lines are
still indented by \leftmargin . The last declaration makes \makelabel identical
to the command \descriptionlabel . The command \makelabel is called by the
list environment whenever it has to format an item label. It takes one argument
(the label) and is supposed to produce a typeset version of that argument. So the
final task to finish the definition of the description environment is to provide a
suitable definition for \descriptionlabel . This indirection is useful because it
allows us to change the label formatting without modifying the rest of the envi-
ronment definition.

How should \descriptionlabel be defined? It has to provide the formatting
for the label. With the standard description environment this label is supposed

1If you look into article.cls or report.cls you will find a slightly optimized coding that uses,
for example, low-level assignments instead of \setlength . However, conceptually, the definitions
are identical.

148 Basic Formatting Tools

to be typeset in boldface. But recall that the label is separated from the following
text by a space of width \labelsep . Due to the parameter settings given above
this text starts at the outer margin. Thus, without correction our label would end
up starting in the margin (by the width of \labelsep). To prevent this outcome
the standard definition for the \descriptionlabel command has the following
curious definition, in that it first moves to the right and then typesets the label:

\newcommand*\descriptionlabel[1]
{\hspace{\labelsep}\normalfont\bfseries #1}

To remove this dependency, one would need to change the setting of \itemindent
to already take the \labelsep into account, which in itself would not be difficult.
You may call this behavior an historical artifact, but many documents rely on this
somewhat obscure feature. Thus, it is difficult to change the setting in the LaTEX
kernel without breaking those documents.

With the parameter settings of the standard description environment, in
case of short labels the text of the first line starts earlier than the text of remain-
ing lines. If we always want a minimal indentation we can try a definition simi-
lar to the one in the following example, where we set \labelwidth to 40pt and
\leftmargin to \labelwidth plus \labelsep . This means that \makelabel has
to concern itself only with formatting the label. However, given that we now have
a positive nominal label width, we need to define what should happen if the label
is small. By using \hfil we specify where extra white space should be inserted.

Description: Returns from a function.
If issued at top level, the in-
terpreter simply terminates,
just as if end of input had
been reached.

Errors: None.

Return values:
Any arguments in effect are
passed back to the caller.

\usepackage{calc}
\newenvironment{Description}

{\begin{list}{}{\let\makelabel\Descriptionlabel
\setlength\labelwidth{40pt}%
\setlength\leftmargin{\labelwidth+\labelsep}}}%

{\end{list}}
\newcommand*\Descriptionlabel[1]{\textsf{#1:}\hfil}

\begin{Description}
\item[Description]
Returns from a function. If issued at top level,
the interpreter simply terminates, just as if
end of input had been reached.

\item[Errors] None.
\item[Return values]
\mbox{}\\
Any arguments in effect are passed back to the
caller.

\end{Description} 3-3-26

This example shows a typical problem with description-like lists when the
text in the label (term) is wider than the width of the label. Our definition lets the
text of the term continue into the text of the description part. This is often not

3.3 List structures 149

desired, and to improve the visual appearance of the list we have started one of
the description parts on the next line. A new line was forced by putting an empty
box on the same line, followed by the ‘\\’ command.

In the remaining part of this section various possibilities for controlling the
width and mutual positioning of the term and description parts will be investi-
gated. The first method changes the width of the label. The environment is de-
clared with an argument specifying the desired width of the label field (normally
chosen to be the widest term entry). Note the redefinition of the \makelabel
command where you specify how the label will be typeset. As this redefinition is
placed inside the definition1 of the altDescription environment, the argument
placeholder character # must be escaped to ## to signal LaTEX that you are refer-
ring to the argument of the \makelabel command, and not to the argument of
the outer environment. In such a case, \labelwidth is set to the width of the en-
vironment’s argument after it is processed by \makelabel . This way formatting
directives for the label that might change its width are taken into account.

3-3-27

Description: Returns from a func-
tion. If issued at top
level, the interpreter
simply terminates, just
as if end of input had
been reached.

Errors: None.

Return values: Any arguments in ef-
fect are passed back to
the caller.

\usepackage{calc}
\newenvironment{altDescription}[1]
{\begin{list}{}%

{\renewcommand\makelabel[1]{\textsf{##1:}\hfil}%
\settowidth\labelwidth{\makelabel{#1}}%
\setlength\leftmargin{\labelwidth+\labelsep}}}%

{\end{list}}

\begin{altDescription}{Return values}
\item[Description]

Returns from a function. If issued at top level,
the interpreter simply terminates, just as if end
of input had been reached.

\item[Errors]
None.

\item[Return values]
Any arguments in effect are passed back to the
caller.

\end{altDescription}

A similar environment (but using an optional argument) is shown in Exam-
ple A-1-9 on page 850. However, having several lists with varying widths for the
label field on the same page might look typographically unacceptable. Evaluating
the width of the term is another possibility that avoids this problem. If the width
is wider than \labelwidth , an additional empty box is appended with the ef-
fect that the description part starts on a new line. This matches the conventional
method for displaying options in UN*X manuals.

To illustrate this method we reuse the Description environment defined

1This is done for illustration purposes. Usually the solution involving an external name is prefer-
able, as with \Descriptionlabel in Example 3-3-26 on the preceding page.

150 Basic Formatting Tools

in Example 3-3-26 but provide a different definition for the \Descriptionlabel
command as follows:

Description:
Returns from a function. If
issued at top level, the in-
terpreter simply terminates,
just as if end of input had
been reached.

Errors: None.

Return values:
Any arguments in effect are
passed back to the caller.

\usepackage{calc,ifthen} \newlength{\Mylen}
% definition of Description environment as before
\newcommand*\Descriptionlabel[1]{%
\settowidth\Mylen{\textsf{#1:}}% determine width
\ifthenelse{\lengthtest{\Mylen > \labelwidth}}%

{\parbox[b]{\labelwidth}% term > labelwidth
{\makebox[0pt][l]{\textsf{#1:}}\\\mbox{}}}%

{\textsf{#1:}}% term <= labelwidth
\hfill}

\begin{Description}
\item[Description] Returns from a function.
If issued at top level, the interpreter simply
terminates, just as if end of input had been reached.

\item[Errors] None.
\item[Return values]
Any arguments in effect are passed back to the caller.

\end{Description} 3-3-28

The definition of \Descriptionlabel sets the length variable \Mylen equal
to the width of the label. It then compares that length with \labelwidth . If the
label is not wider than \labelwidth , then it is typeset on the same line as the de-
scription term. Otherwise, it is typeset in a zero-width box with the material stick-
ing out to the right as far as needed. It is placed into a bottom-aligned \parbox
followed by a forced line break so that the description term starts one line lower.
This somewhat complicated maneuver is necessary because \makelabel , and
thus \Descriptionlabel , are executed in a strictly horizontal context in which
vertical spaces or \\ commands have no effect.

Yet another possibility is to allow multiple-line labels.

Descrip-
tion:

Returns from a function. If
issued at top level, the in-
terpreter simply terminates,
just as if end of input had
been reached.

Errors: None.

Return
values:

Any arguments in effect are
passed back to the caller.

\usepackage{calc}
% definition of Description environment as before
\newcommand*\Descriptionlabel[1]

{\raisebox{0pt}[1ex][0pt]%
{\makebox[\labelwidth][l]%

{\parbox[t]{\labelwidth}%
{\hspace{0pt}\textsf{#1:}}}}}

\begin{Description}
\item[Description] Returns from a function.
If issued at top level, the interpreter simply
terminates, just as if end of input had been reached.

\item[Errors] None.
\item[Return\\values]
Any arguments in effect are passed back to the caller.

\end{Description} 3-3-29

3.4 Simulating typed text 151

In the previous example, we once again used the Description environment
as a basis, with yet another redefinition of the \Descriptionlabel command.
The idea here is that large labels may be split over several lines. Certain precau-
tions have to be taken to allow hyphenation of the first word in a paragraph, and
therefore the \hspace{0pt} command is introduced in the definition. The mate-
rial gets typeset inside a paragraph box of the correct width \labelwidth , which
is then top and left aligned into a box that is itself placed inside a box with a
height of 1ex and no depth. In this way, LaTEX does not realize that the material
extends below the first line.

The final example deals with the definition of enumeration lists. An environ-
ment with an automatically incremented counter can be created by including a
\usecounter command in the declaration of the list environment. This func-
tion is demonstrated with the Notes environment, which produces a sequence of
notes. In this case, the first parameter of the list environment is used to provide
the automatically generated text for the term part.

After declaring the notes counter, the default label of the Notes environment
is defined to consist of the word Note in small caps, followed by the value of the
notes counter, using as its representation an Arabic numeral followed by a dot.
Next \labelsep is set to a relatively large value and \itemindent , \leftmargin ,
and \labelwidth are adjusted in a way such that the label nevertheless starts
out at the left margin. Finally, the already-mentioned \usecounter declaration
ensures that the notes counter is incremented for each \item command.

3-3-30

NOTE 1. This is the text of the
first note item. Some more text
for the first note item.

NOTE 2. This is the text of the
second note item. Some more text
for the second note item.

\newcounter{notes}
\newenvironment{Notes}

{\begin{list}{\textsc{Note} \arabic{notes}.}%
{\setlength\labelsep{10pt}%
\setlength\itemindent{10pt}%
\setlength\leftmargin{0pt}%
\setlength\labelwidth{0pt}%
\usecounter{notes}}}%

{\end{list}}

\begin{Notes}
\item This is the text of the first note item.

Some more text for the first note item.
\item This is the text of the second note item.

Some more text for the second note item.
\end{Notes}

3.4 Simulating typed text

It is often necessary to display information verbatim—that is, “as entered at the
terminal”. This ability is provided by the standard LaTEX environment verbatim.
However, to guide the reader it might be useful to highlight certain textual strings

152 Basic Formatting Tools

in a particular way, such as by numbering the lines. Over time a number of pack-
ages have appeared that addressed one or the other extra feature—unfortunately,
each with its own syntax.

In this section we will review a few such packages. Since they have been used
extensively in the past, you may come across them in document sources on the
Internet or perhaps have used them yourself in the past. But we then concentrate
on the package fancyvrb written by Timothy Van Zandt, which combines all such
features and many more under the roof of a single, highly customizable package.

This coverage is followed by a discussion of the listings package, which pro-
vides a versatile environment in which to pretty print computer listings for a large
number of computer languages.

3.4.1 Simple verbatim extensions

The package alltt (by Leslie Lamport) defines the alltt environment. It acts like
a verbatim environment except that the backslash “\” and braces “{” and “}”
retain their usual meanings. Thus, other commands and environments can appear
inside an alltt environment. A similar functionality is provided by the fancyvrb
environment keyword commandchars (see page 161).

One can have font changes, like
emphasized text.
Some special characters: # $ % ^ & ~ _

\usepackage{alltt}

\begin{alltt}
One can have font changes, like
\emph{emphasized text}.
Some special characters: # $ % ^ & ~ _
\end{alltt} 3-4-1

In documents where a lot of \verb commands are needed the source soon
becomes difficult to read. For this reason the doc package, described in Chapter 14,
introduces a shortcut mechanism that lets you use a special character to denote
the start and stop of verbatim text, without having to repeatedly write \verb in
front of it. This feature is also available in a stand-alone package called shortvrb.
With fancyvrb the same functionality is provided, unfortunately using a slightly
different syntax (see page 168).

The use of \MakeShortVerb can make
sources much more readable. And with the
declaration \DeleteShortVerb{\|} we can
return the | character back to normal.

\usepackage{shortvrb}

\MakeShortVerb{\|}
The use of |\MakeShortVerb| can make sources
much more readable.
\DeleteShortVerb{\|}\MakeShortVerb{\+}
And with the declaration +\DeleteShortVerb{\|}+
we can return the +|+ character back to normal. 3-4-2

The variant form, \MakeShortVerb* , implements the same shorthand mech-
anism for the \verb* command. This is shown in the next example.

3.4 Simulating typed text 153

3-4-3 Instead of � we can now write �.
\usepackage{shortvrb} \MakeShortVerb*{\+}

Instead of \verb*/ / we can now write + +.

The package verbatim (by Rainer Schöpf) reimplements the LaTEX environ-
ments verbatim and verbatim*. One of its major advantages is that it allows ar-
bitrarily long verbatim texts, something not possible with the basic LaTEX versions
of the environments. It also defines a comment environment that skips all text
between the commands \begin{comment} and \end{comment} . In addition, the
package provides hooks to implement user extensions for defining customized
verbatim-like environments.

A few such extensions are realized in the package moreverb (by Angus Dug-
gan). It offers some interesting verbatim-like commands for writing to and reading
from files as well as several environments for the production of listings and deal-
ing with tab characters. All of these extensions are also available in a consistent
manner with the fancyvrb package, so here we only give a single example to show
the flavor of the syntax used by the moreverb package.

3-4-4

Text before listing environment.

The�listing�environment�numbers�the
4 lines�in�it.��It�takes�an�optional

argument,�which�is�the�step�between
6 numbered�lines�(line�1�is�always

numbered�if�present),�and�a�required
8 argument,�which�is�the�starting�line.

The�star�form�makes�blanks�visible.

Text between listing environments.

10 This listingcont environment continues
where the previous listing environment

12 left off. Both the listing and
listingcont environments expand tabs

14 with a default tab width of 8.

Text following listing environments.

\usepackage{verbatim,moreverb}

Text before listing environment.
\begin{listing*}[2]{3}
The listing environment numbers the
lines in it. It takes an optional
argument, which is the step between
numbered lines (line 1 is always
numbered if present), and a required
argument, which is the starting line.
The star form makes blanks visible.
\end{listing*}
Text between listing environments.
\begin{listingcont}
This listingcont environment continues
where the previous listing environment
left off. Both the listing and
listingcont environments expand tabs
with a default tab width of 8.
\end{listingcont}
Text following listing environments.

3.4.2 upquote—Computer program style quoting

The Computer Modern Typewriter font that is used by default for typesetting
“verbatim” is a very readable monospaced typeface. Due to its small running length
it is very well suited for typesetting computer programs and similar material. See
Section 7.7.4 for a comparison of this font with other monospaced typefaces.

154 Basic Formatting Tools

There is, however, one potential problem when using this font to render com-
puter program listings and similar material: most people expect to see a (right)
quote in a computer listing represented with a straight quote character (i.e., ') and
a left or back quote as a kind of grave accent on its own (i.e., `). The Computer Mod-
ern Typewriter font, however, displays real left and right curly quote characters
(as one would expect in a normal text font). In fact, most other typewriter fonts
when set up for use with LaTEX follow this pattern. This produces somewhat un-
conventional results that many people find difficult to understand. Consider the
following example, which shows the standard behavior for three major typewriter
fonts: LuxiMono, Courier, and Computer Modern Typewriter.

TEST=‘ls -l |awk ’{print $3}’‘
TEST=‘ls -l |awk ’{print $3}’‘
TEST=‘ls -l |awk ’{print $3}’‘

\usepackage[scaled=0.85]{luximono}

\raggedright
\verb+TEST=‘ls -l |awk ’{print $3}’‘+
\par \renewcommand\ttdefault{pcr}
\verb+TEST=‘ls -l |awk ’{print $3}’‘+
\par \renewcommand\ttdefault{cmtt}
\verb+TEST=‘ls -l |awk ’{print $3}’‘+ 3-4-5

This behavior can be changed by loading the package upquote (writ-
ten by Michael Covington), which uses the glyphs \textasciigrave and
\textquotesingle from the textcomp package instead of the usual left and right
curly quote characters within \verb or the verbatim environment. Normal type-
writer text still uses the curly quotes, as shown in the last line of the example.

TEST=`ls -l |awk '{print $3}'`
TEST=`ls -l |awk '{print $3}'`
TEST=`ls -l |awk '{print $3}'`
but ‘text’ is unaffected!

\usepackage[scaled=0.85]{luximono}
\usepackage{upquote}

\raggedright
\verb+TEST=‘ls -l |awk ’{print $3}’‘+
\par \renewcommand\ttdefault{pcr}
\verb+TEST=‘ls -l |awk ’{print $3}’‘+
\par \renewcommand\ttdefault{cmtt}
\verb+TEST=‘ls -l |awk ’{print $3}’‘+
\par \texttt{but ‘text’ is unaffected!} 3-4-6

The package works well together with “verbatim” extensions as described in
this chapter, except for the listings package; it conflicts with the scanning mecha-
nism of that package. If you want this type of quoting with listings simply use the
\lstset keyword upquote.

TEST= ` l s − l | awk ' { p r i n t $3 } ' `

\usepackage{textcomp}
\usepackage{listings} \lstset{upquote}

\begin{lstlisting}[language=ksh]
TEST=‘ls -l |awk ’{print $3}’‘
\end{lstlisting} 3-4-7

3.4 Simulating typed text 155

3.4.3 fancyvrb—Highly customizable verbatim environments

The fancyvrb package by Timothy Van Zandt (these days maintained by Denis
Girou and Sebastian Rahtz) offers a highly customizable set of environments and
commands to typeset and manipulate verbatim text.

It works by parsing one line at a time from an environment or a file (a concept
pioneered by the verbatim package), thereby allowing you to preprocess lines in
various ways. By incorporating features found in various other packages it pro-
vides a truly universal production environment under a common set of syntax
rules.

The main environment provided by the package is the Verbatim environment,
which, if used without customization, is much like standard LaTEX’s verbatim envi-
ronment. The main difference is that it accepts an optional argument in which you
can specify customization information using a key/value syntax. However, there
is one restriction to bear in mind: the left bracket of the optional argument must
appear on the same line as \begin. Otherwise, the optional argument will not be
recognized but instead typeset as verbatim text.

More than 30 keywords are available, and we will discuss their use and possi-
ble values in some detail.

A number of variant environments and commands will be discussed near
the end of this section as well. They also accept customization via the key/value
method. Finally, we cover possibilities for defining your own variants in a straight-
forward way.

Customization keywords for typesetting

To manipulate the fonts used by the verbatim environments of the fancyvrb pack-
age, four environment keywords, corresponding to the four axes of NFSS, are
available. The keyword fontfamily specifies the font family to use. Its default
is Computer Modern Typewriter, so that when used without keywords the envi-
ronments behave in a fashion similar to standard LaTEX’s verbatim. However, the
value of this keyword can be any font family name in NFSS notation, such as pcr
for Courier or cmss for Computer Modern Sans, even though the latter is not a
monospaced font as would normally be used in a verbatim context. The keyword
also recognizes the special values tt, courier, and helvetica and translates
them internally into NFSS nomenclature.

Because typesetting of verbatim text can include special characters like “\”
you must be careful to ensure that such characters are present in the font. This
should be no problem when a font encoding such as T1 is active, which could be
loaded using the fontenc package. It is, however, not the case for LaTEX’s default
font encoding OT1, in which only some monospaced fonts, such as the default
typewriter font, contain all such special characters. The type of incorrect output
you might encounter is shown in the second line of the next example.

156 Basic Formatting Tools

Family ‘tt’ is fine in OT1: \sum_{i=1}^n

But ‘helvetica’ fails in OT1: “sum˙–i=1˝ˆn

... while it works in T1: \sum_{i=1}^n

\usepackage{fancyvrb}
\usepackage[OT1,T1]{fontenc}

\fontencoding{OT1}\selectfont
\begin{Verbatim}[fontfamily=tt]
Family ‘tt’ is fine in OT1: \sum_{i=1}^n
\end{Verbatim}
\begin{Verbatim}[fontfamily=helvetica]
But ‘helvetica’ fails in OT1: \sum_{i=1}^n
\end{Verbatim}
\fontencoding{T1}\selectfont
\begin{Verbatim}[fontfamily=helvetica]
... while it works in T1: \sum_{i=1}^n
\end{Verbatim} 3-4-8

Since all examples in this book are typeset using the T1 encoding this kind
of problem will not show up elsewhere in the book. Nevertheless, you should be
aware of this danger. It represents another good reason to use T1 in preference to
TEX’s original font encoding; for a more in-depth discussion see Section 7.2.4 on
page 336.

The other three environment keywords related to the font set-up are
fontseries, fontshape, and fontsize. They inherit the current NFSS settings
from the surrounding text if not specified. While the first two expect values that
can be fed into \fontseries and \fontshape , respectively (e.g., bx for a bold
extended series or it for an italic shape), the fontsize is special. It expects
one of the higher-level NFSS commands for specifying the font size—for exam-
ple, \small . If the relsize package is available then you could alternatively specify
a change of font size relative to the current text font by using something like
\relsize{-2}.

\sum_{i=1}^n

A line of text to show the body size.

\sum_{i=1}^n

\usepackage{relsize,fancyvrb}

\begin{Verbatim}[fontsize=\relsize{-2}]
\sum_{i=1}^n

\end{Verbatim}
A line of text to show the body size.
\begin{Verbatim}[fontshape=sl,fontsize=\Large]
\sum_{i=1}^n

\end{Verbatim} 3-4-9

A more general form for customizing the formatting is available through
the environment keyword formatcom, which accepts any LaTEX code and exe-
cutes it at the start of the environment. For example, to color the verbatim
text you could pass it something like \color{blue}. It is also possible to op-
erate on each line of text by providing a suitable redefinition for the command
\FancyVerbFormatLine . This command is executed for every line, receiving the
text from the line as its argument. In the next example every second line is

3.4 Simulating typed text 157

colored in blue, a result achieved by testing the current value of the counter
FancyVerbLine . This counter is provided automatically by the environment and
holds the current line number.

3-4-10

This line should become blue while
this one will be black. And here
u can observe that gobble removes
t only blanks but any character.

\usepackage{ifthen,color,fancyvrb}

\renewcommand\FancyVerbFormatLine[1]
{\ifthenelse{\isodd{\value{FancyVerbLine}}}%

{\textcolor{blue}{#1}}{#1}}
\begin{Verbatim}[gobble=2]
This line should become blue while
this one will be black. And here

you can observe that gobble removes
not only blanks but any character.
\end{Verbatim}

As shown in the previous example the keyword gobble can be used to remove
a number of characters or spaces (up to nine) from the beginning of each line. This
is mainly useful if all lines in your environments are indented and you wish to get
rid of the extra space produced by the indentation. Sometimes the opposite goal
is desired: every line should be indented by a certain space. For example, in this
book all verbatim environments are indented by 24pt. This indentation is con-
trolled by the keyword xleftmargin. There also exists a keyword xrightmargin
to specify the right indentation, but its usefulness is rather limited, since verbatim
text is not broken across lines. Thus, its only visible effect (unless you use frames,
as discussed below) is potentially more overfull box messages1 that indicate that
your text overfloods into the right margin. Perhaps more useful is the Boolean key-
word resetmargins, which controls whether preset indentations by surrounding
environments are ignored.

3-4-11

• Normal indentation left:

A verbatim line of text!

• No indentation at either side:

A verbatim line of text!

\usepackage{fancyvrb}

\begin{itemize} \item Normal indentation left:
\begin{Verbatim}[frame=single,xrightmargin=2pc]

A verbatim line of text!
\end{Verbatim}
\item No indentation at either side:
\begin{Verbatim}[resetmargins=true,

frame=single]
A verbatim line of text!
\end{Verbatim}

\end{itemize}

The previous example demonstrates one use of the frame keyword: to draw a
frame around verbatim text. By providing other values for this keyword, different-

1Whether overfull boxes inside a verbatim environment are shown is controlled the hfuzz key-
word, which has a default value of 2pt. A warning is issued only if boxes protrude by more than the
keywords’s value into the margin.

158 Basic Formatting Tools

looking frames can be produced. The default is none, that is, no frame. With
topline, bottomline, or leftline you get a single line at the side indicated;1

lines produces a line at top and bottom; and single, as we saw in Example 3-4-
11, draws the full frame. In each case, the thickness of the rules can be customized
by specifying a value via the framerule keyword (default is 0.4pt). The separa-
tion between the lines and the text can be controlled with framesep (default is
the current value of \fboxsep).

If the color package is available, you can color the rules using the environment
keyword rulecolor (default is black). If you use a full frame, you can also color
the separation between the frame and the text via fillcolor.

A framed verbatim line!

\usepackage{color,fancyvrb}

\begin{Verbatim}[frame=single,rulecolor=\color{blue},
framerule=3pt,framesep=1pc,fillcolor=\color{yellow}]

A framed verbatim line!
\end{Verbatim} 3-4-12

Unfortunately, there is no direct way to fill the entire background. The closest
you can get is by using \colorbox inside \FancyVerbFormatLine. But this ap-
proach will leave tiny white rules between the lines and—without forcing the lines
to be of equal length, such as via \makebox—will also result in colored blocks of
different widths.

Some verbatim lines with a
background color.

Some verbatim lines with a
background color.

\usepackage{color,fancyvrb}

\renewcommand\FancyVerbFormatLine[1]
{\colorbox{green}{#1}}

\begin{Verbatim}
Some verbatim lines with a
background color.
\end{Verbatim}
\renewcommand\FancyVerbFormatLine[1]
{\colorbox{yellow}{\makebox[\linewidth][l]{#1}}}

\begin{Verbatim}
Some verbatim lines with a
background color.
\end{Verbatim} 3-4-13

It is possible to typeset text as part of a frame by supplying it as the value
of the label keyword. If this text contains special characters, such as brackets,
equals sign, or comma, you have to hide them by surrounding them with a brace
group. Otherwise, they will be mistaken for part of the syntax. The text appears
by default at the top, but is printed only if the frame set-up would produce a line
in that position. Alternate positions can be specified by using labelposition,
which accepts none, topline, bottomline, or all as values. In the last case the
text is printed above and below. If the label text is unusually large you may need

1There is no value to indicate a line at the right side.

3.4 Simulating typed text 159

to increase the separation between the frame and the verbatim text by using the
keyword framesep. If you want to cancel a previously set label string, use the
value none—if you really need “none” as a label string, enclose it in braces.

3-4-14

Some verbatim text framed

Example code

\usepackage{fancyvrb}

\begin{Verbatim}[frame=single,label=\fbox{Example code},
framesep=5mm,labelposition=bottomline]

Some verbatim text framed
\end{Verbatim}

You can, in fact, provide different texts to be placed at top and bottom by
surrounding the text for the top position with brackets, as shown in the next
example. For this scheme to work frame needs to be set to either single or lines.

3-4-15

Start of code

A line of code

End of code

\usepackage{fancyvrb}

\begin{Verbatim}[frame=lines,framesep=5mm,
label={[Start of code]End of code}]

A line of code
\end{Verbatim}

By default, the typeset output of the verbatim environments can be broken
across pages by LaTEX if it does not fully fit on a single page. This is even true in
cases where a frame surrounds the text. If you want to ensure that this cannot
happen, set the Boolean keyword samepage to true.

The vertical spacing between lines in a verbatim environment is the same as
in normal text, but if desired you can enlarge it by a factor using the keyword
baselinestretch. Shrinking so that lines overlap is not possible. If you want to
revert to the default line separation, use the string auto as a value.

3-4-16

This text is more or less double-spaced.

See also the discussion about the

setspace package elsewhere.

\usepackage{fancyvrb}

\begin{Verbatim}[baselinestretch=1.6]
This text is more or less double-spaced.
See also the discussion about the
setspace package elsewhere.
\end{Verbatim}

When presenting computer listings, it is often helpful to number some or all
of the lines. This can be achieved by using the keyword numbers, which accepts
none, left, or right as a value to control the position of the numbers. The dis-
tance between the number and the verbatim text is 12pt by default but it can be
adjusted by specifying a different value via the keyword numbersep. Usually, num-
bering restarts at 1 with each environment, but by providing an explicit number
with the keyword firstnumber you can start with any integer value, even a nega-
tive one. Alternatively, this keyword accepts the word last to indicate that num-
bering should resume where it had stopped in the previous Verbatim instance.

160 Basic Formatting Tools

1 Verbatim lines can be numbered
2 at either left or right.

Some intermediate text. . .

3 Continuation is possible too
4 as we can see here.

\usepackage{fancyvrb}

\begin{Verbatim}[numbers=left,numbersep=6pt]
Verbatim lines can be numbered
at either left or right.
\end{Verbatim}
Some intermediate text\ldots
\begin{Verbatim}[numbers=left,firstnumber=last]
Continuation is possible too
as we can see here.
\end{Verbatim} 3-4-17

Some people prefer to number only some lines, and the package caters to this
possibility by providing the keyword stepnumber. If this keyword is assigned a
positive integer number, then only line numbers being an integer multiple of that
number will get printed. We already learned that the counter that is used internally
to count the lines is called FancyVerbLine , so it comes as no surprise that the ap-
pearance of the numbers is controlled by the command \theFancyVerbLine . By
modifying this command, special effects can be obtained; a possibility where the
current chapter number is prepended is shown in the next example. It also shows
the use of the Boolean keyword numberblanklines, which controls whether blank
lines are numbered (default is false , i.e., to not number them).

Normally empty lines in
3.2 in a verbatim will not receive

numbers---here they do!
3.4

Admittedly using stepnumber
3.6 with such a redefinition of

FancyVerbLine looks a bit odd.

\usepackage{fancyvrb}
\renewcommand\theFancyVerbLine{\footnotesize
\thechapter.\arabic{FancyVerbLine}}

\begin{Verbatim}[numbers=left,stepnumber=2,
numberblanklines=true]

Normally empty lines in
in a verbatim will not receive
numbers---here they do!

Admittedly using stepnumber
with such a redefinition of
FancyVerbLine looks a bit odd.
\end{Verbatim} 3-4-18

In some situations it helps to clearly identify white space characters by
displaying all blanks as �. This can be achieved with the Boolean keyword
showspaces or, alternatively, the Verbatim* variant of the environment.

Another white space character, the tab, plays an important rôle in some pro-
gramming languages, so there may be a need to identify it in your source. This
is achieved with the Boolean keyword showtabs. The tab character displayed is
defined by the command \FancyVerbTab and can be redefined, as seen below. By
default, tab characters simply equal eight spaces, a value that can be changed with
the keyword tabsize. However, if you set the Boolean keyword obeytabs to true,
then each tab character produces as many spaces as necessary to move to the next

3.4 Simulating typed text 161

integer multiple of tabsize. The example input contains tabs in each line that are
displayed on the right as spaces with the default tabsize of 8. Note in particular
the difference between the last input and output line.

3-4-19

123456789012345678901234567890
Two −〉|default −〉|tabs

Two −〉|real −〉|tabs

Two �new �tabs

Using�a �special tab�size

\usepackage{fancyvrb}

\begin{Verbatim}[showtabs=true]
123456789012345678901234567890
Two default tabs
\end{Verbatim}
\begin{Verbatim}[obeytabs=true,showtabs=true]
Two real tabs
\end{Verbatim}
\renewcommand\FancyVerbTab{\triangleright}
\begin{Verbatim}[obeytabs=true,showtabs=true]
Two new tabs
\end{Verbatim}
\begin{Verbatim}[obeytabs=true,tabsize=3,showtabs=true]
Using a special tab size
\end{Verbatim}

If you wish to execute commands within the verbatim text, then you need one
character to act as an escape character (i.e., to denote the beginning of a command
name) and two characters to serve as argument delimiters (i.e., to play the rôle
that braces normally play within LaTEX). Such special characters can be specified
with the commandchars keyword as shown below; of course, these characters then
cannot appear as part of the verbatim text. The characters are specified by putting
a backslash in front of each one so as to mask any special meaning they might
normally have in LaTEX. The keyword commentchar allows you to define a comment
character, which will result in ignoring everything following it until and including
the next new line. Thus, if this character is used in the middle of a line, this line
and the next will be joined together. If you wish to cancel a previous setting for
commandchars or commentchar, use the string value “none”.

3-4-20

We can emphasize text
Line with label is shown here.

On line 2 we see. . .

\usepackage{fancyvrb}

\begin{Verbatim}[commandchars=\|\[\],commentchar=\!]
We can |emph[emphasize] text
! see above (this line is invisible)
Line with label|label[linea] ! removes new line
is shown here.
\end{Verbatim}
On line~\ref{linea} we see\ldots

If you use \label within the verbatim environment, as was done in the previ-
ous example, it will refer to the internal line number whether or not that number is
displayed. This requires the use of the commandchars keyword, a price you might
consider too high because it deprives you of the use of the chosen characters in
your verbatim text.

162 Basic Formatting Tools

Two other keywords let you change the parsing and manipulation of verbatim
data: codes and defineactive. They allow you to play some devious tricks but
their use is not so easy to explain: one needs a good understanding of TEX’s inner
workings. If you are interested, please check the documentation provided with the
fancyvrb package.

Limiting the displayed data

Normally, all lines within the verbatim environment are typeset. But if you want
to display only a subset of lines, you have a number of choices. With the key-
words firstline and lastline, you can specify the start line and (if necessary)
the final line to typeset. Alternatively, you can specify a start and stop string to
search for within the environment body, with the result that all lines between (but
this time not including the special lines) will be typeset. The strings are spec-
ified in the macros \FancyVerbStartString and \FancyVerbStopString . To
make this work you have to be a bit careful: the macros need to be defined with
\newcommand* and redefined with \renewcommand* . Using \newcommand will not
work! To cancel such a declaration is even more complicated: you have to \let
the command to \relax , for example,

\let\FancyVerbStartString\relax

or ensure that your definition is confined to a group—everything else fails.

Only the third line is shown.

\usepackage{fancyvrb}

\newcommand*\FancyVerbStartString{START}
\newcommand*\FancyVerbStopString{STOP}
\begin{Verbatim}
A verbatim line not shown.

START
Only the third line is shown.

STOP
But the remainder is left out.

\end{Verbatim} 3-4-21

You may wonder why one would want to have such functionality available,
given that one could simply leave out the lines that are not being typeset. With an
environment like Verbatim they are indeed of only limited use. However, when
used together with other functions of the package that write data to files and read
it back again, they offer powerful solutions to otherwise unsolvable problems.

For instance, all examples in this book use this method. The example body
How the book

examples have been
produced

is written to a file together with a document preamble and other material, so
that the resulting file will become a processable LaTEX document. This document is
then externally processed and included as an EPS graphic image into the book.
Beside it, the sample code is displayed by reading this external file back in
but displaying only those lines that lie between the strings \begin{document}

3.4 Simulating typed text 163

and \end{document}. This accounts for the example lines you see being type-
set in black. The preamble part, which is shown in blue, is produced in a
similar fashion: for this the start and stop strings are redefined to include
only those lines lying between the strings \StartShownPreambleCommands and
\StopShownPreambleCommands . When processing the example externally, these
two commands are simply no-ops; that is, they are defined by the “example” class
(which is otherwise close to the article document class) to do nothing. As a con-
sequence, the example code will always (for better or worse) correspond to the
displayed result.1

To write data verbatim to a file the environment VerbatimOut is available.
It takes one mandatory argument: the file name into which to write the data.
There is, however, a logical problem if you try to use such an environment in-
side your own environments: the moment you start the VerbatimOut environ-
ment, everything is swallowed without processing and so the end of your environ-
ment is not recognized. As a solution the fancyvrb package offers the command
\VerbatimEnvironment , which, if executed within the \begin code of your en-
vironment, ensures that the end tag of your environment will be recognized in
verbatim mode and the corresponding code executed.

To read data verbatim from a file, the command \VerbatimInput can be used.
It takes an optional argument similar to the one of the Verbatim environment (i.e.,
it accepts all the keywords discussed previously) and a mandatory argument to
specify the file from which to read. The variant \BVerbatimInput puts the typeset
result in a box without space above and below. The next example demonstrates
some of the possibilities: it defines an environment example that first writes its
body verbatim to a file, reads the first line back in and displays it in blue, reads
the file once more, this time starting with the second line, and numbers the lines
starting with the number 1. As explained above, a similar, albeit more complex
definition was used to produce the examples in this book.

3-4-22

A blue line.

1 Two lines
2 with numbers.

\usepackage{fancyvrb,color}

\newenvironment{example}
{\VerbatimEnvironment\begin{VerbatimOut}{test.out}}
{\end{VerbatimOut}\noindent
\BVerbatimInput[lastline=1,formatcom=\color{blue}]{test.out}%
\VerbatimInput[numbers=left,firstnumber=1,firstline=2]{test.out}}

\begin{example}
A blue line.
Two lines
with numbers.
\end{example}

An interesting set of sample environments can be found in the package
fvrb-ex written by Denis Girou, which builds on the features provided by fancyvrb.

1In the first edition we unfortunately introduced a number of mistakes when showing code in
text that was not directly used.

164 Basic Formatting Tools

Variant environments and commands

So far, all examples have used the Verbatim environment, but there also exist a
number of variants that are useful in certain circumstances. BVerbatim is similar
to Verbatim but puts the verbatim lines into a box. Some keywords discussed
above (notably those dealing with frames) are not supported, but two additional
ones are available. The first, baseline, denotes the alignment point for the box;
it can take the values t (for top), c (for center), or b (for bottom—the default).
The second, boxwidth, specifies the desired width of the box; if it is missing or
given the value auto, the box will be as wide as the widest line present in the
environment. We already encountered \BVerbatimInput; it too, supports these
additional keywords.

first line
second line

first line
second line

\usepackage{fancyvrb}

\begin{BVerbatim}[boxwidth=4pc,baseline=t]
first line
second line
\end{BVerbatim}
\begin{BVerbatim}[baseline=c]
first line
second line
\end{BVerbatim} 3-4-23

All environments and commands for typesetting verbatim text also have star
variants, which, as in the standard LaTEX environments, display blanks as �. In
other words, they internally set the keyword showspaces to true.

Defining your own variants

Defining customized variants of verbatim commands and environments is quite
simple. For starters, the default settings built into the package can be changed
with the help of the \fvset command. It takes one argument, a comma-separated
list of key/value pairs. It applies them to every verbatim environment or command.
Of course, you can still overwrite the new defaults with the optional argument on
the command or environment. For example, if nearly all of your verbatim envi-
ronments are indented by two spaces, you might want to remove them without
having to deploy gobble on each occasion.

A line of text to show the left margin.

The new ‘normal’ case.

We now need to explicitly
cancel gobble occasionally!

\usepackage{fancyvrb} \fvset{gobble=2}

\noindent A line of text to show the left margin.
\begin{Verbatim}
The new ‘normal’ case.

\end{Verbatim}
\begin{Verbatim}[gobble=0]
We now need to explicitly
cancel gobble occasionally!
\end{Verbatim} 3-4-24

3.4 Simulating typed text 165

However, \fvset applies to all environments and commands, which may not
be what you need. So the package offers commands to define your own verbatim
environments and commands or to modify the behavior of the predefined ones.

\CustomVerbatimEnvironment {new-env}{base-env}{key/val-list}
\RecustomVerbatimEnvironment{change-env}{base-env}{key/val-list}
\CustomVerbatimCommand {new-cmd}{base-cmd}{key/val-list}
\RecustomVerbatimCommand {change-cmd}{base-cmd}{key/val-list}

These declarations take three arguments: the name of the new environment
or command being defined, the name of the environment or command (with-
out a leading backslash) on which it is based, and a comma-separated list
of key/value pairs that define the new behavior. To define new structures,
you use \CustomVerbatimEnvironment or \CustomVerbatimCommand and to
change the behavior of existing environments or commands (predefined ones
as well as those defined by you), you use \RecustomVerbatimEnvironment or
\RecustomVerbatimCommand . As shown in the following example, the default val-
ues, set in the third argument, can be overwritten as usual with the optional argu-
ment when the environment or command is instantiated.

3-4-25

1 The normal case with thick
2 rules and numbers on the left.

The exception without numbers
and thinner rules.

1 And�from�here�on�the�environment
2 behaves�differently�again.

\usepackage{fancyvrb}
\CustomVerbatimEnvironment{myverbatim}{Verbatim}

{numbers=left,frame=lines,framerule=2pt}

\begin{myverbatim}
The normal case with thick
rules and numbers on the left.
\end{myverbatim}
\begin{myverbatim}[numbers=none,framerule=.6pt]
The exception without numbers
and thinner rules.
\end{myverbatim}
\RecustomVerbatimEnvironment{myverbatim}{Verbatim}

{numbers=left,frame=none,showspaces=true}
\begin{myverbatim}
And from here on the environment
behaves differently again.
\end{myverbatim}

Miscellaneous features

LaTEX’s standard \verb command normally cannot be used inside arguments, be-
cause in such places the parsing mechanism would go astray, producing incorrect
results or error messages. A solution to this problem is to process the verbatim
data outside the argument, save it, and later use the already parsed data in such
dangerous places. For this purpose the fancyvrb package offers the commands
\SaveVerb and \UseVerb .

166 Basic Formatting Tools

\SaveVerb[key/val-list]{label}=data= \UseVerb*[key/val-list]{label}

The command \SaveVerb takes one mandatory argument, a label denoting the
storage bin in which to save the parsed data. It is followed by the verbatim data
surrounded by two identical characters (= in the syntax example above), in the
same way that \verb delimits its argument. To use this data you call \UseVerb
with the label as the mandatory argument. Because the data is only parsed but
not typeset by \SaveVerb , it is possible to influence the typesetting by applying
a list of key/value pairs or a star as with the other verbatim commands and en-
vironments. Clearly, only a subset of keywords make sense, irrelevant ones being
silently ignored. The \UseVerb command is unnecessarily fragile, so you have to
\protect it in moving arguments.

Contents

1 Real \danger 6

1 Real \danger

Real�\danger is no longer dan-
gerous and can be reused as oftenReal \danger

as desired.

\usepackage{fancyvrb}
\SaveVerb{danger}=Real \danger=

\tableofcontents

\section{\protect\UseVerb{danger}}

\UseVerb*{danger} is no longer dangerous
and can\marginpar{\UseVerb[fontsize=\tiny]

{danger}}
be reused as often as desired. 3-4-26

It is possible to reuse such a storage bin when it is no longer needed, but if
you use \UseVerb inside commands that distribute their arguments over a large
distance you have to be careful to ensure that the storage bin still contains the
desired contents when the command finally typesets it. In the previous example
we placed \SaveVerb into the preamble because the use of its storage bin inside
the \section command eventually results in an execution of \UseVerb inside the
\tableofcontents command.

\SaveVerb also accepts an optional argument in which you can put key/value
pairs, though again only a few are relevant (e.g., those dealing with parsing). There
is one additional keyword aftersave, which takes code to execute immediately
after saving the verbatim text into the storage bin. The next example shows an ap-
plication of this keyword: the definition of a special variant of the \item command
that accepts verbatim text for display in a description environment. It also sup-
ports an optional argument in which you can put a key/value list to influence the
formatting. The definition is worth studying, even though the amount of mixed
braces and brackets seems distressingly complex at first. They are necessary to
ensure that the right brackets are matched by \SaveVerb, \item , and \UseVerb—
the usual problem, since brackets do not nest like braces do in TEX.

1 Also note the
use of \textnormal , which is needed to cancel the \bfseries implicitly issued

1The author confesses that it took him three trials (close to midnight) to make this example work.

3.4 Simulating typed text 167

by the \item command. Otherwise, the \emph command in the example would not
show any effect since no Computer Modern bold italic face exists.

3-4-27

\ddanger Dangerous beast;
found in TEXbooks.

\danger Its small brother, still
dangerous.

\dddanger{arg} The ulti-
mate horror.

\usepackage{fancyvrb}
\newcommand\vitem[1][]{\SaveVerb[commandchars=\|\<\>,%

aftersave={\item[\textnormal{\UseVerb[#1]{vsave}}]}]{vsave}}

\begin{description}
\vitem+\ddanger+ Dangerous beast;\\ found in \TeX books.
\vitem[fontsize=\tiny]+\danger+ Its small brother,

still dangerous.
\vitem+\dddanger{|emph<arg>}+ The ultimate horror.
\end{description}

In the same way you can save whole verbatim environments using the environ-
ment SaveVerbatim , which takes the name of a storage bin as the mandatory ar-
gument. To typeset them, \UseVerbatim or \BUseVerbatim (boxed version) with
the usual key/value machinery can be used.

Even though verbatim commands or environments are normally not allowed
inside footnotes, you do not need to deploy \SaveVerb and the like to get ver-
batim text into such places. Instead, place the command \VerbatimFootnotes
at the beginning of your document (following the preamble!) and from that point
onward, you can use verbatim commands directly in footnotes. However, this was
only implemented for footnotes—for other commands, such as \section , you
still need the more complicated storage bin method described above.

3-4-28

A bit of text to give us a reason to
use a footnote.1 Was this good enough?

1Here is proof: \danger{%_^}

\usepackage{fancyvrb}

\VerbatimFootnotes
A bit of text to give us a reason to use a
footnote.\footnote{Here is proof: \verb=\danger{%_^}=}
Was this good enough?

The fancyvrb version of \verb is called \Verb , and it supports all applica-
ble keywords, which can be passed to it via an optional argument as usual. The
example below creates \verbx as a variant of \Verb with a special setting of
commandchars so that we can execute commands within its argument. We have to
use \CustomVerbatimCommand for this purpose, since \verbx is a new command
not available in standard LaTEX.

3-4-29

\realdanger{|emph<arg>}
\realdanger{arg}

\usepackage{fancyvrb}
\CustomVerbatimCommand\verbx{Verb}{commandchars=\|\<\>}

\Verb[fontfamily=courier]+\realdanger{|emph<arg>}+ \\
\verbx[fontfamily=courier]+\realdanger{|emph<arg>}+

As already mentioned, fancyvrb offers a way to make a certain character
denote the start and stop of verbatim text without the need to put \verb in
front. The command to declare such a delimiting character is \DefineShortVerb .

168 Basic Formatting Tools

Like other fancyvrb commands it accepts an optional argument that allows you
to set key/value pairs. These influence the formatting and parsing, though this
time you cannot overwrite your choices on the individual instance. Alternatively,
\fvset can be used, since it works on all verbatim commands and environments
within its scope. To remove the special meaning from a character declared with
\DefineShortVerb , use \UndefineShortVerb .

The use of \DefineShortVerb can make sources
much more readable—or unreadable!

And with \UndefineShortVerb{\|}
we can return the | character back to normal.

\usepackage{fancyvrb}

\DefineShortVerb[fontsize=\tiny]{\|}
The use of |\DefineShortVerb| can make sources
much more readable---or unreadable! \par
\UndefineShortVerb{\|}\DefineShortVerb{\+}
\fvset{fontfamily=courier}
And with +\UndefineShortVerb{\|}+
we can return the +|+ character back to normal. 3-4-30

Your favorite extensions or customizations can be grouped in a file with the
name fancyvrb.cfg . After fancyvrb finishes loading, the package will automati-
cally search for this file. The advantage of using such a file, when installed in a
central place, is that you do not have to put your extensions into all your docu-
ments. The downside is that your documents will no longer be portable unless
you distribute this file in tandem with them.

3.4.4 listings—Pretty-printing program code

A common application of verbatim typesetting is presenting program code. While
one can successfully deploy a package like fancyvrb to handle this job, it is often
preferable to enhance the display by typesetting certain program components
(such as keywords, identifiers, and comments) in a special way.

Two major approaches are possible: one can provide commands to identify
the logical aspects of algorithms or the programming language, or the application
can (try to) analyze the program code behind the scenes. The advantage of the
first approach is that you have potentially more control over the presentation;
however, your program code is intermixed with TEX commands and thus may be
difficult to maintain, unusable for direct processing, and often rather complicated
to read in the source. Examples of packages classified into this category are alg
and algorithmic. Here is an example:

if i ≤ 0 then
i← 1

else
if i ≥ 0 then

i← 0
end if

end if

\usepackage{algorithmic}

\begin{algorithmic}
\IF {$i\leq0$} \STATE $i\gets1$ \ELSE
\IF {$i\geq0$} \STATE $i\gets0$ \ENDIF
\ENDIF
\end{algorithmic} 3-4-31

3.4 Simulating typed text 169

ABAP (R/2 4.3, R/2 5.0, R/3
3.1, R/3 4.6C, R/3 6.10)

ACSL

Ada (83, 95)
Algol (60, 68)
Assembler (x86masm)
Awk (gnu, POSIX)
Basic (Visual)
C (ANSI, Objective, Sharp)
C++ (ANSI, GNU, ISO, Visual)
Caml (light, Objective)
Clean

Cobol (1974, 1985, ibm)
Comal 80

csh

Delphi

Eiffel

Elan

erlang

Euphoria

Fortran (77, 90, 95)
GCL

Gnuplot

Haskell

HTML

IDL (empty, CORBA)
Java (empty, AspectJ)
ksh

Lisp (empty, Auto)
Logo

Make (empty, gnu)
Mathematica (1.0, 3.0)
Matlab

Mercury

MetaPost

Miranda

Mizar

ML

Modula-2

MuPAD

NASTRAN

Oberon-2

OCL (decorative, OMG)
Octave

Pascal (Borland6, Standard, XSC)
Perl

PHP

PL/I

POV

Prolog

Python

R

Reduce

S (empty, PLUS)
SAS

Scilab

SHELXL

Simula (67, CII, DEC, IBM)
SQL

tcl (empty, tk)
TeX (AlLaTeX, common, LaTeX,

plain, primitive)
VBScript

Verilog

VHDL (empty, AMS)
VRML (97)
XML

blue indicates default dialect

Table 3.7: Languages supported by listings (Winter 2003)

The second approach is exemplified in the package listings1 written by
Carsten Heinz. This package first analyzes the code, decomposes it into its compo-
nents, and then formats those components according to customizable rules. The
package parser is quite general and can be tuned to recognize the syntax of many
different languages (see Table 3.7). New languages are regularly added, so if your
target language is not listed it might be worth checking the latest release of the
package on CTAN. You may even consider contributing the necessary declarations
yourself, which involves some work but is not very difficult.

The user commands and environments in this package share many similari-
ties with those in fancyvrb. Aspects of parsing and formatting are controlled via
key/value pairs specified in an optional argument, and settings for the whole doc-
ument or larger parts of it can be specified using \lstset (the corresponding
fancyvrb command is \fvset). Whenever appropriate, both packages use the same
keywords so that users of one package should find it easy to make the transition
to the other.

1The package version described here is 1.0. Earlier releases used a somewhat different syntax in
some cases, so please upgrade if you find that certain features do not work as advertised.

170 Basic Formatting Tools

After loading the package it is helpful to specify all program languages
needed in the document (as a comma-separated list) using \lstloadlanguages .
Such a declaration does not select a language, but merely loads the necessary
support information and speeds up processing.

Program fragments are included inside a lstlisting environment. The lan-
guage of the fragment is specified with the language keyword. In the following
example we set this keyword via \lstset to C and then overwrite it later in the
optional argument to the second lstlisting environment.

A “for” loop in C:

i n t sum ;
i n t i ; / ∗ f o r l o o p v a r i a b l e ∗ /

sum =0;
f o r (i =0 ; i <n ; i ++) {

sum += a [i] ;
}

Now the same loop in Ada:

Sum : I n t e g e r ;
−− n o d e c l f o r I n e c e s s a r y

Sum := 0 ;
f o r I in 1 . . N loop

Sum := Sum + A(I) ;
end loop ;

\usepackage{listings}
\lstloadlanguages{C,Ada}
\lstset{language=C,commentstyle=\scriptsize}

A ‘‘for’’ loop in C:
\begin{lstlisting}[keywordstyle=\underbar]
int sum;
int i; /*for loop variable*/
sum=0;
for (i=0;i<n;i++) {

sum += a[i];
}
\end{lstlisting}
Now the same loop in Ada:
\begin{lstlisting}[language=Ada]
Sum: Integer;
-- no decl for I necessary
Sum := 0;
for I in 1..N loop

Sum := Sum + A(I);
end loop;
\end{lstlisting} 3-4-32

This example also uses the keyword commentstyle, which controls the lay-
out of comments in the language. The package properly identifies the different
syntax styles for comments. Several other such keywords are available as well—
basicstyle to set the overall appearance of the listing, stringstyle to for-
mat strings in the language, and directivestyle to format compiler directives,
among others.

To format the language keywords, keywordstyle and ndkeywordstyle (sec-
ond order) are used. Other identifiers are formatted according to the setting of
identifierstyle. The values for the “style” keywords (except basicstyle) ac-
cept a one-argument LaTEX command such as \textbf as their last token. This
scheme works because the “identifier text” is internally surrounded by braces and
can thus be picked up by a command with an argument.

Thus, highlighting of keywords, identifiers, and other elements is done au-
tomatically in a customizable way. Nevertheless, you might want to additionally
emphasize the use of a certain variable, function, or interface. For this purpose

3.4 Simulating typed text 171

you can use the keywords emph and emphstyle. The first gets a list of names you
want to emphasize; the second specifies how you want them typeset.

3-4-33

Sum : I n t e g e r ; Sum := 0 ;
f o r I in 1 . . N loop

Sum := Sum + A(I) ;
end loop ;

\usepackage{listings,color}
\lstset{emph={Sum,N},emphstyle=\color{blue},

emph=[2]I,emphstyle=[2]\underbar}

\begin{lstlisting}[language=Ada]
Sum: Integer; Sum := 0;
for I in 1..N loop
Sum := Sum + A(I);

end loop;
\end{lstlisting}

If you want to typeset a code fragment within normal text you can use the com-
mand \lstinline . The code is delimited in the same way as with the \verb com-
mand, meaning that you can choose any character (other than the open bracket)
that is not used within the code fragment and use it as delimiter. An open bracket
cannot be used because the command also accepts an optional argument in which
you can specify a list of key/value pairs.

3-4-34 The for loop is specified as i=0;i<n;i++.

\usepackage{listings} \lstset{language=C}

The \lstinline[keywordstyle=\underbar]!for!
loop is specified as \lstinline!i=0;i<n;i++!.

Of course, it is also possible to format the contents of whole files; for this
purpose you use the command \lstinputlisting . It takes an optional argument
in which you can specify key/value pairs and a mandatory argument in which you
specify the file name to process. In the following example, the package identifies
keywords of case-insensitive languages, even if they are written in an unusual
mixed-case (WrItE) manner.

3-4-35

f o r i :=1 to maxint do
begin

WrItE (’ Th i s i s s t u p i d ’) ;
end .

\usepackage{listings}
\begin{filecontents*}{pascal.src}
for i:=1 to maxint do
begin
WrItE(’This is stupid’);

end.
\end{filecontents*}

\lstinputlisting[language=Pascal]{pascal.src}

Spaces in strings are shown as � by default. This behavior can be turned off
by setting the keyword showstringspaces to false, as seen in the next example.
It is also possible to request that all spaces be displayed in this way by setting
the keyword showspaces to true. Similarly, tab characters can be made visible by
using the Boolean keyword showtabs.

172 Basic Formatting Tools

Line numbering is possible, too, using the same keywords as employed with
fancyvrb: numbers accepts either left, right, or none (which turns numbering
on or off), numberblanklines decides whether blank lines count with respect
to numbering (default false), numberstyle defines the overall look and feel of
the numbers, stepnumber defines which line numbers will appear (0 means no
numbering), and numbersep defines the separation between numbers and the start
of the line. By default, line numbering starts with 1 on each \lstinputlisting
but this can be changed using the firstnumber keyword. If you specify last as a
special value to firstnumber, numbering is continued.

Some text before . . .

10 f o r i :=1 to maxint do
begin

12 WrItE (’ Th i s i s s t u p i d ’) ;
end .

\usepackage{listings}
% pascal.src as defined before

\lstset{numberstyle=\tiny,numbers=left,
stepnumber=2,numbersep=5pt,firstnumber=10,
xleftmargin=12pt,showstringspaces=false}

\noindent Some text before \ldots
\lstinputlisting[language=Pascal]{pascal.src} 3-4-36

An overall indentation can be set using the xleftmargin keyword, as shown
in the previous example, and gobble can be used to remove a certain number of
characters (hopefully only spaces) from the left of each line displayed. Normally,
indentations of surrounding environments like itemize will be honored. This fea-
ture can be turned off using the Boolean keyword resetmargin. Of course, all
such keywords can be used together. To format only a subrange of the code lines
you can specify the first and/or last line via firstline and lastline; for exam-
ple, lastline=10 would typeset a maximum of 10 code lines.

Another way to provide continued numbering is via the name keyword. If you
define “named” environments using this keyword, numbering is automatically con-
tinued with respect to the previous environment with the same name. This allows
independent numbering if the need arises.

1Sum : I n t e g e r ;

The second fragment contin-
ues the numbering.

2Sum := 0 ;
3f o r I in 1 . . N loop
4Sum := Sum + A(I) ;
5end loop ;

\usepackage{listings} \lstset{language=Ada,numbers=right,
numberstyle=\tiny,stepnumber=1,numbersep=5pt}

\begin{lstlisting}[name=Test]
Sum: Integer;
\end{lstlisting}
The second fragment continues the numbering.
\begin{lstlisting}[name=Test]
Sum := 0;
for I in 1..N loop
Sum := Sum + A(I);

end loop;
\end{lstlisting} 3-4-37

If a listing contains very long lines they may not fit into the available mea-
sure. In that case listings will produce overfull lines sticking out to the right, just

3.4 Simulating typed text 173

like a verbatim environment would do. However, you can direct it to break long
lines at spaces or punctuation characters by specifying the keyword breaklines.
Wrapped lines are indented by 20pt, a value that can be adjusted through the
keyword breakindent.

If desired, you can add something before (keyword prebreak) and after (key-
word postbreak) the break to indicate that the line was artificially broken in the
listing. We used this ability below to experiment with small arrows and later on
with the string “(cont.)” in tiny letters. Both keywords are internally implemented
as a TEX \discretionary , which means that they accept only certain input (char-
acters, boxes, and kerns). For more complicated material it would be best to wrap
everything in an \mbox , as we did in the example. In case of color changes, even
that is not enough: you need an extra level of braces to prevent the color \special
from escaping from the box (see the discussion in Appendix A.2.5).

The example exhibits another feature of the breaking mechanism—namely, if
spaces or tabs appear in front of the material being broken, then these spaces are
by default repeated on continuation lines. If this behavior is not desired, set the
keyword breakautoindent to false as we did in the second part of the example.

3-4-38

Text a t l e f t margin
/∗A long ↘

→ s t r i n g i s ↘

→ broken ↘

→ a c r o s s t h e ↘

→ l i n e ! ∗ /

/∗A long ↘

(cont.) s t r i n g i s b roken ↘

(cont.) a c r o s s t h e l i n e ! ∗ /

\usepackage{color,listings}
\lstset{breaklines=true,breakindent=0pt,

prebreak=\mbox{\tiny\searrow},
postbreak=\mbox{{\color{blue}\tiny\rightarrow}}}

\begin{lstlisting}
Text at left margin

/*A long string is broken across the line!*/
\end{lstlisting}
\begin{lstlisting}[breakautoindent=false,

postbreak=\tiny (cont.)\,]
/*A long string is broken across the line!*/

\end{lstlisting}

You can put frames or rules around listings using the frame keyword, which
takes the same values as it does in fancyvrb (e.g., single, lines). In addition, it
accepts a subset of the string trblTRBL as its value. The uppercase letters stand
for double rules the lowercase ones for single rules. There are half a dozen more
keywords: to influence rule widths, create separation from the text, make round
corners, and so on—all of them are compatible with fancyvrb if the same function-
ality is provided.

3-4-39

f o r i :=1 to maxint do
begin

WrItE (’ Th i s i s s t u p i d ’) ;
end .

\usepackage{listings}
% pascal.src as defined before

\lstset{frame=trBL,framerule=2pt,framesep=4pt,
rulesep=1pt,showspaces=true}

\lstinputlisting[language=Pascal]{pascal.src}

174 Basic Formatting Tools

You can specify a caption for individual listings using the keyword caption.
The captions are, by default, numbered and prefixed with the string Listing
stored in \lstlistingname . The counter used is lstlisting; thus, to change
its appearance you could modify \thelstlisting . The caption is positioned ei-
ther above (default) or below the listing, and this choice can be adjusted using the
keyword captionpos.

To get a list of all captions, put the command \lstlistoflistings at an
appropriate place in your document. It produces a heading containing the words
stored in \lstlistlistingname (default is Listings). If you want the caption
text in the document to differ from the caption text in the list of listings, use an
optional argument as shown in the following example. Note that in this case you
need braces around the value to hide the right bracket. To prevent the caption
from appearing in the list of listings, use the keyword nolol with a value of true.
By using the keyword label you can specify a label for referencing the listing
number via \ref , provided you have not suppressed the number.

Listings

1 Pascal listing 6

The Pascal code in listing 1 shows. . .� �
f o r i :=1 to maxint do
begin

WrItE (’ Th i s i s s t u p i d ’) ;
end .�

Listing 1: Pascal

\usepackage{listings}
% pascal.src as defined before

\lstset{frame=single,frameround=tftt,
language=Pascal,captionpos=b}

\lstlistoflistings
%

\bigskip % normally the above is in the
\noindent % front matter section, but here ...

%
The Pascal code in listing~\ref{foo} shows\ldots
\lstinputlisting

[caption={[Pascal listing]Pascal},label=foo]
{pascal.src} 3-4-40

The keyword frameround used in the previous example allows you to specify
round corners by giving t for true and f for false, starting with the upper-right
corner and moving clockwise. This feature is not available with fancyvrb frames.

Instead of formatting your listings within the text, you can turn them into
floats by using the keyword float, typically together with the caption keyword.
Its value is a subset of htbp specifying where the float is allowed to go (using it
without a value is equivalent to tbp). You should, however, avoid mixing floating
and nonfloating listings as this could sometimes result in captions being num-
bered out of order, as in Example 6-3-5 on page 296.

By default, listings only deals with input characters in the ASCII range; unex-
pected 8-bit input can produce very strange results, like the misordered letters in
the following example. By setting extendedchars to true you can enable the use
of 8-bit characters, which makes the package work harder, but (usually) produces

3.5 Lines and columns 175

the right results. Of course, if you use an extended character set you would nor-
mally add the keyword to the \lstset declaration instead of specifying it every
time on the environment. It is also possible to specify an input encoding for the
code fragments (if different from the input encoding used for the remainder of
the document) by using the keyword inputencoding. This keyword can be used
only if the inputenc package is loaded.

3-4-41

i n t i ; / ∗ ü f r d i e äß u e r e S c h l e i f e ∗ /

i n t i ; / ∗ f ü r d i e ä u ß e r e S c h l e i f e ∗ /

\usepackage[latin1]{inputenc}
\usepackage{listings}
\lstset{language=C,commentstyle=\scriptsize}

\begin{lstlisting}
int i; /*für die äußere Schleife*/
\end{lstlisting}
\begin{lstlisting}[extendedchars=true]
int i; /*für die äußere Schleife*/
\end{lstlisting}

The package offers many more keys to influence the presentation. For in-
stance, you can escape to LaTEX for special formatting tricks, display tab or form-
feed characters, index certain identifiers, or interface to hyperref so that clicking
on some identifier will jump to the previous occurrence. Some of the features are
still considered experimental and you have to request them using an optional ar-
gument during package loading. These are all documented in great detail in the
manual (roughly 50 pages) accompanying the package.

As a final example of the kind of treasures you can find in that manual, look at
the following example. It shows code typesetting as known from Donald Knuth’s
literate programming conventions.

3-4-42

v a r i : i n t e g e r ;
i f (i≤0) i ← 1 ;
i f (i≥0) i ← 0 ;
i f (i �=0) i ← 0 ;

\usepackage{listings}

\lstset{literate={:=}{{\gets}}1
{<=}{{\leq}}1 {>=}{{\geq}}1 {<>}{{\neq}}1}

\begin{lstlisting}[gobble=2]
var i:integer;
if (i<=0) i := 1;
if (i>=0) i := 0;
if (i<>0) i := 0;

\end{lstlisting}

3.5 Lines and columns

In the last part of this chapter we present a few packages that help in manipulating
the text stream in its entirety. The first package deals with attaching line numbers
to paragraphs, supporting automatic references to them. This can be useful in
critical editions and other scholarly works.

176 Basic Formatting Tools

The second package deals with the problem of presenting two text streams
side by side—for example, some original and its translation. We will show how
both packages can be combined in standard cases.

The third package deals with layouts having multiple columns. It allows
switching between different numbers of columns on the same page and supports
balancing textual data. Standard LaTEX already offers the possibility of typesetting
text in one- or two-column mode, but one- and two-column output cannot be
mixed on the same page.

We conclude by introducing a package that allows you to mark the modifica-
tions in your source with vertical bars in the margin.

3.5.1 lineno—Numbering lines of text

In certain applications it is useful or even necessary to number the lines of para-
graphs to be able to refer to them. As TEX optimizes the line breaking over the
whole paragraph, it is ill equipped to provide such a facility, since technically line
breaking happens at a very late stage during the processing, just before the final
pages are constructed. At that point macro processing, which could add the right
line number or handle automatic references, has already taken place. Hence, the
only way to achieve line numbering is by deconstructing the completed page line
by line in the “output routine” (i.e., the part of LaTEX, that normally breaks the para-
graph galley into pages and adds running headers and footers) and attaching the
appropriate line numbers at that stage.

This approach was taken by Stephan Böttcher in his lineno package. Al-
though one would expect such an undertaking to work only in a restricted en-
vironment, his package is surprisingly robust and works seamlessly with many
other packages—even those that modify the LaTEX output routine, such as ftnright,
multicol, and wrapfig. It also supports layouts produced with the twocolumn op-
tion of the standard LaTEX classes.

\linenumbers*[start-number] \nolinenumbers

Loading the lineno package has no direct effect: to activate line numbering, a
\linenumbers command must be specified in the preamble or at some point in
the document. The command \nolinenumbers deactivates line numbering again.
Line numbering works on a per-paragraph basis. Thus, when LaTEX sees the end of
a paragraph, it checks whether line numbering is currently requested and, if so,
attaches numbers to all lines of that paragraph. It is therefore best to put these
commands between paragraphs rather than within them.

The \linenumbers command can take an optional argument that denotes the
number to use for the first line. If used without such an argument, it continues
from where it stopped numbering previously. You can also use a star form, which

3.5 Lines and columns 177

is a shorthand for \linenumbers[1].

3-5-1

No line numbers here. Some text to ex-
periment with line numbering.

But here we get line numbers. Some text1

to experiment with line numbering.2

And here too. Some text to experiment3

with line numbering.4

Restart with a negative number. Some-10

text to experiment with line numbering.-9

\usepackage{lineno}
\newcommand\para{ Some text to experiment

with line numbering.\par}

No line numbers here.\para
\linenumbers
But here we get line numbers.\para
And here too.\para
\linenumbers[-10]
Restart with a negative number.\para

Rather than starting or stopping line numbering with the above commands,
you can use the environment linenumbers to define the region that should get
line numbers. This environment will automatically issue a \par command at the
end to terminate the current paragraph. If line numbers are needed only for short
passages, the environment form (or one of the special environments numquote
and numquotation described later) is preferable.

As the production of line numbers involves the output routine, numbering will
Numbering boxed
paragraphs

take place only for paragraphs being built and put on the “main vertical list” but
not for those built inside boxes (e.g., not inside a \marginpar or within the body
of a float). However, the package offers some limited support for numbering lines
in such places via the \internallinenumbers command. Restrictions are that
the baselines within such paragraphs need to be a fixed distance apart (otherwise,
the numbers will not get positioned correctly) and that you may have to end such
paragraphs with explicit \par commands. The \internallinenumbers command
accepts a star and an optional argument just as \linenumbers does. However,
the starred form not only ensures that line numbering is (re)started with 1, but
also that the line numbers do not affect line numbering in the main vertical list;
compare the results in the two \marginpars below.

3-5-2

Some text on the main verti-1

cal list! Some text to experimentSome text to experi-
ment with line num-
bering.

1

2

3

2

with line numbering.3

Some text to experiment with4

line numbering.5

In this paragraph we use a9

second marginal note affecting10

the line numbers this time. SomeSome text to experi-
ment with line num-
bering.

6

7

8

11

text to experiment with line num-12

bering.13

\usepackage{lineno}
% \para defined as before

\linenumbers
Some text on the main vertical list!
\marginpar{\footnotesize

\internallinenumbers* \para}
\para \para In this paragraph we use
a second marginal note affecting the
\marginpar{\footnotesize

\internallinenumbers \para}
line numbers this time.\para

The line numbers in the second \marginpar continue the numbering on the
main vertical list (the last line of the preceding paragraph was 5) and the third

178 Basic Formatting Tools

paragraph then continues with line number 9. Such \marginpar commands are
processed before the paragraph containing them is broken into lines, which ex-
plains the ordering of the numbers.

As lineno needs \par to attach line numbers when the output routine is in-
Handling display

math
voked, a TEXnical problem arises when certain display math constructs are used:
the partial paragraph above such a display is broken into lines by TEX without
issuing a \par . As a consequence, without further help such a partial paragraph
will not get any line numbers attached. The package’s solution, as illustrated in
the next example, is to offer the environment linenomath, which, if it surrounds
such a display, will take care of the line numbering problem. It also has a starred
form that also numbers the display lines.

No line number before the display:

x �= y

Some text to experiment with line numbering.1

But line numbers in this case:2

x �= y

Some text to experiment with line numbering.3

\usepackage{lineno} \linenumbers
\newcommand\sample{ Some text to

experiment with line numbering.}

No line number before the display:
\[x \neq y \] \sample \par
But line numbers in this case:
\begin{linenomath}

\[x \neq y \]
\end{linenomath}
\sample\par 3-5-3

If there are many such displays the need for surrounding each of them with a
linenomath environment is cumbersome. For this reason the package offers the
option displaymath, which redefines the basic LaTEX math display environments
so that they internally use linenomath environments. The option mathlines will
make linenomath behave like its starred form so that the displayed mathematical
formulas get line numbers as well.

Some text to experiment with line numbering.1

x �= y2

Some text to experiment with line numbering.3

Some text to experiment with line numbering.4

x �= y5

Some text to experiment with line numbering.6

\usepackage[displaymath,mathlines]
{lineno}

\linenumbers
% \sample as defined before

\sample \[x \neq y \] \sample\par
\sample
\begin{displaymath}

x \neq y
\end{displaymath}
\sample 3-5-4

To reference line numbers put a \linelabel into the line and then refer to
Cross-references to

line numbers
it via \ref or \pageref , just as with other references defined using \label . The
exception is that \linelabel can only be used on the main vertical list and should
only be used within paragraphs that actually carry numbers. If it is used elsewhere,

3.5 Lines and columns 179

you get either a bogus reference (if the current line does not have a line number)
or an error message (in places where \linelabel is not allowed).

3-5-5

Some text to experiment with line num-1

bering. Some text to experiment with line2

numbering. Some text to experiment with3

line numbering. Some text to experiment4

with line numbering. Some text to experi-5

ment with line numbering.6

In the text on lines 2, 3, up to and includ-7

ing line 5 we see refererences to individual8

lines . . .9

\usepackage{lineno}
\linenumbers
% \sample as defined before

\sample\linelabel{first}\sample\sample
\sample\linelabel{second}\sample

In the text on lines~\ref{first},
\lineref[1]{first}, up to and including
line~\ref{second} we see refererences to
individual lines \ldots

It is also possible to refer to a line that carries no \linelabel , by using the
\lineref command with an optional argument specifying the offset. This ability
can be useful if you need to refer to a line that cannot be easily labeled, such as
a math display, or if you wish to refer to a sequence of lines, as in the previous
example.

There are several ways to customize the visual appearance of line numbers.
Labeling only some
lines

Specifying the option modulo means that line numbers will only appear on some
lines (default is every fifth). This effect can also be achieved by using the command
\modulolinenumbers . Calling this command with an optional argument attaches
numbers to lines that are multiples of the specified number (in particular, a value
of 1 corresponds to normal numbering). Neither command nor option initiates
line numbering mode, for that a \linenumbers command is still necessary.

3-5-6

Some text to experiment with line num-1

bering. Some text to experiment with line2

numbering. Some text to experiment with3

line numbering.4

And now a paragraph with numbers on
every second line. Some text to experiment6

with line numbering. Some text to experi-
ment with line numbering. Some text to ex-8

periment with line numbering.

\usepackage{lineno}
\linenumbers
% \sample defined as before

\sample \sample \sample \par
\modulolinenumbers[2]
And now a paragraph with numbers on every
second line.\sample \sample \sample \par

The font for line numbers is controlled by the hook \linenumberfont . Its de-
fault definition is to use tiny sans serif digits. The numbers are put flush right in a
box of width \linenumberwidth . This box is separated from the line by the value
stored in \linenumbersep . To set the number flush left you have to dig deeper,
but even for this case you will find hooks like \makeLineNumberRight in the pack-
age. Although changing the settings in the middle of a document is usually not a

180 Basic Formatting Tools

good idea, it was done in the next example for demonstration purposes.

The option “right” changes the line num- 1

ber position. Some text to experiment with 2

line numbering. Some text to experiment 3

with line numbering. 4

Now we use a different font and a big- 5

ger separation. Some text to experiment 6

with line numbering. Some text to experi- 7

ment with line numbering. 8

\usepackage[right]{lineno}
\linenumbers
% \sample defined as before

The option ‘‘right’’ changes the line
number position. \sample \sample \par
\renewcommand\linenumberfont

{\normalfont\footnotesize\ttfamily}
\setlength\linenumbersep{20pt}
Now we use a different font and a bigger
separation. \sample \sample \par 3-5-7

For special applications the package offers two environments that provide
line numbers automatically: numquote and numquotation. They are like their
LaTEX cousins quote and quotation, except that their lines are numbered. They
accept an optional argument denoting the line number with which to start (if the
argument is omitted, they restart with 1) and they have starred forms that will
suppress reseting the line numbers.

The main difference from their LaTEX counterparts (when used together with
the \linenumbers command) is the positioning of the numbers, which are in-
dented inward. Thus, their intended use is for cases when only the quoted text
should receive line numbers that can be referenced separately.

Some text to experiment with line1

numbering.2

Some text to experiment with line number-3

ing. Some text to experiment with line num-4

bering.5

Some text to experiment with line1

numbering.2

Some more text.3

\usepackage{lineno}
\linenumbers
% \sample defined as before

\begin{quote}
\sample

\end{quote}
\sample \sample
\begin{numquote}

\sample
\end{numquote}
Some more text. 3-5-8

Using the machinery provided by the package material, it is fairly easy to
Providing your own

extensions
develop your own environments that attach special items to each line. The main
macro to customize is \makeLineNumber , which gets executed inside a box of
zero width at the left edge of each line (when line numbering mode is turned on).
The net effect of your code should take up no space, so it is best to operate with
\llap or \rlap . Apart from that you can use basically anything. You should only
remember that the material is processed and attached after the paragraph has
been broken into lines and normal macro-processing has finished, so, you should
not expect it to interact with data in mid-paragraph. You can produce the current
line number with the \LineNumber command, which will supply the number or
nothing, depending on whether line numbering mode is on.

3.5 Lines and columns 181

The following example shows the definition and use of two new environments
that (albeit somewhat crudely, as they do not care about setting fonts and the
like) demonstrate some of the possibilities. Note that even though the second
environment does not print any line numbers, the lines are internally counted, so
that line numbering resumes afterwards with the correct value.

3-5-9

Some text to experiment1→
with line numbering.2→

Some text to experiment ←
with line numbering. Some text←
to experiment with line number-←
ing. ←

Some text to experiment7→
with line numbering. Some text8→
to experiment with line number-9→
ing.10→

\usepackage{lineno} \linenumbers
% \sample defined as before
\newenvironment{numarrows}

{\renewcommand\makeLineNumber
{\llap{\LineNumber\rightarrow }}}

{\par}
\newenvironment{arrows}{\renewcommand\makeLineNumber

{\rlap{\hspace{\textwidth} \leftarrow}}}{\par}

\begin{numarrows} \sample \end{numarrows}
\begin{arrows} \sample \sample \end{arrows}
\sample
\begin{numarrows} \sample \end{numarrows}

The appearance and behavior of the line numbers can be further controlled by
a set of options or, alternatively, by a set of commands equivalent to the options
(see the package documentation for details on the command forms). With the
options left (default) and right, you specify in which margin the line numbers
should appear. Using the option switch or switch*, you get them in the outer
and inner margins, respectively.

At least two LaTEX runs of the document are required before the line numbers
will appear in the appropriate place. Unfortunately, there is no warning about the
need to rerun the document, so you have to watch out for this issue yourself.

You can also request that numbers restart on each page by specifying the
option pagewise. This option needs to come last.

3.5.2 parallel—Two text streams aligned

Sometimes it is necessary to typeset something in parallel columns, such as when
presenting some text and its translation. Parallel in this context means that at
certain synchronization points the two text streams are vertically (re)aligned. This
type of layout is normally not supported by LaTEX (which by default only works
with a single text stream), but it can be achieved by using Matthias Eckermann’s
parallel package.

This package provides the Parallel environment, which surrounds the mate-
rial to be typeset in parallel. It takes two mandatory arguments: the widths of the
left and right columns. Their sum should be less than \textwidth ; otherwise, the
text in the two columns will touch or even overlap. To ease usage, one or both argu-
ments can be left empty, in which case the appropriate width for the column(s) will
be calculated automatically, using the current value of \ParallelUserMidSkip as
the column separation. To mark up the left and the right text streams, you use

182 Basic Formatting Tools

\ParallelLText and \ParallelRText , respectively. Although both commands\verb is allowed

expect the text as an argument, it is nevertheless possible to use \verb or a
verbatim environment inside, as the following example shows.

This is text in Dies ist Text in
the English lan- deutscher Sprache,
guage explaining der das Kommando
the command \foo. \foo erläutert.

\usepackage{parallel}

\begin{Parallel}{}{}
\ParallelLText{This is text in the English
language explaining the command \verb=\foo=.}

\ParallelRText{Dies ist Text in deutscher Sprache,
der das Kommando \verb=\foo= erl\"autert.}

\end{Parallel} 3-5-10

To align certain lines of text you split the two text streams at appropriate
points by using pairs of \ParallelLText and \ParallelRText commands and
separating each pair with \ParallelPar . If you forget one of the \ParallelPar
commands, some of your text will get lost without warning. Moreover, as its
name suggests, the \ParallelPar command introduces a paragraph break, so
that alignment is possible only at paragraph boundaries. Additional paragraph
breaks inside the argument of a \Parallel..Text command are also possible
but in that case no alignment is attempted.

In the next example, displaying a few “direct” translations of computer jargon
into German (taken from [54] with kind permission by Eichborn Verlag), we define
a shorthand command \LR to make it easier to input the text. If such a shorthand
is used, \verb can no longer be used in the argument. Thus, if you need \verb ,
use the package commands directly. We also use the lineno package since line
numbers can be useful when talking about a text and its translation.

I just go online Ich geh mal eben
and download auf den Strich2

an update. und lade mir
ein Auffrisch4

herunter.
This laptop is Dieser6

missing Schoßspitze
several fehlt so8

interfaces. manches Zwi-
schengesicht.10

Microsoft Office Kleinweich Büro
on floppy auf Schlabber-12

disks. scheiben.

\usepackage{parallel,lineno}
\linenumbers \modulolinenumbers[2]
\setlength\linenumbersep{1pt}
\newcommand\LR[2]{\ParallelLText{#1}%

\ParallelRText{#2}\ParallelPar}

\begin{Parallel}{.45\linewidth}{}
\raggedright \setlength\leftskip{10pt}

\setlength\parindent{-\leftskip}
\LR{I just go online and download an update.}{Ich
geh mal eben auf den Strich und lade mir ein
Auffrisch herunter.} \LR{This laptop is missing
several interfaces.} {Dieser Scho\ss\-spitze
fehlt so manches Zwi\-schen\-ge\-sicht.}

\LR{Microsoft Office on floppy disks.}{Kleinweich
B\"uro auf Schlabberscheiben.}

\end{Parallel} 3-5-11

As you can see, it is possible to adjust paragraph parameters within the
scope of the Parallel environment. The negative \parindent cancels the pos-

3.5 Lines and columns 183

itive \leftskip so that each paragraph starts flush left but following lines are
indented by \leftskip (and both must be changed after calling \raggedright ,
as the latter also sets these registers).

The Parallel environment works by aligning line by line, which has a sur-
prising consequence when one block contains unusually large objects, such as a
display. Thus, the method is suitable only for normal text lines.

3-5-12

This is text that con- And here is the ex-
tains:

x∑
n=1

2an planation showing some

surprising effect.

\usepackage{parallel}

\begin{Parallel}{}{}
\ParallelLText{This is text that contains:

\[\sum_{n=1}^x2 a_n \]}
\ParallelRText{And here is the explanation

showing some surprising effect.}
\end{Parallel}

Footnotes within the parallel text are not placed at the bottom of the current
Footnotes in parallel
text

page, but rather are typeset directly after the end of the current Parallel envi-
ronment and separated from it by the result of executing \ParallelAtEnd , which
is a command defined to do nothing. You can, however, redefine it to place some-
thing between footnotes and preceding text. If the redefinition should apply only
to a single Parallel environment, place it within the scope of the environment.

The presentation of the footnotes is controlled by four package options:
OldStyleNums sets footnote numbers using old-style numerals, RaiseNums gener-
ates raised footnote numbers, and ItalicNums produces italic numbers. If none
of these options is given, then Arabic numerals at the baseline position are used.
The options affect only the numbers in front of the footnote text; the markers
within the parallel text are always raised Arabic numerals. The fourth option,
SeparatedFootnotes, can be combined with one of the three other options and
indicates that footnotes in each column should be independently numbered. The
numbers from the right column are then postfixed with \ParallelDot , which
by default produces a centered dot. In the next example its definition is slightly
modified so that the dot itself does not take up any space.

3-5-13

This is text in the Dies ist Text1 in
English language1 deutscher
explaining the Sprache2, der das
command \foo. Kommando \foo

erläutert.

1 We hope!

1· Ein Satz.

2· Schlechter Stil!

\usepackage[OldStyleNums,SeparatedFootnotes]{parallel}
\renewcommand\ParallelAtEnd{\vspace{7pt}\footnoterule}
\renewcommand\ParallelDot

{\makebox[0pt][l]{\textperiodcentered}}

\begin{Parallel}[v]{}{} \raggedright
\ParallelLText{This is text in the English
language\footnote{We hope!} explaining the
command \verb=\foo=.}

\ParallelRText{Dies ist Text\footnote{Ein Satz.} in
deutscher Sprache\footnote{Schlechter Stil!}, der
das Kommando \verb=\foo= erl\"autert.}

\end{Parallel}

184 Basic Formatting Tools

The Parallel environment can sport an optional argument before the manda-
tory ones, whose value can be c (make two columns—the default), v (separate
columns with a vertical rule as shown in the previous example), or p (put left text
on left-hand pages and right text on right-hand pages). If the “page” variant is
chosen it is possible that you get empty pages. For example, if you are on a verso
page the environment has to skip to the next recto page in order to display the
texts on facing pages.

3.5.3 multicol—A flexible way to handle multiple columns

With standard LaTEX it is possible to produce documents with one or two columns
(using the class option twocolumn). However, it is impossible to produce only
parts of a page in two-column format as the commands \twocolumn and
\onecolumn always start a fresh page. Additionally, the columns are never bal-
anced, which sometimes results in a slightly weird distribution of the material.

The multicol package1 by Frank Mittelbach solves these problems by defining
an environment, multicols, with the following properties:

• Support is provided for 2–10 columns, which can run for several pages.

• When the environment ends, the columns on the last page are balanced so
that they are all of nearly equal length.

• The environment can be used inside other environments, such as figure or
minipage, where it will produce a box containing the text distributed into the
requested number of columns. Thus, you no longer need to hand-format your
layout in such cases.

• Between individual columns, vertical rules of user-defined widths can be in-
serted.

• The formatting can be customized globally or for individual environments.

\begin{multicols}{columns}[preface][skip]

Normally, you can start the environment simply by specifying the number of de-
sired columns. By default paragraphs will be justified, but with narrow measures—
as in the examples—they would be better set unjustified as we show later on.

Here is
some text to
be distributed
over several

columns. If
the columns
are very nar-
row try type-

setting ragged
right.

\usepackage{multicol}

\begin{multicols}{3}
Here is some text to be distributed over
several columns. If the columns are very
narrow try typesetting ragged right.

\end{multicols} 3-5-14

1Although the multicol package is distributed under LPPL (LaTEX Project Public License) [111], for
historical reasons its copyright contains an additional “moral obligation” clause that asks commer-
cial users to consider paying a license fee to the author or the LaTEX3 fund for their use of the
package. For details see the head of the package file itself.

3.5 Lines and columns 185

\premulticols 50.0pt \postmulticols 20.0pt
\columnsep 10.0pt \columnseprule 0.0pt
\multicolsep 12.0pt plus 4.0pt minus 3.0pt

Table 3.8: Length parameters used by multicols

You may be interested in prefixing the multicolumn text with a bit of single-
column material. This can be achieved by using the optional preface argument.
LaTEX will then try to keep the text from this argument and the start of the multi-
column text on the same page.

3-5-15

Some useful advice

Here is some text to
be distributed over sev-
eral columns. If the

columns are very nar-
row try typesetting
ragged right.

\usepackage{multicol}

\begin{multicols}{2}
[\section*{Some useful advice}]

Here is some text to be distributed over
several columns. If the columns are very
narrow try typesetting ragged right.

\end{multicols}

The multicols environment starts a new page if there is not enough free
space left on the current page. The amount of free space is controlled by a global
parameter. However, when using the optional argument the default setting for
this parameter may be too small. In this case you can either change the global
default (see below) or adjust the value for the current environment by using a
second optional skip argument as follows:

\begin{multicols}{3}[\section*{Index}][7cm]
Text Text Text Text ...

\end{multicols}

This would start a new page if less than 7cm free vertical space was available.
The multicols environment balances the columns on the last page (it was

Preventing
balancing

originally developed for exactly this purpose). If this effect is not desired you can
use the multicols* variant instead. Of course, this environment works only in
the main vertical galley, since inside a box one has to balance the columns to
determine a column height.

The multicols environment recognizes several formatting parameters. Their
meanings are described in the following sections. The default values can be found
in Table 3.8 (dimensions) and Table 3.9 (counters). If not stated otherwise, all
changes to the parameters have to be placed before the start of the environment
to which they should apply.

The multicols environment first checks whether the amount of free space
The required free
space

left on the page is at least equal to \premulticols or to the value of the sec-
ond optional argument, when specified. If the requested space is not available, a

186 Basic Formatting Tools

\multicolpretolerance -1 \multicoltolerance 9999
columnbadness 10000 finalcolumnbadness 9999
collectmore 0 unbalance 0
tracingmulticols 0

Table 3.9: Counters used by multicols

\newpage is issued. A new page is also started at the end of the environment if the
remaining space is less than \postmulticols . Before and after the environment,
a vertical space of length \multicolsep is placed.

The column width inside the multicols environment will automatically be
Column width and

separation
calculated based on the number of requested columns and the current value of
\linewidth . It will then be stored in \columnwidth . Between columns a space of
\columnsep is left.

Between any two columns, a rule of width \columnseprule is placed. If thisAdding vertical lines

parameter is set to 0pt (the default), the rule is suppressed. If you choose a rule
width larger than the column separation, the rule will overprint the column text.

Here is some
text to be
distributed

over several
columns. In
this example

ragged-right
typesetting
is used.

\usepackage{multicol,ragged2e}
\setlength\columnseprule{0.4pt}
\addtolength\columnsep{2pt}

\begin{multicols}{3}
\RaggedRight
Here is some text to be distributed over
several columns. In this example ragged-right
typesetting is used.

\end{multicols} 3-5-16

Column formatting

By default (the \flushcolumns setting), the multicols environment tries to type-
set all columns with the same length by stretching the available vertical space
inside the columns. If you specify \raggedcolumns the surplus space will instead
be placed at the bottom of each column.

Paragraphs are formatted using the default parameter settings (as de-
scribed in Sections 3.1.11 and 3.1.12) with the exception of \pretolerance
and \tolerance , for which the current values of \multicolpretolerance and
\multicoltolerance are used, respectively. The defaults are -1 and 9999, so
that the paragraph-breaking trial without hyphenation is skipped and relatively
bad paragraphs are allowed (accounting for the fact that the columns are typically
very narrow). If the columns are wide enough, you might wish to change these
defaults to something more restrictive, such as

\multicoltolerance=3000

3.5 Lines and columns 187

Note the somewhat uncommon assignment form: \multicoltolerance is an in-
ternal TEX counter and is controlled in exactly the same way as \tolerance .

Balancing control

At the end of the multicols environment, remaining text will be balanced to
produce columns of roughly equal length. If you wish to place more text in the
left columns you can advance the counter unbalance. This counter determines
the number of additional lines in the columns in comparison to the number that

1

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
the balancing routine has calculated. It will automatically be restored to zero after
the environment has finished. To demonstrate the effect, the next example uses
the text from Example 3-5-16 on the facing page but requests one extra line.

3-5-17

Here is some
text to be
distributed
over several

columns. In
this example
ragged-right
typesetting

is used.

\usepackage{multicol,ragged2e}
\addtolength\columnsep{2pt}

\begin{multicols}{3}
\RaggedRight
\setcounter{unbalance}{1}
Here is some text to be distributed over
several columns. In this example ragged-right
typesetting is used.

\end{multicols}

Column balancing is further controlled by the two counters columnbadness
and finalcolumnbadness. Whenever LaTEX is constructing boxes (such as a col-
umn) it will compute a badness value expressing the quality of the box—that is,
the amount of excess white space. A zero value is optimal, and a value of 10000
is infinitely bad in LaTEX’s eyes.

2 While balancing, the algorithm compares the bad-
ness of possible solutions and, if any column except the last one has a badness
higher than columnbadness, the solution is ignored. When the algorithm finally
finds a solution, it looks at the badness in the last column. If it is larger than
finalcolumnbadness, it will typeset this column with the excess space placed at
the bottom, allowing it to come out short.

Collecting material

To be able to properly balance columns the multicols environment needs to
collect enough material to fill the remaining part of the page. Only then does it
cut the collected material into individual columns. It tries to do so by assuming
that not more than the equivalent of one line of text per column vanishes into the
margin due to breaking at vertical spaces. In some situations this assumption is
incorrect and it becomes necessary to collect more or less material. In such a case

1Very bad for reading but too good to fix: this problem of a break-stack with "the" four times in
a row will not be detected by TEX’s paragraph algorithm—only a complete paragraph rewrite would
resolve it.

2For an overfull box the badness value is set to 100000 by TEX, to mark this special case.

188 Basic Formatting Tools

you can adjust the default setting for the counter collectmore. Changing this
counter by one means collecting material for one more (or less) \baselineskip .

There are, in fact, reasons why you may want to reduce that collection. If your
document contains many footnotes and a lot of surplus material is collected, there
is a higher chance that the unused part will contain footnotes, which could come
out on the wrong page. The smallest sensible value for the counter is the negative
number of columns used. With this value multicols will collect exactly the right
amount of material to fill all columns as long as no space gets lost at a column
break. However, if spaces are discarded in this set up, they will show up as empty
space in the last column.

Tracing the algorithm

You can trace the behavior of the multicol package by loading it with one of the fol-
lowing options. The default, errorshow, displays only real errors. With infoshow,
multicol becomes more talkative and you will get basic processing information
such as

Package multicol: Column spec: 185.0pt = indent + columns + sep =
(multicol) 0.0pt + 3 x 55.0pt + 2 x 10.0pt on input line 32.

which is the calculated column width.
With balancingshow, you get additional information on the various trials

made by multicols when determining the optimal column height for balancing,
including the resulting badness of the columns, reasons why a trial was rejected,
and so on.

Using markshow will additionally show which marks for the running header
or footer are generated on each page. Instead of using the options you can (tem-
porarily) set the counter tracingmulticols to a positive value (higher values give
more tracing information).

Manually breaking columns

Sometimes it is necessary to overrule the column-breaking algorithm. We have al-
ready seen how the unbalance counter is used to influence the balancing phase.
But on some occasions one wishes to explicitly end a column after a certain line.
In standard LaTEX this can be achieved with a \pagebreak command, but this ap-
proach does not work within a multicols environment because it will end the
collection phase of multicols and thus end all columns on the page. As an al-
ternative the command \columnbreak is provided. If used within a paragraph it
marks the end of the current line as the desired breakpoint. If used between para-
graphs it forces the next paragraph into the next column (or page) as shown in
the following example. If \flushcolumns is in force, the material in the column is
vertically stretched (if possible) to fill the full column height. If this effect is not
desired one can prepend a \vfill command to fill the bottom of the column with
white space.

3.5 Lines and columns 189

3-5-18

Here is some text to
be distributed over
several columns.

With the help of the
\columnbreak com-
mand this paragraph
was forced into the
second column.

\usepackage{multicol,ragged2e}

\begin{multicols}{2} \RaggedRight
Here is some text to be distributed over several
columns. \par \vfill\columnbreak
With the help of the \verb=\columnbreak= command
this paragraph was forced into the second column.

\end{multicols}

Floats and footnotes in multicol

Floats (e.g., figures and tables) are only partially supported within multicols. You
can use starred forms of the float environments, thereby requesting floats that
span all columns. Column floats and \marginpars, however, are not supported.

Footnotes are typeset (full width) on the bottom of the page, and not under
individual columns (a concession to the fact that varying column widths are sup-
ported on a single page).

Under certain circumstances a footnote reference and its text may fall on
subsequent pages. If this is a possibility, multicols produces a warning. In that
case, you should check the page in question. If the footnote reference and footnote
text really are on different pages, you will have to resolve the problem locally by
issuing a \pagebreak command in a strategic place. The reason for this behavior
is that multicols has to look ahead to assemble material and may not be able to
use all material gathered later on. The amount of looking ahead is controlled by
the collectmore counter.

3.5.4 changebar—Adding revision bars to documents

When a document is being developed it is sometimes necessary to (visually) indi-
cate the changes in the text. A customary way of doing that is by adding bars in
the margin, known as “changebars”. Support for this functionality is offered by
the changebar package, originally developed by Michael Fine and Neil Winton, and
now supported by Johannes Braams. This package works with most PostScript Supported printer

driversdrivers, but in particular dvips, which is the default driver when the package is
loaded. Other drivers can be selected by using the package option mechanism.
Supported options are dvitoln03, dvitops, dvips, emtex, textures, and vtex.

\begin{changebar}[barwidth] \cbstart[barwidth] . . . \cbend

When you add text to your document and want to signal this fact, you should sur-
round it with the changebar environment. Doing so ensures that LaTEX will warn
you when you forget to mark the end of a change. This environment can be (prop-
erly) nested within other environments. However, if your changes start within one
LaTEX environment and end inside another, the environment form cannot be used
as this would result in improperly nested environments. Therefore, the package
also provides the commands \cbstart and \cbend . These should be used with

190 Basic Formatting Tools

care, because there is no check that they are properly balanced. Spaces after them
might get ignored.

If you want to give a single bar a different width you may use the optional
argument and specify the width as a normal LaTEX length.

\cbdelete[barwidth]

Text that has been removed can be indicated by inserting the \cbdelete com-
mand. Again, the width of the bar can be changed.

This is the text in the first para-
graph. This is the text in the first para-
graph.

This is the text in the second para-
graph. This is the text in the second
paragraph.

This is paragraph three.
This is paragraph four.

\usepackage{changebar}

\cbstart
This is the text in the first paragraph.
This is the text in the first paragraph.\cbend

This is the text in the second paragraph.
\cbdelete
This is the text in the second paragraph.

\setcounter{changebargrey}{35}
\begin{changebar}[4pt]
This is paragraph three. \par
This is paragraph four.
\end{changebar} 3-5-19

\nochangebars

When your document has reached the final stage you can remove the effect of
using the changebar package by inserting the command \nochangebars in the
preamble of the document.

Customizations

If you want to change the width of all changebars you can do so by changing theChanging the width

value of \changebarwidth via the command \setlength . The same can be done
for the deletion bars by changing the value of \deletebarwidth .

By default, the changebars will show up in the “inner margin”, but this can bePositioning
changebars changed by using one of the following options: outerbars, innerbars, leftbars,

or rightbars.
The distance between the text and the bars is controlled by \changebarsep .

It can can be changed only in the preamble of the document.
The color of the changebars can be changed by the user as well. By default,Coloring

changebars the option grey is selected so the changebars are grey (grey level 65%). The drivers
dvitoln03 and emtex are exceptions that will produce black changebars.

The “blackness” of the bars can be controlled with the help of the LaTEX counter
changebargrey. A command like \setcounter{changebargrey}{85} changes

3.5 Lines and columns 191

that value. The value of the counter is a percentage, where 0 yields black bars,
and 100 yields white bars.

The option color makes it possible to use colored changebars. It internally
loads dvipsnames, so you can use a name when selecting a color.

\cbcolor{name}

The color to use when printing changebars is selected with the command
\cbcolor , which accepts the same arguments as the \color command from the
color package [57, pp.317–326].

3-5-20

This is the text in the first paragraph.
This is the text in the first paragraph.

This is the text in the second paragraph.
This is the text in the second paragraph.

This is paragraph three.
This is paragraph four.

\usepackage[rightbars,color]{changebar}
\cbcolor{blue}
\setlength\changebarsep{10pt}

\cbstart
This is the text in the first paragraph.
This is the text in the first paragraph.\cbend

This is the text in the second paragraph.
\cbdelete
This is the text in the second paragraph.

\begin{changebar}
This is paragraph three. \par
This is paragraph four.
\end{changebar}

You can trace the behavior of the changebar package by loading it with one
Tracing the
algorithm

of the following options. The default, traceoff, displays the normal information
LaTEX always shows. The option traceon informs you about the beginning and
end points of changebars being defined. The additional option tracestacks adds
information about the usage of the internal stacks.

This page intentionally left blank

C H A P T E R 4

The Layout of the Page

In this chapter we will see how to specify different page layouts. Often a single
document requires several different page layouts. For instance, the layout of the
first page of a chapter, which carries the chapter title, is generally different from
that of the other pages in that chapter.

We first introduce LaTEX’s dimensional parameters that influence the page lay-
out and describe ways to change them and visualize their values. This is followed
by an in-depth discussion of the packages typearea and geometry, both of which
provide sophisticated ways to implement page layout specifications. The third sec-
tion deals with the LaTEX concepts used to provide data for running headers and
footers. This is followed by a section that explains how to format such elements,
including many examples deploying the fancyhdr package and others. The fifth
section then introduces commands that help in situations when the text does not
fit into the layout and manual intervention is required. The chapter concludes with
a brief look at two generic classes that go a long way toward providing almost full
control over the page layout specification process.

4.1 Geometrical dimensions of the layout

The text of a document usually occupies a rectangular area on the paper—the
so-called type area or body. Above the text there might be a running header and
below it a running footer. They can consist of one or more lines containing the
page number; information about the current chapter, section, time, and date; and
possibly other markers. If they are visually heavy and closely tied to the text, then

194 The Layout of the Page

Header

Body

Footer

Margin
Notes

�8� �

�7

�

�

�1� �

���3 �10� �

���9

�

�

�11

�2
�

�

�

�

�4
�

�

�5
�

�

�6

1 one inch + \hoffset 2 one inch + \voffset
3 \oddsidemargin = -36pt 4 \topmargin = -58pt
5 \headheight = 12pt 6 \headsep = 25pt
7 \textheight = 296pt 8 \textwidth = 418pt
9 \marginparsep = 11pt 10 \marginparwidth = 121pt
11 \footskip = 30pt \marginparpush = 5pt (not shown)

\hoffset = 0pt \voffset = 0pt
\paperwidth = 597pt \paperheight = 423pt 4-1-1

\paperheight Height of the paper to print on.

\paperwidth Width of the paper to print on.

\textheight Height of the body (without header
and footer).

\textwidth Width of the body.

\columnsep Width of space between columns of text
in multicolumn mode.

\columnseprule Width of a vertical line separating
the two adjacent columns in multicolumn output
(default 0pt, i.e., no visible rule).

\columnwidth Width of a single column in multicol-
umn mode. Calculated by LaTEX from \textwidth
and \columnsep as appropriate.

\linewidth Width of the current text line. Usually
equals \columnwidth but might get different val-
ues in environments that change the margins.

\evensidemargin For two-sided printing, the extra
space added at the left of even-numbered pages.

\oddsidemargin For two-sided printing, the extra
space added at the left of odd-numbered pages;
otherwise the extra space added at the left of all
pages.

\footskip Vertical distance separating the baseline
of the last line of text and the baseline of the
footer.

\headheight Height of the header.

\headsep Vertical separation between header and
body.

\topmargin Extra vertical space added at the top of
the header.

\marginparpush Minimal vertical space between
two successive marginal notes (not shown in the
figure).

\marginparsep Horizontal space between body and
marginal notes.

\marginparwidth Width of marginal notes.

Figure 4.1: Page layout parameters and visualization

4.1 Geometrical dimensions of the layout 195

letterpaper 81/2× 11 inches
legalpaper 81/2× 14 inches
executivepaper 71/4×101/2 inches
a4paper ≈ 81/4×113/4 inches 210×297 mm
a5paper ≈ 57/8× 81/4 inches 148×210 mm
b5paper ≈ 7 × 97/8 inches 176×250 mm

Table 4.1: Standard paper size options in LaTEX

these elements are considered to belong to the type area; this is often the case
for running headers, especially when underlined. Otherwise, they are considered
to belong to the top or bottom margins. This distinction is important when inter-
preting size specifications.

The fields to the left and the right of the body are also called margins. Usually
they are left blank, but small pieces of text, such as remarks or annotations—so-
called marginal notes—can appear there.

In general one talks about the inner and the outer margins. For two-sided
printing, inner refers to the middle margins—that is, the left margin on recto
(odd-numbered) pages and the right margin on verso (even-numbered) ones. For
one-sided printing, inner always indicates the left margin. In a book spread, odd-
numbered pages are those on the right-hand side.

The size, shape, and position of these fields and margins on the output
medium (paper or screen) and the contents of the running headers and footers
are collectively called a page layout.

The standard LaTEX document classes allow document formatting for recto–
verso (two-sided) printing. Two-sided layouts can be either asymmetrical or sym-
metrical (the LaTEX default). In the latter case the type areas of recto and verso
pages are positioned in such a way that they overlap if one holds a sheet to the
light. Also, marginal notes are usually swapped between left/right pages.

The dimensional parameters controlling the page layout are described and
shown schematically in Figure 4.1 on the facing page.1 The default values of these
parameters depend on the paper size. To ease the adjustments necessary to print
on different paper sizes, the LaTEX class files support a number of options that set
those parameters to the physical size of the requested paper as well as adjust the
other parameters (e.g., \textheight) that depend on them.

Table 4.1 shows the paper size options known to standard LaTEX classes to-
gether with the corresponding page dimensions. Table 4.2 on the following page
presents the page layout parameter values for the letterpaper paper size op-
tion, the default when no explicit option is selected. They are identical for the
three standard LaTEX document classes (article, book, and report). If a different pa-
per size option is selected the values may change. Thus, to print on A4 paper, you
can simply specify \documentclass[a4paper]{article} .

1The graphical presentation was produced with the layouts package, described in Section 4.2.1.

196 The Layout of the Page

Two-sided printing One-sided printing
Parameter

10pt 11pt 12pt 10pt 11pt 12pt

\oddsidemargin 44pt 36pt 21pt 63pt 54pt 39pt

\evensidemargin 82pt 74pt 59pt 63pt 54pt 39pt

\marginparwidth 107pt 100pt 85pt 90pt 83pt 68pt

\marginparsep 11pt 10pt 10pt ditto

\marginparpush 5pt 5pt 7pt ditto

\topmargin 27pt 27pt 27pt ditto

\headheight 12pt 12pt 12pt ditto

\headsep 25pt 25pt 25pt ditto

\footskip 30pt 30pt 30pt ditto

\textheight
43 38 36 ditto︸ ︷︷ ︸

×\baselineskip
\textwidth 345pt 360pt 390pt ditto

\columnsep 10pt 10pt 10pt ditto

\columnseprule 0pt 0pt 0pt ditto

Table 4.2: Default values for the page layout parameters (letterpaper)

Additional or different options may be available for other classes. Neverthe-
less, there seems to be little point in providing, say, an a0paper option for the
book class that would produce incredibly wide text lines.

Most of the layout parameters in LaTEX class files are specified in terms of
the physical page size. Thus, they automatically change when \paperwidth or
\paperheight is modified via one of the paper size options. Changing these two
parameters in the preamble of your document does not have this effect, since by
then the values for the other parameters are already calculated.

Standard-conforming dvi drivers place the reference point for TEX one inch
One-inch default

margins
down and to the right of the upper-left corner of the paper. These one-inch off-
sets are called driver margins. The reference point can be shifted by redefining the
lengths \hoffset and \voffset . By default, their values are zero. In general, the
values of these parameters should never be changed. They provide, however, a con-
venient way to shift the complete page image (body, header, footer, and marginal
notes) on the output plane without disturbing the layout. The driver margins are
inherited from TEX, and are not needed in LaTEX’s parameterization of the page
layout. A change to \topmargin shifts the complete text vertically, while changes
to \oddsidemargin and \evensidemargin shift it horizontally.

Note that some dvi drivers introduce their own shifts in the placement of
the text on paper. To make sure that the reference point is properly positioned,

4.2 Changing the layout 197

you can run the test file testpage.tex (by Leslie Lamport, with modifications
by Stephen Gildea) through LaTEX and the dvi driver in question. The resulting
output page will show the position of the reference point with respect to the
edges of the paper. For LaTEX2ε this file was rewritten by Rainer Schöpf to allow
the specification of a paper size option.

4.2 Changing the layout

When you want to redefine the value of one or more page layout parameters,
the \setlength and \addtolength commands should be used. It is important

�Change
parameters only

in the preamble

to keep in mind that changes to the geometrical page layout parameters should
be made only in class or package files and/or in the preamble (i.e., before the
\begin{document} command). Although changing them in mid-document is not
absolutely impossible, it will most likely produce havoc, due to the inner workings
of TEX, which involve a number of subtle dependencies and timing problems. For
example, if you change the \textwidth you might find that the running header
of the previous page is changed.

Initially, it is advisable to use TEX’s \baselineskip parameter for setting ver-
tical distances. This parameter is the distance between the baselines of two con-
secutive lines of text set in the “normal” document type size inside a paragraph.
The \baselineskip parameter may be considered to be the height of one line of
text. Therefore, the following setting always means “two lines of text”:

\normalsize % set normal \baselineskip
\setlength\headheight{2\baselineskip} % Height of heading

To guarantee that \baselineskip is set properly, first set up the fonts used in
the document (if necessary), and then invoke \normalsize to select the type size
corresponding to the document base size.

Sometimes it is convenient to calculate the page layout parameters according
to given typographic rules. For example, the requirement “the text should contain
50 lines” can be expressed using the command given below. It is assumed that the
height of all (except one) lines is \baselineskip and the height of the top line
of the text body is \topskip (this is TEX’s \baselineskip length parameter for
the first line with a default value of 10pt). Note that the examples in this chapter
use the LaTEX package calc (which simplifies the calculational notation) and the
extended control structures of LaTEX2ε (see Appendix A, Sections A.3.1 and A.3.2).

\setlength\textheight{\baselineskip*49+\topskip}

A requirement like “the height of the body should be 198mm” can be met
in a similar way, and the calculation is shown below. First calculate the number
of lines that the body of the desired size can contain. To evaluate the number of

198 The Layout of the Page

lines, divide one dimension by another to obtain the integer part. As TEX is unable
to perform this kind of operation directly, the dimensions are first assigned to
counters. The latter assignment takes place with a high precision because sp units
are used internally.

\newcounter{tempc} \newcounter{tempcc} % define two temporary counters
\setlength\textheight % subtract top line

{198mm-\topskip} % from desired size
\setcounter{tempc}{\textheight} % assign counter 1
\setcounter{tempcc}{\baselineskip} % assign counter 2
\setcounter{tempc}% % divide counters

{\value{tempc}/\value{tempcc}}
\setlength\textheight{\baselineskip*\value{tempc}+\topskip}

The value of the vertical distance, \topmargin , can also be customized. As
an example, suppose you want to set this margin so that the space above the
text body is two times smaller than the space below the text body. The following
calculation shows how to determine the needed value in the case of A4 paper (the
paper height is 297mm).

\setlength\topmargin
{(297mm-\textheight)/3 - 1in - \headheight - \headsep}

In general, when changing the page layout you should take into account some
elementary rules of legibility (see, for example, [150]). Studies of printed material
in the English language have shown that a line should not contain more than 10–
12 words, which corresponds to not more than 60–70 characters per line.

The number of lines on a page depends on the type size being used. The code
below shows one way of calculating a \textheight that depends on the document
base size. Use the fact that in most document classes the internal LaTEX command
\@ptsize holds the number 0, 1, or 2 for the base font size 10pt, 11pt, or 12pt,
respectively. This command is set when you select an option such as 11pt.

\ifthenelse{\@ptsize = 0}% 10 point typeface as base size
{\setlength\textheight{53\baselineskip}}{}

\ifthenelse{\@ptsize = 1}% 11 point typeface as base size
{\setlength\textheight{46\baselineskip}}{}

\ifthenelse{\@ptsize = 2}% 12 point typeface as base size
{\setlength\textheight{42\baselineskip}}{}

\addtolength\textheight{\topskip}

Another important parameter is the amount of white space surrounding the
text. As printed documents are likely to be bound or stapled, enough white space
should be left in the inner margin of the text to allow for this possibility. If

4.2 Changing the layout 199

\oddsidemargin is fixed, then the calculation of \evensidemargin for two-sided
printing is based on the following relationship:

width_of_paper =
1in + \oddsidemargin + \textwidth + \evensidemargin + 1in

In most classes two-sided printing is turned on by specifying the twoside
class option, which sets the Boolean register @twoside to true. Using commands
from the ifthen package we can set parameters depending on the value of this
Boolean register, also taking into account the selected document base size:

\ifthenelse{\@ptsize = 0}% 10 point typeface as base size
{\setlength\textwidth{5in}%
\setlength\marginparwidth{1in}%
\ifthenelse{\boolean{@twoside}}%

{\setlength\oddsidemargin {0.55in}% two-sided
\setlength\evensidemargin{0.75in}}%

{\setlength\oddsidemargin {0.55in}% one-sided
\setlength\evensidemargin{0.55in}}%

}{}
\ifthenelse{\@ptsize = 1}{...}% 11 point typeface as base size
\ifthenelse{\@ptsize = 2}{...}% 12 point typeface as base size

Similarly, when a document contains a lot of marginal notes, it is worthwhile
changing the layout to increase the margins. As an example, the (obsolete) a4
package defines a command \WideMargins . This macro modifies the geometrical
parameters in such a way that the width reserved for marginal notes is set to 1.5
inches by decreasing the width of the text body.

4.2.1 layouts—Displaying your layout

To visualize your layout parameter settings and help you experiment with differ-
ent values there are two packages available. The package layout (originally writ-
ten by Kent McPherson and converted to LaTEX2ε by Johannes Braams) provides
the command \layout , which produces a graphical representation of the current
page parameters with all sizes reduced by a factor of two. If the class option
twoside is used then two pages are produced.

A more flexible solution is provided by the package layouts written by Pe-
ter Wilson. This package can be used for two purposes: to produce an abstract
graphical representation of the layout parameters (not reflecting the current set-
tings) via \pagediagram (as shown in the next example) or to produce trial layouts
that show the effect of setting parameters to trial values and then applying the

200 The Layout of the Page

command \pagedesign . In either mode \setlayoutscale sets the scale factor
to the specified value.

The circle is at 1 inch from the top and left of the page. Dashed lines
represent (\hoffset + 1 inch) and (\voffset + 1 inch) from the top

and left of the page.

�
Header

Body

Footer

Margin
Note

�\topmargin

�\headheight

�\headsep

�\textheight

�

\footskip

�\marginparpush

�\marginparwidth

�\oddsidemargin

�\marginparsep

�\textwidth

\usepackage{layouts}

\setlayoutscale{0.33}
\setparametertextfont

{\scriptsize}
\setlabelfont{\scriptsize}
\pagediagram 4-2-1

To produce a trial layout you first have to specify suitable values for all
page layout parameters. For each parameter param, there exists a declaration
\try〈param〉 that accepts the trial values for this parameter as an argument. For
example, \tryheadsep{18pt} would produce a layout with \headsep set to 18pt.

In addition, there are four Boolean-like declarations: \oddpagelayoutfalse
produces an “even page” (default is to produce odd pages), the declaration
\twocolumnlayouttrue produces a two-column layout (default is a single-
column layout). The command \reversemarginpartrue mimics the result of
LaTEX’s \reversemarginpar , and \marginparswitchfalse prevents marginal
notes from changing sides between verso and recto pages (a suitable setting for
asymmetrical layouts, which are easily produced using the geometry package; see
page 208).

To facilitate the specification of trial values you can start your trial by spec-
ifying \currentpage . It sets all trial values and Boolean switches to the values
currently used in your document.

4.2 Changing the layout 201

By default, the footer has a height of one line, as LaTEX has no explicit param-
eter to change the box size of the footer. However, depending on the page style
used this choice might not be appropriate, as the footer box defined by the page
style might have an exceptionally large depth. To produce a diagram that is (ap-
proximately) correct in this case, one can set the footer box height and depth
explicitly using \setfootbox as we do in the example below.

This example also shows that you can combine this package with the calc
package to allow arithmetic expressions in your trial declarations.

4-2-2

�
Header

Col. 1 Col. 2

Footer

Note

Margin

Lengths are to the nearest pt.
page height = 614pt page width = 795pt
\hoffset = 0pt \voffset = 0pt
\evensidemargin = 120pt \topmargin = 16pt
\headheight = 12pt \headsep = 18pt
\textheight = 370pt \textwidth = 500pt
\footskip = 40pt \marginparsep = 11pt
\marginparpush = 5pt \columnsep = 120pt
\columnseprule = 3.0pt

\usepackage{calc,layouts}

\setlayoutscale{0.3}
\currentpage
\oddpagelayoutfalse
\twocolumnlayouttrue

\trypaperwidth{11in}
\trypaperheight{8.5in}
\trytextwidth{500pt}
\trytextheight{\topskip

+ 30\baselineskip}
\trycolumnsep{120pt}
\trycolumnseprule{3pt}

\tryheadheight{12pt}
\tryheadsep{18pt}
\tryfootskip{40pt}

\tryevensidemargin{120pt}

\setfootbox{12pt}{24pt}

\setlabelfont{\tiny}
\drawdimensionsfalse
\printheadingsfalse
\pagedesign

A number of display control statements influence the visual representation of
Controlling the
presentation

the printed page designs, some of which were used in the previous example. The
most important are discussed here, whilst others are described in the documenta-
tion accompanying the package.

With the \setlabelfont declaration the font size used for the textual labels
can be changed. Similarly, \setparametertextfont influences the font sizes for
parameters if they are shown (e.g., Example 4-2-1 on the preceding page).

The heading text displayed on top of the example can be suppressed with
\printheadingsfalse . The Boolean flag \printparametersfalse suppresses

202 The Layout of the Page

the tabular listing of parameter values below the diagram. A similar table can
be generated separately using the command \pagevalues .

With \drawdimensionstrue arrows are drawn to indicate where parame-
ters apply (by default, this feature is turned on in \pagediagram and off when
\pagedesign is used).

The layouts package is not restricted to page layouts. It also supports the
Visualizing other

layout objects
visualization of other objects. Eight “diagram” commands can be used to show
the general behavior of other LaTEX layout parameters. The \listdiagram com-
mand visualizes the list-related parameters (it is used in Figure 3.3 on page 145).
The \tocdiagram command shows which parameters influence table of con-
tent lists and how they relate to each other. Float-related parameters are visu-
alized using \floatdiagram and \floatpagediagram . Parameters for section-
ing commands are displayed with \headingdiagram , and parameters related to
footnotes and general paragraphs can be shown with \footnotediagram and
\paragraphdiagram . Finally, the \stockdiagram command produces a page lay-
out diagram similar to \pagediagram but displays parameters available only in
the memoir document class and its derivatives (see Section 4.6.2 on page 237).

There also exist corresponding “design” commands, such as \listdesign ,
\tocdesign , \floatdesign , \floatpagedesign , \headingdesign , and so on,
that allow you to experiment with different parameter settings. For each param-
eter a declaration \try〈param〉 allows you to set its value for visualization. The
full list of parameters supported this way is given in the package documentation.
But if you know the applicable LaTEX parameters (or look them up on the “diagram”
command results) you can start experimenting straight away.

4.2.2 A collection of page layout packages

Because the original LaTEX class files were based on American page sizes, European
users developed several packages that adapt the page layout parameters for met-
ric sizes. All such packages are superseded by the typearea or geometry package
(described in the next two sections) and for new documents we recommend that
you use these packages. As you will find the original attempts still in the archives,
we mention them here in passing.

Examples of such packages are a4, which generates rather small pages;
a4dutch (by Johannes Braams and Nico Poppelier), which is well documented; and
a4wide (by Jean-François Lamy), which produces somewhat longer lines. Moreover,
often there exist locally developed files under such names. For A5 pages one has
the package files a5 and a5comb (by Mario Wolczko). The problem with all of
these early packages was that they allowed little to no customization with respect
to the size and placement of the text area and, for some of them, incompatible
implementations exist.

A more general approach was taken by the vmargin package written by Volker
Kuhlmann. His package supports a variety of paper sizes and allows you to spec-
ify a number of layout parameters with a single declaration, calculating others

4.2 Changing the layout 203

from the input (a number of variant declarations exist). In the example below the
margins are specified and the text area is calculated.

4-2-3

� Header

Body

Footer

Note

Margin

\usepackage{vmargin}
\setpapersize[portrait]{A5}
\setmarginsrb{80pt}{40pt}% left, top

{120pt}{80pt}% right, bottom
{12pt}{10pt}% head height, sep
{12pt}{30pt}% foot height, sep

\setlength\marginparwidth{100pt}
% Code to display the resulting layout:
\usepackage{layouts}
\newcommand\showpage{%
\setlayoutscale{0.25}\setlabelfont{\tiny}%
\printheadingsfalse\printparametersfalse
\currentpage\pagedesign}

\showpage

The package internally cancels the default offset of one inch (added normally
by TEX output devices) by using a negative \hoffset and \voffset , a fact that
can cause some surprise. This behavior can be seen in the example, where the
dashed lines normally indicating this offset have vanished behind the page border
and only the circle at (1inch, 1inch) remains.

4.2.3 typearea—A traditional approach

In books on typography one usually finds a section that deals with page layout, of-
ten describing construction methods for placing the text body and providing one
or the other criterion for selecting text width, number of text lines, relationship
between margins, and other considerations.

The package typearea by Markus Kohm and Frank Neukam, which is dis-
tributed as part of the KOMA-Script bundle, offers a simple way to deploy one
of the more traditional page layout construction methods that has been used for
many books since the early days of printing.

In a nutshell, the page layout generated by typearea provides a text body with
the same spatial relationship as given by the paper size on which the document
is being printed. In addition, the outer margin will be twice as wide as the inner
margin and the bottom margin will be twice as wide as the top margin.

The construction method works by dividing the paper horizontally and verti-
cally into n equal slices and then using one slice at the top and inner edges and
two slices at the bottom and outer edges for the margins. By default, the variable
n is calculated automatically by the package. It can also be requested explicitly
(for example, to overwrite a configuration setting in the file typearea.cfg) by
using the option DIVcalc. This option works by examining the document font
and selecting a value that results in approximately 60–70 characters per text line,

204 The Layout of the Page

assuming a portrait page. Alternatively, one can explicitly set the value of n by
specifying the option DIVn, resulting in n slices. As a third possibility, one can
specify the option DIVclassic, which results in a page layout close to that found
in certain types of medieval books.

The page height resulting from the chosen or calculated DIV value is automat-
ically adjusted to produce an integral number of text lines. For this approach to
work, the effective \baselineskip used throughout the document has to be estab-
lished first. Thus, when using a package like setspace or applying the command
\linespread this step should be taken prior to loading typearea.

For defining the paper typearea offers all of the paper size options of LaTEX’s
standard classes (see Table 4.1 on page 195) as well as all sizes of the ISO-A,
ISO-B, and ISO-C series (e.g., a0paper or c5paper). To change the text orientation
use landscape, as in the example below.

� Header

Body

Footer

Note

Margin

\usepackage[a5paper,landscape,DIVcalc]{typearea}
% to display the resulting layout:
\usepackage{layouts}
\newcommand\showpage{%
\setlayoutscale{0.27}\setlabelfont{\tiny}%
\printheadingsfalse\printparametersfalse
\currentpage\pagedesign}

\showpage
4-2-4

The calculated DIV value is recorded in the .log file of the LaTEX run together
with the values chosen for other page parameters. In the above example this value
was 7, so instead of DIVcalc we could have used DIV7.

So far, we have explained how the package chooses the text body dimensions
Determining the

body area
and how it places that body on the page, but we have not discussed whether
the running header and footer participate in that calculation. This issue must be
decided depending on their content. If, for example, the running header contains
a lot of material, perhaps even with a rule underlining it, and thus contributes
considerably to the grey value of the page, it is best regarded as part of the page
body. In other cases it might be more appropriate to consider it as being part
of the margin (e.g., if it is unobstructive text in small type). For the same reason
a footer holding only the page number should normally be considered as lying
outside the text body and not contributing to the placement calculations.

The choices for a particular document can be explicitly specified with the
options headinclude, footinclude, headexclude, and footexclude. The latter
two options are used by default. With large DIV values (i.e., small margins), exclud-
ing the header or footer might make it fall off the page boundary so you may have
to adjust one or the other setting.

4.2 Changing the layout 205

In a similar fashion (using mpinclude or mpexclude), one can include or ex-
clude the \marginpar area into the calculation for left and right margins. This,
too, is turned off by default but it might be appropriate to include it for layouts
with many objects of this type.

The header size is by default 1.25 text lines high. This value can be adjusted
by using an option of the type numheadlines , where num is a decimal number,
such as 2.3, denoting the number of text lines the header should span.

The next example has header and marginals included and the header size is
enlarged to 2.5 lines. Compare this example to the layout in Example 4-2-4 on the
preceding page, where header, footer, and marginals are excluded.

4-2-5

� Header

Body

Footer

Note

Margin

\usepackage[a5paper,landscape,
2.5headlines,
headinclude,mpinclude,
DIVcalc]{typearea}

\usepackage{layouts}
% \showpage as previously defined

\showpage

Depending on the type of binding for the final product, more or less of the
inner margin will become invisible. To account for this loss of white space the
package supports the option BCOR〈val〉, where val is the amount of space (in any
LaTEX unit) taken up by the binding. For example, BCOR1.2cm would subtract 1.2
centimeters from the page width prior to doing the page layout calculations.

As an alternative to customizing the layout through options to the package,
one can perform the parameter calculations with the command \typearea ; for
details, see the KOMA-Script documentation. This ability is useful, for example, if
a document class, such as one of the classes in the KOMA-Script bundle, already
loads the typearea package and you want to use an unusual body font by loading
it in the preamble of the document. In that case the layout calculations need to be
redone to account for the properties of the chosen font.

4-2-6

�
Header

Body

Footer

Note

Margin

\usepackage[a5paper,landscape]{typearea}
\usepackage{bookman}

% syntax: \typearea[<binding corr.>]{<slices>}
\typearea[10mm]{11}

\usepackage{layouts}
% \showpage as previously defined

\showpage

206 The Layout of the Page

4.2.4 geometry—Layout specification with auto-completion

The geometry package written by Hideo Umeki provides a comprehensive and
easy-to-use interface to all geometrical aspects of the page layout. It deploys the
keyval package so that all parameters (and their values) can be specified as options
to the \usepackage declaration.

In contrast to the typearea package, geometry does not implement a certain
typographical concept but rather carries out specifications as requested. It knows,
however, about certain relationships between various page parameters and in case
of incomplete specifications can calculate the remaining parameter values auto-
matically. The following example shows a layout very similar to the one produced
by typearea in Example 4-2-5 on the preceding page. Here a number of values have
been explicitly set (e.g., those for the top and left margins), but the size of the page
body has been automatically calculated from the paper size (a5paper), the values
for top margin (tmargin) and left margin (lmargin), and a specified margin ratio
of 1:2 (marginratio).

� Header

Body

Footer

Note

Margin

\usepackage[marginratio=1:2,
paper=a5paper,landscape=true,
tmargin=52pt,lmargin=74pt,
headheight=30pt,marginparwidth=62pt,
includehead,includemp]{geometry}

\usepackage{layouts}
% \showpage as previously defined

\showpage
4-2-7

The example also shows that with Boolean options it is permissible to leave
out the value part (which then defaults to =true); with all other options the value
part is mandatory.

The remainder of this section discusses the various page layout aspects that
are supported by geometry. In most cases there is more than one way to achieve
the same result because some of the parameters have to satisfy certain relations.
If your specification violates such a relation, geometry will warn you and then
ignore one or the other option setting.

The paper size can be specified with the paper option, which accepts the
Paper sizes values a0paper to a6paper, and b0paper to b6paper. Alternatively, the values

letterpaper, legalpaper, and executivepaper can be used. For convenience
you are allowed to denote the paper size by specifying the named paper as an
option; for example, a5paper is equivalent to the specification paper=a5paper.

When formatting for a computer display you might want to try the op-
tion screen. To specify other nonstandard sizes you can use paperwidth and
paperheight to define the appropriate dimensions explicitly.

4.2 Changing the layout 207

With respect to general page characteristics, geometry supports the Boolean
General page
characteristics

options twoside, landscape (switching paper height and width), and portrait.
Obviously, portrait=false is just a different way of specifying landscape.

If a certain part of the page becomes invisible due to the binding method, you
can specify this loss of white space with the option bindingoffset. It will add
the specified value to the inner margin.

When the Boolean option twocolumn is specified, the text area will be set
up to contain two columns. In this case the separation between columns can be
specified through the option columnsep.

In Section 4.2.3 describing the typearea package, we stated that, depending
What constitutes the
body area

on the nature of the document, it may be appropriate to consider the running
header and/or footer (and in some cases even the part of the margin taken up by
marginal notes) as being part of the text body. By default, geometry excludes the
header, footer, and marginals. As these settings modify the relationship between
body and margin sizes used for calculating missing values, they should be set
appropriately. To change the defaults, a number of Boolean options1 are available:
includemp, to include the marginals, which is seldom necessary; includehead, to
be used with heavy running headers; includefoot, which is rarely ever necessary,
as the footer normally contains only a page number; and includeheadfoot and
includeall, which are shorthand for combinations of the other options.

Footnotes are always considered to be part of the text area. With the option
footnotesep you specify only the separation between the last text line and the
footnotes; the calculation of the margins remains unaffected.

For specifying the text body size several methods are available; the choice of
Text areawhich to use is largely a matter of taste. You can explicitly specify the text area

size by giving values for textwidth and textheight. In that case you should
normally ensure that textheight holds an integral number of text lines to avoid
underfull box messages for pages consisting only of text. A convenient way to
achieve this goal is to use the lines option, which calculates the appropriate
\textheight using the current values for \baselineskip and \topskip .

Alternatively, you can set the Boolean option heightrounded, in which case
geometry will adjust the \textheight appropriately. This Boolean option is es-
pecially useful if the body size is calculated automatically by the package—for
example, if you specify the values for only some of the margins and let the pack-
age work out the rest.

As an alternative to specifying the text area and having the package calcu-
late the body size by adding the sizes of the header, footer, and/or marginals as
specified through the above options, you can give values for the whole body area
and have the package calculate the text area by subtracting. This is done with
the options width and height (this approach, of course, differs from the previ-

1The typearea package offers the same functionality, with similar (though in fact different) option
names, such as headinclude instead of includehead.

208 The Layout of the Page

ous approach only if you have included header and/or footer). If this method is
used consider specifying heightrounded to let the package adjust the calculated
\textheight as needed.

If you do not like specifying fixed values but prefer to set the body size rel-
ative to the page size, you can do so via the options hscale and vscale. They
denote the fraction of the horizontal or vertical size of the page that should be
occupied by the body area.

The size of the margins can be explicitly specified through the options
Margins lmargin, rmargin, tmargin, and bmargin (for the left, right, top, and bottom

margins, respectively). If the Boolean option twoside is true, then lmargin and
rmargin actually refer to the inner and outer margins, so the option names are
slightly misleading. To account for this case, the package supports inner and
outer as alternative names—but remember that they are merely aliases. Thus,
if used with the asymmetric option (described below), they would be confusing
as well. To give you even more freedom there exists another set of option names:
left, right, top, and bottom. If you choose to specify only verso pages (the recto
pages being automatically produced by selecting twoside or asymmetric), then
the first or the last set of names is probably the best choice.

If none, or only some, of the margin sizes are specified, the missing ones are
calculated. Given the equations

paperwidth = left + width + right (4.1)

paperheight = top + height + bottom (4.2)

then knowing two values from the righthand side allows the calculation of the
third value (instead of width or height the body area might be specified through
some of the other methods discussed above). If only one value from the righthand
side is specified, the package employs two further equations to reduce the free
variables:

left/right = hmarginratio (4.3)

top/bottom = vmarginratio (4.4)

The default value for the hmarginratio option is 2:3 when twoside is true, and
otherwise 1:1 . The default for vmarginratio is 2:3 without exception.

The allowed values for these “ratio” options are restricted: both numbers have
to be positive integers less than 100 separated with a colon. For example, you
would use 4:5 instead of 1:1.25 .

If you wish to center the body area, use the option centering. It is a conve-
nient shorthand for setting hmarginratio and vmarginratio both to 1:1 .

In standard LaTEX classes the option twoside actually fulfills a dual purpose:
Asymmetrical and

symmetrical layouts
beside setting up the running header and footer to contain different content on
verso and recto pages, it automatically implements a symmetrical layout with left
and right margins (including marginal notes) swapped on verso pages. This out-
come is shown in the next example, which also highlights the fact that geometry

4.2 Changing the layout 209

by default selects a very large text area but does not adjust the size of the marginal
boxes to fit in the remaining margin.

4-2-8

�
Header

Body

Footer

Note

Margin

�
Header

Body

Footer

Note

Margin
\usepackage[a6paper,twoside]

{geometry}
\usepackage{layouts}
% \showpage as previously defined

\showpage \newpage \showpage

With the geometry package, however, asymmetrical page layouts are possible,
simply by using the option asymmetric. The use of bindingoffset in the next
example proves that an asymmetrical two-sided layout is indeed produced, as
the offset is applied to the inner margins and not always to the left margin, even
though the marginal notes always appear on the left. As we want the larger margin
on the left, we have to change hmarginratio appropriately. At first glance the
right margin on the verso page might appear incorrectly large given a marginal
ratio of 2:1; this is due to the bindingoffset being added to it.

4-2-9

� Header

Body

Footer

Note

Margin

� Header

Body

Footer

Note

Margin

\usepackage[a6paper,asymmetric,
bindingoffset=18pt,
marginparwidth=.8in,reversemp,
hmarginratio=2:1,vmarginratio=4:5,
left=1in,top=1in]{geometry}

\usepackage{layouts}
% \showpage as previously defined

\showpage \newpage \showpage

The dimensions for the running header and its separation from the text area
Running header
and footer

can be specified through the options headheight and headsep. The distance be-
tween the text area and the footer is available through footskip. There also exist
the Boolean options nohead, nofoot, and noheadfoot, which set these dimen-
sions to zero. In most circumstances, however, it is better to use ignorehead, etc.
as this will allow you to attach the header or footer on one or the other page
without affecting the margin calculations.

As most documents do not contain many marginal notes, the space occupied
Marginal notesby them by default does not count toward the margin calculations. This space can

be specified with marginparwidth, and the separation from the text area can be

210 The Layout of the Page

set with marginparsep. Unless includemp is specified it is the user’s responsibil-
ity to ensure that this area falls within the calculated or specified margin size.

By default, the marginal notes appear in the outer margin. By specifying the
Boolean option reversemp this set-up can be reversed.

Instead of using an external package, such as layouts, to visualize the results
Miscellaneous

features
produced by geometry, one can use its built-in option showframe. By default, all
settings, including any calculated values, are recorded in the transcript file of the
current LaTEX run. Setting the Boolean option verbose ensures that these settings
are also displayed on the terminal.

Some TEX extensions or device drivers such as pdfTEX or VTEX like to know
about the dimensions of the paper that is being targeted. The geometry package
accounts for this by providing the options pdftex, vtex, dvipdfm, and dvips.
Naturally, at most one of them should be specified. If a document is processed
with the pdfTEX program then the pdftex option is automatically selected (and
the others are disabled).

Like most packages these days, geometry supports the extended syntax of the
calc package if the latter is loaded before geometry.

To account for unusual behavior of the printing device, LaTEX maintains two
dimension registers, \hoffset and \voffset , which will shift all output (on every
page) horizontally to the right and vertically downward by the specified amount.
The package supports the setting of these registers via the options hoffset and
voffset. They have no effect on the calculation of other page dimensions.

The TEX program offers a magnification feature that magnifies all specified
Magnification dimensions and all used fonts by a specified factor. Standard LaTEX has disabled

this feature, but with geometry it is again at the disposal of the user via the option
mag. Its value should be an integer, where 1000 denotes no magnification. For
example, mag=1414 together with a5paper would result in printing on a4paper, as
it enlarges all dimensions by 1.414(=

√
2), the factor distinguishing two consecutive

paper sizes of the ISO-A series. This ability can be useful, for example, if you later
wish to photomechanically reduce the printed output to achieve a higher print
resolution. As this option also scales fonts rather than using fonts designed for a
particular size, it is usually not adequate if the resulting (magnified) size is your
target size.

When magnification is used, you can direct TEX to leave certain dimensions un-
magnified by prepending the string true to the unit. For example, left=1truein
would leave a left margin of exactly one inch regardless of any magnification fac-
tor. Implicitly specified dimensions (such as the paper size values, when spec-
ifying a paper option) are normally subject to magnification unless the option
truedimen is given.

The previously described options allow you to specify individual values, but
Shortcuts for the most common cases geometry also provides combination options. They

allow you to set several values in one pass by specifying either a single value (to be
used repeatedly) or a comma-separated list of values (which must be surrounded
by braces so that the commas are not mistaken for option delimiters).

4.2 Changing the layout 211

The option papersize takes a list of two dimensions denoting the horizontal
and vertical page dimensions.

The option hmargin sets the left and right margins, either to the same value
if only a single value is given, or to a list of values. Similarly, vmargin sets the top
and bottom margins. This operation can sometimes be shortened further by using
the option margin, which passes its value (or list) to hmargin and vmargin. In the
same way marginratio passes its value to hmarginratio and vmarginratio for
further processing.

The text area dimensions can be specified using the body option, which takes
one or two values setting textwidth and textheight. Alternatively, you can use
the option total, which is a shortcut for setting width and height. You can also
provide one or two scaling factors with the option scale that are then passed to
hscale and vscale.

If the geometry package is used as part of a class you may wish to over-
Preamble usagewrite some of its settings in the preamble of your document. In that case

the \usepackage option interface is of little use because the package is al-
ready loaded. To account for such situations the package offers the command
\geometry , which takes a comma-separated list of options as its argument. It can
be called multiple times in the preamble, each time overwriting the previous set-
tings. In the next example its use is demonstrated by first loading the package and
setting all margins to one inch and the header, footer, and marginals to be part
of the body area, and then changing the right margin to two inches and excluding
the marginals from the calculation.

4-2-10

�
Header

Body

Footer

Note

Margin

\usepackage[a6paper,landscape,
margin=1in,includeall]{geometry}

% overwriting some values:
\geometry{right=2in,ignoremp}
\usepackage{layouts}
% \showpage as previously defined

\showpage

Two other options might be handy when using the \geometry interface. With
reset you restore the package defaults and with pass you basically disable the
package itself.

4.2.5 lscape—Typesetting individual pages in landscape mode

For most documents the longer side of the paper corresponds to the vertical direc-
tion (so-called portrait orientation). However, for some documents, such as slides
and tables, it is better to use the other (landscape) orientation, where the longer
side is horizontally oriented. Modern printers and dvi drivers usually allow print-
ing in both orientations.

212 The Layout of the Page

The landscape and portrait orientations require different page layouts, and
with packages like geometry you have the tools at hand to design them as needed.
But sometimes it is desirable to switch between portrait and landscape mode for
only some pages. In that case the previously discussed packages do not help, as
they set up the page design for the whole document.

For this case you can use the lscape package by David Carlisle that defines
the environment landscape to typeset a selected set of pages in landscape orien-
tation without affecting the running header and footer. It works by first ending
the current page (with \clearpage , thereby typesetting any dangling floats). It
then internally exchanges the values for \textheight and \textwidth and ro-
tates every produced page body within its scope by 90 degrees. For the rotation
it deploys the graphics package, so it works with any output device supported by
that package capable of rotating material. When the environment ends it issues
another \clearpage before returning to portrait mode.

For rotating individual floats, including or excluding their captions, a better
alternative is provided by the rotating package, described in Section 6.3.3.

4.2.6 crop—Producing trimming marks

When producing camera-ready copy for publication, the final printing is normally
done on “stock paper” having a larger size than the logical page size of the doc-
ument. In that case the printed copy needs trimming before it is finally bound.
For accurate trimming the printing house usually requires so-called crop marks
on each page. Another reason for requiring crop marks is the task of mounting
two or more logical pages onto a physical one, such as in color production where
different colors are printed separately.

The crop package created by Melchior Franz supports these tasks by provid-
ing a simple interface for producing different kinds of crop marks. It also offers
the ability to print only the text or only the graphics from a document, and the
chance of inverting, mirroring, or rotating the output, among other things—all
features useful during that part of the printing process.

Crop marks can be requested by using one of the following options:

cam Produces four marks that show the logical paper dimensions without touch-
ing them (see Example 4-2-11 on the next page). They are mainly intended for
camera alignment.

cross Produces four large crosses at the corners of the logical page touching its
edges.

frame Produces a frame around the logical page; mainly intended for clearly
visualizing the page dimensions.

The package assumes that the \paperheight and \paperwidth dimensions
correctly reflect the size of the logical page you want to produce. The size of the
physical page (the stock paper) you are actually printing on is then given as an

4.2 Changing the layout 213

option to the package. Options include a0, a1, a2, a3, a4, a5, a6, b0, b1, b2, b3, b4,
b5, b6, executive, legal, and letter. If you use the physical paper in landscape
orientation (i.e., with the long side horizontally), you can also specify the option
landscape. If none of these options matches your physical paper sizes, you can
specify the exact sizes through the options width and height, both of which take
dimensional values.

The following example sets up an artificially small logical page (to fit the ex-
ample area of this book) using the geometry package and centers it on a physical
page of A5 size. However, since all our examples are actually cropped to their “vis-
ible” size and since, for obvious reasons, we have not actually marked the borders
of the A5 paper, you cannot see that it was properly centered at one stage—either
believe us or try it yourself.

4-2-11

“4-2-11” — 2004/8/1
1:18 — page 1 — #1�

�
�

�

�
�

�
�

Some text to show the text

area selected in relation

\usepackage{graphicx,geometry}
\geometry{paperwidth=2in,

paperheight=1in,
margin=5mm}

\usepackage[cam,a5,center]{crop}

Some text to show the text area
\includegraphics[width=8mm]

{rosette.ps}
selected in relation to the crop
marks.

It should be clear from the description and the example that this package
should be loaded after the document layout has been specified.

The informational text between the top crop marks is added by default. It can
be suppressed by adding the option noinfo, though it is usually a good idea to
keep it. The information contains both the page number (as known to LaTEX) and a
page index, which starts with 1 and is incremented for every page being printed.
Especially with large publications using several page numbering methods at once,
this is a helpful device to ensure that pages are not misordered.

Several options of the crop package rely on support given by the printer driver.
If no driver option is explicitly given, the package tries to determine the driver
from installation settings for the graphics or color package. It is also possible to
indicate the driver explicitly by using options such as dvips, pdflatex, or vtex.
If one of these options is selected the paper size information is passed to the
external driver program, which is important if you want to view the document
using ghostview or similar programs.

If you want to print graphics separately—for example, because running the
complete document through a color printer is infeasible—you can produce differ-
ent versions of the same document: one containing only the text but no graphics

214 The Layout of the Page

(or, more precisely, without graphics included via \includegraphics) and one
containing only the graphics (or, more precisely, with all text printed in the color
“white”). These effects can be achieved using the options nographics and notext,
respectively. Clearly, the latter option can be used only if the target device is capa-
ble of understanding color commands since internally the color package is being
deployed. The next example1 shows the use of the nographics and cross options;
compare it to the output of Example 4-2-11.

“4-2-12” — 2004/8/1
1:18 — page 1 — #1

Some text to show the text

area selected in relation

\usepackage{graphicx,geometry}
\geometry{paperwidth=2in,

paperheight=1in,
margin=5mm}

\usepackage[cross,a5,nographics]
{crop}

Some text to show the text area
\includegraphics[width=8mm]

{rosette.ps}
selected in relation to the crop
marks. 4-2-12

Three other options require the output device to be able to obey the extended
commands of the graphics and color packages for rotation, mirroring, and back-
ground coloring. With the option rotate the pages are turned through 180 de-
grees. The option mirror flips each page as shown in the next example. Finally,
the option invert will invert white and black, so that the text appears in white on
a black surface.

“4-2-13”—2004/8/1
1:18—page1—#1

Sometexttoshowthetext

areaselectedinrelation

\usepackage{graphicx,geometry}
\geometry{paperwidth=2in,

paperheight=1in,
margin=5mm}

\usepackage[frame,a5,mirror]{crop}

Some text to show the text area
\includegraphics[width=8mm]

{rosette.ps}
selected in relation to the crop
marks. 4-2-13

1The cross crop marks look admittedly rather weird at this measure.

4.3 Dynamic page data: page numbers and marks 215

4.3 Dynamic page data: page numbers and marks

LaTEX’s output routine, which produces the typeset pages, works asynchronously.
That is, LaTEX assembles and prepares enough material to be sure that a page can
be filled and then builds that page, usually leaving some residual material behind
to be used on the next page(s). Thus, while preparing headings, paragraphs, and
other page elements, it is usually not known on which page this material will
eventually be placed because LaTEX might eventually decide that this material will
not fit on the current page. (We have already discussed this problem in the section
about page-wise footnote numbering.)

When the final page is typeset, we might want to repeat some information
from its contents in the running header or footer (e.g., the current section head),
to give the reader extra guidance. You cannot save this information in commands
when the material is collected; during this phase LaTEX often reads too far ahead
and your command would then contain data not appearing on the final page. LaTEX
solves this problem by providing a mark mechanism through which you can iden-
tify data as being of interest for the assembled page. In the output routine all
marks from the page are collected and the first and the last mark are made avail-
able. The detailed mechanism is explained in this section together with some use-
ful extension packages.

4.3.1 LATEX page numbers

The page number is controlled through a counter named page. This counter is
automatically stepped by LaTEX whenever it has finished a page—that is, after it has
been used. Thus, it has to be initialized to 1, whereas most other LaTEX counters
require an initialization to 0 as they are stepped just before they get used.

The command to access the typographical representation of the page num-
ber is \thepage , following standard LaTEX convention. There is, however, another
subtle difference compared to other LaTEX counters: the \thepage command is
not defined by the LaTEX kernel but instead comes into existence only after the
first execution of a \pagenumbering declaration, which typically happens in the
document class file.

The best (though perhaps not the most convenient) way to get at the page
number for the current page in the middle of the text is via a combination of the
commands \label and \pageref , which should be put directly one following the
other so that no page break can interfere.

4-3-1

We are now on
page 6. This type of
coding always gives
correct results while
“page 6”, though okay

6

here, will be wrong
at a later point in the
paragraph, such as
here: “page 6”, because
LATEX decided to break

7

We are now on page~\label{p1}\pageref{p1}.
This type of coding always gives correct
results while ‘‘page \thepage{}’’, though
okay here, will be wrong at a later point
in the paragraph, such as here: ‘‘page
\thepage’’, because \LaTeX{} decided to
break the paragraph over two pages.

216 The Layout of the Page

Because of the asynchronous nature of the output routine you cannot safely use
\thepage within the document body. It is reliable only in declarations that influ-
ence the look and feel of the final page built by the output routine.

\pagenumbering{style}

The \pagenumbering command resets the page counter to 1 and redefines the
command \thepage to \style{page}. Ready-to-use page counter styles include:
Alph, alph, Roman, roman, and arabic (see Section A.1.4).

For example, an often seen convention is to number the pages in the front
matter with roman numerals and then to restart the page numbers using arabic
numbers for the first chapter of the main matter. You can manually achieve this
effect by deploying the \pagenumbering command twice; the \frontmatter and
\mainmatter commands available with the book class implement this set-up im-
plicitly behind the scenes.

4.3.2 lastpage—A way to reference it

Standard LaTEX has no way to refer to the number of pages in a document; that is,
you cannot write “this document consists of 6 pages” or generate “page 5 of 10”
without manually counting the pages yourself. The package lastpage by Jeffrey
Goldberg sets out to overcome this problem by automatically generating a label
with the name LastPage on the last page, so that you can refer to its page number
via \pageref{LastPage}. Example 4-4-5 on page 226 demonstrates its use.

The string produced by that call to \pageref is the content of \thepage as it
would appear on the last page. If your document restarts page numbering midway
through—for example, when the front matter has its own numbering—this string
will not reflect the absolute number of pages.

The package works by generating the label within the \AtEndDocument hook,
making sure that any pending floats are placed first. However, as this hook might
also be used by other packages to place textual material at the end of the docu-
ment, there is a chance that the label may be placed too early. In that case you can
try to load lastpage after the package that generates this extra material.

4.3.3 chappg—Page numbers by chapters

For some publications it is required to restart numbering with every chapter and
to display the page number together with the chapter number on each page. This
can already be done with the commands at our disposal by simply putting

% Page numbers per chapter (repeat after each \chapter):
\pagenumbering{arabic} % first reset page numbering and then overwrite ...
\renewcommand\thepage{\thechapter--\arabic{page}} % ... the display style

4.3 Dynamic page data: page numbers and marks 217

after each \chapter command. But this technique is clumsy and requires us to
put a lot of layout information in our document, something that is better avoided.

A better approach is to use the package chappg, originally written by Max
Hailperin and later reimplemented and extended by Robin Fairbairns. It works
with any document class that has a \chapter command and provides a new page
numbering style bychapter to achieve the desired page numbering scheme. Fur-
thermore, it extends the \pagenumbering command to accept an optional argu-
ment that enables you to put a prefix different from the chapter number before
the page number. This ability is, for example, useful in the front matter where
typically unnumbered headings are used.

4-3-2

. . . here we are in the mid-
dle of the front matter where

Preface-1

chapters are usually unnum-
bered.

Preface-2

\usepackage{chappg}

% \chapter*{Preface} % --- not shown
\pagenumbering[Preface]{bychapter}

\ldots here we are in the middle of
the front matter where chapters are
usually unnumbered.

In fact, by exerting some care you can even use this package together with
a class that does not define a chapter command. Suppose your highest heading
level is \section and each section automatically starts a new page (the latter is
an important requirement). Then the declaration

\makeatletter \@addtoreset{page}{section} \makeatother
\pagenumbering[\thesection]{bychapter}

will give you page numbers within sections. However, if sections do not start a new
page this approach might fail, as LaTEX may have seen an upcoming section and
incremented \thesection without actually putting that section onto the current
page. If so, you will experience the same problem that we saw earlier with respect
to \thepage .

Finally, the separator between the prefix and the page number is also cus-
tomizable, since it is produced by the command \chappgsep . Thus,

\renewcommand\chappgsep{/}

will give you pages like 3/1, 3/2, 3/3, 3/4, and so on, if “3” is the current chapter
number.

4.3.4 LATEX mark commands

The TEX primitive \mark , which you may encounter inside package code dealing
with page layout or output routines, is ultimately responsible for associating some
text (its argument) with a position on a page (i.e., the position where the \mark

218 The Layout of the Page

is executed). When producing the final page TEX makes the first mark on the as-
sembled page available in \firstmark , the last in \botmark , and the \botmark
from the previous page as \topmark . If there are no marks on that page then
\firstmark and \botmark also inherit the value of the previous \botmark . Thus,
if each heading command would internally issue a \mark with the heading text as
its argument, then one could display the first or last heading text on a page in the
running header or footer by using these commands.

However, it is not possible to use these commands directly in LaTEX, as LaTEX

�Low-level TEX
marks cannot be

used in LATEX

uses a higher-level protocol to control marks, so please do not try this. We men-
tion them here only to explain the underlying general mechanism. LaTEX effectively
structures the content of the \mark argument so that the direct use of this com-
mand will most likely result in strange error messages.

As a replacement for the \mark command, standard LaTEX offers the following
two commands to generate marks:

\markboth{main-mark}{sub-mark} \markright{sub-mark}

The first command sets a pair of marker texts at the current point in the document.
The second command also internally generates a pair of markers, but it changes
only the sub-mark one, inheriting the main-mark text from a previous \markboth .

The original intention behind these commands was to provide somewhat inde-
pendent marks—for example, chapter headings as main-marks and section head-
ings as sub-marks. However, the choice of the command name \markright al-
ready indicates that Leslie Lamport had a specific marking scheme in mind when
he designed those commands, which will become even more apparent when we
look at the commands to retrieve the marker values in the output routine.

In the output routine \leftmark contains the main-mark argument of the
last \markboth command before the end of the page. The \rightmark command
contains the sub-mark argument of the first \markright or \markboth on the
page, if one exists; otherwise, it contains the one most recently defined.

The marking commands work reasonably well for right markers “numbered
within” left markers—hence the names (for example, when the left marker is
changed by a \chapter command and the right marker is changed by a \section
command). However, it produces somewhat anomalous results if a \markboth
command is preceded by some other mark command on the same page—see the
pages receiving L2 R1.1 and L5 R3.2 in Figure 4.2 on the next page. This figure
shows schematically which left and right markers are generated for the pages be-
ing shipped out. For some type of running headers it would be better to display
the first main-mark or the last sub-mark. For this purpose you could enlist the
help of the extramarks package described below, as standard LaTEX does not of-
fer this possibility. Also notice that there is no way to set a main-mark without
setting (and thus overwriting) the sub-mark.

In layouts that use running headers generated from heading texts it would be
nice if these markers are automatically generated from the corresponding heading

4.3 Dynamic page data: page numbers and marks 219

galley material marker pair retrieved markers

\leftmark \rightmark
\markboth{L1}{} {L1}{}
\newpage% ----page break ---- L1
\markright{R1.1} {L1}{R1.1}
\markboth{L2}{} {L2}{}
\markright{R2.1} {L2}{R2.1}
\newpage% ----page break --- L2 R1.1
\markright{R2.2} {L2}{R2.2}
\markright{R2.3} {L2}{R2.3}
\markright{R2.4} {L2}{R2.4}
\newpage% ----page break ---- L2 R2.2
\markboth{L3}{} {L3}{}
\markright{R3.1} {L3}{R3.1}
\newpage% ----page break ---- L3
\newpage% ----page break ---- L3 R3.1
\markright{R3.2} {L3}{R3.2}
\markboth{L4}{} {L4}{}
\markboth{L5}{} {L5}{}
\newpage% ----page break ---- L5 R3.2
\markright{R5.1} {L5}{R5.1}
\end{document} L5 R5.1

Figure 4.2: Schematic overview of how LaTEX’s marker mechanism works

commands. Fortunately, there exists an interface that allows us to define which
heading commands produce markers and what text is passed to the mark. This
scheme works as follows: all standard heading commands internally invoke a
command \namemark , where name is the name of the heading command (e.g.,
\chaptermark , \sectionmark). These commands have one argument in which
they receive the heading text or its short form from the optional argument of the
heading command.

By default, they all do nothing. If redefined appropriately, however, they can
produce a marker pair as needed by LaTEX. For instance, in the book class these
commands are defined (approximately) as follows:

\renewcommand\chaptermark[1]{\markboth{\chaptername\ \thechapter. #1}{}}
\renewcommand\sectionmark[1]{\markright{\thesection. #1}}

In the case of a chapter, the word “Chapter” (or its equivalent in a given lan-
guage; see Table 9.2 on page 547 in Section 9.2.1) followed by the sequence num-
ber of the chapter (stored in the counter chapter) and the contents of (a short ver-
sion of) the chapter title will be placed in the main-mark argument of \markboth ;
at the same time the sub-mark will be cleared. For a section, the section number
(stored in the counter section) followed by the contents of (a short version of)

220 The Layout of the Page

the section title will be passed to \markright , which generates a marker pair with
a new sub-mark.

4.3.5 extramarks—Providing new marks

As we have seen so far, LaTEX’s mark mechanism was built with a certain layout
in mind and is, therefore, only partially usable for other applications. As a result
a number of attempts have been made to extend or replace it with code that
supports more complex marking mechanisms.

Part of the limitation is inherent in TEX itself, which provides only one type of
marks and thus makes different independent marks difficult (though not impos-
sible) to implement. This issue is resolved in eTEX, which provides independent
mark classes. However, since this program is not yet in widespread use, there are
no packages available that explore the new possibilities offered by the extension
of the marking mechanism.

An extended mechanism within the main LaTEX model is provided by the
extramarks package written by Piet van Oostrum (distributed as part of fancyhdr).
It offers two additional (partially) independent marks, as well as further control
over LaTEX standard marks by allowing one to retrieve the first or the last mark on
a page for both main-mark and sub-mark.

To refer to the first or last main-mark on a given page, the package of-
fers the commands \firstleftmark and \lastleftmark , respectively. Similarly,
\firstrightmark and \lastrightmark allow you to access the first or last sub-
mark.1 An application is shown in Example 4-4-9 on page 229.

\extramarks{left-xmark}{right-xmark}

To add additional marks to the document the package provides the command
\extramarks . It takes two mandatory arguments: the texts for two marks at the
current point. To refer to the first left-xmark on a page \firstleftxmark is used;
\lastleftxmark retrieves the last mark. In the same way \firstrightxmark and
\lastrightxmark can be used in the output routine to access the right-xmark.

The next example shows these commands in action. With the help of fancyhdr
(described in Section 4.4.2), a page layout is constructed in which the first left-
xmark is shown at the top of a page and the last right-xmark is displayed at the
bottom right of each page. Of particular interest in the example is the use of the
\extramarks . We start with an \extramarks that contains “A story” in left-xmark
and an empty right-xmark. It is immediately followed by a second set of marks,
this time with the values “. . . continued” and “turn page to continue”. As a result
the first left-xmark on the first page will contain “A story” while on later pages it
will contain “. . . continued”. The last right-xmark on each page will always contain
“turn page to continue”. Thus, as long as our story continues, we will get proper

1As the reader will notice, \lastleftmark and \firstrightmark are simply aliases for LaTEX’s
\leftmark and \rightmark , with names providing a clearer indication of their functionalities.

4.4 Page styles 221

continuation marks on the top and the bottom of each page. However, at the end
of the story, there should be no “turn page to continue”. To cancel that bottom
mark, the example contains another \extramarks at the very end with an empty
right-xmark. Its left-xmark still contains “. . . continued” to ensure that the last
page displays the correct text at the top.

4-3-3

A story

Some text for our
page that is reused over
and over again. Some
text for our page that
is reused over and over

turn page to continue

. . . continued

again. Some text for our
page that is reused over
and over again.

\usepackage{fancyhdr,extramarks}
\pagestyle{fancy} \cfoot{}
\lhead{\firstleftxmark}
\rfoot{\lastrightxmark}
\newcommand\sample{ Some text for our
page that is reused over and over again.}

\extramarks{A story}{}
\extramarks{\ldots continued}

{turn page to continue}
\sample \sample \sample
\extramarks{\ldots continued}{}

The extra marks can be mixed with LaTEX standard marks produced by the sec-
tioning commands or through \markboth and \markright . Note, however, that
the marks are not fully independent of each other: whenever \extramarks or
one of the standard LaTEX mark commands is issued, LaTEX effectively generates
all four marks (reusing the values for those not explicitly set). As a result the
first mark of a particular kind may not be what you expect. For example, if your
document starts with an \extramarks command, it implicitly generates an empty
main-mark and sub-mark.

A third type of primitive, \topmark , is also present in the mark model of TEX,
which is normally not made available by LaTEX. It holds the value of the \botmark
from the previous page, reflecting the “mark situation” at the very top of the
page—hence its name. The reason that it is not made available by standard LaTEX
is that it conflicts with LaTEX’s float and \marginpar mechanism. In other words,
each such object internally triggers the output routine, with the result that the
\topmark value for the current page is clobbered.

If, however, neither floats nor \marginpars are used, the \topmark informa-
tion could be used, and for such situations extramarks offers an interface to
it. People, who have an application for such a top mark can, therefore, access
the left-xmark and right-xmark produced via \extramarks with the commands
\topleftxmark and \toprightxmark , respectively.

4.4 Page styles

While the dimensions remain the same for almost all pages of a document, the
format of the running headers and footers may change in the course of a docu-
ment. In LaTEX terminology the formatting of running headers and footers is called

222 The Layout of the Page

a page style, with different formattings being given names like empty or plain to
be easily selectable.

New page styles can be selected by using the command \pagestyle or the
command \thispagestyle , both of which take the name of a page style as their
mandatory argument. The first command sets the page style of the current and
succeeding pages; the second applies to the current page only.

In small or medium-size documents sophisticated switching of page styles
is normally not necessary. Instead, one can usually rely on the page styles auto-
matically selected by the document class. For larger documents, such as books,
typographic tradition, publisher requirements, or other reasons might force you
to manually adjust the page style at certain places within the document.

LaTEX predefines four basic page styles, but additional ones might be providedLATEX’s standard
page styles by special packages or document classes.

empty Both the header and the footer are empty.

plain The header is empty and the footer contains the page number.

headings The header contains information determined by the document class
and the page number; the footer is empty.

myheadings Similar to headings, but the header can be controlled by the user.

The first three page styles are used in the standard classes. Usually for the title
page, a command \thispagestyle{empty} is issued internally. For the first page

Suppressing all
page numbers

of major sectioning commands (like \part or \chapter , but also \maketitle),
the standard LaTEX class files issue a \thispagestyle{plain} command. This
means that when you specify a \pagestyle{empty} command at the begin-
ning of your document, you will still get page numbers on a page where a
\chapter or \maketitle command is issued. Thus, to prohibit page numbers
on all pages of your document, you must follow each such command with a
\thispagestyle{empty} command or redefine the plain style to empty, by us-
ing \let\ps@plain=\ps@empty in your private customization package.

In the headings page style the sectioning commands set the page headers
automatically by using \markboth and \markright , as shown in Table 4.3 on the
facing page.

The standard page style myheadings is similar to headings, but it allows
the user to customize a header by manually using the commands \markboth and
\markright . It also provides a way to control the capture of titles from other
sectional units like a table of contents, a list of figures, or an index. In fact, the
commands (\tableofcontents , \listoffigures , and \listoftables) and the
environments (thebibliography and theindex) use the \chapter* command,
which does not invoke \chaptermark , but rather issues a \@mkboth command.
The page style headings defines \@mkboth as \markboth , while the page style
myheadings defines \@mkboth to do nothing and leaves the decision to the user.

4.4 Page styles 223

Command Document Class

book, report article

\markbotha \chapter \section
Two-sided Printing

\markright \section \subsection

One-sided Printing \markright \chapter \section

aSpecifies an empty right marker (see Figure 4.2 on page 219).

Table 4.3: Page style defining commands in LaTEX

4.4.1 The low-level page style interface

Internally, the page style interface is implemented by the LaTEX kernel through four
internal commands, of which two are called on any one page in order to format
the running headers and footers. By redefining these commands different actions
can be carried out.

\@oddhead For two-sided printing, it generates the header for the odd-numbered
pages; otherwise, it generates the header for all pages.

\@oddfoot For two-sided printing, it generates the footer for the odd-numbered
pages; otherwise, it generates the footer for all pages.

\@evenhead For two-sided printing, it generates the header of the even-
numbered pages; it is ignored in one-sided printing.

\@evenfoot For two-sided printing, it generates the footer of the even-numbered
pages; it is ignored in one-sided printing.

A named page style simply consists of suitable redefinitions for these com-
mands stored in a macro with the name \ps@〈style〉 ; thus, to define the behavior
of the page style style, one has to (re)define this command. As an example, the
kernel definition of the plain page style, producing only a centered page number
in the footer, is similar to the following code:

\newcommand\ps@plain{%
\renewcommand\@oddhead{}% % empty recto header
\let\@evenhead\@oddhead % empty verso header
\renewcommand\@evenfoot

{\hfil\normalfont\textrm{\thepage}\hfil}% % centered
\let\@oddfoot\@evenfoot % page number

}

224 The Layout of the Page

4.4.2 fancyhdr—Customizing page styles

Given that the page styles of standard LaTEX allow modification only via internal
commands, it is not surprising that a number of packages have appeared that
provide special page layouts—for example, rplain changes the plain page style so
that the page number prints on the right instead of being centered. More elaborate
packages exist as well. For example, the page style declaration features of the
package titlesec (for defining heading commands, see Section 2.2.6) are worth
exploring.

A well-established stand-alone package in this area is fancyhdr1 by Piet van
Oostrum, which allows easy customization of page headers and footers. The de-
fault page style provided by fancyhdr is named fancy. It should be activated via
\pagestyle after any changes to \textwidth are made, as fancyhdr initializes
the header and footer widths using the current value of this length.

The look and feel of the fancy page style is determined by six declarations
Basic interface that define the material that will appear on the left, center, and right of the header

and footer areas. For example, \lhead specifies what should show up on the left
in the header area, while \cfoot defines what will appear in the center of the
footer area. The results of all six declarations are shown in the next example.

LEFT CENTER RIGHT

Some text for our page that might
get reused over and over again.

Some text for our page that might
get reused over and over again.

very-very-very-very-long-leftvery-long-right

\usepackage{fancyhdr} \pagestyle{fancy}
\lhead{LEFT} \chead{CENTER} \rhead{RIGHT}
\lfoot{very-very-very-very-long-left} \cfoot{}
\rfoot{very-long-right}
\renewcommand\headrulewidth{2pt}
\renewcommand\footrulewidth{0.4pt}

\newcommand\sample{ Some text for our page
that might get reused over and over again.}

\sample \par \sample 4-4-1

In many cases only one part of the footer and header areas receives material
for typesetting. If you give more than one declaration with a non-empty argument,
however, you have to ensure that the printed text does not get too wide. Otherwise,
as the above example clearly shows, you will get partial overprints.

The thickness of the rules below the header and above the footer is controlled
by the commands \headrulewidth (default 0.4pt) and \footrulewidth (default
0pt). A thickness of 0pt makes a rule invisible. Note that both are commands, not
length parameters, and thus need changing via \renewcommand . More complicated
changes are possible by redefining the \headrule and/or \footrule commands
that produce the actual rules, as demonstrated in Example 4-4-6 on page 227. If
you redefine these commands you may have to add negative vertical spaces be-

1In this book we describe version 2.0 of fancyhdr. Earlier versions were known under the name
fancyheadings.

4.4 Page styles 225

cause by default your material will appear at a distance of \baselineskip below
the header text (or above the footer text).

Shown in the next example is the possibility of producing several lines of text
in the running header or footer by using \\ in any of the declaration commands.
If you take this tack, you usually have to enlarge \headheight (the height of the
running header or footer box) because it is typically set to a value suitable only
for holding a single line. If fancyhdr detects that \headheight is too small, it will
issue a warning suggesting the smallest possible value that would be sufficient for
the current document.

4-4-2

From: Frank
To: Michel

Page: 6
February 29, 2004. .

Some text for our page that might
get reused over and over again.

Some text for our page that might
get reused over and over again.

\usepackage{fancyhdr} \pagestyle{fancy}
\setlength\headheight{23pt}
\lhead{From: Frank\\ To: Michel}
\rhead{Page: \thepage\\ \today}
\chead{} \lfoot{} \cfoot{} \rfoot{}
\renewcommand\headrule{\vspace{-8pt}\dotfill}

% \sample defined as before
\sample \par \sample

Notice in the previous example that the use of \\ will result in stacked lines
that are aligned according to the type of declaration in which they appear. For
example, inside \lhead they align on the left and inside \rhead they align on the
right. If this outcome is not what you want, consider using a simple tabular envi-
ronment instead. Note the @{} in the column declaration for the tabular material,
which acts to suppress the standard white space after the column. Without it the
header material would not align properly at the border.

4-4-3

From: Frank
To: Michel

Page: 6
February 29, 2004

Some text for our page that might
get reused over and over again.

Some text for our page that might
get reused over and over again.

\usepackage{fancyhdr} \pagestyle{fancy}
\setlength\headheight{23pt}
\lhead{From: Frank\\ To: Michel}
\rhead{\begin{tabular}[b]{l@{}}

Page: \thepage\\ \today
\end{tabular}}

\chead{} \lfoot{} \cfoot{} \rfoot{}

% \sample defined as before
\sample \par \sample

The declarations we have seen so far do not allow you to change the page
Full controlstyle depending on the type of the current page. This flexibility is offered by the

more general declarations \fancyhead and \fancyfoot . They take an additional
optional argument in which you specify to which type of page and to which field of
the header/footer the declaration should apply. Page selectors are O or E denoting
odd or even pages, respectively; the fields are selected with L, C, or R. If the page
or field selector is missing the declaration applies to all page types or all fields.

226 The Layout of the Page

Thus, LO means the left field on odd pages, while C would denote the center field
on all pages. In other words, the declarations discussed earlier are shorthands for
the more general form.

As the next example shows the selectors can even be sequenced. For example,
RO,LE means apply this in the right field on odd pages and the left field on even
pages.

6 Memo

Some text for our
page that might get
reused over and over
again.

Author: Frank

Memo 7

Some text for our
page that might get
reused over and over
again.

Author: Frank

\usepackage{fancyhdr}\pagestyle{fancy}
\fancyhead{} % clear header fields
\fancyhead[RO,LE]{\thepage}
\fancyhead[LO,RE]{Memo}
\fancyfoot{} % clear footer fields
\fancyfoot[L]{Author: Frank}
\renewcommand\headrulewidth{0.4pt}
\renewcommand\footrulewidth{0.4pt}

% \sample defined as before
\sample \par \sample 4-4-4

In fact, \fancyhead and \fancyfoot are derived from an even more general
declaration, \fancyhf . It has an identical syntax but supports one additional spec-
ifier type. In its optional argument you can use H or F to denote header or footer
fields. Thus, \fancyfoot[LE] and \fancyhf[FLE] are equivalent, though the lat-
ter is perhaps less readable, which is why we stick with the former forms. The
\fancyhf declaration is only an advantage if you want to clear all fields.

The next example shows an application of the lastpage package: in the footer
we display the current and the total number of pages.

1 A TEST

1 A test
Some text for our page
that might get reused
over and over again.

Page 6 of 7

1 A TEST

Some text for our
page that might get
reused over and over
again.

Page 7 of 7

\usepackage{fancyhdr,lastpage}
\pagestyle{fancy}
\fancyhf{} % --- clear all fields
\fancyhead[RO,LE]{\leftmark}
\fancyfoot[C]{Page \thepage\

of \pageref{LastPage}}

% \sample defined as before
\section{A test}
\sample \par \sample 4-4-5

The headers and footers are typeset in boxes that, by default, have the same
Width and position

of header and footer
width as \textwidth . The boxes can be made wider (or narrower) with the help
of the command \fancyhfoffset .1 It takes an optional argument to denote
which box (header or footer) should be modified, at which side (left or right), and
on what kind of page (even or odd)—the specification employs a combination

1This feature was added in version 2.1. Earlier releases used a different method.

4.4 Page styles 227

of the letters HFLREO for this purpose. The mandatory argument then specifies
the amount of extension (or reduction). In the same fashion as seen for other
commands there also exist two useful shorthand forms: \fancyheadoffset and
\fancyfootoffset are like \fancyhfoffset with H or F preset.

For example, to produce a running header that spans marginal notes, use
the sum of \marginparsep and \marginparwidth in the mandatory argument of
\fancyheadoffset . With the calc package this can be specified elegantly with the
declaration

\fancyheadoffset[RO,LE]{\marginparsep+\marginparwidth}

once these parameters have been assigned their correct values (this technique was,
for example, used for the page styles used in this book).

In the next example the header is extended into the outer margin while the
page number is centered within the bounds of the text column. This result proves
that the header and footer settings are, indeed, independent.

Within the header and footer fields the total width is available in the register
\headwidth (recalculated for header and footer independently). It can be used
to position objects in the fields. Below we redefine the \headrule command to
produce a decorative heading line consisting of two blue rules spanning the whole
head width.

4-4-6

TITLE 1 A-HEAD

1 A-head

1.1 B-head

Some text for our
page that might
get reused over
and over again.

6

1.1 B-head TITLE

Some text for our
page that might get
reused over and
over again.

7

\usepackage{color,fancyhdr}
\pagestyle{fancy} \fancyhf{}
\fancyheadoffset[RO,LE]{30pt}
\fancyhead[RO,LE]{TITLE}
\fancyhead[LO]{\rightmark}
\fancyhead[RE]{\leftmark}
\fancyfoot[C]{\thepage}
\renewcommand\headrule
{{\color{blue}%

\hrule height 2pt
width\headwidth

\vspace{1pt}%
\hrule height 1pt

width\headwidth
\vspace{-4pt}}}

% \sample defined as before
\section{A-head}
\subsection{B-head}
\sample \sample

You may have guessed one or the other default used by fancyhdr from the
The fancyhdr
defaults

previous examples. The next example will show all of them (for ease of reference
they are repeated as comments in the example code). By default, we have a thin
rule below the header and no rule above the footer, the page number is centered

228 The Layout of the Page

in the footer, and the header displays both \leftmark and \rightmark with the
order depending on the page type.

1 TEST

1 Test

1.1 B-head
Some text for our page that
might get reused over and
over again.

6

1 TEST 1.2 B-head2

1.2 B-head2
Some text for our page that
might get reused over and
over again.

7

\usepackage{fancyhdr}
\pagestyle{fancy}
%\fancyhead[LE,RO]
% {\slshape\rightmark}
%\fancyhead[LO,RE]
% {\slshape\leftmark}
%\fancyfoot[C]{\thepage}
%\renewcommand\headrulewidth{0.4pt}
%\renewcommand\footrulewidth{0pt}

% \sample defined as before
\section{Test}
\subsection{B-head} \sample
\subsection{B-head2}\sample 4-4-7

The separation between number and text in the running header is clearly too
large but this is due to our extremely small measure in the example, so let us
ignore this problem for the moment. How useful are these defaults otherwise?
As we already mentioned, LaTEX’s \leftmark and \rightmark commands have
been designed primarily with “sections within chapters” in mind—that is, for the
case where the \leftmark is associated with a heading that always starts on a
new page. If this is not the case then you might end up with somewhat strange
headers as exemplified below.

We put a section on page 5 (the page is not shown) that continues onto page 6.
As a result we see the subsection 1.1 together with section 2 in the header of
page 6, and a similar situation on page 7.

1.1 B-head 2 A-HEAD2

1.1 B-head
Some text for our page that we
reuse.

2 A-head2
Some text for our page that we
reuse.

6

3 A-HEAD3 2.1 B-head2

2.1 B-head2
Some text for our page that we
reuse.

3 A-head3
Some text for our page that we
reuse.

7

\usepackage{fancyhdr}
\pagestyle{fancy}
\newcommand\sample{ Some text
for our page that we reuse.}

\setcounter{page}{5}
\section{A-head} \newpage
% Above makes a section on
% page 5 (not displayed)
\subsection{B-head} \sample
\section{A-head2} \sample
\subsection{B-head2}\sample
\section{A-head3} \sample 4-4-8

To understand this behavior recall that \leftmark refers to the last mark pro-
duced by \markboth on that particular page, while \rightmark refers to the first
mark produced from either \markright or \markboth .

4.4 Page styles 229

If you are likely to produce pages like the above, such as in a document con-
taining many short subsections, then the fancyhdr defaults are probably not suit-
able for you. In that case overwrite them in one way or another, as we did in most
of the examples in this section. The question you have to ask yourself is this: what
information do I want to present to the reader in such a heading? If the answer
is, for example, the situation at the top of the page for even (left-hand) pages and
the status on the bottom for odd pages, then a possible solution is given through
the use of \firstleftmark and \lastrightmark from the extramarks package.

4-4-9

1.1 B-head 1 A-HEAD

1.1 B-head
Some text for our page that we
reuse.

2 A-head2
Some text for our page that we
reuse.

6

3 A-HEAD3

2.1 B-head2
Some text for our page that we
reuse.

3 A-head3
Some text for our page that we
reuse.

7

\usepackage{extramarks}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhead[RO]{\lastrightmark}
\fancyhead[RE]{\firstleftmark}

% \sample defined as before
\setcounter{page}{5}
\section{A-head} \newpage
% Above makes a section on
% page 5 (not displayed)
\subsection{B-head} \sample
\section{A-head2} \sample
\subsection{B-head2}\sample
\section{A-head3} \sample

To test your understanding explain why page 7 now shows only the A-head
and try to guess what headers you would get if the first B-head (but not all of its
section text) had already been on page 5.

Despite the claim made earlier, there are two more defaults set by the fancy
page style. Because they are somewhat hidden we have ignored them until now.
We have not said how \leftmark and \rightmark receive their values; that they
receive some data should be clear from the previous examples. As explained in
Section 4.3.4 the sectioning commands pass their title argument to commands
like \sectionmark , which may or may not be set up to produce page marks
via \markboth or \markright . The fancy page style now sets up two such com-
mands: \chaptermark and \sectionmark if the current class defines a \chapter
command, or \sectionmark and \subsectionmark if it does not. Thus, if you
want to provide a different marking mechanism or even if you just want to pro-
vide a somewhat different layout (for example, suppressing section numbers in
the running header or not using \MakeUppercase for the mark text), you may
have to define these commands yourself.

The next example repeats Example 4-4-7 on the preceding page, except that
this time we provide our own \sectionmark and \subsectionmark that shorten

230 The Layout of the Page

the separation between number and text and avoid using \MakeUppercase .

1 Test

1 Test

1.1 B-head
Some text for our page that
might get reused over and
over again.

6

1 Test 1.2 B-head2

1.2 B-head2
Some text for our page that
might get reused over and
over again.

7

\usepackage{fancyhdr}
\pagestyle{fancy}
\renewcommand\sectionmark[1]
{\markboth{\thesection\ #1}{}}

\renewcommand\subsectionmark[1]
{\markright{\thesubsection\ #1}}

% \sample defined as before
\section{Test}
\subsection{B-head} \sample
\subsection{B-head2}\sample 4-4-10

So far, all of our examples have customized the fancy page style over and
Defining “named”

page styles
over again. However, the fancyhdr package also allows you to save your cus-
tomizations under a name that can then be selected through the \pagestyle
or \thispagestyle command. This is done with a \fancypagestyle declaration.
It takes two arguments: the name of the page style and the customizations that
should be applied when the page style is later called. Fields not set (or cleared)
as well as the rule width settings are inherited from the fancyhdr defaults. This
explains why we first use \fancyhf to clear all fields.

6 Memo

Some text for our
page that might get
reused over and over
again.

August 1, 2004

Memo 7

Some text for our
page that might get
reused over and over
again.

August 1, 2004

\usepackage{fancyhdr}
\fancypagestyle{memo}{\fancyhf{}%

\fancyhead[RO,LE]{\thepage}%
\fancyhead[LO,RE]{Memo}%
\fancyfoot[R]{\scriptsize\today}%
\renewcommand\headrulewidth{1pt}}

\pagestyle{memo}

% \sample defined as before
\sample \par \sample 4-4-11

Some LaTEX commands, like \chapter and \maketitle , use \thispagestyle
to automatically switch to the plain page style, thereby overriding the page style
currently in effect. To customize page styles for such pages you can either modify
the definitions of these commands (which could be painful) or change the meaning
of the plain page style by providing a new definition with \fancypagestyle .
This is, strictly speaking, not really the right approach—just assume that your
new plain page style is now doing something fancy. But the fault really lies with
LaTEX’s standard classes,

1 which failed to use specially named page styles for these
cases and instead directly referred to the most likely candidate. In practice, such

1The KOMA-Script classes, for example, use commands like \chapterpagestyle to refer to such
special page styles, thus allowing easy customization.

4.4 Page styles 231

a redefinition usually works very well for documents that need a fancy page style
for most pages.

Sometimes it is desirable to modify the page style depending on the floating
Page styles
depending on float
objects

objects found on the current page. For this purpose fancyhdr provides a number
of control commands. They can be applied in the page style declarations, thereby
allowing the page style to react to the presence or absence of footnotes on the
current page (\iffootnote), floats in the top area (\iftopfloat), or floats in the
bottom area (\ifbottomfloat). Each takes two arguments: the first to typeset
when the condition is satisfied, the second to execute otherwise.

In the next example we omit the head rule if there are top floats by redefining
\headrulewidth . We also show the use of different heading texts on pages with
or without top floats.

4-4-12

SPECIAL

Sample t-figure

Some text for our page
that might get reused over
and over again. Some text

6

NORMAL

for our page that might get
reused over and over again.

7

\usepackage{fancyhdr}
\pagestyle{fancy} \fancyhf{}
\chead{\iftopfloat{SPECIAL}{NORMAL}}
\cfoot{\thepage}
\renewcommand\headrulewidth

{\iftopfloat{0pt}{0.4pt}}

% \sample defined as before
\sample
\begin{figure}[t]

\centering
\fbox{Sample t-figure}

\end{figure}
\sample

A similar control, \iffloatpage , is available to customize page styles for
Layout for float
pages

pages consisting only of floats—for example, to suppress running headers on such
pages. If the page style is supposed to depend on several variables the controls
can be nested, though that soon gets a little muddled. For example, to suppress
head rules on all pages that contain either top or page floats, one would have to
define \headrulewidth as follows:

\renewcommand\headrulewidth
{\iftopfloat{0pt}{\iffloatpage{0pt}{0.4pt}}}

In dictionaries and similar works the running header often shows the first and
Dictionary type
headers

the last word explained on a page to allow easy access to the dictionary data. By
defining a suitable command that emits a mark for each dictionary item, such a
scheme can be easily implemented. In the example below we use LaTEX’s right-mark
to store such marks, retrieving them via \firstrightmark and \lastrightmark
from the extramarks package. On pages devoted to only a single entry, we col-
lapse the entry by testing whether both commands contain the same value via

232 The Layout of the Page

commands from the ifthen package. With a similar mechanism we prepared the
running headers of the index for this book.

galley—mark

galley Text formatted
but not cut into pages.

OR Output routine.

mark An object in
the galley used to
communicate with the

6

running header

OR.

running header page
title changing with
page contents.

7

\usepackage{ifthen,fancyhdr,extramarks}
\pagestyle{fancy} \fancyhf{}
\newcommand\combinemarks{\ifthenelse

{\equal{\firstrightmark}{\lastrightmark}}%
{\firstrightmark}% equal values
{\firstrightmark---\lastrightmark}}

\chead{\combinemarks} \cfoot{\thepage}
\newcommand\idxitem[1]{\par\vspace{8pt}%

\textbf{#1}\markright{#1}\quad\ignorespaces}

\idxitem{galley} Text formatted but not
cut into pages.

\idxitem{OR} Output routine.
\idxitem{mark} An object in the galley
used to communicate with the OR.

\idxitem{running header} page title
changing with page contents. 4-4-13

Dictionaries are often typeset in two or more columns per page. Unfortu-
Problems in

two-column mode
nately, LaTEX’s standard twocolumn mode is defective with respect to marks—the
\leftmark always reflects the mark situation of the second column instead of
containing the first mark from the first column. If this poses a problem use the
reimplementation provided in the package fixltx2e. Alternatively, you can use the
multicol package which also handles marks properly.

4.4.3 truncate—Truncate text to a given length

A potential problem when producing running headers or footers is the restricted
space available: if the text is too long it will simply overprint. To help in this
and similar situations you can deploy the package truncate written by Donald
Arseneau. It provides a command to truncate a given text to a given width.

\truncate[marker]{width}{text}

If the argument text is too wide to fit the specified width, it will be truncated
and a continuation marker placed at the end. If the optional marker argument
is missing, a default marker stored in \TruncateMarker is used (its value, as
provided by the package, is \,\dots).

By default, truncation is done at word boundaries and only if the words are
not connected via an unbreakable space specified with a ~. For this reason the
following example truncates the text after the word has. It also illustrates the
use of a marker that requires an extra set of braces to hide the brackets that are

4.4 Page styles 233

supposed to appear as part of the text. To help you visualize the space occupied
by the truncated text, | characters have been added to the left and right.

4-4-14

|This text has been truncated|
|This text . . . |
|This text has [..] |

\usepackage{truncate}

|This text has been~truncated|

|\truncate{50pt}
{This text has been~truncated}|

|\truncate[{\,[..]}]{100pt}
{This text has been~truncated}|

Truncation within words can be achieved by specifying one of the options
hyphenate, breakwords, or breakall to the package. The first two support trun-
cation at hyphenation points, with the difference being that breakwords sup-
presses the hyphen character (the more common solution). The third option al-
lows truncation anywhere within words. With these options the above example
would have the following result:

This text has been trun-[..] (hyphenate)

This text has been trun[..] (breakwords)

This text has been trunc[..] (breakall)

By default, the text (whether truncated or not) is printed flush left in a box of
the specified width. Using the package option fit causes the printed text to have
its natural width, up to a maximum of the specified width.

The next example combines the truncate package with fancyhdr. Notice the
use of the fit option. Without it the header would always be flush left (the
\headwidth was slightly reduced to better show its effect).

4-4-15

1 SECTION WITH . . .

1 Section with a
long title

Some text for our page that
might get reused over and
over again.

6

1 SECTION WITH . . .

Some text for our page
that might get reused over
and over again.

7

\usepackage[fit]{truncate}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhf{} % --- clear all fields
\fancyhead[RO,LE]{\truncate

{.95\headwidth}{\leftmark}}
\fancyfoot[C]{\thepage}

% \sample defined as before
\section{Section with a long title}
\sample \par \sample

234 The Layout of the Page

4.5 Visual formatting

The final stage of the production of an important document often needs some
hand-formatting to avoid bad page breaks. For this purpose, standard LaTEX offers
the \pagebreak , \nopagebreak , \newpage , and \clearpage commands as well
as the \samepage declaration, although the latter is considered obsolete in LaTEX2ε .
A \samepage declaration together with a suitable number of \nobreak commands
lets you request that a certain portion of your document be kept together. Unfor-
tunately, the results are often not satisfactory; in particular, LaTEX will never make
a page larger than its nominal height (\textheight) but rather moves everything
in the scope of the \samepage declaration to the next page. The LaTEX2ε command
\enlargethispage* described below offers an alternative approach.

It is common in book production to “run” a certain number of pages (normally
double spreads) short or long to avoid bad page breaks later on. This means that
the nominal height of the pages is reduced or enlarged by a certain amount—for
example, a \baselineskip . To support this practice, LaTEX2ε offers the command
\enlargethispage{size} .

\enlargethispage{size}

If, for example, you want to enlarge or reduce the size of some pages by one (or
more) additional lines of text, you could define

\newcommand\longpage[1][1]{\enlargethispage{#1\baselineskip}}
\newcommand\shortpage[1][1]{\enlargethispage{-#1\baselineskip}}

and use those commands between two paragraphs on the pages in question.1 The
\enlargethispage command enlarges the \textheight for the current page but
otherwise does not change the formatting parameters. Thus, if \flushbottom is
in force, the text will fill the \textheight for the page in question, if necessary by
enlarging or shrinking vertical space within the page. In this way, the definitions
add or remove exactly one line of text from a page while maintaining the positions
of the other lines. This consideration is important to give a uniform appearance.

\enlargethispage*{size}

The companion command, \enlargethispage* , also enlarges or reduces the
page height, but this time the resulting final page will be squeezed as much as
possible (i.e., depending on the available white space on the page). This technique
can be helpful if you wish to keep a certain portion of your document together

1Because this book contains so many examples, we had to use this trick a few times to avoid
half-empty pages. For example, in this chapter all pages from 222 onward are run short by one line.
This was necessary because of the many (large) examples in Section 4.4.2—all other formattings we
tried ended in a half-empty page somewhere.

4.5 Visual formatting 235

on one page, even if it makes the page slightly too long. (Otherwise, just use the
minipage environment.) The trick is to request a large enough amount of extra
space and then place an explicit page break where you want the page break to
happen. For example:

\enlargethispage*{100cm} % absurd request
\begin{center}
\begin{tabular}{llll} % slightly too long
.... % tabular
\end{tabular}

\end{center}
\pagebreak % forced page break

From the description above it is clear that both commands should be used
only in the last stages of the production process, since any later alterations to the
document (adding or removing a single word, if you are unlucky) can make your
hand-formatting obsolete—resulting in ugly-looking pages.

To manually correct final page breaks, such as in a publication like this book
(which poses some formidable challenges due to the many examples that cannot
be broken across pages), it can be helpful to visualize TEX’s reasons for breaking
at a certain point and to find out how much flexibility is available on certain pages.
Tools for this purpose are described in Appendix B.3.2.

4.5.1 nextpage—Extensions to \clearpage

In standard LaTEX the commands \clearpage and \cleardoublepage terminate
the current paragraph and page after placing all dangling floats (if necessary, by
producing a number of float pages). In two-sided printing \cleardoublepage also
makes sure that the next page is a right-hand (odd-numbered) one by adding, if
necessary, an extra page with an empty text body. However, this extra page will
still get a page header and footer (as specified by the currently active page style),
which may not be desirable.

4-5-1

1

1 A Test

1.1 A subsection

Some text for our page.

2 1 A TEST \pagestyle{headings}

% right-hand page on the left in
% this example due to:
\setcounter{page}{1}

\section{A Test}
\subsection{A subsection}
Some text for our page.
\cleardoublepage
\section{Another Section}
This would appear on page 3.

236 The Layout of the Page

The package nextpage by Peter Wilson extends this concept by providing the
commands \cleartoevenpage and \cleartooddpage . Both commands accept an
optional argument in which you can put text that should appear on the potentially
generated page. In the next example we use this ability to provide a command
\myclearpage that writes BLANK PAGE on such generated pages.

1

1 A Test

1.1 A subsection

Some text for our page.

2 1 A TEST

BLANK PAGE

\usepackage{nextpage}\pagestyle{headings}
\newcommand\myclearpage{\cleartooddpage

[\vspace*{\fill} \centering
BLANK PAGE \vspace*{\fill}]}

\setcounter{page}{1} %right-hand page
\section{A Test}
\subsection{A subsection}
Some text for our page.
\myclearpage
\section{Another Section}
This would appear on page 3. 4-5-2

This code still results in a running header, but by now you surely know how to fix
the example: just add a \thispagestyle{empty} to the above definition.

The nextpage package also provides two commands, \movetoevenpage and
\movetooddpage , that offer the same functionality, except that they do not output
dangling floats.

4.6 Doing layout with class

Page layout is normally defined by the document class, so it should come as no
great surprise that the techniques and packages described in this chapter are
usually applied behind the scenes (within a document class).

The standard classes use the LaTEX parameters and interfaces directly to de-
fine the page proportions, running headers, and other elements. More recently
developed classes, however, often deploy packages like geometry to handle cer-
tain aspects of the page layout.

In this section we introduce two such implementations. By searching through
the CTAN archive you might discover additional treasures.

4.6.1 KOMA-Script—A drop-in replacement for article et al.

The KOMA-Script classes, developed by Markus Kohm and based on earlier work
by Frank Neukam, are drop-in replacements for the standard article/report/book
classes that emphasize rules of typography laid down by Tschichold. The article
class, for example, becomes scrartcl.

4.6 Doing layout with class 237

Page layout in the KOMA-Script classes is implemented by deploying the
typearea package (see Section 4.2.3), with the classes offering the package options
as class options. Extended page style design is done with the package scrpage2 (of-
fering features similar to those provided by fancyhdr). Like typearea this package
can also be used on a stand-alone basis with one of the standard classes. Layout
specifications such as font control, caption layout, and so on have been extended
by providing customization possibilities that allow manipulation in the preamble
of a document.

Besides offering all features available in the standard classes, the KOMA-
Script classes provide extra user control inside front and back matter as well as a
number of other useful extensions.

The distribution is well documented. There exists both a German and an En-
glish guide explaining all features in detail. The German documentation is also
available as a nicely typeset book [100], published by DANTE, the German TEX
Users Group.

4.6.2 memoir—Producing complex publications

The memoir class written by Peter Wilson was originally developed as an alterna-
tive to the standard book class. It incorporates many features otherwise found
only as add-on packages. The current version also works as a replacement for
article and can, therefore, be used for all types of publications, from small memos
to complex books.

Among other features it supports an extended set of document sizes (from
9pt to 17pt), configurable sectional headings, page headers and footers, and cap-
tions. Predefined layout styles are available for all such objects and it is possible
to declare new ones as needed. The class supports declarative commands for all
aspects of setting the page, text, and margin sizes, including support for trimming
(crop) marks. Many components of the class are also available as stand-alone pack-
ages, for those users who wish to add a certain functionality to other classes (e.g.,
epigraphs, caption formatting).

Like the KOMA-Script classes, the memoir class is accompanied by an excel-
lent manual of nearly 200 pages, discussing all topics related to document design
and showing how to resolve potential problems with memoir.

This page intentionally left blank

C H A P T E R 5

Tabular Material

Data is often most efficiently presented in tabular form. TEX uses powerful prim-
itives for arranging material in rows and columns. Because they implement only
a low-level, formatting-oriented functionality, several macro packages have been
developed that build on those primitives to provide a higher-level command lan-
guage and a more user-friendly interface.

In LaTEX, two types of environments for constructing tables are provided. Most
commonly the tabular environment or its math-mode equivalent, the array en-
vironment, is used. However, in some circumstances the tabbing environment
might prove useful.

Tables typically form large units of the document that must be allowed to
Tables contained
within floating
environments

“float” so that the document may be paginated correctly. The environments de-
scribed in this chapter are principally concerned with the table layout. To achieve
correct pagination they will often be used within the table environment described
in Chapter 6. An exception is the environments for multipage tables described in
Section 5.4, which should never be used in conjunction with the LaTEX float mech-
anism. Be careful, however, not to confuse the tabular environment with the
table environment. The former allows material to be aligned in columns, while
the latter is a logical document element identifying its contents as belonging to-
gether and allowing the material to be floated jointly. In particular, one table
environment can contain several tabular environments.

After taking a quick look at the tabbing environment, this chapter describes
the extensions to LaTEX’s basic tabular and array environments provided by the
array package. This package offers increased functionality, especially in terms of
a more flexible positioning of paragraph material, a better control of inter-column

240 Tabular Material

and inter-row spacing, and the possibility of defining new preamble specifiers.
Several packages build on the primitives provided by the array package to provide
specific extra functionality. By combining the features in these packages, you will
be able to construct complex tables in a simple way. For example, the tabularx
and tabulary packages provide extra column types that allow table column widths
to be calculated automatically.

Standard LaTEX tabular environments do not produce tables that may be
broken over a page. We give several examples of multipage tables using the
supertabular and longtable environments provided by the similarly named
packages.

We then briefly look at the use of color in tables and at several packages that
give finer control over rules, and the spacing around rules, in tables. Next, we
discuss table entries spanning multiple rows, created via the multirow package,
and the dcolumn package, which provides a mechanism for aligning columns of
figures on a decimal point.

We also discuss the use of footnotes in tables. The threeparttable package
provides a convenient mechanism to have table notes and captions combined with
a tabular layout.

The final section gives some practical advice on handling nested tables and
large entries spanning multiple columns.

Mathematically oriented readers should consult the chapter on advanced
mathematics, especially Section 8.2 on page 468, which discusses the alignment
structures for equations. Further examples of table layouts may be found in the
section on the graphics package, Section 10.3 on page 628.

5.1 Standard LATEX environments

LaTEX has two families of environments that allow material to be lined up in
columns—namely, the tabbing environment, and the tabular and array envi-
ronments. The main differences between the two kinds of environments are:

• The tabbing environment is not as general as the tabular environment. It
can be typeset only as a separate paragraph, whereas a tabular environment
can be placed anywhere in the text or inside mathematics.

• The tabbing environment can be broken between pages, whereas the stan-
dard tabular environment cannot.

• With the tabbing environment the user must specify the position of each tab
stop explicitly. With the tabular environment LaTEX can automatically deter-
mine the width of the columns.

• Multiple tabbing environments cannot be nested, whereas tabular environ-
ments can, thus allowing complex alignments to be realized.

5.1 Standard LATEX environments 241

5.1.1 Using the tabbing environment

This section deals with some of the lesser-known features of the tabbing envi-
ronment. First, it must be realized that formatting is under the complete control
of the user. Somewhat unexpectedly, when moving to a given tab stop, you will
always end up at the exact horizontal position where it was defined, indepen-
dently of where the current point is. As a consequence, the current point can
move backward and overwrite previous text. The scope of commands in rows is
usually limited to the region between tab stops.

Be aware that the usual LaTEX commands for making accents, \’ , \‘ , and \= ,
Alternative names
for accent
commands

are redefined inside the tabbing environment. The accents are available by typing
\a’ , \a‘ , and \a= instead. The \- command, which normally signals a possible
hyphenation point, is also redefined, but this consideration is not so important
because the lines in a tabbing environment are never broken.

A style parameter \tabbingsep , used together with the \’ command, allows
text to be typeset at a given distance flush right from the following tab stop. Its
default value is set equal to \labelsep , which in turn is usually 5pt.

There exist a few common ways to define tab stops—that is, using a line to be
typeset, or explicitly specifying a skip to the next tab stop. The \kill command
may be used to terminate a line that is only used to set tab stops: the line itself
is not typeset. The following example demonstrates this, and demonstrates the
redefinition of tab stops on the third line.

5-1-1

one two three four
one two

new tab two éè (accent commands)
one two three four

\begin{tabbing}
First Tab Stop \= Second \= Third \= \kill
one \> two \> three \> four \\
one \> two \\[3mm]
new tab\ \= two \> \a’{e}\a‘{e}

\‘(accent commands)\\
one \> two \> three \> four \\
\end{tabbing}

If you use accents within the definition of a command that may be used in-
side a tabbing environment you must use the \a. . . forms because the standard
accent commands such as \’ will be interpreted as tabbing commands, as shown
below. You may find it more convenient to use the inputenc package and enter the
accented letters directly.

5-1-2

Tab one Tab two
7 bitcaf e
7 bit café
8 bit café

\usepackage[latin1]{inputenc} \newcommand\acafe{caf\’e}
\newcommand\bcafe{caf\a’e} \newcommand\ccafe{café}

\begin{tabbing}
Tab one \= Tab two \\
7 bit \> \acafe \\
7 bit \> \bcafe \\
8 bit \> \ccafe \end{tabbing}

242 Tabular Material

An alternative is provided by the Tabbing package (by Jean-Pierre Drucbert),
which provides a Tabbing environment in which the accent commands are not
redefined. Instead, the tabbing commands are named \TAB’. . . .

Tab one Tab two
7 bit café
7 bit café
8 bit café

\usepackage[latin1]{inputenc} \usepackage{Tabbing}
% definitions as before

\begin{Tabbing}Tab one \TAB= Tab two\\
7 bit \TAB> \acafe \\
7 bit \TAB> \bcafe \\
8 bit \TAB> \ccafe \end{Tabbing} 5-1-3

The tabbing environment is most useful for aligning information into
columns whose widths are constant and known. The following is from Table A.1
on page 855.

pc Pica = 12pt
cc Cicero = 12dd
cm Centimeter = 10mm

\newcommand\lenrule[1]{\makebox[#1]{%
\rule{.4pt}{4pt}\hrulefill\rule{.4pt}{4pt}}}

\begin{tabbing}
dd\quad \= \hspace{.55\linewidth} \= \kill
pc \> Pica = 12pt \> \lenrule{1pc} \\
cc \> Cicero = 12dd \> \lenrule{1cc} \\
cm \> Centimeter = 10mm \> \lenrule{1cm} \\
\end{tabbing} 5-1-4

5.1.2 Using the tabular environment

In general, when tables of any degree of complexity are required, it is usually
easier to consider the tabular-like environments defined by LaTEX. These envi-
ronments align material horizontally in rows (separated by \\) and vertically in
columns (separated by &).

\begin{array}[pos]{cols} rows \end{array}
\begin{tabular}[pos]{cols} rows \end{tabular}
\begin{tabular*}{width}[pos]{cols} rows \end{tabular*}

The array environment is essentially the math mode equivalent of the tabular
environment. The entries of the table are set in math mode, and the default inter-
column space is different (as described below), but otherwise the functionality of
the two environments is identical.

The tabular* environment has an additional width argument that specifies
the required total width of the table. It needs stretchable spaces between columns,
that have to be added using \extracolsep (see page 246).

Table 5.1 shows the various options available in the cols preamble declara-
tion of the environments in the standard LaTEX tabular family. The array package
introduced in the next section extends the list of preamble options.

5.2 array—Extending the tabular environments 243

l Left-aligned column.

c Center-aligned column.

r Right-aligned column.

p{width} Equivalent to \parbox[t]{width}.

|
Inserts a vertical line between two columns. The distance
between the two columns is unaffected.

@{decl} Suppresses inter-column space and inserts decl instead.

*{num}{opts} Equivalent to num copies of opts.

Table 5.1: The preamble options in the standard LaTEX tabular environment

The visual appearance of the tabular-like environments can be controlled
Style parametersby various style parameters. These parameters can be changed by using the

\setlength or \addtolength commands anywhere in the document. Their scope
can be general or local. In the latter case the scope should be explicitly delimited
by braces or another environment.

\arraycolsep Half the width of the horizontal space between columns in an
array environment (default value 5pt).

\tabcolsep Half the width of the horizontal space between columns in a
tabular environment (default value 6pt).

\arrayrulewidth The width of the vertical rule that separates columns (if a |
is specified in the environment preamble) and the rules created by \hline ,
\cline , or \vline (default value 0.4pt).

When using the array package, this width is taken into account when cal-
culating the width of the table (standard LaTEX sets the rules in such a way that
they do not affect the final width of the table).

\doublerulesep The width of the space between lines created by two succes-
sive || characters in the environment preamble, or by two successive \hline
commands (default value 2pt).

\arraystretch Fraction with which the inter-row space between normal-sized
rows is multiplied. For example, a value of 1.5 would move the rows 50%
farther apart. This value is set with \renewcommand (default value 1.0).

5.2 array—Extending the tabular environments

Over the years several extensions have been made to the tabular environment
family, as described in the LATEX Manual. This section explores the added func-
tionality of the array package (developed by Frank Mittelbach, with contributions

244 Tabular Material

Changed Option

|
Inserts a vertical line. The distance between two columns
will be enlarged by the width of the line, in contrast to the
original definition of LaTEX.

New Options

m{width}
Defines a column of widthwidth. Every entry will be centered
vertically in proportion to the rest of the line. It is somewhat
like \parbox{width} .

b{width} Coincides with \parbox[b]{width} .

>{decl}
Can be used before an l, r, c, p{..}, m{..}, or b{..} option.
It inserts decl directly in front of the entry of the column.

<{decl}
Can be used after an l, r, c, p{..}, m{..}, or b{..} option.
It inserts decl immediately after the entry of the column.

!{decl}

Can be used anywhere and corresponds with the | option.
The difference is that decl is inserted instead of a vertical
line, so this option does not suppress the normally inserted
space between columns, in contrast to @{...}.

Table 5.2: Additional preamble options in the array package

from David Carlisle). Many of the packages described later in the chapter build
on the functionality of the array package so as to extend or adapt the tabular
environment.

Table 5.2 shows the new options available in the cols preamble declaration of
the environments in the tabular family.

5.2.1 Examples of preamble commands

If you would like to use a special font, such as \bfseries in a flush left column,
you can write >{\bfseries}l. You no longer have to start every entry of the
column with \bfseries .

A B C
100 10 1

\usepackage{array}

\begin{tabular}{|>{\large}c|>{\large\bfseries}l|>{\itshape}c|}
\hline A & B & C\\\hline 100 & 10 & 1 \\\hline
\end{tabular} 5-2-1

Notice the use of the \extrarowheight declaration in the second example
Extra space between

rows
below. It adds a vertical space of 4pt above each row. In fact, the effect of
\extrarowheight will be visible only if \arraystretch × (\extrarowheight +
0.7\baselineskip) is larger than the actual height of the cell or, more precisely,
in the case of p, m, or b, the height of the first row of the cell.

5.2 array—Extending the tabular environments 245

This consideration is important for tables with horizontal lines because it is
often necessary to fine-tune the distance between those lines and the contents of
the table. The default value of \extrarowheight is 0pt.

5-2-2

A B C

100 10 1

\usepackage{array}

\setlength\extrarowheight{4pt}
\begin{tabular}{|>{\large}c|>{\large\bfseries}l|>{\itshape}c|}
\hline A & B & C\\\hline 100 & 10 & 1 \\\hline
\end{tabular}

There are few restrictions on the declarations that may be used with the >
Font encoding
changes not
supported in a
>{...} argument

preamble option. Nevertheless, for technical reasons beyond the scope of this
book, it is not possible to change the font encoding for the table column. For exam-
ple, if the current encoding is not T1, then >{\fontencoding{T1}\selectfont}
does not work. No error message is generated but incorrect characters may be
produced at the start of each cell in the column. If a column of text requires a
special encoding then the encoding command should be placed explictly at the
start of each cell in the column.

The differences between the three paragraph-building options p (the para-
graph box is aligned at the top), m (the paragraph box is aligned in the center),
and b (the paragraph box is aligned at the bottom) are shown schematically in the
following examples.

5-2-3

1 1 1 1
1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2

3 3 3 3

\usepackage{array}

\begin{tabular}{|p{1cm}|p{1cm}|p{1cm}|}
\hline 1 1 1 1 1 1 1 1 1 1 1 1 &

2 2 2 2 2 2 2 2 & 3 3 3 3 \\ \hline
\end{tabular}

5-2-4

1 1 1 1
1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2

3 3 3 3

\usepackage{array}

\begin{tabular}{|m{1cm}|m{1cm}|m{1cm}|}
\hline 1 1 1 1 1 1 1 1 1 1 1 1 &

2 2 2 2 2 2 2 2 & 3 3 3 3 \\ \hline
\end{tabular}

5-2-5

1 1 1 1
1 1 1 1
1 1 1 1

2 2 2 2
2 2 2 2 3 3 3 3

\usepackage{array}

\begin{tabular}{|b{1cm}|b{1cm}|b{1cm}|}
\hline 1 1 1 1 1 1 1 1 1 1 1 1 &

2 2 2 2 2 2 2 2 & 3 3 3 3 \\ \hline
\end{tabular}

In columns that have been generated with p, m, or b, the default value of
\parindent is 0pt. It can be changed with the \setlength command as shown

246 Tabular Material

in the next example where we indent the first column by 5mm.

1 2 3 4 5 6
7 8 9 0 1 2 3 4
5 6 7 8 9 0

1 2 3 4 5 6 7 8
9 0 1 2 3 4 5 6
7 8 9 0

\usepackage{array}

\begin{tabular}
{|>{\setlength\parindent{5mm}}p{2cm}|p{2cm}|}

\hline 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 &
1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 \\ \hline

\end{tabular} 5-2-6

The < preamble option was originally developed for the following application:
>{$}c<{$} generates a column in math mode in a tabular environment. The use
of this type of preamble in an array environment results in a column in LR mode
because the additional $s cancel the existing $s.

10!10! a big number

10−999 a small number

\usepackage{array}

\setlength\extrarowheight{4pt}
\begin{tabular}{|>{$}l<{$}|l|} \hline

10!^{10!} & a big number \\
10^{-999} & a small number \\\hline

\end{tabular} 5-2-7

A major use of the ! and @ options is to add rubber length with the
Making tabular*

stretch to the
required width

\extracolsep command so that TEX can stretch the table to the desired width
in the tabular* environment. The use of \extracolsep in the array pack-
age environments is subject to two restrictions: there can be at most one
\extracolsep command per @ or ! expression, and the command must be di-
rectly entered into the @ expression, not as part of a macro definition. Thus,
\newcommand\ef{\extracolsep{\fill}} , and then later @{\ef} in a tabular
preamble, does not work, but \newcolumntype{e}{@{\extracolsep{\fill}}}
could be used instead.

Typesetting narrow columns

TEX does not hyphenate the first word in a paragraph, so very narrow cells can
produce overflows. This is corrected by starting the text with \hspace{0pt} .

Characteristics
Char-
acteris-
tics

\fbox{\parbox{11mm}{Characteristics}}%
\hfill
\fbox{\parbox{11mm}{\hspace{0pt}Characteristics}} 5-2-8

When you have a narrow column, you must not only make sure that the first
word can be hyphenated, but also consider that short texts are easier to type-
set in ragged-right mode (without being aligned at the right margin). This result
is obtained by preceding the material with a \raggedright command (see Sec-
tion 3.1.11). This command redefines the line-breaking command \\ , so we must
use the command \tabularnewline , which is defined in the array package, as

5.2 array—Extending the tabular environments 247

in standard LaTEX, to be the original definition of the row-ending \\ command
of the tabular or array environment. Alternatively, we could have used the
\arraybackslash command after the \raggedright in the third column. This
locally redefines \\ to end the table row, as shown in Example 5-2-12 on page 249.

As shown in the example below, we can now typeset material inside a tabular
environment ragged right, ragged left, or centered and still have control of the
line breaks. The first word is now hyphenated correctly, although in the case of
the Dutch text, we helped TEX a little by choosing the possible hyphenation points
ourselves.

5-2-9

Super-
con-

scious-
ness is a

long
word

Possibili-
tés et
es-

pérances

Moge-
lijkheden
en hoop

Ragged
left text

in
column

one

Centered
text in
column

two

Ragged
right text
in
column
three

\usepackage{array}

\begin{tabular}%
{|>{\raggedleft\hspace{0pt}}p{14mm}%
|>{\centering\hspace{0pt}}p{14mm}%
|>{\raggedright\hspace{0pt}}p{14mm}|}

\hline
Superconsciousness is a long word &
Possibi\-li\-t\’es et esp\’erances &
Moge\-lijk\-heden en hoop \tabularnewline

\hline
Ragged left text in column one &
Centered text in column two &
Ragged right text in column three

\tabularnewline
\hline
\end{tabular}

Controlling the horizontal separation between columns

The default inter-column spacing is controlled by setting the length parameters
\arraycolsep (for array) and \tabcolsep (for tabular). However, it is often
desirable to alter the spacing between individual columns, or more commonly,
before the first column and after the last column of the table.

5-2-10

onetwo three–four – five
1 2 3 – 4 – 5

\usepackage{array}

\begin{tabular}{c@{}c!{}c@{--}c!{--}c}
one&two&three&four&five\\
1&2&3&4&5

\end{tabular}

In the example above, @{} has been used to remove the inter-column space
between columns 1 and 2. An empty !{} has no effect, as demonstrated between
columns 2 and 3. Note that a dash appears in place of the default inter-column
space when specified using @{--} between columns 3 and 4, but is placed in
the center of the default inter-column space when specified using !{--} between
columns 4 and 5.

248 Tabular Material

A common use of @{} is to remove the space equal to the value of \tabcolsepUsing @{} to remove
space at the side of

the table
(for tabular) that, by default, appears on each side of the table, except when the
column specification starts or ends in a |.

text text text text
one two
three four

material following . . .

text text text text
text text text text

one two
three four

now touching . . .

text text text text

\begin{flushleft} \textbf{text text text text}\\
\begin{tabular}{lr}
one & two\\ three & four\\

\end{tabular}\textbf{material following \ldots}\\
\textbf{text text text text\\text text text text}\\
\begin{tabular}{|lr@{}}
one & two\\ \multicolumn{1}{@{}l}{three} & four\\

\end{tabular}\textbf{now touching \ldots}\\
\textbf{text text text text} \end{flushleft} 5-2-11

5.2.2 Defining new column specifiers

If you have a one-off column in a table, then you may use the > and < options to
modify the style for that column:

>{some declarations}c<{some more decls}

This code, however, becomes rather verbose if you often use columns of this form.
Therefore, for repetitive use of a given type of column specifier, the following
command has been defined:

\newcolumntype{col}[narg]{decl}

Here, col is a one-letter specifier to identify the new type of column inside a pream-
ble; narg is an optional parameter, giving the number of arguments this specifier
takes; and decl are legal declarations. For example:

\newcolumntype{x}{>{some declarations}c<{some more decls}}

The newly defined x column specifier can then be used in the preamble arguments
of all array and tabular environments in which one needs columns of this form.

Quite often you may need math mode and LR mode columns inside a tabular
or array environment. Thus, you can define the following column specifiers:

\newcolumntype{C}{>{$}c<{$}}
\newcolumntype{L}{>{$}l<{$}}
\newcolumntype{R}{>{$}r<{$}}

From now on you can use C to get centered LR mode in an array environment, or
centered math mode in a tabular environment.

The \newcolumntype command takes the same first optional argument as
\newcommand , which declares the number of arguments of the column specifier
being defined. However, \newcolumntype does not take the additional optional

5.3 Calculating column widths 249

argument forms of \newcommand; in the current implementation column specifiers
may have only mandatory arguments.

5-2-12

Super-
con-

scious-
ness is a

long
word

Possibili-
tés et
es-

pérances

Moge-
lijkheden
en hoop

Ragged
left text

in
column

one

Centered
text in
column

two

Ragged
right text
in
column
three

\usepackage{array}
\newcolumntype{P}[1]
{>{#1\hspace{0pt}\arraybackslash}p{14mm}|}

\begin{tabular}
{|P{\raggedleft}P{\centering}P{\raggedright}}

\hline
Superconsciousness is a long word &
Possibi\-li\-t\’es et esp\’erances &
Moge\-lijk\-heden en hoop \\\hline
Ragged left text in column one &
Centered text in column two &
Ragged right text in column three \\\hline

\end{tabular}

A rather different use of the \newcolumntype command takes advantage of
the fact that the replacement text in \newcolumntype may refer to more than
one column. The following example shows the definition of a preamble option Z.
Modifying the definition in the document preamble would change the layout of all
tables in the document using this preamble option in a consistent manner.

5-2-13

one two three
1 2 3

\usepackage{array} \newcolumntype{Z}{clr}

\begin{tabular}{Z} one&two&three\\1&2&3 \end{tabular}

The replacement text in a \newcolumntype command can be any of the prim-
itives of array, or any new letter defined in another \newcolumntype command.

Any column specification in a tabular environment that uses one of these
newly defined column types is “expanded” to its primitive form during the first
stage of table processing. This means that in some circumstances error messages
generated when parsing the column specification refer to the preamble argument
after it has been rewritten by the \newcolumntype system, not to the preamble
entered by the user.

To display a list of all currently active \newcolumntype definitions on the Debugging column
type declarationsterminal, use the \showcols command in the preamble.

5.3 Calculating column widths

As described in Appendix A.2, LaTEX has two distinct modes for setting text: LR
mode, in which the text is set in a single line, and paragraph mode, in which text
is broken into lines of a specified length. This distinction strongly influences the
design of the LaTEX table commands. The l, c, and r column types specify table
entries set in LR mode whereas p, and the array package m and b types, specify
table entries set in paragraph mode.

250 Tabular Material

The need to specify the width of paragraph mode entries in advance some-
times causes difficulties when setting tables. We will describe several approaches
that calculate the required column widths based on the required total width of
the table and/or the table contents.

5.3.1 Explicit calculation of column widths

The environment tabularc can generate a table with a given number of equal-
width columns and a total width for the table equal to \linewidth . This approach
uses the calc package, discussed in Appendix A.3.1. It also uses the command
\tabularnewline , mentioned in Section 5.2.1. The environment takes the num-
ber of columns as its argument. This number (let us call it x) is used to calculate
the actual width of each column by subtracting two x times the column separation
and (x + 1) times the width of the rules from the width of the line. The remaining
distance is divided by x to obtain the length of a single column. The contents of
the column are centered, and hyphenation of the first word is allowed.

\usepackage{array,calc} \newlength\mylen
\newenvironment{tabularc}[1]
{\setlength\mylen

{\linewidth/(#1)-\tabcolsep*2-\arrayrulewidth*(#1+1)/(#1)}%
\par\noindent % new paragraph, flush left start
\begin{tabular*}{\linewidth}%

{*{#1}{|>{\centering\hspace{0pt}} p{\the\mylen}}|}}
{\end{tabular*}\par}

\begin{tabularc}{3}
\hline
Material in column one & column two & This is column three
\tabularnewline\hline
... text omitted ...

5-3-1

Material in column one column two This is column three
Column one again and column two This is column three

Once more column one column two Last time column three

Calculating column widths in this way gives you full control over the amount
of space allocated to each column. Unfortunately, it is difficult to incorporate
information depending on the contents of the table into the calculation. For exam-
ple, if some columns in the table use the c column type and so are set to their
natural width, you may wish to allocate the remaining space among the columns
using paragraph mode. As this width is not known until after the table has been
typeset, it is not possible to calculate all widths in advance. Two packages imple-
ment different algorithms that set the table multiple times so as to allocate widths
to certain columns. The first, tabularx, essentially tries to allocate space equally

5.3 Calculating column widths 251

between specified paragraphmode columns. The second, tabulary, tries to allocate
more space to columns that contain “more data”.

5.3.2 tabularx—Automatic calculation of column widths

The package tabularx (by David Carlisle) implements a version of the tabular*
environment in which the widths of certain columns are calculated automatically
depending on the total width of the table. The columns whose widths are automat-
ically calculated are denoted in the preamble by the X qualifier. The latter column
specification will be converted to p{some value} once the correct column width
has been calculated.

5-3-2

\usepackage{tabularx}
\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}

\noindent\begin{tabularx}{100mm}{|Y|Y|Y|}
... text omitted ...

The Two Gentlemen
of Verona

The Taming of the
Shrew

The Comedy of Errors

Love’s Labour’s Lost A Midsummer Night’s
Dream

The Merchant of
Venice

The Merry Wives of
Windsor

Much Ado About
Nothing

As You Like It

Twelfth Night Troilus and Cressida Measure for Measure
All’s Well That Ends
Well

Pericles Prince of Tyre The Winter’s Tale

Cymbeline The Tempest

Changing the width argument to specify a width of \linewidth will produce
the following table layout:

5-3-3

\usepackage{tabularx}
\newcolumntype{Y}{>{\small\raggedright\arraybackslash}X}

\noindent\begin{tabularx}{\linewidth}{|Y|Y|Y|}
... text omitted ...

The Two Gentlemen of
Verona

The Taming of the Shrew The Comedy of Errors

Love’s Labour’s Lost A Midsummer Night’s
Dream

The Merchant of Venice

The Merry Wives of
Windsor

Much Ado About Nothing As You Like It

Twelfth Night Troilus and Cressida Measure for Measure
All’s Well That Ends Well Pericles Prince of Tyre The Winter’s Tale
Cymbeline The Tempest

252 Tabular Material

By default, the X specification is turned into p{some value}. Such narrowCommands used to
typeset the X

columns
columns often require a special format, which may be achieved using the > syntax.
Thus, you may give a specification like >{\small}X.

Another format that is useful in narrow columns is ragged right. As noted ear-
lier, one must use the command \tabularnewline to end the table row if the last
entry in a row is being set ragged right. This specification may be saved with
\newcolumntype{Y}{>{\small\raggedright}X} (perhaps additionally adding
\arraybackslash to make \\ denote the end of a row again). You may then use
Y as a tabularx preamble argument.

The X columns are set using a p column, which corresponds to \parbox[t].
You may want to set the columns with, for example, an m column corresponding
to \parbox[c]. It is impossible to change the column type using the > syntax, so
another system is provided. The command \tabularxcolumn can be defined as
a macro, with one argument, which expands to the tabular preamble specifica-
tion to be used for X henceforth. When the command is executed, the supplied
argument determines the actual column width.

The default definition is \newcommand\tabularxcolumn[1]{p{#1}}. A pos-
sible alternative definition is

\renewcommand\tabularxcolumn[1]{>{\small}m{#1}}

Normally, all X columns in a single table are set to the same width. It is never-
Column widths theless possible to make tabularx set them to different widths. A preamble like

the following

>{\setlength\hsize{.5\hsize}}X>{\setlength\hsize{1.5\hsize}}X}

specifies two columns; the second column will be three times as wide as the first.
However, when using this method two rules should be obeyed:

• The sum of the widths of all X columns should remain unchanged. In the
above example, the new widths should add up to the width of two standard X
columns.

• Any \multicolumn entries that cross any X column should not be used.

Superconsciousness
is a long word

Mogelijkheden en hoop

Some text in col-
umn one

A somewhat longer text in
column two

\usepackage{tabularx} \tracingtabularx

\noindent
\begin{tabularx}{\linewidth}%

{|>{\setlength\hsize{.85\hsize}}X|%
>{\setlength\hsize{1.15\hsize}}X|}

Superconsciousness is a long word &
Moge\-lijk\-heden en hoop \\
Some text in column one &
A somewhat longer text in column two \\

\end{tabularx} 5-3-4

5.3 Calculating column widths 253

If a \tracingtabularx declaration is made, say, in the document preamble,
Tracing tabularx
calculations

then all following tabularx environments will print information to the terminal
and the log file about column widths as they repeatedly reset the tables to find
the correct widths. For instance, the last example produced the following log:

Package tabularx Warning: Target width: \linewidth = 207.0pt..

(tabularx) Table Width Column Width X Columns
(tabularx) 439.19998pt 207.0pt 3
(tabularx) 206.99998pt 90.90001pt 2
(tabularx) Reached target.

5.3.3 tabulary—Column widths based on content

An alternative algorithm for determining column widths is provided by the
tabulary package (also written by David Carlisle), which defines the tabulary
environment. It is most suitable for cases in which the column widths must be
calculated based on the content of the table. This often arises when you use LaTEX
to typeset documents originating as SGML/XML or HTML, which typically employ a
different table model in which multiple line material does not have a prespecified
width and the layout is left more to the formatter.

The tabulary package provides the column types shown in Table 5.3 on the
next page plus those provided by the array package in Table 5.2 on page 244, and
any other preamble options defined via \newcolumntype .

\begin{tabulary}{width}[pos]{cols} rows \end{tabulary}

The main feature of this package is its provision of versions of the p column spec-
ifier in which the width of the column is determined automatically depending on
the table contents. The following example is rather artificial as the table only has
one row. Nevertheless, it demonstrates that the aim of the column width alloca-
tion made by tabulary is to achieve equal row height. Normally, of course, the
same row will not hold the largest entry of each column but in many cases of tabu-
lar material, the material in each cell of a given column has similar characteristics.
In those situations the width allocation appears to provide reasonable results.

5-3-5

a b
b
b
b

c c c c
c c c c
c c c c
c c c c

c c

d d d d d d d d d d d d d d
d d d d d d d d d d d d d d
d d d d d d d d d d d d d d
d d d d d d d d d d d d d d

d d d d d d d d

\usepackage{tabulary}
\setlength\tymin{10pt}
\setlength\tymax{\maxdimen}

\begin{tabulary}{200pt}{|C|C|C|C|}
a & b b b b &
c c c c c c c c c c c c c c c c c c &
d d d d d d d d d d d d d d d d d d

... text omitted ...

254 Tabular Material

J Justified p column set to some width to be determined

L Flush left p column set to some width to be determined

R Flush right p column set to some width to be determined

C Centered p column set to some width to be determined

Table 5.3: The preamble options in the tabulary package

The tabulary package has two length parameters, \tymin and \tymax , which
Controlling the

column width
allocation

control the allocation of widths. By default, widths are allocated to each L, C, R, or
J column in proportion to the natural width of the longest entry in each column.
To determine this width tabulary always sets the table twice. In the first pass
the data in L, C, R, and J columns is set in LR mode (similar to data in columns
specified by the standard preamble options such as c). Typically, the paragraphs
that are contained in these columns are set on a single line, and the length of
this line is measured. The table is then typeset a second time to produce the final
result, with the widths of the columns being set as if with a p preamble option
and a width proportional to the natural lengths recorded on the first pass.

To stop very narrow columns from being too “squeezed” by this process, any
columns that are narrower than \tymin are set to their natural widths. This length
may be set with \setlength and is arbitrarily initialized to 10pt. If you know that
a column will be narrow, it may be preferable to use, say, c rather than C so that
the tabulary mechanism is never invoked on that column, and the column is set
to its natural width.

Similarly, one very large entry can force its column to be too wide. To prevent
this problem, all columns with natural length greater than \tymax (as measured
when the entries are set in LR mode) are set to the same width (with the proportion
being taken as if the natural length was equal to \tymax). This width is initially
set to twice the text width.

The table in the above example is dominated by the large entry in the fourth
column. By setting \tymin to 30pt we can prevent the first two columns from
becoming too narrow, and by setting \tymax to 200pt we can limit the width of
the fourth column and produce a more even spread of column widths.

a b b b b c c c c c c c
c c c c c c c

c c c c

d d d d d d d d d d
d d d d d d d d d
d d d d d d d d d
d d d d d d d d d
d d d d d d d d d
d d d d d d d d d
d d d d d d d d d

\usepackage{tabulary}
\setlength\tymin{30pt}
\setlength\tymax{200pt}

\begin{tabulary}{200pt}{|C|C|C|C|}
... text omitted ... 5-3-6

Narrow p columns are sometimes quite challenging to set, and so you may
redefine the command \tyformat to be any declarations made just after the

5.4 Multipage tabular material 255

\centering or \ragged. . . declaration. By default, it redefines \everypar to in-
sert a zero space at the start of every paragraph, so the first word may be hyphen-
ated. (See Section 5.2.1 on page 246.)

Like tabularx, tabulary supports the optional alignment argument of
tabular. Also because the whole environment is saved and evaluated twice, care
should be taken with any LaTEX constructs that may have side effects such as writ-
ing to files.

5.3.4 Differences between tabular* , tabularx , and tabulary

All three of these environments take the same arguments, with the goal of produc-
ing a table of a specified width. The main differences between them are described
here:

• tabularx and tabulary modify the widths of the columns, whereas
tabular* modifies the widths of the inter-column spaces.

• The tabular and tabular* environments may be nested with no restrictions.
However, if one tabularx or tabulary environment occurs inside another,
then the inner one must be enclosed within { }.

• The bodies of tabularx and tabulary environments are, in fact, the argu-
\verb only partially
supported

ments to commands, so certain restrictions apply. The commands \verb and
\verb* may be used, but they may treat spaces incorrectly, and their argu-
ments cannot contain a % or an unmatched { or }.

• tabular* uses a primitive capability of TEX to modify the inter-column space
of an alignment. tabularx has to set the table several times as it searches
for the best column widths, and is therefore much slower. tabulary always
sets the table twice. For the latter two environments the fact that the body is
expanded several times may break certain TEX constructs. Be especially wary
of commands that write to external files, as the data may be written several
times when the table is reset.

• tabularx attempts to distribute space equally among the X columns to
achieve the desired width, whereas tabulary attempts to allocate greater
widths to columns with larger entries.

5.4 Multipage tabular material

With Leslie Lamport’s original implementation, a tabular environment must al-
ways fit on one page. If it becomes too large, the text will overwrite the page’s
bottom margin, and you will get an Overfull \vbox message.

Two package files are available to construct tables longer than one page,
supertabular and longtable. They share a similar functionality, but use rather dif-
ferent syntax. The longtable package uses a more complicated mechanism, work-

256 Tabular Material

ing with TEX’s output routine to obtain optimal page breaks and to preserve the
width of columns across all pages of a table. However, this mechanismmay require
the document to be processed several times before the correct table widths are
calculated. The supertabular package essentially breaks the table into a sequence
of page-sized tabular environments, and each page is then typeset separately.
This approach does not require multiple passes and works in a larger range ofMultipage tables in

multicolumn
typesetting

circumstances. In particular, the longtable package does not support two-column
or multicolumn mode.

5.4.1 supertabular—Making multipage tabulars

\begin{supertabular}{cols} rows \end{supertabular}
\begin{supertabular*}{width}{cols} rows \end{supertabular*}
\begin{mpsupertabular}{cols} rows \end{mpsupertabular}
\begin{mpsupertabular*}{width}{cols} rows \end{mpsupertabular*}

The package supertabular (originally created by Theo Jurriens, and revised by
Johannes Braams) defines the environment supertabular. It uses the tabular
environment internally, but it evaluates the amount of used space every time it
encounters a \\ command. When this amount reaches the value of \textheight ,
the package automatically inserts an \end{tabular} command, starts a new page,
and inserts the table head on the new page, continuing the tabular environment.
This means that the widths of the columns, and hence the width of the complete
table, can vary across pages.

Three variant environments are also defined. The supertabular* environ-
ment uses tabular* internally, and takes a mandatory width argument to specify
the width of the table. The mpsupertabular and mpsupertabular* environments
have the same syntax as supertabular and supertabular* , respectively, but
wrap the table portion on each page in a minipage environment. This allows the
use of the \footnote command inside the tables, with the footnote text being
printed at the end of the relevant page.

Inside a supertabular environment new lines are defined as usual by \\
commands. All column definition commands can be used, including @{...} and
p{...}. If the array package is loaded along with supertabular, the additional
tabular preamble options may be used. You cannot, however, use the optional
positioning arguments, like t and b, that can be specified with \begin{tabular}
and \begin{tabular*}.

Several new commands are available for use with supertabular as described
below. Each of these commands should be used before the supertabular envi-
ronment, as they affect all following supertabular environments.

\tablehead{rows} \tablefirsthead{rows}

The argument to \tablehead contains the rows of the table to be repeated at the
top of every page. If \tablefirsthead is also included, the first heading will use

5.4 Multipage tabular material 257

these rows in preference to the rows specified by \tablehead . The argument may
contain full rows (ended by \\) as well as inter-row material like \hline .

\tabletail{rows} \tablelasttail{rows}

These commands specify material to be inserted at the end of each page of the
table. If \tablelasttail is used, these rows will appear at the end of the table in
preference to the rows specified by \tabletail .

\topcaption[lot caption]{caption} \bottomcaption[lot caption]{caption}
\tablecaption[lot caption]{caption}

These commands specify a caption for the supertabular, either at the top or
at the bottom of the table. The optional argument has the same use as the op-
tional argument in the standard \caption command—namely, it specifies the
form of the caption to appear in the list of tables. When \tablecaption is used
the caption will be placed at the default location, which is at the top. This de-
fault may be changed within a package or class file by using the declaration
\@topcaptionfalse .

The format of the caption may be customized using the caption package, as
shown in Example 5-4-4 on page 262.

\shrinkheight{length}

The supertabular environment maintains an estimate of the amount of space
left on the current page. The \shrinkheight command, which must appear at
the start of a table row, may be used to reduce this estimate. In this way it may be
used to control the page-breaking decisions made by supertabular .

Example of the supertabular environment

5-4-1

\usepackage{supertabular}

\tablecaption{The ISOGRK3 entity set}
\tablehead

{\bfseries Entity&\bfseries Unicode Name&\bfseries Unicode\\ \hline}
\tabletail

{\hline \multicolumn{3}{r}{\emph{Continued on next page}}\\}
\tablelasttail{\hline}
\begin{supertabular}{lll}
alpha & GREEK SMALL LETTER ALPHA & 03B1\\
beta & GREEK SMALL LETTER BETA & 03B2\\
chi & GREEK SMALL LETTER CHI & 03C7\\
Delta & GREEK CAPITAL LETTER DELTA & 0394\\
delta & GREEK SMALL LETTER DELTA & 03B4\\
epsi & GREEK SMALL LETTER EPSILON & 03B5\\
epsis & GREEK LUNATE EPSILON SYMBOL & 03F5\\
... text omitted ...

258 Tabular Material

Page 1

Table 1: The ISOGRK3 entity set

Entity Unicode Name Unicode
alpha GREEK SMALL LETTER ALPHA 03B1
beta GREEK SMALL LETTER BETA 03B2
chi GREEK SMALL LETTER CHI 03C7
Delta GREEK CAPITAL LETTER DELTA 0394
delta GREEK SMALL LETTER DELTA 03B4
epsi GREEK SMALL LETTER EPSILON 03B5
epsis GREEK LUNATE EPSILON SYMBOL 03F5
epsiv GREEK SMALL LETTER EPSILON 03B5
eta GREEK SMALL LETTER ETA 03B7
Gamma GREEK CAPITAL LETTER GAMMA 0393
gamma GREEK SMALL LETTER GAMMA 03B3
gammad GREEK SMALL LETTER DIGAMMA 03DD
iota GREEK SMALL LETTER IOTA 03B9
kappa GREEK SMALL LETTER KAPPA 03BA
kappav GREEK KAPPA SYMBOL 03F0
Lambda GREEK CAPITAL LETTER LAMDA 039B
lambda GREEK SMALL LETTER LAMDA 03BB
mu GREEK SMALL LETTER MU 03BC
nu GREEK SMALL LETTER NU 03BD
Omega GREEK CAPITAL LETTER OMEGA 03A9
omega GREEK SMALL LETTER OMEGA 03C9
Phi GREEK CAPITAL LETTER PHI 03A6

Continued on next page

Page 1

Page 2

Entity Unicode Name Unicode
phis GREEK PHI SYMBOL 03D5
phiv GREEK SMALL LETTER PHI 03C6
Pi GREEK CAPITAL LETTER PI 03A0
pi GREEK SMALL LETTER PI 03C0
piv GREEK PI SYMBOL 03D6
Psi GREEK CAPITAL LETTER PSI 03A8
psi GREEK SMALL LETTER PSI 03C8
rho GREEK SMALL LETTER RHO 03C1
rhov GREEK RHO SYMBOL 03F1
Sigma GREEK CAPITAL LETTER SIGMA 03A3
sigma GREEK SMALL LETTER SIGMA 03C3
sigmav GREEK SMALL LETTER FINAL SIGMA 03C2
tau GREEK SMALL LETTER TAU 03C4
Theta GREEK CAPITAL LETTER THETA 0398
thetas GREEK SMALL LETTER THETA 03B8
thetav GREEK THETA SYMBOL 03D1
Upsi GREEK UPSILON WITH HOOK SYMBOL 03D2
upsi GREEK SMALL LETTER UPSILON 03C5
Xi GREEK CAPITAL LETTER XI 039E
xi GREEK SMALL LETTER XI 03BE
zeta GREEK SMALL LETTER ZETA 03B6

Page 2

Example of the supertabular* environment

The width of a supertabular environment can be fixed to a given width, such
as the width of the text, \textwidth . In the example below, in addition to speci-
fying supertabular*, a rubber length has been introduced between the last two
columns that allows the table to be stretched to the specified width. As usual with
supertabular, each page of the table is typeset separately. The example demon-
strates that the result may have different spacings between the columns on the
first (left) and second (right) page.

\usepackage{array,supertabular}

\tablecaption{The ISOGRK3 entity set}
\tablefirsthead

{\bfseries Entity&\bfseries Unicode Name&\bfseries Unicode\\ \hline}
\tablehead

{\bfseries Entity&\bfseries Unicode Name&\bfseries Unicode\\ \hline}
\tabletail{\hline \multicolumn{3}{r}{\emph{Continued on next page}}\\}
\tablelasttail{\hline}
\centering
\begin{supertabular*}{\textwidth}{ll!{\extracolsep{\fill}}l}
alpha & GREEK SMALL LETTER ALPHA & 03B1\\
beta & GREEK SMALL LETTER BETA & 03B2\\
chi & GREEK SMALL LETTER CHI & 03C7\\
... text omitted ...

5-4-2

5.4 Multipage tabular material 259

Page 1

Table 1: The ISOGRK3 entity set

Entity Unicode Name Unicode
alpha GREEK SMALL LETTER ALPHA 03B1
beta GREEK SMALL LETTER BETA 03B2
chi GREEK SMALL LETTER CHI 03C7
Delta GREEK CAPITAL LETTER DELTA 0394
delta GREEK SMALL LETTER DELTA 03B4
epsi GREEK SMALL LETTER EPSILON 03B5
epsis GREEK LUNATE EPSILON SYMBOL 03F5
epsiv GREEK SMALL LETTER EPSILON 03B5
eta GREEK SMALL LETTER ETA 03B7
Gamma GREEK CAPITAL LETTER GAMMA 0393
gamma GREEK SMALL LETTER GAMMA 03B3
gammad GREEK SMALL LETTER DIGAMMA 03DD
iota GREEK SMALL LETTER IOTA 03B9
kappa GREEK SMALL LETTER KAPPA 03BA
kappav GREEK KAPPA SYMBOL 03F0
Lambda GREEK CAPITAL LETTER LAMDA 039B
lambda GREEK SMALL LETTER LAMDA 03BB
mu GREEK SMALL LETTER MU 03BC
nu GREEK SMALL LETTER NU 03BD
Omega GREEK CAPITAL LETTER OMEGA 03A9
omega GREEK SMALL LETTER OMEGA 03C9

Continued on next page

Page 1

Page 2

Entity Unicode Name Unicode
Phi GREEK CAPITAL LETTER PHI 03A6
phis GREEK PHI SYMBOL 03D5
phiv GREEK SMALL LETTER PHI 03C6
Pi GREEK CAPITAL LETTER PI 03A0
pi GREEK SMALL LETTER PI 03C0
piv GREEK PI SYMBOL 03D6
Psi GREEK CAPITAL LETTER PSI 03A8
psi GREEK SMALL LETTER PSI 03C8
rho GREEK SMALL LETTER RHO 03C1
rhov GREEK RHO SYMBOL 03F1
Sigma GREEK CAPITAL LETTER SIGMA 03A3
sigma GREEK SMALL LETTER SIGMA 03C3
sigmav GREEK SMALL LETTER FINAL SIGMA 03C2
tau GREEK SMALL LETTER TAU 03C4
Theta GREEK CAPITAL LETTER THETA 0398
thetas GREEK SMALL LETTER THETA 03B8
thetav GREEK THETA SYMBOL 03D1
Upsi GREEK UPSILON WITH HOOK SYMBOL 03D2
upsi GREEK SMALL LETTER UPSILON 03C5
Xi GREEK CAPITAL LETTER XI 039E
xi GREEK SMALL LETTER XI 03BE
zeta GREEK SMALL LETTER ZETA 03B6

Page 2

5.4.2 longtable—Alternative multipage tabulars

As pointed out at the beginning of this section, for more complex long tables,
where you want to control the width of the table across page boundaries, the pack-
age longtable (by David Carlisle, with contributions from David Kastrup) should
be considered. Like the supertabular environment, it shares some features with
the table environment. In particular it uses the same counter, table, and has a
similar \caption command. The \listoftables command lists tables produced
by either the table or longtable environment.

The main difference between the supertabular and longtable environ-
Use of the .aux filements is that the latter saves the information about the width of each longtable

environment in the auxiliary .aux file. It then uses this information on a subse-
quent run to identify the widest column widths needed for the table in question.
The use of the .aux file means that care should be taken when using the longtable
in conjunction with the \nofiles command. One effect of \nofiles is to sup-
press the writing of the .aux file, so this command should not be used until after
the final edits of that table have been made and the package has recorded the
optimal column widths in the auxiliary file.

To compare the two packages, Example 5-4-1 on page 257 is repeated here,
but now uses longtable rather than supertabular. You can see that the width
of the table is identical on both pages (the left and right parts of the picture).
Note that in longtable, most of the table specification is within the longtable

260 Tabular Material

environment; in supertabular the specification of the table headings occurs via
commands executed before the supertabular environment.

\usepackage{longtable}

\begin{longtable}{lll}
\caption{The ISOGRK3 entity set}\\
\bfseries Entity&\bfseries Unicode Name&\bfseries Unicode\\ \hline

\endfirsthead
\bfseries Entity&\bfseries Unicode Name&\bfseries Unicode\\ \hline

\endhead
\hline \multicolumn{3}{r}{\emph{Continued on next page}}

\endfoot
\hline

\endlastfoot
alpha & GREEK SMALL LETTER ALPHA & 03B1\\
beta & GREEK SMALL LETTER BETA & 03B2\\
chi & GREEK SMALL LETTER CHI & 03C7\\
... text omitted ...

5-4-3

Page 1

Table 1: The ISOGRK3 entity set

Entity Unicode Name Unicode
alpha GREEK SMALL LETTER ALPHA 03B1
beta GREEK SMALL LETTER BETA 03B2
chi GREEK SMALL LETTER CHI 03C7
Delta GREEK CAPITAL LETTER DELTA 0394
delta GREEK SMALL LETTER DELTA 03B4
epsi GREEK SMALL LETTER EPSILON 03B5
epsis GREEK LUNATE EPSILON SYMBOL 03F5
epsiv GREEK SMALL LETTER EPSILON 03B5
eta GREEK SMALL LETTER ETA 03B7
Gamma GREEK CAPITAL LETTER GAMMA 0393
gamma GREEK SMALL LETTER GAMMA 03B3
gammad GREEK SMALL LETTER DIGAMMA 03DD
iota GREEK SMALL LETTER IOTA 03B9
kappa GREEK SMALL LETTER KAPPA 03BA
kappav GREEK KAPPA SYMBOL 03F0
Lambda GREEK CAPITAL LETTER LAMDA 039B
lambda GREEK SMALL LETTER LAMDA 03BB
mu GREEK SMALL LETTER MU 03BC
nu GREEK SMALL LETTER NU 03BD
Omega GREEK CAPITAL LETTER OMEGA 03A9
omega GREEK SMALL LETTER OMEGA 03C9
Phi GREEK CAPITAL LETTER PHI 03A6
phis GREEK PHI SYMBOL 03D5
phiv GREEK SMALL LETTER PHI 03C6

Continued on next page

Page 1

Page 2

Entity Unicode Name Unicode
Pi GREEK CAPITAL LETTER PI 03A0
pi GREEK SMALL LETTER PI 03C0
piv GREEK PI SYMBOL 03D6
Psi GREEK CAPITAL LETTER PSI 03A8
psi GREEK SMALL LETTER PSI 03C8
rho GREEK SMALL LETTER RHO 03C1
rhov GREEK RHO SYMBOL 03F1
Sigma GREEK CAPITAL LETTER SIGMA 03A3
sigma GREEK SMALL LETTER SIGMA 03C3
sigmav GREEK SMALL LETTER FINAL SIGMA 03C2
tau GREEK SMALL LETTER TAU 03C4
Theta GREEK CAPITAL LETTER THETA 0398
thetas GREEK SMALL LETTER THETA 03B8
thetav GREEK THETA SYMBOL 03D1
Upsi GREEK UPSILON WITH HOOK SYMBOL 03D2
upsi GREEK SMALL LETTER UPSILON 03C5
Xi GREEK CAPITAL LETTER XI 039E
xi GREEK SMALL LETTER XI 03BE
zeta GREEK SMALL LETTER ZETA 03B6

Page 2

\begin{longtable}[align]{cols} rows \end{longtable}

The syntax of the longtable environment is modeled on that of the tabular
environment. The main difference is that the optional align argument specifies
horizontal alignment rather than vertical alignment as is the case with tabular.

5.4 Multipage tabular material 261

The align argument may have the value [c], [l], or [r], to specify centering,
Horizontal
alignment

left, or right alignment of the table, respectively. If this optional argument is omit-
ted then the alignment of the table is controlled by the two length parameters,
\LTleft and \LTright . They have default values of \fill , so by default tables
will be centered.

Any length can be specified for these two parameters, but at least one of them
should be a rubber length so that it fills up the width of the page, unless rubber
lengths are added between the columns using the \extracolsep command. For
instance, a table can be set flush left using the definitions

\setlength\LTleft{0pt} \setlength\LTright{\fill}

or just by specifying \begin{longtable}[l].
You can, for example, use the \LTleft and \LTright parameters to typeset a

Using parameters to
control table width

multipage table filling the full width of the page. Example 5-4-2 on page 258, which
used supertabular*, may be typeset using the packages array and longtable and
the declarations shown below:

\setlength\LTleft{0pt} \setlength\LTright{0pt}
\begin{longtable}{ll!{\extracolsep{\fill}}l}

In general, if \LTleft and \LTright are fixed lengths, the table will be set to the
width of \textwidth− \LTleft− \LTright.

Before and after the table, longtable inserts vertical space controlled Vertical space
around tableby the length parameters \LTpre and \LTpost . Both default to the length

\bigskipamount , but may be changed using \setlength .
Each row in the table is ended with the \\ command. As in the standard

Table row
commands

tabular environment, the command \tabularnewline is also available; it is use-
ful if \\ has been redefined by a command such as \raggedright . The star form
* may also be used which inhibits a page break at this linebreak. In a tabular
environment, this star form is accepted but has the same effect as \\ . Conversely,
a \\ command may be immediately followed by a \newpage command, which
forces a page break at that point.

If a table row is terminated with \kill rather than \\ , then the row will not
be typeset. Instead, the entries will be used when determining the widths of the
table columns. This action is similar to that of the \kill command in the tabbing
environment.

The main syntactic difference between the longtable package and the
Rows used as the
table head and foot

supertabular package is that in longtable, rows to be repeated on each page
as the table head or foot are declared within the environment body, rather than
before the environment as in supertabular. As shown in Example 5-4-3 on the
preceding page, the table head and foot are specified by replacing the final \\
command by one of the commands listed below. Note that all of these commands,
including those specifying the foot of the table, must come at the start of the en-

262 Tabular Material

vironment. The command \endhead finishes the rows that will appear at the top
of every page. The command \endfirsthead ends the declaration of rows for the
start of the table. If this command is not used then the rows specified by \endhead
will be used at the start of the table. Similarly, \endfoot finishes the rows that
will appear at the bottom of every page, and \endlastfoot—if used—ends the
rows to be displayed at the end of the table.

\caption*[short title]{full title}

The \caption command and its variant \caption* are essentially equivalent to
writing a special \multicolumn entry

\multicolumn{n}{p{\LTcapwidth}}{. . .

where n is the number of columns of the table. The width of the caption can
be controlled by redefining the parameter \LTcapwidth . That is, you can write
\setlength\LTcapwidth{width} in the document preamble. The default value is
4in. As with the \caption command in the figure and table environments, the
optional argument specifies the text to appear in the list of tables if it is different
from the text to appear in the caption.

When captions on later pages should differ from those on the first page, you
should place the \caption command with the full text in the first heading, and put
a subsidiary caption using \caption[] in the main heading, since (in this case)
no entry is made in the list of tables. Alternatively, if the table number should not
be repeated each time, you can use the \caption* command. As with the table
environment, cross-referencing the table in the text is possible with the \label
command.

By default, the caption is set in a style based on the caption style of the tables
in standard LaTEX’s article class. If the caption package (described in Section 6.5.1)
is used, then it is easy to customize longtable and table captions, keeping the
style of captions consistent between these two environments.

Table 1: A standard table
1 2 3

Table 2: A longtable

1 2 3

Table 3: A supertabular

1 2 3

\usepackage{longtable,supertabular}
\usepackage[font=sl,labelfont=bf]{caption}

\begin{table}[t]\centering
\caption{A standard table}
\begin{tabular}{ccc}1&2&3\end{tabular}

\end{table}

\begin{longtable}{ccc}\caption{A longtable}\\
1&2&3\end{longtable}

\centering
\tablecaption{A supertabular}
\begin{supertabular}{ccc}1&2&3\\\end{supertabular} 5-4-4

5.4 Multipage tabular material 263

You can use footnote commands inside the longtable environment. The foot-
Footnotes in
longtable

note text appears at the bottom of each page. The footnote counter is not reset at
the beginning of the table, but uses the standard footnote numbering employed
in the rest of the document. If this result is not desired then you can set the
footnote counter to zero before the start of each table, and then reset it at the
end of the table if following footnotes must be numbered in the original sequence.

To enable TEX to set very long multipage tables, it is necessary to break them
Increase
LTchunksize to
reduce number of
LATEX runs required

up into smaller chunks so that TEX does not have to keep everything in memory
at one time. By default, longtable uses a value of 20 rows per chunk, which can
be changed with a command such as \setcounter{LTchunksize}{100} . These
chunks do not affect page breaking. When TEX has a lot of memory available
LTchunksize can be set to a big number, which usually means that longtable
will be able to determine the final widths in fewer TEX runs. On most modern TEX
installations LTchunksize can safely be increased to accommodate several pages
of table in one chunk. Note that LTchunksize must be at least as large as the
number of rows in each of the head or foot sections.

Problems with multipage tables

When a float occurs on the same page as the start of a multipage table, unex- �Bad interaction
of floating

environments and
multipage tables

pected results can occur. Both packages have code that attempts to deal with this
situation, but in some circumstances tables can float out of sequence. Placing a
\clearpage command before the table, thereby forcing a page break and flushing
out any floats, will usually correct the problem.

Neither the supertabular nor the longtable environment will make a page
�p column entries

do not break
break after a line of text within a cell. Pages will be broken only between table
rows (or at \hline commands). If your table consists of large multiple line cells
set with the p preamble option, then LaTEX may not be able to find a good page
break and may leave unwanted white space at the bottom of the page.

The example below has room for six lines of text on each page but LaTEX breaks
the page between the two table rows, leaving page 1 short.

5-4-5

\usepackage{longtable}

\begin{longtable}{llp{43mm}}
entry 1.1 & entry 1.2 & entry 1.3, a long text entry taking several lines.\\
entry 2.1 & entry 2.2 & entry 2.3, a long text entry taking several lines

when set in a narrow column.
\end{longtable}

Page 1

entry 1.1 entry 1.2 entry 1.3, a long text
entry taking several
lines.

Page 1

Page 2

entry 2.1 entry 2.2 entry 2.3, a long text
entry taking several
lines when set in a
narrow column.

Page 2

264 Tabular Material

For some tables, the table rows form an important logical unit and the de-
fault behavior of not breaking within a row is desired. In other cases, it may be
preferable to break the table manually to achieve a more pleasing page break. In
the above example, we want to move the first two lines of page 2 to the bottom
of page 1. Noting that TEX broke the third column entry after the word “several”,
we could end the table row at that point by using \\ , insert blank entries in the
first two columns of a new row, and place the remaining portion of the p entry in
the final cell of this row. The first part of the split paragraph should be set with
\parfillskip set to 0pt so that the final line appears full width, just as it would
be if it were set as the first two lines of a larger paragraph.

\usepackage{longtable}

\begin{longtable}{llp{43mm}}
entry 1.1 & entry 1.2 & entry 1.3, a long text entry taking several lines.\\
entry 2.1 & entry 2.2 & \setlength{\parfillskip}{0pt}%

entry 2.3, a long text entry taking several\\
& & lines when set in a narrow column.

\end{longtable}
5-4-6

Page 1

entry 1.1 entry 1.2 entry 1.3, a long text
entry taking several
lines.

entry 2.1 entry 2.2 entry 2.3, a long text
entry taking several

Page 1

Page 2

lines when set in a
narrow column.

Page 2

5.5 Color in tables

The LaTEX color commands provided by the color package are modeled on the
font commands and may be used freely within tables. In particular, it is often
convenient to use the array package preamble option > in order to apply a color
to a whole column.

Day Attendance
Monday 57
Tuesday 11
Wednesday 96
Thursday 122
Friday 210
Saturday 198
Sunday 40

\usepackage{array,color}

\begin{tabular}{>{\color{blue}\bfseries}lr}
Day & \textcolor{blue}{\bfseries Attendance}\\\hline
Monday& 57\\ Tuesday& 11\\
Wednesday& 96\\ Thursday& 122\\
Friday& 210\\ Saturday& 198\\
Sunday& 40
\end{tabular} 5-5-1

5.6 Customizing table rules and spacing 265

It is perhaps more common to use color as a background to highlight certain
rows or columns. In this case using the \fcolorbox command from the color
package does not give the desired result, as typically the background should cover
the full extent of the table cell. The colortbl package (by David Carlisle) provides
several commands to provide colored backgrounds and rules in tables.

5-5-2

Day Attendance
Monday 57
Tuesday 11
Wednesday 96
Thursday 122
Friday 210
Saturday 198
Sunday 40
Total 724

\usepackage{colortbl}

\begin{tabular}
{>{\columncolor{blue}\color{white}\bfseries}lr}

\rowcolor[gray]{0.8}
\color{black} Day & \bfseries Attendance\\[2pt]

Monday& 57 \\ Tuesday& 11 \\
Wednesday& 96 \\ Thursday& 122 \\
Friday& 210 \\ Saturday& 198 \\
Sunday& 40 \\
\cellcolor[gray]{0.8}\color{black}Total& 724
\end{tabular}

5.6 Customizing table rules and spacing

In this section we look at a number of packages that extend the tabular function-
ality by providing commands for drawing special table rules and fine-tuning the
row spacing.

5.6.1 Colored table rules

The colortbl package extends the style parameters for table rules, allowing colors
to be specified for rules and for the space between double rules. The declarations
\arrayrulecolor and \doublerulesepcolor take the same argument forms as
the \color command of the standard LaTEX color package.

Normally, these declarations would be used before a table, or in the document
preamble, to set the color for all rules in a table. However, the rule color may be
varied for individual rules using constructs very similar to the previous example.

5-6-1

A B C
X Y Z

100 10 1

\usepackage{colortbl} \setlength\arrayrulewidth{1pt}
\newcolumntype{B}{!{\color{blue}\vline}}
\newcommand\bhline

{\arrayrulecolor{blue}\hline\arrayrulecolor{black}}
\newcommand\bcline[1]

{\arrayrulecolor{blue}\cline{#1}\arrayrulecolor{black}}

\begin{tabular}{|cBc|c|}
\hline
A & B & C \\ \cline{1-1}\bcline{2-3}
X & Y & Z \\ \bhline

100 & 10 & 1 \\ \hline
\end{tabular}

266 Tabular Material

5.6.2 Variable-width rules

Variable-width vertical rules may be constructed with the help of a !{decl} decla-
ration and the basic TEX command \vrule with a width argument. This command
is used because it automatically fills the height of the column, whereas an explicit
height must be specified for LaTEX’s \rule command. To construct variable-width
horizontal rules, it is again convenient to use a TEX command, \noalign , to set
the style parameter \arrayrulewidth so that it affects a single \hline , and then
reset the rule width for the rest of the table.

In the example below, a new preamble option I is defined that produces a
wide vertical rule. Similarly, a \whline command is defined that produces a wide
horizontal rule.

A B C
X Y Z

100 10 1

\usepackage{array}
\newcolumntype{I}{!{\vrule width 3pt}}
\newlength\savedwidth
\newcommand\whline{\noalign{\global\savedwidth\arrayrulewidth

\global\arrayrulewidth 3pt}%
\hline
\noalign{\global\arrayrulewidth\savedwidth}}

\begin{tabular}{|cIc|c|} \hline
A & B & C \\ \hline
X & Y & Z \\ \whline

100 & 10 & 1 \\ \hline \end{tabular} 5-6-2

5.6.3 hhline—Combining horizontal and vertical lines

The hhline package (by David Carlisle) introduces the command \hhline , which
behaves like \hline except for its interaction with vertical lines.

\hhline{decl}

The declaration decl consists of a list of tokens with the following meanings:

= A double \hline the width of a column.
- A single \hline the width of a column.
~ A column without \hline; a space the width of a column.

| A \vline that “cuts” through a double (or single) \hline .
: A \vline that is broken by a double \hline .

A double \hline segment between two \vlines.
t The top rule of a double \hline segment.
b The bottom rule of a double \hline segment.
* *{3}{==#} expands to ==#==#==#, as in the * form for the preamble.

5.6 Customizing table rules and spacing 267

If a double \vline is specified (|| or ::), then the \hlines produced by
\hhline are broken. To obtain the effect of an \hline “cutting through” the dou-
ble \vline , use a #.

The tokens t and b can be used between two vertical rules. For instance, |tb|
produces the same lines as #, but is much less efficient. The main uses for these
are to make constructions like |t: (top left corner) and :b| (bottom right corner).

If \hhline is used to make a single \hline , then the argument should only
contain the tokens “-”, “~”, and “|” (and * expressions).

An example using most of these features follows.

5-6-3

a b c d

1 2 3 4

i j k l ?

w x y z

\usepackage{array,hhline}

\setlength\arrayrulewidth{.8pt}
\renewcommand\arraystretch{1.5}
\begin{tabular}{||cc||c|c||c}

\hhline{|t:==:t:==:t|}
a & b & c & d \\ \hhline{|:==:|~|~||}
1 & 2 & 3 & 4 \\ \hhline{#==#~|=:b|-}
i & j & k & l & \multicolumn{1}{c|}{?}

\\ \hhline{||--||---}
w & x & y & z \\ \hhline{|b:==:b:==:b|}
\end{tabular}

The lines produced by \hline consist of a single (TEX primitive) \hrule . The
lines produced by \hhline are made up of lots of small line segments. TEX will
place these very accurately in the .dvi file, but the dvi driver used to view or
print the output might not line up the segments exactly. If this effect causes a
problem, you can try increasing \arrayrulewidth to reduce the effect.

5.6.4 arydshln—Dashed rules

The arydshln package (by Hiroshi Nakashima) provides the ability to place dashed
lines in tables. It is compatible with the array package, but must be loaded after
array if both are used.

\hdashline[dash/gap] \cdashline{colspec}[dash/gap]
\firsthdashline[dash/gap] \lasthdashline[dash/gap]

The basic use of the package is very simple. A new preamble option “:” is intro-
duced, together with two new commands \hdashline and \cdashline . These fea-
tures may be used in the same way as the standard LaTEX “|” preamble option and
\hline and \cline commands, except that dashed rather than solid lines are pro-
duced. If the array package is also loaded, then the commands \firsthdashline

268 Tabular Material

and \lasthdashline are defined. They are dashed analogues of the \firsthline
and \lasthline commands defined in that package.

A B C

X Y Z

100 10 1

\usepackage{array,arydshln}
\setlength\extrarowheight{4pt}% extra space on row top

\begin{tabular}{|c::c|c|}
\hline
A & B & C \\ \hline
X & Y & Z \\ \hdashline

100 & 10 & 1 \\ \hline
\end{tabular} 5-6-4

Each of the commands takes an optional argument that may be used to spec-
ify the style of rule to be constructed. For example, an optional argument of
[2pt/1pt] would specify that the rule should use 2pt dashes separated by 1pt
spaces. The tabular preamble syntax does not allow for optional arguments on
preamble options, so the “:” option does not have an optional argument in which
to specify the dash style. Instead, an additional preamble option “;” is defined
that takes a mandatory argument of the form dash/gap, as demonstrated in the
example below.

The default size of the dashes and gaps is 4pt, which may be changed by
setting the style parameters \dashlinedash and \dashlinegap via \setlength .
This ability is shown in the example below.

A B C

X Y Z

100 10 1

\usepackage{array,arydshln}
\renewcommand\arraystretch{1.3333}% extra space evenly

% distributed
\setlength\dashlinedash{1pt}
\setlength\dashlinegap{1pt}

\begin{tabular}{;{5pt/2pt}c::c:c;{5pt/2pt}}
\hdashline
A & B & C \\ \hdashline
X & Y & Z \\ \hdashline[5pt/2pt]

100 & 10 & 1 \\ \hdashline
\end{tabular} 5-6-5

The package may use any one of three methods for aligning the dashes within
Avoiding unsightly

gaps
a table cell. The package may sometimes produce an overlarge gap at the edge of
a table entry because there is not enough room to fit in the next “dash”. If this
happens you might try specifying an alternative placement algorithm using the
command \ADLdrawingmode{m}, wherem may be 1 (the default), 2, or 3.

The package documentation contains details of the placement algorithms
used in each of these cases, but in practice you can just experiment with your
particular table and dash styles to see which setting of \ADLdrawingmode gives
the most pleasing result.

5.6 Customizing table rules and spacing 269

5.6.5 tabls—Controlling row spacing

One of the difficulties of using LaTEX tables with irregular-sized entries is the chal-
lenge of obtaining a good spacing around large entries, especially in the pres-
ence of horizontal rules. The standard LaTEX command \arraystretch or the
\extrarowheight parameter introduced by the array package may help in this
case. Both, however, affect all the rows in the table. It is sometimes desirable to
have a finer-grained control, an ability that is provided by the tabls package (by
Donald Arseneau). Note that tabls is incompatible with the array package and its
derivatives. The package introduces three new parameters:

\tablinesep The minimum space between text on successive lines of a table.
Negative values are treated as zero. The default is 1pt. If this parameter is set
to 0pt, the code will not check the height of table entries to avoid touching
text (which will emulate the default behavior of tabular).

\arraylinesep The equivalent to \tablinesep for the array environment.

\extrarulesep Extra space added above and below each \hline and \cline .
There will be space of at least \extrarulesep + 0.5\tablinesep between an
\hline and text in the following table row. Negative values will reduce the
space below the line, until the line is touching the text. Larger negative values
will not cause the line to overprint the text. The default value is 3pt.

In addition, the \hline command is extended with an optional argument like that
of \\ . This argument specifies additional space to insert below the rule.

5-6-6

A B C

100 10 1

\usepackage{tabls} \setlength\tablinesep{2pt}

\begin{tabular}{|c|c|c|} \hline
\large A &\large B &\large C \\ \hline[5pt]

100 & 10 & 1 \\[5pt] \hline
\end{tabular}

5.6.6 booktabs—Formal ruled tables

The vertical rules in a tabular environment are made up of a series of rule seg-
ments, one in each row of the table. Commands designed to improve vertical spac-
ing between rows or around horizontal rules need to be carefully designed not
to “break” any vertical rules by adding space between these rule segments. An

Do not use vertical
rules

alternative approach is taken by the booktabs package (by Simon Fear). It is de-
signed to produce more formal tables according to a more traditional typographic
style that uses horizontal rules of varying widths to separate table headings, but
does not use any vertical rules. The | preamble option is not disabled when using
this package, but its use is not supported and the extra commands for horizontal
rules described below are not designed to work well in conjunction with vertical Do not use double

rulesrules. Similarly, booktabs commands are not designed to support double rules as
produced by the || or \hline\hline .

270 Tabular Material

The booktabs commands may be used with the standard tabular environ-
ments, the extended versions provided by the array package, and in the longtable
environment provided by the longtable package.

An example showing the most commonly used commands provided by the
package is shown below.

Item Price/lb

Food Category $

Apples Fruit 1.50
Oranges Fruit 2.00
Beef Meat 4.50

\usepackage{booktabs}

\begin{tabular}{@{}llr@{}}
\toprule
\multicolumn{2}{c}{Item} &\multicolumn{1}{c}{Price/lb} \\

\cmidrule(r){1-2}\cmidrule(l){3-3}
Food & Category & \multicolumn{1}{c}{\$}\\

\midrule
Apples & Fruit & 1.50 \\
Oranges & Fruit & 2.00 \\
Beef & Meat & 4.50 \\

\bottomrule
\end{tabular} 5-6-7

\toprule[width] \midrule[width] \bottomrule[width]

The booktabs package provides the \toprule , \midrule , and \bottomrule com-
mands. They are used in the same way as the standard \hline but have better
vertical spacing, and widths specified by the length parameters \heavyrulewidth
(for top and bottom rules) and \lightrulewidth (for mid-table rules). These pa-
rameters default to 0.08em and 0.05em, respectively (where the em is determined
by the default document font at the point the package is loaded).

The spacing above and below the rules is determined by the length param-
eters: \abovetopsep (default 0pt) is the space above top rules, \aboverulesep
(default 0.4ex) is the space above mid-table and bottom rules, \belowrulesep (de-
fault 0.65ex) is the space below top and mid rules, and \belowbottomsep (default
0pt) is the space below bottom rules.

If you need to control the widths of individual rules, all of these commands
take an optional width argument. For example, \midrule[0.5pt] would produce a
rule of width 0.5pt.

When these commands are used inside a longtable environment, they may
take an optional (trim) argument as described below for \cmidrule . This argu-
ment may be used to make the rules slightly less than the full width of the table.

\cmidrule[width](trim){col1-col2}

The \cmidrule command produces rules similar to those created with the stan-
dard LaTEX \cline command. The col1-col2 argument specifies the columns over

5.6 Customizing table rules and spacing 271

which the rule should be drawn. Unlike the rules created by \cline , these rules
do not, by default, extend all the way to the edges of the column. Thus, one may
use \cmidrule to produce rules on adjacent columns without them touching, as
shown in the example above.

If the optional width argument is not specified, the rule will be of the width
specified by the \cmidrulewidth length parameter (default 0.03em).

By default, the rule extends all the way to the left, but is “trimmed” from the
rightmost column by the length specified in the length parameter \cmidrulekern .
The optional (trim) argument may contain the characters l and r, indicating that
the rule is to be trimmed from the left or right, respectively. Each l and r may op-
tionally be followed by a width argument specified using {widths}, in which case
the rule is trimmed by this amount rather than by the default \cmidrulekern .

Normally, if one \cmidrule command immediately follows another, then the
rules will be drawn across the specified columns on the same horizontal line. A
command \morecmidrules is provided that may be used to terminate a row of
mid-table rules. Following mid-table rules will then appear on a new line separated
by the length \cmidrulesep , which by default is equal to \doublerulesep .

Each group of rules produced by \cmidrule is preceded and followed by a
space of width \midrulesep , so this command generates the same spacing as
\midrule . By default, however, the \cmidrule rules are lighter (thinner) than the
rules produced by \midrule .

\addlinespace[width]

Extra space may be inserted between rows using \addlinespace . This command
differs from using the optional argument to \\ , as the former may also be used
immediately before or after the rule commands.

If used in this position the command replaces the default spacing that would
normally be produced by the rule. If the optional width argument is omitted it
defaults to the length parameter \defaultaddspace (which defaults to 0.5em).

\specialrule{width}{abovespace}{belowspace}

Finally, if none of the other commands produces a suitable rule then the command
\specialrule may be used. It takes three mandatory arguments that specify the
width of the rule, and the space above and below the rule.

As the intention of the package is to produce “formal” tables with well-spaced
lines of consistent thickness, the package author warns against overuse of the op-
tional arguments and special commands to produce lines with individual charac-
teristics. Nevertheless, these features may be useful in special circumstances.

The example on the following page shows the effect of many of these options
as well as demonstrating that overuse of the commands will produce a very un-
pleasing layout.

272 Tabular Material

Item Price/lb

a b c

Food Category $

Apples Fruit 1.50
Oranges Fruit 2.00

Beef Meat 4.50

x y z

\usepackage{booktabs}

\begin{tabular}{@{}llr@{}}
\toprule
\multicolumn{2}{c}{Item} &\multicolumn{1}{c}{Price/lb} \\

\cmidrule(r){1-2}\cmidrule(l){3-3}
a & b & c \\

\cmidrule(l{2pt}r{2pt}){1-2}\cmidrule(l{2pt}r{2pt}){3-3}
\morecmidrules
\cmidrule(l{2pt}r{2pt}){2-3}
\addlinespace[5pt]
Food& Category & \multicolumn{1}{c}{\$}\\

\midrule
Apples & Fruit & 1.50 \\
Oranges & Fruit & 2.00 \\

\addlinespace
Beef & Meat & 4.50 \\

\specialrule{.5pt}{3pt}{3pt}
x & y & z \\

\bottomrule
\end{tabular} 5-6-8

5.7 Further extensions

Two other package files extend the array package with additional functionality.
The first provides for table entries spanning more than one row. The second
makes it easier to align decimal numbers in a column.

You can simulate a cell spanning a few rows vertically by putting the material
in a zero-height box and raising it.

qqq100
A B

20000000 10 10

\begin{tabular}{|c|c|c|} \hline
& \multicolumn{2}{c|}{qqq}\\\cline{2-3}

\raisebox{1.5ex}[0cm][0cm]{100}
& A & B \\\hline

20000000 & 10 & 10 \\\hline
\end{tabular} 5-7-1

Similarly, you can use a standard tabular preamble of the form r@{.}l to
create two table columns and produce the effect of a column aligned on a decimal
point, but then the input looks rather strange. For an alternative solution, see
Section 5.7.2 on page 274.

1.2
1.23

913.17

\begin{tabular}{r@{.}l}
1 & 2 \\ 1 & 23 \\ 913 & 17

\end{tabular} 5-7-2

5.7 Further extensions 273

This strategy is not always convenient, because you have to be aware that the
“column” is really two columns of the table. This consideration becomes important
when counting columns for the \multicolumn or \cline commands. Also, you
need to locally set \extracolsep to 0pt if you use this construct in a tabular*
environment, otherwise TEX may insert space after the decimal point to spread
the table to the specified width.

5.7.1 multirow—Vertical alignment in tables

The multirow package (by Jerry Leichter) automates the procedure of constructing
tables with columns spanning several rows by defining a \multirow command.
Fine-tuning is possible by specifying optional arguments. This ability can be useful
when any of the spanned rows are unusually large, when \strut commands are
used asymmetrically about the centerline of spanned rows, or when descenders
are not taken into account correctly. In these cases the vertical centering may not
come out as desired, and the fixup argument vmove can then be used to introduce
vertical shifts by hand.

\multirow{nrow}[njot]{width}[vmove]{contents}

Inside an array, this command is somewhat less useful because the lines have an
extra \jot of space (a length, by default equal to 3pt, that is used for opening
up displays), which is not accounted for by \multirow . Fixing this problem (in
general) is almost impossible. Nevertheless, a semiautomatic fix is to set the length
parameter \bigstrutjot to \jot , and then use the second argument njot of
\multirow with a value equal to half the number of rows spanned.

You have some ability to control the formatting within cells. Just before the
text to be typeset is expanded, the \multirowsetup macro is automatically exe-
cuted to set up any special environment. Initially, \multirowsetup contains just
\raggedright , but it can be redefined with \renewcommand .

The \multirow command works in one or more columns, as shown in the
example below.

5-7-3

Text in
column 1

C2a
Text in
column 3

C4a
C2b C4b
C2c C4c
C2d C4d

\usepackage{multirow}

\begin{tabular}{|l|l|l|l|} \hline
\multirow{4}{14mm}{Text in column 1}

& C2a & \multirow{4}{14mm}{Text in column 3}
& C4a \\

& C2b & & C4b \\
& C2c & & C4c \\
& C2d & & C4d \\\hline

\end{tabular}

You are now in a position to typeset the small example shown at the beginning
of this section without having to use the \raisebox command. First, you must

274 Tabular Material

change the alignment inside the \multirow paragraph to \centering . Next, you
calculate the width of the text in the column, which is required by the \multirow
command. If the column with the spanned rows has a fixed width, as in our other
examples, this step is unnecessary.

100
qqq

A B
20000000 10 10

\usepackage{multirow}

\renewcommand\multirowsetup{\centering}
\newlength\LL \settowidth\LL{100}
\begin{tabular}{|c|c|c|} \hline
\multirow{2}{\LL}{100}&

\multicolumn{2}{c|}{qqq} \\\cline{2-3}
& A & B \\\hline

20000000 & 10 & 10 \\\hline
\end{tabular} 5-7-4

The effect of the optional vertical positioning parameter vmove can be seen
below. Note the effect of the upward move by 3 mm of the lower third of the table.

Common text in
column 1

Cell 1a
Cell 1b
Cell 1c
Cell 1d

Common text in
column 1

Cell 2a
Cell 2b
Cell 2c
Cell 2d

Common text in
column 1

Cell 3a
Cell 3b
Cell 3c
Cell 3d

\usepackage{multirow}

\begin{tabular}{|l|l|}
\hline
\multirow{4}{25mm}{Common text in column 1}
& Cell 1a \\\cline{2-2} & Cell 1b\\\cline{2-2}
& Cell 1c \\\cline{2-2} & Cell 1d\\\hline
\multirow{4}{25mm}[-3mm]{Common text in column 1}
& Cell 2a \\\cline{2-2} & Cell 2b\\\cline{2-2}
& Cell 2c \\\cline{2-2} & Cell 2d\\\hline
\multirow{4}{25mm}[3mm]{Common text in column 1}
& Cell 3a \\\cline{2-2} & Cell 3b\\\cline{2-2}
& Cell 3c \\\cline{2-2} & Cell 3d\\\hline
\end{tabular} 5-7-5

5.7.2 dcolumn—Decimal column alignments

The dcolumn package (by David Carlisle) provides a system for defining columns
of entries in array or tabular environments that are to be aligned on a “decimal
point”. Entries with no decimal part, those with no integer part, and blank entries
are also dealt with correctly.

The package defines a “Decimal” tabular preamble option, D, that takes three
arguments.

D{inputsep}{outputsep}{decimal places}

inputsep A single character, used as separator (or “decimal point”) in the source
file (for example, “.” or “,”).

5.7 Further extensions 275

outputsep The separator to be used in the output. It can be the same as the first
argument, but may also be any math mode expression, such as \cdot .

decimal places The maximum number of decimal places in the column. If this
value is negative, any number of decimal places is allowed in the column, and
all entries will be centered on the separator. Note that this choice can cause
a column to be too wide (see the first two columns in the example below).
Another possibility is to specify the number of digits both to the left and to
the right of the decimal place, using an argument of the form {left.right} as
described below.

If you do not want to use all three entries in the preamble, you can customize
the preamble specifiers by using \newcolumntype as demonstrated below.

\newcolumntype{d}[1]{D{.}{\cdot}{#1}}

The newly defined “d” specifier takes a single argument specifying the number
of decimal places. The decimal separator in the source file is the normal dot “.”,
while the output uses the math mode “·”.

\newcolumntype{.}{D{.}{.}{-1}}

In this case the “.” specifier has no arguments: the normal dot is used in both
input and output. The typeset entries should be centered on the dot.

\newcolumntype{,}{D{,}{,}{2}}

The “,” specifier defined here uses the comma “,” as a decimal separator in both
input and output, and the typeset column should have (at most) two decimal
places after the comma.

These definitions are used in the following example, in which the first column,
with its negative value for decimal places (signaling that the decimal point should
be in the center of the column), is wider than the second column, even though
they both contain the same input material.

5-7-6

1·2 1·2 1.2 1,2
1·23 1·23 12.5 300,2

1121·2 1121·2 861.20 674,29
184 184 10 69
·4 ·4 ,4

.4

\usepackage{dcolumn}
\newcolumntype{d}[1]{D{.}{\cdot}{#1}}
\newcolumntype{.}{D{.}{.}{-1}}
\newcolumntype{,}{D{,}{,}{2}}

\begin{tabular}{|d{-1}|d{2}|.|,|}
1.2 & 1.2 &1.2 &1,2 \\
1.23 & 1.23 &12.5 &300,2 \\
1121.2& 1121.2&861.20 &674,29 \\
184 & 184 &10 &69 \\
.4 & .4 & &,4 \\

& &.4 &
\end{tabular}

276 Tabular Material

If the table entries include only numerical data that must be aligned, the align-
ment forms shown in the above example should be sufficient. However, if the
columns contain headings or other entries that will affect the width of the col-
umn, the positioning of the numbers within the column might not be as desired.
In the example below, in the first column the numbers appear to be displaced to-
ward the left of the column, although the decimal point is centered. In the second
column the numbers are flush right under a centered heading, which is sometimes
the desired effect but (especially if there are no table rules) can make the heading
appear dissociated from the data. The final column shows the numbers aligned
on the decimal point and centered as a block under the heading. This effect is
achieved by using a third argument to the D preamble option of 4.2 specifying
that at most four digits can appear to the left of the point, and two digits to the
right of it.

wide heading wide heading wide heading

1000.20 1000.20 1000.20
123.45 123.45 123.45

\usepackage{dcolumn}

\begin{tabular}{|D..{-1}|D..{2}|D..{4.2}|}
\multicolumn{1}{|c|}{wide heading}&
\multicolumn{1}{c|}{wide heading}&
\multicolumn{1}{c|}{wide heading}\\[3pt]
1000.20 & 1000.20 &1000.20 \\
123.45 & 123.45 & 123.45

\end{tabular} 5-7-7

The following is a variant of an example in the LATEX Manual showing that D
column alignments may be used for purposes other than aligning numerical data
on a decimal point.

GG&A Hoofed Stock

Price
Year low–high Comments Other
1971 97–245 Bad year for

farmers in the
West.

23,45

72 245–245 Light trading
due to a heavy
winter.

435,23

73 245–2001 No gnus was
very good gnus
this year.

387,56

\usepackage{dcolumn}
\newcolumntype{+}{D{/}{\mbox{--}}{4}}
\newcolumntype{,}{D{,}{,}{2}}

\begin{tabular}{|r||+|
>{\raggedright}p{2.2cm}|,|} \hline

\multicolumn{4}{|c|}{GG\&A Hoofed Stock}\\
\hline\hline
& \multicolumn{1}{c|}{Price}& &
\\ \cline{2-2} \multicolumn{1}{|c||}{Year}
& \mbox{low}/\mbox{high}
& \multicolumn{1}{c|}{Comments}
& \multicolumn{1}{c|}{Other} \\ \hline
1971 & 97/245 &Bad year for farmers in

the West. & 23,45 \\ \hline
72 &245/245 &Light trading due to a

heavy winter. & 435,23\\ \hline
73 &245/2001 &No gnus was very good

gnus this year. & 387,56\\ \hline
\end{tabular} 5-7-8

5.8 Footnotes in tabular material 277

5.8 Footnotes in tabular material

As stated in Section 3.2.2 on page 112, footnotes appearing inside tabular material
are not typeset by standard LaTEX. Only the environments tabularx, longtable,
mpsupertabular, and mpsupertabular* will automatically typeset footnotes.

As you generally want your “table notes” to appear just below the table, you
will have to tackle the problem yourself by managing the note marks and, for
instance, by using \multicolumn commands at the bottom of your tabular envi-
ronment to contain your table notes.

5.8.1 Using minipage footnotes with tables

If a tabular or array environment is used inside a minipage environment, stan-
dard footnote commands may be used inside the table. In this case these foot-
notes will be typeset at the bottom of the minipage environment, as explained in
Section 3.2.1 on page 110.

In the example below note the redefinition of \thefootnote that allows us
to make use of the \footnotemark command inside the minipage environment.
Without this redefinition \footnotemark would have generated a footnote mark
in the style of the footnotes for the main page, as explained in Section 3.2.2.

5-8-1

PostScript Type 1 fonts
Couriera cour, courb, courbi, couri
Charterb bchb, bchbi, bchr, bchri
Nimbusc unmr, unmrs
URW Antiquac uaqrrc
URW Groteskc ugqp
Utopiad putb, putbi, putr, putri

aDonated by IBM.
bDonated by Bitstream.
cDonated by URW GmbH.
dDonated by Adobe.

\begin{minipage}{\linewidth}
\renewcommand\thefootnote{\thempfootnote}
\begin{tabular}{ll}
\multicolumn{2}{c}{\bfseries PostScript

Type 1 fonts} \\
Courier\footnote{Donated by IBM.}

& cour, courb, courbi, couri \\
Charter\footnote{Donated by Bitstream.}

& bchb, bchbi, bchr, bchri \\
Nimbus\footnote{Donated by URW GmbH.}

& unmr, unmrs \\
URW Antiqua\footnotemark[\value{mpfootnote}]

& uaqrrc \\
URW Grotesk\footnotemark[\value{mpfootnote}]

& ugqp \\
Utopia\footnote{Donated by Adobe.}

& putb, putbi, putr, putri
\end{tabular}

\end{minipage}

Of course, this approach does not automatically limit the width of the foot-
notes to the width of the table, so a little iteration with the minipage width argu-
ment might be necessary to achieve the desired effect.

278 Tabular Material

5.8.2 threeparttable—Setting table and notes together

Another way to typeset table notes is with the package threeparttable, written by
Donald Arseneau. This package has the advantage that it indicates unambiguously
that you are dealing with notes inside tables. Moreover, it gives you full control of
the actual reference marks and offers the possibility of having a caption for your
tabular material. With this package the table notes are automatically set in a box
with width set equal to the width of the table.

Table notes set to
the width of the

table

Normally, the threeparttable environment would be contained within a
table environment so that the table would float. However, threeparttable may
also be used directly, in which case it constructs a nonfloating table similar to the
nonfloating table environment set-up described in Example 6-3-4 on page 295.

Table 1: PostScript Type 1 fonts

Couriera cour, courb, courbi, couri
Charterb bchb, bchbi, bchr, bchri
Nimbusc unmr, unmrs
URW Antiquac uaqrrc
URW Groteskc ugqp
Utopiad putb, putbi, putr, putri

a Donated by IBM.
b Donated by Bitstream.
c Donated by URW GmbH.
d Donated by Adobe.

a Donated by IBM.
b Donated by Bitstream.
c Donated by URW GmbH.
d Donated by Adobe.

Donated by: a IBM, b Bitstream,
c URW GmbH, d Adobe.

\usepackage{threeparttable}

\begin{threeparttable}
\caption[Example of a \texttt{threeparttable}

environment]{\textbf{PostScript Type 1 fonts}}
\begin{tabular}{@{}ll@{}}
Courier\tnote{a} & cour, courb, courbi, couri \\
Charter\tnote{b} & bchb, bchbi, bchr, bchri \\
Nimbus\tnote{c} & unmr, unmrs \\
URW Antiqua\tnote{c} & uaqrrc \\
URW Grotesk\tnote{c} & ugqp \\
Utopia\tnote{d} & putb, putbi, putr, putri\\
\end{tabular}
\begin{tablenotes}
\item[a]Donated by IBM.
\item[b]Donated by Bitstream.
\item[c]Donated by URW GmbH.
\item[d]Donated by Adobe.
\end{tablenotes}

\begin{tablenotes}[flushleft,online]
\item[a]Donated by IBM.
\item[b]Donated by Bitstream.
\item[c]Donated by URW GmbH.
\item[d]Donated by Adobe.
\end{tablenotes}

\begin{tablenotes}[para]
\item[]Donated by:
\item[a]IBM, \item[b]Bitstream,
\item[c]URW GmbH,
\item[d]Adobe.
\end{tablenotes}
\end{threeparttable} 5-8-2

5.9 Applications 279

As its name suggests, the threeparttable environment consists of three
parts. The caption consists of the usual \caption command (which may come
before or after the table). The table may use one of the standard tabular or
tabular* environments, the extended variants defined in the array package, or
the tabularx environment defined in tabularx. Support for other tabular environ-
ments may be added in later releases, the package documentation lists the cur-
rently supported environments. The third part of a threeparttable is the text of
the table notes, which consists of one or more tablenotes environments.

The threeparttable package offers several options to control the typesetting
of the table notes:

para Notes are set within a paragraph, without forced line breaks.

flushleft No hanging indentation is applied to notes.

online Note labels are printed normal size, not as superscripts.

normal Normal default formatting is restored.

Each of these options may be used as a package option to set the default style for
all such tables within the document. Alternatively, they may be used as shown in
the example, on individual tablenotes environments.

In addition to these options the package has several commands that may be
redefined to control the formatting in more specific ways than those provided by
the package options. See the package documentation for details.

5.9 Applications

The following examples involve somewhat more complex placement requirements,
allowing advanced functions such as the provision of nested tables. Here, we will
put to work many of the features described in this chapter.

5.9.1 Managing tables with wide entries

Sometimes it is necessary to balance white space between narrow columns uni-
formly over the complete width of the table. For instance, the following table has
a rather wide first row, followed by a series of narrow columns.

5-9-1

this-is-a-rather-long-row
C1 C2 C3
2.1 2.2 2.3
3.1 3.2 3.3

\begin{tabular}{ccc}
\multicolumn{3}{c}{this-is-a-rather-long-row}\\
C1 &C2 &C3 \\ 2.1&2.2&2.3 \\ 3.1&3.2&3.3
\end{tabular}

You can put some rubber length in front of each column with the help of the
\extracolsep command. The actual value of the rubber length is not important,
as long as it can shrink enough to just fill the needed space. In this case you must,
of course, specify a total width for the table. We could use \linewidth and make

280 Tabular Material

the table full width, but here we can obtain a better result by precalculating the
width of the wide entry and specifying it as the total width of the tabular*.

this-is-a-rather-long-row
C1 C2 C3
2.1 2.2 2.3
3.1 3.2 3.3

\usepackage{array}
\newlength\Mylen

\settowidth\Mylen{this-is-a-rather-long-row}
\addtolength\Mylen{2\tabcolsep}
\begin{tabular*}{\Mylen}%

{!{\extracolsep{4in minus 4in}}ccc}
\multicolumn{3}{c}{this-is-a-rather-long-row}\\
C1 &C2 &C3 \\ 2.1&2.2&2.3 \\ 3.1&3.2&3.3
\end{tabular*} 5-9-2

To achieve correct alignment, we needed to take into account the column
separation (\tabcolsep) on both sides of an entry. Alternatively, we could have
suppressed the inter-column spaces at the left and right of the tabular* by using
@{} expressions.

5.9.2 Tables inside tables

The example below shows how, with a little bit of extra effort, you can construct
complex table layouts with LaTEX.

\firsthline \lasthline

The family of tabular environments allows vertical positioning with respect to
the baseline of the text in which the environment appears. By default, the environ-
ment appears centered. This preference can be changed to align with the first or
last line in the environment by supplying a t or b value to the optional position
argument. Note that this approach does not work when the first or last element in
the environment is an \hline command—in that case, the environment is aligned
at the horizontal rule.

Tables with no
hline
commands
used

versus tables
with some
hline
commands

used.

\usepackage{array}

Tables \begin{tabular}[t]{l}
with no\\ hline \\ commands \\ used

\end{tabular}
versus tables
\begin{tabular}[t]{|l|} \hline
with some \\ hline \\ commands \\

\hline
\end{tabular} used. 5-9-3

To achieve proper alignments you can use the two commands \firsthline
and \lasthline , which are special versions of \hline defined in the array pack-

5.9 Applications 281

age. These commands enable you to align the information in the tables properly
as long as their first or last lines do not contain extremely large objects.

5-9-4

Tables with no
hline
commands
used

versus tables with some
hline
commands

used.

\usepackage{array}

Tables \begin{tabular}[t]{l}
with no\\ hline \\ commands \\ used

\end{tabular}
versus tables
\begin{tabular}[t]{|l|} \firsthline
with some \\ hline \\ commands \\

\lasthline
\end{tabular} used.

\setlength\extratabsurround{dim}

The implementation of the two commands contains an extra dimension,
\extratabsurround , to add space at the top and the bottom of such an envi-
ronment. It is helpful for properly aligning nested tabular material, as shown in
the next example.

\usepackage{array}
\setlength\extratabsurround{5pt}

\begin{tabular}{|cc|} \hline
\emph{name} & \emph{telephone} \\\hline\hline

John & \begin{tabular}[t]{|cc|} \firsthline
\emph{day} & \multicolumn{1}{c|}{\itshape telephone}

\\\hline\hline
Wed & 5554434 \\\hline
Mon & \begin{tabular}[t]{|cc|} \firsthline

\emph{time} & \emph{telephone} \\\hline\hline
8--10 & 5520104 \\ 1--5 & 2425588 \\\lasthline

\end{tabular} \\\lasthline
\end{tabular} \\\hline

Martin & \begin{tabular}[t]{|cp{4.5cm}|} \firsthline
\emph{telephone} & \multicolumn{1}{c|}{\itshape instructions}

\\\hline\hline
3356677 & Mary should answer forwarded message. \\\lasthline

\end{tabular} \\\hline
Peter & \begin{tabular}[t]{|cl|} \firsthline

\emph{month} &\multicolumn{1}{c|}{\itshape telephone}
\\\hline\hline

Sep--May & 5554434 \\ Jun & No telephone \\
Jul--Aug & 2211456 \\ \lasthline

\end{tabular} \\\hline
\end{tabular}

282 Tabular Material

name telephone

John day telephone

Wed 5554434

Mon time telephone

8–10 5520104
1–5 2425588

Martin telephone instructions

3356677 Mary should answer forwarded
message.

Peter month telephone

Sep–May 5554434
Jun No telephone

Jul–Aug 2211456
5-9-5

The LaTEX code below shows how you can combine the various techniques
A final example and packages described earlier in this chapter. We used the package tabularx to

generate a 12 column table in which columns 3 to 12 are of equal width. We used
the package multirow to generate the stub head, “Prefix”, which spans two rows in
column 1. To position the stub head properly, we calculated the width of the title
beforehand.

\usepackage{array,tabularx,multirow}

\newlength\Tl \settowidth{\Tl}{Prefix} \setlength\tabcolsep{1mm}
\newcommand\T[1]{$10^{#1}$}
\begin{tabularx}{\linewidth}{|l|l|*{10}{>{\small}X|}} \hline
\multicolumn{12}{|c|}{\textbf{Prefixes used in the SI system of units}}\\\hline
\multicolumn{2}{|c|}{Factor} &
\T{24}&\T{21}&\T{18}&\T{15}&\T{12}&\T{9}&\T{6}&\T{3}&\T{2}&\T{ }\\\cline{1-2}
\multirow{2}{\Tl}{Prefix}&Name &
yotta &zetta &exa &peta &tera &giga &mega &kilo &hecto &deca \\

&Symbol &
... text omitted ...

5-9-6

Prefixes used in the SI system of units
Factor 1024 1021 1018 1015 1012 109 106 103 102 10

Prefix
Name yotta zetta exa peta tera giga mega kilo hecto deca
Symbol Y Z E P T G M k h da

Prefix
Symbol y z a f p n μ m c d
Name yocto zepto atto femto pico nano micro milli centi deci

Factor 10−24 10−21 10−18 10−15 10−12 10−9 10−6 10−3 10−2 10−1

C H A P T E R 6

Mastering Floats

Documents would be easier to read if all the material that belonged together was
never split between pages. However, this is often technically impossible and TEX
will, by default, split textual material between two pages to avoid partially filled
pages. Nevertheless, when this outcome is not desired (as with figures and tables),
the material must be “floated” to a convenient place, such as the bottom or the
top of the current or next page, to prevent half-empty pages.

This chapter shows how “large chunks” of material can be kept conveniently
on the same page by using a float object. We begin by introducing the parameters
that define how LaTEX typesets its basic figure and table float environments, and
we describe some of the packages that make it easy to control float placement (Sec-
tion 6.2). We then continue by explaining how you can define and use your own
floating environments (Section 6.3.1), or, conversely, how captioning commands
can be used to enter information into the list of figures and tables for nonfloat-
ing material (Section 6.3.2). Then methods for rotating the content of a float are
described (Section 6.3.3).

It is often visually pleasing to include a “picture” inside a paragraph, with the
text wrapping around it. Various packages have been written to achieve this goal
more or less easily; in Section 6.4 we look at two of them in some detail.

The final section addresses the problem of customizing captions. There is a
recognized need to be able to typeset the description of the contents of figures
and tables in many different ways. This includes specifying sub-figures and sub-
tables, each with its own caption and label, inside a larger float.

Many float-related packages have been developed over the years and we can-
not hope to mention them all here. In fact, the packages that we describe often
feature quite a few more commands than we are able to illustrate. Our aim is to

284 Mastering Floats

obtained in a given framework. In each case consulting the original documentation
will introduce you to the full possibilities of a given package.

6.1 Understanding float parameters

Floats are often problematic in the present version of LaTEX, because the system
was developed at a time when documents contained considerably less graphical
material than they do today. Placing floats (tables and figures) works relatively
well as long as the space they occupy is not too large compared with the space
taken up by the text. If a lot of floating material (pictures or tables) is present,
however, then it is often the case that all material from a certain point onward
floats to the end of the chapter or document. If this effect is not desired, you can
periodically issue a \clearpage command, which will print all unprocessed floats.
You can also try to fine-tune the float style parameters for a given document or
use a package that allows you to always print a table or figure where it appears in
the document. In the list below “float” stands for a table or a figure and a “float
page” is a page that contains only floats and no text. Changes to most of the
parameters will only take effect on the next page (not the current one).

topnumber Counter specifying the maximum number of floats allowed at the
top of the page (the default number is 2). This can be changed with the
\setcounter command.

bottomnumber Counter specifying the maximum number of floats allowed at
the bottom of the page (the default number is 1). This can be changed with
\setcounter .

totalnumber Counter specifying the maximum number of floats allowed on a
single page (the default number is 3). This can be changed with \setcounter .

\topfraction Maximum fraction of the page that can be occupied by floats at
the top of the page (e.g., 0.2 means 20% can be floats; the default value is 0.7).
This can be changed with \renewcommand .

\bottomfraction Maximum fraction of the page that can be occupied by floats
at the bottom of the page (the default value is 0.3). This can be changed with
\renewcommand .

\textfraction Minimum fraction of a normal page that must be occupied by
text (the default value is 0.2). This can be changed with \renewcommand .

\floatpagefraction Minimum fraction of a float page that must be occupied
by floats, thus limiting the amount of blank space allowed on a float page (the
default value is 0.5). This can be changed with \renewcommand .

dbltopnumber Analog of topnumber for double-column floats in two-column
style (the default number is 2). This can be changed with \setcounter .

6.1 Understanding float parameters 285

\dbltopfraction Analog of \topfraction for double-column floats on a
two-column page (the default value is 0.7). This can be changed with
\renewcommand .

\dblfloatpagefraction Analog of \floatpagefraction for a float page of
double-column floats (the default value is 0.5). This can be changed with
\renewcommand .

\floatsep Rubber length specifying the vertical space added between floats ap-
pearing at the top or the bottom of a page (the default is 12pt plus 2pt
minus 2pt for 10pt and 11pt document sizes, and 14pt plus 2pt minus 4pt
for 12pt document size). This can be changed with \setlength .

\textfloatsep Rubber length specifying the vertical space added between
floats, appearing at the top or the bottom of a page, and the text (the default
is 20pt plus 2pt minus 4pt). This can be changed with \setlength .

\intextsep Rubber length specifying the vertical space added below and above
a float that is positioned in the middle of text when the h option is given (the
default is similar to \floatsep). This can be changed with \setlength .

\dblfloatsep Rubber length that is the analog of \floatsep for double-width
floats on a two-column page (the default is like \floatsep). This can be
changed with \setlength .

\dbltextfloatsep Rubber length that is the analog of \textfloatsep for
double-width floats on a two-column page (the default is like \textfloatsep
on a text page, but is 8pt plus 2fil on a page that contains only floats). This
can be changed with \setlength .

\topfigrule Command to produce a separating item (by default, a rule) be-
tween floats at the top of the page and the text. It is executed immediately
before placing the \textfloatsep that separates the floats from the text.
Like the \footnoterule , it must not occupy any vertical space.

\botfigrule Same as \topfigrule , but put after the \textfloatsep skip sep-
arating text from the floats at the bottom of the page.

\dblfigrule Similar to \topfigrule , but for double-column floats.

Changing the values of these parameters lets you modify the behavior of
LaTEX’s algorithm for placing floats. To obtain the optimal results, however, you
should be aware of the subtle dependencies that exist between these parameters.

If you use the default values in a document you will observe that, with many
floats, the formatted document will contain several float pages—that is, pages con-
taining only floats. Often such pages contain a lot of white space. For example, you
may see a page with a single float on it, occupying only half of the possible space,

286 Mastering Floats

so that it would look better if LaTEX had filled the remaining space with text. The rea-
The problem of

half-empty float
pages

son for this behavior is that the algorithm is designed to try placing as many dan-
gling floats as possible after the end of every page. The procedure creates as many
float pages as it can until there are no more floats left to fill a float page. Float page
production is controlled by the parameter \floatpagefraction , which specifies
the minimum fraction of the page that must be occupied by float(s)—by default,
half the page. In the standard settings every float is allowed to go on a float page
(the default specifier is tbp), so this setting means that every float that is a tiny
bit larger than half the page is allowed to go on a float page by itself. Thus, by
enlarging its value, you can prevent half-empty float pages.

However, enlarging the value of \floatpagefraction makes it more difficult
to produce float pages. As a result, some floats may be deferred, which in turn
prevents other floats from being placed. For this reason it is often better to specify
explicitly the allowed placements (for example, by saying \begin{figure}[tb])
for the float that creates the problem.

Another common reason for ending up with all floats at the end of your chap-
ter is use of the bottom placement specifier, [b]. It indicates that the only accept-
able place for a float is at the bottom of a page. If your float happens to be larger
than \bottomfraction (which is by default quite small), then this float cannot be
placed. This will also prevent all floats of the same type from being placed. The
same problem arises if only [h] or [t] is specified and the float is too large for
the remainder of the page or too large to fit \topfraction .

In calculating these fractions, LaTEX will take into account the separation (i.e.,
\textfloatsep) between floats and main text. By enlarging this value, you auto-
matically reduce the maximum size a float is allowed to have to be considered as
a candidate for placement at the top or bottom of the page.

In general, whenever a lot of your floats end up at the end of the chapter, look
at the first ones to see whether their placement specifiers are preventing them
from being properly placed.

6.2 Float placement control

The float placement algorithm prefers to put floats at the top of the page, even
Floats always after

their call-out
if it means placing them before the actual reference. This outcome is not always
acceptable but there is no easy cure for this problem short of substantially chang-
ing LaTEX’s algorithm. The flafter package (by Frank Mittelbach) makes this change,
thereby ensuring that floats are never placed before their references.

Sometimes, less drastic solutions might be preferred. For example, if the float
belongs to a section that starts in the middle of a page but the float is positioned
at the top of the page, the float will appear as if it belongs to the previous section.
You might want to forbid this behavior while still allowing floats to be placed
on the top of the page in other situations. For this purpose LaTEX offers you the
following command.

6.2 Float placement control 287

\suppressfloats[placement]

The optional argument placement can be either t or b. If the command
\suppressfloats is placed somewhere in the document, then on the current
page any following floats for the areas specified by placement are deferred to
a later page. If no placement parameter is given, all remaining floats on the cur-
rent page are deferred. For example, if you want to prevent floats from moving
backward over section boundaries, you can redefine your section commands in
the following way:

\renewcommand\section{\suppressfloats[t]%
\@startsection{section}{..}{..}{..} ... }

Possible arguments to \@startsection are discussed in Section 2.2.2.
Another way to influence the placement of floats in LaTEX is to specify a ! in

conjunction with the placement specifiers h, t, and b. The placement of floats
on float pages is not affected by this approach. This means that for this float
alone, restrictions given by the settings of the parameters described earlier (e.g.,
\textfraction) are ignored. Thus, such a float can be placed in the designated
areas as long as neither of the following two restrictions is violated:

• The float fits on the current page; that is, its height plus the material already
contributed to the page does not exceed \textheight .

• There are no deferred floats of the same type.

All other restrictions normally active (e.g., the number of floats allowed on a
page) are ignored. For example, if you specify [!b] this float can be placed on
the bottom of the page even if it is larger than the maximum size specified by
\bottomfraction . Also, any \suppressfloats commands are ignored while pro-
cessing this float.

The order of the given specifiers is irrelevant, and all specifiers should be
Algorithm to
determine allowed
placement

given at most once. For example, [bt] is the same as [tb] and thus does not
instruct LaTEX to try to place the float at the bottom and only then try to place it on
the top. LaTEX always uses the following order of tests until an allowed placement
is found:

1. If ! is specified, ignore most restrictions as described above and continue.

2. If h is specified, try to place the float at the exact position. If this fails and
no other position was specified, change the specifier to t (for a possible place-
ment on the next page).

3. If t is specified, try to place it on the top of the current page.

4. If b is specified, try to place it on the bottom of the current page.

5. If p is specified, try to place it on a float page (or float column) when the
current page (or column) has ended.

6. Steps 3 and 4 are repeated if necessary at the beginning of each subsequent
page, followed by Step 5 at its end.

288 Mastering Floats

Sometimes you will find that LaTEX’s float placement specifiers are too restric-

�[h] does
not mean “here”

tive. You may want to place a float exactly at the spot where it occurs in the input
file—that is, you do not want it to float at all. It is a common misunderstanding
that specifying [h]means “here and nowhere else”. Actually, that specifier merely
directs LaTEX to do its best to place the float at the current position. If there is not
enough room left on the page or if an inline placement is forbidden because of
the settings of the style parameters (see Section 6.1), then LaTEX will ignore this
request and try to place the float according to any other specifier given. Thus, if
[ht] is specified, the float will appear on the top of some later page if it does not
fit onto the current one. This situation can happen quite often if the floats you try
to place in the middle of your text are moderately large and are thus likely to fall
into positions where there is not enough space on the page for them. By ignoring
an h and trying other placement specifiers, LaTEX avoids overly empty pages that
would otherwise arise in such situations.

In some cases you might prefer to leave large gaps on your pages. For this
reason the package float provides you with an [H] specifier that means “put the
float here”—period. It is described in Section 6.3.1.

6.2.1 placeins—Preventing floats from crossing a barrier

Donald Arseneau wrote the package placeins to enable you to prevent floats
from moving past a certain point in the output document by introducing a
\FloatBarrier command. With the placeins package, when such a command is
encountered, all floats that are not yet placed will be transferred to the output
stream. This approach is useful if you want to ensure that all floats that belong to
a section are placed before the next section starts.

For example, you could redefine the sectioning command and introduce the
\FloatBarrier command in its definition inside the \@startsection command
(see Section 2.2.2), as shown here:

\makeatletter % needed if used in the preamble
\renewcommand\section{\@startsection
{section}{1}{0mm}% name, level, indent
{-\baselineskip}% beforeskip
{0.5\baselineskip}% afterskip
{\FloatBarrier\normalfont\Large\bfseries}}% style

\makeatother % needed if used in the preamble

The author of placeins anticipated that users might often want to output their
floats before a new section starts, so his package provides the package option
section, which automatically redefines \section to include the \FloatBarrier
command. However, by itself this option forces all floats to appear before the
next section material is typeset, since the \FloatBarrier prevents a float from a
current section from appearing below the start of the new section, even if some
material of the current section is present on the same page.

6.2 Float placement control 289

If you want to allow floats to pass the \FloatBarrier and appear at the
Turning the barrier
into a membrane

bottom of a page (i.e., in a new section), specify the option below. To allow floats
to pass it in the opposite direction and appear on the top of the page (i.e., in the
previous section), specify the option above.

When using the option verbose the package shows processing information
on the terminal and in the transcript file.

6.2.2 afterpage—Taking control at the page boundary

The afterpage package (by David Carlisle) implements a command \afterpage
that causes the commands specified in its argument to be expanded after the
current page is output. Although its author considers it “a hack that not even
always works” (for example, \afterpage will fail in twocolumn mode), it has a
number of useful applications.

Sometimes LaTEX’s float positioning mechanism gets overloaded, and all float-
Preventing floats at
the end of the
document

ing figures and tables drift to the end of the document. You may flush out all
the unprocessed floats by issuing a \clearpage command, but this tactic has the
effect of making the current page end prematurely. The afterpage package allows
you to issue the command \afterpage{\clearpage}. It will let the current page
be filled with text (as usual), but then a \clearpage command will flush out all
floats before the next text page begins.

With the multipage longtable environment (see Section 5.4.2), you can expe-
Floating multipage
tables

rience problems when typesetting the text surrounding the long table, and it may
be useful to “float” the longtable. However, because such tables can be several
pages long, it may prove impossible to hold them in memory and float them in the
same way that the table environment is floated. Nevertheless, if the table markup
is in a separate file (say ltfile.tex) you can use one of the following commands:

\afterpage{\clearpage\input{ltfile}}
\afterpage{\clearpage\input{ltfile}\newpage}

The first form lets text appear on the same page at the end of the longtable . The
second ensures that the surrounding text starts again on a new page.

The \afterpage command can be combined with the float package and the
[H] placement specifier, as explained at the end of Section 6.3.1.

6.2.3 endfloat—Placing figures and tables at the end

Some journals require figures and tables to be separated from the text and
grouped at the end of a document. They may also want a list of figures and tables
to precede them and potentially require markers indicating the original places oc-
cupied by the floats within the text. This can be achieved with the endfloat package
(by James Darrell McCauley and Jeffrey Goldberg), which puts figures and tables

290 Mastering Floats

by themselves at the end of an article into sections titled “Figures” and “Tables”,
respectively.

The endfloat package features a series of options to control the list of fig-
ures and tables, their section headings, and the markers left in the text. A list of
available options follows.

figlist/nofiglist Produce (default) or suppress the list of figures.

tablist/notablist Produce (default) or suppress the list of tables.

lists/nolists Produce or suppress the list of figures and the list of tables
(shorthand for the combination of the previous two option sets).

fighead/nofighead Produce or omit (default) a section heading before the col-
lection of figures. The section headings text is given by \figuresection and
defaults to the string “Figures”.

tabhead/notabhead Produce or omit (default) a section heading before the col-
lection of tables. The section headings text is given by \tablesection and
defaults to the string “Tables”.

heads/noheads Produce or omit a section heading before the collection of fig-
ures and before the collection of tables (shorthand for the combination of the
previous two option sets).

markers/nomarkers Place (default) or omit markers in text.

figuresfirst/tablesfirst Put all figures before tables (default), or vice versa.

The package offers the hooks \AtBeginFigures , \AtBeginTables , and
Hooks \AtBeginDelayedFloats to control the processing of the collected floats. For

instance, the instruction \AtBeginTables{\cleardoublepage} ensures that the
delayed tables will start on a recto page.

When the floats are finally typeset, the command \efloatseparator is exe-
cuted after each float. By default, it is defined to be \clearpage , which forces one
float per page. If necessary, it can be redefined with \renewcommand .

By default, the package indicates the original position of a float within the text
Float markers

in text
by adding lines such as “[Figure 4 about here.]” at the approximate place. These
notes can be turned off by specifying the nomarkers option when loading the
package. The text and the formatting of the notes, which are defined via the com-
mands \figureplace and \tableplace , can be changed with \renewcommand .
For example, they might be adapted to a different language (the package does not
support babel parameterization). A sample redefinition for French could look as
follows:

\renewcommand\figureplace
{\begin{center}[La figure~\thepostfig\ approx.\ ici.]\end{center}}

\renewcommand\tableplace
{\begin{center}[La table~\theposttbl\ approx.\ ici.]\end{center}}

Within the replacement text \thepostfig and \theposttbl reference the current

6.3 Extensions to LATEX’s float concept 291

figure or table number, respectively. Such redefinitions can, for example, be put in
the package configuration file endfloat.cfg that, if present, is loaded automati-
cally by the package (with the usual caveat of nonportability).

By default, the delayed floats are processed when the end of the document
Premature outputis reached. However, in some cases one might wish to process them at an earlier

point—for example, to display them at the end of each chapter. For this purpose
endfloat offers the command \processdelayedfloats , which will process all de-
layed floats up to the current point. The float numbering will continue by default,
so to restart numbering one has to reset the corresponding counters (details are
given in the package documentation).

The endfloat package file creates two extra files with the extensions .fff
Caveatsand .ttt for storing the figure and table floats, respectively. As the environment

bodies are written verbatim to these files, it is important that the \end command,
(e.g., \end{figure}), always appears on a line by itself (without any white space)
in the source document; otherwise, it will not be recognized. For the same reason
the standard environment names (i.e., figure, table, and their starred forms) will
be recognized only if they are directly used in the document. If they are hidden
inside other environments recognition of the environment \end tag will fail.

By default, nonstandard float environments, such as the sidewaysfigure and
sidewaystable environments of the rotating package, are not supported. It is pos-
sible, however, to extend the endfloat package to recognize such environments as
well. As an example the distribution contains the file efxmpl.cfg, which extends
endfloat to cover the environments of the rotating package. To become opera-
tional it should be included (copied) into endfloat.cfg so that its code is auto-
matically loaded.

6.3 Extensions to LATEX’s float concept

By default, LaTEX offers two types of horizontally oriented float environments,
figure and table. For many documents these prove to be sufficient; in other
cases additional features are needed. In this section we now look at packages that
extend this basic tool set to cover more complex cases.

The float package offers ways to define new float types and also provides one
way to prevent individual floats from floating at all. A different approach to the
latter problem is given by the caption package.

The last two packages described in this section, rotating and rotfloat, allow
the rotation of the float content, something that might be necessary for unusually
large float objects.

6.3.1 float—Creating new float types

The float package by Anselm Lingnau improves the interface for defining floating
objects such as figures and tables in LaTEX. It adds the notion of a “float style” that

292 Mastering Floats

governs the appearance of floats. New kinds of floats may be defined using the
\newfloat command.

\newfloat{type}{placement}{ext}[within]

The \newfloat command takes four arguments, three mandatory and one op-
tional, with the following meanings:

type “Type” of the new class of floats, such as program. Issuing a \newfloat
declaration will make the environments type and type* available.

placement Default placement parameters for the given class of floats (combina-
tion of LaTEX’s t, b, p, and h specifiers or, alternatively, the H specifier).

ext File name extension of an auxiliary file to collect the captions for the new
float class being defined.

within Optional argument specifying whether floats of this class will be num-
bered within some sectional unit of the document. For example, if the value
of within is equal to chapter, the floats will be numbered within chapters (in
standard LaTEX, this is the case for figures and tables in the report and book
document classes).

The \floatstyle declaration sets a default float style that will be used
The style of the float

class
for all float types that are subsequently defined using \newfloat , until another
\floatstyle command is specified. Its argument is the name of a float style, and
should be one of the following predefined styles:

plain The float style LaTEX usually applies to its floats—that is, nothing in partic-
ular. The only difference is that the caption is typeset below the body of the
float, regardless of where it is given in the input markup.

plaintop Same style as the plain float style except that the caption is placed at
the top of the float.

boxed The float body is surrounded by a box with the caption printed below.

ruled The float style is patterned after the table style of Concrete Mathemat-
ics [59]. The caption is printed at the top of the float, surrounded by rules;
another rule finishes off the float.

The float styles define the general layout of the floats, including the format-
ting of the caption. For example, the ruled style sets the caption flush left without
a colon, while other styles center the caption and add a colon after the number.
Because the float styles define the placement of the caption, floats can contain�Only

one \caption
supported

only a single \caption command which is a restriction compared to standard
LaTEX’s behavior. One also has to be careful when mixing different float styles in
one document so as not to produce typographic monsters.

6.3 Extensions to LATEX’s float concept 293

Even though the package does not offer a user-level interface for defining
new float styles, it is fairly easy to add new named styles. For details refer to the
package documentation in float.dtx.

The next example shows the declarations for two “nonstandard” new float
types, Series and XMLexa . The former are numbered inside sections and use a
“boxed” style, and the latter are numbered independently and use a “ruled” style
(typographically this combination is more than questionable).

The introductory string used by LaTEX in the captions of floats for a given type
Naming the float
class

can by customized using the declaration \floatname{type}{floatname} . “XML
Listing” is used for XMLexa floats in the example below. By default, a \newfloat
command sets this string to its type argument if no other name is specified after-
wards (shown with the Series float environment in the example).

6-3-1

1 New float environments

Some text for our page that might get reused
over and over again.

XML Listing 1 A simple XML file
<XMLphrase>Great fun!</XMLphrase>

Some text for our page that might get reused
over and over again.

XML Listing 2 Processing instruction
<?xml version=”1.0”?>

Some text for our page that might get reused
over and over again. Some text for our page
that might get reused over and over again.

e = 1 +
∞∑

k=1

1
k!

Series 1.1: Euler’s constant

\usepackage{float}
\floatstyle{boxed}
\newfloat{Series}{b}{los}[section]
\floatstyle{ruled}
\newfloat{XMLexa}{H}{lox}
\floatname{XMLexa}{XML Listing}
\newcommand\xmlcode[1]{\texttt{#1}}
\newcommand\sample{Some text for our page
that might get reused over and over again. }

\section{New float environments}
\sample
\begin{XMLexa} \caption{A simple XML file}
\xmlcode{<XMLphrase>Great fun!</XMLphrase>}
\end{XMLexa}
\sample
\begin{XMLexa}
\caption{Processing instruction}
\xmlcode{<?xml version=’’1.0’’?>}
\end{XMLexa}
\sample
\begin{Series} \caption{Euler’s constant}
\[\mathrm{e}

= 1 + \sum^\infty_{k=1} \frac{1}{k!}\]
\end{Series}
\sample

The command \listof{type}{title} produces a list of all floats of a given
Listing the captions
of a float class

class. It is the equivalent of LaTEX’s built-in commands \listoffigures and
\listoftables . The argument type specifies the type of the float as given in the
\newfloat command. The argument title defines the text of the title to be used to
head the list of the information associated with the float elements, as specified by
the \caption commands.

294 Mastering Floats

The following example is a repetition of Example 6-3-1 on the preceding page
(source only partially shown) with two \listof commands added.

XML Listings

1 A simple XML file 1
2 Processing instruction 2

List of Series

1.1 Euler’s constant 3

1 New float environments

Some text for our page which might get reused
over and over again.

\usepackage{float}
% Float types ‘‘Series’’ and ‘‘XMLexa’’ and
% commands \xmlcode and \sample as defined
% in previous example

\listof{XMLexa}{XML Listings}
\listof{Series}{List of Series}
\section{New float environments}
\sample
\begin{XMLexa} \caption{A simple XML file}
\xmlcode{<XMLphrase>Great fun!</XMLphrase>}

\end{XMLexa}
... text omitted ... 6-3-2

LaTEX’s two standard float types figure and table cannot be given a float style
Customizing LATEX’s
standard float types

using \newfloat , as they already exist when the float package is loaded. To solve
this problem the package offers the declaration \restylefloat{type} , which se-
lects the current float style (specified previously with a \floatstyle declaration)
for floats of this type.

For the same reason there exists the \floatplacement{type}{placement}
declaration, which can be used to change the default placement specifier for a
given float type (e.g., \floatplacement{table}{tp}). In the following example,
both figure and table have been customized (not necessarily for the better) to
exhibit the usage of these declarations.

Figure 1: Sample figure

1 Customizing standard floats

Some text for our page that might get reused
over and over again. Some text for our page
that might get reused over and over again.

Table 1 Sample table

AAAA BBBB 123
CCC DDDD 45

\usepackage{graphicx,float}
\floatstyle{boxed} \restylefloat{figure}
\floatstyle{ruled} \restylefloat{table}
\floatplacement{table}{b}
% \sample as previously defined

\section{Customizing standard floats}
\sample
\begin{table}
\begin{tabular}{@{}llr}
AAAA&BBBB&123\\CCC&DDDD&45\end{tabular}

\caption{Sample table}
\end{table}
\sample
\begin{figure} \centering
\includegraphics[width=12mm]{rosette.ps}
\caption{Sample figure}

\end{figure} 6-3-3

Modeled after David Carlisle’s here package, the float package adds the [H]
Place a float “here” placement specifier which means “place the float Here regardless of any surround-

6.3 Extensions to LATEX’s float concept 295

ing conditions”. It is available for all float types, including LaTEX’s standard figure
and table environments. The [H] qualifier must always be used on a stand-alone
basis; e.g., [Hbpt] is illegal.

If there is not enough space left on the current page, the float will be printed at
the top of the next page together with whatever follows, even if there is still room
left on the current page. It is the authors’ responsibility to place their H floats in
such a way that no large patches of white space remain at the bottom of a page.
Moreover, one must carefully check the order of floats when mixing standard
and [H] placement parameters. Indeed, a float with a [t] specifier, for example,
appearing before one with an [H] specifier in the input file might be incorrectly
positioned after the latter in the typeset output, so that, for instance, Figure 4
would precede Figure 3.

6-3-4

All float placement
specifiers are shown to-
gether in the following
example.

6

t Top of page
b Bottom of page
p Page of floats
h Here, if possible
H Here, always

Table 1: Float place-
ment specifiers

With “h” instead of

7

\usepackage{float,array}

All float placement specifiers are
shown together in the following example.
\begin{table}[H]
\begin{tabular}{>{\ttfamily}cl}
t & Top of page \\ b & Bottom of page \\
p & Page of floats \\
h & Here, if possible \\ H & Here, always

\end{tabular}
\caption{Float placement specifiers}
\end{table}
With ‘‘h’’ instead of the ‘‘H’’ specifier
this text would have appeared before the
table in the current example.

In combination with the placeins and afterpage packages described in Sec-
tions 6.2.1 and 6.2.2, respectively, an even finer control on the placement of floats
is possible. Indeed, in some cases, although you specify the placement parameter
as [H], you do not really mean “at this point”, but rather “somewhere close”. This
effect is achieved by using the \afterpage command:

\afterpage{\FloatBarrier\begin{figure}[H]...\end{figure}}

The \FloatBarrier command ensures that all dangling floats are placed first at
a suitable point (due to \afterpage without producing a huge gap in the text),
thereby solving the sequencing problem, described above. The [H] float is then
immediately placed afterwards. If you use \clearpage instead of \FloatBarrier ,
it would come out on top of the next page instead.

6.3.2 caption—For nonfloating figures and tables

An alternative to specifying the [H] option with the various float environments,
as described in the previous section, is to define captioning commands that type-
set and are entered into the “List of Figures” or “List of Tables” just like LaTEX’s

296 Mastering Floats

standard figure and table environments. This functionality is provided by the
caption package (discussed in more detail in Section 6.5.1).

\captionof{type}[short-text]{text} \captionof*{type}{text}

This command works analogously to LaTEX’s \caption command, but takes an
additional mandatory argument to denote the float type it should mimic. It can
be used for any nonfloating material that should get a (numbered) caption whose
text will also be added into the list of figures or list of tables. The starred form
suppresses both the number and the “List of. . . ” entry.

The following example shows a normal figure and its nonfloating variant used

�Watch
out for incorrect

numbering

together. In such a case there is always the danger that a floating figure will travel
past its nonfloating counterparts. In the example we force this situation by push-
ing the floating figure to the bottom of the page. As a result, the numbering gets
out of sync. One has to watch out for this problem when mixing floating and
nonfloating objects.

List of Figures
2 Fake LOF entry 1
1 Standard figure 1

1 Various kinds of figures
Here we mix standard and nonfloating figures.

Figure II

Figure 2: Nonfloating figure

As Figure 1 is forced to the bottom with an optional
[b] argument it passes Figure 2 and the numbering

Figure I

Figure 1: Standard figure

\usepackage{caption}

\listoffigures
\section{Various kinds of figures}
Here we mix standard and nonfloating figures.
\begin{figure}[b] \centering
\fbox{Figure I}
\caption{Standard figure} \label{fig:I}

\end{figure}
\begin{center}
\fbox{Figure II} \\
\captionof{figure}[Fake LOF entry]

{Nonfloating figure}
\label{fig:II}

\end{center}
As Figure \ref{fig:I} is forced to
the bottom with an optional \texttt{[b]}
argument it passes Figure \ref{fig:II}
and the numbering gets out of sync. 6-3-5

6.3.3 rotating—Rotating floats

Sometimes it is desirable to turn the contents of a float sideways, by either 90
or 270 degrees. As TEX is not directly capable of performing such an operation,
it needs support from an output device driver. To be as device independent as
possible, LaTEX encapsulates the necessary operations in the packages graphics and
graphicx (see Section 10.2). One of the earliest packages that used this interface
was the rotating package written by Sebastian Rahtz and Leonor Barroca.1

1In fact, its original release predates the development of the graphics interface. It was later reim-
plemented as an extension of this interface.

6.3 Extensions to LATEX’s float concept 297

The rotating package implements two environments, sidewaysfigure and
sidewaystable , for turning whole floats sideways. These environments automat-
ically produce page-sized floats, or more exactly column-sized floats (if used in
twocolumnmode). Starred forms of these environments, which span both columns
in twocolumn mode, exist as well.

By default, the floats are turned in such a way that they can be read from the
outside margin, as you can see in the next example. If you prefer your floats to
be always turned in the same way, you can specify one of the package options
figuresright or figuresleft.

6-3-6

Turned floats

Figure
B

ody

Figure
1:

C
aption

6

Turned floats
Ta

bl
e

B
od

y

Ta
bl

e
1:

C
ap

tio
n

7

\usepackage{rotating}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhead[RO,LE]{Turned floats}

\begin{sidewaysfigure}
\centering \fbox{Figure Body}
\caption{Caption}

\end{sidewaysfigure}
\begin{sidewaystable}

\centering \fbox{Table Body}
\caption{Caption}

\end{sidewaystable}

The package also defines a number of environments for rotating arbitrary
objects, such as turn or rotate (to rotate material with or without leaving space
for it); see Section 10.3.4. Directly relevant to floats is the sideways environment,
which enables you to turn the float body while leaving the caption untouched. It is
used in the following example, which also exhibits the result of the figuresright
option (which, despite its name, acts on sidewaysfigure and sidewaystable).

6-3-7

Floats turned

Ta
bl

e
B

od
y

Ta
bl

e
1:

C
ap

tio
n

6

Floats partly turned

Ta
bl

e
B

od
y

Table 2: Caption

7

\usepackage[figuresright]{rotating}
\usepackage{fancyhdr}
\pagestyle{fancy}
\fancyhead[LE]{Floats turned}
\fancyhead[RO]{Floats partly turned}

\begin{sidewaystable} \centering
\fbox{Table Body} \caption{Caption}

\end{sidewaystable}
\begin{table} \centering

\begin{sideways}
\fbox{Table Body}

\end{sideways}
\caption{Caption}

\end{table}

298 Mastering Floats

Instead of turning the whole float or the float body, it is sometimes more ap-
propriate to turn only the caption. This ability is supported by the rotating pack-
age through the \rotcaption command. Unfortunately, the layout produced by
this command is hard-wired but can be customized through the caption package
whose features are discussed in Section 6.5.1.

6.3.4 rotfloat—Combining float and rotating

To extend the new float styles, as introduced by the float package, with the
sidewaysfigure and sidewaystable environments defined in the rotating pack-
age, you can use Axel Sommerfeldt’s rotfloat package. It allows you to build new
floats, which are rotated by 90 or 270 degrees.

The rotfloat package offers identical options to the rotating package. Inter-
nally, for every float type, rotfloat defines an additional environment with the
name sidewaystype and its corresponding starred form. For instance, when you
write

\newfloat{XMLexa}{tbp}{lox} \floatname{XMLexa}{XML Listing}

four environments become available: XMLexa , XMLexa* , sidewaysXMLexa , and
sidewaysXMLexa* . Similarly, the commands for redefining the table or figure
environments, for example,

\floatstyle{boxed} \restylefloat{table}

will restyle not only the table and table* environments, but also the environ-
ments sidewaystable and sidewaystable*.

6.4 Inline floats

In TEX’s typesetting model, text is first broken into paragraphs on a vertically ori-
ented galley (or scroll). Once enough material is collected in this way TEX invokes
its output routine, which chops off the first part of the galley, attaches running
headers and footers as specified, and outputs the result in the .dvi file. It then
restarts collecting text and breaking it into paragraphs to refill the galley.

As a consequence of this processing model, it is relatively easy to implement a
float mechanism in which floats span the full width of the page or at least the full
width of individual columns. Unfortunately, it is nearly impossible to have floats
that occupy only parts of a text column and have the text flow around them. The
reason being that when the paragraphs are broken into lines, their final positions
are not yet known. It is therefore impossible to direct the paragraph builder to
leave holes for the float objects if a later part of the process will decide on their
final placement. In contrast, placing floats at the top or the bottom of a page
(or column) only directs the output routine to chop off less material from the
assembled galley without otherwise manipulating the galley content.

6.4 Inline floats 299

Because of this processing model, the production of inline floats with text
flowing around the float object has to take place during the paragraph-generating
phase. The best outcome that packages can currently achieve is to ensure that the
inline floats do not fall off the page (by measuring the amount of material already
assembled on the galley to decide whether there is enough space to fit in the inline
float with its surrounding paragraph(s)).

Such an algorithm is, for example, implemented by the wrapfig package. Be-
cause the package’s inline floats only “float” very little in comparison to stan-
dard floats, mixing both types can result in the float numbering getting out of
sequence.1 Most relevant packages leave the placement decisions completely to
the user because the automatic solution comes out wrong in many cases, so that
it is not worth supplying it in the first place.

For this book we have chosen a total of three packages that are representative
of what is available in this area. We have already discussed one such package
(picinpar) in Section 3.1.14; two more are introduced here. The wrapfig package
supports figures and tables and offers some support for automatic placement.
The picins package allows precise control over the placement of inline figures and
for this particular task can be quite interesting. Unlike other packages in this area,
it does not support inline tables.

All packages have some problems so that it might be worthwhile to explore
other possibilities such as floatflt by Mats Dahlgren (an extension of the floatfig
package by Thomas Kneser), which works together with the multicol package. A
good starting point to look for other packages is Graham Williams’ TEX online
catalogue [169].

6.4.1 wrapfig—Wrapping text around a figure

The package wrapfig (by Donald Arseneau) defines the wrapfigure and
wraptable environments. These environments allow one to typeset a narrow float
at the edge of some text, and then make the text wrap around it. Both produce
captions with the standard caption layout for figures and tables. Although the
environments have some limited ability to “float”, no provision is made to syn-
chronize them with regular floats. Thus, one must be aware that they may be
printed out of sequence with standard floats.

\begin{wrapfigure}[nlines]{placement}[overhang]{width}

The wrapfigure and wraptable environments have two mandatory and two op-
tional arguments with the following meanings:

nlines (optional) The number of narrow lines needed for the float (normally cal-
culated automatically). Each display equation counts as three lines.

1In theory, one could do better and properly synchronize both types, although the coding would
probably be quite difficult.

300 Mastering Floats

placement Horizontal placement of the float, specified as one of the following
letters: r or R (right side of the text), and l or L (left side of the text). There
is no option for centering the float. For a two-sided document, the placement
can alternatively be specified via i or I (inside edge) and o or O (outside edge).
This refers to the inside and outside of the whole page, not to individual
columns. In each case the uppercase variant allows the figure or table to float,
while the lowercase variant puts it “exactly here”.

overhang (optional) Overhang of the float into the margin (default 0pt).

width Width of the figure or table. Specifying 0pt has a special meaning, such
that the “natural width” will be used as the wrapping width. The caption is
then typeset to the wrapping width. If the figure is wider than the space allot-
ted, an “overfull box” will be generated and the figure or table contents can
overwrite the wrapping text.

LaTEX will wrap surrounding text around the figure or table, leaving a gap of
\intextsep at the top and bottom and \columnsep at the side, thereby producing
a series of shortened text lines beside the figure. The size of the hole made in the
text is the float width plus \columnsep minus the overhang value.

LaTEX calculates the number of short lines needed based on the height of the
figure and the length \intextsep . This guess may be overridden by specifying the
first optional argument (nlines), which is the desired number of shortened lines.
It can be useful when the surrounding text contains extra vertical spacing that is
not accounted for automatically.

Our first example shows a wrapped table, 4cm wide and placed at the left
side of the paragraph. The package calculated a wrapping of 5 lines, which would
have left a lot of empty space below the caption, so we explicitly selected 4 lines
of wrapping instead. The figure is referenced using LaTEX’s standard \label and
\ref commands.

Wrapped Table

Table 1: The Caption

Some text for our
page that is reused
over and over again.
Some text for our

page that is reused over and over again. Reference
to Table 1. Some text for our page that is reused over
and over again.

\usepackage{wrapfig}
% \sample as before

\begin{wraptable}[4]{l}{4cm}
\centering\fbox{Wrapped Table}
\caption{The Caption}\label{T}

\end{wraptable}
\sample \sample Reference to Table~\ref{T}.
\sample 6-4-1

The wrapfigure and wraptable environments should not be used inside an-
other environment (e.g., list). They do work in twocolumn page layout (provided
the column width is wide enough to allow inline floats).

Generally LaTEX will not be able to move wrapfigure and wraptable environ-
ments to their optimal places, so it is up to you to position them in the best fash-
ion. It is best to wait to do so until just before printing your final copy, because

6.4 Inline floats 301

any changes to the document can ruin their careful positioning. Information about
float processing by wrapfig is written to the log file if you specify the verbose op-
tion. Here are some rules for good placement:

• The environments should be placed so as to not run over a page boundary
and must not be placed in special places like lists.

• Only ordinary text should have to flow past the figure but not a section title
or large equations. Small equations are acceptable if they fit.

• It is convenient to place \begin{wrapfigure} or \begin{wraptable} just
after a paragraph has ended. If you want to start in the middle of a paragraph,
the environment must be placed between two words where there is a natural
line break.

Our second example displays a figure that is set to its natural width (last
argument 0pt), but extends 20% into the left margin (specified by the optional
argument). Instead of using the special unit \width , denoting the natural float
width in this case, one can, of course, use some explicit dimension such as 30pt.
The effect of this choice can be clearly seen by looking at the way the paragraph
text is typeset below the picture when the text wrapping ends. As the example
also shows, wrapping continues even across paragraph boundaries if necessary.

The formatting of the caption can be influenced by combining wrapfig with
packages like caption, although an option like centerlast may not be the appro-
priate choice in narrow measures.

6-4-2

The starting place for the wrapfigure environ-
ment was manually determined in the current ex-

This is a “wrapfigure”.

Figure 1: An example
of the wrapfigure en-

vironment

ample by first setting the
text without the figure to
find the linebreaks.

Some text for our page
that is reused over and over
again. Some text for our
page that is reused over

and over again. Some text for our page that is
reused over and over again.

\usepackage{wrapfig}
\usepackage[labelfont={sf,bf},

justification=centerlast]{caption}
% \sample as before

The starting place for the wrapfigure
environment was manually determined in
the current ex-
\begin{wrapfigure}[7]{l}[0.2\width]{0pt}
\centering
\fbox{This is a ‘‘wrapfigure’’.}
\caption{An example of the

\texttt{wrapfigure} environment}
\end{wrapfigure}
ample by first setting the text without
the figure to find the linebreaks.

\sample \sample \sample

In the preceding example we specified an overhang length explicitly. The
overhang width can also be specified globally for all wrapfig environments by set-
ting the \wrapoverhang length with LaTEX’s \setlength command to a non-zero

302 Mastering Floats

value. For example, to have all wrap figures and tables use the space reserved for
marginal notes, you could write

\setlength \wrapoverhang{\marginparwidth}
\addtolength\wrapoverhang{\marginparsep}

New “wrapping” environments for additional float types (as defined via the
float package) with the same interface and behavior as wrapfigure or wraptable
may be easily added, or directly invoked, using the wrapfloat environment:

\newfloat{XML}{tbp}{lox}
\newenvironment{wrapXML}{\begin{wrapfloat}{XML}}{\end{wrapfloat}}

You can find other ways to fine-tune the behavior of wrapfig by reading the
implementation notes at the end of the wrapfig.sty package file.

6.4.2 picins—Placing pictures inside the text

The picins package (by Joachim Bleser and Edmund Lang) defines the \parpic
command, which allows you to place a “picture” at the left or right of one or more
paragraphs with the paragraph text flowing around the picture.

\parpic(w,h)(x-o,y-o)[opt][pos]{pict}

w,h (optional) Width and height of the picture. The text lines that flow around
the picture are set in a paragraph whose lines are shorter than the text width
by an amount w. The height h is used to calculate the number of lines of text
that will flow in this manner.
If the argument is not specified, the actual picture size (“bounding box”) is
used, if it can be calculated by LaTEX. Otherwise, an error results.

x-o,y-o (optional) The x and y offsets of the picture with respect to the upper-left
corner of its bounding box (positive x-o yields a displacement to the right; pos-
itive y-o moves the picture downward). If the argument is absent, the picture
is positioned using the pos specification.

opt (optional) Placement and box characteristics of picture, given as a pair of one
positional and one frame specifier.
The positional specifiers are l (left) picture at left of paragraph and r (right)
picture at right of paragraph.
The frame specifiers are d (dash) picture surrounded by dashed lines; f
(frame) picture surrounded by full lines; o (oval) picture frame with rounded
corners; s (shadow) picture surrounded by shadow box; and x (box) picture
surrounded by “three-dimensional” box. When no option is specified, the pic-
ture is placed at the left of the paragraph.

6.4 Inline floats 303

pos (optional) Position of the picture inside its frame, given as one horizontal
specifier, one vertical specifier, or a pair of horizontal and vertical specifiers.
Possible horizontal specifiers are l (left) picture at left of frame and r (right)
picture at right of frame. If no horizontal specifier is given, the picture is
centered horizontally in its frame.
Possible vertical specifiers are t (top) picture at top of frame and b (bottom)
picture at bottom of frame. If no vertical specifier is given, the picture is
centered vertically in its frame.
If the offset argument x-o,y-o is present, the pos argument is ignored.

pict The source of the picture. It can be any LaTEX construct.

The following examples show various ways to place a picture inside a para-
graph. We also introduce some other commands provided by the picins package
to fine-tune the visual presentation of the typeset result.

We start by using picins’s default setting, where the width and height of the
contents are automatically calculated. In that case the “picture” is placed at the
left of the paragraph. This paragraph has a normal indentation: if this effect is
not desired, one has to start it with \noindent . The second part of the example
pulls in an Encapsulated PostScript (EPS) picture and lets text flow around it. In
this case the natural dimensions of the picture are read from the BoundingBox
comment in the EPS source file. We added a dashed frame for more clarity.

6-4-3

BOX Some text for our page that is reused
over and over again. Some text for our

page that is reused over and over again.

Some text for our page that is reused
over and over again. Some text for our
page that is reused over and over again.
Some text for our page that is reused

over and over again. Some text for our page that is
reused over and over again.

\usepackage{picins,graphicx}
\newcommand\sample{Some text for our page

that is reused over and over again. }
\newcommand\FIG{\includegraphics

[width=14mm]{cat}}

\parpic{\fbox{\Large\scshape Box}}
\sample\sample\par
\parpic[d]{\FIG}
\noindent\sample\sample\sample\sample

We can specify the dimensions of the picture ourselves, so that LaTEX will use
these parameters in its typesetting calculations, and will not try to use the intrin-
sic information associated with the source. If no offsets or position parameters are
given, the content is centered (first picture). On the second picture we shift the
content 2mm to the right and 14mm down. There the “dr” argument produces a
dashed frame and places the picture to the right.

A \picskip{nlines} command instructs LaTEX to continue to typeset the para-
Controlling the holegraph for nlines lines at the given indentation (as though the picture extended

downward for that many lines). A zero value for nlines means that the following
lines no longer need to be indented and that a new paragraph must start. The

304 Mastering Floats

horizontal space between the paragraph text and the picture can be controlled
through the \pichskip command.

Some text for our page that is reused
over and over again. Some text for our
page that is reused over and over again.

Here we prove that the “picture”
can span more than a single paragraph.

Some text for our page that is reused
over and over again. Some text for our
page that is reused over and over again.

Without the explicit request in the
source this paragraph would have only
one shortened line, like the one surrounding the pre-
vious “picture”.

\usepackage{picins,graphicx}
\newcommand\FIG{\includegraphics

[width=10mm]{elephant}}
% \sample as previously defined

\parpic(15mm,15mm)[f]{\FIG}\noindent
\sample\sample\par
Here we prove that the ‘‘picture’’ can
span more than a single paragraph.
\parpic(15mm,15mm)(2mm,14mm)[dr]{\FIG}%
\noindent\sample\sample\par
\picskip{2}
Without the explicit request in the source
this paragraph would have only one
shortened line, like the one surrounding
the previous ‘‘picture’’. 6-4-4

Perhaps the results produced by the offset in the previous example were some-
what surprising. For this reason the next example studies its effects in some detail.
If we specify an offset of 0mm,0mm the “picture” is placed with its reference point
at the top-left corner of the area reserved for the picture. As most LaTEX constructs
produce a box with the reference point at the left of the bottom baseline, the
“picture” is effectively placed outside the intended area—that is, in a completely
different place than it would be without any offset at all.

Box
Some text for

our page that is
reused over and
over again. Some text for our
page that is reused over and
over again.

Box
Some text for

our page that is
reused over and
over again. Some text for our
page that is reused over and
over again.

Box

Some text for
our page that is
reused over and
over again. Some text for our
page that is reused over and
over again.

Box

Some text for
our page that is
reused over and
over again. Some text for our
page that is reused over and
over again.

\usepackage{picins}
% \sample as previously defined

\parpic(15mm,10mm)(0mm,0mm)
[dr]{\fbox{Box}}%

\sample\sample\par
\parpic(15mm,10mm)(2mm,5mm)

[dr]{\fbox{Box}}%
\sample\sample\par
\parpic(15mm,10mm)(4mm,10mm)

[dr]{\fbox{Box}}%
\sample\sample\par
\parpic(15mm,10mm)(6mm,15mm)

[dr]{\fbox{Box}}%
\sample\sample\par 6-4-5

You can use the \parpic inside list environments at any depth. This is in
contrast to other packages in this area, which often restrict the placement of pic-
tures within lists. The following example features an itemize list with embedded
\parpic commands. It also shows how line thickness (\linethickness), length

6.4 Inline floats 305

of the dashes (\dashlength), and depth of the shade (\shadowthickness) and
the 3-D effect (\boxlength) can all be controlled separately.

6-4-6

Some text for our page that
is reused over and over again.

•
BOX

Some text
for our
page that
is reused over and over
again. Some text for our
page that is reused over
and over again.

•
BOX

Some
text for
our page
that is
reused over and over

again. Some text for our
page that is reused over
and over again.

•
BOX

Some text
for our
page that

is reused over and over
again. Some text for our
page that is reused over
and over again.

Some text for our page that is
reused over and over again.

\usepackage{picins}
% \sample as previously defined

\sample
\begin{itemize} \item

\dashlength{2mm}
\linethickness{1mm}
\parpic(15mm,10mm)[dr]{BOX}
\sample\sample

\item
\shadowthickness{3mm}
\linethickness{.4pt}
\parpic(15mm,10mm)[sr]{BOX}
\sample\sample

\item
\boxlength{2mm}
\parpic(15mm,10mm)[x]{BOX}
\sample\sample

\end{itemize} \sample

One can generate numbered captions for the pictures that will appear in
LaTEX’s “List of Figures”. As the pictures do not float, one has to be careful when
mixing them with ordinary floats to avoid out-of-sequence numbering. To specify
a caption text you use the command \piccaption , which takes the same argu-
ments as the standard \caption command but only stores them for use with the
next \parpic .

For our first example we typeset the contents of a picture inside a framed
shadow box, with the caption appearing outside the frame and below the picture.
This corresponds to the default positioning for caption material. There is a space
of 6mm between picture and text as specified with the \pichskip command.

6-4-7

E = mc2

Figure 1: Einstein’s formula.

Some text
for our page
that is reused
over and over
again. Some

text for our page that is reused over and over again.

\usepackage{picins}
\newcommand\FOR{\(\displaystyle E=mc^2\)}
% \sample as before

\pichskip{6mm}
\piccaption{Einstein’s formula.}
\parpic(45mm,10mm)[s]{\FOR}
\sample\sample

The default caption placement can be explicitly requested with the declaration
\piccaptionoutside . The package offers three other placement options that can
be selected \piccaptioninside , \piccaptionside , and \piccaptiontopside .
Their effects are shown in the next example. Even though picins uses its own com-
mand to specify the caption text, it is possible to influence the caption formatting

306 Mastering Floats

by loading a package such as caption. We prove this by setting the caption label
in bold sans serif font.

E = mc2

Figure 1: Einstein’s formula.

Some text for
our page that is
reused over and
over again. Some
text for our page

that is reused over and over again. Some text for our page
that is reused over and over again.

E = mc2 Figure 2: Einstein’s formula.

Some text for our page that is reused over and over
again.

Figure 3: Einstein’s formula.
E = mc2

Some text for our page that is
reused over and over again. Some text for our page that is
reused over and over again.

\usepackage{picins}
\usepackage[labelfont={sf,bf}]{caption}
% \sample and \FOR as before

\piccaptioninside
\piccaption{Einstein’s formula.}
\parpic(50mm,10mm)[s]{\FOR}
\sample\sample\sample

\piccaptionside
\piccaption{Einstein’s formula.}
\parpic(30mm,10mm)[s]{\FOR}
\sample

\piccaptiontopside
\piccaption{Einstein’s formula.}
\parpic(30mm,10mm)[sr]{\FOR}
\sample\sample 6-4-8

6.5 Controlling the float caption

When you want to explain what is shown in your floating environment (figure
or table in standard LaTEX), you normally use a \caption command. After intro-
ducing the basic syntax and explaining the (low-level) interfaces available with
standard LaTEX, this section describes the powerful caption package, which offers
a large number of customization possibilities for adjusting the caption layout to
your needs. As shown in the examples it can be combined with all other packages
described in this chapter.

We then examine the subfig and subfloat packages, which introduce substruc-
tures for float objects. The section concludes with a discussion of the sidecap
package (placing captions beside the float body) and the fltpage package (for gen-
erating full-page floats whose captions are placed on the opposite page).

\caption[short-text]{text}

This standard LaTEX command is only defined inside a float environment. It incre-
ments the counter associated with the float in question. If present, the optional
argument short-text goes into the list of figures or tables. If only the mandatory
argument text is specified, then it is used in those lists. If the caption is longer
than one line, you are strongly advised to use the optional argument to provide

6.5 Controlling the float caption 307

a short and informative description of your float. Otherwise, the list of figures
and tables may become unreadable and it may be difficult to locate the necessary
information. In fact, LaTEX allows multi-paragraph captions only if the short-text
argument is present. Otherwise, you will get a “Runaway argument?” error.

The following example shows how standard LaTEX typesets captions. Compare
this layout to the customization provided by the various packages discussed in the
next sections. Note how the optional argument of the second \caption command
defines what text appears for that figure in the “List of Figures”.

6-5-1

List of Figures
1 Short caption text 6
2 Short entry in lof 6

1 Caption
Figures 1 and 2 have captions.

A small Figure

Figure 1: Short caption text

A small Figure

Figure 2: Long caption text with some extra expla-
nation that this figure is important even though it is
small.

\listoffigures

\section{Caption}

Figures \ref{Fig1} and \ref{Fig2}
have captions.

\begin{figure}[ht]
\centerline{\fbox{\small A small Figure}}
\caption{Short caption text}\label{Fig1}
\end{figure}

\begin{figure}[ht]
\centerline{\fbox{\small A small Figure}}
\caption[Short entry in lof]
{Long caption text with some extra
explanation that this figure is important
even though it is small.}\label{Fig2}

\end{figure}

Internally, \caption invokes the command \@makecaption{label}{text}.
The label argument is the sequence number of the caption and some text like
“Figure”; it is generated internally depending on the type of float. The text argu-
ment is passed on from the mandatory \caption argument; it is the text to be
typeset. The default definition for the part responsible for the typesetting of a
caption looks something like this:

\newcommand\@makecaption[2]{% #1 is e.g. Figure 1, #2 is caption text
\vspace{\abovecaptionskip}%
\sbox\@tempboxa{#1: #2}%
\ifthenelse{\lengthtest{\wd\@tempboxa >\linewidth}}% test size

{\noindent #1: #2\par}% several lines
{\centering

\makebox[\linewidth][c]{\usebox\@tempboxa}\par% single line
}%

\vspace{\belowcaptionskip}%
}

308 Mastering Floats

After an initial vertical space of size \abovecaptionskip (default often 10pt),
the material is typeset in a temporary box \@tempboxa , and its width is compared
to the line width. If the material fits on one line, the text is centered; if the ma-
terial does not fit on a single line, it will be typeset as a paragraph with a width
equal to the line width. Thereafter, a final vertical space of \belowcaptionskip
(default typically 0pt) is added, finishing the typesetting. The actual implementa-
tion that you find in the standard classes uses lower-level commands to speed up
the processing so it looks somewhat different.

You can, of course, define other ways of formatting your captions. You can
even supply different commands for making captions for each of the different
types of floats. For example, the command \@makefigcaption can be used in-
stead of \@makecaption to format the captions for a figure environment.

\newcommand\@makefigcaption[2]{....}
\renewenvironment{figure}

{\let\@makecaption\@makefigcaption \@float{figure}}
{\end@float}

This approach requires fairly low-level programming and is not very flexible, so it
is normally better to use a package like caption (described below) to do this work
for you.

Rather than force you to write your own code for customizing captions, we
invite you to read the following pages, which describe a few packages that offer
various styles to typeset captions.

6.5.1 caption—Customizing your captions

Axel Sommerfeldt developed the caption package1 to customize the captions in
floating environments. It not only supports LaTEX’s standard figure and table
environments, but also interfaces correctly with the \rotcaption command and
the sidewaysfigure and sidewaystable environments of the rotating package.
It works equally well with most of the other packages described in this chapter
(see the original documentation for a complete compatibility matrix).

Like the geometry package, the caption package uses the extended option
concept (based on the keyval package), in which options can take values separated
from the option name by an equals sign. In most cases there exists a default value
for an option; thus, you can specify the option without a value to produce this
default behavior.

The customization possibilities of the caption package cover (nearly) all as-
pects of formatting and placing captions, and we will introduce them below. For
those users who need even more customization, the package offers an interface
to add additional option values (representing special formattings). One can even

1The caption package is, in fact, a completely rewritten version of Axel’s caption2 package and
makes the latter obsolete. Axel advises all users of caption2 to upgrade to caption as soon as possible
and, if needed, to modify their LaTEX sources accordingly.

6.5 Controlling the float caption 309

add additional options, a functionality used, for example, by the subfig package
described in Section 6.5.2.

The first set of options we examine here are those that influence the overall Customizing the
general shapeshape of the caption:

singlelinecheck If the whole caption (including the label) fits on a single line,
center1 it (keyword true). With the keyword false, such captions are format-
ted identically to multiple-line captions.

format This option defines the overall shape of the caption (except when over-
written by the previous option). With the keyword default, you will get a
typical “standard LaTEX” format, that is, the label and the caption text are set
as a single block. Absent any further customization by other options, the la-
bel and the text are separated by a colon and space, and the caption is set
justified to full width.
As an alternative, the keyword hang specifies that the caption should be set
with the label (and separation) to the left of the caption text. In other words,
continuation lines are indented by the width of the label.

margin, width By default, the caption occupies the whole width of the column
(or page). By specifying either a specific width or a margin, you can reduce
the measure used for the caption. In either case the caption is centered in the
remaining space. Thus, with the current implementation, it is not possible to
specify different values for left and right (or inner and outer) margins.

indention If set to a given dimension, this option specifies an additional inden-
tion for continuation lines (e.g., on top of any indention already produced by
the hang keyword).

6-5-2

Figure 1: Short caption

Figure 2: A caption that runs over
more than one line

\usepackage{float,graphicx}
\usepackage[format=hang,margin=10pt]{caption}
\floatstyle{boxed} \restylefloat{figure}

\begin{figure}[ht] \centering
\includegraphics[width=8mm]{elephant}
\includegraphics[width=10mm]{elephant}
\caption{Short caption}

\end{figure}
\begin{figure}[ht] \centering
\includegraphics[width=15mm]{elephant}
\caption{A caption that runs over more than one line}

\end{figure}

If you look at the previous example, you will notice that with this particular Customizing the
fontslayout the space between box and caption appears very tight. Options for adjust-

ing2 such spaces are discussed on page 312. First, however, we look at options for

1Or do something else with it.
2However, in some float styles, such as “boxed”, they are hard-wired and cannot be changed.

310 Mastering Floats

adjusting the fonts used within the caption, which are always working.

font This option defines the font characteristics for the whole caption (label and
text) unless overwritten. This option can take a comma-separated list of key-
word values to specify the font family (rm, sf, or tt), font series (md or bf),
font shape (up, it, sl, or sc), or font size (scriptsize, footnotesize, small,
normalsize, large, or Large). If more than one keyword is used, then the list
must be surrounded by braces to hide the inner comma from being misinter-
preted as separating one option from the next (see the example below).
Keywords for the same font attribute (e.g., the font shape) overwrite each
other, but those for different attributes have the expected combined effect.
To set the font attributes to their default settings use the keyword default.

labelfont While the option font defines the overall font characteristics, this
option specifies the (additional) attribute values to use for the caption label.

textfont This option is like labelfont but is used for the caption text. In the
next example we use it to reset the font series from boldface to medium.

L R

T

Figure 1: Short caption

A B C D E F G H I J K L M
Table 1: A caption that runs over more
than one line

\usepackage{float,graphicx}
\usepackage[font={sf,bf},textfont=md]{caption}
\floatstyle{boxed} \restylefloat{table}

\begin{figure}[ht] \centering
\includegraphics[width=10mm]{Escher}
\caption{Short caption}

\end{figure}
\begin{table}[ht] \centering A B C D E F G H I J K L M
\caption{A caption that runs over more than one line}

\end{table}

6-5-3

Another frequent requirement is the customization of the layout for the cap-
Customizing the

label further
tion label, such as by replacing the default colon after the label by something else,
or omitting it altogether. Also, the separation between label and text may require
adjustments. Both can be achieved with the following options and their keywords.

labelformat With this option a format for the label can be selected. Out of the
box the following keywords can be used: simple (label string, e.g., “Figure”
and the number following each other and separated by a nonbreakable space),
parens (number in parentheses), and empty (omit the label including the num-
ber altogether). The results of these keywords are shown in several examples
in this chapter. Additional keywords for alternative formattings can be de-
fined using the \DeclareCaptionLabelFormat declaration, as explained on
page 313.

labelsep This option specifies the separation between the label and the text.
Available keywords are colon, period, space, and newline, which have the
expected meanings. New keywords producing other kinds of separations can
be defined using the declaration \DeclareCaptionLabelSeparator ; see the
package documentation for more details.

6.5 Controlling the float caption 311

6-5-4

L R

T

Figure 1

Figure 2.
A small elephant

\usepackage{float,graphicx}
\floatstyle{boxed} \restylefloat{figure}
\usepackage{caption}
\DeclareCaptionLabelSeparator{period-newline}{.\newline}
\captionsetup{aboveskip=3pt,singlelinecheck=false,

labelsep=period-newline,labelfont={small,bf}}

\begin{figure}[ht] \centering
\includegraphics[width=10mm]{Escher} \caption{}

\end{figure}
\begin{figure}[ht] \centering
\includegraphics[width=10mm]{elephant}
\caption{A small elephant}

\end{figure}

The actual formatting of the caption text within the general shape, such as Paragraph-related
customizationsthe justification, can be customized using the following two options:

justification This option specifies how the paragraph should be justi-
fied. The default is full justification (keyword justified). Using the key-
word centering results in all lines being centered. The raggedleft and
raggedright keywords produce unjustified settings with ragged margins at
the indicated side.
If the ragged2e package is additionally loaded, you can use the keywords
Centering, RaggedLeft, and RaggedRight, thereby employing the com-
mands from that package that are described in Section 3.1.12.
Two other special justifications are available: centerfirst centers the first
line and fully justifies the rest (with \parfillskip set to zero), whereas
centerlast works the opposite way, centering the last line. Both shapes are
sometimes requested for captions, but in most circumstances they produce
questionable results.
Further specialized justification set-ups can be defined using the declaration
\DeclareCaptionJustification as described in the documentation.

parskip This option controls the separation between paragraphs in multi-
paragraph captions. It expects a dimension as its value. Recall that captions
with several paragraphs are possible only if the optional caption argument is
present!

6-5-5

Bild
Figure (1) A caption that

runs over more than one line to show
the effect of the centerfirst keyword.

\usepackage[textfont={rm,it},labelfont={sf},
labelformat=parens,labelsep=quad,
justification=centerfirst,parskip=3pt]{caption}

\begin{figure}[ht] \centering
{\fontfamily{put}\fontsize{60}{60}\bfseries Bild}
\caption[A short caption text]
{A caption that runs over more than one line
to show the effect of the centerfirst keyword.}

\end{figure}

312 Mastering Floats

The final set of options deal with the position of the caption with respect to
Customizing the

spacing around the
caption

the float body. Note that none of these settings actually moves the caption in the
particular place (you have to do that manually, or use a float style from the float
package to do it for you). They only affect the space being inserted.

aboveskip Space between the caption and float body—for example, “above” the
caption if caption is the placed at the bottom. It typically defaults to 10pt.

belowskip Space on the opposite side of the caption—that is, away from the
float body. It is 0pt in most standard classes.

position Specifies that the caption is placed above the float body (keyword top)
or below the float body (keyword bottom; the default). It does not place the
caption there. That is still your task (or that of a package such as float).

Note that the names aboveskip and belowskip give the wrong implications: they
�Be careful with

the meanings of
the options

do not describe physical places, but rather are swapped if the caption is marked
(using position) as being placed on the top. This is quite different from the pa-
rameters \abovecaptionskip and \belowcaptionskip in LaTEX’s default imple-
mentation of the \caption command (see page 307) which do describe their phys-
ical place in relation to the caption! For some float package styles setting these
options may have no effect.

An option list as specified in the previous example may not be to everyone’s
liking. In addition, it only allows us to customize the captions of all floats in the
document regardless of their type. Sometimes, however, the captions for tables
may need a different treatment than those for figures, for instance. In such a case
the \captionsetup declaration will help.

\captionsetup[type]{option-value-list}

The \captionsetup declaration allows you to specify an option-value-list like the
one possible when loading the package itself. The difference is that, if used with
the optional type argument, this declaration specifies caption formatting for only
this particular float type (e.g., figure) or any float type that has been set up with
a \newfloat declaration from the float package.

\DeclareCaptionStyle{name}[short-style]{long-style}

Further assistance is available in the form of the \DeclareCaptionStyle decla-
ration. It associates an option/value list with a name that can later be referred
to as the value of a style option. The mandatory long-style argument is a list of
option/value pairs that describe the formatting of a caption if the style name is
selected. The optional short-style argument lists option/value pairs that are also
executed whenever the caption is determined to be “short” (i.e., if it would fit on
a single line).

It is possible to combine the style option with other options inside the ar-
gument of \captionsetup , as shown in the next example. There we select the

6.5 Controlling the float caption 313

style default (predefined) for all floats except figures but overwrite its setting
for labelfont. Note that the example is intended to show possibilities of the
package—not good taste.

6-5-6

Figure 1. A long caption that runs
over more than one line to show
the effect of the style keyword.

A B C D E F G H I J

Table 1: A long caption that runs over
more than one line to show the effect of
the style keyword.

\usepackage{caption,graphicx}
\DeclareCaptionStyle{italic}
{labelfont={sf,bf},textfont={rm,it},indention=18pt,
labelsep=period,justification=raggedright}

\captionsetup[figure]{style=italic}
\captionsetup{style=default,labelfont={sf,bf}}

\begin{figure}[ht]
\centering \includegraphics{cat}
\caption{A long caption that runs over more

than one line to show the effect of the
style keyword.}

\end{figure}
\begin{table}[ht]
\centering \fbox{A B C D E F G H I J}
\caption{A long caption that runs over more

than one line to show the effect of the
style keyword.}

\end{table}

\DeclareCaptionLabelFormat{name}{code}

This declaration defines or redefines a labelformat keyword name to generate
code to format the label, where code takes two arguments: #1 (a string like “Fig-
ure”) and #2 (the float number). Thus, to produce parentheses around the whole
label, you can define your own parens keyword as follows:

\DeclareCaptionLabelFormat{parens}{(#1\nobreakspace#2)}

While this approach would work well in all examples seen so far, the above defini-
tion nevertheless contains a potential pitfall: if #1 is empty for some reason (e.g.,
if you changed \figurename to produce nothing), the above definition would put
a space in front of the number. To account for situations like this the caption
package offers the \bothIfFirst command.

\bothIfFirst{first}{second} \bothIfSecond{first}{second}

The \bothIfFirst command tests whether first is non-empty and, if so, typesets
both first and second. Otherwise, it typesets nothing. With its help the above dec-
laration can be improved as follows:

\DeclareCaptionLabelFormat{parens}
{(\bothIfFirst{#1}{\nobreakspace}#2)}

314 Mastering Floats

As a second example, suppose you want your caption labels to look like this:
“(4) Figure”. You could set up a new format, named parensfirst , and later assign
it to the labelformat:

\DeclareCaptionLabelFormat{parensfirst}
{(#2)\bothIfSecond{\nobreakspace}{#1}}

\captionsetup{labelformat=parensfirst}

In a similar fashion you can add new keywords for use with the labelsep
using the \DeclareCaptionLabelSeparator declaration.

\DeclareCaptionLabelSeparator{name}{code}

After a \DeclareCaptionLabelSeparator the keyword name refers to code and
can be used as the value to the labelsep option. For example, if you want to have
a separation of one quad between the label and the text that should be allowed to
stretch slightly, you can define

\DeclareCaptionLabelSeparator{widespace}{\hspace{1em plus .3em}}

and then use it as labelsep=widespace in the argument of \captionsetup or
\DeclareCaptionStyle .

In addition to customizing the label format, you can define your own gen-
Providing new

caption shapes and
justifications

eral caption shapes using \DeclareCaptionFormat , or specialized justification
settings using \DeclareCaptionJustification . These are more specialized ex-
tensions and their internal coding is a bit more difficult, so we will not show an
example here. If necessary, consult the package documentation.

Such declarations can be made in the preamble of your documents. Alterna-
External

configuration files
tively, if you are using the same settings over and over again, you can place them
in a configuration file (e.g., mycaption.cfg) and then load this configuration as
follows:

\usepackage[config=mycaption]{caption}

While it is possible to combine the config option with other options, it is probably
clearer to specify additional modifications through a \captionsetup declaration
in the preamble.

Sometimes figures or tables are so large that they will not fit on a single page.
Continuing captions

across floats
For such tables, the longtable or supertabular package may provide a solution. For
multipage figures, however, no packages for automated splitting are available.

In the past a general solution to this problem was provided through the
captcont package written by Steven Cochran, which supports the retention of
a caption number across several float environments. Nowadays this function-
ality is readily available with the caption package. It provides the command
\ContinuedFloat , to be used before issuing the \caption command if the cur-
rent caption number should be retained.

6.5 Controlling the float caption 315

If you prefer that the continued caption not to appear in the “List of. . . ” list,
use \caption with an empty optional argument (see Example 6-5-13 on page 321),
or \caption*, which suppresses LOF entry and caption number.

6-5-7

List of Figures
1 Huge 6
1 Huge (cont.) 7

A figure placed at the page

Figure body

Figure 1: Huge

6

Figure body

Figure 1: Huge (cont.)

bottom and continued at the
top of the next page.

7

\usepackage{caption}

\listoffigures \medskip
\begin{figure}[!b]
\centering \fbox{Figure body}
\caption{Huge}

\end{figure}
A figure placed at the page bottom and
continued at the top of the next page.
\begin{figure}[!t] \ContinuedFloat
\centering
\fbox{\rule[-.5cm]{0pt}{1.5cm}%

Figure body}
\caption{Huge (cont.)}

\end{figure}

The caption package collaborates smoothly with the other packages described
in this chapter, as can be observed in the various examples. Note that in some
cases this package has to be loaded after the packages whose captioning style
one wants to modify.

6.5.2 subfig—Substructuring floats

The subfig package (by Steven Cochran) allows the manipulation and reference
of small, “sub” figures and tables by simplifying the positioning, captioning, and
labeling of such objects within a single float environment. If desired, sub-captions
associated with these sub-floats can appear in the corresponding list of floats (e.g.,
the list of figures). In addition, a global caption can be present.

The package is based on the caption package, discussed in the previous sec-
tion, and makes use of all its features for customizing the layout of captions.1 The
main user command to identify a sub-float object within a float is \subfloat .

\subfloat[list-entry][caption]{object}

The mandatory object argument specifies the sub-float content, the optional cap-
tion argument denotes the caption text for this object, and, if necessary, the op-
tional list-entry argument specifies an alternate form to be used in the list of fig-
ures (or tables). If no optional argument is provided, no caption (and no caption

1An earlier version of this package was known as subfigure. It had a number of customization
possibilities in common with the caption2 package by Axel Sommerfeldt, but differed in some im-
portant details. When caption2 was upgraded, the author of this book persuaded Steven to base a
new version of his code on the emerging caption package. The results are described in this section.

316 Mastering Floats

label) is produced. If you wish to get only an (alpha)numeric label, use an empty
caption argument.

An empty list-entry signifies that for this instance the caption text should not
be inserted in the “List of. . . ”. This special feature is relevant only if the sub-float
captions should be listed there in the first place: see page 320 for information on
creating this set-up.

Our first example shows a figure that features two \subfloat components.
To reference them, you must associate labels with each of these \subfloat com-
mands (be careful to put the \label commands inside the braces enclosing the
contents of the \subfloat). We also place a \label following the \caption com-
mand to identify the enclosing figure environment, so that outside the environ-
ment we can refer to each of the components separately.

(a) Small (b) Bigger

Figure 1: Two elephants

Figure 1 contains sub-figure 1a, which
is smaller than sub-figure 1b.

\usepackage{subfig} \usepackage{graphicx}

\begin{figure} \centering
\subfloat[Small]
{\includegraphics[width=12mm]{elephant}\label{sf1}}

\qquad
\subfloat[Bigger]
{\includegraphics[width=16mm]{elephant}\label{sf2}}

\caption{Two elephants}\label{elephants}
\end{figure}
Figure~\ref{elephants} contains sub-figure~\ref{sf1},
which is smaller than sub-figure~\ref{sf2}. 6-5-8

Because the subfig package is based on caption , it is possible to influence the
caption layouts for sub-floats using the options offered by the latter package. If it
is not already loaded, subfig loads the caption package without any options. This
means you have to either load caption first (as we did in the example below) or
customize it after loading subfig by using a \captionsetup declaration.

(a) Short caption (b) A longer caption
with more text

Figure 1: Default sub-figures

a. Short caption b. A longer
caption with
more text

Figure 2: Customized sub-figures

\usepackage[font=sf]{caption}
\usepackage{subfig}
\newcommand\LCap{A longer caption with more text}
\newcommand\FIG{\fbox{\parbox{.4\textwidth}{\strut}}}

\begin{figure}[ht] \centering
\subfloat[Short caption]{\FIG} \subfloat[\LCap]{\FIG}
\caption{Default sub-figures}

\end{figure}
\captionsetup[subfloat]{format=hang,textfont=it,

labelfont={rm,bf},labelformat=simple,labelsep=period,
margin=5pt,justification=raggedright}

\begin{figure}[ht] \centering
\subfloat[Short caption]{\FIG} \subfloat[\LCap]{\FIG}
\caption{Customized sub-figures}

\end{figure} 6-5-9

6.5 Controlling the float caption 317

⏐⏐� farskip (or 0pt if on top of float)

Sub-float Object
baseline of object
⏐⏐� captionskip (+ topadjust see text)

← →
margin Sub-caption with Label

← →
margin
⏐⏐� nearskip

Figure 6.1: Spacing layout of the subfig package

As you can see, options for customizing the caption layouts can be set on
The default setting
of the subfig
package

various levels. Some default settings are already in place when the subfig pack-
age is loaded. Most noticeably, a setting of font=footnotesize for all sub-float
captions accounts for the fact that our setting of sf when loading the caption
package has no effect on the sub-captions. Another default that can be deduced
is the use of parens with the labelformat option. But most other changes to the
main caption layout are inherited by the sub-floats.

To overwrite such defaults, you can use any of the caption options when load-
Customizing all
sub-captions

ing the subfig package, or you can specify them with a \captionsetup declara-
tion using the type “subfloat” (as shown in the example). This will change all
subsequent sub-float captions uniformly until they are overwritten by a further
declaration.

Finally, if you want to customize sub-float captions just for a particular Customizing
sub-captions by type〈type〉 of float (e.g., for all figures) you can do so by using sub〈type〉 instead

of subfloat in the \captionsetup declaration.
The subfig package offers a number of customization possibilities through

Spacing around
sub-floats

a set of additional options (not available with the caption package) that expect
a dimension as their value. They define the space produced around a sub-float.
Assuming the default caption position below the object (i.e., position=bottom),
we get a layout like that shown in Figure 6.1.

farskip Specifies the space left on the side of the sub-float that is opposite the
main float caption (e.g., on top if the main caption is at the bottom of the float).
This space is ignored if it is the first object in the float body. The default value
if not modified is 10pt.

nearskip Specifies the space left on the side of the sub-float nearer the main
caption to separate the sub-float object and its caption from surrounding
material. It defaults to 0pt.

captionskip Specifies the vertical space that separates the sub-float object and
its caption (default 4pt). If there is no caption, this space is not added.

318 Mastering Floats

topadjust Not applicable with position=bottom on the sub-float level. If the
sub-caption is placed above the sub-float object (i.e., Figure 6.1 flipped upside
down using position=top) this space is added to the captionskip used to
separate caption and sub-float body.

The caption is set to the width of the sub-float object reduced on both sides by
the value specified with the margin option already provided by caption package.

If the caption is placed above the sub-float object (i.e., using position=top
for the sub-float), then captionskip is increased by topadjust to allow for ad-
justing the separation between the caption and the object in this case. Also, note
that the position of farskip and nearskip depends on the placement of the
main caption. When it comes first (i.e., position=top at the float-level) farskip
and nearskip swap places.

Internally, \subfloat uses a counter to keep track of the sub-floats within the
Labeling the
sub-captions

current float and to produce a label for the caption from it. The counter name is
sub〈type〉, where type is the current float type (e.g., the counter used for labeling
sub-figures is called subfigure). Its representation is defined by \thesub〈type〉
and defaults to \alph{subtype}. These counters are incremented for each sub-
float regardless of whether a caption was printed.

A somewhat more complex layout applying several of the above options has
been used in the following example. It introduces three sub-tables, two on top of
a third. Due to the option settings the table captions appear above the tables in
small slanted type. Single-line captions are set flush left; multiple-line captions
are set ragged right with hanging indentation. To show further customization
possibilities, the \thesubtable command (which generates the “number” for a
sub-float of type table) is redefined to produce two-level caption numbers on
the sub-tables. Each of the \subfloat commands, as well as the enclosing table
environment, is identified by a strategically positioned \label command. They
allow us to address the components individually.

Table 1: Three sub-tables

(1.1) First

Table 1

(1.2) Second

Table 2

(1.3) Third table with a much
longer caption

Table 3

Table 1 contains sub-tables (1.1)
to (1.3). But don’t use now: 11.3
(see text).

\usepackage{subfig}
\captionsetup[table] {position=top,aboveskip=5pt}
\captionsetup[subtable]{singlelinecheck=false,

format=hang,font={sl,small},
justification=raggedright}

\renewcommand\thesubtable{\thetable.\arabic{subtable}}
\newcommand\TAB[2]{\fbox{\parbox{#2\textwidth}{Table #1}}}

\begin{table}
\caption{Three sub-tables}\label{tbl}
\subfloat[First] {\TAB{1}{.4}\label{tbl1}}\hfill
\subfloat[Second]{\TAB{2}{.4}\label{tbl2}}\\
\subfloat[Third table with a much longer caption]

{\TAB{3}{.8}\label{tbl3}}
\end{table}
Table \ref{tbl} contains sub-tables \subref{tbl1} to
\subref{tbl3}. But don’t use now: \ref{tbl3} (see text).

6-5-10

6.5 Controlling the float caption 319

The references to the individual sub-tables in the previous example were cre-
ated using the \subref command, which returns the reference formatted accord-
ing to the listofformat (see page 320). This avoids any problem created by our
redefinition of the \thetable, which would cause the \ref command to produce
numbers like “11.3”, because it combines the table number “1” with the sub-table
number (e.g., “1.3”).

The starred version of this command, \subref*, returns only the plain sub-
float number (e.g., the value of \thesubtable), if needed to construct more com-
plex references, such as “Figure 1(a-c)”.

Sometimes one wants to label sub-floats but omit textual captions. This is,
Captionless
sub-floats

for example, common practice when showing a set of pictures or photographs:
the main caption explains the significance of individual sub-floats. It can easily
be achieved by using an empty optional argument on the \subfloat command,
which results in a labeled sub-float. The next example shows this type of layout.

6-5-11

(a) (b) (c)

Figure 1: A group of cats: (a) the
first cat, (b) a climbing one, and
(c) one that is stretched.

\usepackage{graphicx}
\usepackage[font={scriptsize,sl},captionskip=3pt]{subfig}
\newcommand\FIG[1]{\includegraphics[#1]{cat}}

\begin{figure} \centering
\subfloat[]{\FIG{width=3pc}\label{a}} \quad
\subfloat[]{\FIG{angle=20,width=3pc}\label{b}} \quad
\subfloat[]{\FIG{height=1pc,width=3pc}\label{c}}

\caption[A group of cats]{A group of cats: \subref{a}
the first cat, \subref{b} a climbing one,
and \subref{c} one that is stretched.}

\end{figure}

It is also possible to fine-tune individual floats, if their sub-floats have unusual
Manual fine-tuningforms or excess white space. In Example 6-5-8 on page 316, we could, for example,

move the main caption closer to the sub-captions by adding the line

\captionsetup[subfloat]{nearskip=-3pt}

at the top of the float body. This command would apply to the current float only
and cancel part of the aboveskip added above the main caption.

6-5-12

(a) Small (b) Bigger

Figure 1: Two elephants

\usepackage{subfig} \usepackage{graphicx}

\begin{figure} \centering
\captionsetup[subfloat]{nearskip=-3pt}
\subfloat[Small]
{\includegraphics[width=12mm]{elephant}\label{sf1}}

\qquad
\subfloat[Bigger]
{\includegraphics[width=16mm]{elephant}\label{sf2}}

\caption{Two elephants}\label{elephants}
\end{figure}

320 Mastering Floats

So far, we have discussed only sub-floats in figure or table environments.
If you have added additional float types, you may want to be able to substructure
them as well. This can be achieved with the \newsubfloat declaration.

\newsubfloat[option-value-list]{float-type}

A prerequisite for using \newsubfloat is that there must already exist the en-
vironments to produce the given float-type—for example, environments declared
with \newfloat from the float package. In that case \newsubfloat will set up
\subfloat to be usable within their float bodies (e.g., by declaring the counter
\sub〈float-type〉 to produce their labels). In the optional option-value-list argu-
ment, you can specify layout options that should apply only to this particular
type of sub-float.

The sub-float captions are automatically entered into the external file hold-
Producing list of . . .

entries
ing the data for the corresponding “List of. . . ” list. Such files have the extension
.lof (a list of figures), .lot (list of tables), or the extension specified as the third
argument to \newfloat .

The sub-float captions will not show up in these lists because only top-level
float captions are typeset by default. To change this behavior, you have to set
the counter’s extdepth to 2 (where ext is the extension of the corresponding
“List of. . . ” file). For example, to make sub-figures captions appear you would use
\setcounter{lofdepth}{2}, and for sub-tables you would change the value of
lotdepth.

As explained in Section 2.3.2 the layout of such entries can be customized by
redefining \l@subfigure , \l@subtable , and similar commands; the command
name consists of float type prefixed by l@sub. However, subfig already offers three
options that influence the entries in this list and they probably provide enough
flexibility in most circumstances.

listofindent The indentation for the sub-float caption inside the contents list.
Its default value is 3.8em.

listofnumwidth The width reserved for the label in the contents list. Its default
is 2.5em.

listofformat The format used for the label of the sub-float entry when dis-
played in the contents list. Possible keywords are empty, simple, parens,
subsimple, and subparens (default). Additional formattings can be declared
using the \DeclareCaptionListOfFormat command; for details, see the
package documentation.
The typeset result is also used by the \subref command, so changing the
value of this option will affect references created by this command.

The next example shows how the sub-floats appear in the contents listings.
We set lofdepth to make them appear and extend listofindent to 5em so that
they are slightly indented. We also use a continuation float to prove that sub-float
numbering continues as well. To suppress the “List of. . . ” entry for the continu-

6.5 Controlling the float caption 321

ation float we use an empty optional argument on the \caption command—the
special feature provided by the caption package for such situations. Alternatively,
we could have used \caption* to suppress both the caption number and the entry
in the list of figures.

6-5-13

List of Figures

1 Three figures 1
1(a) First 1
1(b) Second 1
1(c) Third 2

Figure I

(a) First

Figure II

(b) Second

Figure 1: Three figures

\usepackage[nearskip=-3pt,captionskip=5pt]{subfig}
\captionsetup[subfloat]{listofindent=5em,

listofformat=parens}
\setcounter{lofdepth}{2}

\listoffigures \medskip
\begin{figure}[!ht]\centering
\subfloat[First]{\fbox{Figure I}} \qquad
\subfloat[Second]{\fbox{Figure II}}
\caption{Three figures}

\end{figure}
\pagebreak % <-- for illustration

\begin{figure}[!ht] \centering \ContinuedFloat
\subfloat[Third]{\fbox{Figure III}}
\caption[]{Three figures (cont.)}

\end{figure}

Like the caption package, subfig supports the use of external configuration External
configuration filesfiles that contain your favorite settings using the option config. For example,

\usepackage[config=xcaption]{subfig}

loads the file xcaption.cfg.
While it is possible to combine the config option with other options, a clearer

approach is to specify additional modifications through a \captionsetup decla-
ration in the preamble.

6.5.3 subfloat—Sub-numbering floats

The subfloat package, developed by Harald Harders, can generate sub-numbers for
figures or tables (analogous to the subequations environment of the amsmath
package). While the subfig package sub-numbers objects inside one float, the
subfloat package allows sub-numbering of the main captions of separate floats.

Figures (tables) for which sub-numbers are to be generated should be in-
cluded inside a subfigures (subtables) environment. Alternatively, they can
be placed between the commands \subfiguresbegin and \subfiguresend
(\subtablesbegin and \subtablesend). While the environments must obey the
basic nesting rules with respect to other environments, the commands can be
placed anywhere. This flexibility can be helpful in unusual circumstances—for ex-
ample, when sub-figures and sub-tables are intermixed.

The example that follows shows three figures. The first two are inside a
subfigures environment, so they use sub-numbering (“1a” and “1b”). Both these
labels are correctly handled by LaTEX’s \listoffigures and \ref commands.

322 Mastering Floats

List of Figures

1a First figure . 1
1b Second figure 1
2 Third figure 2

Figure I

Figure 1a: First figure

Figure II

Figure 1b: Second figure

Figures 1a and 1b in this

example are sub-numbered,
while Figure 2 is not.

Figure III

Figure 2: Third figure

\usepackage{subfloat}

\listoffigures \medskip
\begin{subfigures}
\begin{figure}[!ht]
\centering\fbox{Figure I}
\caption{First figure}\label{FI}

\end{figure}
\begin{figure}[!ht]
\centering\fbox{Figure II}
\caption{Second figure}\label{FII}

\end{figure}
\end{subfigures}
Figures \ref{FI} and \ref{FII} in
this example are sub-numbered, while
Figure~\ref{FIII} is not.
\begin{figure}[!ht]
\centering\fbox{Figure III}
\caption{Third figure}\label{FIII}

\end{figure} 6-5-14

As in the previous example, the default caption label combines an Arabic
numeral for the main figure with a lowercase letter to differentiate between the
individual sub-figures. This label can be customized by redefining the command
\thesubfloatfigure . Within its definition the command \themainfigure can
be used to produce the main figure number1 and the counter subfloatfigure to
refer to the number of the sub-figure. Thus, to number sub-figures as “2.1”, “2.2”,
and so on, one can define

\renewcommand\thesubfloatfigure{\themainfigure.\arabic{subfloatfigure}}

The same possibilities can be realized for tables by using the macros
\thesubfloattable and \themaintable , and the counter subfloattable.

To enable users to automatically refer to the total number of sub-figures
with the same main figure number, the package offers the option countmax.
When it is used, the floats within a subfigures (subtables) environment are
counted and the number is made available in the counter subfloatfiguremax
(subfloattablemax). One could, for example, define

\renewcommand\thesubfloatfigure{\themainfigure
(\arabic{subfloatfigure}/\arabic{subfloatfiguremax})}

to produce caption labels such as “2(1/3)”, “2(2/3)”, and “2(3/3)” when the second
set of figures consists of three sub-figures. This counting is implemented as a two-

1For technical reasons the command \thefigure is not usable within sub-figures. The “alias”
\themainfigure is provided for this purpose.

6.5 Controlling the float caption 323

pass system that uses the \label and \ref mechanism internally—which means
that it is expensive in terms of resources and time. For this reason the default is
not to count.

6.5.4 sidecap—Place captions sideways

In their sidecap package Hubert Gäßlein and Rolf Niepraschk introduce two new
environments, SCfigure and SCtable . They are analogous to LaTEX’s figure and
table , but typeset their captions at the side of the float in a minipage of a cus-
tomizable width.

The package supports a number of options to influence the caption placement
and formatting.

outercaption/innercaption The caption is typeset on the outer (default) or in-
ner side of the page, respectively, i.e., varying between verso and recto pages.

leftcaption/rightcaption The caption is always typeset on the left or right
side of the page, respectively.

wide The caption or float may extend into the margin if necessary.

margincaption The caption is set in the margin, with the float body appearing
above the text. If this option is selected, the positioning of the float body with
respect to the galley margins can be defined by using innerbody, outerbody,
centerbody, leftbody, or rightbody.

raggedright/raggedleft/ragged The caption text is not justified. With small
measures, this option often leads to better results. With ragged the unjus-
tified margin varies between verso and recto pages, so this is best used
with innercaption, outercaption, or margincaption. Martin Schröder’s
ragged2e package is used, when available on the system.

If the sidecap package is combined with the caption package, you have the
choice of specifying the justification with the above options or through the
justification option of the caption package. Only ragged is unique, as caption
offers no way to vary the justification between pages.

\begin{SCfigure}[rel-width][float-spec] 〈L-R material〉 \end{SCfigure}
\begin{SCtable}[rel-width][float-spec] 〈L-R material〉 \end{SCtable}
The environments SCfigure and SCtable (and their starred versions for span-
ning two columns) take two optional arguments. The rel-width argument defines
the width of the caption relative to the width of the table or figure body (default
1.0). A large value (e.g., 20) reserves the maximal width available on the page.
The second argument, float-spec, is LaTEX’s standard float positional argument (e.g.,
[htb]). In contrast to standard LaTEX floats, the float body is assumed to be hori-
zontal material (necessary to be able to measure it). If you require vertical material
at this point, use a minipage environment inside the body.

324 Mastering Floats

The first example shows a table and a figure with their captions set beside
them. For the table the defaults have been used, resulting in a caption that occu-
pies the same amount of space as the table. The figure is set with the caption twice
as wide as the figure body. With the defaults the caption would have been typeset
on two lines even though ample space is available. Except for the justification, the
actual caption layout has been customized using the caption package.

AAA BBB
CCC DDD
EEE FFF

Table 1. A
small table with
a rather long
caption text

Figure I Figure 1. A small figure

Paragraph text showing how floats are hor-
izontally aligned with respect to the galley.

\usepackage[ragged]{sidecap}
\usepackage[labelfont={sf,bf},textfont=it,
labelsep=period]{caption}

Paragraph text showing how floats are
horizontally aligned with respect to the galley.
\begin{SCtable} \caption{A small table with a

rather long caption text}
\begin{tabular}{|ll|} AAA & BBB \\

CCC & DDD \\ EEE & FFF \end{tabular}
\end{SCtable}
\begin{SCfigure}[2] \caption{A small figure}
\framebox[.3\linewidth][c]{Figure I}

\end{SCfigure} 6-5-15

In addition to its options, the sidecap package offers some parameters to
Changing the

default settings
influence the formatting. The size of the separation between the body and the
caption can be changed by redefining \sidecaptionsep (using \renewcommand).
The default is to use the value of the parameter \marginparsep . Instead of
repeatedly specifying an optional argument to the environments, you can set
the (default) relation between the float body and the caption size by redefining
\sidecaptionrelwidth . For tables, the caption is aligned at the top; for figures,
it is aligned at the bottom. This default can be changed by using a declaration like
\sidecaptionvpos{table}{b} , where the second argument should be any one
of: t, c, or b.

The next example uses all three customization possibilities, and the floats are
allowed to extend into the margin (option wide). In fact, because of the chosen
value for \sidecaptionrelwidth , they are forced to use all space available.

AAA BBB
CCC DDD
EEE FFF

Table 1: A small table with a
rather long caption text

Text showing how the float is hor-
izontally aligned with respect to the
galley.

\usepackage[wide]{sidecap}
\renewcommand\sidecaptionsep{15pt}
\renewcommand\sidecaptionrelwidth{20}
\sidecaptionvpos{table}{c}

Text showing how the float is horizontally
aligned with respect to the galley.
\begin{SCtable} \caption{A small table with

a rather long caption text}
\begin{tabular}{|ll|} AAA & BBB \\

CCC & DDD \\ EEE & FFF \end{tabular}
\end{SCtable} 6-5-16

6.5 Controlling the float caption 325

The package tries hard to produce a reasonable alignment between the float
body and the caption text. In most cases, such as when the body consists of a
tabular environment, it will produce satisfactory results. However, if the body
contains straight text, perhaps as part of a minipage environment, you may have
to help the alignment along by specifying a \strut , as shown in the next example.
The second \strut on the last line is actually not necessary for a top-aligned
caption but would be needed if the caption is bottom-aligned.

The example demonstrates the ragged option showing that it results in a
ragged left setting if the caption appears in the left margin.

6-5-17

Table 1: A
misaligned

caption

Some text for our page that
is reused over and over again.
Some text for our page that is
reused over and over again.

Table 2: An
aligned
caption

Some text for our page that
is reused over and over again.
Some text for our page that is
reused over and over again.

\usepackage[margincaption,ragged]{sidecap}
% \sample as defined earlier

\begin{SCtable} \caption{A misaligned caption}
\begin{minipage}{\linewidth}
\sample \sample
\end{minipage}\end{SCtable}

\begin{SCtable} \caption{An aligned caption}
\begin{minipage}{\linewidth}
\strut \sample \sample \unskip\strut
\end{minipage}\end{SCtable}

6.5.5 fltpage—Captions on a separate page

When dealing with large figures or tables, sometimes insufficient room is left on
the page to typeset the caption. Sebastian Gross’s fltpage package addresses this
problem by defining the environments FPfigure and FPtable . They are similar
to figure and table , respectively, but typeset the caption for a full-page figure
or table on the opposite page in twoside mode, or on the preceding or following
page in oneside mode.

The package behavior is controlled by a number of options that specify the
placement of the caption in relation to the float body (options in parentheses are
alias option names):

closeFloats The full-page floats are placed on the next possible page. In
twoside mode the caption is placed on the bottom of the opposite page; in
oneside mode it is always placed on the page before the float body.

rightFloats (CaptionBefore) The float body always appears on a recto page
and the caption on the previous page.

leftFloats (CaptionAfterwards) The float body always appears on a verso
page and the caption on the following page.

The “isolated” caption that refers to a full-page float is separated from the
remaining text on the page by a horizontal rule. This rule can be suppressed
by specifying the noSeparatorLine option. Moreover, to make the connection

326 Mastering Floats

between the caption and the float, you can let the package add hints like “Table xx.
(on the facing page)” by specifying the option varioref . In that case the varioref
package is used to produce such texts in the document language.1

We next construct a simple example demonstrating the principles underlying
the fltpage package. In the example we construct an artificial full-page table by
putting a frame containing an invisible rule (of zero width) inside a box with di-
mensions that are a small fraction smaller than the page dimensions.2 The figure
caption is typeset at the bottom of the page opposite the float material. Because
we load the varioref package and specify the varioref option, the text “(on the
next page)” is inserted automatically by the fltpage package.

List of Figures
1 A full-page figure 6

1 Full-page floats
Figure 1 is a full-page float
whose caption and body are on
separate pages.

Figure 1 (on the next page):
Caption for a full-page float for
which there was no room on
the same page

6

A full-page figure

7

\usepackage[twoside,varioref,
closeFloats]{fltpage}

\listoffigures
\section{Full-page floats}
Figure~\ref{FP1} is a
full-page float whose caption
and body are on separate pages.
\begin{FPfigure}
\setlength\fboxsep{0pt}
\framebox[.97\linewidth][c]

{\rule[-3cm]{0pt}
{.97\textheight}%

A full-page figure}
\caption[A full-page figure]
{Caption for a full-page float
for which there was no room
on the same page}\label{FP1}

\end{FPfigure} 6-5-18

Unfortunately this package is no longer being developed. Thus, it is, for exam-
Caveats ple, impossible to use it for float types other than figure and table (e.g., those

that can be defined with the float package). Furthermore, problems may poten-
tially arise if floats appear too close to each other in the source (the content of
the second might overwrite the first). Nevertheless, if used with care, it provides
a solution to the difficult problem of handling large floats that currently has no
counterpart in any other package available.

1This feature may not work if the layout of the caption is customized by the caption package.
2This step is needed to avoid generating overfull boxes due to the width of the \framebox rules.

The separation \fboxsep between the frame and the inner material is also set to zero points.

C H A P T E R 7

Fonts and Encodings

7.1 Introduction

Half of the job of (LA)TEX as a typesetting system is to process the source document
and to calculate from it the characters’ positions on the output page. But (LA)TEX
has only a primitive knowledge about these characters, which it basically regards
as black boxes having a width, height, and depth. For each font these dimensions
are stored in a separate external file, the so-called TEX font metric or .tfm file.

The character shapes that correspond to such a .tfm file come into play at a
later stage, after (LA)TEX has produced its .dvi file. Character placement informa-
tion in the .dvi file and information about character shapes present in the .pk file
or in outline descriptions (e.g., PostScript) are combined by a driver program that
produces the character image on the output medium. Usually one driver program
is needed for every output medium—for screen representation, a low-resolution
laser printer, or other device. With TEX variants such as pdfTEX or VTEX that bypass
the production of .dvi output and instead directly generate PDF or PostScript out-
put, the situation is slightly different (but, as far as LaTEX is concerned, similar). In
that case the character shapes are “added” when the underlying formatter pro-
duces the final output format. That is, the driver program is internal, but the
basic concepts are identical.

7.1.1 The history of LATEX’s font selection scheme (NFSS)

When TEX was developed in 1979, only a dozen fonts were set up for use with the
program: the “Almost Computer Modern” fonts, developed by Donald Knuth along
with TEX. With only this restricted set of fonts being available, a straightforward

328 Fonts and Encodings

approach for accessing them was used: a few control sequences were defined that
changed from one external font to another.

This situation had not greatly changed five years later, when LaTEX was first
released. Only the names of the fonts supplied with (LA)TEX had changed, from
Almost Computer Modern to Computer Modern, which was merely a slightly im-
proved version of the former. So it was quite natural that LaTEX’s font selection
scheme followed the plain TEX concept with the addition of size-changing com-
mands that allowed typesetting in 10 predefined sizes.

As a result LaTEX’s font selection was far from general. For instance, when
defining a heading command to produce a bolder font (by using a \bf command in
its definition), the use of, say, \sf (for a sans serif font) inside that same heading
did not produce a bold sans serif font but rather a medium-weight sans serif
font (the bold attribute was ignored). Similarly, when, say, \bf was used inside
emphasized text, the result was not a bold italic font, as normally desired, but
rather a plain Roman bold font.

This behavior was caused by the fact that all the font-changing commands,
such as \bf , referred to a fixed external font. As a consequence, rather than re-
questing an attribute change of the current font, they replaced the current font
with another. Of course, LaTEX enhanced the plain TEX mechanism to a certain ex-
tent by providing a set of size-changing commands. Nevertheless, the underlying
concept of the original release had a major drawback: the correspondence tables
were hard-wired into LaTEX, so that changing the fonts was a difficult, if not impos-
sible, task.

Since that time low-priced laser printers have become available and simulta-
neously a large number of font families from PostScript and other type formats
have appeared. The number of fonts in METAFONT source format (freely avail-
able to every (LA)TEX installation) has also increased drastically. But, unfortunately,
there was no easy and standard method for integrating these new fonts into LaTEX—
typesetting with LaTEX meant typesetting in Computer Modern on almost all instal-
lations. Of course, individual fonts could be loaded using the \newfont command,
but this capability cannot be called integration: it requires a great deal of user in-
tervention, because the additional fonts do not change size under the control of
size commands, and it was extremely complicated to typeset a whole document
in a font family.

There have been a few efforts to integrate other fonts into LaTEX. Typically, they
involved exchanging one hard-wired font table with another. Thus, the resulting
LaTEX variant was as inflexible as the original one, as this approach merely forced
the use of a different set of fonts.

This unsatisfactory situation was finally resolved in 1989 with the release
of the New Font Selection Scheme (NFSS) [128, 130] written by Frank Mittelbach
and Rainer Schöpf, which became widely known after it was successfully used in
AMS-LaTEX (see Chapter 8). This system contains a generic concept for varying
font attributes individually and for integrating new font families easily into an
existing LaTEX system. The concept is based on five attributes that can be defined
independently to access different fonts, font characteristics, or font families. To

7.1 Introduction 329

implement it, some of the LaTEX commands were redefined and some new com-
mands were added.

Later, a prototype version for scalable fonts was coded by Mark Purtill. Start-
ing from his work, Frank Mittelbach designed and implemented NFSS2 integrating
work by Sebastian Rahtz (on PostScript fonts) and several others. This version
became the standard LaTEX font selection scheme in 1994, when the current LaTEX
version (LaTEX2ε) was released.

This font selection scheme has now been in worldwide use for more than a
decade and the code has proven to be stable and successful, though some people
feel that extensions would be useful. The LaTEX Project Team would welcome such
experimental extensions in the form of external packages, which at a later stage
might be consolidated into a successor of the base font selection mechanism.

7.1.2 Input and output encodings

As one of the side effects of being able to access more fonts, it became apparent
that two related areas in TEX made hard-wired selections no longer appropriate:
the areas of input and output (or font) encodings.

If we press a key on a keyboard (usually) some 8-bit number will be generated
representing a certain character. An input encoding describes which character cor-
responds to which number. When using different national keyboards or different
operating systems, the correspondence between character and number may vary
widely. For example, on the German keyboard that the author used to write this
text, the key labeled “ä” will generate the 8-bit number “228” when used with
Linux or Windows, but it generates “132” when used with MS-DOS.

When your document is stored in a computer file, information that remains
about the characters consists of only these 8-bit numbers; the information about
the input encoding used is not explicitly stored. Thus, if you transfer a file to
a different environment, such as, from the United States to the United Kingdom,
you might find that the dollar signs in your document are suddenly interpreted
as pound symbols when viewing your file with some program (editor) that makes
the wrong assumption about the encoding used to write the file.

To help with input encoding problems, in 1994–1995 the LaTEX Project Team
developed the inputenc package. It enables users to explicitly declare the input
encoding used for documents or parts of documents. This mechanism allows you
to safely transfer documents from one LaTEX installation to another and to achieve
identical printed results.1

The inputenc package works by interpreting the 8-bit numbers present in the
The input encoding
concept

file (representing the characters) and mapping them to an “internal LaTEX represen-
tation”, which uniquely (albeit on a somewhat ad hoc basis) covers all characters
representable in LaTEX. For further processing, such as writing to some auxiliary

1Other solutions to this problem exist. For example, some people advertise the use of translation
tables hard-wired into the program TEX itself. This works as long as all people exchanging documents
use a TEX system with the same hard-wired tables but fails otherwise.

330 Fonts and Encodings

file, LaTEX exclusively uses this internal representation, thereby avoiding any possi-
ble misinterpretation.

However, at some point LaTEX has to associate these internal character repre-
sentations with glyphs (i.e., character shapes in certain fonts) so another mapping
must take place. TEX’s fonts contain a maximum of 256 glyphs. These glyphs are
not addressed by name, but rather by (8-bit) numbers representing the positions
of the glyphs in the font (i.e., we have to map from a large unique naming space
into several small ones). And it probably does not come as a large surprise to hear
that these glyph positions again vary widely.

Thus, even after preserving the meaning of our dollar sign from the external
file to the internals of LaTEX, we might still end up with the wrong shape on paper
if we happen to select a font for printing that contains an unexpected glyph in the
position (slot) we assumed was occupied by a dollar sign.1 It is one of the tasks of
NFSS to ensure either that any LaTEX internal character representation is properly
rendered or, if that is impossible for some reason, that the user receives a proper
error message.

If fonts contain accented characters as individual glyphs, rather than only

�Made-up
accented

characters prevent
hyphenation

base characters plus accents (from which TEX then has to build up the accented
glyphs internally), then it is preferable to use these glyphs because they typically
have a better appearance. There is also a technical reason for this preference:
the \accent primitive of TEX will suppress hyphenation. This defect might be
acceptable if such words are occurring only infrequently, as when typesetting
English. However, when dealing with, say, a French text in which all words with
accents are never hyphenated, line breaking soon becomes a nightmare.

To cater to the different possibilities, a command such as \’e (LaTEX’s internal
representation for the character e-acute, é) sometimes has to initiate some com-
plicated actions involving the \accent primitive. In other cases it merely informs
the paragraph builder that it wants the glyph from a certain slot in the current
font.

All this is achieved in LaTEX through the concept of output encodings, which
The output encoding

concept
map the LaTEX internal character representations to appropriate glyph positions
or to glyph-building actions depending on the actual glyphs available in the font
used for typesetting. Although the output encoding concept was fully introduced
with NFSS2, it took several years to finally settle on its current implementation
(the internals were rewritten several times while the developers were gaining more
insight into the problems in this area).

* * *

The following sections describe release 2 of NFSS, which was completed at
the end of 1992 and became part of standard LaTEX in 1994. As far as the user
interface is concerned, it is intended for integration into LaTEX3.

We start by discussing font characteristics in general and introduce the major
attributes used in LaTEX for orthogonal font switching. We then describe the use of

1The example of the $ turning into a £ sign is not artificial: some of the original TEX fonts show
this strangeness, and Knuth [82, p.339] even advocates typesetting a pound symbol using {\it\$}.

7.2 Understanding font characteristics 331

the high-level interface—that is, the commands a user normally has to deal with.
This includes commands used in normal text (Section 7.3), special features for use
in mathematical formulas (Section 7.4), and an overview of basic support packages
for NFSS—those being distributed together with LaTEX (Section 7.5). It also covers
the packages and commands provided to deal with the encoding issues mentioned
earlier.

One of the important advantages of LaTEX’s font selection scheme is the ease
with which new fonts for use in the main text can be integrated. Besides the Com-
puter Modern families, which are used by default, one can easily use other font
families by adding the appropriate package in the preamble. Of course, for suc-
cessful processing and printing the corresponding font files (e.g., the .tfm and
.pk, Type 1, or TrueType files) must be installed on the system. The next three
sections deal with major and minor font packages. Section 7.6 discusses PSNFSS,
the standard PostScript support for LaTEX, which is part of the required set of
packages available with any LaTEX distribution.

This is followed by a collection of other interesting packages for adjusting
the document body fonts (Section 7.7) and by an introduction to the LaTEX world
of symbols (Section 7.8). All packages described are available free of charge, and
most (if not all) are part of a modern LaTEX distribution. Some pointers to commer-
cial font support are given as well.

The final part of this chapter describes the low-level interfaces that are useful
when defining complex new commands and that are important when new fonts
are to be made available in LaTEX. Here you will find low-level commands for chang-
ing individual font attributes (Section 7.9), commands for setting up new fonts
with LaTEX (Section 7.10), and a discussion of LaTEX’s encoding models for text and
math (Section 7.11). The chapter concludes with a section devoted to compatibility
questions that arise with very old LaTEX documents.

7.2 Understanding font characteristics

There are many design principles that divide fonts into individual overlapping
classes. Knowledge of these characteristics often proves helpful when deciding
which font family to use in a special context (for further reading see, for example,
the books [28,41,116] or the article [52]).

7.2.1 Monospaced and proportional fonts

Fonts can be either monospaced or proportionally spaced. In a monospaced font,
each individual character takes up the same horizontal space regardless of its
shape. In contrast, characters in a proportionally spaced font take up different
amounts of space depending on their shape. In Figure 7.1 on the following page,
you can see that the “i” of the monospaced font occupies the same space as the
“m”, while it is noticeably narrower in the proportional font. As a result, propor-
tional fonts (also called typographical fonts) normally allow more words to be

332 Fonts and Encodings

iiiiiiiiii iiiiiiiiii
mmmmmmmmmm mmmmmmmmmm

(monospaced) (proportionally spaced)

Figure 7.1: Major font characteristics

placed on a page and are more readable than monospaced fonts. The extra spaces
around individual characters of monospaced fonts make it more difficult for the
eye to recognize word boundaries and thus make monospaced text less readable.

However, monospaced fonts do have their uses. Within the proper context,
they enhance the quality of the printed document. For example, in tables or com-
puter listings where proper alignment of information is important, a monospaced
font is a natural choice. In computer science books, it is common practice to dis-
play computer programs in a monospaced font to make them easily distinguish-
able from surrounding explanations.

But the use of monospaced fonts goes beyond marking portions of a docu-
ment as special. One can even consider choosing a monospaced font as the base
font for a complete document. Such a font has the flavor of the manual or elec-
tric typewriter engine; it looks hand-made when used with unjustified paragraphs
and therefore may be better suited to certain situations than a more professional-
looking typographical font. Keep in mind, however, that monospaced fonts look
very poor when lines are justified. (See Section 3.1.11 to learn how to turn off
justification.)

7.2.2 Serifed and sans serif fonts

Another useful classification is based on the presence or absence of serifs. Serifs
are the tiny strokes at the extremities of character shapes (see Figure 7.2). Origi-
nally they were produced by the chisel, when Roman capitals were engraved into
stone. For this reason, serifed fonts are often referred to as “Roman” fonts.

Serifed fonts traditionally have been used for long texts because, it was ar-
gued, they are more readable. It was long thought that serifed letters give the eye
more clues for identification. This is certainly true if only parts of the characters
are visible, but for fully visible text recent research has shown that reading speed
is not substantially affected by the absence of serifs [150].

A A n n
Figure 7.2: Comparison of serifed and sans serif letters

7.2 Understanding font characteristics 333

A B C a b c x y z
A B C a b c x y z
A B C a b c x y z

Figure 7.3: Comparison between upright and italic shapes

7.2.3 Font families and their attributes

Besides the crude classifications of serifed versus sans serif and monospaced ver-
sus proportional, fonts are grouped into font families. Members of a font fam-
ily share common design principles and are distinguished by variations in size,
weight, width, and shape.

Font shapes

An important attribute when classifying a member of a font family is its shape. Of
course, sometimes it is a matter of personal judgment whether a set of fonts with
different shapes constitutes one or several families. For example, Donald Knuth
called his collection of 31 Computer Modern fonts a family [86], yet they form a
meta-family of many families in the traditional sense.1

Although there is no uniform naming convention for font shapes, this is unim-
portant as long as one sticks to a particular scheme within LaTEX.

Nearly every font family has one shape called the “upright” shape.2 For exam- The upright shape

ple, in the font family used in this book (Lucida Bright), the font that you are now
reading is in the upright shape.

Another important shape that is present in most families is the “italic” shape,
The italic shapewhich looks like this in the Lucida Bright family. Italic characters are slanted to the

right and the individual letters generally are drawn differently from their upright
counterparts, as illustrated in Figure 7.3. The first line in that figure shows letters
from the Computer Modern Serif family in upright shape, and the third line shows
the same letters in italic shape. For better comparison, the second line gives the
italic letters without the usual slant—that is, the letters are artificially shown in
an upright position.

Font families without serifs often lack a proper italic shape; instead, they
The slanted or
oblique shape

have a “slanted” shape in which the characters slant to the right but are otherwise
identical to their upright counterparts. The terms “sloped” and “oblique” are also
commonly used for this shape.

1
METAFONT, as a design tool, allows the production of completely different fonts from the

same source description, so it is not surprising that in 1989 another family was created [92] based
on the sources for the Computer Modern fonts. This family, Concrete Roman, was obtained merely
by varying some METAFONT parameters in the source files; but since the result was so different,
Knuth decided to give this family a different name.

2Sometimes you will also hear the term “Roman” shape. This is due to the fact that until recently
typesetting was nearly always done using serifed fonts. Thus, “Roman” was considered to be the
opposite of “italic” by many people. So be aware that in some books this term actually refers to the
upright shape and not to a serifed font family.

334 Fonts and Encodings

EXAMPLE Example EXAMPLE
(Normal Capitals) (Small Caps) (Faked Small Caps)

Figure 7.4: Comparison between caps and small caps

Another common variant is the “small caps” shape, in which the lowercase
The small caps

shape
letters are represented as capitals with a reduced height, as shown in Figure 7.4.
If such a shape is not available for a specific family, typographers sometimes use

Faking small
capitals

upright capitals from smaller sizes,1 but this practice does not produce the same
quality as a well-designed small caps font. Real small caps have different widths
and weight than capital letters from the same font that have been reduced to the
height of designed small caps (you can clearly see that the strokes in the faked
capitals in Figure 7.4 are much too thin).

It is an open argument whether one should consider “small caps” to be a
shape or whether this would be better modeled as another independent axis. In
the latter interpretation, fonts have a “case” attribute, which could be either mixed
case (the normal case), all caps, small caps, or all lowercase. For certain font fam-
ilies this would certainly be the better solution, but currently the LaTEX font selec-
tion supports only four axes modeling small caps as a shape.2

There are a few other, less important shapes. Some families contain fonts
in which the inner parts of the letters are drawn in a special fashion, most impor-
tantly perhaps the “outline” shapes, in which the inner parts of the letters are kept
empty. For display purposes, some families also contain fonts that could be clas-
sified as “shaded”—that is, where the letters appear three-dimensional. Examples
are shown in Figure 7.5 on the facing page.

Special variants of the Computer Modern meta-family have been produced
by setting the METAFONT parameters to special values. For example, there is
“upright italic”, a shape in which the individual letters are drawn in italic fashion
but without the usual slant (see the second line in Figure 7.3 on the previous page).
This shape was devised for purposes of showing the abilities of METAFONT as a
tool for meta-design, but some users might take a fancy to such an unusual shape.

Weight and width

Fonts of a certain shape within a family may differ in “weight”. This characteristic
refers to the thickness of the strokes used to draw the individual shapes. Once
again, the commonly used names are not completely uniform, but it is relatively

1A good rule of thumb is to use capitals from a font that is about half a point larger than the
x-height of the original font unless the x-height is very small. See discussion in Section 7.10.3 on
page 428 for a way to determine the x-height of any font used with TEX.

2In some cases small caps fonts are in fact modeled as extra families to enable the combination
of, say, small caps italic.

7.2 Understanding font characteristics 335

The L TEXA CompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanionCompanion
Figure 7.5: Outline and shaded shapes

easy to arrive at a consistent classification. Some font manufacturers, for example,
call the font weights intended to be used for normal text “book”, while others call
them “medium”. For thin strokes the name “light” is commonplace, while thicker
strokes are usually called “bold”. In larger font families, finer distinctions are
often necessary, so that we sometimes find a range starting with “ultra light”,
going through “extra light”, “light”, “semi light”, and so on, and ending with “ultra
bold” at the other end. Conversely, often only a few weights are present in some
families. For example, the Computer Modern Roman family has only two weights,
“medium” and “bold”.

Another equally important attribute of a font is its “width”—the amount of
expansion or contraction with respect to the normal or medium width in the
family. Computer Modern Roman has bold fonts in “medium width” and “ex-
tended width”. One application for condensed fonts is in titles and headings,
where medium-width fonts, when used at large sizes, would consume too much
space. Some typesetting systems can even condense fonts automatically to fit a
given measure—for example, to exactly fill a particular line in a heading. This ca-
pability is not directly possible with (LA)TEX, but in any case the results are often
aesthetically questionable.

Font sizes

Font sizes are traditionally measured in printer points (pt). There are 72.27 points
to an inch.1 The font size is not an absolute measure of any particular characteris-
tic, but rather a value chosen by the font designer to guide the user. For example,
in a 10pt font, letters of the alphabet are usually less than 10pt tall, and only
characters such as parentheses have approximately this height.

Two fonts of the same size may not blend well with one another because the
appearance of a font depends on many factors, such as the height of the lowercase
letters (the x-height), the stroke width, and the depth of the descenders (the part
of the letters below the baseline, as in the letter q).

In the (LA)TEX world, fonts are often available in sizes that are powers of 1.2—
that is, in a geometric progression [82, p.17]. This arrangement was chosen be-
cause it makes it easy to produce an enlarged master copy that later can be photo-
graphically reduced, thereby effectively enlarging the final output resolution. For
example, if an A5 brochure is to be produced, one could print it with magnifica-

1PostScript uses a slightly different measurement system in which 72 points equal an inch. These
units, sometimes referred to as “big points”, are available in TEX as bp.

336 Fonts and Encodings

Ten point type is different from magnified five point type

Figure 7.6: Scaled and designed fonts (Computer Modern)

tion of 1.44 ≈ √2 on A4 paper. Photographic reduction from the 300dpi (dots per
inch) output of a normal laser printer would produce an effective output resolu-
tion of 432dpi and thus would give higher quality than is normally possible with
such a laser printer.

However, this geometric ratio scheme used by (LA)TEX fonts produced with the
METAFONT program is not common in the professional world, where usual point
sizes are 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 24, 30, and 36. Yet not all fonts are
available in all these sizes, and sometimes additional sizes are offered—such as
display sizes for large headings and tiny sizes for subscripts and superscripts.
The requirement for fixed sizes had its origin in the technology used. Fonts cast
in metal had to exist (at a particular size) or you could not print in that size. In
today’s digitalized world, fonts are usually vectorized and thus can be scaled at
will. As a result, many commercial font families nowadays are provided in only a
single design size.

The use of magnified or reduced fonts instead of fonts designed for a spe-
cific size often gives somewhat less satisfactory results, because to the human
eye fonts do not scale in a linear fashion. The characters in handcrafted fonts
of larger sizes usually are narrower than fonts magnified from a smaller size of
the same family. While it is acceptable to scale fonts within a small size range if
necessary, one should use fonts designed for the desired size whenever possible.
The difference between fonts scaled to a particular size and those designed for
that size is shown in Figure 7.6, though admittedly the variations are often less
noticeable.

7.2.4 Font encodings

As mentioned in the chapter introduction, TEX refers to the glyphs of a font by
addressing them via 8-bit numbers. Such a mapping is called a font encoding. As
far as LaTEX is concerned, two fonts having the same font encoding are supposed to
be interchangeable in the sense that given the same input they produce the “same”
glyphs on the printed page. To illustrate what happens if we use a font with an
encoding not suitable for our input, here is the first sentence of this section again
(using the Zapf Dingbats font):

✡▲ ❍❅■▼❉❏■❅❄ ❉■ ▼❈❅ ❃❈❁❐▼❅❒ ❉■▼❒❏❄◆❃▼❉❏■✌ TEX
❒❅❆❅❒▲ ▼❏ ▼❈❅ ❇●❙❐❈▲ ❏❆ ❁ ❆❏■▼ ❂❙ ❁❄❄❒❅▲▲❉■❇ ▼❈❅❍

❖❉❁ ✘✍❂❉▼ ■◆❍❂❅❒▲✎

The result is an interesting puzzle, but nothing that we want to see in ordinary
documents.

7.3 Using fonts in text 337

By classifying fonts according to their font encodings it is possible to modify
other font characteristics, such as font family or font series, and still ensure that
the typeset result will stay comprehensible.

The fonts that were originally distributed with TEX have only 128 glyphs per
OT1 encodingfont and therefore do not include any accented characters as individual glyphs.

Instead, all such glyphs have to be constructed using the \accent primitive of
TEX or by similar methods. As a result any word containing diacritics cannot be
automatically hyphenated by LaTEX and kerning (correction of spacing between
certain letters in the font) cannot be automatically applied. The encoding of these
fonts is called OT1. Although it remains the default encoding for LaTEX, it is not
advisable to use OT1 for languages other than English.

As an alternative encoding, the TEX user community defined a 256-character
T1 encodingencoding called T1 that enables TEX to typeset correctly (with proper hyphenation

and kerning) in more than 30 languages based on the Latin alphabet (see Sec-
tion 7.5.1 on page 353 for further details). The use of the T1 encoding is, there-
fore, highly recommended. Nowadays nearly all font families amenable to use
with LaTEX are available in this encoding; in fact, some are only available in the
T1 encoding. Specifying \usepackage[T1]{fontenc} after the \documentclass
command, makes T1 become the default encoding. Section 7.5.3 contains a more
detailed discussion of the fontenc package. For more on font encodings refer to
page 415 and Section 7.11 on page 440.

7.3 Using fonts in text

When you are writing a LaTEX document, appropriate fonts are normally chosen
automatically by the (logical) markup tags used to structure the document. For
example, the font attributes for a section heading, such as large size and bold
weight, are defined by the document class and applied when a \section command
is used, so that you seldom need to specify font attributes yourself.

However, occasionally it becomes necessary to specify font attributes directly.
One common reason is the desire to change the overall font attributes, by choos-
ing, for example, a different font family for the main text. This alteration often
can be done by simply specifying an appropriate package (see Sections 7.6 and
7.7 for descriptions of such packages).

Another use for explicit font attributes can be to mark certain portions of
the document as special—for example, to denote acronyms, example, or com-
pany names. For instance, in this book, names of packages are formatted in a
sans serif font. This formatting could be achieved by surrounding the names
with \textsf{..}, but it is much better practice to define a new command (say,
\LPack) for this purpose so that additional information is included in the source
document. By defining individual commands for logically different things—even
those that are currently being typeset in the same way—it is easier to change the
formatting later in a consistent way.

338 Fonts and Encodings

Last, but not least, in some cases you may want to override a decision taken
by the document class. For example, you might want to typeset a table in a smaller
size to make it fit on a page. This desire is legitimate, as document classes can
format documents automatically only to a certain extent. Hand-formatting—like
the insertion of page breaks—is thus often necessary to create the final version.
Unfortunately, explicit formatting makes further use of the document (if changes
are made) difficult and error prone. Therefore, as with all visual formatting com-
mands, you should try to minimize the direct use of font-changing commands in
a document.

7.3.1 Standard LATEX font commands

The font used for the main text of a document is called the “main font”, “body
font”, or “normal font”. It is automatically selected at the beginning of the doc-
ument and in certain constructs, such as footnotes, and figures. Certain logical
markup tags, such as section headings, automatically switch to a different type-
face or size, depending on the document class. These changes happen behind
the scenes, and the only action required of the author is to introduce the correct
logical markup in the document. However, sometimes it might be desirable to man-
ually highlight individual parts of the text, by choosing an appropriate typeface;
this is done with the commands described below.

Most font-changing commands come in two forms: a command with one ar-
gument, such as \textbf{...}, and a declarative form, such as \bfseries. The
declarations do not take arguments but rather instruct LaTEX that from now on (up
to the end of the current group of braces or environments) it should behave in a
special way. Thus, you should not write something like \bfseries{...}, as this
would make everything bold from this point until the end of the current environ-
ment.

To change the fonts for individual words or short phrases within your docu-
ment you should make use of the font commands with one argument. The declar-
ative forms are often better in the definition of new environments or commands.
For longer passages in your document, you can also use the environment form of
the declaration (the declarative name without the preceding backslash), as shown
in the following example:

Some words in this sentence are typeset
in bold letters.

The bold typeface continues here.

Some words in this sentence are
\begin{bfseries}typeset in bold letters.

The bold typeface\end{bfseries} continues here. 7-3-1

In fact, the font commands with one argument do not allow paragraph breaks
in their arguments. Section 7.3.3 on page 344 contains a detailed comparison of
the command and declarative forms and their advantages and disadvantages in
specific cases.

7.3 Using fonts in text 339

The main document font

To switch to the main document font you can use the command \textnormal
or the declaration \normalfont . They are typically used only in the definition of
commands or environments when it is important to define commands that always
typeset in the same font regardless of the surrounding conditions. For example,
the command to typeset the command names in this book is defined roughly as
follows:

\newcommand\Lcs[1]{{\normalfont\ttfamily\textbackslash#1}%
\index{#1@{\normalfont\ttfamily\textbackslash#1}}}

Using \normalfont prevents the command names coming out like \this in cer-
tain places.

Standard font families

By default, LaTEX maintains three font families that can be selected with short
command sequences. These families are a serifed text font, accessed with the
command \textrm ; a sans serif text font, accessed by \textsf ; and a typewriter
font (usually monospaced), accessed by \texttt. The declaration forms of these
commands are \rmfamily , \sffamily , and \ttfamily , respectively.

The names of the external font families accessed by these commands depend
on the document class but can be changed by packages or in the preamble (see Sec-
tion 7.3.5). As an installation default, the serifed font family is Computer Modern
Roman, the sans serif family is Computer Modern Sans, and the typewriter family
is Computer Modern Typewriter. If you use a different set-up, take care to define
these default families so that the fonts can be mixed freely without visual clashes.
Also, make sure that the external fonts are available in the correct resolution for
the targeted output device.

In this book, the serifed font family is Lucida Bright, the sans serif family is
Lucida Sans, and the typewriter family is European Modern Typewriter. These have
been chosen by simply1 loading the package lucidabr and afterwards redefining
\ttdefault to produce emtt; see Section 7.3.5 for more details on changing the
default text fonts.

In most document classes, the serifed font, accessed by \textrm , is also the
main font of the document, so the command \textrm is not used often. But if
a document designer has chosen a sans serif font as the main typeface, then
\textrm would be the alternative serifed font family.

1Somewhat more truthful: for the second edition of this book the Lucida fonts were scaled down
slightly, while the European Modern Typewriter was scaled up to match the x-height of both families
using specially designed \DeclareFontShape declarations.

340 Fonts and Encodings

Standard font series

Another attribute of a typeface that can be changed is the series. In LaTEX the series
is a combination of two attributes: width and weight (boldness). LaTEX provides
two commands for changing the series: \textmd and \textbf . The correspond-
ing declarations are \mdseries and \bfseries , respectively. The first command
selects a font with medium values for the width and the weight, while the latter
switches to a bolder series. The actual values depend on the document class and
its options or subsequent packages. As a default for the Computer Modern fami-
lies, \textbf switches to a bold extended version of the current typeface, while
\textmd returns to the medium width and medium weight version of the current
typeface.

If finer control over the series attribute is desired, it is best to define addi-
tional high-level user commands with the help of the lower-level \fontseries
declaration described in Section 7.9.1. Some packages that make large font fami-
lies available for use with LaTEX provide such extra commands.

Standard font shapes

A third font attribute that may be changed independently of the others is the
shape of the current typeface. The default shape for most documents is the up-
right shape. It can be accessed, if necessary, with the command \textup or the
declaration \upshape .

Probably the most important commands for changing the shape are \textit
and \textsc , which switch to an italic or Caps and Small Caps font shape, re-
spectively. The corresponding declarations are \itshape and \scshape .

An alternative to \textit is the \textsl command (its declaration form is
\slshape), which switches to the slanted shape. A font family often contains only
an italic or a slanted shape, yet Computer Modern Roman contains both.

At the point where one switches from slanted to upright, the characters usu-
ally come too close together, especially if the last slanted character has an as-
cender. The proper amount of extra white space that should be added at this
boundary is called the “italic correction”. The value of this adjustment depends
on the individual character shape and is stored in the .tfm file. The italic correc-
tion is automatically added by the font commands with arguments but it must
be inserted manually using \/ when declarations are employed. For an upright
font, the italic correction of the characters is usually zero or very small, but there
are some exceptions. (In Computer Modern, to typeset a bold “f” in single quotes,
you should say ‘{\bfseries f\/}’ or ‘\textbf{f}’, lest you get a bold ‘f’ in
some fonts.) In slanted or italic fonts, the italic correction is usually positive, with
the actual value depending on the shape of the character. The correct usage of
shape-changing declarations that switch to slanted shapes is shown in the next
example.

7.3 Using fonts in text 341

7-3-2

When switching back from italic or slanted
shapes to an upright font one should add the
italic correction, except when a small
punctuation character follows.

\raggedright
When switching back from {\itshape italic\/} or
{\slshape slanted\/} shapes to an upright font
one should add the {\itshape italic correction},
except when a small punctuation character follows.

If you use the command forms with one argument instead, the italic correc-
tion is added automatically. This topic is further discussed in Section 7.3.3.

Small capitals are sometimes used in headings or to format names. For the
latter case you can, for example, define the command \name with the definition

\newcommand\name[1]{\textsc{#1}}

or, using two declarations:

\newcommand\name[1]{{\normalfont\scshape #1}}

The first definition simply switches to the desired shape, while the second form
initially resets all font attributes to their defaults. Which approach is preferable
depends on the available fonts and the type of document. With Computer Modern
only the Roman and typewriter families contain a small caps shape, so the second
definition might be preferred in certain applications because it will use small caps
(though serifed) even in a \sffamily context. The first command would result in
a request for a medium series, small caps, shaped font in the Computer Modern
Sans family. Because this font is not available, LaTEX would try to find a substitute
by first changing the shape attribute to its default, with the result that you would
not get small caps. (See Section 7.9.3 for further information about substitutions.)

Another interesting use of the \scshape declaration is in the definition of an
acronym tag:

\newcommand\acro[1]{{\scshape\MakeLowercase{#1}}}

This definition makes use of the LaTEX command \MakeLowercase , which changes
all characters within its argument to lowercase (in contrast to the TEX primitive
\lowercase , this command also changes characters referred to by commands,
such as \OE , to lowercase). As a result, all characters in the argument of \acro
will be changed to lowercase and therefore typeset with small capitals.

Another slightly special shape command available in LaTEX is the \emph com-
mand. This command denotes emphasis in normal text; the corresponding decla-
ration is \em . Traditionally, emphasized words in text are set in italic; if emphasis
is desired in an already italicized portion of the text, one usually returns to the
upright font. The \emph command supports this convention by switching to the
\itshape shape if the current font is upright, and to the \upshape shape if the
current font is already slanted (i.e., if the shape is \itshape or \slshape). Thus,

342 Fonts and Encodings

\tiny Size

\scriptsize Size

\footnotesize Size

\small Size

\normalsize Size
\large Size
\Large Size
\LARGE Size

\huge Size
\Huge Size

The actual sizes shown above are those specially tailored for use in this book

Table 7.1: Standard size-changing commands

the user does not have to worry about the current state of the text when using the
\emph command or the \em declaration.

Nevertheless, one has to be careful
about the proper use of italic corrections
on both ends of the emphasized text. It is
therefore better to use the \emph com-
mand, which automatically takes care
of the italic correction on both sides.

{\em Nevertheless, one has to be careful about
the\/ {\em proper\/} use of italic corrections
on both ends of the emphasized text}. It is
therefore better to use the \verb=\emph= command,
which \emph{automatically} takes care of the
italic correction on both sides. 7-3-3

Using the upright shape for nested emphasis is not always very noticeable. A
common typographic recommendation is, therefore, to use small capitals for the
inner emphasis. This practice is not directly supported by standard LaTEX but can
be achieved through the command \eminnershape , made available by the fixltx2e
package.

Nevertheless, one has to be careful
about the PROPER use of italic correc-
tions on both ends of the emphasized text.

\usepackage{fixltx2e}
\renewcommand\eminnershape{\scshape}

{\em Nevertheless, one has to be careful about
the\/ {\em proper\/} use of italic corrections
on both ends of the emphasized text}. 7-3-4

Note that underlining for emphasis is considered bad practice in the publish-
ing world. Underlining is used only when the output device can’t do highlighting
in another way—for example, when using a typewriter. Sections 3.1.6 and 3.1.7
discuss packages that change \em to produce underlining.

Standard font sizes

LaTEX has 10 size-changing commands (see Table 7.1). Since size changes are nor-
mally used only in the definition of commands, they have no corresponding com-
mand forms with one argument. The names of the commands have been retained
from LaTEX 2.09 but in today’s LaTEX their functionality has changed slightly. In
LaTEX2ε such a command changes only the size of the current font, with all other
attributes staying the same; in LaTEX 2.09 a size-changing command also automati-
cally switched back to the main document font.

7.3 Using fonts in text 343

The size selected by these commands depends on the settings in the doc-
ument class file and possibly on options (e.g., 11pt) specified with it. In gen-
eral, \normalsize corresponds to the main size of the document, and the size-
changing commands form an ordered sequence starting with \tiny as the small-
est and going up to \Huge as the largest size. Sometimes more than one command
refers to the same real size; for example, when a large \normalsize is chosen,
\Huge can be the same as \huge . In any event, the order is always honored.

The size-related commands for the main text sizes (i.e., \normalsize , \small ,
and \footnotesize) typically influence the spacing around lists and displays as
well. Thus, to change their behavior, one should not simply replace their defini-
tion by a call to \fontsize , but instead start from their original definitions, as
documented in classes.dtx.

Unfortunately, there is currently no relative size-changing command in LaTEX—
for example, there is no command for requesting a size 2pt larger than the cur-
rent one. This issue is partially resolved with the relsize package described in
Section 3.1.4 on page 83.

7.3.2 Combining standard font commands

As already shown, the standard font-changing commands and declarations can be
combined. The result is the selection of a typeface that matches the combination
of all font attributes. For example:

7-3-5

One can typeset a text in a large sans serif
bold typeface but note the unchanged leading!
LATEX uses the value in force at the end of the para-
graph!

One can typeset a text
{\sffamily\bfseries\large
in a large sans serif bold typeface}

but note the unchanged leading!
\LaTeX{} uses the value in force at
the \emph{end} of the paragraph!

What happens behind the scenes is that the \sffamily command switches
to the sans serif default family, then \bfseries switches to the default bold se-
ries in this family, and finally \large selects a large size but leaves all other font
attributes unchanged (the leading appears to be unchanged because the scope of
\large ends before the end of the paragraph). Font metric files (i.e., .tfm files)
are loaded for all intermediate typefaces, even if these fonts are never used. In the
preceding example, they would be “sans serif medium 10pt” after the \sffamily ,
then “sans serif bold extended 10pt” after the \bfseries , then “sans serif bold
extended 14pt”, which is the font that is finally used. Thus, such high-level com-
mands can force LaTEX’s font selection to unnecessarily load fonts that are never
used. This normally does not matter, except for a small loss of processing speed
when a given combination is used for the first time. However, if you have many
different combinations of this type, you should consider defining them in terms
of the primitive font-changing declarations (see Section 7.9).

344 Fonts and Encodings

Command Corresponds to Action

\textrm{...} {\rmfamily...} Typeset text in Roman family
\textsf{...} {\sffamily...} Typeset text in sans serif family
\texttt{...} {\ttfamily...} Typeset text in typewriter family

\textmd{...} {\mdseries...} Typeset text in medium series
\textbf{...} {\bfseries...} Typeset text in bold series

\textup{...} {\upshape...} Typeset text in upright shape
\textit{...} {\itshape...} Typeset text in italic shape
\textsl{...} {\slshape...} Typeset text in slanted shape
\textsc{...} {\scshape...} Typeset text in small caps shape

\emph{...} {\em...} Typeset text emphasized

\textnormal{..} {\normalfont..} Typeset text in the document font

Table 7.2: Standard font-changing commands and declarations

7.3.3 Font commands versus declarations

We have already seen some examples of font commands that have arguments
and change font attributes. These font-changing commands with arguments all
start with \text... (except for the \emph command) to emphasize that they are
intended for use in normal text and to make them easily memorizable. Using
such commands instead of the declarative forms has the advantage of maintaining
consistency with other LaTEX constructs. They are intended for typesetting short
pieces of text in a specific family, series, or shape. Table 7.2 shows the effects of
these commands.

A further advantage of these commands is that they automatically insert any
necessary italic correction on either side of their argument. As a consequence, one
no longer has to worry about forgetting the italic correction when changing fonts.

Only in a very few situations is this additional space wrong. For example,
most typographers recommend omitting the italic correction if a small punctua-
tion character, like a comma, directly follows the font change. As the amount of
correction required is partly a matter of taste, you can define in which situations
the italic correction should be suppressed. This is done by specifying the charac-
ters that should cancel a preceding italic correction in the list \nocorrlist .1 The
default definition for this command is

\newcommand{\nocorrlist}{,.}

It is best to declare the most often used characters first, as it will make the pro-
cessing slightly faster.

1Any package that changes the \catcode of a character inside \nocorrlist must redeclare the
list. Otherwise, the changed character will no longer be recognized by the suppression algorithm.

7.3 Using fonts in text 345

In addition to the global customization, it is possible to suppress the italic
correction in individual instances. For this purpose, the command \nocorr is pro-
vided. Note that you have to put \nocorr on the left or right end inside the argu-
ment of the \text... commands, depending on which side of the text you wish
to suppress the italic correction.

7-3-6

When using the LATEX high-level font com-
mands, the proper use of italic corrections is
automatically taken care of. Only sometimes
one has to help LATEX by adding a \nocorr
command.

\emph{When using the \LaTeX{} high-level font
commands, the \emph{proper} use of italic
corrections is automatically taken care of}.
Only \emph{sometimes} one has to help \LaTeX{}
by adding a \verb=\nocorr= command.

In contrast, the use of the declaration forms is often more appropriate when
you define your own commands or environments.

7-3-7

• This environment produces
boldface items.

• It is defined in terms of LATEX’s
itemize environment and
NFSS declarations.

\newenvironment{bfitemize}{\begin{itemize}%
\normalfont\bfseries\raggedright}{\end{itemize}}

\begin{bfitemize}
\item This environment produces boldface items.
\item It is defined in terms of \LaTeX’s
\texttt{itemize} environment and NFSS declarations.

\end{bfitemize}

7.3.4 Accessing all characters of a font

Sometimes it is impossible to enter a character directly from the keyboard, even
though the character exists in the font. Therefore, many useful characters are
accessible via command names like \ss or \AE , which produce “ß” and “Æ”, re-
spectively. Some characters can also be implicitly generated from sequences of
letters (this is a property of fonts) like ffi, which produces “ffi”, and --- , which
produces “—” in the standard TEX fonts.

In addition, the command \symbol allows you to access any character in a
font by giving its number in the current encoding scheme as either a decimal,
octal (preceded by ’), or hexadecimal (preceded by ") number.

7-3-8

In the Cork font encoding (T1), characters
like Þ, §, and are included and can be ac-
cessed with the \symbol command.

\fontencoding{T1}\selectfont

In the Cork font encoding (\texttt{T1}),
characters like \symbol{"DE}, \symbol{’237},
and \symbol{32} are included and can be
accessed with the \verb=\symbol= command.

The numbers corresponding to the characters in any font can be obtained by
using the program nfssfont.tex, described in Section 7.5.7 on page 369.

346 Fonts and Encodings

Hook Default value Description

\encodingdefault OT1 Encoding scheme for “main font”

\familydefault \rmdefault Family selected for “main font”
\seriesdefault m Series selected for “main font”
\shapedefault n Shape selected for “main font”

\rmdefault cmr Family selected by \rmfamily and \textrm
\sfdefault cmss Family selected by \sffamily and \textsf
\ttdefault cmtt Family selected by \ttfamily and \texttt

\bfdefault bx Series selected by \bfseries and \textbf
\mddefault m Series selected by \mdseries and \textmd

\itdefault it Shape selected by \itshape and \textit
\sldefault sl Shape selected by \slshape and \textsl
\scdefault sc Shape selected by \scshape and \textsc
\updefault n Shape selected by \upshape and \textup

Table 7.3: Font attribute defaults

7.3.5 Changing the default text fonts

To make it easier to modify the overall appearance of a document, LaTEX provides
a set of built-in hooks that modify the behavior of the high-level font-changing
commands discussed in the previous sections. These hooks are shown in Table 7.3.
The values of these hooks can be set in package files or in the preamble of a
document by using \renewcommand. Suitable values for these commands can be
found by looking through the font tables in this chapter.

For example, by writing in the preamble

\renewcommand\familydefault{cmss}

a whole document would come out in Computer Modern Sans, because this re-
definition changes the font family for the main font used by LaTEX. More ex-
actly, the main document font is determined by the values of \encodingdefault ,
\familydefault , \seriesdefault , and \shapedefault . Thus, you have to make
sure that these commands are defined in such a way that their combination points
to an existing font shape in LaTEX’s internal tables.

The default value stored in \encodingdefault currently is OT1, which means
�Suboptimal

encoding default
that LaTEX assumes that most fonts use the original TEX encoding. This is actually
a compatibility setting: in most circumstances it is better to use the T1 encoding
because it contains many additional glyphs that are not available with OT1 and
allows proper hyphenation for words with accented characters (see Section 7.5.1).
Nowadays, some fonts are made available only in T1; that is, they do not support
OT1 at all.

7.4 Using fonts in math 347

One also has to be aware that not every font encoding is suitable for use as
a document-encoding default. A prerequisite is that the encoding must include
most of the visible ASCII letters in their standard positions; see the discussion in
Section 7.11 on page 440 for details. The \encodingdefault can be changed by
loading the fontenc package with one or more options; see Section 7.5.3. For more
information on font encodings refer to Section 7.9.1.

Another example, this time involving a series-changing command, would be
to define \bfdefault to produce b so that the \bfseries command will use bold
instead of bold extended, which is the default under Computer Modern. How-
ever, there is some risk in using such a setting since, for example, in Computer

�Wrong bold
default can lead

to problems

Modern only the Roman family has bold variants with a medium width. Com-
puter Modern Typewriter and Computer Modern Sans have only bold extended
variants. Thus, without further adjustments, a request for a bold sans serif font
(i.e., \sffamily\bfseries), for example, might force LaTEX to try font substitu-
tion, and finally select a medium-weight font. (This outcome can be avoided, as
explained in Section 7.10.3, by specifying that the bold extended variants of the
sans family should serve as substitutes for the bold medium ones.)

An example in which some default values are changed can be found in Sec-
tion 7.10.8 on page 439, which covers setting up PostScript manually.

The initial setting of \familydefault means that changing \rmdefault will
implicitly also change \familydefault to the new value, as long as no special
setting for \familydefault is defined. However, if \familydefault is changed,
\rmdefault is not affected.

7.3.6 LATEX 2.09 font commands

The two-letter font commands used in LaTEX 2.09, such as \bf , are no longer de-
fined by LaTEX2ε directly. Instead, they are defined (if at all) in the LaTEX2ε class
files. For compatibility reasons the standard classes provide definitions for these
commands that emulate their behavior in LaTEX 2.09. However, it is legitimate for
you to redefine them in a package or in the preamble according to your per-
sonal taste, something you should not do with basic font selection commands
like \bfseries .

Because the old LaTEX 2.09 font commands are now allowed to be defined

�Do not use \bf
and friends

freely in a document class or by the user, they are no longer used within the code
for LaTEX2ε . Instead, all internal references to fonts are created using either high-
or low-level interfaces of LaTEX’s font selection scheme. This convention should be
followed by package and class developers to ensure a consistent behavior through-
out.

7.4 Using fonts in math

Unlike the situation in text, automatic changes in font shapes are generally not
desired in math formulas. For mathematicians, individual shapes convey specific

348 Fonts and Encodings

information. For example, bold upright letters may represent vectors. If the char-
acters in a formula were to change because of surrounding conditions, the result
would be incorrect. For this reason handling of fonts in mathematical formulas is
different than that in text.

Characters in a formula can be loosely put into two classes: symbols and al-
phabet characters (including digits). Internally, (LA)TEX distinguishes between eight
types of math characters (to account for appropriate spacing), but for the discus-
sion of fonts the division into two classes is generally adequate.

Some symbols, such as =, can be entered directly from the keyboard. The bulk
of them, however, must be entered via a control sequence—for example, \leq
stands for ≤. The other main group of characters in a formula, the alphabet char-
acters, are entered directly from the keyboard.

More than 200 symbols are predefined in a standard (LA)TEX system, allowing
the user to typeset almost any desired formula. These symbols are scattered over
several fonts, but they are accessed in such a way that the user does not have to
be aware of their internal representations. If necessary, additional symbol fonts
can be made accessible in a similar way; see Section 7.10.7.

The most important difference between symbols and alphabet characters is
that symbols always have the same graphical representation within one formula,
while it is possible for the user to change the appearance of the alphabet charac-
ters. We will call the commands that change the appearance of alphabet characters
in a formula “math alphabet identifiers” and the fonts associated with these com-
mands “math alphabets”. The alphabet identifiers are independent of surrounding
font commands outside the formula, so a formula does not change if it is placed
(for example) inside a theorem environment whose text is, by default, typeset in
italics. This behavior is very important, because character shapes in a mathemati-
cal formula carry meanings that must not change because the formula is typeset
in a different place in a document.

Some people who are familiar with the old method of font selection may be
surprised by the fact that commands like \bfseries cannot be used in formu-
las. This is the price we must pay for the greater flexibility in choosing text font
attributes—a flexibility that we do not want in a formula. We therefore need a dif-
ferent mechanism (math alphabet identifiers) for changing the typeface of certain
alphabet characters in complicated formulas.

7.4.1 Special math alphabet identifiers

One alphabet and a huge number of symbols are not sufficient for scientists to
express their thoughts. They tend to use every available typeface to denote spe-
cial concepts. Besides the use of foreign alphabets such as Greek letters, which
usually are accessed as symbols—\alpha, \beta, and so on—we find sans serif
letters for matrices, bold serif letters for vectors, and Fraktur fonts for groups, ide-
als, or fields. Others use calligraphic shapes to denote sets. The conventions are
endless, and—even more importantly—they differ from one discipline to another.

7.4 Using fonts in math 349

Command Example

\mathcal $\mathcal{A}=a$ A = a
\mathrm max_i maxi
\mathbf $\sum x = \mathbf{v}$

∑
x = v

\mathsf G_1^2 G2
1

\mathtt $\mathtt{W}(a)$ W(a)
\mathnormal $\mathnormal{abc}=abc$ abc = abc
\mathit $differ\neq\mathit{differ}$ differ �= differ

Table 7.4: Predefined math alphabet identifiers in LaTEX

For this reason LaTEX makes it possible to declare new math alphabet identifiers
and associate them with any desired font shape group instead of relying only on
a predefined set that cannot be extended. These identifiers are special commands
for use in a formula that typeset any alphabet character in their argument in a spe-
cific typeface. (Symbols cannot be changed in this way.) These identifiers may use
different typefaces in different formulas, as we will see in Section 7.4.3, but within
one formula they always select the same typeface regardless of the surrounding
conditions.

Predefined alphabet identifiers

New math alphabet identifiers can be defined according to the user’s needs, but
LaTEX already has a few built in. These identifiers are shown in Table 7.4. As the last
lines in the table show, the letters used in formulas are taken by default from the
math alphabet \mathnormal . In contrast, the letters produced by \mathit have
different spacing; thus this alphabet could be used to provide full-word variable
names, which are common in some disciplines.

In LaTEX2ε math alphabet identifiers are commands with one argument, usu-
ally a single letter or a single word to be typeset in a special font.

7-4-1

Therefore, G can be computed as

G = A+
n∑

i=1

Bi (1)

Therefore, G can be computed as
\begin{equation}
\mathsf{G} = \mathcal{A} +

\sum_{i=1}^{n} \mathcal{B}_{i}
\end{equation}

This procedure differs from the way font commands were used in LaTEX 2.09,
where commands, such as \rm , would cause font changes (..{\rm A}..). For the
most important two-letter font-changing commands like \rm , \sf , \bf , \it , and
\tt , the old syntax is still supported in the standard classes. For the others you
can force the old behavior by specifying the package oldlfont; see Section 7.12.1.
However, we suggest that you refrain from using such commands in new LaTEX
documents.

350 Fonts and Encodings

As already mentioned, another difference between the old LaTEX 2.09 font se-
lection scheme and NFSS is that text font declarations are no longer allowed in
formulas, as they merely change some characteristic of the current font rather
than switching to a specific font. Thus, if you write {\bfseries..} instead of
\mathbf{..} in a formula, LaTEX will produce an error message.

The command names for the math alphabet identifiers are chosen to be de-
scriptive rather than simple to type—they all start with \math. Therefore, if you
use the commands more than occasionally in your document, you should consider
defining some abbreviations in the preamble, such as the following:

\newcommand\mrm{\mathrm}

You may wonder what the default math alphabet is—that is, from which alpha-
No default math

alphabet
bet the alphabet characters are selected if you do not specify an alphabet identifier
explicitly, as in the formula $x = 123$. The answer is that no single default math
alphabet exists. The (LA)TEX system can be set up so that alphabetical characters
are fetched from different alphabets as long as the user has not explicitly asked
for a specific one, and this is normally the case, as the following example shows.

x = 12345 (1)

x = 12345 (2)

x = 12345 (3)

\begin{eqnarray}
x &=& 12345 \\

\mathrm{x} &=& \mathrm{12345} \\
\mathnormal{x} &=& \mathnormal{12345}

\end{eqnarray} 7-4-2

As you can see, \mathrm does not change the digits and \mathnormal does not
change the letters, so the default for digits in the normal set-up is the math alpha-
bet associated with \mathrm and the default for letters is the one associated with
\mathnormal .1 This behavior can be controlled with the \DeclareMathSymbol
command, which is explained in Section 7.10.7.

Defining new alphabet identifiers

New math alphabet identifiers are defined with the \DeclareMathAlphabet com-
mand. Suppose that you want to make a slanted sans serif typeface available as
a math alphabet. First you decide on a new command name, such as \msfsl , to
be used to select your math alphabet. Then you consult the font classification
tables in this chapter (starting on page 354) to find a suitable font shape group
to assign to this alphabet identifier. You will find that the Computer Modern
Sans family, for example, consists of a medium series with upright and slanted
shapes. If you decide to use the slanted shape of this family, you tell LaTEX using
\DeclareMathAlphabet .

1It is a strange fact that the math font that corresponds to the \mathnormal alphabet actually
contains old-style numerals. When the Computer Modern fonts were developed, space was a rare
commodity, so Donald Knuth squeezed a number of “nonmathematical” glyphs into these fonts
that are normally used only in text.

7.4 Using fonts in math 351

\DeclareMathAlphabet{cmd}{encoding}{family}{series}{shape}

This declaration has four arguments besides the identifier: the encoding scheme,
the family, the series, and the shape of the font to be used. The alphabet identi-
fier defined in the example will always switch to Computer Modern Sans medium
slanted.

7-4-3

We demonstrate this with the formula∑
Ai = a tanβ (1)

\DeclareMathAlphabet{\msfsl}{OT1}{cmss}{m}{sl}

We demonstrate this with the formula
\begin{equation}
\sum \msfsl{A}_{i} = a \tan \beta

\end{equation}

It is also possible to redefine an existing math alphabet identifier in a package
file or in the preamble of your document. For example, the declaration

\DeclareMathAlphabet{\mathsf}{OT1}{pag}{m}{n}

will override the default settings for the \mathsf alphabet identifier. After that,
\mathsf will switch toAdobe Avant Garde in your formulas. There is, however,
a subtle point: if the math alphabet in question is part of a symbol font that
is already loaded by LaTEX for other reasons (e.g., \mathcal), it is better to use
\DeclareSymbolFontAlphabet as it makes better use of TEX’s somewhat limited
resources for math; see page 435 for details.

7.4.2 Text font commands in math

As mentioned previously, text font declarations like \rmfamily cannot be used
in math. However, the font-changing commands with arguments—for example,
\textrm—can be used in both text and math. You can use these commands to
temporarily exit the math context and typeset some text in the midst of your
formula that logically belongs to the text surrounding the formula. Note that the
font used to typeset this text will depend on surrounding conditions—that is, it
will pick up the current values of encoding, family, series, and shape, as in the
next example.

7-4-4

The result will be

x = 10 and thus y = 12
\sffamily The result will be
\[x = 10 \textbf{ and thus } y = 12 \]

As you see, the Sans family was retained and the series was changed to bold.
Perhaps more useful is the \text command, provided by the amstext package,
which picks up the current values of encoding, family, series, and shape without
changing any of them (see Section 8.6.1).

352 Fonts and Encodings

7.4.3 Mathematical formula versions

Besides allowing parts of a formula to be changed by using math alphabet identi-
fiers, LaTEX lets you change the appearance of a formula as a whole. Formulas are
typeset in a certain “math version”, and you can switch between math versions
outside of math mode by using the command \mathversion , thereby changing
the overall layout of the following formulas.

LaTEX knows about two math versions called “normal” and “bold”. Additional
ones are sometimes provided in special packages. For example, themathtime pack-
age (for the commercial MathTime fonts) sets up a math version called “heavy” to
typeset formulas with ultra bold symbols as provided by the MathTime fonts.

As the name indicates, \mathversion{normal} is the default. In contrast,
the bold version will produce bolder alphabet characters and symbols, though by
default big operators, like \sum , are not changed. The following example shows
the same formula first in the normal and then in the bold math version.1

z∑
j=1

j =
z(z + 1)

2
(1)

z∑
j=1

j =
z(z + 1)

2
(2)

\begin{equation}
\sum_{j=1}^{z} j = \frac{z(z+1)}{2}

\end{equation}
\mathversion{bold}
\begin{equation}

\sum_{j=1}^{z} j = \frac{z(z+1)}{2}
\end{equation}

7-4-5

Using \mathversion might be suitable in certain situations, such as in head-
ings, but remember that changing the version means changing the appearance
(and perhaps the meaning) of the entire formula. If you want to darken only
some symbols or characters within one formula, you should not change the
\mathversion . Instead, you should use the \mathbf alphabet identifier for charac-
ters and/or use the command \bm provided by the bm package; see Section 8.8.2.

If you change the math version with the \mathversion command, LaTEX looks
in its internal tables to find where all the symbols for this new math version
are located. It also may change all or some of the math alphabet identifiers and
associate them with other font shapes in this version.

But what happens to math alphabet identifiers that you have defined yourself,
such as the \msfsl from Example 7-4-3? As long as you declared them using only
\DeclareMathAlphabet , they will stay the same in all math versions.

If the math alphabet identifier is to produce a different font in a special math
version, you must inform LaTEX of that fact by using the \SetMathAlphabet com-
mand. For example, in the default set-up the \mathsf alphabet identifier is defined
as follows:

\DeclareMathAlphabet{\mathsf}{OT1}{cmss}{m}{n}
\SetMathAlphabet{\mathsf}{bold}{OT1}{cmss}{bx}{n}

1For historical reasons LaTEX has two additional commands to switch to its standard math ver-
sions: \boldmath and \unboldmath .

7.5 Standard LATEX font support 353

The first line means that the default for \mathsf in all math versions is Computer
Modern Sans medium. The second line states that the bold math version should
use the font Computer Modern Sans bold extended instead.

\SetMathAlphabet{cmd}{version}{encoding}{family}{series}{shape}

From the previous example, you can see that \SetMathAlphabet takes six argu-
ments: the first is the name of the math alphabet identifier, the second is the math
version name for which you are defining a special set-up, and the other four are
the encoding, family, series, and shape name with which you are associating it.

As noted earlier, you can redefine an existing math alphabet identifier by us-
ing \DeclareMathAlphabet . If you do so, all previous \SetMathAlphabet dec-
larations for this identifier are removed from the internal tables of LaTEX. Thus,
the identifier will come out the same in all math versions unless you add new
\SetMathAlphabet declarations for it.

7.5 Standard LATEX font support

This section opens with a short introduction to the standard text fonts distributed
together with LaTEX: Computer Modern and European Computer Modern. It is fol-
lowed by a discussion of LaTEX’s standard support packages for input and font
encodings. The section concludes by describing a package for tracing LaTEX’s font
processing and another package for displaying glyph charts (a package the author
used extensively while preparing the later parts of this chapter).

7.5.1 Computer Modern—The LATEX standard fonts

Along with TEX, Donald Knuth developed a family of fonts called Computer Mod-
ern; see Table 7.5 on the next page. Until the early 1990s, essentially only these
fonts were usable with TEX and, consequently, with LaTEX. Each of these text fonts

Original TEX font
encoding

contains 128 glyphs (TEX was working with 7 bits originally), which does not leave
room for including accented characters as individual glyphs. Thus, using these
fonts means that accented characters have to be produced with the \accent prim-
itive of TEX, which in turn means that automatic hyphenation of words with ac-
cented characters is impossible. While this restriction is acceptable with English
documents that contain few foreign words, it is a major obstacle for other lan-
guages.

Not surprisingly, these deficiencies were of great concern to the TEX users in
T1 a.k.a. “Cork”
encoding

Europe and eventually led to a reimplementation of TEX in 1989 to support 8-bit
characters internally and externally. At the TEX Users conference in Cork (1990),
a standard 8-bit encoding for text fonts (T1) was developed that contains many
diacritical characters (see Table 7.32 on page 449) and allows typesetting in more

354 Fonts and Encodings

Family Series Shape(s) Example of Typeface

Computer Modern Roman (T1, OT1, TS1)

cmr m n, it, sl, sc, ui Computer Roman small caps

cmr bx n, it, sl Comp. Mod. Roman bold extended italic
cmr b n Computer Modern Roman bold upright

Computer Modern Sans (T1, OT1, TS1)

cmss m n, sl Computer Modern Sans slanted
cmss bx n Computer Modern Sans bold extended
cmss sbc n Computer Modern Sans semibold condensed

Computer Modern Typewriter (T1, OT1, TS1)

cmtt m n, it, sl, sc Computer Modern Typewriter italic

cmvtt m n, it Proportional Computer Modern Typewriter

Computer Modern Fibonacci (T1, OT1)

cmfib m n Computer Modern Fibonacci

Computer Modern Funny Roman (T1, OT1)

cmfr m n, it Computer Modern Funny Roman

Computer Modern Dunhill (T1, OT1)

cmdh m n Computer Modern Dunhill
Table 7.5: Classification of the Computer Modern font families

than 30 languages based on the Latin alphabet. At the University of Bochum (under
the direction of Norbert Schwarz) the Computer Modern font families were then
reimplemented, and additional characters were designed, so that the resulting
fonts completely conform to this encoding scheme. The first implementation of

EC fonts these fonts was released under the name “DC fonts”. Since then Jörg Knappen
has finalized them and they are now distributed as “European Computer Modern
Fonts”, often shortened to “EC fonts”.1

Both Computer Modern and the EC fonts are considered standard in LaTEX and
PostScript Type 1

instances
must be available at any installation. Although originally developed with META-
FONT, there are now free Type 1 PostScript replacements as well. For Computer
Modern these were produced by Blue Sky Research; Y&Y added the LaTEX, AMS, and
Euler fonts. The EC fonts have been recently converted from METAFONT sources

1Not to be confused with the European Modern Fonts™, a high-quality set of commercial fonts by
Y&Y that are based on the Computer Modern design but have slightly different metrics [65].

7.5 Standard LATEX font support 355

to Type 1 PostScript by Vladimir Volovich. His implementation is called the CM-
CM-Super fontsSuper fonts package and, beside the EC fonts, it covers EC Concrete, EC Bright,

and LH fonts (Cyrillic Computer Modern). In addition to the T1 encoding, the LaTEX
standard encodings TS1, T2A, T2B, T2C, and X2 are supported by CM-Super. The
CM-Super fonts have been automatically converted to the Type 1 format and al-
though a sophisticated algorithm was used for this conversion, you cannot expect
exactly the same quality as could be achieved by a manual conversion process.

Since the PostScript fonts have the same font metrics as their METAFONT

counterparts they need no support package in the LaTEX document. Once installed
they will be automatically used by the driver program (e.g., dvips) that converts the
.dvi output to PostScript. The standard .fd files for Computer Modern provide
only well-defined font sizes to avoid the generation of too many bit-mapped fonts.
However, with PostScript the use of intermediate sizes (via \fontsize) is possible
without any such side effect. The package fix-cm makes use of this feature.

Although the EC fonts were originally meant to be a drop-in extension (and
replacement) for the 7-bit Computer Modern fonts, not all glyph shapes were kept
in the end. For example, the German ß got a new design—a decision by the font
designer that did not make everybody happy.

7-5-1

Computer Modern sharp s: ß
EC Modern sharp s: ß

\fontencoding{OT1}\fontfamily{cmr}\selectfont
Computer Modern sharp s: \ss \par
\fontencoding{T1}\fontfamily{cmr}\selectfont
EC Modern sharp s: \ss

With the CM-Super fonts this is no longer a problem: if one prefers the orig-
inal CM glyph over the EC glyph, one can simply exchange germandbls with
germandbls.alt in the file cm-super-t1.enc.1

However, these are not the only differences between the original Computer
Modern fonts and the new EC fonts. The latter have many more individual designs
for larger font sizes (while CM fonts were scaled linearly) and in this respect the
fact that both really are different font families is quite noticeable.2 The particular
example that follows is perhaps the most glaring difference of that kind.

7-5-2

The fox jumps
quickly over the fence!

The fox jumps
quickly over the fence!

\fontencoding{OT1}\sffamily\bfseries
\Huge The fox jumps \par
\normalsize quickly over the fence!\par
\fontencoding{T1}\sffamily\bfseries
\Huge The fox jumps \par
\normalsize quickly over the fence!\par

1An even better solution is to use a different name for the modified encoding file and then change
the references in the (dvips) mapping file to use the new name.

2The historical mistake was to pretend to NFSS that both are the same families (e.g., cmr, cmss),
just encoded according to different font encodings. Unfortunately, this cannot be rectified without
huge backward compatibility problems.

356 Fonts and Encodings

This issue is no problem if one likes the EC designs and uses T1 throughout.
Otherwise, a number of approaches can be taken to resolve this problem. One is
to employ a different set of font definitions that do not make use of all individual
EC font designs, and that are closer to those of the traditional CM fonts, but with
improved typographical quality. Such a solution is provided by Walter Schmidt’s
package fix-cm, which is distributed as part of the core LaTEX distribution. Load
this package directly after the document class declaration (or even before using
\RequirePackage), as it takes effect only for fonts not already loaded by LaTEX—
and the document class might load fonts.

The fox jumps
quickly over the fence!

The fox jumps
quickly over the fence!

\usepackage{fix-cm}

\fontencoding{OT1}\sffamily\bfseries
\Huge The fox jumps \par
\normalsize quickly over the fence!\par
\fontencoding{T1}\sffamily\bfseries
\Huge The fox jumps \par
\normalsize quickly over the fence! 7-5-3

Another possible solution is to use the Almost European fonts (by Lars Enge-
bretsen) or the EZ-fonts (by Robert Fuster), both of which are sets of virtual fonts
built upon the Computer Modern fonts. They implement the T1 encoding with the
exception of a small number of glyphs that simply cannot be obtained from the
CM font material.

This approach has a number of disadvantages. For instance, these solutions
do not support the companion symbol fonts, so the additional symbols provided
by the textcomp package cannot be used at all. More importantly, the use of virtual

�Searching
problems in .pdf

documents

fonts to build composite glyphs means that a resulting .pdf file would not be
searchable for words containing diacritics, simply because instead of the accented
character (as a single glyph) a complicated construction is placed in this file. In
other words, the solutions help to make LaTEX believe that it deals with single
glyphs (and thus allows proper hyphenation and kerning) but this information is
lost again in the resulting output file, so further post-processing cannot be done
properly.

However, as far as the selected fonts are concerned, the ae package shows the
same result as fix-cm.

The fox jumps
quickly over the fence!

\usepackage{ae}

\fontencoding{T1}\sffamily\bfseries
\Huge The fox jumps \par
\normalsize quickly over the fence! 7-5-4

In 2002, three European TEX user groups (DANTE, GUTenberg, and NTG) initi-
Latin Modern on the

horizon
ated and funded a project to integrate all of the variants of the Computer Modern
Roman typefaces into a single Latin Modern family of fonts. The project is be-
ing carried out by Bogusław Jackowski and Janusz Nowacki, and the first official

7.5 Standard LATEX font support 357

version of the Latin Modern fonts was presented at the DANTE meeting in 2003.

7-5-5

The Latin Modern fonts are carefully
handcrafted PostScript Type 1 fonts based
on the designs of Knuth’s Computer Mod-
ern families. They contain all the glyphs
needed to typeset Latin-based European
languages. At the moment the T1 and TS1
encodings are supported. In a later step
the project will address glyphs needed for
typesetting Native American, Vietnamese,
and Transliteration. Also planned are 8-
bit math encodings (based on earlier work
by Clasen/Vieth and Ziegler [40,174]).

\usepackage{lmodern} \usepackage[T1]{fontenc}

The \textbf{Latin Modern} fonts are carefully
handcrafted PostScript Type~1 fonts based on the
designs of Knuth’s \emph{Computer Modern}
families. They contain all the glyphs needed to
typeset Latin-based European languages. At the
moment the \texttt{T1} and \texttt{TS1} encodings
are supported. In a later step the project will
address glyphs needed for typesetting Native
American, Vietnamese, and Transliteration. Also
planned are 8-bit math encodings (based on
earlier work by \textsc{Clasen/Vieth} and
\textsc{Ziegler}~[40,174]).

At the time of writing, the fonts were continuing to undergo further fine-
tuning. For example, additional kerning pairs and language-dependent ligatures
are being added. It is expected that a later version of the Latin Modern fonts
will become the default fonts for LaTEX; for now, they can be used by loading the
lmodern package and selecting the T1 encoding.

7.5.2 inputenc—Selecting the input encoding

If your computer allows you to write accented characters, either via single
keystrokes or by some other input method (e.g., by pressing ‘ and then a to get
à) and also displays them nicely in the editor. . .

Quand ils furent revenus un peu à eux, ils marchèrent vers
Lisbonne ; il leur restait quelque argent, avec lequel ils
espéraient se sauver de la faim après avoir échappé à la
tempête (Voltaire)

. . . then ideally you would use such a text directly with LaTEX instead of having to
type \‘a , \^e , and so forth.

While with languages such as French and German the latter approach is
still feasible, languages such as Russian and Greek really require the potential
for direct input, as (nearly) every character in these languages has a command
name as its internal LaTEX form. For example, the default Russian definition for
\reftextafter contains the following text (meaning “on the next page”):

\cyrn\cyra\ \cyrs\cyrl\cyre\cyrd\cyru\cyryu\cyrshch\cyre\cyrishrt
\ \cyrs\cyrt\cyrr\cyra\cyrn\cyri\cyrc\cyre

Clearly, no one wants to type text like this on a regular basis. Nevertheless, it has
the advantage of being universally portable, meaning that it will be interpreted

358 Fonts and Encodings

correctly on any LaTEX installation. On the other hand, typing on an appropriate
keyboard

на следующей странице

is clearly preferable, provided it is possible to make LaTEX understand this kind
of input. The problem is that what is stored in a file on a computer is not the
characters we see in the above sequence, but rather octets (numbers) representing
the characters. In different circumstances (using a different encoding), the same
octets might represent different characters.

How does LaTEX determine which interpretation it should use? As long as ev-
erything happens on a single computer and all programs interpret octets in files
(when reading or writing) in the same manner, everything is usually fine. In such a
situation it may make sense to activate an automatic translation mechanism that
is built into several recent TEX implementations. If, however, any file produced on
such a system is sent to a different computer, processing is likely to fail or, even
worse, may appear to succeed, but will in fact produce wrong results by displaying
incorrect characters.

To cope with this situation the inputenc package was created. Its main pur-
pose is to tell LaTEX the “encoding” used in the document or in a part of the docu-
ment. This is done by loading the package with the encoding name as an option.
For example:

\usepackage[cp1252]{inputenc} % Windows 1252 (Western Europe) code page

From that point onward LaTEX knows how to interpret the octets in the remainder
of the document on any installation,1 regardless of the encoding used for other
purposes on that computer.

A typical example is shown below. It is a short text written in the koi8-r
encoding popular in Russia. The right side shows what the text looks like on a
computer using a Latin 1 encoding (e.g., in Germany). The left side shows that
LaTEX was nevertheless able to interpret the text correctly because it was told which
input encoding was being used.

Русский язык (The Russian language)

\usepackage[russian]{babel}
\usepackage[koi8-r]{inputenc}

òÕÓÓËÉÊ ÑÚÙË (The Russian language) 7-5-6

The list of encodings currently supported by inputenc is given below. The
interface is well documented, and support for new encodings can be added easily.
Thus, if the encoding used by your computer is not listed here, it is worth looking

1This statement is true only if the TEX installation has not been set up to make some hard-wired
transformation when reading from a file. As mentioned in the introduction to this chapter, many
TEX implementations have been extended to support such transformations, but if they are activated
it is no longer possible to process documents in several languages in parallel.

7.5 Standard LATEX font support 359

into the inputenc package documentation1 to see whether it was added recently.
You can also search the Internet for encoding files for inputenc provided by other
authors. For example, encodings related to the Cyrillic languages are distributed
together with other font support packages for Cyrillic languages.

The ISO 8859 standard [67] defines a number of important single-byte encod-
ings, of which those related to the Latin alphabet are supported by inputenc. For
MS-DOS and Windows operating systems a number of single-byte encodings have
been defined by IBM and Microsoft, of which a subset is currently supported. In
addition, some encodings defined by other computer vendors are available. The
perhaps somewhat ad hoc (and constantly growing) selection is mainly the result
of contributions from the LaTEX user community.

latin1 This is the ISO 8859-1 encoding (also known as Latin 1). It can repre-
sent most Western European languages, including Albanian, Catalan, Danish,
Dutch, English, Faroese, Finnish, French, Galician, German, Icelandic, Irish, Ital-
ian, Norwegian, Portuguese, Spanish, and Swedish.

latin2 The ISO Latin 2 encoding (ISO 8859-2) supports the Slavic languages of
Central Europe that use the Latin alphabet. It can be used for the following
languages: Croat, Czech, German, Hungarian, Polish, Romanian, Slovak, and
Slovenian.

latin3 This character set (ISO 8859-3) is used for Esperanto, Galician, Maltese,
and Turkish.

latin4 The ISO Latin 4 encoding (ISO 8859-4) can represent languages such as
Estonian, Latvian, and Lithuanian.

latin5 The ISO Latin 5 encoding (ISO 8859-9) is closely related to Latin 1 and
replaces the rarely used Icelandic letters from Latin 1 with Turkish letters.

latin9 Latin 9 (or ISO 8859-15) is another small variation on Latin 1 that adds
the euro currency sign as well as a few other characters, such as the œ ligature,
that were missing for French and Finnish. It is becoming increasingly popular
as a replacement for Latin 1.

cp437 IBM 437 code page (MS-DOS Latin but containing many graphical charac-
ters to draw boxes).

cp437de IBM 437 code page but with a “ß” (German sharp s) in place of a β (Greek
beta) as used with German keyboards.

cp850 IBM 850 code page (MS-DOS multilingual ≈ latin1).

cp852 IBM 852 code page (MS-DOS multilingual ≈ latin2).

cp858 IBM 858 code page (IBM 850 with the euro symbol added).

cp865 IBM 865 code page (MS-DOS Norway).

1Process inputenc.dtx with LaTEX.

360 Fonts and Encodings

cp1250 Windows 1250 (Central and Eastern Europe) code page.

cp1252 Windows 1252 (Western Europe) code page.

cp1257 Windows 1257 (Baltic) code page.

ansinew Windows 3.1 ANSI encoding; a synonym for cp1252.

decmulti DEC Multinational Character Set encoding.

applemac Macintosh (standard) encoding.

macce Macintosh Central European code page.

next NeXT Computer encoding.

utf8 Unicode’s UTF-8 encoding support.

Most TEX installations accept 8-bit characters by default. Nevertheless, with-
out further adjustments, like those performed by inputenc, the results can be un-
predictable: characters may vanish, or you might get whatever character is present
in the current font at the octet location being referred to, which may or may not
be the desired glyph. This behavior was the default for a long time, so it was
not changed in LaTEX2ε because some people rely on it. However, to ensure that
such mistakes can be caught, inputenc offers the option ascii, which makes any
character outside the range 32–126 illegal.

\inputencoding{encoding}

Originally the inputenc package was written to describe the encoding used for
a document as a whole—hence the use of options in the preamble. It is, how-
ever, possible to change the encoding in the middle of a document by using the
command \inputencoding . This command takes the name of an encoding as its
argument. Processing is rather computing intensive, as typically more than 120
characters are remapped each time. Nevertheless, we know of applications that
change the encoding several times within a paragraph yet seem to work reason-
ably well.

When inputenc was written, most LaTEX installations were on computers that
UTF-8 support used single-byte encodings like the ones discussed in this section. Today, however,

another encoding is becoming popular as systems start to provide support for Uni-
code: UTF-8. This variable-length encoding represents Unicode characters in one
to four octets. Recently, some Linux distributions decided to use UTF-8 as the de-
fault encoding for the operating system, leaving their LaTEX users baffled that files
written using the keys on the keyboard were suddenly no longer accepted by LaTEX.
For this reason encoding support for UTF-8 was added to inputenc via the option
utf8. Technically, it does not provide a full UTF-8 implementation. Only Unicode
characters that have some representation in standard LaTEX fonts are mapped (i.e.,

7.5 Standard LATEX font support 361

mainly Latin and Cyrillic character sets); all others will result in a suitable error
message. In addition, Unicode combining characters are not supported, although
that particular omission should not pose a problem in practice.

7-5-7

German umlauts in UTF-8: äöü
But interpreted as Latin 1: Ã¤Ã¶Ã¼

\usepackage[utf8]{inputenc}
\usepackage{textcomp} % for Latin interpretation

German umlauts in UTF-8: ^^c3^^a4^^c3^^b6^^c3^^bc
\par\inputencoding{latin1}% switch to Latin 1
But interpreted as Latin 1: ^^c3^^a4^^c3^^b6^^c3^^bc

UTF-8 has the property that ASCII characters represent themselves and most
Latin characters are represented by two bytes. In the verbatim text of the example,
the two-byte representations of the German umlauts in UTF-8 are shown in TEX’s
hexadecimal notation, that is with each octet preceded by ^^. In an editor that
does not understand UTF-8, one would probably see them as similar to the output
that is produced when they are interpreted as Latin 1 characters.

The UTF-8 support offered by inputenc at the moment1 is restricted to the
character subset of Unicode directly supported by the inputenc mapping options
(e.g., latin1, latin2) as described on page 359. A package with more comprehen-
sive UTF-8 support (including support for Chinese, Korean, and Japanese charac-
ters), though consequently more complex in its set-up, is the ucs package written
by Dominique Unruh. You may want to give it a try if the inputenc solution does
not cover your needs.

7.5.3 fontenc—Selecting font encodings

To be able to use a text font encoding with LaTEX, the encoding has to be loaded in
the document class, a package, or in the document preamble. More precisely, the
definitions to access the glyphs in fonts with a certain encoding have to be loaded.
The canonical way to do this is via the fontenc package, which takes a comma-
separated list of font encodings as a package option. The last of these encodings
is automatically made the default document encoding. If Cyrillic encodings are
loaded, the list of commands affected by \MakeUppercase and \MakeLowercase
is automatically extended. For example,

\usepackage[T2A,T1]{fontenc}

will load all necessary definitions for the Cyrillic T2A and the T1 (Cork) encodings
and set the latter to be the default document encoding.

In contrast to normal package behavior, one can load this package several �Multiple uses of
fontenc allowedtimes with different optional arguments to the \usepackage command. This is

necessary to allow a document class to load a certain set of encodings and enable

1This is more of a resource problem than a technical one and thus may change.

362 Fonts and Encodings

the user to load still more encodings in the preamble. Loading encodings more
than once is possible without side effects (other than potentially changing the
document default font encoding).

If language support packages (e.g., those coming with the babel system) are
used in the document, it is often the case that the necessary font encodings are
already loaded by the support package.

7.5.4 textcomp—Providing additional text symbols

When the T1 font encoding was defined in Cork, it was decided that this encoding
should omit many standard text symbols such as † and instead include as many
composite glyphs as possible. The rationale was that characters that are subject
to hyphenation have to be present in the same font, while one can fetch other
symbols without much penalty from additional fonts. These extra symbols have,
therefore, been collected in a companion encoding.

In 1995, a first implementation of this encoding (TS1) was developed by Jörg
Knappen [78, 79]. With the textcomp package, Sebastian Rahtz provided a LaTEX
interface to it.

Unfortunately, just as with the T1 encoding, the encoding design for TS1 was
prepared based on glyph availability in the TEX world without considering that
the majority of commercial fonts provide different sets of glyphs. As a result, the
full implementation of this encoding is available for very few font families, among
them EC and CM Bright fonts. For most PostScript fonts implementations of the
encoding also exist, but half of the glyphs are missing and produce square blobs
of ink.1 Table 7.6 on pages 363–364 shows the glyphs made available by textcomp
and the commands to access them. Commands colored in blue indicate that the
corresponding glyph is most likely not available when PostScript fonts are used.

To help with these problems the textcomp package nowadays knows for many
Subsets of the TS1

encoding
font families to what extent they implement the TS1 encoding. In addition, it offers
a number of options that restrict the set of new commands for those font families
it does not know about.

For any unknown font family, the option safe allows only commands avail-
able with the ISO-Adobe character set (except for \textcurrency but adding a
fake \texteuro). The option euro replaces the fake euro symbol with a real glyph;
hence if that glyph does not exist in the font, \texteuro will produce a nasty blob
of ink.

The package option full enables all commands for fonts textcomp does not
know about. This means in particular that the perfectly valid LaTEX commands
\textcircled and \t will stop working the moment a document font is selected
that does not contain the necessary glyphs in its TS1 encoding. For this reason,

1The T1 encoding has the same problem when it comes to PostScript fonts, but fortunately only
five (seldom used) glyphs are missing from most fonts; see Example 7-9-2 on page 417.

7.5 Standard LATEX font support 363

Accent symbols

Á \capitalacute�A �A \capitalbreve�A Ǎ \capitalcaron�A
A̧ \capitalcedilla�A �A \capitalcircumflex�A Ä \capitaldieresis�A
�A \capitaldotaccent�A À \capitalgrave�A A̋ \capitalhungarumlaut�A
Ā \capitalmacron�A �A \capitalnewtie�A Ų \capitalogonek�U
�A \capitalring�A �OO \capitaltie�OO �A \capitaltilde�A
�o \newtie�o A○ \textcircled�A �oo \t�oo

Numerals (superior, fractions, old style)

¹ \textonesuperior ² \texttwosuperior ³ \textthreesuperior
¼ \textonequarter ½ \textonehalf ¾ \textthreequarters
0 \textzerooldstyle 1 \textoneoldstyle 2 \texttwooldstyle
3 \textthreeoldstyle 4 \textfouroldstyle 5 \textfiveoldstyle
6 \textsixoldstyle 7 \textsevenoldstyle 8 \texteightoldstyle
9 \textnineoldstyle

Pair symbols

〈 \textlangle 〉 \textrangle 〚 \textlbrackdbl
〛 \textrbrackdbl ↑ \textuparrow ↓ \textdownarrow
← \textleftarrow → \textrightarrow ⁅ \textlquill
⁆ \textrquill

Monetary and commercial symbols

฿ \textbaht ¢ \textcent ¢ \textcentoldstyle
₡ \textcolonmonetary ¤ \textcurrency $ \textdollar
$ \textdollaroldstyle ₫ \textdong € \texteuro
ƒ \textflorin 1 \textguarani ₤ \textlira
₦ \textnaira 4 \textpeso £ \textsterling
₩ \textwon ¥ \textyen
℗ \textcircledP 7 \textcopyleft © \textcopyright
8 \textdiscount ℮ \textestimated ‱ \textpertenthousand
‰ \textperthousand ※ \textreferencemark ® \textregistered
℠ \textservicemark ™ \texttrademark

Footnote symbols

∗ \textasteriskcentered ‖ \textbardbl ¦ \textbrokenbar
• \textbullet † \textdagger ‡ \textdaggerdbl
◦ \textopenbullet ¶ \textparagraph · \textperiodcentered
¶ \textpilcrow § \textsection

Scientific symbols

℃ \textcelsius ° \textdegree ÷ \textdiv
¬ \textlnot ℧ \textmho − \textminus
μ \textmu Ω \textohm ª \textordfeminine
º \textordmasculine ± \textpm √ \textsurd
× \texttimes

Blue indicates symbols unavailable in most PostScript fonts.

Table 7.6: Commands made available with textcomp

364 Fonts and Encodings

Various

˝ \textacutedbl ´ \textasciiacute ˘ \textasciibreve
ˇ \textasciicaron ¨ \textasciidieresis ` \textasciigrave
¯ \textasciimacron ○ \textbigcircle ␢ \textblank
V \textborn W \textdblhyphen Y \textdblhyphenchar
Z \textdied [\textdivorced ⁄ \textfractionsolidus
 ̏ \textgravedbl ‽ \textinterrobang ^ \textinterrobangdown
_ \textleaf ` \textmarried ♪ \textmusicalnote
№ \textnumero ' \textquotesingle ‚ \textquotestraightbase
„ \textquotestraightdblbase z \textrecipe — \textthreequartersemdash
| \texttildelow } \texttwelveudash

Blue indicates symbols unavailable in most PostScript fonts.

Table 7.6: Commands made available with textcomp (cont.)

the default option almostfull leaves these two commands untouched, to avoid
the situation shown in the next example.

CM fonts: x○ �oo
Times fonts: x oo

\usepackage[force,full]{textcomp}

CM fonts: \textcircled{x}\quad \t oo \par Times fonts:
\fontfamily{ptm}\selectfont\textcircled{x}\quad \t oo \par 7-5-8

Since Times Roman is a font that textcomp knows about, specifying full will
still produce correct output; to get the ink blobs we also had to add force in
the previous example. This option directs textcomp to ignore all knowledge about
individual font families and use the subset denoted by the additional option in all
cases.1

When textcomp gets loaded (with or without restricting options), a large num-
ber of new commands are made available to access the new symbols. In addition,
a number of symbols that have been (historically) taken by LaTEX from math fonts
(e.g., \textbullet , or \textdagger) are now taken from the companion fonts; as
a consequence, they now sometimes change their shapes when the font attributes
(family, series, shape) are changed.

†¶• viz. †¶•

\usepackage[safe]{textcomp}

\textdagger\textparagraph\textbullet{} viz.\
\fontfamily{ptm}\selectfont\textdagger\textparagraph\textbullet 7-5-9

While this is usually the right solution, it may result in changes in unexpected
places. For example, the itemize environment by default uses \textbullet to
indicate first-level items. If the slightly bigger bullet is preferred, then we have to

1This option is best avoided, as it can produce incorrect output without any warning.

7.5 Standard LATEX font support 365

undo the change in the default setting by returning the default to the right math
encoding (usually OMS1). Compare this to Example 7-5-9.

7-5-10 • now like •

\usepackage[safe]{textcomp}
\DeclareTextSymbolDefault{\textbullet}{OMS}

\textbullet{} now like \fontfamily{ptm}\selectfont\textbullet

Of course, a more sensible solution in this case may be to adjust the definition for
\labelitemi (see Section 3.3.1). For example:

\renewcommand\labelitemi{\normalfont\UseTextSymbol{OMS}{\textbullet}}

Diacritical marks on uppercase letters are sometimes flattened in some font
designs compared to their lowercase counterparts. The EC fonts follow this tra-
dition. For example, the grave accents on ò and Ò are different (which is not the
case with Lucida, the document font used in this book). This poses a problem if
one needs an uncommon letter that is not available as a single glyph in the T1
encoding, but rather must be constructed by placing the diacritical mark over the
base character. In that case the same diacritical mark is used, which can result in
noticeable differences (see the X̀ in the next example). The \capital... accents
shown in Table 7.6 on page 363 solve this problem by generating diacritical marks
suitable for use with uppercase letters.

7-5-11 òx̀ ÒX̀ ÒX̀ \usepackage[T1]{fontenc} \usepackage[safe]{textcomp}

\Huge \‘o\‘x \‘O\‘X \capitalgrave O\capitalgrave X

LaTEX offers a \textcompwordmark command, an invisible zero-width glyph
that can, for example, be used to break up unwanted ligatures (at the cost of
preventing hyphenation). When the textcomp package is loaded, this glyph has
a height of 1ex, which makes it possible to use it as the argument to an ac-
cent command, thereby placing an accent between two letters. In the next ex-
ample this command is used to produce the German -burg abbreviation. With
the textcomp package two additional compound word marks become available:
\textascendercompwordmark and \textcapitalcompwordmark that have the
height of the ascender or capitals in the font, respectively.

7-5-12

b˘g (this fails)
b̆g B̆G

\usepackage[T1]{fontenc} \usepackage[safe]{textcomp}

b\u{}g (this fails) \par
b\u\textcompwordmark g \quad B\u\textcapitalcompwordmark G

The above example works only with T1-encoded fonts (textcomp is addi-
tionally needed for the \textcapitalcompwordmark). The default definition for
\textcompwordmark in LaTEX does not use a real zero-width character, but rather
(lacking such a glyph) a zero-width space.

1One has to look for the default declaration in latex.ltx to find the right encoding.

366 Fonts and Encodings

As the $ sign is a glyph available in both the OT1 and T1 encodings, there is
no point in removing its definition and forcing LaTEX to pick up the TS1 version if
you are typesetting in this encoding. However, assume you want to use the variant
dollar sign $, for your dollars automatically. In that case you have to get rid of the
declarations in other encodings so that LaTEX will automatically switch to TS1.

\DeclareTextCommandDefault{\textdollar}
{\UseTextSymbol{TS1}\textdollaroldstyle} % set up new default

\UndeclareTextCommand{\textdollar}{OT1} % do not use the defs in
\UndeclareTextCommand{\textdollar} {T1} % OT1 or T1

Such redeclarations will, of course, work only if the document fonts contain the
desired glyph in the TS1 encoding. In this book they would have failed, because
Lucida Bright (the document font for this book) has only the restricted set of
ISO-Adobe symbols available. So if you wonder where the $ and similar symbols
shown in the book actually came from, the answer is simple: from the EC fonts.

What can you do if you want to use, say, \textborn , but the current font
family you use does not implement it? One possible solution is to overwrite the
default provided by the textcomp package using \DeclareTextCommandDefault .
The idea is that the default switches to a font family that you know contains the
desired symbol (for example, cmr if your main document font is a serifed font, or
cmss if it is a sans serif one), and then you can use \UseTextSymbol to pick up
the symbol from the TS1 encoding in that family.1

Burkhard and Holger
�8.11.1997

\usepackage[safe]{textcomp}
\DeclareTextCommandDefault{\textborn}
{{\fontfamily{cmr}\selectfont\UseTextSymbol{TS1}{\textborn}}}

\fontfamily{ptm}\selectfont
Burkhard and Holger \textborn 8.11.1997 7-5-13

You can use this approach for any symbol defined by the textcomp package.
In case of accents the definition is similar. This time we declare the default to have
an argument and in the definition we use \UseTextAccent . For example:

\DeclareTextCommandDefault{\newtie}[1]
{{\fontfamily{cmr}\selectfont\UseTextAccent{TS1}{\newtie}{#1}}}

In fact, for symbols (but not for accents), textcomp attempts to resolve
the problem of missing glyphs by locally switching to a font family stored in
\textcompsubstdefault (the default is Computer Modern Roman) and typeset-
ting the symbol in this family, after having issued a suitable error message. Use
the option warn to get only warnings instead of errors. Of course, such substitu-
tions produce inferior results, especially for “textual symbols”, if the current font

1For more abstract symbols this approach often gives an acceptable result; in case of accents your
mileage may vary.

7.5 Standard LATEX font support 367

is visually incompatible with the substitution family. In the next example we use
Computer Modern Sans as a substitute. Be careful to select a family that has full
TS1 coverage; otherwise, your redefinition will produce endless errors!

7-5-14

Helvetica with №,
Ω, �, ¶. Not perfect
but better than noth-
ing.

\usepackage[warn]{textcomp} \renewcommand\textcompsubstdefault{cmss}

\fontfamily{phv}\selectfont Helvetica with \textnumero, \textohm,
\textcopyleft, \textpilcrow. Not perfect but better than nothing.

According to the specifications the TS1 encoding contains old-style digits as
well as the punctuations period and comma. It allows one to typeset dates and
other (positive) numbers with old-style numerals by simply switching to the TS1
font encoding. Unfortunately, old-style numerals are usually unavailable in most
PostScript fonts (you must buy the “expert” font set in most cases), so that this
method works correctly for only a few font families.1

7-5-15

Arno � . . ,
Burkhard and Holger
�8.11.1997

\usepackage[warn,safe]{textcomp}
\newcommand\born[1]{\textborn

{\fontencoding{TS1}\selectfont #1}}
\raggedright

\fontfamily{phv}\selectfont Arno \born{29.11.1984},
\fontfamily{ccr}\selectfont

Burkhard and Holger \born{8.11.1997}

The textcomp package solves this problem by redefining the \oldstylenums
command to automatically use the old-style numerals in the TS1 encoding if the
current font contains them. If not, it will issue a warning and produce lining nu-
merals instead.

7-5-16

Arno �29.11.1984,
Burkhard and Holger
�8.11.1997

\usepackage[warn]{textcomp}
\newcommand\born[1]{\textborn\oldstylenums{#1}}
\raggedright

\fontfamily{phv}\selectfont Arno \born{29.11.1984},
\fontfamily{ccr}\selectfont

Burkhard and Holger \born{8.11.1997}

If you own fonts that textcomp does not know about (or for some reason
assumes that they implement a smaller subset than they actually do), you can
inform the package about the font family in question by using the configura-
tion file textcomp.cfg. For example, the commercial Lucida Blackletter origi-
nally contained only the basic ISO-Adobe glyphs, so textcomp takes a conserva-
tive approach and allows only these symbols. But nowadays it also contains the

1If the glyphs are directly accessed by manually switching to the TS1 encoding, as is done in the
example, a restricting option (e.g., safe) will have no effect.

368 Fonts and Encodings

\textohm symbol, so by using \DeclareEncodingSubset after loading the pack-
age (or in the configuration file) you can typeset it in this font family as well.

We can now typeset Ω, but
then the will fail without
warning.

\usepackage[T1]{fontenc} \usepackage{textcomp} \raggedright
\DeclareEncodingSubset{TS1}{hlcf}{3}

\fontfamily{hlcf}\selectfont We can now typeset \textohm,
but then the \texteuro{} will fail without warning. 7-5-17

For details on the use of \DeclareEncodingSubset and the subset numbers
used, see the documentation in ltoutenc.dtx in the standard LaTEX distribution.

7.5.5 exscale—Scaling large operators

Normally the font employed for large mathematical symbols is used in only one
size. This set-up is usually sufficient, as the font includes most of the characters
in several different sizes and (LA)TEX is specially equipped to automatically choose
the symbol that fits best. However, when a document requires a lot of mathemat-
ics in large sizes—such as in headings—the selected symbols may come out too
small. In this case, you can use the package exscale, which provides for math
extension fonts in different sizes. The package only works for documents using
Computer Modern math fonts. However, packages providing alternate math font
set-ups often offer this functionality as a package option.

7.5.6 tracefnt—Tracing the font selection

The package tracefnt can be used to detect problems in the font selection system.
This package supports several options that allow you to customize the amount of
information displayed by NFSS on the screen and in the transcript file.

errorshow This option suppresses all warnings and information messages on
the terminal; they will be written to the transcript file only. However, real er-
rors will be shown on the terminal. Because warnings about font substitutions
and so on can mean that the final result will be incorrect, you should carefully
study the transcript file before printing an important publication.

warningshow When this option is specified, warnings and errors are shown
on the terminal. This setting gives you the same amount of information as
LaTEX2ε does without the tracefnt package loaded.

infoshow This option is the default when you load the tracefnt package. Extra
information, which is normally only written to the transcript file, is now also
displayed on your terminal.

debugshow This option additionally shows information about changes to the text
font and the restoration of such fonts at the end of a brace group or the end
of an environment. Be careful when you turn on this option because it can
produce very large transcript files that can quickly fill up your disk space.

7.5 Standard LATEX font support 369

In addition to these “standard tracing” options,1 the package tracefnt supports
the following options:

pausing This option turns all warning messages into errors to help in the detec-
tion of problems in important publications.

loading This option shows the loading of external fonts. However, if the format
or document class you use has already loaded some fonts, then these will not
be shown by this option.

7.5.7 nfssfont.tex—Displaying font tables and samples

The LaTEX distribution comes with a file called nfssfont.tex that can be used to
test new fonts, produce font tables showing all characters, and perform similar
font-related operations. This file is an adaption of the program testfont.tex,
which was originally written by Donald Knuth. When you run this file through
LaTEX, you will be asked to enter the name of the font to test. You can answer
either by giving the external font name without any extension—such as cmr10
(Computer Modern Roman 10pt)—if you know it, or by giving an empty font name.
In the latter case you will be asked to provide a NFSS font specification, that is, an
encoding name (default T1), a font family name (default cmr), a font series (default
m), a font shape (default n), and a font size (default 10pt). The package then loads
the external font corresponding to that classification.

Next, you will be requested to enter a command. Probably the most important
one is \table , which produces a font chart like the one on page 434. Also inter-
esting is \text , which produces a longer text sample. To switch to a new test font,
type \init; to finish the test, type \bye or \stop; and to learn about all the other
possible tests (at the moment basically still tailored for the OT1 encoding), type
\help .

With a bit of care you can also use the program non-interactively, provided
your LaTEX implementation supports input redirection. For example, if the file
nfssfont.in contains

cmr10
\table \newpage \init

T1
cmss
bx
n
10
\text \bye

then a call like latex nfssfont < nfssfont.in (on UN*X implementations)

1It is suggested that package writers who support tracing of their packages use these four stan-
dard names if applicable.

370 Fonts and Encodings

would read all input from that particular file, first producing a glyph chart for
the font cmr10 and then creating a text sample for T1/cmss/bx/n/10.

Two things are important here. First, the nfssfont.tex program issues an
implicit \init command, so the first input line either should contain a font name
or should be completely empty (to indicate that an NFSS classification follows).
Second, the input to \init must appear on individual lines with nothing else (not
even a comment, as that would mask the line ending), because the line ending indi-
cates the end of the answer to a question like “Font encoding [T1]: \encoding=”
that you would get if you ran the program interactively.

7.6 PSNFSS—PostScript fonts with LATEX

The PSNFSS bundle, originally developed by Sebastian Rahtz, offers a complete
working set-up of the LaTEX font selection scheme for use with common PostScript
fonts, covering the “Base 35” fonts (which are built into any Level 2 PostScript
printing device and the ghostscript interpreter) and the free Charter and Utopia
fonts.1 The current implementation of PSNFSS is maintained by Walter Schmidt
and is part of the required set of support files for LaTEX that should be available
with every LaTEX installation.

For normal use you will probably have to include only one (or more) of the
packages listed in Table 7.7 on the next page to change the default Roman, sans
serif, and/or typewriter typefaces. If you study this table you will notice that only
two packages attempt to set up new fonts for math and that the first eight pack-
ages only change fonts in one of the three text font categories. Thus, to get Times
as the Roman text font, Helvetica as the sans serif text font, and Courier as the
typewriter text font, one would need to load mathptmx, helvet, and courier. So
why is the times package, which does this all in one go, considered obsolete?

One reason is that Helvetica, if loaded at its nominal size, is actually too large
Scale Helvetica to

blend with
surrounding fonts

to blend well with Times or Courier. That does not matter so much in a design
where Helvetica is used only for headings, say. But if these fonts are going to be
mixed in running text (something that is made easy by LaTEX commands such as
\textsf), then using a package such as times will produce questionable results.
The helvet package, on the other hand, offers the ability to scale the fonts by
specifying the option scaled, which scales the fonts down to 95% of the requested
size. This option is actually a keyword/value option, so that even finer control is
possible—scaled=0.92 would load the fonts at 92% of their nominal size.

There is, however, one set of circumstances in which you might wish to use
the times package after all: when you do not want to change the math font set-up,
or you want to use some other set of fonts for math. In that case you can still load
the helvet package afterwards to apply scaling.

1If the Utopia fonts are missing on your TEX installation they can be downloaded from the CTAN
directory fonts/utopia. Consult the documentation of your TEX system on how to install them.

7.6 PSNFSS—PostScript fonts with LATEX 371

Package Roman Font Sans Serif Font Typewriter Font Formulas

(none) CM Roman CM Sans Serif CM Typewriter CM Math

mathptmx Times Times + Symbol

mathpazo Palatino Palatino + Pazo

charter Charter

utopia* Utopia

chancery Zapf Chancery

helvet Helvetica

avant Avant Garde

courier Courier

bookman Bookman Avant Garde Courier

newcent New Century Schoolbook Avant Garde Courier

Obsolete Packages

times Times Helvetica Courier

palatino Palatino Helvetica Courier

mathptm Times Times + Symbol + CM

mathpple Palatino Palatino + Symbol + Euler

* An alternative package that includes math support is fourier, which is described in Section 7.7.7.

Table 7.7: Fonts used by PSNFSS packages

The PSNFSS bundle uses the Karl Berry naming scheme [19] throughout; the
Direct access to
fonts

classification and the external font names are shown in Table 7.8 on the following
page. Using this table, it is easy to access individual fonts without loading any
package, such as via a call to \usefont (see Example 7-6-1 below). Because these
fonts can be easily scaled to any size, this method offers attractive possibilities
when designing headings or title pages, as it facilitates the use of sizes different
from those created with the standard LaTEX font size commands.

7-6-1

Utopia-
Bold

\centering
\fontsize{20mm}{22mm}% select size
\usefont{T1}{put}{b}{n}% select font

Utopia-Bold

372 Fonts and Encodings

Family Series Shape(s) External PostScript font names and examples

Times (OT1, T1, TS1)

ptm m n, sl, it, sc Times-Roman (ptmr), Times-Italic (ptmri)

ptm b, (bx) n, sl, it, sc Times-Bold (ptmb), Times-BoldItalic (ptmbi)

Palatino (OT1, T1, TS1)

ppl m n, sl, it, sc Palatino-Roman (pplr), Palatino-Italic (pplri)

ppl b, (bx) n, sl, it, sc Palatino-Bold (pplb), Palatino-BoldItalic (pplbi)

New Century Schoolbook (OT1, T1, TS1)

pnc m n, sl, it, sc NewCenturySchlbk-Roman (pncr), NewCenturySchlbk-Italic (pncri)

pnc b, (bx) n, sl, it, sc NewCenturySchlbk-Bold (pncb), NewCenturySchlbk-BoldItalic (pncbi)

Bookman (OT1, T1, TS1)

pbk m n, sl, it, sc Bookman-Light (pbkl), Bookman-LightItalic (pbkli)

pbk b, (bx) n, sl, it, sc Bookman-Demi (pbkd), Bookman-DemiItalic (pbkdi)

Helvetica (OT1, T1, TS1)

phv m n, sl, sc Helvetica (phvr), Helvetica-Oblique (phvro)

phv b, (bx) n, sl, sc Helvetica-Bold (phvb), Helvetica-BoldOblique (phvbo)

phv mc n, sl, sc Helvetica-Narrow (phvrrn), Helvetica-Narrow-Oblique (phvron)

phv bc n, sl, sc Helvetica-Narrow-Bold (phvbrn), Helvetica-Narrow-BoldOblique (phvbon)

Avant Garde (OT1, T1, TS1)

pag m n, sl, sc AvantGarde-Book (pagk), AvantGarde-BookOblique (pagko)

pag b, (bx) n, sl, sc AvantGarde-Demi (pagd), AvantGarde-DemiOblique (pagdo)

Courier (OT1, T1, TS1)

pcr m n, sl, sc Courier (pcrr), CourierOblique (pcrro)

pcr b, (bx) n, sl, sc Courier-Bold (pcrb), Courier-BoldOblique (pcrbo)

Zapf Chancery (OT1, T1, TS1)

pzc m it ZapfChancery-MediumItalic (pzcmi)

Utopia (OT1, T1, TS1)

put m n, sl, it, sc Utopia-Regular (putr), Utopia-Italic (putri)

put b, (bx) n, sl, it, sc Utopia-Bold (putb), Utopia-BoldItalic (putbi)

Charter (OT1, T1, TS1)

bch m n, sl, it, sc CharterBT-Roman (bchr), CharterBT-Italic (bchri)

bch b, (bx) n, sl, it, sc CharterBT-Bold (bchb), CharterBT-BoldItalic (bchbi)

Symbol and Zapf Dingbats (U)

psy m n Symbol (psyr): Σψμβολ
pzd m n Zapf Dingbats (pzdr): ✺❁❐❆ ✤❉■❇❂❁▼▲

Table 7.8: Classification of font families in the PSNFSS distribution

7.6 PSNFSS—PostScript fonts with LATEX 373

The PSNFSS collection contains only two packages that modify the math set-
up: mathptmx selects math fonts that blend with Times Roman (described in Sec-
tion 7.6.2 on page 376) and mathpazo selects math fonts designed to work with
Palatino (see Section 7.6.3 on page 377). The packages mathptm and mathpple
are predecessors that are retained mainly for backward compatibility. Outside
the PSNFSS collection a few other packages that change the math font set-up are
available (in most cases involving commercial fonts). Some free packages are de-
scribed in Section 7.7 on page 381, including one that uses Utopia for typesetting
text and mathematics. A collection of sample pages with different text and math
fonts appears in Section 8.8.3.

Most document classes designed for use with Computer Modern set up a lead-
Adjusting the
leading

ing (\baselineskip) of 10pt/12pt. This may appear to be too tight for several
of the PostScript font families shown below, due to a larger x-height of the fonts.
However, as this is a matter of document design and also depends on the cho-
sen line width and other factors, the packages in the PSNFSS collection make no
attempt to adjust the leading. For a given document class you can change the lead-
ing by a factor by issuing the declaration \linespread{factor} in the preamble.
For example, \linespread{1.033} would change the leading from, say, 12pt to
approximately 12.4pt. For best results, however, one needs to use a document
class designed for the selected document fonts or, lacking such a class, to rede-
fine the commands \normalsize , \footnotesize , and so on (see page 343 for
details). Also remember that changing the leading might result in a noticeable
number of “Underfull \vbox” warnings, if the \textheight is no longer an inte-
gral number of text lines (see page 930 for further details).

By default, LaTEX selects a Roman typeface as the document font. Packages like
Sans serif as
document typeface

helvet or avant change the default sans serif typeface (by changing \sfdefault)
but do not change the default document font family. If such a typeface should be
used as the document font, issue the line

\renewcommand\familydefault{\sfdefault}

in the preamble of your document.
Besides supporting the common PostScript text fonts, the PSNFSS collection

contains the interesting pifont package. It sets up various commands for use with
the so-called Pi fonts (i.e., special symbol fonts like Zapf Dingbats and Symbol). It
is described in Section 7.6.4 on page 378.

7.6.1 Font samples for fonts supported by PSNFSS

This section provides textual samples of the fonts supported by the PSNFSS col-
lection. The examples were generated by explicitly selecting the font size and
leading via a call to \fontsize and then selecting the font with a \usefont
command. For example, the first sample was generated with \fontsize{9}{13}
\usefont{T1}{pag}{m}{n}.

374 Fonts and Encodings

Avant Garde Gothic was designed by Herb Lubalin and Tom Carnase basedITC Avant Garde
Gothic

9pt/13pt (pag)
on the distinctive logo designed for Avant Garde magazine. It is a geometric sans
serif type with basic shapes built from circles and lines. Effective for headlines and
short texts, but it needs generous leading. A (commercially available) condensed
version that better retains legibility in lengthier texts was designed by Ed Benguiat.

For the price of £45, almost anything can be found floating in fields.
¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890 JUMPS! — ¿But
aren’t Kafka’s Schloß and Æsop’s Œuvres often naïve vis-à-vis the dæ-
monic phœnix’s official rôle in fluffy soufflés?

Bookman was originally designed in 1860 by Alexander Phemister for theITC Bookman
10pt/12pt (pbk) Miller & Richard foundry in Scotland (commercially available from Bitstream). The

ITC revival by Ed Benguiat has a larger x-height and a moderate stroke contrast
that is well suited for body text and display applications.

For the price of £45, almost anything can be found floating in
fields. ¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890
JUMPS! — ¿But aren’t Kafka’s Schloß and Æsop’s Œuvres of-
ten naïve vis-à-vis the dæmonic phœnix’s official rôle in fluffy
soufflés?

Bitstream Charter is an original design by Matthew Carter intended to workBitstream Charter
10pt/12.4pt (bch) well on low-resolution devices; hence, it contains squared serifs and avoids ex-

cessive use of curves and diagonals. It is useful for many applications, including
books and manuals.

For the price of £45, almost anything can be found floating in fields.
¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890 JUMPS! —
¿But aren’t Kafka’s Schloß and Æsop’s Œuvres often naïve vis-à-vis the
dæmonic phœnix’s official rôle in fluffy soufflés?

Courier is a wide-running, thin-stroked monospaced font. It was designed byCourier
10pt/12pt (pcr) Howard Kettler of IBM and later redrawn by Adrian Frutiger. These days it is often

used in combination with Times Roman, producing a striking contrast. One reason
for the popularity of this combination is certainly its availability on any PostScript
device. For alternatives see Section 7.7.4.

For the price of £45, almost anything can be
found floating in fields. ¡THE DAZED BROWN FOX
QUICKLY GAVE 12345-67890 JUMPS! -- ¿But aren’t
Kafka’s Schloß and Æsop’s Œuvres often naïve
vis-à-vis the dæmonic phœnix’s official rôle in
fluffy soufflés?

7.6 PSNFSS—PostScript fonts with LATEX 375

Helvetica was originally designed by Max Miedinger for the Haas foundry of Helvetica
10pt/13pt (phv)Switzerland, hence the name. It was later extended by the Stempel foundry, with

further refinements being made by Mergenthaler Linotype in the United States.
Helvetica is claimed to be the most popular typeface of all time.

For the price of £45, almost anything can be found floating in fields.
¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890 JUMPS! —
¿But aren’t Kafka’s Schloß and Æsop’s Œuvres often naïve vis-à-vis
the dæmonic phœnix’s official rôle in fluffy soufflés?

The New Century Schoolbook typeface was designed at the beginning of the New Century
Schoolbook
10pt/12.5pt (pnc)

20th century by Morris Benton of the American Type Founders. It was created
in response to a publisher’s commission that sought a typeface with maximum
legibility for elementary schoolbooks.

For the price of £45, almost anything can be found floating in
fields. ¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890
JUMPS! — ¿But aren’t Kafka’s Schloß and Æsop’s Œuvres often
naïve vis-à-vis the dæmonic phœnix’s official rôle in fluffy soufflés?

Palatino, designed by Hermann Zapf, is one of the most widely used typefaces Palatino
10pt/11.5pt (ppl)today. You can feel the brush that created it, which gives it a lot of elegance.

Although originally designed as a display typeface, due to its legibility Palatino
soon gained popularity as a text face as well.

For the price of £45, almost anything can be found floating in fields.
¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890 JUMPS! —
¿But aren’t Kafka’s Schloß andÆsop’s Œuvres often naïve vis-à-vis the
dæmonic phœnix’s official rôle in fluffy soufflés?

Times Roman is Linotype’s version of Monotype’s Times New Roman, which Times Roman
10pt/12pt (ptm)was originally designed under the direction of Stanley Morison for the London

Times newspaper. The Adobe font that is built into many PostScript devices uses
Linotype’s 12-point design.

For the price of £45, almost anything can be found floating in fields. ¡THE
DAZED BROWN FOX QUICKLY GAVE 12345–67890 JUMPS! — ¿But
aren’t Kafka’s Schloß and Æsop’s Œuvres often naïve vis-à-vis the dæmonic
phœnix’s official rôle in fluffy soufflés?

Utopia, designed by Robert Slimbach, combines the vertical stress and pro- Utopia
10pt/12.5pt (put)nounced stroke contrast of 18th-century Transitional types with contemporary

innovations in shape and stroke details.

376 Fonts and Encodings

For the price of £45, almost anything can be found floating
in fields. ¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890
JUMPS! — ¿But aren’t Kafka’s Schloß and Æsop’s Œuvres often naïve
vis-à-vis the dæmonic phœnix’s official rôle in fluffy soufflés?

Zapf Chancery is a contemporary script based on chancery handwriting, de-ITC Zapf Chancery
10pt/12pt (pzc) veloped during the Italian Renaissance for use by the scribes in the papal offices.

Highly legible, it can be usefully applied for short texts and applications like invi-
tations and awards.

For the price of £45, almost anything can be found floating in fields. ¡THE DAZED

BROWN FOX QUICKLY GAVE 12345–67890 JUMPS! — ¿But aren’t Kafka’s

Schloß and Æsop’s Œuvres often naïve vis-à-vis the dæmonic phœnix’s official rôle in

fluffy soufflés?

7.6.2 mathptmx—Times Roman in math and text

The mathptmx package makes Times the document text font and implements a
math font set-up for use with such documents. It builds on freely available Type 1
PostScript fonts and is, therefore, somewhat inferior to some of the commercially
available solutions that offer fonts especially designed for this purpose. Never-
theless, it has the advantage of being (at least potentially) available in every TEX
installation.1

The mathptmx package was co-authored by Alan Jeffrey, Sebastian Rahtz,
and Ulrik Vieth. It was based upon earlier work by Alan Jeffrey [72], in particu-
lar the mathptm package (the predecessor to mathptmx) and, most importantly,
the fontinst system [57, pp.393–404], which provided the initial breakthrough in
making PostScript fonts generally available with TEX.

Technically, the mathptmx package uses a collection of virtual fonts that
implement the math fonts needed for TEX by drawing them from several font
resources—Times Roman, Times Italic, Symbol, various Computer Modern fonts
(mainly for delimiters, big operators, arrows, and the like), and Ralph Smith’s For-
mal Script (RSFS). The RSFS fonts are a better solution for a script/calligraphic
alphabet than Zapf Chancery, which is used in mathptm for this purpose.

An example showing a trigonometric function:

sin
α
2

=±
√

1− cosα
2

The script looks like this: A BC .

\usepackage{mathptmx}

An example showing a trigonometric function:
\[\sin \frac{\alpha}{2} =

\pm \sqrt{\frac{1-\cos\alpha}{2}} \]
The script looks like this: \mathcal{ABC}. 7-6-2

It has some features in common with the mathpazo package. First, when
loaded with the option slantedGreek, uppercase Greek letters are slanted instead

1The TEX installation must support virtual fonts, which is the case for nearly every distribution.

7.6 PSNFSS—PostScript fonts with LATEX 377

of being upright (the default). In either case the two extra commands \upDelta
and \upOmega will print an upright Δ and Ω, respectively. Second, the function-
ality of the exscale package is automatically provided: thus big operators and
delimiters scale with the current font size.

On the downside, the package disables \boldmath for the simple reason that
�Proper bold

faces missing
no bold version of the Adobe Symbol font exists. You can get, of course, a bold
math alphabet with \mathbf , but this gives you only upright Latin characters and
digits. In particular, using the bm package to make individual symbols bold will
produce questionable results, as the best the \bm command can do is to produce
“poor man’s bold” by overprinting the symbols with slight offsets.

7-6-3

Bold is difficult to achieve: α �= A and at
best looks questionable: A �= A = ααα− γγγ .

\usepackage{mathptmx,bm}

Bold is difficult to achieve: {\boldmath$\alpha
\neq A$} and at best looks questionable:

$A \neq \mathbf{A} = \bm\alpha - \bm\gamma$.

Another (small) potential problem is that the commands \jmath, \coprod,
and \amalg are unavailable. If either issue turns out to be a real problem, then
alternatives to consider are the TX fonts (Section 7.7.5) and the commercial solu-
tions MathTime (Professional) by Michael Spivak and TM-Math by MicroPress.

7.6.3 mathpazo—Palatino in math and text

A package named mathpple supporting Adobe Palatino with matching math fonts
was originally developed by Walter Schmidt based on earlier work by Aloysius
Helminck. It used the same approach as mathptm; that is, it was built on the vir-
tual font mechanism, combining symbols from Palatino, Symbol, Euler, and CM
Math. As these fonts only partly match the style of Palatino, Diego Puga devel-
oped a set of Type 1 PostScript fonts (Pazo Math) intended to repair the defects
apparent in the mathpple solution. The Pazo Math fonts contain glyphs that are
unavailable in Palatino and for which Computer Modern or glyphs from Symbol
look odd when combined with Palatino. These include a number of math glyphs,
the uppercase Greek alphabet (upright and slanted), a blackboard bold alphabet,
as well as several other glyphs (such as the euro symbol) in regular and bold
weights and upright and slanted shapes.

The fonts are accessible with the mathpazo package developed by Diego Puga
and Walter Schmidt as part of the PSNFSS collection. It makes Palatino the doc-
ument text font and provides a math set-up that works by using virtual fonts
accessing Palatino Italic, the Math Pazo fonts, and CM fonts (for the remaining
symbols).

7-6-4

An example showing a trigonometric func-
tion:

sin
α

2
= ±
√

1− cos α

2
The script looks like this: ABC.

\usepackage{mathpazo}

An example showing a trigonometric function:
\[\sin \frac{\alpha}{2} =

\pm \sqrt{\frac{1-\cos\alpha}{2}} \]
The script looks like this: \mathcal{ABC}.

378 Fonts and Encodings

This package is very similar to the mathptmx package. In particular, it sup-
ports the option slantedGreek to make uppercase Greek letters slanted instead
of upright (the default). In either case the two extra commands \upDelta and
\upOmega will print an upright Δ and Ω, respectively. Also, it provides the func-
tionality of the exscale package.

However, in contrast to the mathptmx package, which uses the Adobe Symbol
font, for which no bold-weight variant exists, the mathpazo package provides full
access to symbols in a bold weight.

Bold is easy to achieve: α �= A and
blends well: A �= A = α− γ.

\usepackage{mathpazo,bm}

Bold is easy to achieve: {\boldmath$\alpha
\neq A$} and blends well:

$A \neq \mathbf{A} = \bm\alpha - \bm\gamma$. 7-6-5

As mentioned above, the Pazo Math fonts contain a blackboard bold alphabet,
which can be accessed through the math alphabet identifier \mathbb . The font
contains the uppercase Latin letters and the digit “1”. Be careful, however: all
other digits are silently ignored!

ABCDEFGHIJK 1
\usepackage{mathpazo}

$\mathbb{ABCDEFGHIJK}$ $\mathbb{0123}$ 7-6-6

If \mathbb should select a different alphabet, provided by some other package,
it is best to suppress the Pazo Math one by using the option noBBppl when loading
the package.

The package also offers two additional options that deal with the use of com-
Commercial

Palatino fonts
mercially available Palatino fonts1 for the text font: sc selects Palatino with true
small capitals (font family name pplx) and osf selects Palatino with small caps
and old-style numerals (font family name pplj) instead of basic Palatino (ppl).

7.6.4 pifont—Accessing Pi and Symbol fonts

Fonts containing collections of special symbols, which are normally not found in
a text font, are called Pi fonts. One such font, the PostScript font Zapf Dingbats, is
available if you use the pifont package originally written by Sebastian Rahtz and
now incorporated as part of PSNFSS.

The directly accessible characters of the PostScript Zapf Dingbats font areAccessing glyphs
from Zapf Dingbats shown in Table 7.9 on the next page. A given character can be chosen via the \ding

command. The parameter for the \ding command is an integer that specifies the
character to be typeset according to the table. For example, \ding{’46} gives ✆.

1These fonts are commercially available and are not part of the Base 35 fonts.

7.6 PSNFSS—PostScript fonts with LATEX 379

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́4x ✁ ✂ ✃ ✄ ☎ ✆ ✇
˝2x

0́5x ✈ ✉ ☛ ☞ ✌ ✍ ✎ ✏

0́6x ✐ ✑ ✒ ✓ ✔ ✕ ✖ ✗
˝3x

0́7x ✘ ✙ ✚ ✛ ✜ ✝ ✞ ✟

1́0x ✠ ✡ ✢ ✣ ✤ ✥ ✦ ✧
˝4x

1́1x ★ ✩ ✪ ✫ ✬ ✭ ✮ ✯

1́2x ✰ ✱ ✲ ✳ ✴ ✵ ✶ ✷
˝5x

1́3x ✸ ✹ ✺ ✻ ✼ ✽ ✾ ✿

1́4x ❀ ❁ ❂ ❃ ❄ ❅ ❆ ❇
˝6x

1́5x ❈ ❉ ❊ ❋ ● ❍ ■ ❏

1́6x ❐ ❑ ❒ ▲ ▼ ◆ ❖ ◗
˝7x

1́7x ❘ ❙ ❚ ❛ ❜ ❝ ❞

2́4x ❡ ❢ ❣ ❤ ❥ ❦ ❧
˝Ax

2́5x ♣ ♦ ♥ ♠ ① ② ③ ④

2́6x ⑤ ⑥ ⑦ ⑧ ⑨ ⑩ ❶ ❷
˝Bx

2́7x ❸ ❹ ❺ ❻ ❼ ❽ ❾ ❿

3́0x ➀ ➁ ➂ ➃ ➄ ➅ ➆ ➇
˝Cx

3́1x ➈ ➉ ➊ ➋ ➌ ➍ ➎ ➏

3́2x ➐ ➑ ➒ ➓ ➔ → ↔ ↕
˝Dx

3́3x ➘ ➙ ➚ ➛ ➜ ➝ ➞ ➟

3́4x ➠ ➡ ➢ ➣ ➤ ➥ ➦ ➧
˝Ex

3́5x ➨ ➩ ➪ ➫ ➬ ➭ ➮ ➯

3́6x ➱ ➲ ➳ ➴ ➵ ➶ ➷
˝Fx

3́7x ➸ ➹ ➺ ➻ ➼ ➽ ➾

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 7.9: Glyphs in the PostScript font Zapf Dingbats

The dinglist environment is a variation of the itemize list. The argument
specifies the number of the character to be used at the beginning of each item.

7-6-7

➤ The first item.

➤ The second item in the list.

➤ A final item.

\usepackage{pifont}

\begin{dinglist}{"E4}
\item The first item. \item The second
item in the list. \item A final item.

\end{dinglist}

380 Fonts and Encodings

The environment dingautolist allows you to build an enumerated list from
a sequence of Zapf Dingbats characters. In this case, the argument specifies the
number of the first character of the sequence. Subsequent items will be numbered
by incrementing this number by one. This makes some starting positions like
’254, ’266, ’300, and ’312 (i.e., in octal notation) in Table 7.9 on the preceding
page very attractive, as differently designed circled number sequences (1–10) start
there.

➀ The first item in the list.

➁ The second item in the list.

➂ The third item in the list.

References to list items work as expected: ➀,
➁, ➂

\usepackage{pifont}

\begin{dingautolist}{’300}
\item The first item in the list.\label{lst:a}
\item The second item in the list.\label{lst:b}
\item The third item in the list.\label{lst:c}

\end{dingautolist}
References to list items work as expected:
\ref{lst:a}, \ref{lst:b}, \ref{lst:c} 7-6-8

You can fill a complete line (with 0.5 inch space at left and right) with a given
character using the command \dingline , where the argument indicates the de-
sired character. For filling parts of a line, use the command \dingfill . This com-
mand works similar to LaTEX’s \dotfill command, but uses the specified glyph
instead of dots.

✃ ✃ ✃ ✃ ✃ ✃ ✃ ✃ ✃ ✃

➩ ➩ ➩ text text ➫ ➫ text text ➬ ➬

\usepackage{pifont}

\dingline{35} \par\medskip
\noindent\dingfill{233} text text
\dingfill{235} text text \dingfill{236} 7-6-9

Besides providing direct support for the Zapf Dingbats font, the pifont pack-
age includes a general mechanism for coping with any Pi font that conforms to the
NFSS classification U/family/m/n—for example, the Symbol font with the family
name psy.

To access individual glyphs from such a Pi font, use the \Pisymbol com-
Accessing individual

glyphs from a Pi
font

mand, which takes the family name as its first argument and the glyph position
in the font as its second argument. Using this command one can readily access
the characters in the Symbol font, shown in Table 7.10 on page 382. For exam-
ple, \Pisymbol{psy}{210} gives ®. In fact, \ding (discussed earlier) is simply an
abbreviation for \Pisymbol with the first argument set to pzd.

When only Greek letters are desired, you can use the \Pifont command
and consult the correspondence in Table 7.10. Clearly, this solution is no match
for a properly designed font for the Greek language but it might serve in
an emergency—for example, to typeset the text above the entrance of Plato’s
Academy that states “Only geometers may enter”:

ΜΗΔΕΙΣ ΑΓΕΩΜΕΤΠΗΤΟΣ ΕΙΣΙΤΩ.

\usepackage{pifont}

{\Pifont{psy} MHDEIS\ AGEWMETRHTOS\ EISITW}. 7-6-10

7.7 A collection of font packages 381

You can also make itemized lists using Pilist or enumerated lists using the
Piautolist environments as follows:

7-6-11

⇒ The first item.

⇒ The second.

✭ The first item.

✮ The second.

✯ The third.

\usepackage{pifont}

\begin{Pilist}{psy}{’336}
\item The first item. \item The second.

\end{Pilist}
\begin{Piautolist}{pzd}{’115}
\item The first item. \item The second.
\item The third.

\end{Piautolist}

The \dingline and \dingfill commands are also merely abbreviations for
the more general commands \Piline and \Pifill , as shown below. The exam-
ple reveals curious gaps in the last line. They are due to \Piline and \Pifill
typesetting their symbols on an invisible grid so that symbols on different lines
come out vertically aligned.

7-6-12

✄ ✄ ✄ ✄ ✄ ✄ ✄ ✄

⇒ ⇒ ⇒ text ⇔ ⇔ ⇔ text ⇐ ⇐ ⇐

\usepackage{pifont}

\Piline{pzd}{36} \par\medskip
\noindent\Pifill{psy}{222} text
\Pifill{psy}{219}text\Pifill{psy}{220}

7.7 A collection of font packages

So far we have discussed font-related packages that belong to core LaTEX—that
is, packages that are either part of the base distribution or, as for PSNFSS, are
part of the “required” additions. There are, however, many other packages that
provide font customization possibilities. Nowadays most of them are part of a
LaTEX distribution. If they are not available on your local system, you can obtain
them from an electronic archive or from a TEX organization; see Appendix C.

The packages described in the current section modify the document text fonts
(and sometimes the math font set-up). As the section title indicates, they represent
merely a selection of what is available. Further pointers can be found in the online
package catalogue [169] or in one of the FAQ documents on LaTEX [46,141].

7.7.1 eco—Old-style numerals with Computer Modern

The original Computer Modern fonts contain a set of old-style digits (e.g., 1982)
as part of their math fonts, not because old-style numerals have anything to do
with math, but because Donald Knuth tried to use the limited font space available
in the most economical way, using some free slots in the math fonts to deposit
the glyphs there. As the EC font implementation only concerned itself with a new

382 Fonts and Encodings

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́4x ! ∀ # ∃ % & ∋
˝2x

0́5x () ∗ + , − . /
0́6x 0 1 2 3 4 5 6 7

˝3x
0́7x 8 9 : ; < = > ?
1́0x ≅ Α Β Χ Δ Ε Φ Γ

˝4x
1́1x Η Ι ϑ Κ Λ Μ Ν Ο
1́2x Π Θ Ρ Σ Τ Υ ς Ω

˝5x
1́3x Ξ Ψ Ζ [∴] ⊥ _
1́4x ⎯ α β χ δ ε φ γ

˝6x
1́5x η ι ϕ κ λ μ ν ο
1́6x π θ ρ σ τ υ ϖ ω

˝7x
1́7x ξ ψ ζ { | } ∼
2́4x ϒ ′ ≤ ⁄ ∞ ƒ ♣

˝Ax
2́5x ♦ ♥ ♠ ↔ ← ↑ → ↓
2́6x ° ± ″ ≥ × ∝ ∂ •

˝Bx
2́7x ÷ ≠ ≡ ≈ … ⏐ ⎯ ↵
3́0x ℵ ℑ ℜ ℘ ⊗ ⊕ ∅ ∩

˝Cx
3́1x ∪ ⊃ ⊇ ⊄ ⊂ ⊆ ∈ ∉
3́2x ∠ ∇ ® © ™ ∏ √ ⋅

˝Dx
3́3x ¬ ∧ ∨ ⇔ ⇐ ⇑ ⇒ ⇓
3́4x ◊ 〈 ® © ™ ∑ ⎛ ⎜

˝Ex
3́5x ⎝ ⎡ ⎢ ⎣ ⎧ ⎨ ⎩ ⎪

3́6x 〉 ∫ ⌠ ⎮ ⌡ ⎞ ⎟
˝Fx

3́7x ⎠ ⎤ ⎥ ⎦ ⎫ ⎬ ⎭

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 7.10: Glyphs in the PostScript font Symbol

font encoding for text, this anomaly in the math fonts was unfortunately kept.1

Actually, the designers of the text companion encoding (TS1) added old-style nu-
merals to that encoding, but so far this is of little practical relevance because too
many font families implement only a subset of the TS1 encoding. See Section 7.5.4,
page 367, for more information.

1Justin Ziegler together with the LaTEX3 project team developed a rationalized font encoding de-
sign for 256-glyph math fonts [174]. Unfortunately, until now his theoretical work has not been
implemented other than in a prototype using virtual fonts [40].

7.7 A collection of font packages 383

For easy access to old-style numerals hidden in the math fonts, LaTEX provides
Basic LATEX support
for old-style
numerals

the command \oldstylenums , which can be used in text and within formulas. In
its argument you should place the digits that you want to typeset as non-aligning
digits. If the command is used in text, spaces in the argument are honored, but
you should not try to put characters other than digits into it or the results will
be unpredictable. One problem with the default definition of this command is
that it will always generate old-style numerals from Computer Modern Roman,
regardless of the surrounding fonts in use. For this reason the textcomp package
contains a redefinition that produces the old-style numerals from the current font,
provided they are available in the current font family; see Section 7.5.4 for details.

This approach for obtaining old-style numerals might be adequate if lining
numerals are the norm and old-style numerals are required only once in a while.
But in a document layout in which all text numerals are supposed to be presented
in old-style it is not really acceptable to require the author to explicitly mark up
every occurrence in this way. What is needed in such a case are text fonts that
contain old-style instead of lining numerals in the standard slot positions.

The EC fonts contain both lining and old-style numerals (albeit in a somewhat
inconvenient position), so it was just a matter of time until someone developed a
series of virtual fonts that reencode the fonts to make old-style numerals be the
default text numbers. The eco fonts by Sebastian Kirsch provide this reencoding
and can be accessed by loading the eco package. Note that the package affects
only the text numbers, so it is important to mark up mathematical digits properly.
Otherwise, you will obtain a result like the one shown in the example.

7-7-1

In 1996 Sebastian developed fonts pro-
ducing old-style numerals in text but lin-
ing numerals in math. So do not write “the
value can be 1 or −1”, as both numbers
should be lining numerals. In text lining
numerals can be obtained as well: 1996.

\usepackage{eco}

In 1996 Sebastian developed fonts producing
old-style numerals in text but lining numerals
in math. So do not write ‘‘the value can be 1
or -1’’, as both numbers should be lining
numerals. In text lining numerals can be
obtained as well: \newstylenums{1996}.

7.7.2 ccfonts, concmath—The Concrete fonts

For the text of his book Concrete Mathematics [59], Donald Knuth designed a
new typeface [92] to go with the Euler mathematics fonts designed by Hermann
Zapf [173]. This font family, called Concrete Roman, was created from the Com-
puter Modern METAFONT sources by supplying different parameter settings.

Starting from the work done for the EC fonts, it was relatively easy to create
Concrete Roman fonts in T1 and TS1 encodings (original work by Frank Mittelbach;
current version by Walter Schmidt). The fonts available in these families are shown
in Table 7.11 on the following page. Ulrik Vieth used the construction method out-
lined by Knuth [92] to develop a companion set of Concrete Math fonts including
the full range of AMS symbols (as provided by the amssymb or amsfonts package).

384 Fonts and Encodings

Family Series Shape(s) Example of the Typeface

Concrete Roman (T1, TS1,OT1)

ccr m n, it, sl, sc Concrete Roman medium

ccr c sl Concrete Roman condensed slanted (only OT1 and 9pt)

Concrete Math (OML)

ccm m it Concrete Math. α Ω

Concrete Math (OMS)

ccy m, c n C�\	∇��� M�〈¬ � ⊗

Table 7.11: Classification of the Concrete font families

The first package that provided access to these font families for normal text
was beton (by Frank Jensen). The following example shows the combination of
Concrete text and Euler math fonts (see also Section 7.7.10 on page 396):

Concrete Roman blends well with Euler Math,
as can be seen with

∑
0≤k<n

k =
n(n − 1)

2

\usepackage{beton,euler}

Concrete Roman blends well with Euler Math,
as can be seen with
\[\sum_{0\leq k<n} k = \frac{n(n-1)}{2} \] 7-7-2

A more recent development that also provides the use of Concrete fonts for
math and supports the T1 and TS1 encodings is the ccfonts package (by Walter
Schmidt). Both packages take care of small but important typographical details,
such as increasing the value of \baselineskip slightly (see discussion on the
facing page). As the Concrete fonts have no boldface series, the ccfonts package
offers the option boldsans to use the semibold series of the Computer Modern
Sans fonts as a replacement. As a result, without any further adjustments, head-
ings in standard classes will be typeset using this font series.

1 Testing headings

An example showing a trigonometric func-
tion:

sin
α

2
= ±

√
1− cosα

2

The script looks like this: ABC.
From textcomp: $ € � � 	 . . .

\usepackage[boldsans]{ccfonts}
\usepackage[full]{textcomp}
\usepackage{ragged2e} %small measure

\section{Testing headings}
An example showing a trigonometric function:
\[\sin \frac{\alpha}{2} =

\pm \sqrt{\frac{1-\cos\alpha}{2}} \]
The script looks like this: \mathcal{ABC}.\\
From textcomp: \textdollaroldstyle\ \texteuro\
\textborn\ \textmarried\ \textdied\ \ldots 7-7-3

7.7 A collection of font packages 385

Family Series Shape(s) Example of the Typeface

CM Bright (OT1, T1, TS1)

cmbr m n, sl CM Bright medium

cmbr sb n, sl CM Bright semibold slanted

cmbr bx n CM Bright bold extended

CM Typewriter Light (OT1, T1, TS1)

cmtl m n, sl Typewriter Light normal

CM Bright Math (OML)

cmbrm m, b it Bright Math. α Ω

CM Bright Math (OMS)

cmbrs m n B∇〉}〈� M��〈¬ � ⊗

Table 7.12: Classification of the Computer Modern Bright font families

Because the Concrete fonts are of considerably heavier weight than, say, Com-
puter Modern, it is advisable to use them with a larger leading than most doc-
ument classes provide by default. For this reason the package automatically en-
larges the leading to 10/13 and similar ratios for other document sizes. If this
adjustment is undesirable for some reason, it can be canceled with the option
standard-baselineskips.

The feature provided by the exscale package is available as the package option
exscale; see Section 7.5.5 on page 368 for details. The exscale package itself
cannot be used because it is set up to work with only Computer Modern math
fonts.

If the amssymb or amsfonts package is loaded, the ccfonts package automati-
cally arranges to use the Concrete variants of the AMS symbol fonts.

Finally, the package offers the option slantedGreek to make uppercase
Greek letters slanted instead of being upright (default). The two extra commands
\upDelta and \upOmega will always typeset an upright Δ and Ω, respectively.

7.7.3 cmbright—The Computer Modern Bright fonts

Another font family whose design is based on the METAFONT sources of the
CM fonts are the Computer Modern Bright (CM Bright) fonts by Walter Schmidt,
shown in Table 7.12. This family of sans serif fonts is designed to serve as a
legible body font. It comes with matching typewriter and math fonts, including
the AMS symbols.

386 Fonts and Encodings

Loading the cmbright package in the preamble ensures that these families are
selected throughout the document. It is recommended that you combine this pack-
age with fontenc, as shown in the next example, to achieve proper hyphenation
with languages other than English. All CM Bright fonts have fully implemented T1
and TS1 encoding support.

1 A CM Bright document

The CM Bright family contains typewriter fonts
and matching fonts for math formulas, e.g.,∑

0≤k<n

k =
n(n − 1)

2

\usepackage[T1]{fontenc}
\usepackage{cmbright}

\section{A CM Bright document}
The CM Bright family contains
\texttt{typewriter} fonts and matching fonts
for math formulas, e.g.,
\[\sum_{0\leq k<n} k = \frac{n(n-1)}{2} \] 7-7-4

By default, the package selects a slightly larger leading than the default
classes to account for the use of sans serif fonts; this can be canceled by specifying
the package option standard-baselineskips. Also in other respects, this pack-
age works similarly to other works by Walter Schmidt: the option slantedGreek
produces slanted uppercase Greek letters, with \upDelta and \upOmega typeset-
ting an upright Δ and Ω, respectively. When the amssymb or amsfonts package is
loaded, the cmbright package automatically arranges to use the CM Bright variants
of the AMS symbol fonts.

The METAFONT implementation of the fonts is freely available from CTAN
archives; Type 1 format versions are commercially sold by MicroPress. Recently,
a freely available Type 1 (although without manual hinting) was made available
by Harald Harders under the name hfbright. Moreover, as mentioned in Sec-
tion 7.5.1, the freely available CM-Super Type 1 fonts also cover parts of the CM
Bright fonts.

7.7.4 luximono—A general-purpose typewriter font

The choice of monospaced (typewriter) fonts for use in program listings and other
applications is not very wide. Of course, with the Computer Modern fonts a suit-
able typewriter family (cmtt) is included, but if the main document fonts are being
replaced, freely available choices for typewriter fonts are few. Adobe Courier runs
very wide and for that reason alone it is often a poor choice. While staying with
cmtt might be an option, the font may not blend well with the chosen document
font.

Recently, with the release of version 4.2 of XFree86, the free implementation
of the X Window System, a new, freely distributable, monospaced font family,
called LuxiMono, has become available. This Type 1 encoded Postscript font comes
with bold, oblique, and bold oblique versions (see Table 7.13 on the facing page).
In that respect, it differs from other monospaced fonts, which are often offered
only in medium series and more rarely in italic or oblique shapes.

7.7 A collection of font packages 387

Family Series Shape(s) PostScript Font Names and Examples

LuxiMono (T1, TS1)

ul9 m n, sl LuxiMono, LuxiMono-Oblique
ul9 b n, sl LuxiMono-Bold, LuxiMono-BoldOblique

Table 7.13: Classification of the LuxiMono font family

These fonts are original designs by Kris Holmes and Charles Bigelow (Bigelow
and Holmes, Inc.), for which hinting and kerning tables have been added by URW++
Design and Development GmbH. The LaTEX integration is provided through the
luximono package written by Walter Schmidt.

The following example compares LuxiMono (scaled down to 85% using the
option scaled), Computer Modern Typewriter, and Adobe Courier. LuxiMono still
has the largest x-height (\fontdimen5) and, at the same time, the smallest width.
Courier, running very wide, occupies the other end of the spectrum, with CM Type-
writer being comfortably in between the two extremes.

7-7-5

The dazed brown fox quickly gave
12345-67890 jumps! x-height=4.50502pt
(LuxiMono)
The dazed brown fox quickly gave
12345–67890 jumps! x-height=4.3045pt
(CM Typewriter)
The dazed brown fox quickly gave
12345-67890 jumps!
x-height=4.25989pt (Adobe Courier)

\usepackage[T1]{fontenc}
\usepackage[scaled=0.85]{luximono}
\newcommand\allletters{The dazed brown
fox quickly gave 12345--67890 jumps!
x-height=\the\fontdimen5\font\ }

\raggedright
\texttt{\allletters (LuxiMono)}
\par \renewcommand\ttdefault{cmtt}
\texttt{\allletters (CM Typewriter)}
\par \renewcommand\ttdefault{pcr}
\texttt{\allletters (Adobe Courier)}

If the option scaled is given without a value, the fonts are scaled down to
87%, which gives them a running length approximately equal to that of Computer
Modern Typewriter. To get exactly the same running length, 0.87478 should be
used for 10pt fonts, while for an 11pt document 0.86124 would be the correct
value. This is due to the fact that LuxiMono scales linearly, while Computer Mod-
ern fonts have different designs for different sizes. Without scaling LuxiMono has
the same running length as Adobe Courier.

7-7-6

This font contains a € symbol.
This font contains a € symbol.

\usepackage[T1]{fontenc}\usepackage[scaled]{luximono}
\usepackage[euro]{textcomp}

\texttt{This font contains a \texteuro{} symbol.}
\par \renewcommand\ttdefault{cmtt}
\texttt{This font contains a \texteuro{} symbol.}

388 Fonts and Encodings

Encoding Family Series Shape(s) Example of the Typeface

TX Roman

OT1, T1, TS1, LY1 txr m n, it, sl, sc TX Roman normal

OT1, T1, TS1, LY1 txr bx, (b) n, it, sl, sc TX Roman bold italic

TX Sans

OT1, T1, TS1, LY1 txss m n, (it), sl, sc TX Sans normal

OT1, T1, TS1, LY1 txss bx, (b) n, (it), sl, sc TX Sans bold slanted

TX Typewriter

OT1, T1, TS1, LY1 txtt m n, (it), sl, sc TX Typewriter normal

OT1, T1, TS1, LY1 txtt bx, (b) n, (it), sl, sc TX Typewriter bold small caps

TX Math

OML txmi m, bx it TX Math. α Ω

OMS txms m, bx n TX ���� �§��\��� M�〈¬ � ⊗
U txsya, txsyb m, bx n �� ����� 	

Table 7.14: Classification of the TX font families

Note that the LuxiMono fonts are supported only in the T1 encoding (see
the use of fontenc in the examples). The subset of the textcomp symbols typi-
cally found in PostScript fonts is available—namely, those declared when loading
textcomp with the option safe. However, since the euro symbol is available, it is
best to load that package with the option euro.1

7.7.5 txfonts—Alternative support for Times Roman

With the mathptmx package, the PSNFSS bundle supports Times Roman as a doc-
ument font for both text and math, primarily using Times Italic and the Adobe
Symbol font for math characters (see Section 7.6.2). In 2000, Young Ryu released
his own set of virtual fonts together with accompanying Type 1 fonts to provide
math support for documents using Times Roman as the document font.

The extra fonts cover glyphs typically missing in PostScript fonts—for exam-
ple, a full set of textcomp symbols, the full range of math symbols as implemented
by AMS fonts (see Chapter 8), and others. Thus, these fonts are far more complete
than their counterparts in the standard LaTEX PSNFSS package.

1To see the euro symbol in the various TEX fonts, it is important to have the newest version of
the file 8r.enc installed.

7.7 A collection of font packages 389

The fonts are accessed by loading the package txfonts in the preamble. When
the package is loaded, it sets up Times Roman as the main document font and
Adobe Helvetica (scaled down to 95%) as the sans serif font. For the typewriter
font a monospaced font developed by the package author is used.

Compare the next example with Example 7-6-2 on page 376. The extra line at
the end shows a few symbols from textcomp that are unavailable with mathptmx.

7-7-7

An example showing a trigonometric func-
tion:

sin
α

2
= ±
√

1 − cosα
2

The script looks like this: ABC.
From textcomp: $ € � � � . . .

\usepackage{txfonts}\usepackage[full]{textcomp}

An example showing a trigonometric function:
\[\sin \frac{\alpha}{2} =

\pm \sqrt{\frac{1-\cos\alpha}{2}} \]
The script looks like this: \mathcal{ABC}.\\
From textcomp: \textdollaroldstyle\ \texteuro\
\textborn\ \textmarried\ \textdied\ \ldots

The TX fonts (see Table 7.14 on the facing page) have support for the text font
encodings OT1, T1, TS1, and LY1. However, the OT1 encoding is not faithfully imple-
mented: some of the deficiencies in this encoding are (incorrectly) circumvented
(for example, the fact that only either $ or £ is available in “real” OT1 fonts). Fixing
these deficiencies means that the new definitions will not work with any other
OT1-encoded font. As OT1 is still the default encoding with LaTEX this change can
lead to serious problems.1

The following example illustrates the use of the problematic definitions. In
OT1-encoded Computer Modern, all glyphs are wrong: the $ turns into a £ sign
and all others are simply dropped. On the other hand, there is no problem with
T1, so one should always combine txfonts with \usepackage[T1]{fontenc}.2

7-7-8

Ł.ł.$.£.Å.å (txfont)
..£... (all errors)

Ł.ł.$.£.Å.å (okay)

\usepackage{txfonts}

\fontencoding{OT1}\selectfont % LaTeX default encoding!
\L.\l.\textdollar.\textsterling.\r{A}.\r{a}\hfill (txfont)

\fontfamily{cmtt}\itshape % italic CM Typewriter
\L.\l.\textdollar.\textsterling.\r{A}.\r{a}\hfill

(all errors)

\fontencoding{T1}\selectfont % ... in T1
\L.\l.\textdollar.\textsterling.\r{A}.\r{a}\hfill (okay)

In addition, a more serious problem with the current release of the fonts is
that the glyph side-bearings in math are extremely tight, up to the point that

1Strictly speaking, the fonts implement a new encoding that is similar to OT1 but not identical—
and incorrectly call it OT1.

2As discussed in Section 7.3.5, T1 is the preferred encoding in any case.

390 Fonts and Encodings

characters actually touch if used in subscripts or superscripts.

A problematic example:

t[u1, . . . , un] =
n∑

k=1

(
n − 1
k − 1

)
(1 − t)n−ktk−1uk

\usepackage{amsmath,txfonts}

A problematic example:
\[t[u_1, \dots, u_n] = \sum_{k=1}^n

\binom{n-1}{k-1} (1-t)^{n-k}t^{k-1}u_k \] 7-7-9

It is possible that these problems will be fixed in a future release of the fonts.
For comparison, we show the previous example using mathptmx:

A problematic example:

t[u1, . . . ,un] =
n

∑
k=1

(
n−1
k−1

)
(1− t)n−ktk−1uk

\usepackage{amsmath,mathptmx}

A problematic example:
\[t[u_1, \dots, u_n] = \sum_{k=1}^n

\binom{n-1}{k-1} (1-t)^{n-k}t^{k-1}u_k \] 7-7-10

To summarize, the TX font families currently show some deficiencies in math
typesetting, but offer a large range of symbols for math and text, including all
symbols from the AMS math fonts and a full implementation of the textcomp
symbols. If the focus is on having many symbols available in Type 1 fonts, such
as when producing PDF documents, the fonts provide an interesting alternative.

7.7.6 pxfonts—Alternative support for Palatino

Young Ryu also developed a set of virtual fonts together with accompanying
Type 1 fonts to provide math support for documents using Adobe Palatino as
the main document font. The PX fonts (see Table 7.15 on the next page) are set up
by loading the pxfonts package. For sans serif and typewriter fonts the package
uses fonts from the txfonts set-up (scaled-down Helvetica and TX typewriter), so
both font sets need to be installed.

The next example uses the same text as Example 7-7-7 on the preceding page
but this time loads the pxfonts package.

An example showing a trigonometric
function:

sin
α

2
= ±
√

1 − cosα
2

The script looks like this: ABC.
From textcomp: $ € � � � . . .

\usepackage{pxfonts}\usepackage[full]{textcomp}

An example showing a trigonometric function:
\[\sin \frac{\alpha}{2} =

\pm \sqrt{\frac{1-\cos\alpha}{2}} \]
The script looks like this: \mathcal{ABC}.\\
From textcomp: \textdollaroldstyle\ \texteuro\
\textborn\ \textmarried\ \textdied\ \ldots 7-7-11

Since the PX fonts have the same font layout as the TX fonts, the OT1 prob-
lems shown in Example 7-7-8 on the previous page also arise with this family.

7.7 A collection of font packages 391

Encoding Family Series Shape(s) Example of the Typeface

PX Roman

OT1, T1, TS1, LY1 pxr m n, it, sl, sc PX Roman normal
OT1, T1, TS1, LY1 pxr bx, (b) n, it, sl, sc PX Roman bold italic

PX Math

OML pxmi m, bx it PX Math. α Ω
OMS pxms m, bx n PX ���� �§��\��� M�〈¬ � ⊗
U pxsya, pxsyb m, bx n �� ����� 	

Table 7.15: Classification of the PX font families

The typesetting in math is still very tight but not always so noticeable as in the
TX fonts. Below, the Example 7-7-9 on the facing page is repeated for comparison.

7-7-12

A problematic example:

t[u1, . . . ,un] =
n∑

k=1

(
n − 1
k − 1

)
(1 − t)n−ktk−1uk

\usepackage{amsmath,pxfonts}

A problematic example:
\[t[u_1, \dots, u_n] = \sum_{k=1}^n

\binom{n-1}{k-1} (1-t)^{n-k}t^{k-1}u_k \]

7.7.7 The Fourier-GUTenberg fonts

Adobe donated four fonts from the Utopia family (Utopia Regular, Utopia Italic,
Utopia Bold, and Utopia BoldItalic) to the X-Consortium. Though not free software,
these typefaces are available free of charge and basic support for them is available
through the PSNFSS bundle (see Section 7.6).

The Fourier-GUTenberg bundle developed by Michel Bovani is a typesetting
environment based on the Utopia typeface but complemented with the characters
missing to provide a full T1 encoding (OT1 is not supported), a suitable set of
math symbols, Greek sloped and upright letters, and a matching calligraphic and
blackboard bold alphabet so that whole documents can be prepared without using
any other typefaces. The font encoding is shown in Table 7.16 on the next page; a
complete example page is given in Figure 8.4 on page 515.

7-7-13

An example showing a trigonometric
function:

sin
α

2
=±
√

1−cosα

2

The alphabets are A BC and ABC.

\usepackage{fourier}

An example showing a trigonometric function:
\[\sin \frac{\alpha}{2} =

\pm \sqrt{\frac{1-\cos\alpha}{2}} \]
The alphabets are \mathcal{ABC} and
\mathbb{ABC}.

392 Fonts and Encodings

Family Series Shape(s) Examples

Utopia (T1, TS1)

futs m, b, (bx) n, sl, it, (sc) Utopia-Regular Utopia-BoldItalic

Fourier math letters (FML)

futm, futmi m it ΔΘΛ αβγ abcdef ΔΘΛ αβγ

Fourier math symbols (FMS)

futm m n ���∥ ABCDEFGHIJKLM

Table 7.16: Classification of the Fourier-GUTenberg font families

The fourier package supports typesetting mathematics “à la French”, with
Greek letters and Roman uppercase letters in upright style, by specifying the
option upright. Compare the next example to the output in Example 8-4-1 on
page 490.

0←−
ζ

F×Δ(n−1)
∂0α(b)−−−−→ E∂0b

\usepackage{amsmath}\usepackage[upright]{fourier}

\[0 \xleftarrow [\zeta]{} F \times \Delta (n - 1)
\xrightarrow {\partial_0 \alpha(b)} E^{\partial_0 b} \] 7-7-14

If you require extendedmath support from the amsmath package as in the pre-
vious example, load this package first, so that certain aspects of the math format-
ting tuned for typesetting in Utopia will not be overwritten. For the same reason,
you should load amssymb first, though you will find that fourier already contains
several symbols normally available only with amssymb. In fact, the fourier pack-
age offers a small set of mathematical symbols not found elsewhere (e.g., certain
integral signs, some delimiters, and other symbols). Some are shown in the next
example.

����	
������	xxxxxx

\usepackage{fourier}
\setlength\delimitershortfall{-2pt} % make delimiters grow

\[\left\llbracket \left\VERT
\xswordsup \nparallelslant \xswordsdown

\right\VERT \right\rrbracket
\oiint \oiiint \slashint \widetilde{xxxxxx} \]

7-7-15

Upright and slanted variants of the Greek letters can be used together in a
single document by prefixing the command names with other. For example:

Ωβ �=Ωβ

\usepackage[upright]{fourier}

\[\Omega_\beta \neq \otherOmega_\otherbeta \] 7-7-16

Without the upright option (or with the default option sloped), the letters
are sloped according conventional typesetting of mathematics—that is, upright

7.7 A collection of font packages 393

Family Series Shape(s) PostScript Font Names and Examples

URW Antiqua Condensed (OT1, T1, TS1)

uaq (m), mc n, sl, (it), sc URWAntiquaT-RegularCondensed

URW Grotesk Bold (OT1, T1, TS1)

ugq b, (bx), (m) n, sl, (it), sc URWGroteskT-Bold

Table 7.17: Classification of the URW Antiqua and Grotesk fonts

uppercase Greek and everything else slanted. The meaning of the \other... com-
mands is swapped, accordingly.

7-7-17 Ωβ �=Ωβ

\usepackage[sloped]{fourier}

\[\Omega_\beta \neq \otherOmega_\otherbeta \]

In the current implementation fourier does not support \boldmath . Conse-
quently, using the bm package will most often lead to “poor man’s bold”; see
Section 8.8.2.

To complement the freely available fonts Adobe offers a commercial expert
Support for the
commercial expert
fonts

set containing old-style digits, real small capitals, a semibold series, and an extra
bold series. To support these typefaces, the fourier package offers additional op-
tions: expert provides \textsb and \textblack to select the extra font series
and arranges to use real small capitals with \textsc . The oldstyle option pro-
vides the same support but additionally uses old-style numerals in text (\lining
allows you to refer to lining numerals in that case). Finally, the fulloldstyle
works like oldstyle but additionally arranges for old-style numerals to be used
in formulas.

7.7.8 The URW Antiqua and Grotesk fonts

The German company URW made two PostScript fonts, URW Antiqua Condensed URW’s Antiqua
Condensed
10pt/12pt (uaq)

and URW Grotesk Bold, freely available. LaTEX support in the form of virtual
fonts and .fd files is available. They are accessed using the classification given
in Table 7.17. The sample below was typeset by specifying \fontfamily{uaq}
\selectfont.

For the price of £45, almost anything can be found floating in fields.
¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890 JUMPS! — ¿But
aren’t Kafka’s Schloß and Æsop’s Œuvres often naïve vis-à-vis the dæ-
monic phœnix’s official rôle in fluffy soufflés?

As its name indicates, the URW Grotesk Bold font is available only in a bold se- URW’s Grotesk Bold
10pt/12pt (ugq)ries (although within LaTEX selecting a medium series is supported for convenience

394 Fonts and Encodings

but refers to the same bold font). As such, it is not suitable for general running
text. Potential applications include headings and other display material.

For the price of £45, almost anything can be found floating

in fields. ¡THE DAZED BROWN FOX QUICKLY GAVE 12345–67890

JUMPS! — ¿But aren’t Kafka’s Schloß and Æsop’s Œuvres often

naïve vis-à-vis the dæmonic phœnix’s official rôle in fluffy souf-

flés?

7.7.9 yfonts—Typesetting with Old German fonts

There exists a set of beautiful fonts for typesetting in Gothic, Schwabacher, and
Fraktur designed in METAFONT

1 after traditional typefaces by Yannis Haralam-
bous [62]. These days Type 1 versions of the fonts are available as well. To use the
fonts, load the yfonts package written by Walter Schmidt. This package internally
defines some local encodings that reflect the special features found in the fonts
and integrates them fully with LaTEX’s font management.

The commands \gothfamily , \swabfamily , and \frakfamily switch to
Gothic, Schwabacher, and Fraktur, respectively. If one wants to typeset a whole
document in such a typeface, the corresponding command should be used di-
rectly after \begin{document}. Because of the nonstandard encodings of the
fonts, redefining the document defaults (e.g., \familydefault) is not possible.
In addition to the font switches, the usual \text.. commands for typesetting
short fragments are provided.

The package provides Gotis˜, also cafled
Textur, SĚwabaĚer, and Fraktur type-
faces, also generally known as \gebroĚe-
ne SĚriften".

\usepackage{yfonts}\usepackage[document]{ragged2e}

The package provides \textgoth{Gotisch, also
called Textur}, \textswab{Schwabacher}, and
\textfrak{Fraktur} typefaces, also generally
known as \textfrak{‘‘ge\-bro\-che\-ne Schriften’’}. 7-7-18

The fonts are available in the usual LaTEX sizes starting from 10pt, so that size-
changing commands (e.g., \normalsize and larger) will work. There are, however,
no further font series or shapes, so commands like \emph , \textit , and \textbf
have no effect other than producing a warning. Following historical practice you
can use Schwabacher to emphasize something inside text typeset in Fraktur.

For accents one can use the standard LaTEX representations (e.g., \"a for ä).
To facilitate input, the fonts also contain ligatures that represent umlauts (e.g.,
"a). In Fraktur and Schwabacher there also exist alternate umlauts, which can be
accessed with *a and similar ligatures. If the yfonts package is loaded with the
option varumlaut, then \" produces the variant glyphs automatically.

1Compiling the fonts from the METAFONT sources sometimes produces error messages, but
generally produces usable fonts when METAFONT is directed to ignore them. The collection also
contains a font with baroque initials.

7.7 A collection of font packages 395

All three fonts contain a glyph for the “short s”, accessed through the ligature
s: , and “sharp s”, accessed by \ss , or through the ligature sz or "s .

7-7-19

Fraktur: Ł Ś § Ž Ľ Ř đ Ź j s viz. Ŋ
Swab: Ł Ś § Ž Ľ Ř đ Ź j s viz. Ŋ

Gothic: [\ ^] (una‰il) ı s viz. ‘

\usepackage{yfonts}

\Large \frakfamily Fraktur: "a "e "u "o
\hfil *a *e *u *o \hfil sz \hfil s viz.\ s:
\par\swabfamily Swab: "a "e "u "o
\hfil *a *e *u *o \hfil sz \hfil s viz.\ s:
\par\gothfamily Gothic: "a "e "u "o
\hfil (unavail) \hfil sz \hfil s viz.\ s:

The font selected with \gothfamily is not a copy of Gutenberg’s font used for
his Bible (which had 288 glyphs altogether), but it follows Gutenberg’s guidelines
on lowercase characters and implements as many ligatures as can be fit into a
7-bit font. For this reason many standard ASCII symbols are unavailable in this
font.

The two other fonts also implement only a subset of visible ASCII. Problematic
are the semicolon (which is missing in Schwabacher) and the characters +, =, ‘, [,
], /, *, @, &, and % (which are either missing or produce wrong or nonmatching
shapes). Their omission is seldom a problem since typically they are not needed
in documents using such fonts, but one needs to be aware that no warning or
error message is issued if they are used—the only indication is missing or wrong
glyphs in the printed output!

7-7-20

Symbols: + = ‘ [] / * $ % & ; @
Fraktur problemŊ: + = ‘ [] / * $ % & ;
Swab problemŊ: + = ‘ [] / * $ %
Gothic problem‘: + = ‘ [] / * $ & ;

\usepackage{yfonts}
\newcommand\test{+ = ‘ [] / * \$ \% \& ; @}

Symbols: \ttfamily \test \par
\frakfamily Fraktur problems:: \test \par
\swabfamily Swab problems:: \test \par
\gothfamily Gothic problems:: \test

The default line spacing of the standard classes is too large for the Old Ger-
man fonts. For this reason the package implements the \fraklines command,
which selects a suitable \baselineskip for Fraktur or Schwabacher. It must be
repeated after every size-changing command.

The font collection also contains a font with decorative initials, as shown in
the next example.

7-7-21

�
ieŊ iĆ ein Blindtext an dem siĚ ver-
sĚiedene Dinge ablesen laĄen. Der
Grauwert der SĚriftflĽĚe wird siĚt-
bar und man kann an ihm prđfen,

wie gut die SĚrift zu lesen iĆ und wie sie auf
den Leser wirkt. Bei genauerem Hinsehen werden
die einzelnen BuĚĆaben und ihre Besonderheiten
erkennbar, É

\usepackage[german]{babel} \usepackage{color}
\usepackage[varumlaut]{yfonts}

\frakfamily\fraklines
\yinipar{\color{blue}D}ies: ist ein Blindtext an dem
sich verschiedene Dinge ablesen lassen. Der Grauwert
der Schriftfl\"ache wird sichtbar und man kann an
ihm pr\"ufen, wie gut die Schrift zu lesen ist und
wie sie auf den Leser wirkt. Bei genauerem
Hinsehen werden die einzelnen Buchstaben und ihre
Besonderheiten erkennbar, \etc

396 Fonts and Encodings

The command \yinipar used above starts a new paragraph without inden-
tation, producing a baroque dropped initial. For this command to work, a full
paragraph (up to and including the next blank line or \par) must be typeset using
\fraklines . Otherwise, the space left for the initial will be either too large or too
small.

As an alternative, you can access these initials with the \textinit command
or the font switch \initfamily , in which case initials aligned at the baseline are
produced. The example also used the command \etc , which produces a once-
popular symbol for "etc."; it is available in Fraktur only.

The font collection contains a second Fraktur font that has slightly wider
glyphs with at the same time slightly thinner stems. It can be selected by redefin-
ing \frakdefault as shown in the next example. When compared to Example 7-
7-21, the difference in running length can be clearly observed, resulting in an
overfull box on the third line.

�
��� �� ��� �����	�
	 �� ��� �� ����
������� ����� ������ ������ ���
�������	 ��� �����	����� ���� ��	�
��� ��� ��� ���� �� ��� �� ���!

��� ��	 ��� �����	 "� ���� �� ��� ��� �� ���
��� #��� ����	� ��� ��������� $������

\usepackage[german]{babel} \usepackage{color}
\usepackage[varumlaut]{yfonts}
\renewcommand\frakdefault{ysmfrak}

\frakfamily\fraklines
\yinipar{\color{blue}D}ies: ist ein Blindtext an dem
sich verschiedene Dinge ablesen lassen. Der Grauwert
der Schriftfl\"ache wird sichtbar und man kann an ihm
pr\"ufen, wie gut die Schrift zu lesen ist und wie
sie auf den Leser wirkt. Bei genauerem Hinsehen 7-7-22

7.7.10 euler, eulervm—Accessing the Euler fonts

As mentioned earlier, Hermann Zapf designed a beautiful set of fonts for type-
setting mathematics—upright characters with a handwritten flavor—named after
the famous mathematician Leonhard Euler [99]. These fonts can be accessed as
(math) alphabets of their own, or you can generally modify the math font set-up,
thus making LaTEX use Euler math fonts (rather than Computer Modern) by default.

The Euler fonts contain three math alphabets: SCRIPT, Euler Fraktur, and Eu-
ler Roman.1 The script alphabet can be used via the eucal package, which makes
this math alphabet available under the name \mathcal (obsolete alternate name
\EuScript). If the package is loaded with the mathscr option, the math alphabet
becomes available through the command \mathscr , with \mathcal retaining its
original definition.

To access Euler Fraktur in formulas, you use the package eufrak, which de-
fines the math alphabet \mathfrak (obsolete alternate name \EuFrak). There is
no particular package to access the Euler Roman alphabet separately. The next ex-

1None of these alphabets is suitable for typesetting text as the individual glyphs have side-
bearings specially tailored for use in math formulas.

7.7 A collection of font packages 397

Family Series Shape(s) Example of the Typeface

Euler Roman (U)

eur m n Euler Roman medium

eur b n Euler Roman bold

Euler Script (U)

eus m n EULER SCRIPT

Euler Fraktur (U)

euf m n Euler Fraktur

Euler Extension (U)

euex m n
∑∏∫∞{}↗↘

Table 7.18: Classification of the Euler math font families

ample shows Computer Modern Calligraphic, Euler Script, and Euler Fraktur side
by side.

7-7-23
A �=

∑
k<n

Ak �= A \usepackage[mathscr]{eucal} \usepackage{eufrak}

\[\mathcal{A} \neq \sum_{k<n} \mathscr{A}_k \neq \mathfrak{A} \]

The NFSS classification for the fonts in these families is shown in Table 7.18.
The fonts in the current distribution of the Euler math families are available only
in encoding schemes that differ from all other encoding schemes for mathematics.
For this reason, the fonts are all assigned the encoding U (unknown).

The uncommon encoding makes it difficult to simply substitute the Euler
math alphabets for the default CM math fonts. Yet the euler package, written
by Frank Jensen, went exactly this way, redeclaring most of LaTEX’s math font set-
up. In conjunction with the package beton, which sets up Concrete as the default
text font family, it simulates the typography of Knuth’s book Concrete Mathemat-
ics [59], as shown in Example 7-7-2.

One of the problems with extensive reencoding in macro packages, as done by
Virtual Euler fontsthe euler package, is that it is likely to break other packages that assume certain

symbols in slot positions, as defined by more established font encodings. The
eulervm package developed by Walter Schmidt attempts to avoid this problem by
providing reencoded virtual fonts that follow as much as possible the standard
math encodings OML, OMS, and OMX.

The eulervm package sets up a \mathnormal alphabet, which is based mainly
on Euler Roman, and a \mathcal alphabet, which is based on Euler Script. It
does not provide immediate support for the Euler Fraktur alphabet—to access
this math alphabet one needs to additionally load the eufrak package. Also, the

398 Fonts and Encodings

math symbols are taken from the Euler fonts, with a few exceptions coming from
the Computer Modern math fonts. Compare the next example to Example 7-7-23
on the previous page and you will see that \mathcal has changed and that \sum
and the indices are different, as they are now taken from the Euler fonts.

A �=
∑
k<n

Ak �= A \usepackage{eulervm,eufrak}

\[\mathcal{A} \neq \sum_{k<n} A_k \neq \mathfrak{A} \]
7-7-24

The option small causes eulervm to load all Euler fonts at 95% of their normal
size, thereby enabling them to blend better with some document fonts (e.g., Adobe
Minion). This option also affects the Euler Fraktur fonts if they are loaded with
eufrak and the AMS symbol fonts.

Neither the standard \hbar command nor \hslash (from the amssymb pack-
age) is really usable with the Euler fonts if it is used without modification (i.e.,
with euler), because \hslash uses a Computer Modern style “h” and \hbar gets
the slash in a strange position.

� �= h̄
\usepackage{amssymb,euler}

\[\hslash \neq \hbar \]
7-7-25

This issue restricts the usage of the euler package somewhat for physics and re-
lated fields. The eulervm package resolves this problem (partially) by providing a
properly slashed “h” glyph built using the possibilities offered by the virtual font
mechanism ([91] explains the concepts). It does, however, provide only a slashed
version (\hslash); if \hbar is used, a warning is issued and the slashed glyph is
used nevertheless.

�h ≡ �h
\usepackage{eulervm}

\[\hslash \equiv \hbar \]
7-7-26

The functionality provided by the exscale package is automatically available.
See Section 7.5.5 on page 368 for details.

In typical font set-ups the same digits are used in text and math formulas.
The Euler fonts contain a set of digits that have a distinctive look and thus make
digits in text and math look noticeably different.

By default, the digits of the main document font are used in formulas as well.
To switch to the digits from Euler Roman, one has to explicitly request them by
specifying the option euler-digits. It then becomes very important to distin-
guish between a number in a mathematical or a textual context. For example, one
must watch out for omitted $ signs, as in the first line of the next example.

The value can be 1, 2, or −1 (wrong!)
The value can be 1, 2, or −1 (right!)

\usepackage{ccfonts}
\usepackage[euler-digits]{eulervm}

The value can be 1, 2, or -1 (wrong!)\par
The value can be 1, 2, or -1 (right!) 7-7-27

7.8 The LATEX world of symbols 399

Normally, the math accent \hat is taken from the main document font, which
might not be a good choice when text and math fonts are noticeably different.
With the option euler-hat-accent, an alternative version from the Euler fonts is
used instead. In the example we mimic that option and define the alternate accent
under the name \varhatmanually to enable comparison of the two (neither looks
really perfect).

7-7-28 x̂ �= x̂ and K̂ �= K̂

\usepackage{palatino,eulervm,eufrak}
\DeclareMathAccent\varhat{\mathalpha}{symbols}{222}

\Large $ \hat x \neq \varhat x $ and
$ \hat \mathfrak{K} \neq \varhat \mathfrak{K} $

It is usually best to load the eulervm package after all the document fonts
have been defined, because eulervm defines the math alphabets (e.g., \mathsf) by
evaluating the document’s default information that is current when the package is
loaded. In the example below, the loading order is absolutely essential because the
ccfonts package also tries to set up the math fonts and thus the one that comes
last wins.

In the book Concrete Mathematics [59], where Euler and Concrete fonts were
first used together, one can see that slanted � and � signs were once part of the
Euler Math fonts. Somewhere along the way these two symbols got lost, though
traces of their existence can be found in [92] and in macros that Donald Knuth
developed for producing the book. With the help of the virtual font mechanism,
Walter Schmidt brought them back in the eulervm package; compare the next ex-
ample to Example 7-7-2 on page 384, which shows the straight ≤ sign.

7-7-29

Concrete Roman blends well with Euler Math,
as can be seen with

∑
0�k<n

k =
n(n − 1)

2

\usepackage{ccfonts,amssymb}
\usepackage[euler-digits]{eulervm}

Concrete Roman blends well with Euler Math,
as can be seen with
\[\sum_{0\leq k<n} k = \frac{n(n-1)}{2} \]

7.8 The LATEX world of symbols

Shortly after TEX and METAFONT came into existence, people started to develop
new symbol fonts for use with the system. Over time the set of available symbols
grew to a considerable number. The Comprehensive LATEX Symbol List by Scott
Pakin [134] lists 2590 symbols1 and the corresponding LaTEX commands that pro-
duce them. For some symbols the necessary fonts and support packages may have
to be obtained (e.g., from a CTAN host; see Appendix C) and installed by the user.
They are usually accompanied by installation instructions and general documen-
tation.

1Counted spring 2003.

400 Fonts and Encodings

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x � � � � � ∴ � 	
˝0x

0́1x
 � � ♩ � � �
0́2x � � � � � � � �

˝1x
0́3x � ♀ ♂ ¤ � � �
0́4x ! " # $ % & ♁ (

˝2x
0́5x) * + , - . ☼ 0
0́6x 1 2 3 4 5 ◊ 7 8

˝3x
0́7x 9 : ; < = > ? @
1́0x A B C D E F G H

˝4x
1́1x I J K L M
1́2x N O P Q R S

˝5x
1́3x T U V W X Y Z [
1́4x \] ^ _ ` a b ¢

˝6x
1́5x c þ Þ d e f g h
1́6x i j k l m n o p

˝7x
1́7x q r s t u v w x

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 7.19: Glyphs in the wasy fonts

The fonts and packages described in this section form only a subset of what
is available. If you cannot find a symbol here, the 70 pages of [134] are a valuable
resource for locating what you need. We start by looking at a number of dingbat
fonts, some of which contain quite unusual symbols. This examination is followed
by an introduction to the TIPA system, which provides support for phonetic sym-
bols. The section finishes with a discussion of ways to obtain a single (though
in Europe not unimportant) symbol: the euro. Being a relatively new addition to
the symbol world, it is missing in many fonts and thus needs alternative ways to
produce it. All packages and fonts listed in this section and in [134] are freely
available.

7.8.1 dingbat—A selection of hands

The dingbat package written by Scott Pakin provides access to two symbol fonts
developed by Arthur Keller (ark10.mf) and Doug Henderson (dingbat.mf). The

7.8 The LATEX world of symbols 401

package makes a set of hands and a few other symbols available; the example
shows most of them. Note that the \largepencil glyph is bigger than the space
it officially occupies (shown by the \frame drawn around it).

7-8-1

� �
� � �

� � � � 	

\usepackage{dingbat}

\smallpencil \quad \frame{\largepencil} \quad
\anchor \quad \eye \quad \carriagereturn \\[5pt]
\leftpointright \quad \rightpointleft \quad
\leftthumbsdown \quad \rightthumbsdown \quad
\leftthumbsup \quad \rightthumbsup

These fonts exist only as a METAFONT implementation, so they are not really
suitable when intending to produce PDF (e.g., with pdfTEX).

7.8.2 wasysym—Waldi’s symbol font

The wasysym package developed by Axel Kielhorn provides access to the wasy
fonts designed by Roland Waldi. These fonts first appeared in 1989 and are nowa-
days available both in METAFONT source and Type 1 outlines. They cover a wide
range of symbols from different areas, including astronomical and astrological
symbols, APL, musical notes, circles, and polygons and stars (see Table 7.19 on
the facing page). The wasysym package defines command names like \phone to
access each glyph. Alternatively, if you want only a few glyphs from the font, you
can use the pifont interface and access the symbols directly under the name wasy.

7-8-2
	 using wasysym	 using pifont

\usepackage{wasysym,pifont}

\phone\ using \texttt{wasysym} \par
\Pisymbol{wasy}{7} using \texttt{pifont}

7.8.3 marvosym—Interface to the MarVoSym font

The MarVoSym font designed by Martin Vogel is another Pi font containing sym-
bols from various areas including quite uncommon ones, such as laundry signs (in
case you are doing your own laundry lists ©), astronomy and astrology symbols,
and many others.

The LaTEX support package marvosym was written by Thomas Henlich, who
also converted the font from TrueType format to PostScript Type 1. This package
defines command names for all symbols, some of which are listed in the next
example; the full set is given in marvodoc.pdf accompanying the distribution.

7-8-3

Hv%LK o

Ø°ãå μ¹

ÍÏ~�© §Y®

\usepackage{marvosym}

\Large \Mobilefone\ \Faxmachine\ \Fixedbearing\ \Lineload\
\Coffeecup\ \Football\ \AtForty\ \IroningII\ \Cancer\ \Virgo\
\RewindToStart\ \ForwardToIndex\ \ComputerMouse\ \Keyboard\
\Female\ \FEMALE\ \Smiley\ \Frowny\ \Yingyang\ \Bicycle

402 Fonts and Encodings

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́4x ! " # $ % & '
˝2x

0́5x () * + , - . /

0́6x 0 1 2 3 4 5 6 7
˝3x

0́7x 8 9 : ; < = > ?

1́0x @ A B C D E F G
˝4x

1́1x H I J K L M � O

1́2x P Q R S T U V W
˝5x

1́3x X Y Z [\] ^ _

1́4x ` a b c d e f g
˝6x

1́5x h i j k l m n o

1́6x p q r s t u v w
˝7x

1́7x x y z { | } ~ ‚

2́0x � � ‚ ƒ „ … † ‡
˝8x

2́1x ˆ ‰ Š ‹ Œ � � �

2́2x � ‘ ’ “ ” • – —
˝9x

2́3x ˜ ™ š › œ � 	 Ÿ

2́4x ¡ ¢ £ ¤ ¥ ¦ §
˝Ax

2́5x ¨ © ª « ¬ ® ¯

2́6x ° ± ² � ´ μ ¶ ·
˝Bx

2́7x ¸ ¹ º » ¼ ½ ¾ ¿

3́0x À Á Â Ã Ä Å Æ Ç
˝Cx

3́1x È É Ê Ë Ì Í Î Ï

3́2x Ð Ñ Ò Ó Ô Õ Ö ×
˝Dx

3́3x Ø Ù Ú Û Ü Ý � �

3́4x à á â ã ä å æ ç
˝Ex

3́5x è é ê ë � � � �

3́6x ð ñ � � � � � ÷
˝Fx

3́7x � � � � � ý þ ÿ

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 7.20: Glyphs in the MarVoSym font

7.8 The LATEX world of symbols 403

Assuming a recent distribution, one can also access the symbols directly by
using the glyph chart in Table 7.20 on the preceding page and the pifont interface
with the Pi font name being mvs. In older distributions the file umvs.fd that makes
this method work might be missing, but it can be easily added as shown below.

7-8-4

IJb

x y ê

\begin{filecontents}{umvs.fd}
\DeclareFontFamily{U}{mvs}{}
\DeclareFontShape{U}{mvs}{m}{n}{<-> fmvr8x}{}

\end{filecontents}
\usepackage{pifont}

\Huge \Pisymbol{mvs}{73} \Pisymbol{mvs}{74} \Pisymbol{mvs}{98}
\Pisymbol{mvs}{120} \Pisymbol{mvs}{121} \Pisymbol{mvs}{234}

7.8.4 bbding—A �������� alternative to Zapf Dingbats

For those who cannot use PostScript Type 1 fonts, Karel Horak designed a font
with METAFONT containing most of the symbols from Hermann Zapf’s dingbat
font. The package bbding by Peter Møller Neergaard provides an interface that
defines command names for each symbol (using a naming convention modeled
after WordPerfect’s names for accessing the Zapf Dingbats font). The complete
list can be found in the package documentation, a few examples are given below.

7-8-5

������
��	
��
��

\usepackage{bbding}

\XSolid\ \XSolidBold\ \XSolidBrush\ \Plus\ \PlusOutline\ \DavidStar\
\DavidStarSolid\ \JackStar\ \JackStarBold\ \FourStar\ \FiveFlowerPetal\
\SixFlowerOpenCenter\ \PhoneHandset\ \Peace\ \OrnamentDiamondSolid

Alternatively, referring to the glyph chart in Table 7.21 on the following page,
you can address individual symbols via the pifont interface, by accessing the font
under the name ding (compare this to Table 7.9 on page 379 showing the original
Zapf designs).

7-8-6 ������

\usepackage{pifont}

\Pisymbol{ding}{13} \Pisymbol{ding}{15} \Pisymbol{ding}{8}
\Pisymbol{ding}{17} \Pisymbol{ding}{19} \Pisymbol{ding}{9}

7.8.5 ifsym—Clocks, clouds, mountains, and other symbols

The ifsym package written by Ingo Klöckl provides access to a set of symbol fonts
designed in METAFONT. At present they are not available in Type 1 format. De-
pending on the chosen package option(s), different symbol sets are made avail-
able. We show only a small selection here. The full documentation (German only)
is provided in the PostScript file ifsym.ps, which is part of the distribution. All
available symbols are also listed in [134].

404 Fonts and Encodings

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x � � � � � � � �
˝0x

0́1x 	
 � � � Æ �

0́2x � � � � � � � �
˝1x

0́3x � � � � � � � �

0́4x ! " # $ % & '
˝2x

0́5x () * + , - . /

0́6x 0 1 2 3 4 5 6 7
˝3x

0́7x 8 9 : ; < = > ?

1́0x @ A B C D E F G
˝4x

1́1x H I J K L M N O

1́2x P Q R S T U V W
˝5x

1́3x X Y Z [\] ^ _

1́4x ` a b c � � � �
˝6x

1́5x � � � � 	
 � �

1́6x � � � � � � �
˝7x

1́7x � � � �

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 7.21: Glyphs in the METAFONT font bbding

The option clock makes seven clock-related symbols available. It also pro-
vides the command \showclock to display an analog watch, with the hands show-
ing the correct time. Its two arguments denote the hour (0–11) and minutes (0–59).
The minutes displayed are rounded to the nearest 5-minute interval; using a value
greater than 11 for the hour makes the symbol disappear without warning. All
symbols are available in normal and bold extended series.

Normal: � rounded: �
Problem:

Fixed symbols: ����

\usepackage[clock]{ifsym}

Normal: \showclock{3}{20} rounded: \textbf{\showclock{6}{17}}
\\ Problem: \showclock{16}{35}\\ Fixed symbols: \Taschenuhr{}
\StopWatchStart{} \StopWatchEnd{} \Interval{} 7-8-7

The option weather defines 22 weather symbols, a few of which are shown
on the first line of the next example. The \Thermo command displays a different
thermometer symbol depending on the number in its argument (0–6).

7.8 The LATEX world of symbols 405

For alpinists and travelers the option alpine provides 17 symbols for use in
route descriptions or maps. The option misc offers a set of unrelated symbols,
some of which are also found in other fonts, and the option geometry provides
commands for 30 geometric shapes, some of which are shown on the fourth line
of the example.

7-8-8

����� � �

��������
�

��Æ	
�

��� �

\usepackage[weather,alpine,misc,geometry]{ifsym}

\Sun\ \Rain\ \Snow\ \Lightning\ \SunCloud\ \Thermo{1} \Thermo{4}\par
\Summit\ \Mountain\ \Joch\ \Hut\ \Flag\ \Tent\ \Village \par
\Cube{5} \StrokeFive\ \Radiation\ \Fire\ \Telephone\ \Letter \par
\TriangleUp\ \RightDiamond\ \SquareShadowC\ \SpinUp\ \SpinDown

The command \textifsymbol allows you to access symbols by their slot
positions. Its optional argument defines the symbol font to use (default ifsym).
Glyph charts of all ifsym fonts are part of the package documentation. Somewhat
more interesting is the command \textifsym , which allows you to produce pulse
diagrams. It can also be used to display digital digits (where b denotes an empty
space of the right width).

7-8-9

��

����������� ���		
���
�

������ ��������

\usepackage{ifsym}

\textifsymbol{3} \textifsymbol[ifgeo]{113} \par
\textifsym{LLL|H|L|h|l} \textifsym{MM<DD>m<d>M}\par
\textifsym{-31.458} \textit{\textifsym{-99.4b80}}

7.8.6 tipa—International Phonetic Alphabet symbols

The TIPA bundle [50] developed by Rei Fukui consists of a set of fonts and a
corresponding package to enable typesetting of phonetic symbols with LaTEX. TIPA
contains all the symbols, including diacritics, defined in the 1979, 1989, 1993, and
1996 versions of the International Phonetic Alphabet (IPA). Besides IPA symbols,
TIPA contains symbols that are useful for other areas of phonetics and linguistics
including the following:

• Symbols used in American phonetics, for example, ŕ, ď, ś, and ń;

• Symbols used in the historical study of Indo-European languages, such as þ,
�, ß, Þ, ž, ż, and accents such as ´̄a and §e;

• Symbols used in the phonetic description of languages in East Asia, such as 1,
ğ, ć, ő, ť (needs option extra);

• Diacritics used in extIPA Symbols for Disordered Speech and VoQS (Voice Qual-
ity Symbols), for example,

”
n”, f
""
, and Ŕ̃m (needs option extra).

The IPA symbols are encoded in the standard LaTEX encoding T3, for which the
package tipa provides additional support macros. The encoding is available for
the font families Computer Modern Roman, Sans, and Typewriter (based on the

406 Fonts and Encodings

ASCII : ; " | 0 1 2 3 4 5 6 7 8 9
TIPA : ; " | 0 1 2 3 4 5 6 7 8 9
ASCII @ A B C D E F G H I J K L M
TIPA @ A B C D E F G H I J K L M
ASCII N O P Q R S T U V W X Y Z
TIPA N O P Q R S T U V W X Y Z

Table 7.22: TIPA shortcut characters

METAFONT designs for Computer Modern by Donald Knuth), as well as for Times
Roman and Helvetica.

Strictly speaking, T3 is not a proper LaTEX text encoding, as it does not contain
the visible ASCII characters in their standard positions. However, one can take the
position that phonetic symbols form a language of their own and for this language,
the TIPA system provides a highly optimized input interface in which digits and
uppercase letters serve as convenient shortcuts (see Table 7.22) to input common
phonetic symbols within the argument of \textipa or the environment IPA. All
phonetic symbols are also available in long form; for example, to produce a @ one
can use \textschwa . The following example shows the TIPA system in a Times
and Helvetica environment.

In linguistics, f@U"nEtık transcriptions
are usually shown in square brackets, e.g.,
phonetics [f@U"nEtIks].

\usepackage{mathptmx,tipa}

In linguistics, f\textschwa\textupsilon
\textprimstress n\textepsilon t\i k transcriptions
are usually shown in square brackets, e.g.,
\textsf{phonetics \textipa{[f@U"nEtIks]}}. 7-8-10

TIPA defines * , \; , \: , \! , and \| as special macros with which to easily

�Redefined
math commands

input phonetic symbols that do not have a shortcut input as explained above.
In standard LaTEX all five are already defined for use in math mode, so loading
tipa highjacks them for use by linguists. If that is not desirable, the option safe
prevents these redefinitions. The long forms then have to be used—for example,
the command \textroundcap instead of \|c . The following lines show a few
more complicated examples with the output in Computer Modern Roman, Sans,
and Typewriter.

Nòò
˜
õ N
˚
òâPã

A) dOg, B) kæt, C) maUs

*“km
˚

tóm *bhr´̄atēr

\usepackage{tipa}

\begin{IPA}
\textrm{N\!o\‘{\~*o}\~o \r*N\!o\^aP\~a } \par
\textsf{*A) dOg, *B) k\ae{}t, *C) maUs} \par
\texttt{*\|c{k}\r*mt\’om *bhr\’=at\=er} \end{IPA} 7-8-11

If loaded with the option tone, TIPA provides a \tone command to produce
“tone letters”. The command takes one argument consisting of a string of numbers

7.8 The LATEX world of symbols 407

denoting pitch levels, 1 being the lowest and 5 the highest. Within this range, any
combination is allowed and there is no limit on the length of the combination, as
exemplified in the last line of the next example, which otherwise shows the usage
of \tone to display the four tones of Chinese.

7-8-12

Ă
£ma (mother) ŁŘ£ma (horse)
Ę£ma (hemp) Ď£ma (scold)
ŚŃĽŁŘŁŇŔ£

\usepackage[tone]{tipa}

\tone{55}ma (mother) \tone{214}ma (horse) \par
\tone{35}ma (hemp) \tone{51}ma (scold) \par
\tone{153325413}

The above examples merely scrape the surface of the possibilities offered by
TIPA. To explore it in detail consult the tipaman manual, which is part of the TIPA
distribution.

7.8.7 Typesetting the euro symbol (€)

On January 1, 2002, the euro (€) became the official currency in 12 countries of the
European Union.1 A long time before that event, the European Commission had
a logo designed, to be used whenever one refers to the new European currency.
The Commission now also encourages the use of symbols that are adjusted to the
current font of a document. Meanwhile, most foundries have integrated specially
designed euro symbols into their fonts, but there are still many fonts without euro
in use. For instance, the PostScript standard fonts, which are hard-wired in most
existing laser printers, cannot be assumed to have euro symbols.

The official LaTEX command to access a euro symbol is \texteuro , which is
part of the textcomp package. However, many fonts simply do not contain a euro
glyph. In such a case textcomp attempts to fake the symbol by putting two slashes
through an uppercase C (e.g., in Times Roman =C).

With popular fonts designed for use with TEX, the euro symbol is usually avail-
able but, unfortunately, the euro sign designed by Jörg Knappen for the European
Computer Modern fonts (i.e., LaTEX’s default font families) is somewhat futuristic
and considered acceptable by many people only in the sans serif family:

7-8-13

A normal €, an italic €, a bold
€, a bold italic €. Compare the
sans serif € and typewriter € all in
EC fonts.

\usepackage{textcomp}

A normal \texteuro{}, \textit{an italic \texteuro},
\textbf{a bold \texteuro},
\textbf{\itshape a bold italic \texteuro}.
Compare the \textsf{sans serif \texteuro}
and \texttt{typewriter \texteuro} all in EC fonts.

The situation is somewhat better with the Computer Modern Bright families.
Although produced using the METAFONT designs of the European Computer

1More exactly, bank notes and coins were introduced on that day.

408 Fonts and Encodings

Modern fonts, the euro symbol comes out nicely, as nearly all serifs are dropped
in these families.

A normal €, a slanted €, a bold
€, a bold slanted €. Compare
this to the typewriter € all in CM
Bright.

\usepackage{cmbright,textcomp}

A normal \texteuro{}, \textsl{a slanted \texteuro},
\textbf{a bold \texteuro}, \textbf{\slshape a bold
slanted \texteuro}. Compare this to the
\texttt{typewriter \texteuro} all in CM Bright. 7-8-14

But what should be done if the fonts used in the document do not contain
the symbol? In that case the solution is to use either separate symbol fonts that
provide a generic euro symbol (with a neutral design, that can be combined with
many font families) or symbol fonts specially designed to be used with certain text
font families. In any event the symbol should be available in several weight (and
width) series and sizes so that it can be effectively used in different typesetting
situations (e.g., in a heading like the one of the current section).

eurosym—euros for LATEX

The first set of fonts providing generic euro symbols for use with TEX were prob-
ably the EuroSym fonts designed by Henrik Theiling. They are available as META-
FONT sources as well as PostScript Type 1 outlines and contain the euro symbol
designed according to the official construction method. As a nice feature, the fonts
contain a picture of the construction method in slot zero. So for those who always
wanted to know how the symbol should be designed, the following example is
illuminating:

` \usepackage{eurosym}

\fontsize{40}{40}\usefont{U}{eurosym}{m}{n}\symbol{0} 7-8-15

The eurosym package, which is used to access these fonts, defines the com-
Regular euros mand \euro . By default, this command generates the official symbol to vary with

the series and shape attributes of the current document font. See Table 7.23 on
the next page for the set of possibilities.

Regular e, a slanted e, a bold
e, and a bold italic e.

\usepackage{eurosym}

Regular \euro{}, \textsl{a slanted \euro},
\textbf{a bold \euro}, and
\textbf{\itshape a bold italic \euro}. 7-8-16

As an alternative, the package offers commands to construct a euro symbol
Poor man’s euros from the letter “C” in the current font by combining it with horizontal bars (which

exist in three widths). The next example shows that the results range from un-
acceptable to more or less adequate, depending on the shape of the “C” and the

7.8 The LATEX world of symbols 409

Family Series Shape(s) Example of the Typeface

EuroSym by Henrik Theiling (U)

eurosym m n, (it), sl, ol regular and outline: e, e

eurosym (b), bx n, (it), sl, ol bold extended upright and slanted: e, e

Table 7.23: Classification of the EuroSym font family

chosen bar width. In any case a properly defined euro symbol for a font is prefer-
able and should be used if available.

7-8-17

AC, BC, CC (Times)
AC, BC, CC (Helvetica)
AC, BC, CC (Courier)

\usepackage{times,eurosym}

\rmfamily \geneuro, \geneuronarrow, \geneurowide\ (Times)\par
\sffamily \geneuro, \geneuronarrow, \geneurowide\ (Helvetica)\par
\ttfamily \geneuro, \geneuronarrow, \geneurowide\ (Courier)

With the package options gen, gennarrow, and genwide, one can change
the \euro command so that it points to \geneuro , \geneuronarrow , or
\geneurowide , respectively. In all cases you can access the official euro symbol
using the command \officialeuro .

Finally, the package offers the convenient command \EUR to typeset an
amount of money together with the euro symbol separated by a small space.1 As
different countries have different conventions about where to place the currency
sign, the package recognizes the options left (default) and right.

7-8-18 Das Buch kostet 19,60e im Handel.

\usepackage[right]{eurosym}

Das Buch kostet \EUR{19,60} im Handel.

Another way to format monetary amounts is provided by the euro package,
which is documented on page 96.

The Adobe euro fonts

Adobe also offers a set of Type 1 fonts that contain the euro symbol. This font set
contains serifed, sans serif (with a design close to the official logo), and typewriter
variants. All are available in upright and italic shapes and in normal and bold
weights. To exploit these fonts, one needs a PostScript printer or, more generally, a
printer that can render such fonts (e.g., with the help of the ghostscript program).

While the fonts can be freely used for printing purposes, Adobe does not allow
them to be generally distributed or included in a TEX distribution. For this reason
you have to manually download them from the Adobe web site: ftp://ftp.adobe.
com/pub/adobe/type/win/all/eurofont.exe. This is a self-extracting archive

1Some other packages use this command name to denote the euro symbol itself—an unfortunate
inconsistency.

410 Fonts and Encodings

for Windows. On Unix platforms the fonts can be extracted from it using the
program unzip.

After downloading the fonts, one has to rename them to conform to Karl
Berry’s font naming conventions [19] and, if necessary, get support files for LaTEX,
such as .fd files, a mapping file for dvips, and a package to make them ac-
cessible in documents. Depending on the TEX installation (e.g., the TEXlive CD),
these files might be already available. Otherwise, they can be downloaded from
CTAN:fonts/euro.

eurosans—One way of getting euros from Adobe

Several LaTEX packages are available that provide access to the Adobe euro fonts,
each using a different strategy. As its name indicates, the eurosans package de-
veloped by Walter Schmidt provides only access to Adobe’s EuroSans fonts (see
Table 7.24 on the next page). The reason being that the serifed variants seldom
fit the body fonts of documents, while the more neutral sans serif designs blend
well with most typefaces, except for typewriter fonts. As the EuroMono typefaces
from Adobe are actually condensed versions of EuroSans, they have been inte-
grated as a condensed series (NFSS classifications mc, bc and sbc) by the package.
Weight (medium or boldface), shape (upright or oblique), and width (regular or
condensed) vary according to surrounding conditions in the document.

An important aspect of this package (and one absent from other packages), is
the ability to scale the fonts by a factor, using the option scaled. By default, it
scales the fonts down to 95% of their nominal size. If a different scale factor is
needed to match the size of the document font, an explicit value can be provided,
as seen in the next example.

A regular € symbol,
an italic €, a bold €, and
a bold italic €.

A regular € symbol,
an italic €, a bold €,
and a bold italic €.

\usepackage{lucidabr} \usepackage[scaled=0.97]{eurosans}

A regular \euro{} symbol, \textit{an italic \euro},
\textbf{a bold \euro{}, and \textit{a bold italic \euro}}.
\par\sffamily
A regular \euro{} symbol, \textit{an italic \euro},
\textbf{a bold \euro{}, and \textit{a bold italic \euro}}. 7-8-19

The number of produced variations can be reduced (for example, varying the
Restricting variance font series but always using normal shape) through a redefinition of the \euro

command.

A regular € symbol,
not an italic €, a bold €,
and not a bold italic €.

\usepackage{lucidabr} \usepackage[scaled=0.97]{eurosans}
\DeclareRobustCommand{\euro}{{\fontencoding{U}%

\fontfamily{eurosans}\fontshape{n}\selectfont E}}

A regular \euro{} symbol, \textit{not an italic \euro},
\textbf{a bold \euro{}, and \textit{not a bold italic \euro}}. 7-8-20

If there is no requirement for a serifed euro symbol, the eurosans package is
usually preferable to other solutions, as it provides the most comprehensive set

7.8 The LATEX world of symbols 411

Family Series Shape(s) PostScript Font Names and Examples

Adobe EuroSans (U)

eurosans m n, it, (sl) EuroSans-Regular (zpeurs), EuroSans-Italic (zpeuris) €, €

eurosans b, (bx) n, it, (sl) EuroSans-Bold (zpeubs), EuroSans-BoldItalic (zpeubis) €, €

eurosans mc n, it, (sl) EuroMono-Regular (zpeurt), EuroMono-Italic (zpeurit) €, €

eurosans (sbc), bc n, it, (sl) EuroMono-Bold (zpeubt), EuroMono-BoldItalic (zpeubit) €, €

Table 7.24: Classification of the Adobe euro font families (eurosans classification)

of font series and supports scaling of the fonts. The package documentation also
describes how to install the fonts and the support files if necessary.

europs—Another way of getting euros from Adobe

A different approach was taken in the europs package developed by Jörn Clausen.
It provides the command \EUR to access the symbols from the Adobe euro fonts.
This command selects a different symbol depending on the font attributes of the
surrounding text, as can be seen in the next example.

7-8-21

rm sf tt
regular € € €

italic € € €

bold italic € € €

(body font) C C C

\usepackage{array,times,europs}

\begin{tabular}{rc>{\sffamily}c>{\ttfamily}c}
& rm & sf & tt \\

regular & \EUR & \EUR & \EUR \\
\itshape italic &\itshape\EUR & \itshape\EUR &\itshape\EUR \\
\bfseries\itshape bold italic & \bfseries\itshape\EUR &

\bfseries\itshape\EUR & \bfseries\itshape\EUR \\
(body font) & C & C & C \\
\end{tabular}

As this switch of shapes may not be desirable (e.g., the serifed euro may not
blend well with the serifed document font), the package also offers the commands
\EURtm (serifed symbol), \EURhv (sans serif symbol), and \EURcr (monospaced
symbol)—the names being modeled after the three PostScript fonts Times, Hel-
vetica, and Courier. These commands fix the font family, but react to requests for
bold or oblique variants. However, as the last line in the previous example shows,
none of the symbols blends particularly well with these fonts. Finally, the package
offers \EURofc , which generates the official euro symbol (i.e., one from the sans
serif regular font).

marvosym—Revisited for cash

Another free PostScript font that contains euro symbols as glyphs is the Mar-
VoSym font, described in Section 7.8.3 on page 401. It is available in three shapes

412 Fonts and Encodings

to blend with Times, Helvetica, and Courier. As this font is a Pi font, it comes in
only one weight series, which somewhat limits its usefulness as a source for the
euro symbol. The font contains two glyphs with the official euro design, which dif-
fer in their amounts of side-bearings. To better demonstrate this difference, the
following example puts a frame around them. It also shows the other currency
symbols available in this package.

Currencies: ¡, ¢, £, ¦, e
Comparisons: C e, C c, C d

Official logos: ¤ or D

\usepackage{times,marvosym}

Currencies: \Shilling, \Denarius, \Pfund, \EyesDollar, \EURtm\par
Comparisons: C \EURtm, \textsf{C} \EURhv, \texttt{C} \EURcr \par
Official logos: {\Large \frame{\EUR} or \frame{\EURdig}} 7-8-22

7.9 The low-level interface

While the high-level font commands are intended for use in a document, the low-
level commands are mainly for defining new commands in packages or in the
preamble of a document; see also Section 7.9.4. To make the best use of such font
commands, it is helpful to understand the internal organization of fonts in LaTEX’s
font selection scheme (NFSS).

One goal of LaTEX’s font selection scheme is to allow rational font selection,
with algorithms guided by the principles of generic markup. For this purpose, it
would be desirable to allow independent changes for as many font attributes as
possible. On the other hand, font families in real life normally contain only a
subset of the myriad imaginable font attribute combinations. Therefore, allowing
independent changes in too many attributes results in too many combinations for
which no real (external) font is available and a default has to be substituted.

LaTEX internally keeps track of five independent font attributes: the “current
encoding”, the “current family”, the “current series”, the “current shape”, and the
“current size”. The encoding attribute was introduced in NFSS release 2 after it
became clear that real support of multiple languages would be possible only by
maintaining the character-encoding scheme independently of the other font at-
tributes.

The values of these attributes determine the font currently in use. LaTEX also
maintains a large set of tables used to associate attribute combinations with exter-
nal fonts (i.e., .tfm files that contain the information necessary for (LA)TEX to do
its job). Font selection inside LaTEX is then done in two steps:

1. A number of font attributes are changed using the low-level commands
\fontencoding , \fontfamily , \fontseries , \fontshape , and \fontsize .

2. The font corresponding to this new attribute setting is selected by calling the
\selectfont command.

The second step comprises several actions. LaTEX first checks whether the font

7.9 The low-level interface 413

corresponding to the desired attribute settings is known to the system (i.e., the
.tfm file is already loaded) and, if so, this font is selected. If not, the internal
tables are searched to find the external font name associated with this setting. If
such a font name can be found, the corresponding .tfm file is read into memory
and afterwards the font is selected for typesetting. If this process is not successful,
LaTEX tries to find an alternative font, as explained in Section 7.9.3.

7.9.1 Setting individual font attributes

Every font attribute has one command to change its current value. All of these
commands will accept more or less any character string as an argument, but only
a few values make sense. These values are not hard-wired into LaTEX’s font selec-
tion scheme, but rather are conventions set up in the internal tables. The following
sections introduce the naming conventions used in the standard set-up of LaTEX,
but anyone can change this set-up by adding new font declarations to the internal
tables. Obviously, anybody setting up new fonts for use with LaTEX should try to
obey these conventions whenever possible, as only a consistent naming conven-
tion can guarantee that appropriate fonts are selected in a generically marked-up
document.

If you want to select a specific font using this interface—say, Computer Mod-
ern Dunhill bold condensed italic 14pt—a knowledge of the interface conventions
alone is not enough, as no external font exists for every combination of attribute
values. You could try your luck by specifying something like the following set of
commands:

\fontencoding{OT1}\fontfamily{cmdh}\fontseries{bc}\fontshape{it}%
\fontsize{14}{16pt}\selectfont

This code would be correct according to the naming conventions, as we will see in
the following sections. Because this attribute combination does not correspond to
a real font, however, LaTEX would have to substitute a different font. The substitu-
tion mechanism may choose a font that is quite different from the one desired, so
you should consult the font tables (.fd files) to see whether the desired combina-
tion is available. Section 7.9.3 provides more details on the substitution process.

Choosing the font family

The font family is selected with the command \fontfamily . Its argument is a
character string that refers to a font family declared in the internal tables. The
character string was defined when these tables were set up and is usually a short
letter sequence—for example, cmr for the Computer Modern Roman family. The
family names should not be longer than five letters, because they will be combined
with possibly three more letters to form a file name, which on some systems can
have at most eight letters.

414 Fonts and Encodings

Weight Classes

Ultra Light ul
Extra Light el
Light l
Semi Light sl
Medium (normal) m
Semi Bold sb
Bold b
Extra Bold eb
Ultra Bold ub

Width Classes

Ultra Condensed 50% uc
Extra Condensed 62.5% ec
Condensed 75% c
Semi Condensed 87.5% sc
Medium 100% m
Semi Expanded 112.5% sx
Expanded 125% x
Extra Expanded 150% ex
Ultra Expanded 200% ux

Table 7.25: Weight and width classification of fonts

Choosing the font series

The series attribute is changed with the \fontseries command. The series com-
bines a weight and a width in its argument; in other words, it is not possible to
change the width of the current font independently of its weight. This arrange-
ment was chosen because it is hardly ever necessary to change weight or width
individually. On the contrary, a change in weight (say, to bold) often is accompa-
nied by a change in width (say, to extended) in the designer’s specification. This
is not too surprising, given that weight changes alter the horizontal appearance
of the letters and thus call for adjustment in the expansion (i.e., the width) to
produce a well-balanced look.

In the naming conventions for the argument for the \fontseries command,
the names for both the weight and the width are abbreviated so that each combina-
tion is unique. The conventions are shown in Table 7.25. These classifications are
combined in the argument to \fontseries; however, any instance of m (standing
for medium in weight or width) is dropped, except when both weight and width
are medium. The latter case is abbreviated with a single m. For example, bold ex-
panded would be bx, whereas medium expanded would be x and bold medium
would be b.

Choosing the font shape

The \fontshape command is used to change the shape attribute. For the standard
shapes, one- and two-letter abbreviations are used; these are shown in Table 7.26
on the facing page together with an example of the resulting shape in the Com-
puter Modern Roman family.1

1The ol shape was produced using \pcharpath commands from the pst-char package, as Com-
puter Modern does not contain such a shape. These types of graphical manipulations are discussed
in [57].

7.9 The low-level interface 415

Abbreviation Description

n upright (or normal) shape
it italic shape
sl slanted or oblique shape
sc small caps shape
ui upright italic shape
ol OUTLINE shape

Table 7.26: Shape classification of fonts

Choosing the font size

The font size is changed with the \fontsize{〈size〉}{〈skip〉} command. This is
the only font attribute command that takes two arguments: the 〈size〉 to switch to
and the baseline 〈skip〉 (the distance from baseline to baseline for this size). Font
sizes are normally measured in points, so by convention the unit is omitted. The
same is true for the second argument. However, if the baseline skip should be a
rubber length—that is, if it contains plus or minus—you have to specify a unit.
Thus, a valid size change could be requested by

\fontsize{14.4}{17}\selectfont

Even if such a request is valid in principle, no corresponding external font may
exist in this size. In this case, LaTEX will try to find a nearby size if its internal
tables allow for size correction or report an error otherwise.

If you use fonts existing in arbitrary sizes (for example, PostScript fonts), you
can, of course, select any size you want. For example,

\fontsize{1in}{1.2in}\selectfont Happy Birthday

will produce a birthday poster line with letters in a one-inch size. However, there
is one problem with using arbitrary sizes: if LaTEX has to typeset a formula in this
size (which might happen behind the scenes without your knowledge), it needs to
set up all fonts used in formulas for the new size. For an arbitrary size, it usually
has to calculate the font sizes for use in subscripts and sub-subscripts (at least
12 different fonts). In turn, it probably has to load a lot of new fonts—something
you can tell by looking at the transcript file. For this reason you may finally hit
some internal limit if you have too many different size requests in your document.
If this happens, you should tell LaTEX which sizes to load for formulas using the
\DeclareMathSizes declaration, rather than letting it use its own algorithm. See
Section 7.10.7 for more information on this issue.

Choosing the encoding

A change of encoding is performed with the command \fontencoding , where
the argument is the internal name for the desired encoding. This name must be

416 Fonts and Encodings

Encoding Description Declared by

T1 LaTEX text encoding (Latin) a.k.a. “Cork” encoding LaTEX

TS1 LaTEX symbol encoding (Latin) LaTEX

T2A,B,C LaTEX text encodings (Cyrillic) Cyrillic support packages

T3 LaTEX phonetic alphabet encoding tipa package
TS3 LaTEX phonetic alphabet encoding (extra symbols) tipa package
T4 LaTEX text encoding (African languages) —

T5 LaTEX text encoding (Vietnamese) —

T7 LaTEX text encoding (reserved for Greek) —

OT1 TEX text as defined by Donald Knuth LaTEX

OT2 TEX text for Cyrillic languages (obsolete) Cyrillic support packages

OT3 TEX phonetic alphabet encoding (obsolete) —

OT4 TEX text with extensions for the Polish language —

OT6 TEX text with extensions for the Armenian language —

OML TEX math text (italic) as defined by Donald Knuth LaTEX

OMS TEX math symbol as defined by Donald Knuth LaTEX

OMX TEX math extended symbol as defined by Donald Knuth LaTEX

X2 Extended text encoding (Cyrillic) Cyrillic support packages

U Unknown encoding (for arbitrary rubbish) LaTEX

L.. Local encoding (for private encodings) —

LV1 Encoding used with some VTeX fonts MicroPress

LY1 Alternative to T1 encoding Y&Y

Table 7.27: Standard font encodings used with LaTEX

known to LaTEX, either as one of the predefined encodings (loaded by the kernel)
or as declared with the \DeclareFontEncoding command (see Section 7.10.5). A
set of standard encoding names are given in Table 7.27.

LaTEX’s font selection scheme is based on the (idealistic) assumption that most
(or, even better, all) fonts for text are available in the same encoding as long as
they are used to typeset in the same language. In other words, encoding changes
should become necessary only if one is switching from one language to another.
In that case it is normally the task of the language support packages (e.g., those
from the babel system) to arrange matters behind the scenes.

In the following example we change the encoding manually by defining an
environment Cyr for typesetting in Cyrillic. In this environment both the font en-
coding and the input encoding are locally changed. That might sound strange but
if you work with an editor or keyboard that can switch input encodings on the fly
this might be exactly the way your text is stored. Of course, for proper language
support, additional work would be necessary, such as changing the hyphenation
rules. The encodings are declared to LaTEX by loading them with the fontenc pack-

7.9 The low-level interface 417

age. T2A specifies one of the standard Cyrillic encodings; by loading T1 last, it
becomes the default encoding for the document.

7-9-1

Русский язык heißt auf
Deutsch: die russische
Sprache.

\usepackage[T2A,T1]{fontenc}\usepackage[koi8-r,latin1]{inputenc}
\newenvironment{Cyr}{\inputencoding{koi8-r}%

\fontencoding{T2A}\selectfont}{}

\raggedright \begin{Cyr}òÕÓÓËÉÊ ÑÚÙË\end{Cyr}
heißt auf Deutsch: die russische Sprache.

Unfortunately, T1 is not fully implementable for most PostScript fonts. The
Potential T1
encoding problems

following five characters are likely to show up as blobs of ink (indicating a missing
glyph in the font). Note that the per thousand and per ten thousand symbols are
actually formed by joining a percent sign and one or two additional small zeros;
only the latter glyph is missing.

7-9-2

j ŋ Ŋ %� %��
% %

\usepackage[T1]{fontenc}

\fontfamily{cmr}\selectfont
\j{} \ng{} \NG{} \textperthousand{} \textpertenthousand \par
\fontfamily{ptm}\selectfont
\j{} \ng{} \NG{} \textperthousand{} \textpertenthousand{}

As explained in Section 7.5.4 on page 362, the situation for TS1 is even worse,
as sometimes half the glyphs from that encoding are not available in a given
PostScript font.

7.9.2 Setting several font attributes

When designing page styles (see Section 4.4) or layout-oriented commands, you
often want to select a particular font—that is, you need to specify values for all
attributes. For this task LaTEX provides the command \usefont , which takes four
arguments: the encoding, family, series, and shape. The command updates those
attributes and then calls \selectfont . If you also want to specify the size and
baseline skip, place a \fontsize command in front of it. For example,

\fontsize{14}{16pt}\usefont{OT1}{cmdh}{bc}{it}

would produce the same result as the hypothetical example on page 413.
Besides \usefont , LaTEX provides the \DeclareFixedFont declaration, which

can be used to define new commands that switch to a completely fixed font. Such
commands are extremely fast because they do not have to look up any internal
tables. They are therefore very useful in command definitions that have to switch
back and forth between fixed fonts. For example, for the doc package (see Chap-
ter 14), one could produce code-line numbers using the following definitions:

\DeclareFixedFont\CodelineFont{\encodingdefault}{\familydefault}
{\seriesdefault}{\shapedefault}{7pt}

\newcommand\theCodelineNo{\CodelineFont\arabic{CodelineNo}}

418 Fonts and Encodings

As you can see from the example, \DeclareFixedFont has six arguments: the
name of the command to be defined followed by the five font attributes in the
NFSS classification. Instead of supplying fixed values (except for the size), the built-
in hooks that describe the main document font are used (see also Section 7.3.5).
Thus, in the example above \CodelineFont still depends on the overall layout
for the document (via the settings of \encodingdefault and other parameters).
However, once the definition is carried out, its meaning is frozen, so later changes
to the defaults will have no effect.

7.9.3 Automatic substitution of fonts

Whenever a font change request cannot be carried out because the combination
is not known to LaTEX, it tries to recover by using a font with similar attributes.
Here is what happens: if the combination of encoding scheme, family, series, and
shape is not declared (see Section 7.10.3), LaTEX tries to find a known combination
by first changing the shape attribute to a default. If the resulting combination is
still unknown, it tries changing the series to a default. As a last resort, it changes
the family to a default value. Finally, the internal table entry is looked up to find
the requested size. For example, if you ask for \ttfamily\bfseries\itshape—a
typewriter font in a bold series and italic shape (which usually does not exist)—
then you will get a typewriter font in medium series and upright shape, because
LaTEX first resets the shape before changing the series. If, in such a situation, you
prefer a typewriter font in medium series with italic shape, you have to announce
your intention to LaTEX using the sub function, which is explained on page 425.

The substitution process never changes the encoding scheme, because any
alteration could produce wrong characters in the output. Recall that the encoding
scheme defines how to interpret the input characters, while the other attributes
define how the output should look. It would be catastrophic if, say, a £ sign were
changed into a $ sign on an invoice just because the software tried to be clever.

Thus, every encoding scheme must have a default family, series, and shape,
and at least the combination consisting of the encoding scheme together with
the corresponding defaults must have a definition inside LaTEX, as explained in
Section 7.10.5.

7.9.4 Using low-level commands in the document

The low-level font commands described in the preceding sections are intended to
be used in the definition of higher-level commands, either in class or package files
or in the document preamble.

Whenever possible, you should avoid using the low-level commands di-
rectly in a document if you can use high-level font commands like \textsf
instead. The reason is that the low-level commands are very precise instruc-
tions to switch to a particular font, whereas the high-level commands can be

7.10 Setting up new fonts 419

customized using packages or declarations in the preamble. Suppose, for ex-
ample, that you have selected Computer Modern Sans in your document using
\fontfamily{cmss}\selectfont . If you later decide to typeset the whole docu-
ment with fonts from the PSNFSS bundle—say, Times—applying a package would
change only those parts of the document that do not contain explicit \fontfamily
commands.

7.10 Setting up new fonts

7.10.1 Overview

Setting up new fonts for use with LaTEX basically means filling the internal font
selection tables with information necessary for later associating a font request in
a document with the external .tfm file containing character information used by
(LA)TEX. Thus the tables are responsible for associating with

\fontencoding{OT1}\fontfamily{cmdh}\fontseries{m}\fontshape{n}%
\fontsize{10}{12pt}\selectfont

the external file cmdunh10.tfm. To add new fonts, you need to reverse this pro-
cess. For every new external font you have to ask yourself five questions:

1. What is the font’s encoding scheme—that is, which characters are in which
positions?

2. What is its family name?

3. What is its series (weight and width)?

4. What is its shape?

5. What is its size?

The answers to these questions will provide the information necessary to classify
your external font according to the LaTEX conventions, as described in Section 7.9.
The next few sections discuss how to enter new fonts into the NFSS tables so that
they can be used in the main text. You normally need this information if you want
to make use of new fonts—for example, if you want to write a short package file
for accessing a new font family. Later sections discuss more complicated concepts
that come into play if you want to use, for example, special fonts for math instead
of the standard ones.

If new fonts from the non-TEX world are to be integrated into LaTEX, it might be
necessary to start even one step earlier: you may have to generate .tfm and prob-
ably virtual font files first. The tool normally used for this step is the fontinst pro-
gram, written by Alan Jeffrey and further developed and now maintained by Lars
Hellström. It is described in [57] and [64] and in the source documentation [74,75].

420 Fonts and Encodings

F TT W [V.] [N.] [E] [DD]
Foundry Typeface Name Weight Variant Encoding Expansion Design Size

e.g., p=Adobe tm=Times b=Bold i=Italic 8t=T1 n=Narrow 10=10 point

Table 7.28: Karl Berry’s font file name classification scheme

7.10.2 Naming those thousands of fonts

A font naming scheme that can be used with TEX was proposed by Karl Berry [18],
provoking some discussion [118]. The current version is described in [19] and has
become the de facto standard in the TEX world. Berry tries to classify all font file
names using eight alphanumeric characters, where case is not significant. This
eight-character limit guarantees that the same file names can be used across all
computer platforms and, more importantly, conforms to the ISO 9660 norm for
CD-ROM. The principle of the scheme is described in Table 7.28, where the parts
in brackets are omitted if they correspond to a default. For example, a design size
is given only if the font is not linearly scaled. Table 7.8 on page 372 shows the
classification of the 35 “basic” PostScript fonts according to LaTEX’s font interface.
For each font the full Adobe name and, in parentheses, the corresponding short
(Karl Berry) file name is given (without the encoding part). For OT1, T1, or TS1 one
would need to append 7t, 8t, or 8c, respectively, to obtain the full file name—for
example, putr8t for Utopia Regular in T1 encoding.

The naming convention covers internal TEX names for fonts (i.e., those used
in \DeclareFontShape declarations as described in the next section), names
for virtual fonts and their components (e.g., particular reencodings of physical
fonts) [91], and the names of physical fonts. In case of PostScript fonts, the physi-
cal font names are often different from those used internally by TEX.

In the latter case the mapping between internal font names and the external world hasA glimpse of the
underworld to happen when the result of a LaTEX run is viewed or printed. For example, the PostScript

driver dvips uses mapping files (default extension .map) that contain lines such as

putr8r Utopia-Regular "TeXBase1Encoding ReEncodeFont " <8r.enc <putr8a.pfb

telling it that the font putr8r can be obtained from the external font putr8a.pfb by
reencoding it via a special encoding vector (8r.enc in this case). However, when you look
into t1put.fd (the file that contains the \DeclareFontShape declarations for the Utopia
family in the T1 encoding), you will find that putr8r is not referenced. Instead, you will
find names such as putr8t. The reason is that putr8t is a virtual font (built with the help
of fontinst [74, 75]) that references putr8r. The latter link is difficult to find (other than
through the naming convention itself) if you do not have access to the sources that were
used to build the virtual fonts actually used by TEX. Fortunately, you seldom have to dig
into that part of a TEX system; if you do, you will find more information in [57, Chapter 10]
or in the references listed above.

7.10 Setting up new fonts 421

7.10.3 Declaring new font families and font shape groups

Each family/encoding combination must be made known to LaTEX through the com-
mand \DeclareFontFamily . This command has three arguments. The first two
arguments are the encoding scheme and the family name. The third is usually
empty, but it may contain special options for font loading and is explained on
page 426. Thus, if you want to introduce a new family—say, Computer Modern
Dunhill with the old TEX encoding scheme—you would write

\DeclareFontFamily{OT1}{cmdh}{}

A font family normally consists of many individual fonts. Instead of announc-
ing each family member individually to LaTEX, you have to combine fonts that differ
only in size and declare them as a group.

Such a group is entered into the internal tables of LaTEX with the command
\DeclareFontShape , which takes six arguments. The first four are the encod-
ing scheme, the family name, the series name, and the shape name under which
you want to access these fonts later on. The fifth argument is a list of sizes and
external font names, given in a special format that we discuss below. The sixth
argument is usually empty; its use is explained on page 426.

We will first show a few examples and introduce terminology; then we will
discuss all the features in detail.

As an example, an NFSS table entry for Computer Modern Dunhill medium
(series) upright (shape) in the encoding scheme “TEX text” could be entered as

\DeclareFontShape{OT1}{cmdh}{m}{n}{ <10> cmdunh10 }{}

assuming that only one external font for the size 10pt is available. If you also
have this font available at 12pt (scaled from 10pt), the declaration would be

\DeclareFontShape{OT1}{cmdh}{m}{n}{ <10> <12>cmdunh10 }{}

If the external font is available in all possible sizes, the declaration becomes
very simple. This is the case for Type 1 PostScript (outline) fonts, or when the
driver program is able to generate fonts on demand by calling METAFONT.

For example, Times Roman bold (series) upright (shape) in the LaTEX T1 encod-
ing scheme could be entered as

\DeclareFontShape{T1}{ptm}{b}{n}{ <-> ptmb8t }{}

This example declares a size range with two open ends (no sizes specified to the
left and the right of the -). As a result, the same external .tfm file (ptmb8t) is
used for all sizes and is scaled to the desired size. If you have more than one

422 Fonts and Encodings

.tfm file for a font—say, emtt10 for text sizes and emtt12 for display sizes (this
is European Modern Typewriter)—the declaration could be

\DeclareFontShape{T1}{emtt}{m}{n}{<-12> emtt10 <12-> emtt12}{}

In this case, the .tfm file emtt10 would be used for sizes smaller than 12pt, and
emtt12 for all sizes larger than or equal to 12pt.

The preceding examples show that the fifth argument of the command
\DeclareFontShape consists of size specifications surrounded by angle brack-
ets (i.e., <...>) intermixed with loading information for the individual sizes (e.g.,
font names). The part inside the angle brackets is called the “size info” and the
part following the closing angle bracket is called the “font info”. The font info
is further structured into a “size function” (often empty) and its arguments; we
discuss this case below. Within the arguments of \DeclareFontShape , blanks are
ignored to help make the entries more readable.1 In the unusual event that a real
space has to be entered, you can use the command \space .

Simple sizes and size ranges

The size infos—the parts between the angle brackets in the fifth argument to
\DeclareFontShape—can be divided into “simple sizes” and “size ranges”. A sim-
ple size is given by a single (decimal) number, like <10> or <14.4>, and in principle
can have any positive value. However, because the number represents a font size
measured in points, you probably will not find values less than 4 or greater than
120. A size range is given by two simple sizes separated by a hyphen, to indicate
a range of font sizes that share the same font info. The lower boundary (i.e., the
size to the left of the hyphen) is included in the range, while the upper boundary
is excluded. For example, <5-10> denotes sizes greater than or equal to 5pt and
less than 10pt. You can omit the number on either side of the hyphen in a size
range, with the obvious interpretation: <-> stands for all possible sizes, <-10>
stands for all sizes less than 10pt, and <12-> stands for all sizes greater than or
equal to 12pt.

Often several simple sizes have the same font info. In that case a convenient
shorthand is to omit all but the last font infos:

\DeclareFontShape{OT1}{panr}{m}{n}{ <5> <6> <7> <8> <9> <10>
<10.95> <12> <14.4> <17.28> <20.74> <24.88> pan10 }{}

This example declares the font Pandora medium Roman as being available in sev-
eral sizes, all of them produced by scaling from the same design size.

1This is true only if the command is used at the top level. If such a declaration is used inside
other constructs (e.g., the argument of \AtBeginDocument), blanks might survive and in that case
entries will not be recognized.

7.10 Setting up new fonts 423

Size functions

As noted earlier, the font info (the string after the closing angle bracket) is further
structured into a size function and its argument. If an * appears in the font info
string, everything to the left of it forms the function name and everything to the
right is the argument. If there is no asterisk, as in all of the examples so far, the
whole string is regarded as the argument and the function name is “empty”.

Based on the size requested by the user and the information in the
\DeclareFontShape command, size functions produce the specification neces-
sary for LaTEX to find the external font and load it at the desired size. They are also
responsible for informing the user about anything special that happens. For ex-
ample, some functions differ only in terms of whether they issue a warning. This
capability allows the system maintainer to set up LaTEX in the way best suited for
the particular site.

The name of a size function consists of zero or more letters. Some of the
size functions can take two arguments, one optional and one mandatory. Such
an optional argument has to be enclosed in square brackets. For example, the
specification

<-> s * [0.9] cmfib8

would select, for all possible sizes (we have the range 0 to ∞), the size function s
with the optional argument 0.9 and the mandatory argument cmfib8.

The size specifications in \DeclareFontShape are inspected in the order in
which they are given. When a size info matches the requested user size, the cor-
responding size function is executed. If this process yields a valid font, no fur-
ther entries are inspected. Otherwise, the search continues with the next entry.
The standard size functions are listed below. The document fntguide.tex [109],
which is part of the LaTEX distribution, describes how to define additional functions
should it ever become necessary.

The “empty” function Because the empty function is used most often, it has the
shortest possible name. (Every table entry takes up a small bit of internal memory,
so the syntax chosen tries to find a balance between a perfect user interface and
compactness of storage.) The empty function loads the font info exactly at the
requested size if it is a simple size. If there is a size range and the size requested
by the user falls within that range, it loads the font exactly at the user size.

For example, if the user requested 14.4, then the specification

<-> panr10

would load the .tfm file called panr10.tfm at 14.4pt. Because this font was de-
signed for 10pt (it is the Pandora Roman font at 10pt), all the values in the .tfm
file are scaled by a factor of 1.44.

424 Fonts and Encodings

Sometimes one wants to load a font at a slightly larger or smaller size than
the one requested by the user. This adjustment may be necessary when fonts from
one family appear to be too large compared to fonts from other families used in
the same document. For this purpose the empty size function allows an optional
argument to represent a scale factor that, if present, is multiplied by the requested
size to yield the actual size to be loaded. Thus

<-> [0.95] phvr8t

would always load the .tfm file called phvr8t.tfm (Helvetica in T1 encoding) at
95% of the requested size. If the optional argument is used, the empty size func-
tion will issue a warning to alert the user that the font is not being loaded at its
intended size.

The “s” function The s function has the same functionality as the empty func-
tion, but does not produce warnings (the s means “silence”). Writing

\DeclareFontShape{T1}{phv}{m}{n}{ <-> s * [0.95] phvr8t }{}

avoids all the messages that would be generated on the terminal if the empty
function were used. Messages are still written to the transcript file, so you can
find out which fonts were used if something goes wrong. The helvet package is im-
plemented in this way, except that the scaling factor is not hard-wired but rather
passed via a package option to the \DeclareFontShape declaration.

The “gen” function Often the external font names are built by appending the
font size to a string that represents the typeface. For example, cmtt8, cmtt9, and
cmtt10 are the external names for the fonts Computer Modern Typewriter at 8,
9, and 10pt, respectively. With font names organized according to such a scheme,
you can make use of the gen function to shorten the entry. This function combines
the font info and the requested size to generate (hence gen) the external font
names. Thus, you can write

<8> <9> <10> gen * cmtt

as shorthand for

<8> cmtt8 <9> cmtt9 <10> cmtt10

thereby saving eight characters in the internal tables of NFSS. This function com-
bines both parts literally, so you should not use it with decimal sizes like 14.4.
Also, you must ensure that the digits in the external font name really represent the
design size (for example, cmr17 is actually Computer Modern Roman at 17.28pt).

7.10 Setting up new fonts 425

In all other respects, the gen function behaves like the empty function. That
is, the optional argument, if given, represents a scale factor and, if used, generates
an information message.

The “sgen” function The sgen function is the silent variant of the gen function.
It writes any message only to the transcript file.

The “genb” function This size function is similar to gen, but is intended for
fonts in which the size is encoded in the font name in centipoints, such as the EC
fonts. As a consequence, a line such as

<9> <10> <10.95> <12> genb * ecrm

acts as shorthand for

<9> ecrm0900 <10> ecrm1000 <10.95> ecrm1095 <12> ecrm1200

An optional argument, if present, will have the same effect as it would with the
empty function—it provides a scale factor and, if used, generates an information
message.

The “sgenb” function The sgenb function is the silent variant of the genb func-
tion. It writes any message only to the transcript file.

The “sub” function The sub function is used to substitute a different font shape
group if no external font exists for the current font shape group. In this case the
argument is not an external font name but rather a different family, series, and
shape combination separated by slashes (the encoding will not change for the
reasons explained earlier). For example, the Computer Modern Sans family has
no italic shape, only a slanted shape. Thus, it makes sense to declare the slanted
shape as a substitute for the italic one:

\DeclareFontShape{OT1}{cmss}{m}{it}{ <-> sub * cmss/m/sl }{}

Without this declaration, LaTEX’s automatic substitution mechanism (see Sec-
tion 7.9.3) would substitute the default shape, Computer Modern Sans upright.

Besides the substitution of complete font shape groups, there are other good
uses for the sub function. Consider the following code:

\DeclareFontShape{OT1}{cmss}{m}{sl}{ <-8> sub * cmss/m/n
<8> cmssi8 <9> cmssi9 <10><10.95> cmssi10 <12><14.4> cmssi12
<17.28><20.74><24.88> cmssi17 }{}

426 Fonts and Encodings

This declaration states that for sizes smaller than 8pt LaTEX should look in the
font shape declaration for OT1/cmss/m/n. Such substitutions can be chained. Peo-
ple familiar with the standard font distribution know that there is no Computer
Modern Sans font smaller than 8pt, so the substituted font shape group will prob-
ably contain another substitution entry. This may seem like a strange usage but
it has the advantage that when such additional fonts become available you will
need to change only one font shape group declaration—all declarations that refer
indirectly to these fonts will then benefit automatically.

The “ssub” function The ssub function has the same functionality as the sub
function, but does not produces on-screen warnings (the first s means “silence”).

The “subf” function The subf function is a cross between the empty function
and sub, in that it loads fonts in the same way as the empty function but produces
a warning that this operation was done as a substitution because the requested
font shape is not available. You can use this function to substitute some external
fonts without having to declare a separate font shape group for them, as in the
case of the sub function. For example,

\DeclareFontShape{OT1}{ptm}{bx}{n}{ <-> subf * ptmb7t }{}

would warn the user that the requested combination is not available and, there-
fore, that the font ptmb7t was loaded instead. As this is less informative than
using the sub function, the latter should be preferred.

The “ssubf” function The silent variant of subf, this function writes its mes-
sages only to the transcript file.

The “fixed” function This function disregards the requested size and instead
loads the external font given as an argument. If present, the optional argument
denotes the size (in points) at which the font will be loaded. Thus, this function
allows you to specify size ranges for which one font in some fixed size will be
loaded.

The “sfixed” function The silent variant of fixed, this function is used, for ex-
ample, to load the font containing the large math symbols, which is often available
only in one size.

Font-loading options

As already mentioned, you need to declare each family using the command
\DeclareFontFamily . The third argument to this command, as well as the sixth
argument to \DeclareFontShape , can be used to specify special operations that

7.10 Setting up new fonts 427

are carried out when a font is loaded. In this way, you can change parameters that
are associated with a font as a whole.

For every external font, (LA)TEX maintains, besides the information about each
character, a set of global dimensions and other values associated with the font.
For example, every font has its own “hyphen character”, the character that is in-
serted automatically when (LA)TEX hyphenates a word. Another example is the nor-
mal width and the stretchability of a blank space between words (the “interword
space”); again a value is maintained for every font and changed whenever (LA)TEX
switches to a new font. By changing these values when a font is loaded, special
effects can be achieved.

Normally, changes apply to a whole family; for example, you may want to pro-
hibit hyphenation for all words typeset in the typewriter family. In this case, the
third argument of \DeclareFontFamily should be used. If the changes should
apply only to a specific font shape group, you must use the sixth argument
of \DeclareFontShape . In other words, when a font is loaded, NFSS first ap-
plies the argument of \DeclareFontFamily and then the sixth argument of
\DeclareFontShape , so that it can override the load options specified for the
whole family if necessary.

Below we study the information that can be set in this way (unfortunately, not
everything is changeable) and discuss some useful examples. This part of the in-
terface addresses very low-level commands of TEX. Because it is so specialized, no
effort was made to make the interface more LaTEX-like. As a consequence, the meth-
ods for assigning integers and dimensions to variables are somewhat unusual.

With \hyphenchar\font=〈number〉, (LA)TEX specifies the character that is in-
Changing the
hyphenation
character

serted as the hyphen when a word is hyphenated. The 〈number〉 represents the
position of this character within the encoding scheme. The default is the value of
\defaulthyphenchar , which is 45, representing the position of the “-” character
in most encoding schemes. If this number is set to -1, hyphenation is suppressed.
Thus, by declaring

\DeclareFontFamily{OT1}{cmtt}{\hyphenchar\font=-1}

you can suppress hyphenation for all fonts in the cmtt family with the encoding
scheme OT1. Fonts with the T1 encoding have an alternate hyphen character in
position 127, so that you can set, for example,

\DeclareFontFamily{T1}{cmr}{\hyphenchar\font=127}

This makes the hyphen character inserted by (LA)TEX different from the compound-
word dash entered in words like “so-called”. (LA)TEX does not hyphenate words that
already contain explicit hyphen characters (except just after the hyphen), which
can create a real problem in languages in which the average word length is much
larger than in English. With the above setting this problem can be solved.

428 Fonts and Encodings

Every (LA)TEX font has an associated set of dimensions, which are changed by
assignments of the form \fontdimen〈number〉\font=〈dimen〉, where 〈number〉
is the reference number for the dimension and 〈dimen〉 is the value to be assigned.
The default values are taken from the .tfm file when the font is loaded. Each font
has at least seven such dimensions:

\fontdimen1 Specifies the slant per point of the characters. If the value is zero,
the font is upright.

\fontdimen2 Specifies the normal width of a space used between words (inter-
word space).

\fontdimen3 Specifies the additional stretchability of the interword space—that
is, the extra amount of white space that (LA)TEX is allowed to add to the space
between words to produce justified lines in a paragraph. In an emergency
(LA)TEX may add more space than this allowed value; in that case an “underfull
box” will be reported.

\fontdimen4 Specifies the allowed shrinkability of the interword space—that is,
the amount of space that (LA)TEX is allowed to subtract from the normal inter-
word space (\fontdimen2) to produce justified lines in a paragraph. (LA)TEX
will never shrink the interword space to less than this minimum.

\fontdimen5 Specifies the x-height. It defines the font-oriented dimension 1ex.

\fontdimen6 Specifies the quad width. It defines the font-oriented dimension
1em.

\fontdimen7 Specifies the amount intended as extra space to be added after
certain end-of-sentence punctuation characters when \nonfrenchspacing is
in force. The exact rules for when TEX uses this dimension (all or some of
the extra space) are somewhat complex; see The TEXbook [82] for details. It is
always ignored or rather replaced by the value \xspaceskip , when that value
is nonzero.

When changing the interword spacing associated with a font, you cannot use
an absolute value because such a value must be usable for all sizes within one font
shape group. You must, therefore, define the value by using some other parameter
that depends on the font. You could say, for example,

\DeclareFontShape{OT1}{cmr}{m}{n}{...}
{\fontdimen2\font=.7\fontdimen2\font}

This declaration reduces the normal interword space to 70% of its original value.
In a similar manner, the stretchability and shrinkability could be changed.

Some fonts used in formulas need more than seven font dimensions—namely,
the symbol fonts called “symbols” and “largesymbols” (see Section 7.10.7). TEX
will not typeset a formula if these symbol fonts have fewer than 22 and 13

7.10 Setting up new fonts 429

\fontdimen parameters, respectively. The values of these parameters are used
to position the characters in a math formula. An explanation of the meaning of
every such \fontdimen parameter is beyond the scope of this book; details can
be found in Appendix G of The TEXbook [82].

One unfortunate optimization is built into the TEX system: TEX loads every
.tfm file only once for a given size. It is, therefore, impossible to define one
font shape group (with the \DeclareFontShape command) to load some exter-
nal font—say, cmtt10—and to use another \DeclareFontShape command to load
the same external font, this time changing some of the \fontdimen parameters
or some other parameter associated with the font. Trying to do so changes the
values for both font shape groups.

Suppose, for example, that you try to define a font shape with tight spacing
by making the interword space smaller:

\DeclareFontShape{T1}{ptm}{m}{n}{ <-> ptmr8t }{}
\DeclareFontShape{T1}{ptm}{c}{n}{ <-> ptmr8t }

{\fontdimen2\font=.7\fontdimen2\font}

This declaration will not work. The interword spacing for the medium shape will
change when the tight shape is loaded to the values specified there, and this result
is not what is wanted. The best way to solve this problem is to define a virtual font
that contains the same characters as the original font, but differs in the settings
of the font dimensions (see [73, 74, 91]). Another possible solution is to load the
font at a slightly different size, as in the following declaration:

\DeclareFontShape{T1}{ptm}{c}{n}{ <-> [0.9999] ptmr8t }
{\fontdimen2\font=.7\fontdimen2\font}

That strategy makes them different fonts for TEX with separate \fontdimen pa-
rameters. Alternatively, in this particular case you can control the interword space
by setting \spaceskip , thereby overwriting the font values. See Section 3.1.12 for
some discussion of that parameter.

7.10.4 Modifying font families and font shape groups

If you need a nonstandard font shape group declaration for a particular document,
just place your private declaration in a package or the preamble of your document.
It will then overwrite any existing declaration for the font shape combination.
Note, however, that the use of \DeclareFontFamily prevents a later loading of
the corresponding .fd file (see Section 7.10.6). Also, your new declaration has no
effect on fonts that are already loaded.

Today’s LaTEX format preloads by default only a small number of fonts. How-
ever, by using the configuration file preload.cfg, more or fewer fonts can be
loaded when the format is built. None of these preloaded fonts can be manipu-
lated using font family or font shape declarations. Thus, if you want some special
settings for the core fonts, you must ensure that none of these fonts is preloaded.

430 Fonts and Encodings

For additional information on ways to customize a LaTEX installation, refer to the
document cfgguide.tex [110], which is part of the LaTEX distribution.

7.10.5 Declaring new font encoding schemes

Font changes that involve alterations in the encoding scheme require taking cer-
tain precautions. For example, in the T1 encoding, most accented letters have
their own glyphs, whereas in the traditional TEX text encoding (OT1), accented let-
ters must be generated from accents and letters using the \accent primitive. (It
is desirable to use glyphs for accented letters rather than employing the \accent
primitive because, among other things, the former approach allows for correct
hyphenation.) If the two approaches have to be mixed, perhaps because a font is
available only in one of the encodings, the definition of a command such as \"
must behave differently depending on the current font encoding.

For this reason, each encoding scheme has to be formally introduced to
LaTEX with a \DeclareFontEncoding command, which takes three arguments. The
first argument is the name of the encoding under which you access it using the
\fontencoding command. Table 7.27 on page 416 provides a list of standard
encoding schemes and their internal NFSS names.

The second argument contains any code (such as definitions) to be executed
every time LaTEX switches from one encoding to another using the \fontencoding
command. The final argument contains code to be used whenever the font is ac-
cessed as a mathematical alphabet. Thus, these three arguments can be used to
redefine commands that depend on the positions of characters in the encoding.
To avoid spurious spaces in the output (coming from extra spaces in the argu-
ments), the space character is ignored within them. In the unlikely event that you
need spaces in a definition in one of the arguments, use the \space command.

The LaTEX3 project reserves the use of encodings starting with the following
letters: T (standard text encodings with 256 characters), TS (symbols that are de-
signed to extend the corresponding T encoding), X (text encodings that do not
conform to the strict requirements for T encodings), M (standard math encodings
with 256 characters), S (other symbol encodings), A (other special applications), OT
(standard text encodings with 128 characters), and OM (standard math encodings
with 128 characters). The letter O was chosen to emphasize that the 128-character
encodings are old and obsolete. Ideally, these encodings will be superseded by stan-
dards defined by the TEX user groups so that in the future a change of encoding
will be necessary only if one is switching from one language to another.

For your own private encodings, you should choose names starting with L
for “local” or E for “experimental”. Encodings starting with U are for “Unknown”
or “Unclassified” encodings—that is, for fonts that do not fit a common encoding
pattern. This naming convention ensures that files using official encodings are
portable. New standard encodings will be added to the LaTEX documentation as
they emerge. For example, the T2* and T5 encodings have appeared since the first
edition of this book was published.

7.10 Setting up new fonts 431

The \DeclareFontEncoding command stores the name of the newly declared
encoding in the command \LastDeclaredEncoding . This feature is sometimes
useful when you are declaring other related encoding information and is, for ex-
ample, used in the encoding declaration files for the Cyrillic languages.

Also, as we saw in Section 7.9.3 on font substitution, the default values for
the family, series, and shape may need to be different for different encodings. For
this purpose, NFSS provides the command \DeclareFontSubstitution, which
again takes the encoding as the first argument. The next three arguments are
the default values (associated with this encoding) for family, series, and shape
for use in the automatic substitution process, as explained in Section 7.9.3. It is
important that these arguments form a valid font shape—in other words, that a
\DeclareFontShape declaration exists for them. Otherwise, an error message will
be issued when NFSS checks its internal tables at \begin{document}.

7.10.6 Internal file organization

Font families can be declared when a format file is generated, declared in the
document preamble, or loaded on demand when a font change command in the
document requests a combination that has not been used so far. The first option
consumes internal memory in every LaTEX run, even if the font is not used. The
second and third possibilities take a little more time during document formatting,
because the font definitions have to be read during processing time. Nevertheless,
it is preferable to use the latter solutions for most font shape groups, because it
allows you to typeset a wide variety of documents with a single LaTEX format.

When the format is generated, LaTEX will read a file named fonttext.ltx,
which contains the standard set of font family definitions and some other declara-
tions related to text fonts. With some restrictions1 this set can be altered by pro-
viding a configuration file fontdef.cfg; see the documentation cfgguide.tex.

All other font family definitions should be declared in external files loaded
on request: either package files or font definition (.fd) files. If you place font
family definitions in a package file, you must explicitly load this package after
the \documentclass command. But there is a third possibility: whenever NFSS
gets a request for a font family foo in an encoding scheme BAR, and it has no
knowledge about this combination, it will try to load a file called barfoo.fd (all
letters lowercase). If this file exists, it is supposed to contain font shape group
definitions for the family foo in the encoding scheme BAR—that is, declarations
of the form

\DeclareFontFamily{BAR}{foo}{..}
\DeclareFontShape{BAR}{foo}{..}{..}{..}{..}
...

\endinput

1Any such customization should not be undertaken lightly as it is unfortunately very easy to
produce a LaTEX format that shows subtle or even glaring incompatibilities with other installations.

432 Fonts and Encodings

In this way it becomes possible to declare a huge number of font families for LaTEX
without filling valuable internal memory with information that is almost never
used.1

Each .fd file should contain all font definitions for one font family in one
encoding scheme. It should consist of one or more \DeclareFontShape declara-
tions and exactly one \DeclareFontFamily declaration. Other definitions should
not appear in the file, except perhaps for a \ProvidesFile declaration or some
\typeout statement informing the user about the font loading. As an alternative
to the \typeout command, you can use the plain TEX command \wlog , which
writes its argument only into the transcript file. Detailed information in the tran-
script file should be generated by all .fd files that are used in production, because
looking at this transcript will help to locate errors by providing information about
the files and their versions used in a particular job. If \typeout or \wlog com-
mands are used, it is important to know that spaces and empty lines in a .fd
file are ignored. Thus, you have to use the command \space in the argument to
\typeout or \wlog to obtain a blank space on the screen and the transcript file.

New encoding schemes cannot be introduced via the .fd mechanism. NFSS
will reject any request to switch to an encoding scheme that was not explicitly de-
clared in the LaTEX format (i.e., fonttext.ltx), in a package file, or in the preamble
of the document.

7.10.7 Declaring new fonts for use in math

Specifying font sizes

For every text size NFSS maintains three sizes that are used to typeset formulas
(see also Section 8.7.1): the size in which to typeset most of the symbols (selected
by \textstyle or \displaystyle); the size for first-order subscripts and super-
scripts (\scriptstyle); and the size for higher-order subscripts and superscripts
(\scriptscriptstyle). If you switch to a new text size, for which the correspond-
ing math sizes are not yet known, NFSS tries to calculate them as fractions of the
text size. Instead of letting NFSS do the calculation, you might want to specify the
correct values yourself via \DeclareMathSizes . This declaration takes four argu-
ments: the outer text size and the three math sizes for this text size. For example,
the class file for The LATEX Companion contains settings like the following:

\DeclareMathSizes{14}{14}{10}{7} \DeclareMathSizes{36}{}{}{}

The first declaration defines the math sizes for the 14pt heading size to be 14pt,
10pt, and 7pt, respectively. The second declaration (the size for the chapter head-

1Unfortunately, this feature is not fully available on (LA)TEX installations that use different search
paths for the commands \input and \openin . On such systems the .fd feature can be activated at
installation time by supplying NFSS with a full path denoting the directories containing all the .fd
files. As a result, local .fd files—those stored in the current directory—may not be usable on such
systems.

7.10 Setting up new fonts 433

ings) informs NFSS that no math sizes are necessary for 36pt text size. This avoids
the unnecessary loading of more than 30 additional fonts. For the first edition of
The LATEX Companion such declarations were very important to be able to process
the book with all its examples as a single document (the book loaded 228 fonts out
of a maximum of 255). Today, TEX installations are usually compiled with larger
internal tables (e.g., the laptop implementation used to write this chapter allows
1000 fonts), so conserving space is no longer a major concern. In any event you
should be careful about disabling math sizes, because if some formula is typeset
in such a size after all, it will be typeset in whatever math sizes are still in effect
from an earlier text size.

Adding new symbol fonts

We have already seen how to use math alphabet commands to produce letters
with special shapes in a formula. We now discuss how to add fonts containing
special symbols, called “symbol fonts”, and how to make such symbols accessible
in formulas.

The process of adding new symbol fonts is similar to the declaration of a new
math alphabet identifier: \DeclareSymbolFont defines the defaults for all math
versions, and \SetSymbolFont overrides the defaults for a particular version.

The math symbol fonts are accessed via a symbolic name, which consists of a
string of letters. If, for example, you want to install the AMS fonts msbm10, shown
in Table 7.29 on the following page, you first have to make the typeface known to
NFSS using the declarations described in the previous sections. These instructions
would look like

\DeclareFontFamily{U}{msb}{}
\DeclareFontShape{U}{msb}{m}{n}{ <5> <6> <7> <8> <9> gen * msbm

<10> <10.95> <12> <14.4> <17.28> <20.74> <24.88> msbm10}{}

and are usually placed in an .fd file. You then have to declare that symbol font
for all math versions by issuing the command

\DeclareSymbolFont{AMSb}{U}{msb}{m}{n}

It makes the font shape group U/msb/m/n available as a symbol font under the
symbolic name AMSb. If there were a bold series in this font family (unfortunately
there is not), you could subsequently change the set-up for the bold math version
by saying

\SetSymbolFont{AMSb}{bold}{U}{msb}{b}{n}

After taking care of the font declarations, you can make use of this symbol
font in math mode. But how do you tell NFSS that $a\lessdot b$ should produce

434 Fonts and Encodings

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x � � � � ≮ ≯ ⊀

˝0x

0́1x � � � � � � �
0́2x � � � � � � � �

˝1x
0́3x � � � � � ! "
0́4x # $ % & ' () *

˝2x
0́5x + , - . ∦ 0 1 2
0́6x 3 4 5 6 7 8 9 :

˝3x
0́7x ; < = > ? @ A ∅
1́0x C A B C D E F G

˝4x
1́1x H I J K L M N O
1́2x P Q R S T U V W

˝5x
1́3x X Y Z ̂ ̂ ˜ ˜
1́4x b c d ð

˝6x
1́5x e f ג h i j k l
1́6x m n o ∼ ≈ r s t

˝7x
1́7x u v w κ k � z {

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 7.29: Glyph chart for msbm10 produced by the nfssfont.tex program

ai b, for example? To do so, you have to introduce your own symbol names to
NFSS, using \DeclareMathSymbol .

\DeclareMathSymbol{cmd}{type}{symbol-font}{slot}

The first argument to \DeclareMathSymbol is your chosen command name. The
second argument is one of the commands shown in Table 7.30 on the next page
and describes the nature of the symbol—whether it is a binary operator, a relation,
and so forth. (LA)TEX uses this information to leave the correct amount of space
around the symbol when it is encountered in a formula. Incidentally, except for
\mathalpha , these commands can be used directly in math formulas as functions
with one argument, in which case they space their (possibly complex) argument
as if it were of the corresponding type; see Section 8.9 on page 524.

The third argument identifies the symbol font from which the symbol should
be fetched—that is, the symbolic name introduced with the \DeclareSymbolFont
command. The fourth argument gives the symbol’s position in the font encoding,
either as a decimal, octal, or hexadecimal value. Octal (base 8) and hexadecimal

7.10 Setting up new fonts 435

Type Meaning Example Type Meaning Example

\mathord Ordinary / \mathopen Opening (
\mathop Large operator \sum \mathclose Closing)
\mathbin Binary operation + \mathpunct Punctuation ,
\mathrel Relation = \mathalpha Alphabet character A

Table 7.30: Math symbol type classification

(base 16) numbers are preceded by ’ and ", respectively. If you look at Table 7.29
on the preceding page, you can easily determine the positions of all glyphs in this
font. Such tables can be printed using the LaTEX program nfssfont.tex, which is part
of the LaTEX distribution; see Section 7.5.7 on page 369. For example, \lessdot
would be declared using

\DeclareMathSymbol{\lessdot}{\mathbin}{AMSb}{"6C}

Instead of a command name, you can use a single character in the first argu-
ment. For example, the eulervm package has several declarations of the form

\DeclareMathSymbol{0}{\mathalpha}{letters}{"30}

that specify where to fetch the digits from.
Because \DeclareMathSymbol is used to specify a position in some symbol

font, it is important that all external fonts associated with this symbol font via the
\DeclareSymbolFont and \SetSymbolFont commands have the same character
in that position. The simplest way to ensure this uniformity is to use only fonts
with the same encoding (unless it is the U, a.k.a. unknown, encoding, as two fonts
with this encoding are not required to implement the same characters).

Besides \DeclareMathSymbol , LaTEX knows about \DeclareMathAccent ,
\DeclareMathDelimiter , and \DeclareMathRadical for setting up math font
support. Details about these slightly special declarations can be found in [109],
which is part of every LaTEX distribution.

If you look again at the glyph chart for msbm10 (Table 7.29 on the preceding
page), you will notice that this font contains “blackboard bold” letters, such as
ABC. If you want to use these letters as a math alphabet, you can define them
using \DeclareMathAlphabet , but given that this symbol font is already loaded
to access individual symbols, it is better to use a shortcut:

\DeclareSymbolFontAlphabet{\mathbb}{AMSb}

That is, you give the name of your math alphabet identifier and the symbolic name
of the previously declared symbol font.

436 Fonts and Encodings

An important reason for not unnecessarily loading symbol fonts twice is that
there is an upper limit of 16 math fonts that can be active at any given time in
(LA)TEX. In calculating this limit, each symbol font counts; math alphabets count
only if they are actually used in the document, and they count locally in each math
version. Thus, if eight symbol fonts are declared, you can use a maximum of eight
(possibly different) math alphabet identifiers within every version.

To summarize: to introduce new symbol fonts, you need to issue a small num-
ber of \DeclareSymbolFont and \SetSymbolFont declarations and a potentially
large number of \DeclareMathSymbol declarations; hence, adding such fonts is
best done in a package file.

Introducing new math versions

We have already mentioned that the standard set-up automatically declares two
math versions, normal and bold. To introduce additional versions, you use the
declaration \DeclareMathVersion , which takes one argument, the name of the
new math version. All symbol fonts and all math alphabets previously declared
are automatically available in this math version; the default fonts are assigned
to them—that is, the fonts you have specified with \DeclareMathAlphabet or
\DeclareSymbolFont .

You can then change the set-up for your new version by issuing appropriate
\SetMathAlphabet and \SetSymbolFont commands, as shown in previous sec-
tions (pages 352 and 433) for the bold math version. Again, the introduction of a
new math version is normally done in a package file.

Changing the symbol font set-up

Besides adding new symbol fonts to access more symbols, the commands we have
just seen can be used to change an existing set-up. This capability is of interest if
you choose to use special fonts in some or all math versions.

The default settings in LaTEX are given here:

\DeclareMathVersion{normal} \DeclareMathVersion{bold}

\DeclareSymbolFont{operators} {OT1}{cmr}{m} {n}
\DeclareSymbolFont{letters} {OML}{cmm}{m}{it}
\DeclareSymbolFont{symbols} {OMS}{cmsy}{m}{n}
\DeclareSymbolFont{largesymbols} {OMX}{cmex}{m}{n}

% Special bold fonts only for these:
\SetSymbolFont {operators}{bold}{OT1}{cmr}{bx}{n}
\SetSymbolFont {letters} {bold}{OML}{cmm}{b}{it}

In the standard set-up, digits and text produced by “log-like operators” such
as \log and \max are taken from the symbol font called operators. To change
this situation so that these elements agree with the main text font—say, Computer

7.10 Setting up new fonts 437

Modern Sans rather than Computer Modern Roman—you can issue the following
commands:

\SetSymbolFont{operators}{normal}{OT1}{cmss}{m} {n}
\SetSymbolFont{operators}{bold} {OT1}{cmss}{bx}{n}

Symbol fonts with the names symbols and largesymbols play a unique rôle
in TEX, and for this reason they need a special number of \fontdimen parameters
associated with them. Thus, only specially prepared fonts can be used for these
two symbol fonts. In principle one can add such parameters to any font at load
time by using the third parameter of \DeclareFontFamily or the sixth parameter
of \DeclareFontShape . Information on the special parameters for these symbol
fonts can be found in Appendix G of [82].

7.10.8 Example: Defining your own .fd files

If you want to set up new (PostScript) fonts and create the necessary .fd files, you
should follow the procedure explained earlier in this section. If fontinst [74] is
used to generate the necessary font metric files, then the corresponding .fd files
are automatically generated as well. However, an .fd file for a single font family
is also easy to write by hand, once you know which font encoding is used. As an
example, let’s study the declaration file t1bch.fd for Bitstream Charter in the T1
encoding:

\ProvidesFile{t1bch.fd}[2001/06/04 font definitions for T1/bch.]
% Primary declarations
\DeclareFontFamily{T1}{bch}{}
\DeclareFontShape{T1}{bch}{m}{n}{<-> bchr8t}{}
\DeclareFontShape{T1}{bch}{m}{sc}{<-> bchrc8t}{}
\DeclareFontShape{T1}{bch}{m}{sl}{<-> bchro8t}{}
\DeclareFontShape{T1}{bch}{m}{it}{<-> bchri8t}{}
\DeclareFontShape{T1}{bch}{b}{n}{<-> bchb8t}{}
\DeclareFontShape{T1}{bch}{b}{sc}{<-> bchbc8t}{}
\DeclareFontShape{T1}{bch}{b}{sl}{<-> bchbo8t}{}
\DeclareFontShape{T1}{bch}{b}{it}{<-> bchbi8t}{}
% Substitutions
\DeclareFontShape{T1}{bch}{bx}{n}{<->ssub * bch/b/n}{}
\DeclareFontShape{T1}{bch}{bx}{sc}{<->ssub * bch/b/sc}{}
\DeclareFontShape{T1}{bch}{bx}{sl}{<->ssub * bch/b/sl}{}
\DeclareFontShape{T1}{bch}{bx}{it}{<->ssub * bch/b/it}{}
\endinput

The file starts with an identification line and then declares the font family and
encoding (i.e., bch in T1) using \DeclareFontFamily—the arguments of this com-
mand should correspond to the name of the .fd file, except that by convention
the encoding is in lowercase there. Then each combination of series and shape

438 Fonts and Encodings

is mapped to the name of a .tfm file. These fonts can and will be scaled to any
desired size—hence the <-> declarations on the \DeclareFontShape commands.
The second part of the file sets up some substitutions for combinations for which
no font is available (i.e., replacing the bold extended series with the bold series).

Assuming you have bought the additional Charter fonts (Black and BlackItalic),
which are not available for free, then you may want to add the related declarations
to the .fd file. Of course, one would first need to provide the appropriate virtual
fonts (using, for example, fontinst) to emulate the T1 character set; fortunately,
for many fonts these can be downloaded from the Internet.1

In contrast to most other files in the LaTEX world, the usual license for .fd files
Special license for

.fd files
allows their modification without renaming the files. However, you are normally
not allowed to distribute such a modified file!

Another possible reason for producing your own .fd files might be the need
to combine fonts from different font families and present them to LaTEX as a single
new font family. For example, in 1954 Hermann Zapf designed the Aldus font
family as a companion to his Palatino typeface (which was originally designed
as a display typeface). As Aldus has no bold series, Palatino is a natural choice
to use as a bold substitute. In the example below we combine Aldus (with old-
style numerals) in its medium series with Palatino bold, calling the resulting “font
family” zasj. We present only a fragment of a complete .fd file that enables us
to typeset Example 7-10-1 on the facing page.

\ProvidesFile{t1zasj.fd}
[2003/10/12 font definitions for T1 Aldus/Palatino mix.]

\DeclareFontFamily{T1}{zasj}{}
% Medium series
\DeclareFontShape{T1}{zasj}{m}{n} {<->pasr9d}{}
\DeclareFontShape{T1}{zasj}{m}{sc}{<->pasrc9d}{}
\DeclareFontShape{T1}{zasj}{m}{it}{<->pasri9d}{}
\DeclareFontShape{T1}{zasj}{m}{sl}{<->ssub * pasj/m/it}{}
% Bold series
\DeclareFontShape{T1}{zasj}{b}{n}{<-> pplb8t}{}
\DeclareFontShape{T1}{zasj}{b}{sc}{<->pplbc8t}{}
\DeclareFontShape{T1}{zasj}{b}{sl}{<->pplbo8t}{}
\DeclareFontShape{T1}{zasj}{b}{it}{<->pplbi8t}{}

To access this “pseudo-family” we have to select zasj in the T1 encoding. We also
have to ensure that \textbf switches to bold and not to bold extended, as our
.fd file does not provide any substitutions. All that can be automatically provided
by writing a tiny package (named fontmix.sty) like this:

\ProvidesPackage{fontmix}[2003/10/12 T1 Aldus/Palatino mix.]
\RequirePackage[T1]{fontenc}
\renewcommand\rmdefault{zasj} \renewcommand\bfdefault{b}

1A good resource is Walter Schmidt’s home page: http://home.vr-web.de/~was/fonts.html .

7.10 Setting up new fonts 439

Thus, by loading fontmix, we get Aldus with Palatino Bold for headlines. In many
cases such a mixture does not enhance your text, so do not mistake this example
as a suggestion to produce arbitrary combinations.

7-10-1

Zapf’s Palatino and Aldus
This text is set in the typeface Aldus with
matching old-style numerals ‘123456789’.

As a companion bold face Zapf’s Palatino
is selected.

\usepackage{fontmix}
% t1zasj.fd and fontmix.sty as defined above

\section*{Zapf’s Palatino and Aldus}
This text is set in the typeface Aldus with
matching \emph{old-style} numerals ‘123456789’.

As a companion \textbf{bold face} Zapf’s
Palatino is selected.

7.10.9 The order of declaration

NFSS forces you to give all declarations in a specific order so that it can check
whether you have specified all necessary information. If you declare objects in the
wrong order, it will complain. Here are the dependencies that you have to obey:

• \DeclareFontFamily checks that the encoding scheme was previously de-
clared with \DeclareFontEncoding .

• \DeclareFontShape checks that the font family was declared to be available
in the requested encoding (\DeclareFontFamily).

• \DeclareSymbolFont checks that the encoding scheme is valid.

• \SetSymbolFont additionally ensures that the requested math version was
declared (\DeclareMathVersion) and that the requested symbol font was
declared (\DeclareSymbolFont).

• \DeclareSymbolFontAlphabet checks that the command name for the alpha-
bet identifier can be used and that the symbol font was declared.

• \DeclareMathAlphabet checks that the chosen command name can be used
and that the encoding scheme was declared.

• \SetMathAlphabet checks that the alphabet identifier was previously de-
clared with \DeclareMathAlphabet or \DeclareSymbolFontAlphabet and
that the math version and the encoding scheme are known.

• \DeclareMathSymbol makes sure that the command name can be used (i.e.,
is undefined or was previously declared to be a math symbol) and that the
symbol font was previously declared.

• When the \begin{document} command is reached, NFSS makes some addi-
tional checks—for example, verifying that substitution defaults for every en-
coding scheme point to known font shape group declarations.

440 Fonts and Encodings

7.11 LATEX’s encoding models

For most users it will probably be sufficient to know that there exist certain in-
put and output encodings and to have some basic knowledge about how to use
them, as described in the previous sections. However, sometimes it is helpful to
know the whole story in some detail, so as either to set up a new encoding or to
better understand packages or classes that implement special features. So here is
everything you always wanted to know about encodings in LaTEX.

We start by describing the general character data flow within the LaTEX system,
deriving from that the base requirements for various encodings and the mapping
between them. We then have a closer look at the internal representation model for
character data within LaTEX, followed by a discussion of the mechanisms used to
map incoming data via input encodings into that internal representation.

Finally, we explain how the internal representation is translated, via the out-
put encodings, into the form required for the actual task of typesetting.

7.11.1 Character data within the LATEX system

Document processing with the LaTEX system starts by interpreting data present in
one or more source files. This data, which represents the document content, is
stored in these files in the form of octets representing characters. To correctly
interpret these octets, LaTEX (or any other program used to process the file, such
as an editor) must know the encoding that was used when the file was written.
In other words, it must know the mapping between abstract characters and the
octets representing them.

With an incorrect mapping, all further processing will be flawed to some ex-
tent unless the file contains only characters of a subset common in both encod-
ings.1

LaTEX makes one fundamental assumption at this stage: that (nearly) all char-
acters of visible ASCII (decimal 32–126) are represented by the number that they
have in the ASCII code table; see Table 7.31 on the next page.

There is both a practical and a TEXnical reason for this assumption. The prac-
tical reason is that most 8-bit encodings in use today share a common 7-bit plane.
The TEXnical reason is to effectively

2 use TEX, the majority of the visible portion
of ASCII needs to be processed as characters of category “letter”—since only char-

1As most encodings in the Western world share as a common subset a large fraction of the ASCII
code (i.e., most of the 7-bit plane), documents consisting mainly of unaccented Latin characters
are still understandable if viewed or processed in an encoding different from the one in which
they were originally written. However, the more characters outside visible ASCII are used, the less
comprehensible the text will become. A text can become completely unintelligible when, for instance,
Greek or Russian documents are reprocessed under the assumption that the text is encoded in, say,
the encoding for U.S.-Windows.

2At least this was true when this interface was being designed. These days, with computers be-
ing much faster than before, it would be possible to radically change the input method of TEX by
basically disabling it altogether and parsing the input data manually—that is, character by character.

7.11 LATEX’s encoding models 441

Represented as Characters

Digits: 0 1 2 3 4 5 6 7 8 9
Lowercase letters: a b c d e f g h i j k l m n o p q r s t u v w x y z
Uppercase letters: A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Punctuation: . , ; : ? ! ‘ ’
Miscellaneous symbols: * + - = () [] / @

Not Represented as Characters

TEX syntax characters: $ ^ _ { } # & % \ ~
Missing in (some) OT1 fonts < > | "

Table 7.31: LICR objects represented with single characters

acters with this category can be used in multiple-character command names in
TEX—or category “other”—since TEX will not, for example, recognize the decimal
digits as being part of a number if they do not have this category code.

When a character—or more exactly an 8-bit number—is declared to be of cate-
gory “letter” or “other” in TEX, then this 8-bit number will be transparently passed
through TEX. This means that in the output TEX will typeset whatever symbol is in
the font at the position addressed by that number.

A consequence of the assumption mentioned earlier is that fonts intended
to be used for general text require that (most of) the visible ASCII characters are
present in the font and are encoded according to the ASCII encoding. The exact
list is given in Table 7.31.

All other 8-bit numbers (i.e., those outside visible ASCII) potentially being LATEX internal
character
representation
(LICR)

present in the input file are assigned a category code of “active”, which makes
them act like commands inside TEX. This allows LaTEX to transform them via the
input encodings to a form that we call the LaTEX internal character representation
(LICR).

Unicode’s UTF-8 encoding is handled similarly: the ASCII characters represent
themselves, and the starting octets for multiple-byte representations act as active
characters that scan the input for the remaining octets. The result will be turned
into an object in the LICR, if it is mapped, or it will generate an error, if the given
Unicode character is not mapped.

The most important characteristic of objects in the LICR is that the represen-
tation is 7-bit ASCII so that it is invariant to any input encoding change, because
all input encodings are supposed to be transparent with respect to visible ASCII.
This enables LaTEX, for example, to write auxiliary files (e.g., .toc files) using the
LICR representation and to read them back in a different context (and possibly
different encoding) without any misinterpretations.

The purpose of the output (or font) encoding is then to map the internal char-
acter representations to glyph positions in the current font used for typesetting
or, in some cases, to initiate more complex actions. For example, it might place an

442 Fonts and Encodings

accent (present in one position in the current font) over some glyph (in a different
position in the current font) to achieve a printed image of the abstract character
represented by the command(s) in the internal character encoding.

Because the LICR encodes all possible characters addressable within LaTEX, it
is far larger than the number of characters that can be represented by a single
TEX font (which can contain a maximum of 256 glyphs). In some cases a character
in the internal encoding can be rendered with a font by combining glyphs, such
as accented characters mentioned above. However, when the internal character
requires a special shape (e.g., the currency symbol “¤”), there is no way to fake it
if that glyph is not present in the font.

Nevertheless, the LaTEX model for character encoding supports automatic
mechanisms for fetching glyphs from different fonts so that characters missing in
the current font will get typeset—provided a suitable additional font containing
them is available, of course.

7.11.2 LATEX’s internal character representation (LICR)

Technically speaking, text characters are represented internally by LaTEX in one of
three ways, each of which will be discussed in the following sections.

Representation as characters

A small number of characters are represented by “themselves”; for example, the
Latin A is represented as the character “A”. Characters represented in this way are
shown in Table 7.31 on the previous page. They form a subset of visible ASCII,
and inside TEX all of them are given the category code of “letter” or “other”. Some
characters from the visible ASCII range are not represented in this way, either
because they are part of the TEX syntax1 or because they are not present in all
fonts. If one uses, for example, “<” in text, the current font encoding determines
whether one gets < (T1) or perhaps a ¡ (OT1) in the printout.2

Representation with character sequences

TEX’s internal ligature mechanism supports the generation of new characters from
a sequence of input characters. While this is actually a property of the font, some
such sequences have been explicitly designed to serve as input shortcuts for char-
acters that are otherwise difficult to address with most keyboards. Only a very
few characters generated in this way are considered to belong to LaTEX’s internal
representation. These include the en dash and em dash, which are generated by

1The LaTEX syntax knows a few more characters, such as *[]. They play a dual rôle, also being
used to represent the characters in straight text. Sometimes problems arise trying to keep the two
meanings apart. For example, a] within an optional argument is only possible when it is hidden by
a set of braces; otherwise, LaTEX will think the optional argument has ended.

2This describes the situation in text. In math “<” has a well-defined meaning: “generate a less than
relation symbol”.

7.11 LATEX’s encoding models 443

the ligatures -- and ---, and the opening and closing double quotes, which are
generated by ‘‘ and ’’ (for the latter people sometimes use the single charac-
ter " , but this is incorrect as it may produce a straight double quote, i.e., "). While
most fonts also implement !‘ and ?‘ to generate ¡ and ¿, this feature is not univer-
sally available in all fonts. For this reason all such characters have an alternative
internal representation as a command (e.g., \textendash or \textexclamdown).

Representation as “font-encoding–specific” commands

The other way to represent characters internally in LaTEX (and this covers the ma-
jority of characters) is with special LaTEX commands (or command sequences) that
remain unexpanded when written to a file or when placed into a moving argument.
These special commands are sometimes referred to as “font-encoding–specific
commands” because their meaning depends on the font encoding current when
LaTEX is ready to typeset them. Such commands are declared using special decla-
rations, as discussed below. They usually require individual definitions for each
font encoding. If no definition exists for the current encoding, either a default is
used (if available) or an error message is presented to the user.

Technically, when the font encoding is changed at some point in the docu-
ment, the definitions of the encoding-specific commands do not change immedi-
ately, as that would mean changing a large number of commands on the spot.
Instead, these commands have been implemented in such a way that they notice,
once they are used, if their current definition is no longer suitable for the font
encoding in force. In such a case they call upon their counterparts in the current
font encoding to do the actual work.

The set of “font-encoding–specific commands” is not fixed, but rather implic-
itly defined to be the union of all commands defined for individual font encod-
ings. Thus, by adding new font encodings to LaTEX, new “font-encoding–specific
commands” might emerge.

7.11.3 Input encodings

Once the package inputenc is loaded (with or without options), the two declara-
tions \DeclareInputText and \DeclareInputMath for mapping 8-bit input char-
acters to LICR objects become available. Their usage should be confined to input
encoding files (described below), packages, or, if necessary, to the preamble of
documents.

These commands take an 8-bit number as their first argument, which can be
given as a decimal number (e.g., 239), octal number (e.g., ’357), or hexadecimal no-
tation (e.g., "EF). It is advisable to use decimal notation given that the characters
’ or " might get special meanings in a language support package, such as short-
cuts for accents, thereby preventing octal or hexadecimal notation from working
correctly if packages are loaded in the wrong order.

444 Fonts and Encodings

\DeclareInputText{number}{LICR-object}

The \DeclareInputText command declares character mappings for use in text.
Its second argument contains the encoding-specific command (or command se-
quence), that is the LICR object, to which the character number should be mapped.
For instance,

\DeclareInputText{239}{\"\i}

maps the number 239 to the encoding-specific representation of ï, which is \"\i.
Input characters declared in this way cannot be used inside mathematical formu-
las.

\DeclareInputMath{number}{math-object}

If the number represents a character for use in mathematical formulas, then the
declaration \DeclareInputMathmust be used. For example, in the input encoding
cp437de (German MS-DOS keyboard),

\DeclareInputMath{224}{\alpha}

associates the number 224 with the command \alpha. Note that this declaration
would make the key producing this number usable only in math-mode, as \alpha
is not allowed elsewhere.

\DeclareUnicodeCharacter{hex-number}{LICR-object}

This declaration is available only if the option utf8 is used. It maps Unicode num-
bers to LICR objects (i.e., characters usable in text). For example,

\DeclareUnicodeCharacter{00A3}{\textsterling}
\DeclareUnicodeCharacter{011A}{\v E}
\DeclareUnicodeCharacter{2031}{\textpertenthousand}

In theory, there should be only a single unique bidirectional mapping between
the two name spaces, so that all such declarations could be already automatically
made when the utf8 option is selected. In practice, the situation is a little more
complicated. For one, it is not sensible to automatically provide the whole table,
because that would require a huge amount of TEX’s memory. Additionally, there
are many Unicode characters for which no LICR object exists (so far), and con-
versely many LICR objects have no equivalents in Unicode.1 The inputenc package
solves that problem by loading only those Unicode mappings that correspond

1This is perhaps a surprising statement, but simply consider that, for example, accent commands
like \" combined with some other character form a new LICR object, such as \"d (whether sensible
or not). Many such combinations are not available in Unicode.

7.11 LATEX’s encoding models 445

to the encodings used in a particular document (as far as they are known) and re-
sponds to any other request for a Unicode character with a suitable error message.
It then becomes your task to either provide the right mapping information or, if
necessary, load an additional font encoding.

As mentioned previously, the input encoding declarations can also be used
in packages or in the preamble of a document. For this approach to work, it is
important to load the inputenc package first, thereby selecting a suitable encoding.
Subsequent input encoding declarations will act as a replacement for (or addition
to) those being defined by the present input encoding.

There are two internal commands that you might see when using the inputenc
package. The \IeC command is used internally by the \DeclareInputText dec-
laration in certain circumstances. It ensures that when the encoding-specific com-
mand is written to a file, a space following it is not gobbled up when the file is
read back in. This processing is handled automatically, so that a user never has to
write this command. We mention it here because it might show up in .toc files or
other auxiliary files.

The other command, \@tabacckludge , stands for “tabbing accent kludge”.
It is (unfortunately) needed because the current version of LaTEX inherited an
overloading of the commands \= , \‘ , and \’ , which normally denote certain ac-
cents (i.e., are encoding-specific commands), but have special meanings inside the
tabbing environment. For this reason, mappings that involve any of these accents
need to be encoded in a special way. If, for example, you want to map 232 to the
character è which has the internal representation \‘e, you should not write

\DeclareInputText{232}{\‘e}

but rather

\DeclareInputText{232}{\@tabacckludge‘e}

The latter form works everywhere, including inside a tabbing environment.

Mapping to text and/or math

For technical as well as conceptual reasons, TEX makes a very strong distinction
between characters usable in text and those usable in math. Except for the visi-
ble ASCII characters, commands that produce characters can normally be used in
either text or math mode but not in both modes.

Unfortunately, for some keyboard keys it is not clear whether they should be
regarded as generating characters for use in math or text. For example, should
the key generating the character ± be mapped to \textpm, which is an encoding-
specific command and thus can be used only in text, or should it be mapped to
\pm and therefore be available only in math?

The early releases of the inputenc package used the following strategy: all
keyboard keys available in standard TEX fonts for text (i.e., those encoded in either

446 Fonts and Encodings

OT1 or T1) were mapped to encoding-specific text commands, while the remaining
keys got mapped to available math commands. But using a strategy solely driven
by the availability of glyphs has the disadvantage that only users with a good
knowledge of TEX internals could tell immediately whether using a key labeled,
say “¾” or “³” would be allowed only in text or only in math.1

What can be done to resolve this situation gracefully? The approach of check-
ing for the current mode, as used in babel’s \textormath command,

\ifmmode \ddots a\else \"a\fi

fails if such a construction is used in a math alignment structure (it selects the
wrong part of the conditional and usually ends in an incomprehensible TEX error
message). Fixing this problem by starting the above construction with \relax will
prevent kerning and ligatures that may otherwise be present in a word. This is, in
fact, a problem that is unsolvable in TEX. However, it can be solved if eTEX is used
as the base formatter for LaTEX and as nowadays eTEX is available with nearly every
TEX system, there are plans to make this program the basis for future maintenance
releases of LaTEX.

At the time of this book’s writing, work on an extension of inputenc (based
on eTEX) was under way. This proposed extension will automatically support all
accessible keyboard characters in text and formulas. Once it becomes officially
available, you will be able to comfortably typeset your formulas by simply adding
the option math when loading the inputenc package.

Input encoding files for 8-bit encodings

Input encodings are stored in files with the extension .def, where the base name
is the name of the input encoding (e.g., latin1.def). Such files should contain
only the commands described in the current section.

The file should start with a \ProvidesFile declaration describing the nature
of the file. For example:

\ProvidesFile{latin1.def}[2000/07/01 v0.996 Input encoding file]

If there are mappings to encoding-specific commands that might not be available
unless additional packages are loaded, one could declare defaults for them using
\ProvideTextCommandDefault . For example:

\ProvideTextCommandDefault{\textonehalf}{\ensuremath{\frac12}}
\ProvideTextCommandDefault{\textcent}{\TextSymbolUnavailable\textcent}

The command \TextSymbolUnavailable , used above, issues a warning indicat-
ing that a certain character is not available with the currently used fonts. This can

1In the first releases of the inputenc package, “¾” was a text glyph but “³” was a math glyph—
comprehensible?

7.11 LATEX’s encoding models 447

be useful as a default—that is, when such characters are available only if special
fonts are loaded and no suitable way exists to fake the characters with existing
characters (as was possible for a default for \textonehalf above).

The remaining part of the file should consist only of input encoding decla-
rations using \DeclareInputText or \DeclareInputMath . As mentioned earlier,
the use of the latter command, though allowed, is discouraged. No other com-
mands should be used inside an input encoding file; in particular, no commands
that prevent reading the file several times (e.g., \newcommand), as the encoding
files are often loaded several times in a single document!

Input mapping files for UTF-8

As mentioned earlier, the mapping from Unicode to LICR objects is not done in
a single large mapping file, but rather organized in a way that enables LaTEX to
load only those mappings that are relevant for the font encodings used in the
current document. This is done by attempting to load for each encoding 〈name〉 a
file 〈name〉enc.dfu that, if it exists, contains the mapping information for those
Unicode characters provided by that particular encoding. Other than a number
of \DeclareUnicodeCharacter declarations, such files should contain only a
\ProvidesFile line.

As different font encodings often provide to a certain extent the same char-
acters, it is quite common for declarations for the same Unicode character to be
found in different .dfu files. It is, therefore, very important that these declara-
tions in different files be identical (which in theory they should be anyway, but. . .).
Otherwise, the declaration loaded last will survive, which may be a different one
from document to document.

So anyone who wants to provide a new .dfu file for some encoding that was
previously not covered should carefully check the existing definitions in .dfu
files for related encodings. Standard files provided with inputenc are guaranteed
to have uniform definition—they are, in fact, all generated from a single list that
is suitably split up. A full list of currently existing mappings can be found in the
file utf8enc.dfu.

7.11.4 Output encodings

As we learned earlier, output encodings define the mapping from the LICR to the
glyphs (or constructs built from glyphs) available in the fonts used for typesetting.
These mappings are referenced inside LaTEX by two- or three-letter names (e.g.,
OT1 and T3). We say that a certain font is in a certain encoding if the mapping
corresponds to the positions of the glyphs in the font in question. So what are the
exact components of such a mapping?

Characters internally represented by ASCII characters are simply passed on to
the font. In other words, TEX uses the ASCII code to select a glyph from the current
font. For example, the character “A” with ASCII code 65 will result in typesetting

448 Fonts and Encodings

the glyph in position 65 in the current font. This is why LaTEX requires that fonts
for text contain all such ASCII letters in their ASCII code positions, as there is no
way to interact with this basic TEX mechanism (other than to disable it and do
everything “manually”). Thus, for visible ASCII, a one-to-one mapping is implicitly
present in all output encodings.

Characters internally represented as sequences of ASCII characters (e.g., “--”),
are handled as follows: when the current font is first loaded, TEX is informed that
the font contains a number of so-called ligature programs. These define certain
character sequences that are not to be typeset directly but rather to be replaced1

by some other glyphs from the font (the exact position of each replacement glyph
is font dependent and not important otherwise). For example, when TEX sees “--”
in the input (i.e., ASCII code 45 twice), a ligature program might direct it to use
the glyph in position 123 instead (which then would hold the glyph “–”). Again,
no interaction with this mechanism is possible. Some such ligatures are present
for purely aesthetic reasons and may or may not be available in certain fonts (e.g.,
ff generating “ff” rather than “ff”). Others are supposed to be implemented for a
certain encoding (e.g., “---” producing an \emdash).

Nevertheless, the bulk of the internal character representation consists of
“font-encoding–specific” commands. They are mapped using the declarations de-
scribed below. All declarations have the same structure in their first two argu-
ments: the font-encoding–specific command (or the first component of it, if it is a
command sequence), followed by the name of the encoding. Any remaining argu-
ments will depend on the type of declaration.

Thus, an encoding XYZ is defined by a bunch of declarations all having the
name XYZ as their second argument. Of course, to be of any use, some fonts
must be encoded in that encoding. In fact, the development of font encodings is
normally done the other way around—namely, someone starts with an existing
font and then provides appropriate declarations for using it. This collection of
declarations is then given a suitable name, such as OT1. In the next section, we
will take the font ecrm1000, shown in Table 7.32 on the facing page, whose font
encoding is called T1 in LaTEX, and build appropriate declarations to access the
glyphs from a font encoded in this way. The blue characters in this table are those
that have to be present in the same positions in every text encoding, as they are
transparently passed through TEX.

Output encoding files

Like input encoding files, output encoding files are identified by the extension
.def. However, the base name of the file is slightly more structured: the name of
the encoding in lowercase letters, followed by the letters enc (e.g., t1enc.def for
the T1 encoding).

1The actions carried out by a font ligature program can, in fact, be far more complex, but for the
purpose of our discussion here this simplified view is appropriate. For an in-depth discussion, see
Knuth’s paper on virtual fonts [91].

7.11 LATEX’s encoding models 449

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x ` ´ ˆ ˜ ¨ ˝ ˚ ˇ
˝0x

0́1x ˘ ¯ ˙ ¸ ˛ ‚ ‹ ›
0́2x “ ” „ « » – —

˝1x
0́3x � ı j ff fi fl ffi ffl
0́4x ␣ ! " # $ % & ’

˝2x
0́5x () * + , - . /
0́6x 0 1 2 3 4 5 6 7

˝3x
0́7x 8 9 : ; < = > ?
1́0x @ A B C D E F G

˝4x
1́1x H I J K L M N O
1́2x P Q R S T U V W

˝5x
1́3x X Y Z [\] ^ _
1́4x ‘ a b c d e f g

˝6x
1́5x h i j k l m n o
1́6x p q r s t u v w

˝7x
1́7x x y z { | } ~ -

2́0x Ă Ą Ć Č Ď Ě Ę Ğ
˝8x

2́1x Ĺ Ľ Ł Ń Ň Ŋ Ő Ŕ

2́2x Ř Ś Š Ş Ť Ţ Ű Ů
˝9x

2́3x Ÿ Ź Ž Ż Ĳ İ đ §
2́4x ă ą ć č ď ě ę ğ

˝Ax
2́5x ĺ ľ ł ń ň ŋ ő ŕ
2́6x ř ś š ş ť ţ ű ů

˝Bx
2́7x ÿ ź ž ż ĳ ¡ ¿ £

3́0x À Á Â Ã Ä Å Æ Ç
˝Cx

3́1x È É Ê Ë Ì Í Î Ï

3́2x Ð Ñ Ò Ó Ô Õ Ö Œ
˝Dx

3́3x Ø Ù Ú Û Ü Ý Þ û
3́4x à á â ã ä å æ ç

˝Ex
3́5x è é ê ë ì í î ï
3́6x ð ñ ò ó ô õ ö œ

˝Fx
3́7x ø ù ú û ü ý þ ß

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Characters marked in blue need to be present (in the same positions) in every text encoding, as
they are transparently passed through TEX.

Table 7.32: Glyph chart for a T1-encoded font (ecrm1000)

450 Fonts and Encodings

Such files should contain only the declarations described in the current sec-
tion. As output encoding files might be read several times by LaTEX, it is particularly
important to adhere to this rule strictly and to refrain from using, for example,
\newcommand , which prevents reading such a file multiple times!

For identification purposes an output encoding file should start with a
\ProvidesFile declaration describing the nature of the file. For example:

\ProvidesFile{t1enc.def}[2001/06/05 v1.94 Standard LaTeX file]

To be able to declare any encoding-specific commands for a particular en-
coding, we first have to make this encoding known to LaTEX. This is achieved
via the \DeclareFontEncoding declaration. At this point it is also useful to de-
clare the default substitution rules for the encoding with the help of the com-
mand \DeclareFontSubstitution; both declarations are described in detail in
Section 7.10.5 starting on page 430.

\DeclareFontEncoding{T1}{}{}
\DeclareFontSubstitution{T1}{cmr}{m}{n}

Having introduced the T1 encoding in this way to LaTEX, we can now proceed with
declaring how font-encoding–specific commands should behave in that encoding.

\DeclareTextSymbol{LICR-object}{encoding}{slot}

Perhaps the simplest form of declaration is the one for text symbols, where the
internal representation can be directly mapped to a single glyph in the target font.
This is handled by the \DeclareTextSymbol declaration, whose third argument—
the font position—can be given as a decimal, hexadecimal, or octal number. For
example,

\DeclareTextSymbol{\ss}{T1}{255}
\DeclareTextSymbol{\AE}{T1}{’306} % font position as octal number
\DeclareTextSymbol{\ae}{T1}{"E6} % ... as hexadecimal number

declare that the font-encoding–specific commands \ss, \AE, and \ae should be
mapped to the font (decimal) positions 255, 198, and 230, respectively, in a T1-
encoded font. As mentioned earlier, it is safest to use decimal notation in such
declarations, even though octal or hexadecimal values are often easier to identify
in glyph charts like the one on the previous page. Mixing them like we did in the
example above is certainly bad style. All in all, there are 49 such declarations for
the T1 encoding.

\DeclareTextAccent{LICR-accent}{encoding}{slot}

Often fonts contain diacritical marks as individual glyphs to allow the produc-
tion of accented characters by combining such a diacritical mark with some other

7.11 LATEX’s encoding models 451

glyph. Such accents (as long as they are to be placed on top of other glyphs) are
declared using the \DeclareTextAccent command; the third argument slot is the
position of the diacritical mark in the font. For example,

\DeclareTextAccent{\"}{T1}{4}

defines the “umlaut” accent. From that point onward, an internal representation
such as \"a has the following meaning in the T1 output encoding: typeset “ä” by
placing the accent in position 4 over the glyph in position 97 (the ASCII code
of the character a). In fact, such a declaration implicitly defines a huge range
of internal character presentations—that is, anything of the type \"〈base-glyph〉,
where 〈base-glyph〉 is something defined via \DeclareTextSymbol or any ASCII
character belonging to the LICR, such as “a”.

Even those combinations that do not make much sense, such as \"\P (i.e.,
pilcrow sign with umlaut ¶̈) conceptually become members of the set of font-en-
coding–specific commands in this way. There are a total of 11 such declarations
in the T1 encoding.

\DeclareTextComposite
{LICR-accent}{encoding}{simple-LICR-object}{slot}

The glyph chart on page 449 contains a large number of accented characters as in-
dividual glyphs—for example, “ä” in position ’344 octal. Thus, in T1 the encoding-
specific command \"a should not result in placing an accent over the character
“a” but instead should directly access the glyph in that position of the font. This
is achieved by the declaration

\DeclareTextComposite{\"}{T1}{a}{228}

which states that the encoding-specific command \"a results in typesetting the
glyph 228, thereby disabling the accent declaration above. For all other encoding-
specific commands starting with \" , the accent declaration remains in place. For
example, \"b will produce a “b̈” by placing an accent over the base character b.

The third argument, simple-LICR-object, should be a single letter, such as “a”,
or a single command, such as \j or \oe . There are 110 such composites declared
for the T1 encoding.

\DeclareTextCompositeCommand
{LICR-object}{encoding}{simple-LICR-object}{code}

Although not used for the T1 encoding, there also exists a more general variant
of \DeclareTextComposite that allows arbitrary code in place of a slot position.
This is, for example, used in the OT1 encoding to lower the ring accent over the

452 Fonts and Encodings

“A” compared to the way it would be typeset with TEX’s \accent primitive. The
accents over the “i” are also implemented using this form of declaration:

\DeclareTextCompositeCommand{\‘}{OT1}{i}{\@tabacckludge‘\i}
\DeclareTextCompositeCommand{\^}{OT1}{i}{\^\i}

What have we not covered for the T1 encoding? A number of diacritical marks
are not placed on top of other characters but are placed somewhere below them.
There is no special declaration form for such marks, as the actual placement usu-
ally involves low-level TEX code. Instead, the generic \DeclareTextCommand dec-
laration can be used for this purpose.

\DeclareTextCommand{LICR-object}{encoding}[num][default]{code}

For example, the “underbar” accent \b in the T1 encoding is defined with the
following wonderful piece of prose:

\DeclareTextCommand{\b}{T1}[1]
{\hmode@bgroup\o@lign{\relax#1\crcr\hidewidth\sh@ft{29}%
\vbox to.2ex{\hbox{\char9}\vss}\hidewidth}\egroup}

Without going into detail about what the code precisely means, we can see that the
\DeclareTextCommand is similar in structure to \newcommand . That is, it has an
optional num argument denoting the number of arguments (one here), a second
optional default argument (not present here), and a final mandatory argument
containing the code in which it is possible to refer to the argument(s) using #1, #2,
and so on. T1 has four such declarations, for \b , \c , \d , and \k .

\DeclareTextCommand can also be used to build font-encoding–specific com-
mands consisting of a single control sequence. In this case it is used without
optional argument, thus defining a command with zero arguments. For example,
in T1 there is no glyph for a ‰ sign, but there exists a strange little “�” in position
’30, which, if placed directly behind a %, will give the appropriate glyph. Thus, we
can write

\DeclareTextCommand{\textperthousand} {T1}{\%\char 24 }
\DeclareTextCommand{\textpertenthousand}{T1}{\%\char 24\char 24 }

This discussion has now covered all commands needed to declare the font-en-
coding–specific commands for a new encoding. As mentioned earlier, only these
commands should appear in encoding definition files.

Output encoding defaults

What happens if an encoding-specific command is used for which there is no
declaration in the current font encoding? In that case one of two things might
happen: either LaTEX has a default definition for the LICR object, in which case this

7.11 LATEX’s encoding models 453

default is used, or the users gets an error message stating that the requested LICR
object is unavailable in the current encoding. There are a number of ways to set
up defaults for LICR objects.

\DeclareTextCommandDefault{LICR-object}[num][default]{code}

The \DeclareTextCommandDefault command provides the default definition for
an LICR-object that is to be used whenever there is no specific setting for the
object in the current encoding. Such default definitions can, for example, fake a
certain character. For instance, \textregistered has a default definition in which
the character is built from two others, like this:

\DeclareTextCommandDefault{\textregistered}{\textcircled{\scshape r}}

Technically, the default definitions are stored as an encoding with the name “?”.
While you should not rely on this fact, as the implementation might change in the
future, it means that you cannot declare an encoding with this name.

\DeclareTextSymbolDefault{LICR-object}{encoding}

In most cases, a default definition does not require coding but simply directs LaTEX
to pick up the character from some encoding in which it is known to exist. The
textcomp package, for example, consists of a large number of default declarations
that all point to the TS1 encoding. Consider the following declaration:

\DeclareTextSymbolDefault{\texteuro}{TS1}

The \DeclareTextSymbolDefault command can, in fact, be used to define the
default for any LICR object without arguments, not just those that have been
declared with the \DeclareTextSymbol command in other encodings.

\DeclareTextAccentDefault{LICR-accent}{encoding}

A similar declaration exists for LICR objects that take one argument, such as ac-
cents (which gave this declaration its name). This form is again usable for any
LICR object with one argument. The LaTEX kernel, for example, contains quite a
number of declarations of the type:

\DeclareTextAccentDefault{\"}{OT1}
\DeclareTextAccentDefault{\t}{OML}

This means that if the \" is not defined in the current encoding, then use the one
from an OT1-encoded font. Likewise, if you need a tie accent, pick up one from
OML1 if nothing better is available.

1OML is a math font encoding, but it contains this text accent mark.

454 Fonts and Encodings

\ProvideTextCommandDefault{LICR-object}[num][default]{code}

With the \ProvideTextCommandDefault declaration a different kind of default
can be “provided”. As the name suggests, it does the same job as the declaration
\DeclareTextCommandDefault , except that the default is provided only if no
default has been defined before. This is mainly used in input encoding files to
provide some sort of trivial defaults for unusual LICR objects. For example:

\ProvideTextCommandDefault{\textonequarter}{\ensuremath{\frac14}}
\ProvideTextCommandDefault{\textcent}{\TextSymbolUnavailable\textcent}

Packages like textcomp can then replace such definitions with declarations point-
ing to real glyphs. Using \Provide.. instead of \Declare.. ensures that a better
default is not accidentally overwritten if the input encoding file is read.

\UndeclareTextCommand{LICR-object}{encoding}

In some cases an existing declaration needs to be removed to ensure that
a default declaration is used instead. This task can be carried out by the
\UndeclareTextCommand command. For example, the textcomp package removes
the definitions of \textdollar and \textsterling from the OT1 encoding be-
cause not every OT1-encoded font actually has these symbols.1

\UndeclareTextCommand{\textsterling}{OT1}
\UndeclareTextCommand{\textdollar} {OT1}

Without this removal, the new default declarations to pick up the symbols from
TS1 would not be used for fonts encoded with OT1.

\UseTextSymbol{encoding}{LICR-object}
\UseTextAccent{encoding}{LICR-object}{simple-LICR-object}

The action hidden behind the declarations \DeclareTextSymbolDefault and
\DeclareTextAccentDefault is also available for direct use. Assume, for exam-
ple, that the current encoding is U. In that case,

\UseTextSymbol{OT1}{\ss}
\UseTextAccent{OT1}{\’}{a}

has the same effect as entering the code below. Note in particular that the “a” is
typeset in encoding U—only the accent is taken from the other encoding.

{\fontencoding{OT1}\selectfont\ss}
{\fontencoding{OT1}\selectfont\’{\fontencoding{U}\selectfont a}}

1This is one of the deficiencies of the old TEX encodings; besides missing accented glyphs, they
are not even identical from one font to another.

7.11 LATEX’s encoding models 455

A listing of standard LICR objects

Table 7.33 provides a comprehensive overview of the LaTEX internal representa-
tions available with the three major encodings for Latin-based languages: OT1 (the
original TEX text font encoding), T1 (the LaTEX standard encoding, also known as
Cork encoding), and LY1 (an alternate 8-bit encoding proposed by Y&Y). In addi-
tion, it shows all LICR objects declared by TS1 (the LaTEX standard text symbol
encoding) provided by loading the textcomp package.

The first column of the table shows the LICR object names alphabetically
sorted, indicating which LICR objects act like accents. The second column shows
a glyph representation of the object.

The third column describes whether the object has a default declaration. If
an encoding is listed, it means that by default the glyph is being fetched from a
suitable font in that encoding; constr. means that the default is produced from
low-level TEX code; if the column is empty it means that no default is defined for
this LICR object. In the last case a “Symbol unavailable” error is returned when
you use it in an encoding for which it has no explicit definition. If the object is an
alias for some other LICR object, we list the alternative name in this column.

Columns four through seven show whether an object is available in the given
encoding. Here ✘ means that the object is natively available (as a glyph) in fonts
with that encoding, ❍ means that it is available through the default for all encod-
ings, and constr. means that it is generated from several glyphs, accent marks, or
other elements. If the default is fetched from TS1, the LICR object is available only
if the textcomp package is loaded.

Table 7.33: Standard LICR objects

LICR Object Glyph Default from OT1 T1 LY1 TS1

ABC..XYZ (Uppercase letters) ABC..XYZ ✘ ✘ ✘

abc..xyz (Lowercase letters) abc..xyz ✘ ✘ ✘

0123..9 (Digits) 0123..9 ✘ ✘ ✘ ✘

.,/ (Punctuation) .,/ ✘ ✘ ✘ ✘

;:?!"‘’ (Punctuation cont.) ;:?!"‘’ ✘ ✘ ✘

*+-=()[|] (Misc) *+-=()[|] ✘ ✘ ✘

& % #&% ✘ ✘ ✘

\" (accent) ¨ OT1 ✘ ✘ ✘

\"A Ä constr. ✘ ✘

\"E Ë constr. ✘ ✘

\"I Ï constr. ✘ ✘

\"O Ö constr. ✘ ✘

\"U Ü constr. ✘ ✘

\"Y Ÿ constr. ✘ ✘

\"a ä constr. ✘ ✘

✘ defined in encoding ❍ defined via default

456 Fonts and Encodings

LICR Object Glyph Default from OT1 T1 LY1 TS1

\"e ë constr. ✘ ✘

\"\i ï constr. ✘ ✘

\"i (alias) ï \"\i constr. ✘ ✘

\"o ö constr. ✘ ✘

\"u ü constr. ✘ ✘

\"y ÿ constr. ✘ ✘

\$ (alias) $ \textdollar ❍ ✘ ✘ ✘

\’ (accent) ´ OT1 ✘ ✘ ✘

\’A Á constr. ✘ ✘

\’C Ć constr. ✘ constr.

\’E É constr. ✘ ✘

\’I Í constr. ✘ ✘

\’L Ĺ constr. ✘ constr.

\’N Ń constr. ✘ constr.

\’O Ó constr. ✘ ✘

\’R Ŕ constr. ✘ constr.

\’S Ś constr. ✘ constr.

\’U Ú constr. ✘ ✘

\’Y Ý constr. ✘ ✘

\’Z Ź constr. ✘ constr.

\’a á constr. ✘ ✘

\’c ć constr. ✘ constr.

\’e é constr. ✘ ✘

\’\i í constr. ✘ ✘

\’i (alias) í \’\i constr. ✘ ✘

\’l ĺ constr. ✘ constr.

\’n ń constr. ✘ constr.

\’o ó constr. ✘ ✘

\’r ŕ constr. ✘ constr.

\’s ś constr. ✘ constr.

\’u ú constr. ✘ ✘

\’y ý constr. ✘ ✘

\’z ź constr. ✘ constr.

\. (accent) ˙ OT1 ✘ ✘ ✘

\.I İ constr. ✘ constr.

\.Z Ż constr. ✘ constr.

\.\i i ✘ ✘ constr.

\.i (alias) i \.\i ✘ ✘ constr.

\.z ż constr. ✘ constr.

\= (accent) ¯ OT1 ✘ ✘ ✘

✘ defined in encoding ❍ defined via default

7.11 LATEX’s encoding models 457

LICR Object Glyph Default from OT1 T1 LY1 TS1

\AE Æ OT1 ✘ ✘ ✘

\DH Ð ✘ ✘

\DJ Ð ✘

\H (accent) ˝ OT1 ✘ ✘ ✘

\H O Ő constr. ✘ constr.

\H U Ű constr. ✘ constr.

\H o ő constr. ✘ constr.

\H u ű constr. ✘ constr.

\L Ł OT1 ✘ ✘ ✘

\NG Ŋ ✘

\O Ø OT1 ✘ ✘ ✘

\OE Œ OT1 ✘ ✘ ✘

\P (alias) ¶ \textparagraph ❍ ❍ ✘ ✘

\S (alias) § \textsection ❍ ✘ ✘ ✘

\SS � constr. ❍ ✘ ❍

\TH Þ ✘ ✘

\^ (accent) ˆ OT1 ✘ ✘ ✘

\^A Â constr. ✘ ✘

\^E Ê constr. ✘ ✘

\^I Î constr. ✘ ✘

\^O Ô constr. ✘ ✘

\^U Û constr. ✘ ✘

\^a â constr. ✘ ✘

\^e ê constr. ✘ ✘

\^\i î constr. ✘ ✘

\^i (alias) î \^\i constr. ✘ ✘

\^o ô constr. ✘ ✘

\^u û constr. ✘ ✘

_ (alias) _ \textunderscore ❍ ✘ ✘

\‘ (accent) ` OT1 ✘ ✘ ✘

\‘A À constr. ✘ ✘

\‘E È constr. ✘ ✘

\‘I Ì constr. ✘ ✘

\‘O Ò constr. ✘ ✘

\‘U Ù constr. ✘ ✘

\‘a à constr. ✘ ✘

\‘e è constr. ✘ ✘

\‘\i ì constr. ✘ ✘

\‘i (alias) ì \‘\i constr. ✘ ✘

\‘o ò constr. ✘ ✘

✘ defined in encoding ❍ defined via default

458 Fonts and Encodings

LICR Object Glyph Default from OT1 T1 LY1 TS1

\‘u ù constr. ✘ ✘

\ae æ OT1 ✘ ✘ ✘

\b (accent)
¯

OT1 ✘ ✘ ✘

\c (accent) ¸ OT1 ✘ ✘ ✘

\c C Ç constr. ✘ ✘

\c S Ş constr. ✘ constr.

\c T Ţ constr. ✘ constr.

\c c ç constr. ✘ ✘

\c s ş constr. ✘ constr.

\c t ţ constr. ✘ constr.

\capitalacute (accent) ´ TS1 ❍ ❍ ❍ ✘

\capitalcaron (accent) ˇ TS1 ❍ ❍ ❍ ✘

\capitaldieresis (accent) ¨ TS1 ❍ ❍ ❍ ✘

\capitalgrave (accent) ` TS1 ❍ ❍ ❍ ✘

\capitalmacron (accent) ¯ TS1 ❍ ❍ ❍ ✘

\capitalogonek (accent) ˛ TS1 ❍ ❍ ❍ ✘

\capitalring (accent) % TS1 ❍ ❍ ❍ ✘

\capitaltilde (accent) & TS1 ❍ ❍ ❍ ✘

\copyright (alias) © \textcopyright ❍ ❍ ✘ ✘

\d (accent) . OT1 ✘ ✘ ✘

\dag (alias) † \textdagger ❍ ❍ ✘ ✘

\ddag (alias) ‡ \textdaggerdbl ❍ ❍ ✘ ✘

\dh ð ✘ ✘

\dj đ ✘

\dots (alias) . . . \textellipsis ❍ ❍ ✘

\guillemotleft « babel ✘ ✘

\guillemotright » babel ✘ ✘

\guilsinglleft ‹ babel ✘ ✘

\guilsinglright › babel ✘ ✘

\i ı OT1 ✘ ✘ ✘

\j j OT1 ✘ ✘ ✘

\k (accent) ˛ ✘ ✘

\k A Ą ✘ constr.

\k E Ę ✘ constr.

\k O Ǫ ✘ constr.

\k a ą ✘ constr.

\k e ę ✘ constr.

\k o ǫ ✘ constr.

\l ł OT1 ✘ ✘ ✘

\ng ŋ ✘

✘ defined in encoding ❍ defined via default

7.11 LATEX’s encoding models 459

LICR Object Glyph Default from OT1 T1 LY1 TS1

\o ø OT1 ✘ ✘ ✘

\oe œ OT1 ✘ ✘ ✘

\pounds (alias) £ \textsterling ❍ ✘ ✘ ✘

\quotedblbase „ ✘ ✘

\quotesinglbase ‚ ✘ ✘

\r (accent) ˚ OT1 ✘ ✘ ✘

\r A Å constr. ✘ constr.

\r U Ů constr. ✘ constr.

\r a å constr. ✘ constr.

\r u ů constr. ✘ constr.

\ss ß OT1 ✘ ✘ ✘

\t (accent) 5 OML ✘ ✘ ❍

\textacutedbl ˝ TS1 ❍ ❍ ❍ ✘

\textascendercompwordmark invisible TS1 ❍ ❍ ❍ ✘

\textasciiacute ´ TS1 ❍ ❍ ❍ ✘

\textasciibreve ˘ TS1 ❍ ❍ ❍ ✘

\textasciicaron ˇ TS1 ❍ ❍ ❍ ✘

\textasciicircum ^ constr. ❍ ✘ ✘

\textasciidieresis ¨ TS1 ❍ ❍ ❍ ✘

\textasciigrave ` TS1 ❍ ❍ ❍ ✘

\textasciimacron ¯ TS1 ❍ ❍ ❍ ✘

\textasciitilde ~ constr. ❍ ✘ ✘

\textasteriskcentered ∗ OMS/TS1 ❍ ❍ ❍ ✘

\textbackslash \ OMS ❍ ✘ ✘

\textbaht ฿ TS1 ❍ ❍ ❍ ✘

\textbar | OMS ❍ ✘ ✘

\textbardbl ‖ TS1 ❍ ❍ ❍ ✘

\textbigcircle ○ TS1 ❍ ❍ ❍ ✘

\textblank ␢ TS1 ❍ ❍ ❍ ✘

\textborn F TS1 ❍ ❍ ❍ ✘

\textbraceleft { OMS ❍ ✘ ✘

\textbraceright } OMS ❍ ✘ ✘

\textbrokenbar ¦ TS1 ❍ ❍ ✘ ✘

\textbullet • OMS/TS1 ❍ ❍ ✘ ✘

\textcapitalcompwordmark invisible TS1 ❍ ❍ ❍ ✘

\textcelsius ℃ constr./TS1 ❍ ❍ ❍ ✘

\textcent ¢ TS1 ❍ ❍ ✘ ✘

\textcentoldstyle ¢ TS1 ❍ ❍ ❍ ✘

\textcircled (accent) ○ OMS/TS1 ❍ ❍ ❍ ✘

\textcircledP ℗ TS1 ❍ ❍ ❍ ✘

✘ defined in encoding ❍ defined via default

460 Fonts and Encodings

LICR Object Glyph Default from OT1 T1 LY1 TS1

\textcolonmonetary ₡ TS1 ❍ ❍ ❍ ✘

\textcompwordmark invisible constr. ❍ ✘ ❍

\textcopyleft N TS1 ❍ ❍ ❍ ✘

\textcopyright © constr./TS1 ❍ ❍ ✘ ✘

\textcurrency ¤ TS1 ❍ ❍ ✘ ✘

\textdagger † OMS/TS1 ❍ ❍ ✘ ✘

\textdaggerdbl ‡ OMS/TS1 ❍ ❍ ✘ ✘

\textdblhyphen P TS1 ❍ ❍ ❍ ✘

\textdblhyphenchar Q TS1 ❍ ❍ ❍ ✘

\textdegree ° TS1 ❍ ❍ ✘ ✘

\textdied U TS1 ❍ ❍ ❍ ✘

\textdiscount V TS1 ❍ ❍ ❍ ✘

\textdiv ÷ TS1 ❍ ❍ ✘ ✘

\textdivorced W TS1 ❍ ❍ ❍ ✘

\textdollar $ OT1/TS1 ❍ ✘ ✘ ✘

\textdollaroldstyle $ TS1 ❍ ❍ ❍ ✘

\textdong ₫ TS1 ❍ ❍ ❍ ✘

\textdownarrow ↓ TS1 ❍ ❍ ❍ ✘

\texteightoldstyle 8 TS1 ❍ ❍ ❍ ✘

\textellipsis . . . constr. ❍ ❍ ✘

\textemdash — OT1 ✘ ✘ ✘

\textendash – OT1 ✘ ✘ ✘

\textestimated ℮ TS1 ❍ ❍ ❍ ✘

\texteuro € TS1 ❍ ❍ ✘ ✘

\textexclamdown ¡ OT1 ✘ ✘ ✘

\textfiveoldstyle 5 TS1 ❍ ❍ ❍ ✘

\textflorin ƒ TS1 ❍ ❍ ✘ ✘

\textfouroldstyle 4 TS1 ❍ ❍ ❍ ✘

\textfractionsolidus ⁄ TS1 ❍ ❍ ❍ ✘

\textgravedbl ̏ TS1 ❍ ❍ ❍ ✘

\textgreater > OML ❍ ✘ ✘

\textguarani z TS1 ❍ ❍ ❍ ✘

\textinterrobang ‽ TS1 ❍ ❍ ❍ ✘

\textinterrobangdown � TS1 ❍ ❍ ❍ ✘

\textlangle 〈 TS1 ❍ ❍ ❍ ✘

\textlbrackdbl 〚 TS1 ❍ ❍ ❍ ✘

\textleaf � TS1 ❍ ❍ ❍ ✘

\textleftarrow ← TS1 ❍ ❍ ❍ ✘

\textless < OML ❍ ✘ ✘

\textlira ₤ TS1 ❍ ❍ ❍ ✘

✘ defined in encoding ❍ defined via default

7.11 LATEX’s encoding models 461

LICR Object Glyph Default from OT1 T1 LY1 TS1

\textlnot ¬ TS1 ❍ ❍ ✘ ✘

\textlquill ⁅ TS1 ❍ ❍ ❍ ✘

\textmarried � TS1 ❍ ❍ ❍ ✘

\textmho ℧ TS1 ❍ ❍ ❍ ✘

\textminus − TS1 ❍ ❍ ❍ ✘

\textmu μ TS1 ❍ ❍ ✘ ✘

\textmusicalnote ♪ TS1 ❍ ❍ ❍ ✘

\textnaira ₦ TS1 ❍ ❍ ❍ ✘

\textnineoldstyle 9 TS1 ❍ ❍ ❍ ✘

\textnumero № TS1 ❍ ❍ ❍ ✘

\textogonekcentered (accent) ˛ ✘

\textohm Ω TS1 ❍ ❍ ❍ ✘

\textonehalf ½ TS1 ❍ ❍ ✘ ✘

\textoneoldstyle 1 TS1 ❍ ❍ ❍ ✘

\textonequarter ¼ TS1 ❍ ❍ ✘ ✘

\textonesuperior ¹ TS1 ❍ ❍ ❍ ✘

\textopenbullet ◦ TS1 ❍ ❍ ❍ ✘

\textordfeminine ª constr./TS1 ❍ ❍ ✘ ✘

\textordmasculine º constr./TS1 ❍ ❍ ✘ ✘

\textparagraph ¶ OMS/TS1 ❍ ❍ ✘ ✘

\textperiodcentered · OMS/TS1 ❍ ❍ ✘ ✘

\textpertenthousand ‱ TS1 ❍ constr. ❍ ✘

\textperthousand ‰ TS1 ❍ constr. ✘ ✘

\textpeso ¾ TS1 ❍ ❍ ❍ ✘

\textpilcrow ¶ TS1 ❍ ❍ ❍ ✘

\textpm ± TS1 ❍ ❍ ✘ ✘

\textquestiondown ¿ OT1 ✘ ✘ ✘

\textquotedbl " ✘ ✘

\textquotedblleft “ OT1 ✘ ✘ ✘

\textquotedblright ” OT1 ✘ ✘ ✘

\textquoteleft ‘ OT1 ✘ ✘ ✘

\textquoteright ’ OT1 ✘ ✘ ✘

\textquotesingle ' TS1 ❍ ❍ ❍ ✘

\textquotestraightbase ‚ TS1 ❍ ❍ ❍ ✘

\textquotestraightdblbase „ TS1 ❍ ❍ ❍ ✘

\textrangle 〉 TS1 ❍ ❍ ❍ ✘

\textrbrackdbl 〛 TS1 ❍ ❍ ❍ ✘

\textrecipe � TS1 ❍ ❍ ❍ ✘

\textreferencemark ※ TS1 ❍ ❍ ❍ ✘

\textregistered ® constr./TS1 ❍ ❍ ✘ ✘

✘ defined in encoding ❍ defined via default

462 Fonts and Encodings

LICR Object Glyph Default from OT1 T1 LY1 TS1

\textrightarrow → TS1 ❍ ❍ ❍ ✘

\textrquill ⁆ TS1 ❍ ❍ ❍ ✘

\textsection § OMS/TS1 ❍ ✘ ✘ ✘

\textservicemark ℠ TS1 ❍ ❍ ❍ ✘

\textsevenoldstyle 7 TS1 ❍ ❍ ❍ ✘

\textsixoldstyle 6 TS1 ❍ ❍ ❍ ✘

\textsterling £ OT1/TS1 ❍ ✘ ✘ ✘

\textsurd √ TS1 ❍ ❍ ❍ ✘

\textthreeoldstyle 3 TS1 ❍ ❍ ❍ ✘

\textthreequarters ¾ TS1 ❍ ❍ ✘ ✘

\textthreequartersemdash — TS1 ❍ ❍ ❍ ✘

\textthreesuperior ³ TS1 ❍ ❍ ❍ ✘

\texttildelow � TS1 ❍ ❍ ❍ ✘

\texttimes × TS1 ❍ ❍ ✘ ✘

\texttrademark ™ constr./TS1 ❍ ❍ ✘ ✘

\texttwelveudash � TS1 ❍ ❍ ❍ ✘

\texttwooldstyle 2 TS1 ❍ ❍ ❍ ✘

\texttwosuperior ² TS1 ❍ ❍ ❍ ✘

\textunderscore _ constr. ❍ ✘ ✘

\textuparrow ↑ TS1 ❍ ❍ ❍ ✘

\textvisiblespace ␣ constr. ❍ ✘ ❍

\textwon ₩ TS1 ❍ ❍ ❍ ✘

\textyen ¥ TS1 ❍ ❍ ✘ ✘

\textzerooldstyle 0 TS1 ❍ ❍ ❍ ✘

\th þ ✘ ✘

\u (accent) ˘ OT1 ✘ ✘ ✘

\u A Ă constr. ✘ constr.

\u G Ğ constr. ✘ constr.

\u a ă constr. ✘ constr.

\u g ğ constr. ✘ constr.

\v (accent) ˇ OT1 ✘ ✘ ✘

\v C Č constr. ✘ constr.

\v D Ď constr. ✘ constr.

\v E Ě constr. ✘ constr.

\v L Ľ constr. ✘ constr.

\v N Ň constr. ✘ constr.

\v R Ř constr. ✘ constr.

\v S Š constr. ✘ ✘

\v T Ť constr. ✘ constr.

\v Z Ž constr. ✘ ✘

✘ defined in encoding ❍ defined via default

7.12 Compatibility packages for very old documents 463

LICR Object Glyph Default from OT1 T1 LY1 TS1

\v c č constr. ✘ constr.

\v d ď constr. ✘ constr.

\v e ě constr. ✘ constr.

\v l ľ constr. ✘ constr.

\v n ň constr. ✘ constr.

\v r ř constr. ✘ constr.

\v s š constr. ✘ ✘

\v t ť constr. ✘ constr.

\v z ž constr. ✘ ✘

\{ (alias) { \textbraceleft ❍ ✘ ✘

\} (alias) } \textbraceright ❍ ✘ ✘

\~ (accent) ˜ OT1 ✘ ✘ ✘

\~A Ã constr. ✘ ✘

\~N Ñ constr. ✘ ✘

\~O Õ constr. ✘ ✘

\~a ã constr. ✘ ✘

\~n ñ constr. ✘ ✘

\~o õ constr. ✘ ✘

✘ defined in encoding ❍ defined via default

7.12 Compatibility packages for very old documents

The font interface in LaTEX changed from a fixed font structure (LaTEX 2.09 prior to
1990) to a flexible system (LaTEX2ε with NFSS version 2 integrated in 1994). During
the years 1990–1993 NFSS version 1 was widely used in Europe. Although the dif-
ferences between versions 1 and 2 have not been that enormous, they nevertheless
make it impossible to run documents from that time successfully through today’s
LaTEX. For this reason a number of compatibility packages have been developed to
help in processing documents written for LaTEX 2.09 with or without NFSS 1.

7.12.1 oldlfont, rawfonts, newlfont—Processing old documents

As we have seen, NFSS—and thus LaTEX2ε—differs from LaTEX 2.09 in several ways Backward
compatibility to
1993 and earlier

in its treatment of font commands. This difference is most noticeable in math
formulas, where commands like \bfseries are not supported. Nevertheless, it is
a very simple matter to typeset older documents with NFSS.

If you merely want to reprint a document, LaTEX will see the \documentstyle
command and automatically switch to compatibility mode, thereby emulating
the old font selection mechanism of LaTEX 2.09 as described in the first edition

464 Fonts and Encodings

of the LATEX Manual. Alternatively, you can load the oldlfont package after the
\documentclass command. If you do so, all old font-selecting commands will be
defined, font-changing commands cancel each other, and all of these commands
can be used in mathematical formulas.

Some old documents refer to LaTEX 2.09 internal font commands such as
\twlrm or \nintt . These commands now generate error messages, because they
are no longer defined (not even in compatibility mode). One reason they are not
supported is that they were never available on all installations. To process a docu-
ment containing such explicit font-changing commands, you have to define them
in the preamble using the commands described in Section 7.9. For example, for
the above commands, it would be sufficient to add the following definitions to the
preamble:

\newcommand\twlrm{\fontsize{12pt}{14pt}\normalfont\rmfamily}
\newcommand\nintt{\fontsize{9pt}{11pt}\normalfont\ttfamily}

A package exists to assist you in this task: if you load the rawfonts package with
the options only, twlrm, and nintt, it will make the above declarations for you.
If you load it without any option, it will define all LaTEX 2.09 hard-wired font com-
mands for you.

Reusing parts of documents also is very simple: just paste them into the new
document and watch what happens. There is a good chance that LaTEX will happily
process the old document fragment and, if not, it will explicitly inform you about
the places where you have to change your source—for example, where you have
to change occurrences of \it , \sf , and similar commands in formulas to the
corresponding math alphabet identifier commands \mathit , \mathsf , and so on.

In the first release of NFSS, the two-letter font-changing commands were re-Backward
compatibility with
the first release of

NFSS

defined to modify individual attributes only. For example, \sf and \it behaved
just like the NFSS2 commands \sffamily and \itshape , respectively. If you re-
process an old document that was written for this convention, load the package
newlfont in your document preamble to reinitiate it.

7.12.2 latexsym—Providing symbols from LATEX 2.09 lasy fonts

Eleven math symbols provided by LaTEX 2.09 are no longer defined in the base
set-up of NFSS:

� � � � �

� � 	
 �

�

\usepackage{latexsym} \newcommand\Q[1]{$#1$ \quad}

\Q{\Box} \Q{\Diamond} \Q{\Join} \Q{\leadsto} \Q{\lhd} \Q{\mho}
\Q{\rhd} \Q{\sqsubset} \Q{\sqsupset} \Q{\unlhd} \Q{\unrhd} 7-12-1

If you want to use any of these symbols, load the latexsym package in your doc-
ument. These symbols are also made available if you load the amsfonts or the
amssymb package; see Section 8.9.

C H A P T E R 8

Higher Mathematics

Basic LaTEX offers excellent mathematical typesetting capabilities for straightfor-
ward documents. However, when complex displayed equations or more advanced
mathematical constructs are heavily used, something more is needed. Although it
is possible to define new commands or environments to ease the burden of typ-
ing in formulas, this is not the best solution. The American Mathematical Society
(AMS) provides a major package, amsmath, which makes the preparation of mathe-
matical documents much less time-consuming and more consistent.1 It forms the
core of a collection of packages known as AMS-LaTEX [8] and is the major subject
of this chapter. A useful book by George Grätzer [60] also covers these packages
in detail.

This chapter describes briefly, and provides examples of, a substantial num-
ber of the many features of these packages as well as a few closely related pack-
ages; it also gives a few pointers to other relevant packages. In addition, it provides
some essential background on mathematical typesetting with TEX. Thus, it covers
some of standard LaTEX’s features for mathematical typesetting and layout and
contains some general hints on how to typeset mathematical formulas, though
these are not the main aims of this chapter.

It is also definitely not a comprehensive manual of good practice for typeset-
ting mathematics with LaTEX. Indeed, many of the examples are offered up purely
for illustration purposes and, therefore, present neither good design, nor good
mathematics, nor necessarily good LaTEX coding.

Advice on how to typeset mathematics according to late 20th-century U.S.
practice can be found in Ellen Swanson’s Math into Type [156]. Many details con-
cerning how to implement this advice using TEX or, equally, standard LaTEX appear
in Chapters 16–18 of Donald Knuth’s The TEXbook [82].

1This package has its foundations in the macro-level extensions to TEX known asAMS-TEX.

466 Higher Mathematics

To use the majority of the material described in this chapter, you need to load
at least the amsmath package in the preamble of your document. If other packages
are needed, they are clearly marked in the examples. Detailed installation and
usage documentation is included with the individual packages.

8.1 Introduction to AMS-LATEX

The AMS-LaTEX project commenced in 1987 and three years later AMS-LaTEX ver-
sion 1.0 was released. This was the original conversion to LaTEX of the mathe-
matical capabilities in Michael Spivak’s AMS-TEX by Frank Mittelbach and Rainer
Schöpf, working as consultants to the American Mathematical Society, with assis-
tance from Michael Downes of the AMS technical staff. In 1994, further work was
done with David Jones. This work was coordinated by Michael Downes and the
packages have throughout been supported and much enhanced under his direc-
tion and the patronage of the AMS.1

Michael would have been the author of this chapter had he not died in spring
Thanks to a great

guy!
2003. Much of the chapter is based on the documentation he prepared for AMS-
LaTEX; thus, what you are reading is a particular and heartfelt tribute by its current
authors to the life and work of our dearest friend and colleague with whom we
shared many coding adventures in the uncharted backwaters of TEX.

A few options are recognized by the amsmath package. Most of these affectAvailable package
options only detailed positioning of the “limits” on various types of mathematical opera-

tors (Section 8.4.4) or that of equation tags (Section 8.2.4).
The following three options are often supplied as global document options,

set on the \documentclass command. They are, however, also recognized when
the amsmath package is loaded with the \usepackage command.

reqno (default) Place equation numbers (tags) on the right.

leqno Place equation numbers (tags) on the left.2

fleqn Position equations at a fixed indent from the left margin rather than
centered in the text column.

The AMS-LaTEX distribution also contains components that can be loaded in-Available
sub-packages dependently by the \usepackage command. In particular, some features of the

amsmath package are also available in these smaller packages:

amsopn Provides \DeclareMathOperator for defining new operator names
such as \Ker and \esssup .

1Some material in this chapter is reprinted from the documentation distributed with AMS-LaTEX
(with permission from the American Mathematical Society).

2When using theAMS-LaTEX document classes, the default is leqno.

8.1 Introduction to AMS-LATEX 467

amstext Provides the \text command for typesetting a fragment of text in the
correct type size.

The following packages, providing functionality additional to that in amsmath, Extension packages

must be loaded explicitly; they are listed here for completeness.

amscd Defines some commands for easing the generation of commutative
diagrams by introducing the CD environment (see Section 8.3.4 on
page 488). There is no support for diagonal arrows.

amsthm Provides a method to declare theorem-like structures and offers a proof
environment. It is discussed in Section 3.3.3 on page 138.

amsxtra Provides certain odds and ends that are needed for historical compat-
ibility, such as \fracwithdelims , \accentedsymbol , and commands
for placing accents as superscripts.

upref Makes \ref print cross-reference numbers in an upright/Roman font
regardless of context.

The principal documentation for these packages is the User’s Guide for the
amsmath Package (Version 2.0) [8].

The current AMS-LaTEX collection includes three document classes: amsart,
The AMS-LATEX
document classes

amsproc, and amsbook, corresponding to LaTEX’s article, proc, and book, respec-
tively. They are designed to be used in the preparation of manuscripts for sub-
mission to the AMS [6], but nothing prohibits their use for other purposes. With
these class files the amsmath package is automatically loaded, so that you can
start your document simply with \documentclass{amsart}. These classes are
not covered in this book as they provide an interface similar to that provided by
the LaTEX standard classes; refer to [6] for details of their use.

Some of the material in this chapter refers to another collection of pack- The AMSfonts
collectionages from the American Mathematical Society, namely the AMSfonts distribution.

These packages, listed below, set up various fonts and commands for use in math-
ematical formulas.

amsfonts Defines the \mathfrak and \mathbb commands and sets up the fonts
msam (extra math symbols A), msbm (extra math symbols B and blackboard
bold), eufm (Euler Fraktur), extra sizes of cmmib (bold math italic and bold
lowercase Greek), and cmbsy (bold math symbols and bold script).

amssymb Defines the names of the mathematical symbols available with the
AMSfonts collection. These commands are discussed in Section 8.9. The pack-
age automatically loads the amsfonts package.

eufrak Sets up the fonts for the Euler Fraktur letters (\mathfrak), as discussed
in Section 7.7.10. This alphabet is also available from the amsfonts package.

eucal Makes \mathcal use the Euler script instead of the usual Computer Mod-
ern script letters, see Section 7.7.10 for details.

468 Higher Mathematics

All of these packages recognize the psamsfonts option, which will set up LaTEX to
use the Y&Y/Blue Sky Research version of these fonts in the AMSfonts collection.
This will be useful only if you have this version of the fonts installed on your sys-
tem; they are available on CTAN and are often available as the default in modern
distributions of LaTEX. The principal piece of documentation for these packages is
the User’s Guide to AMSFonts Version 2.2d [9].

A few important warnings

Many of the commands described in this chapter are fragile and need to be�Watch
out for fragile

commands
\protected in moving arguments (see Appendix B.1 on page 892). Thus, when
strange error messages appear, a missing \protect is a likely cause.

It is never a good idea to use shortcut codes for LaTEX environments. With the

�Do
not abbreviate

environments

amsmath display environments described in this chapter, such shortcuts are al-
ways disastrous—don’t do it! For closely related reasons, you will also find that
verbatim material cannot be used within these environments. Here are some ex-
amples of declarations for disaster:

\newenvironment{mlt}{\begin{multline}}{\end{multline}}
\newcommand\bga{\begin{gather}} \newcommand\ega{\end{gather}}

Both will produce errors of the form “\begin{...} ended by ...”. However,
you can define synonyms and variant forms of these environments as follows:

\newenvironment{mlt}{\multline}{\endmultline}
\newenvironment{longgather}{\allowdisplaybreaks\gather}{\endgather}

Note that these must have the command form of an existing environment as the
last command in the “begin-code”, and the corresponding \end... command as
the first thing in the “end-code”. See also Section A.1.3, for more details.

8.2 Display and alignment structures for equations

The amsmath package defines several environments for creating displayed math-
ematics. These cover single- and multiple-line displays with single or multiple
alignment points and various options for numbering equations within displays.

Throughout this section the term “equation” will be used in a very particular
way: to refer to a logical distinct part of a mathematical display that is frequently
numbered for reference purposes and is also labeled (commonly by its number in
parentheses). Such labels are often called tags.

The complete list of all the display environments you will need for mathe-
matical typesetting is given in Table 8.1 on the next page; the majority of these
environments are covered in this section, along with examples of their use. Where

8.2 Display and alignment structures for equations 469

equation equation* One line, one equation
multline multline* One unaligned multiple-line equation, one equation number
gather gather* Several equations without alignment
align align* Several equations with multiple alignments
flalign flalign* Several equations: horizontally spread form of align
split A simple alignment within a multiple-line equation
gathered A “mini-page” with unaligned equations
aligned A “mini-page” with multiple alignments

Table 8.1: Display environments in the amsmath package

appropriate they have starred forms in which there is no numbering or tagging of
the equations.

In these examples of alignment environments, other commands from the
amsmath package are also used. A detailed understanding of how these work
is not necessary at this stage; an interested reader can turn to later sections for
more information. The display width is the measure that defines the right and left
margins (or extents) of a display; in the examples these extents are indicated by
thin blue vertical rules at the right and left margins of the display.

Except where noted, all examples in this chapter are typeset with the math-
ematical material centered and the equation numbers, or tags, on the right (the
default settings for the amsmath package). When the option leqno is specified for
the amsmath package or the document class, the equation number tags will be
printed at the left side of the equation.

8-2-1
(1) (a + b)2 = a2 + 2ab + b2

sin2 η + cos2 η = 1

\usepackage[leqno]{amsmath}

\begin{equation} (a+b)^2 = a^2+2ab+b^2 \end{equation}
\[\sin^2\eta+\cos^2\eta = 1 \]

To position the mathematics at a fixed indent from the left margin, rather
than centered in the text column, you use the option fleqn. You will then nor-
mally need to set the size of the indent in the preamble. It is the value of the
rubber length \mathindent , which gets its default value from the indentation of
a first-level list—which is probably not the value you want! Observe the differences
between the next example and the previous example. In this particular case, use
of the reqno option is redundant (as it is the default), but it forces the equation
number to the right side regardless of what the document class specifies.

8-2-2
(a + b)2 = a2 + 2ab + b2 (1)

sin2 η + cos2 η = 1

\usepackage[fleqn,reqno]{amsmath}
\setlength\mathindent{1pc}

\begin{equation} (a+b)^2 = a^2+2ab+b^2 \end{equation}
\[\sin^2\eta+\cos^2\eta = 1 \]

470 Higher Mathematics

As later examples will show, as in standard LaTEX, & and \\ are used for column
and line separation within displayed alignments. The details of their usage change
in the amsmath environments, however (see the next section).

8.2.1 Comparison with standard LATEX

Some of the multiple-line display environments allow you to align parts of the
formula. In contrast to the original LaTEX environments eqnarray and eqnarray* ,
the structures implemented by the amsmath package use a slightly different and
more straightforward method for marking the alignment points. Standard LaTEX’s
eqnarray* is similar to an array environment with {rcl} as the preamble and,
therefore, requires two ampersand characters indicating the two alignment points.
In the equivalent amsmath structures there is only a single alignment point (sim-
ilar to a {rl} preamble), so only a single ampersand character should be used,
placed to the left of the symbol (usually a relation) that should be aligned.

The amsmath structures give fixed spacing at the alignment points, whereas
the eqnarray environment produces extra space depending on the parameter set-
tings for array . The difference can be seen clearly in the next example, where the
same equation is typeset using the equation , align , and eqnarray environments;
the spaces in the eqnarray environment come out too wide for conventional stan-
dards of mathematical typesetting.

x2 + y2 = z2 (1)

x2 + y2 = z2 (2)

x3 + y3 < z3 (3)

x2 + y2 = z2 (4)

x3 + y3 < z3 (5)

\usepackage{amsmath}

\begin{equation}
x^2 + y^2 = z^2

\end{equation}
\begin{align}

x^2 + y^2 &= z^2 \\
x^3 + y^3 &< z^3

\end{align}
\begin{eqnarray}

x^2 + y^2 &=& z^2 \\
x^3 + y^3 &<& z^3

\end{eqnarray}

8-2-3

As in standard LaTEX, lines in an amsmath display are marked with \\ (or the
end of the environment). Because line breaking in a mathematical display usually
requires a thorough understanding of the structure of the formula, it is commonly
considered to be beyond today’s software capabilities. However, one of the last
bigger projects undertaken by Michael Downes precisely tackled this problem; it
resulted in the breqn package (see [42] for details).

Unlike eqnarray , the amsmath environments do not, by default, allow page
breaks between lines (see Section 8.2.10).

Another difference concerns the use of \\[dimension] or * within math-Space after \\ not
ignored ematical display environments. With amsmath, there must be no space between

8.2 Display and alignment structures for equations 471

the \\ and the [or the *; otherwise, the optional argument or star will not be
recognized. The reason is that brackets and stars are very common in mathemati-
cal formulas, so this restriction avoids the annoyance of having a genuine bracket
belonging to the formula be mistaken for the start of the optional argument.

Finally, there is one less obvious change that is very unlikely to cause any
problems for users: in standard LaTEX the parameter \mathindent is a non-rubber
length, whereas in amsmath it becomes a rubber length. The reasons for, and con-
sequences of, this change are discussed in amsmath.dtx, the documented source
of the amsmath package.

8.2.2 A single equation on one line

The equation environment produces a single equation with an automatically gen-
erated number or tag placed on the extreme left or right according to the option
in use (see Section 8.2.11); equation* does the same but omits a tag.1

Note that the presence of the tag does not affect the positioning of the con-
tents. If there is not enough room for it on the one line, the tag will be shifted up
or down: to the previous line when equation numbers are on the left, and to the
next line when numbers are on the right.

8-2-4

n2 + m2 = k2

(1) np + mp �= kp p > 2

\usepackage[leqno]{amsmath}

\begin{equation*}
n^2 + m^2 = k^2

\end{equation*}
\begin{equation}
n^p +m^p \neq k^p \qquad p > 2

\end{equation}

8.2.3 A single equation on several lines: no alignment

The multline environment is a variation of the equation environment used only
for equations that do not fit on a single line. In this environment \\ must be used
to mark the line breaks, as they are not found automatically.

The first line of a multline will be aligned on an indentation from the left
margin and the last line on the same indentation from the right margin.2 The
size of this indentation is the value of the length \multlinegap ; thus, it can be
changed using LaTEX’s \setlength and \addtolength commands.

If a multline contains more than two lines, each line other than the first and
last is centered individually within the display width (unless the option fleqn is
used). It is, however, possible to force a single line to the left or the right by adding
either \shoveleft or \shoveright within that line.

1Standard LaTEX also has equation , but not equation* , as the latter is similar to the standard
displayed math environment.

2Never use multline for a single-line equation because the effect is unpredictable.

472 Higher Mathematics

A multline environment is a single (logical) equation and thus has only a
single tag, the multline* having none; thus, none of the individual lines can be
changed by the use of \tag or \notag . The tag, if present, is placed flush right on
the last line with the default reqno option or flush left on the first line when the
leqno option is used.

First line of a multline

Centered Middle line

A right Middle

Another centered Middle

Yet another centered Middle

A left Middle

Last line of the multline (1)

\usepackage{amsmath}

\begin{multline}
\text{First line of a multline} \\
\text{Centered Middle line} \\
\shoveright{\text{A right Middle}} \\
\text{Another centered Middle} \\
\text{Yet another centered Middle} \\
\shoveleft{\text{A left Middle}} \\
\text{Last line of the multline}

\end{multline}

8-2-5

The next example shows the effect of \multlinegap . In the first setting, the
“dy”s line up and make it appear that a tag is missing from the first line of the
equation. When the parameter is set to zero, the space on the left of the second
line does not change because of the tag, while the first line is pushed over to the
left margin, thus making it clear that this is only one equation.

∑
t∈T

∫ t

a

{∫ t

a

f(t− x)2 g(y)2 dx
}
dy

=
∑
t/∈T

∫ a

t

{
g(y)2

∫ a

t

f(x)2 dx
}
dy (2)

∑
t∈T

∫ t

a

{∫ t

a

f(t− x)2 g(y)2 dx
}
dy

=
∑
t/∈T

∫ a

t

{
g(y)2

∫ a

t

f(x)2 dx
}
dy (2)

\usepackage{amsmath}

\begin{multline} \tag{2}
\sum_{t \in \mathbf{T}} \int_a^t

\biggl\lbrace \int_a^t f(t - x)^2 \,
g(y)^2 \,dx \biggr\rbrace \,dy \\

= \sum_{t \notin \mathbf{T}} \int_t^a
\biggl\lbrace g(y)^2 \int_t^a

f(x)^2 \,dx \biggr\rbrace \,dy
\end{multline}

\setlength\multlinegap{0pt}
\begin{multline} \tag{2}
\sum_{t \in \mathbf{T}} \int_a^t

\biggl\lbrace \int_a^t f(t - x)^2 \,
g(y)^2 \,dx \biggr\rbrace \,dy \\

= \sum_{t \notin \mathbf{T}} \int_t^a
\biggl\lbrace g(y)^2 \int_t^a

f(x)^2 \,dx \biggr\rbrace \,dy
\end{multline}

8-2-6

8.2 Display and alignment structures for equations 473

8.2.4 A single equation on several lines: with alignment

When a simple alignment is needed within a single multiple-line equation, the
split environment is almost always the best choice. It uses a single ampersand
(&) on each line to mark the alignment point.

8-2-7

(a + b)4 = (a + b)2(a + b)2

= (a2 + 2ab + b2)(a2 + 2ab + b2)

= a4 + 4a3b + 6a2b2 + 4ab3 + b4
(1)

\usepackage{amsmath}

\begin{equation}
\begin{split}
(a + b)^4
&= (a + b)^2 (a + b)^2 \\
&= (a^2 + 2ab + b^2)

(a^2 + 2ab + b^2) \\
&= a^4 + 4a^3b + 6a^2b^2 + 4ab^3 + b^4

\end{split}
\end{equation}

Because it is always used as the content of a single (logical) equation, a split
does not itself produce any numbering tag and hence there is no starred variant.
If needed, the outer display environment will provide any needed tags.

Apart from commands such as \label or \notag that produce no visible ma-
terial, a split structure should normally constitute the entire body of the equa-
tion being split. It can consist of either a whole equation or equation* environ-
ment or one whole line of a gather or gather* environment; see Section 8.2.5.

When the centertags option is in effect (the default), the tag (and any other
material in the equation outside the split) is centered vertically on the total
height of the material from the split environment. When the tbtags option is
specified, the tag is aligned with the last line of the split when the tag is on the
right, and with the first line of the split when the tag is on the left.

8-2-8

(a + b)3 = (a + b)(a + b)2

= (a + b)(a2 + 2ab + b2)

= a3 + 3a2b + 3ab2 + b3 (1)

\usepackage[tbtags]{amsmath}

\begin{equation}
\begin{split}
(a + b)^3 &= (a + b) (a + b)^2 \\

&= (a + b)(a^2 + 2ab + b^2) \\
&= a^3 + 3a^2b + 3ab^2 + b^3

\end{split}
\end{equation}

In the next example the command \phantom is used to adjust the horizontal
positioning. It is first used in the preamble to define an “invisible relation symbol”
of width equal to that of its argument (in this case, =). Within the example it
is used to align certain lines by starting them with a “phantom, or invisible, sub-
formula” (see Section 8.7.2 on page 503). The empty pair of braces {} is equivalent

474 Higher Mathematics

to \mathord{} and provides an invisible zero-width “letter” that is needed to
achieve the correct spacing of + h (without the {} it would look like this: +h).

\usepackage{amsmath}
\newcommand\relphantom[1]{\mathrel{}}
\newcommand\ve{\varepsilon} \newcommand\tve{t_{\varepsilon}}
\newcommand\vf{\varphi} \newcommand\yvf{y_{\varphi}}
\newcommand\bfE{\mathbf{E}}

\begin{equation} \begin{split}
f_{h, \ve}(x, y)

&= \ve \bfE_{x, y} \int_0^{\tve} L_{x, \yvf(\ve u)} \vf(x) \,du \\
&= h \int L_{x, z} \vf(x) \rho_x(dz) \\
&\relphantom{=} {} + h \biggl[

\frac{1}{\tve}
\biggl(\bfE_{y} \int_0^{\tve} L_{x, y^x(s)} \vf(x) \,ds

- \tve \int L_{x, z} \vf(x) \rho_x(dz) \biggr) + \\
&\relphantom{=} \phantom{{} + h \biggl[}

\frac{1}{\tve}
\biggl(\bfE_{y} \int_0^{\tve} L_{x, y^x(s)} \vf(x) \,ds

- \bfE_{x, y} \int_0^{\tve} L_{x, \yvf(\ve s)}
\vf(x) \,ds \biggr) \biggr]

\end{split} \end{equation}

Note that the equation number tag has been moved to the line below the displayed
material. Although this does not seem to be a very wise decision, it is as far as the
automated expertise built into the system at this stage can take us.

fh,ε(x, y) = εEx,y

∫ tε

0

Lx,yϕ(εu)ϕ(x) du

= h

∫
Lx,zϕ(x)ρx(dz)

+ h

[
1
tε

(
Ey

∫ tε

0

Lx,yx(s)ϕ(x) ds− tε

∫
Lx,zϕ(x)ρx(dz)

)
+

1
tε

(
Ey

∫ tε

0

Lx,yx(s)ϕ(x) ds−Ex,y

∫ tε

0

Lx,yϕ(εs)ϕ(x) ds
)]
(1)

8-2-9

8.2.5 Equation groups without alignment

The gather environment is used to put two or more equations into a single display
without alignment between the equations. Each equation is separately centered

8.2 Display and alignment structures for equations 475

within the display width and has its individual number tag, if needed. Each line of
a gather is a single (logical) equation.

8-2-10
(a + b)2 = a2 + 2ab + b2 (1)

(a + b) · (a− b) = a2 − b2 (2)

\usepackage{amsmath}

\begin{gather}
(a + b)^2 = a^2 + 2ab + b^2 \\
(a + b) \cdot (a - b) = a^2 - b^2

\end{gather}

Use \notag within the logical line to suppress the equation number for that
line; or use gather* to suppress all equation numbers.

8-2-11

D(a, r) ≡ {z ∈ C : |z − a| < r}
seg(a, r) ≡ {z ∈ C : �z < �a, |z − a| < r} (1)

C(E, θ, r) ≡
⋃
e∈E

c(e, θ, r) (2)

\usepackage{amsmath}

\begin{gather}
D(a,r) \equiv \{ z \in \mathbf{C}

\colon |z - a| < r \} \notag \\
\operatorname{seg} (a, r) \equiv

\{ z \in \mathbf{C} \colon
\Im z < \Im a, \ |z - a| < r \} \\

C (E, \theta, r) \equiv
\bigcup_{e \in E} c (e, \theta, r)

\end{gather}

8.2.6 Equation groups with simple alignment

The align environment should be used for two or more equations in a single
display with vertical alignment. The simplest form uses a single ampersand (&) on
each line to mark the alignment point (usually just before a Relation symbol).

8-2-12

(a + b)3 = (a + b)(a + b)2 (1)

= (a + b)(a2 + 2ab + b2) (2)

= a3 + 3a2b + 3ab2 + b3 (3)

x2 + y2 = 1 (4)

x =
√

1− y2 (5)

\usepackage{amsmath}

\begin{align}
(a + b)^3 &= (a + b) (a + b)^2 \\

&= (a + b)(a^2 + 2ab + b^2) \\
&= a^3 + 3a^2b + 3ab^2 + b^3

\end{align}
\begin{align}
x^2 + y^2 & = 1 \\
x & = \sqrt{1-y^2}

\end{align}

8.2.7 Multiple alignments: align and flalign

An align environment can include more than one alignment point. The layout con-
tains as many column-pairs as necessary and is similar to an array with preamble
of the form {rlrl...}. If it consists of n such rl column-pairs, then the number

476 Higher Mathematics

of ampersands per line will be 2n − 1: one ampersand for alignment within each
column-pair giving n; and n− 1 ampersands to separate the column-pairs.

Within the align environment, the material is spread out evenly across the
display width. All extra (or white) space within the line is distributed equally “be-
tween consecutive rl column-pairs” and the two display margins.

This example has two column-pairs.

Compare x2 + y2 = 1 x3 + y3 = 1 (1)

x =
√

1− y2 x = 3
√

1− y3

(2)

This example has three column-pairs.

x = y X = Y a = b + c
(3)

x′ = y′ X ′ = Y ′ a′ = b (4)

x + x′ = y + y′ X + X ′ = Y + Y ′ a′b = c′b (5)

\usepackage{amsmath}

This example has two column-pairs.
\begin{align} \text{Compare }

x^2 + y^2 &= 1 &
x^3 + y^3 &= 1 \\
x &= \sqrt {1-y^2} &
x &= \sqrt[3]{1-y^3}

\end{align}
This example has three column-pairs.
\begin{align}

x &= y & X &= Y &
a &= b+c \\

x’ &= y’ & X’ &= Y’ &
a’ &= b \\

x + x’ &= y + y’ &
X + X’ &= Y + Y’ & a’b &= c’b

\end{align}

8-2-13

In the variant flalign the layout is similar except that there is no space at
the margins. As a result, in the next example, Equation (3) now fits on a single line
(while in Equation (2) this was still not possible).

This example has two column-pairs.

Compare x2 + y2 = 1 x3 + y3 = 1 (1)

x =
√

1− y2 x = 3
√

1− y3

(2)

This example has three column-pairs.

x = y X = Y a = b + c (3)

x′ = y′ X ′ = Y ′ a′ = b (4)

x + x′ = y + y′ X + X ′ = Y + Y ′ a′b = c′b (5)

\usepackage{amsmath}

This example has two column-pairs.
\begin{flalign} \text{Compare }

x^2 + y^2 &= 1 &
x^3 + y^3 &= 1 \\
x &= \sqrt {1-y^2} &
x &= \sqrt[3]{1-y^3}

\end{flalign}
This example has three column-pairs.
\begin{flalign}

x &= y & X &= Y &
a &= b+c \\

x’ &= y’ & X’ &= Y’ &
a’ &= b \\

x + x’ &= y + y’ &
X + X’ &= Y + Y’ & a’b &= c’b

\end{flalign}

8-2-14

In both cases the minimum space between column-pairs can be set by chang-
ing \minalignsep . Its default value is 10pt but, misleadingly, it is not a length

8.2 Display and alignment structures for equations 477

parameter. Thus, it must be changed by using \renewcommand . If we set it to zero
for the first part of the example, Equation (2) gets squeezed onto a single line; if
we set it to 15pt later, the label (3) gets forced onto a line by itself.

Unfortunately, there is no such simple parametric method for controlling the
spacing at the margins.

8-2-15

This example has two column-pairs.

Compare x2 + y2 = 1 x3 + y3 = 1 (1)

x =
√

1− y2 x = 3
√

1− y3 (2)

This example has three column-pairs.

x = y X = Y a = b + c
(3)

x′ = y′ X ′ = Y ′ a′ = b (4)

x + x′ = y + y′ X + X ′ = Y + Y ′ a′b = c′b (5)

\usepackage{amsmath}

This example has two column-pairs.
\renewcommand\minalignsep{0pt}
\begin{align} \text{Compare }
x^2 + y^2 &= 1 &
x^3 + y^3 &= 1 \\
x &= \sqrt {1-y^2} &
x &= \sqrt[3]{1-y^3}

\end{align}
This example has three column-pairs.
\renewcommand\minalignsep{15pt}
\begin{flalign}

x &= y & X &= Y &
a &= b+c \\

x’ &= y’ & X’ &= Y’ &
a’ &= b \\

x + x’ &= y + y’ &
X + X’ &= Y + Y’ & a’b &= c’b

\end{flalign}

The next example illustrates a very common use for align . Note the use of
\text to produce normal text within the mathematical material.

8-2-16

x = y by hypothesis (1)

x′ = y′ by definition (2)

x + x′ = y + y′ by Axiom 1 (3)

\usepackage{amsmath}

\renewcommand\minalignsep{2em}
\begin{align}
x &= y && \text{by hypothesis} \\

x’ &= y’ && \text{by definition} \\
x + x’ &= y + y’ && \text{by Axiom 1}

\end{align}

8.2.8 Display environments as mini-pages

All the environments described so far produce material set to the full display
width. A few of these environments have also been adapted to provide self-con-
tained alignment structures, as if they were set as the only content of a minipage
environment whose size, in both directions, is determined by its contents. The
environment names are changed only slightly: to aligned and gathered . Note
that an aligned environment avoids unnecessary space on the left and right; thus,
it mostly resembles the flalign environment.

478 Higher Mathematics

Like minipage, these environments take an optional argument that specifies
the vertical positioning with respect to the material on either side. The default
alignment of the box is centered ([c]). Of course, like split they are used only
within equations and they never produce tags.

x2 + y2 = 1

x =
√

1− y2

and also y =
√

1− x2

(a + b)2 = a2 + 2ab + b2

(a + b) · (a− b) = a2 − b2
(1)

\usepackage{amsmath}

\begin{equation}
\begin{aligned}

x^2 + y^2 &= 1 \\
x &= \sqrt{1-y^2} \\

\text{and also }y &= \sqrt{1-x^2}
\end{aligned} \qquad
\begin{gathered}
(a + b)^2 = a^2 + 2ab + b^2 \\
(a + b) \cdot (a - b) = a^2 - b^2

\end{gathered} \end{equation}

8-2-17

The same mathematics can also be typeset, albeit not very beautifully, using
different vertical alignments for the environments.

x2 + y2 = 1

x =
√

1− y2

and also y =
√

1− x2 (a + b)2 = a2 + 2ab + b2

(a + b) · (a− b) = a2 − b2
(1)

\usepackage{amsmath}

\begin{equation}
\begin{aligned}[b]

x^2 + y^2 &= 1 \\
x &= \sqrt{1-y^2} \\

\text{and also }y &= \sqrt{1-x^2}
\end{aligned} \qquad
\begin{gathered}[t]
(a + b)^2 = a^2 + 2ab + b^2 \\
(a + b) \cdot (a - b) = a^2 - b^2

\end{gathered}
\end{equation}

8-2-18

They may be used in many ways—for example, to do some creative and useful
grouping of famous equations. Incidentally, these mini-page display environments
are among the very few from amsmath that are robust enough to be used inside
other definitions, as in the following example.

B′ = −c∇×E

E′ = c∇×B − 4πJ

}
Maxwell’s equations

\usepackage{amsmath,bm}
\newenvironment{rcase}

{\left.\begin{aligned}}
{\end{aligned}\right\rbrace}

\begin{equation*}
\begin{rcase}
\bm{B}’ &=-c\nabla\times\bm{E} \\
\bm{E}’ &=c\nabla\times\bm{B} - 4\pi\bm{J}\,
\end{rcase}
\quad \text {Maxwell’s equations}

\end{equation*}

8-2-19

8.2 Display and alignment structures for equations 479

You can also use the \minalignsep command to control the space between
pairs of columns in an aligned environment, as shown in the next example.

8-2-20

Vj = vj Xi = xi − qixj = uj +
∑
i�=j

qi

Vi = vi − qivj Xj = xj Ui = ui

(1)

\usepackage{amsmath}

\renewcommand\minalignsep{5pt}
\begin{equation} \begin{aligned}
V_j &= v_j &
X_i &= x_i - q_i x_j &

&= u_j + \sum_{i\ne j} q_i \\
V_i &= v_i - q_i v_j &
X_j &= x_j &
U_i &= u_i

\end{aligned} \end{equation}

8.2.9 Interrupting displays: \intertext

The \intertext command is used for a short passage of text (typically at most
a few lines) that appears between the lines of a display alignment. Its importance
stems from the fact that all the alignment properties are unaffected by the text,
which itself is typeset as a normal paragraph set to the display width; this align-
ment would not be possible if you simply ended the display and then started a
new display after the text. This command may appear only immediately after a \\
or * command.

Here the words “and finally” are outside the alignment, at the left margin, but
all three equations are aligned.

8-2-21

A1 = N0(λ; Ω′)− φ(λ; Ω′) (1)

A2 = φ(λ; Ω′)φ(λ; Ω) (2)

and finally

A3 = N (λ;ω) (3)

\usepackage{amsmath}

\begin{align}
A_1 &= N_0 (\lambda ; \Omega’)

- \phi (\lambda ; \Omega’) \\
A_2 &= \phi (\lambda ; \Omega’)

\phi (\lambda ; \Omega) \\
\intertext{and finally}
A_3 &= \mathcal{N} (\lambda ; \omega)

\end{align}

8.2.10 Vertical space and page breaks in and around displays

As is usual in LaTEX, the optional argument \\[dimension] gives extra vertical
Space within the
display. . .

space between two lines in all amsmath display environments (there must be no
space between the \\ and the [character delimiting the optional argument). The

. . . and around the
display

vertical spaces before and after each display environment are controlled by the fol-
lowing rubber lengths, where the values in parentheses are those for \normalsize
with the (default) 10pt option in the standard LaTEX classes:1

\abovedisplayskip , \belowdisplayskip The normal vertical space added
above and below a mathematical display (default 10pt plus 2pt minus 5pt).

1These defaults are very much improved by theAMS-LaTEX document classes.

480 Higher Mathematics

\abovedisplayshortskip , \belowdisplayshortskip The (usually smaller)
vertical space added above and below a “short display” (0pt plus 3pt and
6pt plus 3pt minus 3pt, respectively). A short display is one that starts to
the right of where the preceding text line ends.

If you look closely, you can observe the results of these space parameters in the
following example. The second equation is surrounded by less space because the
text in front of it does not overlap with the formula.

We now have the following:

X = a a = c

and thus we have
X = c (1)

And now we don’t get much space around the display!

\usepackage{amsmath}

We now have the following:
\[X = a \qquad a = c \]
and thus we have
\begin{equation} X = c \end{equation}
And now we don’t get much space
around the display!

8-2-22

Since the four parameters \abovedisplay.. and \belowdisplay.. depend
on the current font size, they cannot be modified in the preamble of the document
using \setlength . Instead, they must be changed by modifying \normalsize ,
\small , and similar commands—a job usually done in a document class.

Automatic page breaking before and after each display environment is con-
Page breaks around

the display. . .
trolled by the penalty parameters \predisplaypenalty (for breaking before a
display; default 10000, i.e., no break allowed) and \postdisplaypenalty (for
breaking after a display, default 0; i.e., breaks allowed). The defaults are already
set in standard LaTEX and are not changed by amsmath.

Unlike standard LaTEX, the amsmath display environments do not, by default,
. . . and within the

display
allow page breaks between lines of the display. The reason for this behavior is
that correct page breaks in such locations depend heavily on the structure of the
display, so they often require individual attention from the author.

With amsmath such individual control of page breaks is best achieved via the
\displaybreak command, but it should be used only when absolutely necessary
to allow a page break within a display. The command must go before the \\ at
which a break may be taken, and it applies only to that line and can be used only
within an environment that produces a complete display. Somewhat like standard
LaTEX’s \pagebreak (see Section 6.2.2 in [104]), \displaybreak takes an optional
integer as its argument, with a value ranging from zero to four, denoting the de-
sirability of the page break: \displaybreak[0] means “it is permissible to break
here” without encouraging a break; \displaybreak with no optional argument
is the same as \displaybreak[4] and forces a break. This command cannot be
used to discourage or prevent page breaks. Note that it makes no sense to break
within a “mini-page display”, as those environments will never be split over two
pages.

This kind of adjustment is fine-tuning, like the insertion of line breaks and
page breaks in text. It should therefore be left until your document is nearly

8.2 Display and alignment structures for equations 481

finalized. Otherwise, you may end up redoing the fine-tuning several times to
keep up with changing document content.

The command \allowdisplaybreaks , which obeys the usual LaTEX scop-
ing rules, is equivalent to putting \displaybreak before every line end in any
display environment within its scope; it takes the same optional argument as
\displaybreak . Within the scope of an \allowdisplaybreaks command, the
* command can be used to prohibit a page break.

The effect of a \displaybreak command overrides both the default and the
effect of an \allowdisplaybreaks .

Many authors wisely use empty lines between major structures in the doc-

�Be wary of empty
lines around

displays

ument source to make it more readable. In most cases, such as before and
after a heading, these empty lines do no harm. This is not universally true,
however. Especially around and within mathematical display environments, one
has to be quite careful: a blank line in front of such an environment will
produce unexpected formatting because the empty line is in effect converted
into a paragraph containing no text (and so containing just the invisible para-
graph indentation box). The following display is consequently surrounded by
spaces of size \..displayshortskip . Thus, the combined result is quite a lot
of (possibly too much) space before the display (a whole empty line plus the
\abovedisplayshortskip) and a very small amount of space after the display,
as this example shows.

8-2-23

Empty line before display:

a �= b

In both cases, too much space before! . . .

a �= b (1)

. . . and not a lot of space after!

\usepackage{amsmath}

Empty line before display:

\[a \neq b \]

In both cases, too much space before! \ldots

\begin{equation} a \neq b \end{equation}

\ldots\ and not a lot of space after!

With the amsmath package loaded, this behavior is exhibited by all the display
math environments. Strangely enough, with standard LaTEX the \[case comes out
looking more or less right.

8-2-24

Empty line before display:

a �= b

Enough space now, but don’t rely on it!

a �= b (1)

Less space after in this case!

Empty line before display:

\[a \neq b \]

Enough space now, but don’t rely on it!

\begin{equation} a \neq b \end{equation}

Less space after in this case!

To summarize, do not use empty lines around display environments!

482 Higher Mathematics

8.2.11 Equation numbering and tags

In LaTEX the tags for equations are typically generated automatically and contain
a printed representation of the LaTEX counter equation . This involves three pro-
cesses: setting (normally by incrementing) the value of the equation counter; for-
matting the tag; and printing it in the correct position.

In practice, the first two processes are nearly always linked. Thus, the value of
the equation counter is increased only when a tag containing its representation
is automatically printed. For example, when a mathematical display environment
has both starred and unstarred forms, the unstarred form automatically tags each
logical equation while the starred form does not. Only in the unstarred form is the
value of the equation counter changed.

Within the unstarred forms the setting of a tag (and the incrementing of the
counter value) for any particular logical equation can be suppressed by putting
\notag (or \nonumber1) before the \\ . You can override the default automatic tag
with one of your own design (or provide a new one) by using the command \tag
before the \\ . The argument of this command can be arbitrary normal text that is
typeset (within the normal parentheses) as the tag for that equation.

Note that the use of \tag suppresses the incrementing of the counter value.
Thus, the default tag setting is only visually the same as \tag{\theequation} ;
they are not equivalent forms. The starred form, \tag* , causes the text in its
argument to be typeset without the parentheses (and without any other material
that might otherwise be added with a particular document class).

x2 + y2 = z2 (1)

x3 + y3 = z3

x4 + y4 = r4 (∗)
x5 + y5 = r5 ∗
x6 + y6 = r6 (1′)

A1 = N0(λ; Ω′)− φ(λ; Ω′) (2)

A2 = φ(λ; Ω′)φ(λ; Ω) ALSO (2)

A3 = N (λ;ω) (3)

\usepackage{amsmath}

\begin{align}
x^2+y^2 &= z^2 \label{eq:A} \\
x^3+y^3 &= z^3 \notag \\
x^4+y^4 &= r^4 \tag{$*$} \\
x^5+y^5 &= r^5 \tag*{$*$} \\
x^6+y^6 &= r^6 \tag{\ref{eq:A}$’$} \\

A_1 &= N_0 (\lambda ; \Omega’)
- \phi (\lambda ; \Omega’) \\

A_2 &= \phi (\lambda ; \Omega’)
\, \phi (\lambda ; \Omega)
\tag*{ALSO (\theequation)} \\

A_3 &= \mathcal{N} (\lambda ; \omega)
\end{align}

8-2-25

Notice this example’s use of the \label and \ref commands to provide some
kinds of “relative numbering” of equations.

To facilitate the creation of cross-references to equations, the \eqref com-
Referencing

equations
mand (used in Example 8-2-29 on page 485), automatically adds the parentheses
around the equation number, adding an italic correction if necessary. See also
Section 2.4 on page 66 for more general solutions to managing references.

1The command \notag is interchangeable with \nonumber .

8.2 Display and alignment structures for equations 483

8.2.12 Fine-tuning tag placement

Optimal placement of equation number tags can be a rather complex problem in
multiple-line displays. These display environments try hard to avoid overprinting
an equation number on the equation contents; if necessary, the number tag is
moved down or up, onto a separate line. The difficulty of accurately determining
the layout of a display can occasionally result in a tag placement that needs fur-
ther adjustment. Here is an example of the kind of thing that can happen, and a
strategy for fixing it. The automatic tag placement is clearly not very good.

\usepackage{amsmath}

\begin{equation} \begin{split}
\lvert I_2 \rvert &= \left\lvert \int_{0}^T \psi(t)

\left\{ u(a, t) - \int_{\gamma(t)}^a \frac{d\theta}{k}
(\theta, t) \int_{a}^\theta c (\xi) u_t (\xi, t) \,d\xi

\right\} dt \right\rvert \\
&\le C_6 \Biggl\lvert

\left\lvert f \int_\Omega \left\lvert
\widetilde{S}^{-1,0}_{a,-} W_2(\Omega, \Gamma_l)

\right\rvert \ \right\rvert
\left\lvert \lvert u \rvert

\overset{\circ}{\to} W_2^{\widetilde{A}} (\Omega; \Gamma_r,T)
\right\rvert \Biggr\rvert

\end{split} \end{equation}

8-2-26

|I2| =
∣∣∣∣∣
∫ T

0

ψ(t)

{
u(a, t)−

∫ a

γ(t)

dθ

k
(θ, t)

∫ θ

a

c(ξ)ut(ξ, t) dξ

}
dt

∣∣∣∣∣
≤ C6

∣∣∣∣∣
∣∣∣∣f ∫

Ω

∣∣∣S̃−1,0
a,− W2(Ω,Γl)

∣∣∣ ∣∣∣∣ ∣∣∣|u| ◦→W Ã
2 (Ω; Γr, T)

∣∣∣∣∣∣∣∣
(1)

A fairly easy way to improve the appearance of such an equation is to use an
align environment with a \notag on the first equation line:

\begin{align}
\lvert I_2 \rvert &= \left\lvert \int_{0}^T \psi(t)

... \notag \\
&\le C_6 \Biggl\lvert

...
\end{align}

This produces a good result but note that it misuses logical markup—it assumes
the equation numbers to be on the right!

484 Higher Mathematics

|I2| =
∣∣∣∣∣
∫ T

0

ψ(t)

{
u(a, t)−

∫ a

γ(t)

dθ

k
(θ, t)

∫ θ

a

c(ξ)ut(ξ, t) dξ

}
dt

∣∣∣∣∣
≤ C6

∣∣∣∣∣
∣∣∣∣f ∫

Ω

∣∣∣S̃−1,0
a,− W2(Ω,Γl)

∣∣∣ ∣∣∣∣ ∣∣∣|u| ◦→W Ã
2 (Ω; Γr, T)

∣∣∣∣∣∣∣∣ (1)

8-2-27

A \raisetag command is available that will further adjust the vertical po-
sition of the current equation number but only when it has been automatically
moved from its “normal position”. For example, to move such a tag upward1 by
6pt, you could write \raisetag{6pt} . You can try adjusting the above equa-
tion with \raisetag but the correct value is not easy to divine: a value of
1.2\baselineskip looks about right!

A more sensible use is shown in the next example, where \raisetag with a
negative argument is used to move the tag on the left down into the display.

The sign function: S(x) =

⎧⎪⎨⎪⎩
−1 x < 0
0 x = 0
1 x > 0

(1)

\usepackage[leqno]{amsmath}

\begin{gather} \raisetag{-10pt}
\text{The sign function: \ }

\mathcal{S}(x) = \begin{cases}
-1 & x < 0 \\
0 & x = 0 \\
1 & x > 0

\end{cases}
\end{gather}

8-2-28

Here we used a gather environment with a single line because the equation
environment is (the only) one within which \raisetag unfortunately has no effect
(it is coded using low-level TEX).

These kinds of adjustment constitute “fine-tuning”, like line breaks and page
breaks in text. They should therefore be left until your document is nearly final-
ized. Otherwise, you may end up redoing the fine-tuning several times to keep up
with changing document content.

8.2.13 Subordinate numbering sequences

The amsmath package provides a subequations environment to support “equa-
tion sub-numbering” with tags of the form (2a), (2b), (2c), and so on. All the tagged
equations within it use this sub-numbering scheme based on two normal LaTEX
counters: parentequation and equation .

1The description in the file amsmath.dtx seems to indicate that a positive value should always
move the tag toward the “normal position”—that is, downward for tags on the left, but the current
implementation does not work in this way.

8.3 Matrix-like environments 485

The next example demonstrates that the tag can be redefined to some ex-
tent, but note that the redefinition for \theequation must appear within the
subequations environment! (Appendix A.1.4 discusses counter manipulations.)

8-2-29

f = g (1a)

f ′ = g′ (1b)

Lf = Lg (1c)

f = g (2i)

f ′ = g′ (2ii)

Lf = Lg + K (2iii)

Note the relationship between (1)
and (2): only 1c and 2iii differ.

\usepackage{amsmath}

\begin{subequations} \label{eq:1}
\begin{align} f &= g \label{eq:1A} \\

f’ &= g’ \label{eq:1B} \\
\mathcal{L}f &= \mathcal{L}g \label{eq:1C}

\end{align}
\end{subequations}
\begin{subequations} \label{eq:2}
\renewcommand\theequation{\theparentequation\roman{equation}}
\begin{align} f &= g \label{eq:2A} \\

f’ &= g’ \label{eq:2B} \\
\mathcal{L}f &= \mathcal{L}g + K \label{eq:2C}

\end{align}
\end{subequations}
Note the relationship between~\eqref{eq:1}
and~\eqref{eq:2}: only~\ref{eq:1C} and~\ref{eq:2C} differ.

The subequations environment must appear outside the displays that it af-
fects. Also, it should not be nested within itself. Each use of this environment
advances the “main” equation counter by one. A \label command within the
subequations environment but outside any individual (logical) equation will pro-
duce a \ref to the parent number (e.g., to 2 rather than 2i).

8.2.14 Resetting the equation counter

It is fairly common practice to have equations numbered within sections or chap-
ters, using tags such as (1.1), (1.2), . . . , (2.1), (2.2), With amsmath this can easily
be set up by using the declaration \numberwithin .1

For example, to get compound equation tags including the section number,
with the equation counter being automatically reset for each section, put this dec-
laration in the preamble: \numberwithin{equation}{section}.

8.3 Matrix-like environments

The amsmath package offers a number of matrix-like environments, all of which
are similar to array in syntax and layout. Thinking of complex mathematical lay-
outs in this way is a useful exercise, as quite a wide variety of two-dimensional
mathematical structures and table-like layouts can be so described.

1As the name implies, \numberwithin can be applied to any pair of counters, but the results
may not be satisfactory in all cases because of potential complications. See the discussion of the
\@addtoreset command in Appendix A.1.4.

486 Higher Mathematics

Three of these environments replace old commands that are kept well hidden
Old commands

disabled
in standard LaTEX; cases (discussed in the next section) and matrix and pmatrix
(discussed in the section after that). Because these old command forms use a
totally different notation, they are not truly part of LaTEX and they cannot be mixed
with the environment forms described here. Indeed, amsmath will produce an
explanatory error message if one of the old commands is used (see page 907).
If, contrariwise, you make the mistake of using the amsmath environment forms
without loading that package, then you will most probably get this error message:
“Misplaced alignment tab character &”.

8.3.1 The cases environment

Constructions like the following, where a single equation has a few variants, are
very common in mathematics. To handle these constructions, amsmath provides
the cases environment. It produces a decorated array with two columns, both left
aligned.

Pr−j =

{
0 if r − j is odd,

r! (−1)(r−j)/2 if r − j is even.
(1)

\usepackage{amsmath}

\begin{equation} P_{r - j} =
\begin{cases}

0 & \text{if $r - j$ is odd,} \\
r! \, (-1)^{(r - j)/2}

& \text{if $r - j$ is even.}
\end{cases} \end{equation}

8-3-1

Notice the use of \text and the “embedded math mode” in the text strings. With
the help of the aligned environment, other environments similar to cases can be
defined, as in Example 8-2-19 on page 478.

8.3.2 The matrix environments

The matrix environments are similar to LaTEX’s array , except that they do not have
an argument specifying the formats of the columns. Instead, a default format is
provided: up to 10 centered columns. Also, the spacing differs slightly from the
default in array . The example below illustrates the matrix environments matrix ,
pmatrix , bmatrix , Bmatrix , vmatrix , and Vmatrix .1

0 1
1 0

(
0 −i
i 0

)
[
0 −1
1 0

] {
1 0
0 −1

}
∣∣∣∣a b
c d

∣∣∣∣ ∥∥∥∥i 0
0 −i

∥∥∥∥

\usepackage{amsmath}

\begin{gather*}
\begin{matrix} 0 & 1 \\ 1 & 0 \end{matrix} \quad
\begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \\
\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \quad
\begin{Bmatrix} 1 & 0 \\ 0 & -1 \end{Bmatrix} \\
\begin{vmatrix} a & b \\ c & d \end{vmatrix} \quad
\begin{Vmatrix} i & 0 \\ 0 & -i \end{Vmatrix}

\end{gather*}

8-3-2

1Note the warning above about possible problems when using matrix and pmatrix.

8.3 Matrix-like environments 487

The maximum number of columns in a matrix environment is determined by
the counter MaxMatrixCols, which you can change using LaTEX’s standard counter
commands. As in standard arrays, the amount of space between the columns
is given by the value of \arraycolsep , but no space is added on either side of
the array. With more columns LaTEX has to work a little harder and needs slightly
more resources. However, with today’s typical TEX implementations such limits
are less important, so setting it to 20 or even higher is possible without a notice-
able change in processing speed.

8-3-3

∥∥∥∥∥∥∥∥∥∥∥

a b c d e f g h i j · · ·
a b c d e f g h i · · ·

a b c d e f g h · · ·
a b c d e f g · · ·

. . .
.

∥∥∥∥∥∥∥∥∥∥∥

\usepackage{amsmath}
\setcounter{MaxMatrixCols}{20}

\[
\begin{Vmatrix}
\,a&b&c&d&e&f&g&h&i&j &\cdots\,{} \\

&a&b&c&d&e&f&g&h&i &\cdots\,{} \\
& &a&b&c&d&e&f&g&h &\cdots\,{} \\
& & &a&b&c&d&e&f&g &\cdots\,{} \\
& & & &\ddots&\ddots&\hdotsfor[2]{5}\,{}

\end{Vmatrix} \]

This example also demonstrates use of the command \hdotsfor to produce a
row of dots in a matrix, spanning a given number of columns (here 5). The spacing
of the dots can be varied by using the optional parameter (here 2) to specify a
multiplier for the default space between the dots; the default space between dots
is 3 math units (see Appendix A.1.5). The thin space and the brace group \,{} at
the end of each row simply make the layout look better; together they produce
two thin spaces, about 6mu or 1/3em. (Spacing in formulas is discussed in more
detail in Section 8.7.6 on page 507.)

To produce a small matrix suitable for use in text, use the smallmatrix envi-
ronment. Note that the text lines are not spread apart even though the line before
the small matrix contains words with descenders.

8-3-4

To show the effect of the matrix on sur-
rounding lines inside a paragraph, we put it
here:

(
1 0
0 −1

)
and follow it with enough text

to ensure that there is at least one full line be-
low the matrix.

\usepackage{amsmath}

To show the effect of the matrix on surrounding
lines inside a paragraph, we put it here:
$ \left(\begin{smallmatrix}

1 & 0 \\ 0 & -1
\end{smallmatrix} \right) $

and follow it with enough text to ensure that
there is at least one full line below the matrix.

8.3.3 Stacking in subscripts and superscripts

The \substack command is most commonly used to typeset several lines within
a subscript or superscript, using \\ as the row delimiter.

A slightly more general structure is the subarray environment, which allows
you to specify that the lines should be left or right aligned instead of centered.

488 Higher Mathematics

Note that both structures need to be surrounded by braces when they appear as a
subscript or superscript.

∑
0≤i≤m
0<j<n

P (i, j) (1)

∑
i∈Λ
0≤i≤m
0<j<n

P (i, j) (2)

\usepackage{amsmath}

\begin{gather}
\sum_{\substack{0 \le i \le m \\ 0 < j < n}} P(i, j) \\
\sum_{\begin{subarray}{l} i \in \Lambda \\

0 \le i \le m \\
0 < j < n

\end{subarray}} P(i, j)
\end{gather}

8-3-5

8.3.4 Commutative diagrams

Some commands for producing simple commutative diagrams based on arrays
are available in a separate package, amscd. It provides some useful shorthand
forms for specifying the decorated arrows and other connectors. However, it is
very limited—for example, these connectors can be only horizontal and vertical.

The picture environment could be used for more complex commutative di-
agrams but for most serious work in this area you will need one of the more
comprehensive packages. These include Kristoffer Rose’s XY-pic system (see [57,
chapter 5]) and its extension [11] by Michael Barr; the diagram system [22,23] by
Francis Borceux; and the kuvio package [155] by Anders Svensson.

In the CD environment the notations @>>>, @<<< , @VVV, and @AAA give right,
left, down, and up arrows, respectively.1 The following examples also show the
use of the command \DeclareMathOperator (see Section 8.6.2).

cov(L) −−−−→ non(K) −−−−→ cf(K)⏐⏐� �⏐⏐ �⏐⏐
add(L) −−−−→ add(K) −−−−→ cov(K)

\usepackage{amsmath,amscd}
\DeclareMathOperator\add{add}
\DeclareMathOperator\cf {cf}
\DeclareMathOperator\cov{cov}
\DeclareMathOperator\non{non}

\[\begin{CD}
\cov (L) @>>> \non (K) @>>> \cf (K) \\

@VVV @AAA @AAA \\
\add (L) @>>> \add (K) @>>> \cov (K) \\

\end{CD} \]

8-3-6

Decorations on the arrows are specified as follows. For the horizontal arrows,
material between the first and second > or < symbols will be typeset as a super-
script, and material between the second and third will be typeset as a subscript.
Similarly, material between the first and second, or second and third, As or Vs of
vertical arrows will be typeset as left or right “side-scripts”; this format is used in
the next example to place the operator EndP to the right of the arrow.

The notations @= and @| give horizontal and vertical double lines.

1For keyboards lacking the characters < and >, the notations @))) and @(((are alternatives.

8.3 Matrix-like environments 489

A “null arrow” (produced by @.) can be used instead of a visible arrow to fill
out an array where needed.

8-3-7

SWΛ ⊗ T
j−−−−→ T⏐⏐� ⏐⏐�End P

(S ⊗ T)/I (Z ⊗ T)/J

\usepackage{amsmath,amscd}
\DeclareMathOperator{\End}{End}

\[\begin{CD}
S^{W_\Lambda}\otimes T @>j>> T \\
@VVV @VV{\End P}V \\

(S \otimes T)/I @= (Z\otimes T)/J
\end{CD} \]

A similar layout, which does not look nearly as good, can be produced in
standard LaTEX:

8-3-8

SWΛ ⊗ T
j−→ T⏐⏐� ⏐⏐�End P

(S ⊗ T)/I = (Z ⊗ T)/J

\[\begin{array}{ccc}
S^{\mathcal{W}_\Lambda}\otimes T &

\stackrel{j}{\longrightarrow} &
T \\
\Big\downarrow & &
\Big\downarrow\vcenter{%

\rlap{$\scriptstyle{\mathrm{End}}\,P$}} \\
(S\otimes T)/I & = &
(Z\otimes T)/J

\end{array}\]

This example shows clearly how much better the results are with the amscd
package: the notation is enormously easier and, for example, the package pro-
duces longer horizontal arrows and much improved spacing between elements
of the diagram. The more specialized packages will enable you to get even more
beautiful results.

8.3.5 delarray—Delimiters surrounding an array

This section describes a useful general extension to the array package (see Sec-
tion 5.2 on page 243) that allows the user to specify opening and closing extensi-
ble delimiters (see Section 8.5.3) to surround a mathematical array environment.
The delarray package was written by David Carlisle, and its use is illustrated in the
next, rather odd-looking, example (note that the delarray package is independent
of amsmath but it automatically loads the array package if necessary).

8-3-9 Q =
(
X Y

)[
A B
C D

]⎧⎪⎪⎩ L
M

⎫⎪⎪⎭
\usepackage{delarray}

\[\mathcal{Q} =
\begin{array}[t] ({cc}) X & Y \end{array}
\begin{array}[t] [{cc}] A & B \\ C & D \end{array}
\begin{array}[b] \lgroup{c}\rgroup L \\ M \end{array}
\]

The delimiters are placed on either side of the “preamble declaration” (here {cc}).
They must be delimiters from Table 8.3 on page 498.

490 Higher Mathematics

The most useful feature of this package is also illustrated in the preceding
example: the use of the [t] and [b] optional arguments, which are not available
with amsmath’s matrix environments. These show that use of the delarray syntax
is not equivalent to surrounding the array environment with \left and \right,
since the delimiters are raised as well as the array itself.

8.4 Compound structures and decorations

This section presents some commands that produce a variety of medium-sized
mathematical structures including decorated symbols and fraction-like objects.

8.4.1 Decorated arrows

The commands \xleftarrow and \xrightarrow produce horizontal relation ar-
rows similar to those used for the commutative diagrams in Section 8.3.4; they are
intended to have textual decorations above and/or below the arrow and the length
of the arrow is chosen automatically to accommodate the text. These arrows are
normally available in only one size. Thus, they will probably not be suited for use
in fractions, subscripts, or superscripts, for example.

The textual decorations below and above the arrows are specified in an op-
tional and a mandatory argument to the command.

0←−
ζ
F ×Δ(n− 1)

∂0α(b)−−−−→ E∂0b

\usepackage{amsmath}

\[
0 \xleftarrow [\zeta]{} F \times \Delta (n - 1)

\xrightarrow {\partial_0 \alpha(b)} E^{\partial_0 b}
\]

8-4-1

8.4.2 Continued fractions

The \cfrac command produces fraction arrays known as “continued fractions”.
By default, each numerator formula is centered; left or right alignment of a numer-
ator is achieved by adding the optional argument [l] or [r].

1
√

2 +
1

√
3 +

1
√

4 +
1

√
5 +

1√
6 + · · ·

\usepackage{amsmath}

\begin{equation*}
\cfrac {1}{\sqrt{2} +
\cfrac {1}{\sqrt{3} +
\cfrac {1}{\sqrt{4} +
\cfrac[r] {1}{\sqrt{5} +
\cfrac[l] {1}{\sqrt{6} + \dotsb }

}}}}
\end{equation*}

8-4-2

8.4 Compound structures and decorations 491

8.4.3 Boxed formulas

The command \boxed puts a box around its argument; it works just like \fbox ,
except that the contents are in math mode. See also the commands described in
Section 10.1.

8-4-3 Wt − F ⊆ V (Pi) ⊆Wt (1)

\usepackage{amsmath}

\begin{equation}
\boxed { W_t - F \subseteq V(P_i) \subseteq W_t }

\end{equation}

8.4.4 Limiting positions

Subscripts and superscripts on integrals, sums, or other operators can be placed
either above and below the mathematical operator or in the normal sub/super
positions on the right of the operator. They are said to “take limits” if the super-
script and subscript material is placed (in the “limit positions”) above and below
the symbol or operator name. Typically, no limits are used in text (to avoid spread-
ing lines apart); in a display, the placement depends on the operator used. The
default placements in LaTEX are illustrated in the following example.

8-4-4

n∑
i=1

∫ ∞

0

lim
n→0

Text:
∑n

i=1,
∫∞
0

, limn→0.

\[
\sum_{i=1}^n \qquad \int_0^\infty \qquad \lim_{n \to 0}

\]
Text: $\sum_{i=1}^n$, \int_0^∞, $\lim_{n \to 0}$.

The placement of subscripts and superscripts on integrals, sums, and other
operators is often dictated by the house-style of a journal. Recognizing this fact,
amsmath offers a long list of options for controlling the positioning. In the follow-
ing summary, default indicates what happens when the amsmath package is used
with a standard LaTEX class but without any of these options.

1

intlimits, nointlimits In displayed equations only, place superscripts and
subscripts of integration-type symbols above and below or at the side (de-
fault), respectively.

sumlimits, nosumlimits In displayed equations only, place superscripts and
subscripts of summation-type symbols (also called “large operators”) above
and below (default) or at the side, respectively. This option also affects other
big operators—

∏
,
∐
,
⊗
,
⊕
, and so forth—but not integrals.

namelimits, nonamelimits Like sumlimits or nosumlimits but for certain “op-
erator names”, such as det, inf , lim, and max, min, that traditionally have sub-
scripts placed underneath, at least when they occur in a displayed equation.

1But not necessarily when using theAMS-LaTEX document classes.

492 Higher Mathematics

The positioning on individual symbols/names can be controlled directly by
placing one of the following TEX primitive commands immediately after the sym-
bol or operator name: \limits , \nolimits , or \displaylimits . This last com-
mand, which specifies that the operator “takes limits” only when the mathematical
style is a display style, is the default whenever a symbol of class Operator1 ap-
pears or a \mathop construction is used. If an operator is to “take limits” outside
a display, then this must be declared individually using the \limits command.
Compare the next example to Example 8-4-4, noting that some commands show
no effect as they merely reinforce the default.

∑n

i=1

∞∫
0

lim
n→0

Text:
∑n

i=1,
∞∫
0

, limn→0.

\[
\sum\nolimits_{i=1}^n \qquad \int\limits_0^\infty
\qquad \lim\displaylimits_{n \to 0}

\]
Text: $\sum\nolimits_{i=1}^n$, $\int\limits_0^\infty$,
$\lim\displaylimits_{n \to 0}$.

8-4-5

8.4.5 Multiple integral signs

The commands \iint , \iiint , and \iiiint give multiple integral signs with well-
adjusted spaces between them, in both running text and displays. The command
\idotsint gives two integral signs with ellipsis dots between them. The follow-
ing example also shows the use of \limits to override the default for integral
constructions and place the limit V underneath the symbol.∫∫

V

μ(v, w) du dv

∫∫∫
V

μ(u, v, w) du dv dw

∫∫∫∫
V

μ(t, u, v, w) dt du dv dw

∫
· · ·
∫

V

μ(z1, . . . , zk)dz

\usepackage{amsmath}

\begin{gather*}
\iint \limits _V \mu(v,w)
\,du \,dv \\

\iiint \limits _V \mu(u,v,w)
\,du \,dv \,dw \\

\iiiint \limits _V \mu(t,u,v,w)
\,dt \,du \,dv \,dw \\

\idotsint \limits _V \mu(z_1, \dots, z_k)
\,\mathbf{dz}

\end{gather*}

8-4-6

8.4.6 Modular relations

The commands \mod , \bmod , \pmod , and \pod are provided by the amsmath pack-
age to deal with the special spacing conventions of the “mod” notation for equiva-
lence classes of integers. Two of these commands, \mod and \pod , are variants of
\pmod that are preferred by some authors; \mod omits the parentheses, whereas

1See Section 8.9.1 on page 524 for a discussion of the various mathematical classes of symbols.

8.4 Compound structures and decorations 493

\pod omits the “mod” and retains the parentheses. With amsmath the spacing of
\pmod is decreased within a non-display formula.

8-4-7

u ≡ v + 1 mod n2

u ≡ v + 1 mod n2

u = v + 1 (mod n2)

u = v + 1 (n2)

The in-text layout: u = v + 1 (mod n2)

(m mod n) = k2 ; x ≡ y (mod b) ;
x ≡ y mod c ; x ≡ y (d) .

\usepackage{amsmath}

\begin{align*}
u & \equiv v + 1 \mod{n^2} \\
u & \equiv v + 1 \bmod{n^2} \\
u & = v + 1 \pmod{n^2} \\
u & = v + 1 \pod{n^2}

\end{align*}
The in-text layout: $ u = v + 1 \pmod{n^2} $
\begin{gather*}

(m \bmod n) = k^2 \, ; \quad
x \equiv y \pmod b \, ; \\
x \equiv y \mod c \, ; \quad
x \equiv y \pod d\, .

\end{gather*}

8.4.7 Fractions and generalizations

In addition to the common \frac , the amsmath package provides \dfrac
and \tfrac as convenient abbreviations for {\displaystyle\frac ...} and
{\textstyle\frac ...} (mathematical styles are discussed in more detail in Sec-
tion 8.7.1 on page 502).

8-4-8

1
k

log2 c(f) 1
k log2 c(f) (1)

Text:
√

1
k log2 c(f)

√
1
k

log2 c(f) .

\usepackage{amsmath}

\begin{equation} \frac{1}{k} \log_2 c(f)
\quad \tfrac{1}{k} \log_2 c(f) \end{equation}

Text: $ \sqrt{ \frac{1}{k} \log_2 c(f) } \quad
\sqrt{ \dfrac{1}{k} \log_2 c(f) }\, $.

For binomial coefficients such as
(

n
k

)
, use the similar commands \binom ,

\dbinom , and \tbinom .

8-4-9

(
k

2

)
2k−1 +

(
k−1
2

)
2k−2 (1)

Text:
(
k
2

)
2k−1 +

(
k − 1

2

)
2k−2.

\usepackage{amsmath}

\begin{equation} \binom{k}{2} 2^{k - 1}
+ \tbinom{k - 1}{2} 2^{k - 2} \end{equation}

Text: $ \binom{k}{2} 2^{k - 1}
+ \dbinom{k - 1}{2} 2^{k - 2} $.

All of these \binom and \frac commands are special cases of the generalized
fraction command \genfrac , which has six parameters.

\genfrac{ldelim}{rdelim}{thick}{style}{num}{denom}

The first two parameters, ldelim and rdelim, are the left and right delimiters, re-
spectively. They must be either both empty or both non-empty; to place a single

494 Higher Mathematics

Style Default Thickness (approximately)

text/display 0.40pt
script 0.34pt

scriptscript 0.24pt

Table 8.2: Default rule thickness in different math styles

delimiter, use a period “.” on the “empty” side. The third parameter, thick, is
used to override the default thickness of the fraction rule; for instance, \binom
uses 0pt for this argument so that the line is invisible. If it is left empty, the line
thickness has the default value specified by the font set-up in use for mathemat-
ical typesetting. The examples in this chapter use the defaults listed in Table 8.2
in the various styles (see also Section 8.7.1).

The fourth parameter, style, provides a “mathematical style override” for the
layout and font sizes used. It can take integer values in the range 0–3 denoting
\displaystyle , \textstyle , \scriptstyle , and \scriptscriptstyle , respec-
tively. If this argument is left empty, then the style is selected according to the
normal rules for fractions (described in Table 8.5 on page 502). The last two argu-
ments are simply the numerator (num) and denominator (denom).

To illustrate, here is how \frac , \tfrac , and \binom might be defined:

\newcommand\frac [2]{\genfrac {}{}{}{}{#1}{#2}}
\newcommand\tfrac[2]{\genfrac {}{}{}{1}{#1}{#2}}
\newcommand\binom[2]{\genfrac {(}{)}{0pt}{}{#1}{#2}}

Of course, if you want to use a particular complex notation (such as one imple-
mented with \genfrac) repeatedly throughout your document, then you will do
yourself (and your editor) a favor if you define a meaningful command name with
\newcommand as an abbreviation for that notation, as in the examples above.

The old generalized fraction commands \over , \overwithdelims , \atop ,
\atopwithdelims , \above , and \abovewithdelims (inherited in standard LaTEX
from primitive TEX) produce warning messages if they are used with the amsmath
package.

8.4.8 Dottier accents

The \dot and \ddot mathematical accents are supplemented by \dddot and
\ddddot , giving triple and quadruple dot accents, respectively.

Ṡ P̈
...
Q

....
R

\usepackage{amsmath}

$ \dot{S} \quad \ddot{P} \quad \dddot{Q} \quad \ddddot{R} $
8-4-10

If you want to set up your own mathematical accents, then you should prob-
ably use the accents package developed by Javier Bezos. It provides methods

8.5 Variable symbol commands 495

of defining “faked” accents (see \accentset in the example) and general under-
accents (\underaccent , \undertilde), along with other features. It can be used
together with amsmath. For further details see [20].

8-4-11
∗
X

�̂

ĥ �M C˜ M˜ ABC˜
\usepackage{accents}

\[\accentset{\ast}{X} \quad
\hat{\accentset{\star}{\hat h}} \quad
\underaccent{\diamond}{\mathcal{M}} \quad
\undertilde{C}\quad\undertilde{M}\quad\undertilde{ABC} \]

8.4.9 amsxtra—Accents as superscripts

One feature available with this package is a collection of simple commands for
placing accents as superscripts to a sub-formula:

8-4-12

(xyz)... (xyz).. (xyz).

(xyz)̆ (xyz)∨

(xyz)̂ (xyz)∼

\usepackage{amsxtra}

$(xyz)\spdddot$ \quad $(xyz)\spddot$ \quad $(xyz)\spdot$ \\
$(xyz)\spbreve$ \quad $(xyz)\spcheck$ \\
$(xyz)\sphat$ \quad $(xyz)\sptilde$

8.4.10 Extra decorations

Standard LaTEX provides \stackrel for placing a superscript above a Relation sym-
bol. The amsmath package makes the commands \overset and \underset avail-
able as well. They can be used to place material above or below any Ordinary sym-
bol or Binary operator symbol, in addition to Relation symbols; they are typeset
just like the limits above and below a summation sign.

The command \sideset serves a special purpose, complementary to the oth-
ers: it adds decorations additional to the “normal” limits (which are set above and
below) to any Operator symbol such as

∑
or
∏
. These are placed in the subscript

and superscript positions, on both the left and right of the Operator.

8-4-13

∗
X > X∗ ⇐⇒

∑′

a,b∈R∗

a

X
b

= X

\usepackage{amsmath}

\[\overset{*}{X} > \underset{*}{X}
\iff \sideset{}{’}\sum_{a,b \in \mathbf{R^*}}

\overset{a}{\underset{b}{X}} = X \]

This more complex example shows how to fully decorate a product symbol.

8-4-14

n

i=1

∏m

j=2
k>1

T k
i,j

\usepackage{amsmath}

\[\sideset{_{i = 1}^n}{_{j = 2}^m}\prod_{k > 1}
\mathcal{T}_{i, j}^k \]

8.5 Variable symbol commands

Many LaTEX commands are often thought of as producing a particular symbol when,
in fact, the exact form is not fixed (even when the font and size are fixed). Certain

496 Higher Mathematics

features of TEX’s mathematical typesetting can even be used to produce structures
that can, in principle, grow to whatever size is required.

Such context-dependent variability is very important in mathematical type-
setting, and this section discusses some aspects of it. With a few clearly noted
exceptions, the commands covered in this section are available in standard LaTEX.

A well-known, but not very exciting, example of such variability entails the
mathematical operator symbols, such as \sum and \prod , which typically come in
just two sizes: a smaller size that is used in running text and a larger size that is
used in displayed formulas. Such symbols appear in Table 8.25 on page 536.

8.5.1 Ellipsis . . .

Standard LaTEX provides several types of mathematical ellipsis dots: \ldots ,
\cdots , and so on. When using amsmath, however, such ellipsis dots within math
mode should almost always be marked up using simply \dots .1

The vertical position (on the baseline or centered) of the ellipsis, together
with the space around it, are both automatically selected according to what kind
of symbol follows \dots . For example, if the next symbol is a plus sign, the dots
will be centered; if it is a comma, they will be on the baseline. In all cases, three
dots are used but the spacing varies. These defaults from the amsmath package
can be changed in a class file when different conventions are in use.

A series H1,H2, . . . ,Hn, a sum H1+
H2 + · · · + Hn, an orthogonal product
H1 ×H2 × · · · ×Hn.

\usepackage{amsmath}

A series H_1, H_2, \dots, H_n, a sum
$H_1 + H_2 + \dots + H_n$, an orthogonal product
$H_1 \times H_2 \times \dots \times H_n$.

8-5-1

If the dots fall at the end of a mathematical formula, the next object will be
something like \end or \) or $, which does not give any information about how
to place the dots. In such a case, you must help by using \dotsc for “dots with
commas”, \dotsb for “dots with Binary operator/Relation symbols”, \dotsm for
“multiplication dots”, \dotsi for “dots with integrals”, or even \dotso for “none
of the above”. These commands should be used only in such special positions:
otherwise you should just use \dots .

In this example, low dots are produced in the first instance and centered dots
in the other cases, with the space around the dots being nicely adjusted.

A series H1,H2, . . . , a sum H1 +
H2 + · · · , an orthogonal product H1 ×
H2 × · · · , and an infinite integral:∫

H1

∫
H2

· · · −Γ dΘ

\usepackage{amsmath}

A series $H_1, H_2, \dotsc\,$, a sum
$H_1 + H_2 + \dotsb\,$, an orthogonal product
$H_1 \times H_2 \times \dotsm\,$, and an infinite
integral: \[\int_{H_1} \int_{H_2} \dotsi \;

{-\Gamma}\, d\Theta \]

8-5-2

1The commands \dots and \ldots can also be used in text mode, where both always produce a
normal text ellipsis.

8.5 Variable symbol commands 497

You can customize the symbols and spacing produced by the \dots command
in various contexts by redefining the commands \dotsc , \dotsb , \dotsm , and
\dotsi; this would normally be done in a class file. Thus, for example, you could
decide to use only two dots in some cases.

8.5.2 Horizontal extensions

In principle, any mathematical accent command can be set up to produce the
appropriate glyph from a range of widths whenever these are provided by the
available fonts. However, in standard LaTEX there are only two such commands:
\widehat and \widetilde .

This section describes a few commands that produce constructions similar to
these extensible accents. They all produce compound symbols of mathematical
class Ordinary (see Section 8.9.1 on page 524) and are illustrated in this example.

8-5-3

̂ψδ(t)Eth = ˜ψδ(t)Eth

ψδ(t)Eth = ψδ(t)Eth︷ ︸︸ ︷
ψδ(t)Eth = ψδ(t)Eth︸ ︷︷ ︸ Do not change style

−−−−−−→
ψδ(t)Eth =

←−−−−−−
ψδ(t)Eth Do not change style

without amsmath

ψδ(t)Eth−−−−−−→ = ψδ(t)Eth←−−−−−− Do need amsmath

←−−−−→
ψδ(t)Eth = ψδ(t)Eth←−−−−→ Do need amsmath

\usepackage{amsmath}

\begin{align*}
\widehat {\psi_\delta(t) E_t h}
&= \widetilde {\psi_\delta(t) E_t h} \\
\overline {\psi_\delta(t) E_t h}
&= \underline {\psi_\delta(t) E_t h} \\
\overbrace {\psi_\delta(t) E_t h}
&= \underbrace {\psi_\delta(t) E_t h}
& & \text{Do not change style} \\
\overrightarrow {\psi_\delta(t) E_t h}
&= \overleftarrow {\psi_\delta(t) E_t h}
& & \text{Do not change style} \\[-3pt]
& & & \text{without \textsf{amsmath}} \\
\underrightarrow {\psi_\delta(t) E_t h}
&= \underleftarrow {\psi_\delta(t) E_t h}
& & \text{Do need \textsf{amsmath}} \\
\overleftrightarrow {\psi_\delta(t) E_t h}
&=\underleftrightarrow{\psi_\delta(t) E_t h}
& & \text{Do need \textsf{amsmath}}
\end{align*}

Further details of the availability and properties of these commands are un-
fortunately somewhat complex but they are summarized in the example. Here,
“change style” means that the symbol employed is affected by the mathematical
style in use so that they will look right when used, for example, in fractions or
subscripts/superscripts (see Section 8.7.1 on page 502). Those that do not change
style are suitable for use only at the top level of displayed mathematics.

Another horizontally extensible feature of LaTEX is the bar in a radical sign; it
is described at the end of the next subsection.

498 Higher Mathematics

()
()

{}
\{ \}

∥∥∥∥∥∥∥∥ \lVert \rVert〈〉
\langle \rangle

{}
\lbrace \rbrace

∣∣∣∣ ∣∣∣∣ \lvert \rvert⎧⎪⎩⎫⎪⎭ \lgroup \rgroup

[]
[]

∣∣∣∣ |⎧⎪⎭⎫⎪⎩ \lmoustache \rmoustache

[]
\lbrack \rbrack

∣∣∣∣ \vert///0 \Downarrow

⌈⌉
\lceil \rceil

⏐⏐⏐⏐ \arrowvert3/// \Uparrow

⌊⌋
\lfloor \rfloor

⎪⎪⎪⎪⎪⎪⎪⎪ \bracevert3//0 \Updownarrow

��
\llbracket \rrbracket (StM)

//// \Arrowvert⏐⏐⏐� \downarrow

/
/

∥∥∥∥ \|�⏐⏐⏐ \uparrow

∖
\backslash

∥∥∥∥ \Vert�⏐⏐� \updownarrow .
√

\sqrtsign

Symbols in blue require either the amsmath package or, if additionally denoted with (StM), the stmaryrd package.

A period (.) is not itself an extensible symbol but it can be used to produce an “invisible” delimiter.

The \sqrtsign symbol cannot be used with \left , \right , or \middle.

Synonyms: [\lbrack, [] \rbrack,] { \lbrace, \{ } \rbrace, \} | \vert, | ‖ \Vert, \|

Table 8.3: Vertically extensible symbols

8.5.3 Vertical extensions

There is a much larger range available with vertical extensions. All of the symbols
depicted in Table 8.26 on page 537 are potentially extensible, as are a few others.
The full list is given in Table 8.3. These symbols become extensible only in certain
usages; they must all be based on a construction of the following form:1

\left 〈ext-Open〉 〈sub-formula〉 \right 〈ext-Close〉

1If LaTEX is using the eTEX program, then you can also use these extensible symbols with \middle.

8.6 Words in mathematics 499

Here 〈ext-Open〉 and 〈ext-Close〉 can be any of the symbols (except \sqrtsign)
listed in Table 8.3, or possibly others if additional packages are loaded. They must
be symbols that have been set up to be extensible using the methods described in
[109], which is part of every LaTEX distribution; thus, a symbol must be available to
represent the absence of an actual glyph. This symbol, which is sometimes called
the null delimiter, was chosen to be the period (.). The sizes of the actual glyphs
used to typeset the extensible symbols are chosen to fit with the vertical size
(height and depth) of the typeset sub-formula that lies in between them; the exact
details of how this is done, and of the parameters that affect the process, can be
found in Chapter 17 and Appendix G (Rule 19) of The TEXbook [82]. One can also
request specific sizes for such symbols (see Section 8.7.3 on page 504).

The radical sign \sqrtsign is even more amazing—it grows both vertically
and horizontally to fit the size of its argument. In LaTEX it is typically accessed via
the \sqrt command, which is discussed further in Section 8.7.4 on page 504.

8-5-4

√√√√√
1 +

√√√√
1 +

√
1 +

√
1 +
√

1 +
√

1 + x

\[
\sqrtsign{1 + \sqrtsign{1 + \sqrtsign{1 +

\sqrtsign{1 + \sqrtsign{1 + \sqrtsign{1 + x}}}}}}
\]

8.6 Words in mathematics

8.6.1 The \text command

Math font-changing commands such as \mathrm are not intended for putting nor-
mal text inside mathematics; even for single words this task is often best carried
out with the \text command, which is similar to the LaTEX command \mbox but is
much better, ensuring that the text is set using the correct font size. The font will
be the text font in use outside the current mathematical material.

8-6-1

Also, if Δmax up = Δmin down

(for all ups and downs) then

Δsum of ups = Δsum of downs (1)

\usepackage{amsmath}

\begin{gather}
\text{Also, if } \Delta_{\text{max up}}

= \Delta_{\text{min down}} \notag \\
\text{(for all ups and downs) then} \notag \\
\Delta_{\text{sum of ups}}

= \Delta_{\text{sum of downs}}
\end{gather}

8.6.2 Operator and function names

The names of many well-known mathematical functions (such as log and sin) and
operators (such as max and lim) are traditionally typeset as words (or abbrevi-
ations) in Roman type so as to visually distinguish them from shorter variable

500 Higher Mathematics

arccos \arccos arcsin \arcsin arctan \arctan
arg \arg cos \cos cosh \cosh
cot \cot coth \coth csc \csc
deg \deg det \det(�) dim \dim
exp \exp gcd \gcd(�) hom \hom
inf \inf(�) inj lim \injlim(�) ker \ker
lg \lg lim \lim(�) lim inf \liminf (�)

lim sup \limsup(�) ln \ln log \log
max \max(�) min \min(�) Pr \Pr(�)

proj lim \projlim (�) sec \sec sin \sin
sinh \sinh sup \sup(�) tan \tan
tanh \tanh lim−→ \varinjlim (�) lim \varliminf (�)

lim \varlimsup (�) lim←− \varprojlim (�)

Blue functions require the amsmath package. (�) indicates that the operator takes limits in displays.

Table 8.4: Predefined operators and functions

names that are set in “math italic”. The most common function names have pre-
defined commands to produce the correct typographical treatment; see Table 8.4.
Most functions are available in standard LaTEX; those listed in blue in the table re-
quire loading amsmath. The functions marked with (�)may “take limits” in display
formulas (see Section 8.4.4).

lim
x→0

sin2(x)
x2

= 1

lim
n→∞

|an+1|/|an| = 0

lim−→(mλ
i ·M)∗ ≤ lim←−

A/p→λ(A)

Ap ≤ 0

\usepackage[fleqn]{amsmath}
\newcommand\abs[1]{\lvert#1\rvert}
\setlength\mathindent{0pt}

\begin{gather*}
\lim_{x \rightarrow 0} \frac{ \sin^2(x) }{ x^2 } = 1 \\
\varliminf_{n \rightarrow \infty}

\abs{a_{n+1}} / \abs{a_n} = 0 \\
\varinjlim (m_i^\lambda \cdot M)^* \le

\varprojlim_{A/p \rightarrow \lambda(A)}A_p \le 0
\end{gather*}

8-6-2

New functions of this type are needed frequently in mathematics, so the
amsmath package provides a general mechanism for defining new “operator
names”.

\DeclareMathOperator*{cmd}{text} \operatorname*{text}

The \DeclareMathOperator defines cmd to produce text in the appropriate font
for “textual operators”. If the new function being named is an operator that should,
when used in displays, “take limits” (so that any subscripts and superscripts are
placed in the “limits” positions, above and below, as with, for example, lim, sup,

8.6 Words in mathematics 501

or min), then use the starred form \DeclareMathOperator* . In addition to using
the proper font, \DeclareMathOperator sets up good spacing on either side of
the function name when necessary. For example, it gives AmeasB instead of
AmeasB. The text argument is processed using a “pseudo-text mode” in which

• The hyphen character - will print as a text hyphen (not as a minus sign); see
\supminus in the next example.

• The asterisk character * will print as a raised text asterisk (not centered).

• Otherwise, the text is processed in math mode so that spaces are ignored and
you can use subscripts, superscripts, and other elements.

The related command \operatorname (and its *-form) simply turns its argument
into a function name, as in Example 8-2-11 on page 475. It is useful for “one-off”
operators.

The next example shows how to provide the command \meas for the new
function name “meas” (short for measure) and the operator functions \esssup
and \supminus , both of which take limits.

8-6-3

‖f‖∞ = ess sup
x∈Rn

|f(x)|

meas1{u ∈ R1
+ : f∗(u) > α} =

ess sup
x∈Ri

measi{u ∈ Rn : |f(u)| ≥ α}

(∀α ∈ sup-minus*
f∗

R∗+)

\usepackage[fleqn]{amsmath}
\DeclareMathOperator \meas {meas}
\DeclareMathOperator*\esssup {ess \, sup}
\DeclareMathOperator*\supminus{sup - minus*}
\newcommand\abs [1]{\lvert#1\rvert}
\newcommand\norm[1]{\lVert#1\rVert}

\begin{gather*}
\norm{f}_\infty = \esssup_{x \in R^n} \abs{f(x)} \\
\meas_1 \{ u \in R_+^1 \colon f^*(u)>\alpha \} = \\
\quad \esssup_{x \in R^i} \; \meas_i

\{ u \in R^n \colon \abs{f(u)} \geq \alpha \} \\
\quad (\forall \alpha \in \supminus_{f^*} R_{*+})

\end{gather*}

Unfortunately, such declarations must appear in the preamble so it is not pos-
sible to change a declaration temporarily. In fact, \DeclareMathOperator works
only for command names that have not been used previously, so it is not possi-
ble to overwrite an existing command directly. To do so, you must first remove
the previous definition (in this case, of \csc) before redeclaring it; this removal
is accomplished by using low-level TEX coding, as LaTEX provides no method for
completing this task.

8-6-4 lim
n→∞Q(un, un−u#) ≥ cosec(Q′(u#))

\usepackage{amsmath}
%% Low-level TeX needed here to cancel
%% the old definition of \csc:
\let \csc \relax
\DeclareMathOperator\csc{cosec}
\newcommand\calQ{\mathcal{Q}}

\[\varlimsup_{n\to\infty} \calQ (u_n, u_n - u^{\#})
\ge \csc (\calQ’ (u^{\#})) \]

502 Higher Mathematics

Style Superscript Subscript Numerator Denominator

D S S′ T T ′

D′ S′ S′ T ′ T ′

T S S′ S S′

T ′ S′ S′ S′ S′

S, SS SS SS′ SS SS′

S′, SS′ SS′ SS′ SS′ SS′

Table 8.5: Mathematical styles in sub-formulas

8.7 Fine-tuning the mathematical layout

Although LaTEX generally does a good job of laying out the elements of a formula,
it is sometimes necessary to fine-tune the positioning. This section describes how
to achieve some of the many detailed adjustments to the layout that are used
to produce mathematical typography that is just a little bit better. Most of this
section applies to all LaTEX mathematical material, but a few features are available
only with the amsmath package; these will be clearly labeled.

8.7.1 Controlling the automatic sizing and spacing

Letters and mathematical symbols normally get smaller, and are more tightly
spaced, when they appear in fractions, superscripts, or subscripts. In total, TEX
has eight different styles in which it can lay out formulas:

D, D′ \displaystyle Displayed on lines by themselves
T , T ′ \textstyle Embedded in text
S, S′ \scriptstyle In superscripts or subscripts
SS, SS′ \scriptscriptstyle In all higher-order superscripts or subscripts

The prime versions (D′, T ′, etc.) represent the so-called cramped styles, which are
similar to the normal styles except that superscripts are not raised so much.

TEX uses only three type sizes for mathematics in these styles: text size (also
used in \displaystyle), script size, and scriptscript size. The size of each part
of a formula can be determined according to the following scheme.

A symbol in style Will be typeset in And produces

D,D′, T , T ′ text size (text size)
S, S′ script size (script size)

SS, SS′ scriptscript size (scriptscript size)

In LaTEX, the top-level part of a formula set in running text (within a $ pair
or between \(...\)) is typeset using text style (style T). A displayed formula

8.7 Fine-tuning the mathematical layout 503

(e.g., one between \[...\]) will be typeset in display style (style D). The kind of
style used in a sub-formula can then be determined from Table 8.5 on the facing
page, where the last two columns describe the styles used in the numerator and
the denominator of a fraction.

The various styles can be seen in this example:

8-7-1 b0 +
(k + p)j′ ± (f+q)

(pk)y

j′

(h+y)

(l + q)(pk)

\normalsize %% Style:
\[b %% D

^0 %% S
+ %% D
\frac{(k + p) %% T

_{j’} %% S’
% \displaystyle
\pm %% T [D]
\frac{(f + q) %% S [T]

^{(pk) %% SS [S]
^y %% SS
_{j’}}} %% SS’

{(h + y)}} %% S’ [T’]
{(l + q) %% T’

^{(pk)}} %% S’
\]

You can change the layout of this example by explicitly specifying the style
to be used in each part. For example, if you remove the comment character in
front of \displaystyle , then some of the styles will change to those shown in
brackets. The result looks like this:

8-7-2
b0 +

(k + p)j′ ± (f + q)(pk)y

j′

(h + y)
(l + q)(pk)

Section 3.1.4 describes other ways to change the style of an individual symbol.

8.7.2 Sub-formulas

Whereas in text a pair of braces can simply indicate a group to which the effects
of some declaration should be confined, within mathematics they do more than
this. They delimit a sub-formula, which is always typeset as a separate entity that
is added to the outer formula. As a side effect, sub-formulas are always typeset at
their natural width and will not stretch or shrink horizontally when TEX tries to
fit a formula in a paragraph line during line-breaking. As shown earlier, the sub-
formula from a simple brace group is treated as if it was just a single symbol (of
class Ordinary). An empty brace group, therefore, generates an invisible symbol
that can affect the spacing. The exact details can be found in Chapters 17 and 18
and Appendix G of The TEXbook [82].

504 Higher Mathematics

The contents of subscripts/superscripts and the arguments of many (but not
all) commands, such as \frac and \mathrel , are also sub-formulas and get this
same special treatment. Important examples of arguments that are not neces-
sarily set as sub-formulas include those of \bm (see Section 8.8.2). If a group is
needed only to limit the scope of a declaration (i.e., where a separately typeset
sub-formula would be wrong), then \begingroup and \endgroup should be used.
Note that specialized mathematical declarations such as style changes apply until
the end of the current sub-formula, irrespective the presence of any other groups.

8.7.3 Big-g delimiters

To provide direct control of the sizes of extensible delimiters, LaTEX offers four
commands: \big , \Big , \bigg , and \Bigg . These take a single parameter, which
must be an extensible delimiter, and they produce ever-larger versions of the de-
limiter, from 1.2 to 3 times as big as the base size.

Three extra variants exist for each of the four commands, giving four sizes of
Opening symbol (e.g., \bigl); four sizes of Relation symbol (e.g., \Bigm); and four
sizes of Closing symbol (e.g., \Biggr).1 All 16 of these commands can (and must)
be used with any symbol that can come after either \left , \right , or (with eTEX)
\middle (see Table 8.3 on page 498).

In standard LaTEX the sizes of these delimiters are fixed. With the amsmath
package, however, the sizes adapt to the size of the surrounding material, accord-
ing to the type size and mathematical style in use, as shown in the next example.
The same is true when you load the exscale package (see Section 7.5.5), or when
you use a font package that implements the exscale functionality as an option
(e.g., most of the packages discussed in Sections 7.6 and 7.7).(

Ey

∫ tε

0

Lx,yx(s)ϕ(x) ds
)

(
Ey

∫ tε

0
Lx,yx(s)ϕ(x) ds

)
\usepackage{amsmath}

\[\biggl(\mathbf{E}_{y} \int_0^{t_\varepsilon}
L_{x, y^x(s)} \varphi(x)\, ds \biggr) \]

\Large
\[\biggl(\mathbf{E}_{y} \int_0^{t_\varepsilon}

L_{x, y^x(s)} \varphi(x)\, ds \biggr) \]

8-7-3

8.7.4 Radical movements

In standard LaTEX, the placement of the index on a radical sign is sometimes not
good. With amsmath, the commands \leftroot and \uproot can be used within
the optional argument of the \sqrt command to adjust the positioning of this
index. Positive integer arguments to these commands move the root index to the
left and up, respectively, while negative arguments move it right and down. These

1See Section 8.9.1 on page 524 for the various mathematical classes of symbols.

8.7 Fine-tuning the mathematical layout 505

arguments are given in terms of math units (see Section 8.7.6), which are quite
small, so these commands are useful for fine adjustments.

8-7-4 β
√
k

β√
k

β√
k

\usepackage{amsmath}

\[
\sqrt[\beta]{k} \qquad
\sqrt[\leftroot{2}\uproot{4} \beta]{k} \qquad
\sqrt[\leftroot{1}\uproot{3} \beta]{k}

\]

8.7.5 Ghostbusters™

To get math spacing and alignment “just right”, it is often best to make cre-
ative use of some of primitive TEX’s unique and sophisticated typesetting abilities.
These features are accessed by a collection of commands related to \phantom and
\smash ; and they can be used in both mathematical and other text.

For instance, the large alignment example (Example 8-2-9 on page 474) uses
lots of phantoms to get the alignment just right. Each of these phantoms pro-
duces an invisible “white box” whose size (width and total height plus depth) is
determined by typesetting the text in its argument and measuring its size.

Conversely, the command \smash typesets its contents (in an LR-box) but
then ignores both their height and depth, behaving as if they were both zero.
The standard LaTEX command \hphantom is a combination of these, producing
the equivalent of \smash{}: an invisible box
with zero height and depth but the width of the phantom contents.

The \vphantom command makes the width of the phantom zero but preserves
its total height plus depth. An example is the command \mathstrut , which is
defined as “\vphantom(” so that it produces a zero-width box of height and depth
equal to that of a parenthesis.

The amsmath package provides an optional argument for \smash , used as
follows: \smash[t]{...} ignores the height of the box’s contents, but retains the
depth, while \smash[b]{...} ignores the depth and keeps the height. Compare
these four lines, in which only the handling of

√
y varies:

8-7-5

√
x +

√
y +

√
z√

x +
√

y +
√
z√

x +√y +
√
z√

x +
√
y +

√
z

\usepackage{amsmath}

$\sqrt{x} + \sqrt{y} + \sqrt{z}$ \\
$\sqrt{x} + \sqrt{\mathstrut y} + \sqrt{z}$ \\
$\sqrt{x} + \sqrt{\smash{y}} + \sqrt{z}$ \\
$\sqrt{x} + \sqrt{\smash[b]{y}} + \sqrt{z}$

To get the three radical signs looking pleasantly similar, it seems that the thing
to do may be to give the y some extra height with a strut—but that only makes
things worse! The best solution turns out to be to smash the bottom of the y (but
not the whole of it!).

In the next example, the top of the large fraction in the second line appears
correctly at its normal height, while neither this height nor the depth of the p in

506 Higher Mathematics

the denominator on the first line affects the vertical space between the two lines.
This, of course, would bring the two lines in this example confusingly close to-
gether. For this reason, another \strut was added. Nevertheless, more moderate
use of smashing is often of benefit to such unbalanced displays.

fp(x) =

⎧⎨⎩
1
p x = p

(1−x)
1
2

x−sin(x−p)√
1−p cos(x−p)

x �= p

\usepackage{amsmath}

\[
f_p (x) =
\begin{cases}

\frac{1}{\smash[b]{p}} & x = p \\
\frac{\strut

\smash[t]{\frac{(1 - x)^{\frac{1}{2}} }
{ x - \sin (x - p) } } }

{\sqrt{1 - p} \, \cos (x - p)} & x \neq p
\end{cases}

\]

8-7-6

Another collection of examples illustrates a very common application of
smashing: using a partial \smash to give fine control over the height of surround-
ing delimiters. It also shows that smashing can lead to problems because the real
height of the line needs to be known; this is restored by \vphantom . In the follow-
ing code, \Hmjd is the compound symbol defined by

\newcommand\Hmjd{\widetilde{\mathcal{H}^2}_{MJD}(\chi)}

To show the resulting vertical space we added some rules:

Appearance Code Comment(
H̃ 2MJD(χ)

)
\left({\Hmjd } \right)

Outer brackets too large

(H̃ 2MJD(χ)) \left(\smash{\Hmjd } \right)
Outer brackets too small and rules too close(H̃ 2MJD(χ)

)
\left(\smash[t]{\Hmjd } \right) \vphantom{\Hmjd}

Just right!(H̃ 2MJD(χ)
)

\left(\smash[t]{\Hmjd } \right)
Both vphantom and partial smash are needed

A word of warning: in a few places, deficiencies in the very low-level TEX pro-

�Smashes being
ignored by TEX

cessing may cause errors in the fine details of typesetting. These possibilities are
of particular concern in mathematical layouts where (1) a sub-formula (such as
the numerator/denominator of a fraction or subscripts/superscripts) consists of
exactly one LR-box, or a similarly constructed mathematical box, and also (2) that

8.7 Fine-tuning the mathematical layout 507

box does not have its natural size, as with the more complex forms of \makebox ,
smashes, and some phantoms. As an example look at the following:

8-7-7

√
a + b

xj

√
a + b

xj

√
a + b

xj

√
a + b

xj + b

\[
\sqrt{ \frac{a+b}{x_j} } \quad
\sqrt{ \frac{a+b}{\smash{x_j}} } \quad
\sqrt{ \frac{a+b}{{}\smash{x_j}} } \quad
\sqrt{ \frac{a+b}{\smash{x_j+b}} }

\]

To shorten the depth of the radical, a \smash was added in the second radical,
but without any effect. With an empty brace group (third radical), it suddenly
worked. On the other hand, no workaround was needed for the forth radical.1 For
the same reason the \strut or an empty brace group was actually necessary in
Example 8-7-6 on the facing page to see any effects from the \smash commands
there. In summary, whenever you find that a \smash does not work, try adding an
empty math sub-formula (from {}) before the lonely box, to keep it from being
mistreated.

8.7.6 Horizontal spaces

Even finer, and more difficult, tuning requires the explicit spacing commands
shown in Table 8.6 on the next page. Both the full and short forms of these com-
mands are robust, and they can also be used outside math mode in normal text.
They are related to the thin, medium, and thick spaces available on the machines
used to typeset mathematics in the mid-20th century.

The amounts of space added by these \..space commands are, in fact, de-
fined by the current values of the three parameters \thinmuskip , \medmuskip ,
and \thickmuskip ; the table lists their default values with amsmath. These very
low-level TEX parameters require values in “mu” (math units). They must therefore
be set only via low-level TEX assignments (as shown in Example 8-9-2 on page 525)
and not by \setlength or similar commands. Moreover, in normal circumstances �Do not change

the parameter
values

their values should not be modified because they are used internally by TEX’s
mathematical typesetting (see Table 8.7 on page 525).

One math unit (1mu) is 1/18 of an em in the current mathematical font size
(see also Table A.1 on page 855). Thus, the absolute value of a math unit varies
with the mathematical style, giving consistent spacing whatever the style.

These math units can be used more generally to achieve even better con-
trol over space within mathematics. This is done via the amsmath command
\mspace , which is like \hspace except that it can be used only within mathemat-
ics and its length argument must be given in math units (e.g., \mspace{0.5mu}).
Thus, to get a negative \quad within a mathematical formula, you could write
\mspace{-18.0mu}; this will, for example, normally give about half the space

1Technically this is due to the denominator being wider than the numerator in this case, so that
it was not reboxed by TEX.

508 Higher Mathematics

Positive Spaces Negative Spaces

Short Space Full Short Space Full Amount

\, ⇒⇐ \thinspace \! ⇒⇐ \negthinspace 3mu

\: ⇒⇐ \medspace ⇒⇐ \negmedspace 4mu plus 2mu minus 4mu

\; ⇒⇐ \thickspace ⇒⇐ \negthickspace 5mu plus 5mu

⇒ ⇐ \enskip 0.5em

⇒ ⇐ \quad 1em

⇒ ⇐ \qquad 2em

Note: The “Amount” column is discussed in the text.

Table 8.6: Mathematical spacing commands

in a double subscript size as it does in the basic mathematical size. In contrast,
\hspace{-1em} will produce the same amount of space whatever the mathemati-
cal font size (but \text{\hspace{-1em}} will produce variable-sized space).

8.8 Fonts in formulas

For most symbols in a formula, the font used for a glyph cannot be changed by a
font declaration as it can be in text. Indeed, there is no concept of, for example,
an italic plus sign or a small caps less than sign.

One exception involves the letters of the Latin alphabet, whose appearance
can be altered by the use of math alphabet identifier commands such as \mathcal .
The commands provided by standard LaTEX for this purpose are discussed in Sec-
tion 7.4; this section introduces a few more. Another exception relates to the use
of bold versions of arbitrary symbols to produce distinct symbols with new mean-
ings. This potentially doubles the number of symbols available, as boldness can
be a recognizable attribute of a glyph for nearly every shape: depending on the
font family, even “<” is noticeably different from “<”. Although there is a \mathbf
command, the concept of a math alphabet identifier cannot be extended to cover
bold symbols; a better solution is discussed in Section 8.8.2.

To change the overall appearance of the mathematics in a document, the best
approach is to replace all the fonts used to typeset formulas. This is usually done
in the preamble of a document by loading a (set of) suitable packages, such as
those discussed in Sections 7.6 and 7.7.

At the end of this section we showcase the effects of such extensive changes,
made with but a few keystrokes, on a sample page of mathematics. Section 8.8.3
contains the same material typeset with both Computer Modern Math fonts (the
default in LaTEX) and 15 other font families for text and mathematics. All of the
fonts used are readily available and about half of them are provided free of charge.

8.8 Fonts in formulas 509

8.8.1 Additional math font commands

By loading the amsfonts (or amssymb) package, the Euler Fraktur alphabet
(\mathfrak) and a Blackboard Bold alphabet (\mathbb) become available.

8-8-1 ∀n ∈ N : Mn ≤ A
\usepackage{amsfonts}

$ \forall n \in \mathbb{N} : \mathfrak{M}_n \leq \mathfrak{A} $

As an example of small-scale changes to the mathematical typesetting, those
who prefer a visually distinct Blackboard Bold alphabet can load one from the
Math Pazo fonts. See Section 7.6.3 for more information on the Math Pazo fonts
and Section 7.4.1 for details on \DeclareMathAlphabet . In this example we first
load the amsfonts package and then overwrite its definition of \mathbb .

8-8-2 {n,m ∈ N | Nn,m}
\usepackage{amsfonts}
\DeclareMathAlphabet\mathbb{U}{fplmbb}{m}{n}

$ \lbrace n,m \in \mathbb{N} \mid \mathfrak{N}_{n,m} \rbrace $

This example shows how to include arbitrary alphabets from your LaTEX
distribution as math alphabets, with the crucial part being the arguments of
\DeclareMathAlphabet . Although getting these right may appear to be a tricky
matter, it is not so difficult once you know where to look. Fonts suitable for in-
clusion need to have an .fd file; that is, given a font family name in the Berry
naming convention (see Section 7.10.2), there should be a file 〈enc〉〈name〉.fd.
For example,

the (commercial) Lucida Handwriting font

has the family name hlcw. It is available in several encodings, including T1, so
one possible file to look at is t1hlcw.fd. In that file you will find the remaining
arguments for the declaration. The font is available only in series m and shape
it. All other font shapes contain substitutions (see Section 7.10.6 for details on
the file format for .fd files). Putting all this together enables us to provide a
\mathscr command. Another possibility is to use this alphabet as a replacement
for the standard \mathcal command.

8-8-3 AB �= AB �= AB
\DeclareMathAlphabet\mathscr{T1}{hlcw}{m}{it}

$A_B \neq \mathscr{A}_\mathscr{B} \neq \mathcal{A}_\mathcal{B}$

Of course, the presence of the file t1hlcw.fd (and other support files) on
your system does not mean that the previous example will run there. To achieve
this goal, you must also install the corresponding commercial font. Most modern
LaTEX installations contain such support files for various commercial font sets, so
that you can use these fonts the moment you have bought them and added them
to your system. In this case you would need a file called hlcriw8a.pfb.

In truth, you probably do not need to buy any fonts, because the freely avail-
able fonts already include a huge choice. The nfssfont.tex program can provide

510 Higher Mathematics

valuable help in choosing a font, by producing samples and character tables for
the fonts available to your installation (see Section 7.5.7).

8.8.2 bm—Making bold

For bold Latin letters only, you can use the command \mathbf ; for everything else,
there is the bm package. Although amsmath provides \boldsymbol and \pmb , the
rules about when to use which command, and many of the restrictions on when
they work, can now be avoided: just load the bm package and use \bm to make
any formula as bold and beautiful as the available fonts allow.

The example below shows many ways to use the \bm and \mathbf commands
and a strategy for defining shorthand names for frequently occurring bold sym-
bols, using both standard LaTEX’s \newcommand and \bmdefine , which is provided
by bm. Note that \mathbf{xy} is not identical to \bm{xy}: the former produces
bold Roman “xy” and the latter produces “xy” (i.e., bold math italic).

\usepackage{amsmath,amssymb,bm}
\newcommand\bfB{\mathbf{B}} \newcommand\bfx{\mathbf{x}}
\bmdefine\bpi{\pi} \bmdefine\binfty{\infty}

\section{The bold equivalence
$\sum_{j < B} \prod_\lambda : \bm{\sum_{x_j} \prod_\lambda}$}

\begin{gather}
B_\infty + \pi B_1 \sim \bfB_{\binfty} \bm{+}\bpi \bfB_{\bm{1}}

\bm {\sim B_\infty + \pi B_1} \\
B_\binfty + \bpi B_{\bm{1}} \bm{\in} \bm{\biggl\lbrace}

(\bfB, \bfx) : \frac {\partial \bfB}{\partial \bfx}
\bm{\lnapprox} \bm{1} \bm{\biggr\rbrace}

\end{gather}

1 The bold equivalence
∑

j<B

∏
λ :
∑∑∑

xj

∏∏∏
λ

B∞ + πB1 ∼ B∞ + πB1 ∼ B∞ + πB1 (1)

B∞ + πB1 ∈
{

(B,x) :
∂B
∂x

��� 1
}

(2)

8-8-4

In the above example bm tries its best to fulfill the requests for bold versions
of individual symbols and letters, but if you look closely you will see that the
results are not always optimal. For example,

∑
,
∏
, and � are all made bold by

use of a technique known as poor man’s bold, in which the symbol is overprinted
three times with slight offsets. Also, the { is not made bold in any way. Such
deficiencies are unavoidable because for some symbols there is simply no bold
variant available when using the Computer Modern math fonts.

The situation changes when the txfonts are loaded by changing the first line
of the previous example to \usepackage{amsmath,amssymb,txfonts,bm}. This

8.8 Fonts in formulas 511

family of fonts contains bold variants for all symbols from standard LaTEX and
amssymb. It produces the following output:

8-8-5

1 The bold equivalence
∑

j<B
∏
λ :
∑

x j

∏
λ

B∞ + πB1 ∼ B∞ + πB1 ∼ B∞ + πB1 (1)

B∞ + πB1 ∈
{
(B, x) :

∂B
∂x
� 1
}

(2)

What are the precise rules used by \bm to produce bold forms of the symbols
in its argument? In a nutshell, it makes use of the fact that LaTEX includes a bold
math version (accessible via \boldmath) for typesetting a whole formula in bold
(provided suitable bold fonts are available and set up). For each symbol, the \bm
command looks at this math version to see what would be done in that version. If �Load the bm

package after
packages that
change the existing
math font set-up!

the font selected for the symbol is different from the one selected in the normal
math version, it then typesets the symbol in this bold font, obtaining a perfect
result (assuming that the bold math version was set up properly). If the fonts in
both versions are identical, it assumes that there is no bold variant available and
applies poor man’s bold (see above).

With delimiters, such as \biggl\lbrace in the example, the situation is even
more complex: a delimiter in TEX is typically typeset by a glyph chosen to match a
requested height from a sequence of different sizes (see Section 8.5.3 on page 498).
Moreover, these glyphs can live in different fonts and a particular size may or may
not have bold variants, making it impossible for \bm to reliably work out whether
it needs to apply poor man’s bold. It therefore essentially typesets the delimiter
using whatever fonts the bold math version offers. With the Computer Modern
math fonts, only the smallest delimiter size is available in bold; all other sizes
come from fonts that have no bold variants.

8-8-6

⎧⎨⎩
{{{

{Q〉
〉〉〉〉 \usepackage{bm}

$\bm{\Biggl\lbrace\biggl\lbrace\Bigl\lbrace\bigl\lbrace \lbrace
\mathcal{Q}
\rangle \bigr\rangle\Bigr\rangle\biggr\rangle\Biggr\rangle}$

This situation can be improved by use of the txfonts (as in Example 8-8-5) or
use of another font set with full bold variants, such as the pxfonts shown here:

8-8-7

⎧⎪⎪⎨⎪⎪⎩
⎧⎪⎨⎪⎩
{{
{Q〉
〉〉〉〉 \usepackage{pxfonts,bm}

$\bm{\Biggl\lbrace\biggl\lbrace\Bigl\lbrace\bigl\lbrace \lbrace
\mathcal{Q}
\rangle \bigr\rangle\Bigr\rangle\biggr\rangle\Biggr\rangle}$

Normally, \bm requires that if a command that itself takes arguments is within
its argument, then that command must be fully included (i.e., both the command
and its arguments must appear) in the argument of \bm ; as a result, all parts of the

512 Higher Mathematics

typeset material will be in bold. If you really need the output of a command with
arguments to be only partially bold, then you have to work harder. You should
place the symbol(s) that should not be bold in an \mbox and explicitly reset the
math version within the box contents using \unboldmath . TEX considers an \mbox
to be a symbol of class Ordinary (see Section 8.9.1); hence, to get the spacing right,
you may have to surround it by a \mathbin , \mathrel , or \mathop .

2
√

x × α but 2
√

x × α
or the similar

√
x×α

\usepackage{amsmath,bm}

$ \bm{\sqrt[2]{x \times \alpha}} $ but
$ \bm{\sqrt[2]{x \mathbin{\mbox{\unboldmath\times}} \alpha}} $
or the similar

$ \bm{\sqrtsign}{\bm{x} \times \bm{\alpha}} $

8-8-8

Fortunately, such gymnastics are seldom needed. In most cases involving com-
mands with arguments, only parts of the arguments need to be made bold, which
can be achieved by using \bm inside those arguments. As with \sqrtsign in the ex-
ample above, for the common case of bold accents \bm is specially programmed to
allow the accent’s argument to be outside its own argument. However, if you need
such accents regularly, it is wise to define your own abbreviation using \bmdefine ,
as in the next example.

Although \bmdefine\bpi{\pi} appears to be simply shorthand for
Speeding up the

processing
\newcommand\bpi{\bm{\pi}} , in fact almost the opposite is true: \bm defines
a new hidden temporary command using \bmdefine and then immediately uses
this temporary command to produce the bold symbol. In other words, \bmdefine
does all the hard work! If you frequently use, for example, something that is de-
fined via \bm{\alpha} , then a new \bmdefine is executed at every use. If you set
things up by doing \bmdefine\balpha{\alpha} , then \bmdefine does its time-
consuming work only once, however many times \balpha is used.

â �= â �= â = â �= â
\usepackage{bm} \bmdefine\bhat{\hat}

$\hat a \neq \bm{\hat a} \neq \bm\hat a = \bhat a \neq \bm\widehat a$
8-8-9

This example also shows that the variable-width accents (e.g., \widehat) share a
deficiency with the delimiters: in the Computer Modern math set-up they come
from a font for which no bold variant is available.

The bm package tries very hard to produce the correct spacing between sym-
Dealing with

strange errors
bols (both inside and outside the argument of \bm). For this effort to work, \bm
has to “investigate” the definitions of the commands in its argument to determine
the correct mathematical class to which each of the resulting symbols belongs
(see Section 8.9.1 on page 524). It is possible that some strange constructions
could confuse this investigation. If this happens then LaTEX will almost certainly
stop with a strange error. Ideally, this problem should not arise with constructs
from standard LaTEX or theAMS-LaTEX distributions, but proper parsing in TEX is ex-
tremely difficult and the odd overlooked case might still be present. For instance,
the author got trapped when writing this section by the fact that \bm was trying

8.8 Fonts in formulas 513

to process the argument of \hspace instead of producing the desired space (this
problem is fixed in version 1.1a).

If some command does produce an error when used inside \bm , you can al-
ways surround it and all its arguments with an extra level of braces—for example,
writing \bm{..{\cmd..}..} rather than simply \bm{..\cmd..}. The \bm com-
mand will not attempt to parse material surrounded by braces but will use the
\boldmath version to typeset the whole of the formula within the braces. The
resulting bold sub-formula is then inserted as if it were a “symbol” of class Ordi-
nary. Thus, to obtain the right spacing around it, you may have to explicitly set
its class; for instance, for a relation you would use \bm{..\mathrel{\cmd..}..}
(see Section 8.9.1 on page 524).

8.8.3 A collection of math font set-ups

In this section we show a sample text typeset with different font set-ups for math
and text. Figure 8.1 shows the sample text typeset in Computer Modern text and
math fonts—the default font set-up in LaTEX. Figures 8.2 to 8.16 on pages 514–523
(with blue captions to visually separate caption and sample) have also been gener-
ated by typesetting this sample text, each time loading different support packages
for text and math fonts. These packages do all the work required to modify LaTEX’s
internal tables. For other set-ups and additional information see [24].

8-8-10

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f(x, y, z) dx dy dz and
∏

γ∈ΓC̃
∂(X̃γ);

and also on display:

∫∫∫∫
Q

f(w, x, y, z) dw dx dy dz ≤
∮

∂Q

f ′
(

max
{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x⊕ y‖

})

t
⊎

Q�Q̄

⎡⎣f∗

⎛⎝
⎧⎭Q(t)

⎫⎩
√

1− t2

⎞⎠⎤⎦t=ϑ

t=α

(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1− x)−k = 1 +
∞∑

j=1

(−1)j

{
k

j

}
xj for k ∈ N; k �= 0. (2)

Figure 8.1: Sample page typeset with Computer Modern fonts

514 Higher Mathematics

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f(x, y, z) dx dy dz and
∏

γ∈Γ
C̃

∂(X̃γ);

and also on display:

∫∫∫∫
Q

f(w, x, y, z) dw dx dy dz ≤
∮
∂∂∂QQQ

f ′
(
max

{ ‖w‖
jw2 + x2j ;

‖z‖
jy2 + z2j ;

‖w ⊕ z‖
‖x⊕ y‖

})

�
⊎

Q�Q̄

⎡
⎣f∗

⎛
⎝
⎧⎭Q(t)

⎫⎩
√
1− t2

⎞
⎠
⎤
⎦
t=ϑ

t=α

(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1− x)−k = 1 +
∞∑
j=1

(−1)j
{
k

j

}
xj for k ∈ N; k �= 0. (2)

8-8-11

Figure 8.2: Sample page typeset with Concrete fonts

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f(x, y, z)dxdydz and
∏

γ∈Γ
C̃

∂(X̃γ);

and also on display:

∫∫∫∫
Q

f(w, x, y, z)dwdxdydz �
∮
∂Q

f ′
(
max

{ ‖w‖
|w2 + x2|

;
‖z‖

|y2 + z2|
;
‖w⊕ z‖
‖x⊕ y‖

})

t
⊎

Q�Q̄

⎡⎣f∗

⎛⎝
⎧⎭Q(t)

⎫⎩
√

1 − t2

⎞⎠⎤⎦t=ϑ

t=α

(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1 − x)−k = 1 +

∞∑
j=1

(−1)j

{
k

j

}
xj for k ∈ N; k �= 0. (2)

8-8-12

Figure 8.3: Sample page typeset with Concrete and Euler fonts

8.8 Fonts in formulas 515

8-8-13

1 Sample page of mathematical typesetting

First some large operators both in text:

Q

f (x, y,z)dx d y dz and
∏

γ∈ΓC̃
∂(X̃γ); and

also on display:

∫∫∫∫
Q

f (w,x, y,z)dw dx d y dz ≤
∮
∂∂∂QQQ

f ′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

t
⊎

Q�Q̄

⎡⎣ f ∗
⎛⎝
⎧⎭Q(t)

⎫⎩
�

1− t 2

⎞⎠⎤⎦t=ϑ

t=α

(1)

For x in the open interval]−1,1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1,1].

(1− x)−k = 1+
∞∑

j=1
(−1) j

{
k

j

}
x j for k ∈N; k �= 0. (2)

Figure 8.4: Sample page typeset with Fourier fonts

The Concrete Roman text fonts were designed by Donald Knuth, matching
math fonts were designed by Ulrik Vieth; see Section 7.7.2. They are shown in
Figure 8.2, which was produced by adding \usepackage[boldsans]{ccfonts} to
the preamble of the sample document. Note that Concrete fonts have no boldface,
so that the ∂Q subscript on the integral comes out in poor man’s bold.

Figure 8.3 combines Concrete Roman with Euler Math (designed by Hermann
Zapf). This combination was produced with

\usepackage{ccfonts} \usepackage[euler-digits]{eulervm}

and shows no deficiencies with bold symbols in math; see also Section 7.7.10. You
will probably want to design different headings, as the default (Computer Modern
boldface extended) does not blend very well with Concrete Roman.

In Figure 8.4 we see Utopia combined with Fourier Math fonts (designed by
Michel Bovani). This combination has been discussed in Section 7.7.7 and was
produced by adding \usepackage{fourier} to the preamble. Again, the boldface
subscript shows deficiencies, but these are expected to be addressed in a future
release of the fonts.

The METAFONT versions of Concrete, both Roman and Math, are freely avail-
able. Scalable outlines can be purchased from MicroPress.1 The Fourier set-up is
freely available in Type 1 format.

1http://www.micropress-inc.com

516 Higher Mathematics

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f (x,y,z)dxdydz and ∏γ∈ΓC̃
∂ (X̃γ); and also

on display:

∫∫∫∫
Q

f (w,x,y,z)dwdxdydz≤
∮

∂∂∂QQQ
f ′
(

max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w⊕ z‖
‖x⊕ y‖

})

t
⊎
Q�Q̄

⎡⎣ f ∗

⎛⎝
⎧⎭Q(t)

⎫⎩
√

1− t2

⎞⎠⎤⎦t=ϑ

t=α

(1)

For x in the open interval]−1,1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1,1].

(1− x)−k = 1+
∞

∑
j=1

(−1) j
{

k
j

}
x j for k ∈ N; k �= 0. (2)

8-8-14

Figure 8.5: Sample page typeset with Times and Symbol

1 Sample page of mathematical typesetting

First some large operators both in text:
�
Q

f (x, y, z) dx dy dz and
∏
γ∈ΓC̃
∂(X̃γ); and also

on display:

�

Q

f (w, x, y, z) dw dx dy dz ≤
∮
∂Q

f ′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

�
⊎
Q�Q̄

⎡⎢⎢⎢⎢⎢⎣ f ∗
⎛⎜⎜⎜⎜⎜⎝
⎧⎭Q(t)

⎫⎩
√

1 − t2

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦

t=ϑ

t=α

(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1 − x)−k = 1 +
∞∑
j=1

(−1) j

{
k
j

}
x j for k ∈ N; k � 0. (2)

8-8-15

Figure 8.6: Sample page typeset with Times and TX fonts

8.8 Fonts in formulas 517

8-8-16

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f (x, y, z) dx dy dz and
∏

γ∈ΓC̃
∂(X̃γ); and

also on display:

∫∫∫∫
Q

f (w, x, y, z) dw dx dy dz ≤
∮
∂Q

f ′
(

max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

�
⊎
Q�Q̄

⎡
⎢⎣f∗

⎛
⎜⎝
⎧⎭Q(t)

⎫⎩√
1 − t2

⎞
⎟⎠
⎤
⎥⎦

t=ϑ

t=α
(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1 − x)−k = 1 +
∞∑
j=1

(−1)j
{
k

j

}
xj for k ∈ N; k 	= 0. (2)

Figure 8.7: Sample page typeset with Times and TM Math fonts

This page spread shows three math font set-ups for use with Times Roman as
a body font. With Times Roman being one of the predominant fonts in use today,
several solutions have been developed to provide support for it.

Figure 8.5 shows a free solution devised by Alan Jeffrey and others (discussed
in Section 7.6.2), which was produced by adding \usepackage{mathptmx} to the
preamble. It deploys Adobe’s Symbol font for most mathematical symbols and
due to a missing set of bold symbols for math, shows the typical deficiencies in
this respect. In contrast to other font solutions it does not offer its own shapes for
the extended AMS symbol set but uses the standard Computer Modern shapes.

Figure 8.6 also shows a freely available implementation deploying the TX
fonts (designed by Young Ryu). It offers the full range of mathematical symbols
including boldface variants, but uses exceptionally tight spacing so that some-
times symbols in formulas touch each other; see Section 7.7.5 for details. It can
be activated by adding \usepackage{txfonts} in the preamble.

In Figure 8.7 we see the commercially available TM Math solution by Micro-
Press,1 which uses considerably wider spacing in formulas. It comprises bold sym-
bols and offers its own shapes for the AMS extended symbol set. It can be activated
through \usepackage{tmmath,tmams} in the preamble.

Other commercial Math fonts in Type 1 format for use with Times Roman
are MathTime and MathTime Professional (designed by Michael Spivak), available
through Y&Y2 and PcTEX,

3 respectively.

1http://www.micropress-inc.com 2http://www.tug.org/yandy 3http://www.pctex.com

518 Higher Mathematics

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f (x, y, z) dx dy dz and ∏γ∈ΓC̃
∂(X̃γ);

and also on display:

∫∫∫∫
Q

f (w, x, y, z) dw dx dy dz ≤
∮

∂Q
f ′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w⊕ z‖
‖x⊕ y‖

})

t
⊎

Q�Q̄

⎡⎣ f ∗

⎛⎝
⎧⎭Q(t)

⎫⎩
√
1− t2

⎞⎠⎤⎦t=ϑ

t=α
(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [−1, 1].

(1− x)−k = 1+
∞

∑
j=1

(−1)j
{

k
j

}
xj for k ∈ N; k �= 0. (2)

8-8-17

Figure 8.8: Sample page typeset with Palatino and Math Pazo

1 Sample page of mathematical typesetting

First some large operators both in text:
�
Q

f (x, y, z) dx dy dz and
∏
γ∈ΓC̃
∂(X̃γ); and

also on display:

�

Q

f (w, x, y, z) dw dx dy dz ≤
∮
∂Q

f ′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

�
⊎
Q�Q̄

⎡⎢⎢⎢⎢⎢⎣ f ∗
⎛⎜⎜⎜⎜⎜⎝
⎧⎭Q(t)⎫⎩√
1 − t2

⎞⎟⎟⎟⎟⎟⎠
⎤⎥⎥⎥⎥⎥⎦

t=ϑ

t=α

(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1 − x)−k = 1 +
∞∑
j=1

(−1) j
{

k
j

}
xj for k ∈N; k � 0. (2)

8-8-18

Figure 8.9: Sample page typeset with Palatino and PX fonts

8.8 Fonts in formulas 519

8-8-19

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f(x, y, z)dx dy dz and
∏

γ∈ΓC̃ ∂(X̃γ);

and also on display:

∫∫∫∫
Q

f(w,x, y, z)dwdx dy dz ≤
∮
∂Q

f ′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

t
⊎

Q�Q̄

⎡⎢⎣f∗

⎛⎜⎝
⎧⎭Q(t)⎫⎩
√
1 − t2

⎞⎟⎠
⎤⎥⎦

t=ϑ

t=α
(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [−1, 1].

(1 − x)−k = 1 +
∞∑
j=1

(−1)j
{
k

j

}
xj for k ∈ N; k
= 0. (2)

Figure 8.10: Sample page typeset with Palatino and PA Math fonts

The typeface Palatino was designed by Hermann Zapf for the Stempel foundry
in 1948 based on lettering from the Italian Renaissance. Since then it has become
one of the most widely used typefaces, and probably the most popular Old Style
revival in existence. A number of math font set-ups are available for use with
Palatino as the text font.

Figure 8.8 shows the freely available Math Pazo fonts (designed by Diego Puga),
which can be activated with \usepackage{mathpazo}. It offers boldface symbols
and a matching blackboard bold alphabet, but does not contain specially designed
shapes for the AMS symbol set; see also Section 7.6.3.

In contrast, the free PX fonts (designed by Young Ryu) comprise the com-
plete symbol set. They are shown in Figure 8.9. Just like the TX fonts, they are
very tightly spaced; see Section 7.7.6 for details. This set-up can be activated with
\usepackage{pxfonts}.

Figure 8.10 shows the commercial solution offered by MicroPress.1 It provides
a similar range of symbols as the Math Pazo solution with roughly the same run-
ning length, though with noticeably different shapes. This set-up can be activated
with \usepackage{pamath}.

1http://www.micropress-inc.com

520 Higher Mathematics

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f (x, y, z)dxdy dz and
∏

γ∈ΓC̃
∂(X̃γ);

and also on display:

∫∫∫∫
Q

f (w, x, y, z)dw dxdy dz ≤
∮
∂Q

f ′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x⊕ y‖

})

t
⊎

Q�Q̄

⎡
⎣f ∗

⎛
⎝

⎧⎭Q(t)
⎫⎩

√
1− t2

⎞
⎠

⎤
⎦

t=ϑ

t=α
(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1− x)−k = 1 +
∞∑
j=1

(−1)j
{
k

j

}
xj for k ∈ N; k
= 0. (2)

8-8-20

Figure 8.11: Sample page typeset with Baskerville fonts

1 Sample page of mathematical typesetting

First some large operators both in text:
∫ ∫ ∫
�

f(x,y, z)dx dy dz and
∏

γ∈ΓC̃
∂(X̃γ);

and also on display:

∫∫∫∫
Q

f(w,x, y, z)dw dx dy dz ≤
∮
∂Q

f ′
(

max
{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w⊕ z‖
‖x⊕ y‖

})

�
⊎
Q�Q̄

⎡
⎢⎣f∗

⎛
⎜⎝
⎧⎭Q(t)

⎫⎩
√

1 − t2

⎞
⎟⎠
⎤
⎥⎦
t=ϑ

t=α

(1)

For x in the open interval]−1,1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [−1,1].

(1 − x)−k = 1 +
∞∑
j=1

(−1)j
{
k

j

}
xj for k ∈ N; k �= 0. (2)

8-8-21

Figure 8.12: Sample page typeset with Charter fonts

8.8 Fonts in formulas 521

8-8-22

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q
f(x,y, z)dx dy dz and

∏
γ∈ΓC̃ ∂(X̃γ);

and also on display:

∫∫∫∫
Q

f(w,x,y, z)dw dxdy dz ≤
∮
∂∂∂QQQ
f ′
(
max

{
‖w‖

|w2 + x2| ;
‖z‖

|y2 + z2| ;
‖w ⊕ z‖
‖x ⊕y‖

})

�
⊎
Q�Q̄

⎡⎣f∗
⎛⎝
⎧⎭Q(t)⎫⎩√
1− t2

⎞⎠⎤⎦t=ϑ
t=α

(1)

For x in the open interval]−1,1[the infinite sum in Equation (2) is con-
vergent; however, this does not hold throughout the closed interval [−1,1].

(1− x)−k = 1+
∞∑
j=1
(−1)j

{
k
j

}
xj for k ∈ N; k ≠ 0. (2)

Figure 8.13: Sample page typeset with Lucida Bright

Figure 8.11 deploys the Baskerville typeface as a text font. This “transitional”
typeface was originally designed by John Baskerville (1706–1775) and can be ob-
tained from many font vendors. The math fonts are BA Math from MicroPress1—
their distribution also contains a variant of the Baskerville text fonts used here.
The BA Math fonts include bold weights but do not contain shapes for the AMS
symbol set. Note that although the individual symbols do not look very large, the
display formulas take more vertical space than in other examples. The font set-up
is activated with \usepackage{ba}.

Figure 8.12 shows the use of the commercial CH Math fonts (also from Mi-
croPress1). Their distribution has been designed to work with the freely available
Charter fonts; see Section 7.6.1. The CH Math fonts comprise the full set of math-
ematical symbols including the AMS additions and are activated by adding the
preamble line \usepackage{chmath,chams}.

The Lucida Bright and Lucida New Math fonts are displayed in Figure 8.13.
This set of commercial text and math fonts has been designed by Charles Bigelow
and Kris Holmes and can be obtained from Y&Y.2 The font set-up covers all stan-
dard mathematical symbols including AMS additions and is activated by loading
the lucidabr package. As you will notice, the formulas run very wide, which en-
hances legibility at the cost of space. The body font in this book is Lucida Bright.
However, for the examples, we usually used Computer Modern to make them come
out as in standard LaTEX.

1http://www.micropress-inc.com 2http://www.tug.org/yandy

http://www.micropress-inc.com

522 Higher Mathematics

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f (x, y , z) dx dy dz and
∏

γ∈Γ
C̃
∂(X̃γ);

and also on display:

∫∫∫∫
Q

f (w, x, y , z) dw dx dy dz ≤
∮
∂∂∂QQQ

f ′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

�
⊎
Q�Q̄

⎡⎣f ∗
⎛⎝
⎧⎭Q(t)

⎫⎩
√
1− t2

⎞⎠⎤⎦t=ϑ

t=α

(1)

For x in the open interval]−1, 1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1, 1].

(1− x)−k = 1 +

∞∑
j=1

(−1)j
{
k

j

}
x j for k ∈ N; k �= 0. (2)

8-8-23

Figure 8.14: Sample page typeset with CM Bright fonts

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f (x, y, z)dx dy dz and
∏

γ∈ΓC̃
∂(X̃γ);

and also on display:

∫ ∫ ∫ ∫
Q

f (w, x, y, z)dw dx dy dz ≤
∮
∂Q

f ′
(

max
{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

�
⊎
Q�Q̄

⎡
⎢⎣f ∗

⎛
⎜⎝

⎧⎭Q(t)
⎫⎩

√
1 − t2

⎞
⎟⎠
⎤
⎥⎦

t=ϑ

t=α
(1)

For x in the open interval]−1,1[the infinite sum in Equation (2) is convergent;
however, this does not hold throughout the closed interval [−1,1].

(1 − x)−k = 1 +
∞∑
j=1

(−1)j
{
k
j

}
xj for k ∈ N; k 	= 0. (2)

8-8-24

Figure 8.15: Sample page typeset with Helvetica Math fonts

8.8 Fonts in formulas 523

8-8-25

1 Sample page of mathematical typesetting

First some large operators both in text:
∫∫∫
Q

f(x, y, z) dx dy dz and
∏

γ∈ΓC̃ ∂(X̃γ); and

also on display:

∫∫∫∫
Q

f(w, x, y, z) dw dx dy dz ≤
∮
∂Q
f′
(
max

{ ‖w‖
|w2 + x2| ;

‖z‖
|y2 + z2| ;

‖w ⊕ z‖
‖x ⊕ y‖

})

t
⊎

Q�Q̄

⎡
⎣f∗

⎛
⎝
⎧⎭Q(t)

⎫⎩
√
1 − t2

⎞
⎠
⎤
⎦

t=ϑ

t=α

(1)

For x in the open interval]−1,1[the infinite sum in Equation (2) is conver-
gent; however, this does not hold throughout the closed interval [−1,1].

(1 − x)−k = 1 +
∞∑
j=1

(−1)j
{
k

j

}
xj for k ∈ N; k
= 0. (2)

Figure 8.16: Sample page typeset with Informal Math fonts

This page spread shows two sans serif set-ups and an “informal” math font
set-up. The solutions involving sans serif fonts can be usefully deployed in many
circumstances, such as conventional articles, presentations (e.g., slides, reports),
online documentation, or magazines. On the other hand, the Informal Math solu-
tion should probably be confined to announcements, fliers, and similar material.

Figure 8.14 shows the Computer Modern Bright set of fonts (designed by Wal-
ter Schmidt), which are based on the Computer Modern font design. The solution
offers the full range of math symbols in normal and bold weights and is activated
by loading the cmbright package; see Section 7.7.3. The fonts are freely available
in METAFONT format, and the Type 1 versions are commercially available from
MicroPress.1

Figure 8.15 shows a math font set-up for use with Helvetica (originally de-
signed by Max Miedinger). The HV math fonts have been designed at MicroPress1

and comprise the full set of mathematical symbols. The set-up is activated by load-
ing the packages hvmath and hvams (for the AMS symbol set). While the Type 1
fonts are only commercially available, you can obtain 300dpi bitmapped fonts
free of charge from MicroPress.

Finally, Figure 8.16 shows the Informal Math solution also offered by Micro-
Press.1 The font design is loosely based on Adobe’s Tekton family of fonts. The
set-up is activated by loading the infomath package. Note that the text fonts are
only available in OT1 and that the AMS symbol set is not supported.

1http://www.micropress-inc.com

http://www.micropress-inc.com

524 Higher Mathematics

8.9 Symbols in formulas

The tables at the end of this section advertise the large range of mathematical sym-
bols provided by theAMS fonts packages, including the command to use for each
symbol. They also include the supplementary symbols from the St Mary Road Font,
which was designed by Alan Jeffrey and Jeremy Gibbons. This font extends the
Computer Modern andAMS symbol font collections; the corresponding stmaryrd
package should normally be loaded in addition to amssymb, but always after it.
It provides extra symbols for fields such as functional programming, process al-
gebra, domain theory, linear logic, and many more. For a wealth of information
about an even wider variety of symbols, see the Comprehensive LATEX Symbol List
by Scott Pakin [134].

The tables indicate which extra packages need to be loaded to use each sym-
bol command. They are organized as follows: symbols with command names in
black are available in standard LaTEX without loading further packages; symbols
in blue require loading either amsmath, amssymb, or stmaryrd, as explained in
the table notes. If necessary, further classification is given by markings: (StM) sig-
nals a symbol from stmaryrd when the table also contains symbols from other
packages; (kernel) identifies symbols that are available in standard LaTEX but only
by combining two or more glyphs, whereas a single glyph exists in the indicated
package; and (var) marks “Alphabetic characters/symbols” (of type \mathalpha ;
see Table 7.30 on page 435) that change appearance when used within the scope
of a math alphabet identifier (see Section 7.4).

8.9.1 Mathematical symbol classes

The symbols are classified primarily by their “mathematical class”, occasionally
called their “math symbol type”. This classification is related to their “meaning”
in standard technical usage, but its importance for mathematical typography is
that it influences the layout of a formula. For example, TEX’s mathematical for-
matter adjusts the horizontal space on either side of each symbol according to
its mathematical class. There are also some finer distinctions made, for example,
between accents and simple symbols and in breaking up the enormous list of
Relation symbols into several tables.

The set-up for mathematics puts each symbol into one of these classes: Or-
dinary (Ord), Operator (Op), Binary (Bin), Relation (Rel), Opening (Open), Clos-
ing (Close), or Punctuation (Punct). This classification can be explicitly changed
by using the commands \mathord , \mathop , \mathbin , \mathrel , \mathopen ,
\mathclose , and \mathpunct , thereby altering the surrounding spacing. In this
example, \# and \top (both Ord by default) are changed into a Rel and an Op.

a# α
xx

α
b

a #
α

x
xα

b

\usepackage[fleqn]{amsmath}

\[a \# \top _x^\alpha x^\alpha_b \]
\[a \mathrel{\#} \mathop{\top}_x^\alpha x^\alpha_b \]

8-9-1

8.9 Symbols in formulas 525

Right Object

Ord Op Bin Rel Open Close Punct Inner

Ord 0 1 (2) (3) 0 0 0 (1)

Op 1 1 * (3) 0 0 0 (1)
Bin (2) (2) * * (2) * * (2)

Left Rel (3) (3) * 0 (3) 0 0 (3)
Object Open 0 0 * 0 0 0 0 0

Close 0 1 (2) (3) 0 0 0 (1)
Punct (1) (1) * (1) (1) (1) (1) (1)
Inner (1) 1 (2) (3) (1) 0 (1) (1)

0 = no space, 1 = \thinmuskip, 2 = \medmuskip, 3 = \thickmuskip, * = impossible

Entries in (blue) are not added when in the mathematical “script styles” (see also Sections 8.7.1 and 8.7.6).

Table 8.7: Space between symbols

A symbol can be declared to belong to one of the above classes using the
mechanism described in Section 7.10.7. In addition, certain sub-formulas—most
importantly fractions, and those produced by \left and \right—form a class
called Inner; it is explicitly available through the \mathinner command.

In TEX, spacing within formulas is done simply by identifying the class of
each object in a formula and then adding space between each pair of adjacent
objects as defined in Table 8.7; this table is unfortunately hard-wired into TEX’s
mathematical typesetting routines and so cannot be changed by macro packages.1

In this table 0, 1, 2, and 3 stand for no space, a thin space (\,), a medium space
(\:), and a thick space (\;), respectively. The exact amounts of space used are
listed in Section 8.7.6 on page 507.

A Binary symbol is turned into an Ordinary symbol whenever it is not pre-
ceded and followed by symbols of a nature compatible with a binary operation;
for this reason, some entries in the table are marked with a star to indicate that
they are not possible. For example, $+x$ gives +x (a “unary plus”) and not + x ;
the latter can be produced by ${}+x$.

Finally, an entry in (blue) in Table 8.7 indicates that the corresponding space
is not inserted when the style is script or scriptscript.

As an example of applying these rules, consider the following formula (the
default values are deliberately changed to show the added spaces more clearly):

8-9-2 a − b = − max{x, y}
\thinmuskip=10mu \medmuskip=17mu \thickmuskip=30mu

\[
a - b = -\max \{ x , y \}

\]

1Although a few of the entries in the table are questionable, on the whole it gives pleasing results.

526 Higher Mathematics

ABC DE F GH I J K LM N OP QRS T U V W X Y Z
a b c d e f g h i j k lmn o p q r s t u v w x y z

0 1 2 3 4 5 6 7 8 9

Table 8.8: Latin letters and Arabic numerals

TEX identifies the objects as Ord, Bin, Ord, and so on, and then inserts spaces as
follows:

a - b = - \max \{ x , y \}
Ord \: Bin \: Ord \; Rel \; Ord \, Op Open Ord Punct \, Ord Close

The minus in front of \max is turned into an Ordinary because a Binary cannot
follow a Relation.

Table 8.7 reveals a difference1 between a “\left . . . \right” construction, in
which the entire sub-formula delimited by the construction becomes a single ob-
ject of class Inner (see Section 8.5.3 on page 498), and commands like \Bigl and
\Bigr that produce individual symbols of the classes Opening and Closing, re-
spectively. Although they may result in typesetting delimiters of equal vertical
size, spacing differences can arise depending on adjacent objects in the formula.
For example, Ordinary followed by Opening gets no space, whereas Ordinary fol-
lowed by Inner is separated by a thin space. The spaces inside the sub-formula
within a “\left . . . \right” construction are as expected, beginning with an Open-
ing symbol and ending with a Closing symbol. In this example we again use larger
spaces to highlight the difference.

a
(∑

x
)

�= a
(∑

x
) \thinmuskip=10mu \medmuskip=17mu \thickmuskip=30mu

\[a \Bigl(\sum x \Bigr) \neq a \left(\sum x \right) \]
8-9-3

In summary, it is not enough to look up a symbol in the tables that follow;
rather, it is also advisable to check that the symbol has the desired mathematical
class to ensure that it is properly spaced when used. Example 8-9-4 on page 528
shows how to define new symbols that differ only in their mathematical class from
existing symbols.

8.9.2 Letters, numerals, and other Ordinary symbols

The unaccented ASCII Latin letters and Arabic numeral digits (see Table 8.8) are
referred to as “Alphabetic symbols”. The font used for them can vary: in mathe-
matical formulas, the default font for Latin letters is italic whereas for the Arabic
digits it is upright/Roman. Alphabetical symbols are all of class Ordinary.

1Another important distinction is that the material within a “\left . . . \right” construction is
processed separately as a sub-formula (see Section 8.7.2 on page 503).

8.9 Symbols in formulas 527

Δ \Delta (var) Γ \Gamma (var) Λ \Lambda (var) Ω \Omega (var) Φ \Phi (var)

Π \Pi(var) Ψ \Psi(var) Σ \Sigma (var) Θ \Theta (var) Υ \Upsilon (var)

Ξ \Xi(var) α \alpha β \beta χ \chi δ \delta

w \digamma ε \epsilon η \eta γ \gamma ι \iota

κ \kappa λ \lambda μ \mu ν \nu ω \omega

φ \phi π \pi ψ \psi ρ \rho σ \sigma

τ \tau θ \theta υ \upsilon ε \varepsilon κ \varkappa

ϕ \varphi $ \varpi % \varrho ς \varsigma ϑ \vartheta

ξ \xi ζ \zeta

Symbols in blue require the amssymb package. (var) indicates a variable Alphabetic symbol.

Table 8.9: Symbols of class \mathord (Greek)

Unlike the Latin letters, the mathematical Greek letters are no longer closely
related to the glyphs used for typesetting normal Greek text. Due to an interest-
ing 18th-century happenstance, in the major European tradition of mathematical
typography the default font for lowercase Greek letters in mathematical formulas
is italic whereas for uppercase Greek letters it is upright/Roman. (In other fields,
such as physics and chemistry, the typographical traditions are slightly different.)

The capital Greek letters in the first rows of Table 8.9 are also Alphabetic sym-
bols whose font varies, with the default being upright/Roman. Those capital Greek
letters not present in this table are the letters that have the same appearance as
some Latin letter (e.g., A and Alpha, B and Beta, K and Kappa, O and Omicron).
Similarly, the list of lowercase Greek letters contains no omicron because it would
be identical in appearance to the Latin o. Thus, in practice, the Greek letters that
have Latin look-alikes are not used in mathematical formulas.

Table 8.10 lists other letter-shaped symbols of class Ordinary. The first four
are Hebrew letters. Table 8.11 lists the remaining symbols in the Ordinary class,

ℵ \aleph f \beth h \daleth ג \gimel

$ \$ � \Im " \Re k \Bbbk

� \circledS � \complement � \ell ð \eth

b \Finv c \Game z \hbar(kernel) � \hslash

ı \imath j \jmath $ \mathdollar ¶ \mathparagraph

§ \mathsection £ \mathsterling d \mho ¶ \P

∂ \partial £ \pounds § \S ℘ \wp

Symbols in blue require the amssymb package.

Synonyms: $ \mathdollar, \$ ¶ \mathparagraph, \P § \mathsection, \S £ \mathsterling, \pounds

Table 8.10: Symbols of class \mathord (letter-shaped)

528 Higher Mathematics

! ! . . / /
? ? @ @ | |
\# % \% & \&
_ _ ‖ \| ∠ \angle (kernel)

‖ \Arrowvert | \arrowvert � \backprime
\ \backslash 	 \bigstar
 \blacklozenge
� \blacksquare � \blacktriangle \blacktriangledown
⊥ \bot ⎪ \bracevert ♣ \clubsuit
© \copyright " \diagdown ! \diagup
♦ \diamondsuit ∅ \emptyset ∃ \exists
+ \flat ∀ \forall ♥ \heartsuit
∞ \infty � \lightning (StM) ¬ \lnot
♦ \lozenge � \measuredangle ∇ \nabla
- \natural ¬ \neg C \nexists
′ \prime 0 \sharp ♠ \spadesuit
� \sphericalangle � \square

√
\surd

 \top + \triangle � \triangledown
c� \varcopyright (StM) ∅ \varnothing ‖ \Vert
| \vert

Symbols in blue require either the amssymb package or, if flagged with (StM), the stmaryrd package.

Note that the exclamation sign, period, and question mark are not treated as punctuation in formulas.

Synonyms: ¬ \lnot, \neg | \vert, | ‖ \Vert, \|

Table 8.11: Symbols of class \mathord (miscellaneous)

including some common punctuation. These behave like letters and digits, so they
never get any extra space around them.

A common mistake is to use the symbols from Table 8.11 directly as Binary
operator or Relation symbols, without using a properly defined math symbol com-
mand for that type. Thus, if you use commands such as \# , \square , or \& , check
carefully that you get the correct inter-symbol spaces or, even better, define your
own symbol command.

a¬b x�y + z

a ¬ b x � y + z

a ¬ b x � y + z

\usepackage[fleqn]{amsmath} \usepackage{amssymb}
\DeclareMathSymbol\bneg {\mathbin}{symbols}{"3A}
\DeclareMathSymbol\rsquare{\mathrel}{AMSa}{"03}

\[a \neg b \qquad x \square y + z \]
\[a \mathbin{\neg} b \qquad x \mathrel{\square} y + z \]
\[a \bneg b \qquad x \rsquare y + z \]

8-9-4

The \DeclareMathSymbol declaration is explained in Section 7.10.7. The cor-
rect values for its arguments are most easily found by looking at the definitions

8.9 Symbols in formulas 529

x́ \acute{x} x̄ \bar{x} x̆ \breve{x} x̌ \check{x}
....
x \ddddot{x}

...
x \dddot{x} ẍ \ddot{x} ẋ \dot{x}

x̀ \grave{x} x̂ \hat{x} x̊ \mathring{x} x̃ \tilde{x}
1x \vec{x} x̂yz \widehat{xyz} x̃yz \widetilde{xyz}

Accents in blue require the amsmath package.

The last two accents are available in a range of widths, the largest suitable one being automatically used.

Table 8.12: Mathematical accents, giving sub-formulas of class \mathord

in the file amssymb.sty or fontmath.ltx (for the core symbols). For example, we
looked up \neg and \square , replaced the \mathord in each case, and finally gave
the resulting symbol a new name.

8.9.3 Mathematical accents

The accent commands available for use in formulas are listed in Table 8.12. Most
of them are already defined in standard LaTEX. See Section 8.4.8 for ways to define
additional accent commands and Section 8.5.2 for information about extensible
accents. Adding a mathematical accent to a symbol always produces a symbol
of class Ordinary. Thus, without additional help, one cannot use the accents to
produce new Binary or Relation symbols.

8-9-5 a = b but a=̃b which is not a =̃ b
\usepackage{amstext}

\[a = b \text{ but } a \tilde{=} b
\text{ which is not } a \mathrel{\tilde{=}} b \]

Other ways to place symbols over Relation symbols are shown in Sec-
tion 8.4.10. When adding an accent to an i or j in mathematics, it is best to use
the dotless variants \imath and \jmath ; for example, use \hat{\jmath} to get ĵ.

8.9.4 Binary operator symbols

There are more than 100 symbols of class Binary operators from which to choose.
Most of these Binary symbols are shown in Table 8.13 on the next page. Some of
them are also available, under different names, as Relation symbols.

The amssymb package offers a few box symbols for use as Binary operators;
many more are added by stmaryrd. These are shown in Table 8.14.

The stmaryrd package can be loaded with the option heavycircles. It causes
each circle symbol command in Table 8.15 on page 531 that starts with \var
to swap its definition with the corresponding command without the “var”; for
example, the symbol \varodot becomes \odot , and vice versa.

530 Higher Mathematics

∗ * + + − -
, \amalg ∗ \ast � \baro(StM)

� \barwedge � \bbslash (StM) - \bigtriangledown
+ \bigtriangleup � \Cap ∩ \cap
� \Cup ∪ \cup � \curlyvee
� \curlywedge † \dag † \dagger
‡ \ddag ‡ \ddagger 0 \diamond
÷ \div A \divideontimes � \dotplus
� \doublecap � \doublecup � \fatbslash (StM)

	 \fatsemi (StM)
 \fatslash (StM) j \gtrdot
ᵀ \intercal � \interleave (StM) ∧ \land� \lbag (StM) \leftslice (StM) � \leftthreetimes
i \lessdot ∨ \lor k \ltimes� \merge (StM) � \minuso (StM) � \moo (StM)

∓ \mp � \nplus(StM) ± \pm� \rbag (StM) � \rightslice (StM) � \rightthreetimes
l \rtimes \ \setminus o \smallsetminus
4 \sqcap � \sqcup � \sslash (StM)

� \star � \talloblong (StM) × \times
2 \triangleleft � \triangleright 5 \uplus
- \varbigtriangledown (StM) + \varbigtriangleup (StM) � \varcurlyvee (StM)

� \varcurlywedge (StM) � \vartimes (StM) ∨ \vee
� \veebar ∧ \wedge � \wr� \Ydown (StM) � \Yleft (StM) � \Yright (StM)

� \Yup (StM)

Symbols in blue require either the amssymb package or, if flagged with (StM), the stmaryrd package.

The left and right triangles are also available as Relation symbols.

The stmaryrd package confusingly changes the Binary symbols \bigtriangleup and \bigtriangledown into Operators,

leaving only the synonyms \varbigtriangleup and \varbigtriangledown for the Binary operator forms.

Synonyms: ∧ \land, \wedge ∨ \lor, \vee � \doublecup, \Cup � \doublecap, \Cap

∗ \ast, * † \dag, \dagger ‡ \ddag, \ddagger

Table 8.13: Symbols of class \mathbin (miscellaneous)

� \boxast(StM) � \boxbar (StM) � \boxbox (StM) \boxbslash (StM)

! \boxcircle (StM) " \boxdot # \boxempty (StM) � \boxminus

� \boxplus $ \boxslash (StM) � \boxtimes % \oblong (StM)

All symbols require either the amssymb package or, if flagged with (StM), the stmaryrd package.

Table 8.14: Symbols of class \mathbin (boxes)

8.9 Symbols in formulas 531

© \bigcirc • \bullet · \cdot

 \centerdot ◦ \circ ! \circledast

" \circledcirc # \circleddash ! \oast (StM)

& \obar(StM) ' \obslash (StM) " \ocircle (StM)

8 \odot (\ogreaterthan (StM)) \olessthan (StM)

9 \ominus ⊕ \oplus � \oslash

⊗ \otimes * \ovee(StM) + \owedge (StM)

� \varbigcirc (StM) , \varoast (StM) - \varobar (StM)

. \varobslash (StM) / \varocircle (StM) 0 \varodot (StM)

1 \varogreaterthan (StM) 2 \varolessthan (StM) 3 \varominus (StM)

4 \varoplus (StM) 5 \varoslash (StM) 6 \varotimes (StM)

7 \varovee (StM) 8 \varowedge (StM)

Symbols in blue require either the amssymb package or, if flagged with (StM), the stmaryrd package.

Option heavycircles of the stmaryrd package affects all commands starting with \var and their normal variants.

Synonyms: � \oast, \circledast � \ocircle, \circledcirc

Table 8.15: Symbols of class \mathbin (circles)

8.9.5 Relation symbols

The class of binary Relation symbols forms a collection even larger than that of the
Binary operators. The lists start with symbols for equality and order (Table 8.16
on the next page). You can put a slash through any Relation symbol by preceding
it with the \not command; this negated symbol represents the complement (or
negation) of the relation.

8-9-6 u �< v or a �∈ A $ u \not< v$ or $a \not\in \mathbf{A} $

Especially with larger symbols, this generic method of negating a Relation
symbol does not always give good results because the slash will always be of
the same size, position, and slope. Therefore, some specially designed “negated
symbols” are also available (see Table 8.17 on the following page). If a choice is
available, the designed glyphs are usually preferable. To see why, compare the
symbols in this example.

8-9-7
�≤ �: �∼
� � �

\usepackage{amssymb}

$ \not\leq \ \not\succeq \ \not\sim $ \par
$ \nleq \ \nsucceq \ \nsim $

Next come the Relation symbols for sets and inclusions, and their negations
(see Tables 8.18 and 8.19).

532 Higher Mathematics

< < = = > > ≈ \approx

r \approxeq < \asymp $ \backsim % \backsimeq

& \Bumpeq ' \bumpeq (\circeq ∼= \cong

) \curlyeqprec * \curlyeqsucc + \Doteq
.= \doteq

+ \doteqdot , \eqcirc e \eqsim - \eqslantgtr

. \eqslantless ≡ \equiv / \fallingdotseq ≥ \ge

≥ \geq 0 \geqq � \geqslant = \gg

≫ \ggg ≫ \gggtr 2 \gtrapprox 3 \gtreqless

4 \gtreqqless ≷ \gtrless 6 \gtrsim 9 \leftrightarroweq (StM)

≤ \leq 7 \leqq � \leqslant 8 \lessapprox

9 \lesseqgtr : \lesseqqgtr ≶ \lessgtr < \lesssim

≤ \le > \ll ≪ \lll ≪ \llless

≺ \prec t \precapprox > \preccurlyeq @ \preceq

? \precsim @ \risingdotseq ∼ \sim D \simeq

E \succ s \succapprox A \succcurlyeq : \succeq

B \succsim ≈ \thickapprox ∼ \thicksim C \triangleq

Symbols in blue require either the amssymb package or, if flagged with (StM), the stmaryrd package.

Synonyms: ≤ \le, \leq ≥ \ge, \geq � \Doteq, \doteqdot ≪ \llless, \lll ≫ \gggtr, \ggg

Table 8.16: Symbols of class \mathrel (equality and order)

� \gnapprox � \gneq � \gneqq � \gnsim

� \gvertneqq � \lnapprox � \lneq � \lneqq

� \lnsim � \lvertneqq \ncong �= \ne

�= \neq � \ngeq � \ngeqq � \ngeqslant

≯ \ngtr � \nleq � \nleqq \nleqslant

≮ \nless ⊀ \nprec � \npreceq � \nsim

 \nsucc � \nsucceq � \precnapprox � \precneqq

� \precnsim � \succnapprox � \succneqq � \succnsim

Symbols in blue require either the amssymb package or, if flagged with (StM), the stmaryrd package.

Synonyms: �= \ne, \neq

Table 8.17: Symbols of class \mathrel (equality and order—negated)

8.9 Symbols in formulas 533

D \blacktriangleleft E \blacktriangleright ∈ \in: \inplus(StM) F \ni ; \niplus (StM)

< \ntrianglelefteqslant (StM) = \ntrianglerighteqslant (StM) F \owns

F \sqsubset G \sqsubseteq G \sqsupset

H \sqsupseteq � \Subset ⊂ \subset

⊆ \subseteq H \subseteqq > \subsetplus (StM)

? \subsetpluseq (StM) I \Supset ⊃ \supset

⊇ \supseteq J \supseteqq @ \supsetplus (StM)

A \supsetpluseq (StM) K \trianglelefteq B \trianglelefteqslant (StM)

L \trianglerighteq C \trianglerighteqslant (StM) M \vartriangle

N \vartriangleleft O \vartriangleright

Symbols in blue require either the amssymb package or, if flagged with (StM), the stmaryrd package.

Synonyms: 	 \owns, \ni

Table 8.18: Symbols of class \mathrel (sets and inclusion)

∉ \notin - \nsubseteq % \nsubseteqq

. \nsupseteq & \nsupseteqq 9 \ntriangleleft

8 \ntrianglelefteq : \ntriangleright 7 \ntrianglerighteq

+ \subsetneq ' \subsetneqq , \supsetneq

(\supsetneqq # \varsubsetneq) \varsubsetneqq

$ \varsupsetneq * \varsupsetneqq

Symbols in blue require the amssymb package.

Table 8.19: Symbols of class \mathrel (sets and inclusion—negated)

They are followed by Relation symbols that are arrow-shaped (see Tables 8.20
and 8.21). Some extensible arrow constructions that produce compound Relation
symbols are described in Section 8.5.2 on page 497.

In addition to \not , used to negate general Relation symbols, other build-
ing blocks have been especially designed to negate or extend arrow-like symbols;
these are collected in Table 8.22.

8-9-8 D←→ E←↩
\usepackage{stmaryrd}

$\Longarrownot\longleftrightarrow \qquad \arrownot\hookleftarrow$

Finally, in Table 8.23 on page 535 you will find a miscellaneous collection of
Relation symbols.

534 Higher Mathematics

P \circlearrowleft Q \circlearrowright F \curlyveedownarrow (StM)

G \curlyveeuparrow (StM) H \curlywedgedownarrow (StM) I \curlywedgeuparrow (StM)

u \curvearrowleft v \curvearrowright RRS \dasharrow

TRR \dashleftarrow RRS \dashrightarrow ⇓ \Downarrow

↓ \downarrow U \downdownarrows V \downharpoonright

← \gets ←↩ \hookleftarrow ↪→ \hookrightarrow

⇐ \Leftarrow ← \leftarrow W \leftarrowtailJ \leftarrowtriangle (StM) K \leftrightarrowtriangle (StM) ↽ \leftharpoondown

↼ \leftharpoonup ⇔ \leftleftarrows � \Leftrightarrow

↔ \leftrightarrow Y \leftrightarrows Z \leftrightharpoons

[\leftrightsquigarrow \ \Lleftarrow ⇐= \Longleftarrow

←− \longleftarrow ⇐⇒ \Longleftrightarrow ←→ \longleftrightarrow

⇐=L \Longmapsfrom (StM) ←−M \longmapsfrom (StM) N=⇒ \Longmapsto (StM)

V−→ \longmapsto =⇒ \Longrightarrow −→ \longrightarrow

] \looparrowleft ^ \looparrowright _ \Lsh

⇐L \Mapsfrom (StM) ←M \mapsfrom (StM) N⇒ \Mapsto (StM)

V→ \mapsto ` \multimap ↗ \nearrowO \nnearrow (StM) P \nnwarrow (StM) ↖ \nwarrow

a \restriction ⇒ \Rightarrow → \rightarrow

b \rightarrowtail Q \rightarrowtriangle (StM) ⇁ \rightharpoondown

⇀ \rightharpoonup c \rightleftarrows d \rightleftharpoons

⇒ \rightrightarrows f \rightsquigarrow g \Rrightarrow

h \Rsh ↘ \searrow R \shortdownarrow (StM)

S \shortleftarrow (StM) T \shortrightarrow (StM) U \shortuparrow (StM)

V \ssearrow (StM) W \sswarrow (StM) ↙ \swarrow

→ \to i \twoheadleftarrow j \twoheadrightarrow

⇑ \Uparrow ↑ \uparrow _ \Updownarrow

� \updownarrow k \upharpoonleft a \upharpoonright

l \upuparrows

Symbols in blue require either the amssymb package or, if flagged with (StM), the stmaryrd package.

Synonyms: ← \gets, \leftarrow → \to, \rightarrow � \restriction, \upharpoonright

�� \dashrightarrow, \dasharrow

Table 8.20: Symbols of class \mathrel (arrows)

= \nLeftarrow ; \nleftarrow ? \nLeftrightarrow

@ \nleftrightarrow > \nRightarrow < \nrightarrow

Symbols in blue require the amssymb package.

Table 8.21: Symbols of class \mathrel (arrows—negated)

8.9 Symbols in formulas 535

D \Arrownot (StM) E \arrownot (StM) ↪ \lhook D \Longarrownot (StM)

E \longarrownot (StM) L \Mapsfromchar (StM) M \mapsfromchar (StM) N \Mapstochar (StM)

V \mapstochar � \not ↩ \rhook

Symbols in blue require the stmaryrd package.

These symbols are for combining, mostly with arrows; e.g., \longarrownot\longleftarrow gives �←−.

Use \joinrel to “glue” relational symbols together, e.g., \lhook\joinrel\longrightarrow gives ↪−→.

The dimensions of these symbols make them unsuitable for other uses.

Table 8.22: Symbols of class \mathrel (negation and arrow extensions)

: : { \backepsilon ∵ \because n \between

�2 \bowtie \dashv 9 \frown � \Join

| \mid |= \models 0 \nmid ∦ \nparallel

1 \nshortmid 2 \nshortparallel 6 \nVDash 4 \nVdash

5 \nvDash 3 \nvdash ‖ \parallel ⊥ \perp

o \pitchfork ∝ \propto m \shortmid n \shortparallel

p \smallfrown q \smallsmile : \smile ∴ \therefore

∝ \varpropto t \Vdash u \vDash a \vdash

v \Vvdash

Relation symbols in blue require the amssymb package.

\therefore is a Relation symbol, so its spacing may not be as expected in common uses.

Table 8.23: Symbols of class \mathrel (miscellaneous)

8.9.6 Punctuation

The symbols of class Punctuation appear in Table 8.24, together with some other
punctuation-like symbols. Note that some of the typical punctuation characters
(i.e., “. ! ?”) are not set up as mathematical punctuation but rather as symbols
of class Ordinary. This can cause unexpected results for common uses of these
symbols, especially in the cases of ! and ?. Some of the dots symbols listed here
are of class Inner; Section 8.5.1 on page 496 provides information about using
dots for mathematical ellipsis.

The : character produces a colon with class Relation—not a Punctuation sym-
bol. As an alternative, standard LaTEX offers the command \colon as the Punctu-
ation symbol. However, the amsmath package makes unfortunate major changes
to the spacing produced by the command \colon , so that it is useful only for
a particular layout in constructions such as f\colon A\to B where it produces
f : A→ B. It is therefore wise to always use \mathpunct{:} for the simple punc-
tuation colon in mathematics.

536 Higher Mathematics

, , · · · \cdots . . . \hdots . . . \ldots . . . \mathellipsis

; ; : \colon
. . . \ddots

... \vdots

Punctuation symbols in blue require the amsmath package.

The logical amsmath commands normally used to access \cdots and \ldots are described in Section 8.5.1.

The \colon command is redefined in amsmath, making it unsuitable for use as a general punctuation character.

Synonyms: . . . \hdots, \ldots . . . \mathellipsis, \ldots

Table 8.24: Symbols of class \mathpunct , \mathord , \mathinner (punctuation)

∫ ∫
\int

∮ ∮
\oint

XY
\bigbox (StM)

⋂⋂
\bigcap

⋃⋃
\bigcup

Z[
\bigcurlyvee (StM)

\]
\bigcurlywedge (StM)

^_
\biginterleave (StM)

`a
\bignplus (StM)

⊙⊙
\bigodot

⊕⊕
\bigoplus

⊗⊗
\bigotimesb c

\bigparallel (StM)
de

\bigsqcap (StM)
⊔⊔

\bigsqcupfg
\bigtriangledown (StM)

hi
\bigtriangleup (StM)

⊎⊎
\biguplus∨∨

\bigvee
∧∧

\bigwedge
∐∐

\coprod∏∏
\prod ∫ ∫ \smallint

∑∑
\sum

Operator symbols in blue require the stmaryrd package.

The stmaryrd package confusingly changes the Binary symbols \bigtriangleup and \bigtriangledown into

Operators, but there are alternative commands for the Binary operator forms.

Note that \smallint does not change size.

Table 8.25: Symbols of class \mathop

8.9.7 Operator symbols

The Operator symbols typically come in two sizes, for text and display uses; most
of them are related to similar Binary operator symbols. Whether an Operator sym-
bol takes limits in displays depends on a variety of factors (see Section 8.4.4). The
available collection is shown in Table 8.25.

8.9 Symbols in formulas 537

[]
[]

{}
\{ \}

∥∥∥∥∥∥∥∥ \lVert \rVert[]
\lbrack \rbrack

{}
\lbrace \rbrace

∣∣∣∣ ∣∣∣∣ \lvert \rvert⌈⌉
\lceil \rceil

()
()

⎧⎪⎩⎫⎪⎭ \lgroup \rgroup⌊⌋
\lfloor \rfloor

〈〉
\langle \rangle

⎧⎪⎭⎫⎪⎩ \lmoustache \rmoustache

��
\llbracket \rrbracket (StM)

Delimiters in blue require either the amsmath package or, if flagged with (StM), the stmaryrd package.

Synonyms: [\lbrack, [] \rbrack,] { \lbrace, \{ } \rbrace, \}

Table 8.26: Symbol pairs of class \mathopen and \mathclose (extensible)

jk \llceil \rrceil (StM) lm \binampersand \bindnasrepma (StM) n o \Lbag \Rbag (StM)

pq \llfloor \rrfloor (StM) r s \llparenthesis \rrparenthesis (StM)

All these pairs of symbols require the stmaryrd package and are not extensible.

Table 8.27: Symbol pairs of class \mathopen and \mathclose (non-extensible)

8.9.8 Opening and Closing symbols

The paired extensible delimiters, when used on their own (i.e., without a preceding
\left , \right , or \middle), produce symbols of class Opening or Closing; these
pairs are listed in Table 8.26. See Section 8.5.3 on page 498 for further information
about the extensible symbols.

To improve the flexibility of the vertical bar notation, amsmath defines some
new pairs of paired extensible delimiter commands: \lvert , \rvert , \lVert ,
and \rVert . These commands are comparable to standard LaTEX’s \langle and
\rangle commands.

The stmaryrd package adds a collection of non-extensible paired symbols of
class Opening and Closing, which are listed in Table 8.27.

This page intentionally left blank

C H A P T E R 9

LATEX in a Multilingual
Environment

This chapter starts with a short introduction to the technical problems that must
be solved if you want to use (LA)TEX with a non-English language. Most of the
remaining part of the chapter discusses the babel system, which provides a con-
venient way of generating documents in different languages. We look in particular
how we can typeset documents in French, German, Russian, Greek, and Hebrew, as
the typesetting of those languages illustrates various aspects of the things one has
to deal with in a non-English environment. Section 9.5 explains the structure of
babel’s language definition files for the various language options. Finally, we say a
few words about how to handle other languages, such as Arabic and Chinese, that
are not supported by babel.

9.1 TEX and non-English languages

Due to its popularity in the academic world, TEX spread rapidly throughout the
world and is now used not only with the languages based on the Latin alphabet,
but also with languages using non-Latin alphabetic scripts, such as Russian, Greek,
Arabic, Persian, Hebrew, Thai, Vietnamese, and several Indian languages. Imple-
mentations also exist for Chinese, Japanese, and Korean, which use Kanji-based
ideographic scripts.

With the introduction of 8-bit TEX and METAFONT, which were officially re-
leased by Donald Knuth in March 1990, problems of multilingual support could
be more easily addressed for the first time. Nevertheless, by themselves, these

540 LATEX in a Multilingual Environment

versions do not solve all the problems associated with providing a convenient
environment for using LaTEX with multiple and/or non-English languages.

To achieve this goal, TEX and its companion programs should be made truly
international, and the following points should be addressed:

1. Adjust all programs to the particular language(s):

• Support typesetting in different directions, this ability is offered by sev-
eral programs (e.g., eTEX, Omega) [27,97],

• Create proper fonts containing national symbols [137],

• Define standard character set encodings, and

• Generate patterns for the hyphenation algorithm.

2. Provide a translation for the language-dependent strings, create national lay-
outs for the standard documents, and provide TEX code to treat the language-
dependent typesetting rules automatically [120].

3. Support processing of multilingual documents (more than one language in the
same document) and work in international environments (one language per
document, but a choice between several possibilities). For instance, the sorting
of indexes and bibliographic references should be performed in accordance
with a given language’s alphabet and collating sequence; see the discussion
on xindy in Section 11.3.

At the same time, you should be able to conveniently edit, view, and print
your documents using any given character set, and LaTEX should be able to suc-
cessfully process files created in this way. There exist, however, almost as many
different character encoding schemes as there are languages (for example, IBM PC
personal computers have dozens of code pages). In addition, several national and
international standards exist, such as the series ISO 8859-x [67]. Therefore, some
thought should be given to the question of compatibility and portability. If a doc-
ument is to be reproducible in multiple environments, issues of standardization
become important. In particular, sending 8-bit encoded documents via electronic
mail generated problems at one time, because some mail gateways dropped the
higher-order bit, rendering the document unprocessable. The e-mail problem is
more or less solved now that almost all mailers adhere to the Multipart Inter-
net Mail Extensions (MIME) standard, in which the use of a particular encoding
standard (e.g., ISO 8859-x) is explicitly declared in the e-mail’s header. The fact
remains, however, that it is necessary to know the encoding in which a document
was produced. For this purpose LaTEX offers the inputenc package, described in
Section 7.11.3 on page 443.

Document encoding problems will ultimately be solved when new standards
that can encode not only the alphabetic languages, but also ideographic scripts
like Chinese, Japanese, and Korean are introduced. Clearly, 8 bits are not sufficient
to represent even a fraction of the “characters” in those scripts. Multi-byte elec-

9.1 TEX and non-English languages 541

tronic coding standards have been developed to serve this need—in particular, “16-
bit” Unicode [165], which is a subset of the multi-byte ISO 10646 [69,70]. Unicode
will likely become the base encoding of most operating systems in the near future.
Moreover, Unicode lies at the very heart of the XML [26] meta-language, on which
all recently developed markup languages of the Internet are based. Thus, the in-
tegrity of electronic documents and data—structural as well as content-wise—can
be fully guaranteed. LaTEX supports a restricted version of Unicode’s UTF-8 repre-
sentation through the inputenc option utf8 discussed in Section 7.5.2.

At its Portland, Oregon, meeting in July 1992, TUG’s Technical Council set
up the Technical Working Group on Multiple Language Coordination (TWGMLC),
chaired by Yannis Haralambous. This group was charged with promoting and co-
ordinating the standardization and development of TEX-related software adapted
to different languages. Its aim was to produce for each language or group of lan-
guages a package that would facilitate typesetting. Such a package should contain
details about fonts, input conventions, hyphenation patterns, a LaTEX option file
compatible with the babel concept (see Section 9.1.3), possibly a preprocessor,
and, of course, documentation in English and the target language.

9.1.1 Language-related aspects of typesetting

When thinking about supporting typesetting documents in languages other than
English, a number of aspects that need to be dealt with come to mind.

First and foremost is the fact that other languages have different rules for
hyphenation, something that TEX accommodates through its support for multiple
hyphenation patterns. In some languages, however, certain letter combinations
change when they appear at a hyphenation point. TEX does not support this capa-
bility “out of the box”.

Some languages need different sets of characters to be properly typeset. This
issue can vary from the need for additional “accented letters” (as is the case with
many European languages) to the need for a completely different alphabet (as is
the case with languages using the Cyrillic or Greek alphabet). When non-European
languages need to be supported, the typesetting direction might be different as
well (such as right to left for Arabic and Hebrew texts) or so many characters might
be needed (as is the case with the Kanji script, for instance) that TEX’s standard
mechanisms cannot deal with them.

A more “subtle” problem turns up when we look at the standard document
classes that each LaTEX distribution supplies. They were designed for the Anglo-
American situation. A specific example where this preference interferes with sup-
porting other languages is the start of a chapter. For some languages it is not
enough to just translate the word “Chapter”; the order of the word and the denom-
ination of the chapter needs to be changed as well, solely on the basis of grammat-
ical rules. Where the English reader expects to see “Chapter 1”, the French reader
expects to see “1er Chapitre”.

542 LATEX in a Multilingual Environment

9.1.2 Culture-related aspects of typesetting

An even more thorny problem when faced with the need to support typesetting of
many languages is the fact that typesetting rules differ, even between countries
that use the same language. For instance, hyphenation rules differ between British
English and American English. Translations of English words might vary between
countries, just as they do for the German spoken in Germany and the German
spoken (and written) in Austria.

Typographic rules may differ between countries, too. No worldwide standard
tells us how nested lists should be typeset; on the contrary, their appearance may
differ for different languages, or countries, or even printing houses. With these
aspects we enter the somewhat fuzzy area comprising the boundary between lan-
guage aspects of typesetting and cultural aspects of typesetting. It is not clear
where that boundary lies. When implementing support for typesetting documents
written in a specific language, this difference needs to be taken into account. The
language-related aspects can be supported on a general level, but the cultural as-
pects are more often than not better (or more easily) handled by creating specific
document classes.

9.1.3 Babel—LATEX speaks multiple languages

The LaTEX distribution contains a few standard document classes that are used by
most users. These classes (article, report, book, and letter) have a certain American
look and feel, which not everyone likes. Moreover, the language-dependent strings,
such as “Chapter” and “Table of Contents” (see Table 9.2 on page 547 for a list of
commands holding language-dependent strings), come out in English by default.

The babel package developed by Johannes Braams [25] provides a set of op-
tions that allow the user to choose the language(s) in which the document will be
typeset. It has the following characteristics:

• Multiple languages can be used simultaneously.

• The hyphenation patterns, which are loaded when INITEX is run to produce
the LaTEX format, can be defined dynamically via an external file.

• Translations for the language-dependent strings and commands for facilitat-
ing text input are provided for more than 20 languages (see Table 9.1 on the
facing page).

In the next section we describe the user interface of the babel system. We then
discuss the additional commands for various languages and describe the support
for typesetting languages using non-Latin alphabets. Finally, we discuss ways to
tailor babel to your needs and go into some detail about the structure of the
language definition files (.ldf) that implement the language-specific commands in
babel. Throughout the sections, examples illustrate the use of various languages
supported by babel.

9.2 The babel user interface 543

Language Option

Bahasa bahasa
Basque basque
Breton breton
Bulgarian bulgarian
Catalan catalan
Croatian croatian
Czech czech
Danish danish
Dutch dutch, afrikaans
English english, USenglish, (american,

canadian), UKenglish (british),
australian (newzealand)

Esperanto esperanto
Estonian estonian
Finnish finnish
French french (frenchb, francais,

acadian, canadien)
Galician galician
German german (germanb), ngerman,

austrian, naustrian
Greek greek, polutonikogreek
Hebrew hebrew
Hungarian magyar (hungarian)

Language Option

Icelandic icelandic
Interlingua interlingua
Irish Gaelic irish
Italian italian
Latin latin
Lower Sorbian lowersorbian
North Sami samin
Norwegian norsk, nynorsk
Polish polish
Portuguese portuges (portuguese),

brazilian (brazil)
Romanian romanian
Russian russian
Scottish Gaelic scottish
Serbian serbian
Slovakian slovak
Slovenian slovene
Spanish spanish
Swedish swedish
Turkish turkish
Ukrainian ukrainian
Upper Sorbian uppersorbian
Welsh welsh

Options typeset in parentheses are alias names for the preceding option.

Other options for a single language typically differ in hyphenation rules, date handling, or
language-dependent strings.

The option english combines American hyphenation patterns with a British date format.

Table 9.1: Language options supported by the babel system

9.2 The babel user interface

Any language that you use in your document should be declared as an option
when loading the babel package. Alternatively, because the language(s) in which
a document is written constitute a global characteristic of the document, the lan-
guages can be indicated as global options on the \documentclass command. This
strategy makes them available to any package that changes behavior depending on
the language settings of the document. Currently supported options are enumer-
ated in Table 9.1. For example, the following declaration prepares for typesetting

544 LATEX in a Multilingual Environment

in the languages German (option ngerman for new hyphenation rules) and Italian
(option italian):

\usepackage[ngerman,italian]{babel}

The last language appearing on the \usepackage command line will be the de-
fault language used at the beginning of the document. In the above example, the
language-dependent strings, the hyphenation patterns (if they were loaded for the
given language when the LaTEX format was generated with INITEX; see the discus-
sion on page 580), and possibly the interpretation of certain language-dependent
commands (such as the date) will be for Italian from the beginning of the docu-
ment up to the point where you choose a different language.

If one decides to make ngerman and italian global options, then other pack-
ages can also detect their presence. For example, the following code lets the pack-
age varioref (described in Section 2.4.2 on page 68) detect and use the options
specified on the \documentclass command:

\documentclass[ngerman,italian]{article}
\usepackage{babel}
\usepackage{varioref}

If you use more than one language in your document and you want to define
your own language-dependent strings for the varioref commands, you should use
the methods described in Section 9.5 on page 579 and not those discussed in
Section 2.4.2.

9.2.1 Setting or getting the current language

Within a document it is possible to change the current language in several ways.
For example, you can change all language-related settings including translations
for strings like “Chapter”, the typesetting conventions, and the set-up for short-
hand commands. Alternatively, you can keep the translations unchanged but mod-
ify everything else (e.g., when typesetting short texts in a foreign language within
the main text). Finally, you can change only the hyphenation rules.

\selectlanguage{language} \begin{otherlanguage}{language}

A change to all language-related settings is implemented via the command
\selectlanguage . For instance, if you want to switch to German, you would use
the command \selectlanguage{german}. The process is similar for switching to
other languages. Each language must have been declared previously as a language
option in the preamble as explained earlier. The \selectlanguage command calls
the macros defined in the language definition file (see Section 9.5) and activates
the special definitions for the language in question. It also updates the setting of
TEX’s \language primitive used for hyphenation.

9.2 The babel user interface 545

The environment otherlanguage provides the same functionality as the
\selectlanguage declaration, except that the language change is local to the en-
vironment. For mixing left-to-right typesetting with right-to-left typesetting, the
use of this environment is a prerequisite. The argument language is the language
one wants to switch to.

\foreignlanguage{language}{phrase} \begin{otherlanguage*}{language}

The command \foreignlanguage typesets phrase according to the rules of lan-
guage. It switches only the extra definitions and the hyphenation rules for the lan-
guage, not the names and dates. Its environment equivalent is otherlanguage*.

9-2-1

The expansion of fixed document element
names depends on the language, e.g., in
English we have “References” or
“Chapter”.
Auf Deutsch ergibt sich „Literatur“ oder
„Kapitel“.
Voici en français : « Références » ou
« Chapitre ».
But in short phrases “Références” does
not change!

\usepackage[german,french,english]{babel}
\raggedright

The expansion of fixed document element names
depends on the language, e.g., in English
we have ‘‘\refname’’ or ‘‘\chaptername’’. \par
\selectlanguage{german} Auf Deutsch ergibt sich
"‘\refname"’ oder "‘\chaptername"’. \par
\begin{otherlanguage}{french} Voici en fran\c cais:
\og\refname\fg{} ou \og\chaptername\fg.
\par\foreignlanguage{english}{But in short
phrases ‘‘\refname’’ does not change!}

\end{otherlanguage}

\begin{hyphenrules}{language}

For the contents of the environment hyphenrules, only the hyphenation rules of
language to be used are changed; \languagename and all other settings remain
unchanged. When no hyphenation rules for language are loaded into the format,
the environment has no effect.

As a special application, this environment can be used to prevent hyphen-
ation altogether, provided that in language.dat the “language” nohyphenation
is defined (by loading zerohyph.tex, as explained in Section 9.5.1 on page 580).

9-2-2

This text shows the effect of hy-
phenation.
This text shows the effect of
hyphenation.

\usepackage[english]{babel}

\begin{minipage}{5cm}
This text shows the effect of hyphenation.\par
\begin{hyphenrules}{nohyphenation}
This text shows the effect of hyphenation.
\end{hyphenrules}

\end{minipage}

Note that this approach works even if the “language” nohyphenation is not spec-
ified as an option to the babel package.

546 LATEX in a Multilingual Environment

If more than one language is used, it might be necessary to know which lan-
guage is active at a specific point in the document. This can be checked by a call
to \iflanguage:

\iflanguage{language}{true-clause}{false-clause}

The first argument in this syntax, language, is the name of a language, which is
first checked to see whether it corresponds to a language declared to babel. If the
language is known, the command compares it with the current language. If they
are the same, the commands specified in the true-clause are executed; otherwise,
the commands specified in the third argument, false-clause, are executed.

This step is actually carried out by comparing the \l@〈language〉 commands
that point to the hyphenation patterns used for the two languages (see Sec-
tion 9.5.1 on page 580). Thus, two “languages” are considered identical if they
share the same patterns (e.g., dialects1 of a language such as austrian), espe-
cially with languages for which no patterns are loaded.

English and Austrian use
different while German and
Austrian use the same hy-
phenation patterns.

\usepackage[german,english]{babel}

English and Austrian use \iflanguage{austrian}{the same}{different}
\foreignlanguage{german}{while German

and Austrian use \iflanguage{austrian}{the same}{different}}
hyphenation patterns. 9-2-3

\languagename

The control sequence \languagename contains the name of the current language.

(1) The language is english.
(2) The language is german.
(3) The language is french.
(4) The language is english.
(5) Pas en français.
(6) The language is german.

\usepackage[german,french,english]{babel}

\par(1) The language is \languagename.
\par(2) \selectlanguage{german}%

The language is \languagename.
\par(3) \begin{otherlanguage}{french}

The language is \languagename.
\end{otherlanguage}

\par(4) \foreignlanguage{english}{%
The language is \languagename.}

\par(5) \iflanguage{french}{En fran\c cais.}
{Pas en fran\c cais.}

\par(6) The language is \languagename. 9-2-4

Most document classes available in a LaTEX installation define a number of com-
Language-
dependent

strings

mands that are used to store the various language-dependent strings. Table 9.2
on the facing page presents an overview of these commands, together with their
default text strings.

1Only in the implementation in babel! Some languages are implemented as “dialects” of the others
for TEXnical reasons; no discrimination is intended.

9.2 The babel user interface 547

Command English String Command English String
\abstractname Abstract \indexname Index
\alsoname see also \listfigurename List of Figures
\appendixname Appendix \listtablename List of Tables
\bibname Bibliography \pagename Page
\ccname cc \partname Part
\chaptername Chapter \prefacename Preface
\contentsname Contents \proofname Proof
\enclname encl \refname References
\figurename Figure \seename see
\glossaryname Glossary \tablename Table
\headtoname To (letter class)

Table 9.2: Language-dependent strings in babel (English defaults)

9.2.2 Handling shorthands

For authors who write in languages other than English, it is sometimes awkward
to type the input needed to produce the letters of their languages in the final
document. More often than not, they need letters with accents above or below—
sometimes even more than one accent. When you need to produce such glyphs
and do not have the ability to use 8-bit input, but rather have to rely on 7-bit
input encodings, an easier way to type those instructions would be welcome. For
this reason (among others, as will be discussed later), babel supports the concept
of “shorthands”. A “shorthand” is a one- or two-character sequence, the first char-
acter of which introduces the shorthand and is called the “shorthand character”.
For a two-character shorthand, the second character specifies the behavior of the
shorthand.

Babel knows about three kinds of shorthands—those defined by “the system”,
“the language”, and “the user”. A system-defined shorthand sequence can be over-
ridden by a shorthand sequence defined as part of the support for a specific
language; a language-defined shorthand sequence can be overridden by a user-
defined one.

Document-level commands for shorthands

This section describes the shorthand commands that can be used in the document
and various aspects of the shorthand concept. Language-level or system-level
shorthands are declared in language definition files; see Section 9.5 on page 579.

\useshorthands{char}

The command \useshorthands initiates the definition of user-defined shorthand
sequences. The argument char is the character that starts these shorthands.

548 LATEX in a Multilingual Environment

\defineshorthand{charseq}{expansion}

The command \defineshorthand defines a shorthand. Its first argument,
charseq, is a one- or two-character sequence; the second argument, expansion, is
the code to which the shorthand should expand.

\aliasshorthand{char1}{char2}

The command \aliasshorthand lets you use another character, char2, to
perform the same functions as the default shorthand character, char1. For
instance, if you prefer to use the character | instead of ", you can enter
\aliasshorthand{"}{|}.

This shows the use and ef-
fect of "a: ä and "i: ï.

This shows the use and ef-
fect of |a: ä and |i: ï.

\usepackage[english]{babel} \useshorthands{"}
\defineshorthand{"a}{\"{a}} \defineshorthand{"i}{\"{\i}}
\aliasshorthand{"}{|}

This shows the use and effect of \verb="a=: "a and \verb="i=: "i.

This shows the use and effect of \verb=|a=: |a and \verb=|i=: |i. 9-2-5

\languageshorthands{language}

The command \languageshorthands is used to switch between shorthands for
the language specified as an argument. The language must have been declared to
babel for the current document. When switching languages, the language defini-
tion files usually issue this command for the language in question. For example,
the file frenchb.ldf contains the following command:

\languageshorthands{french}

Sometimes it is necessary to temporarily switch off the shorthand action of a
given character because it needs to be used in a different way.

\shorthandon{chars} \shorthandoff{chars}

The command \shorthandoff sets the \catcode for each of the characters in
its argument chars to “other” (12). Conversely, the command \shorthandon sets
the \catcode to “active” (13) for its argument chars. Both commands only act
on “known” shorthand characters. If a character is not known to be a shorthand
character, its category code will be left unchanged.

For instance, the language definition file german.ldf defines two commands,
\mdqoff and \mdqon , that turn the shorthand action of the character " off and on,
respectively. They are defined as follows:

\newcommand\mdqon{\shorthandon{"}}
\newcommand\mdqoff{\shorthandoff{"}}

9.2 The babel user interface 549

The language definition file for French (frenchb.ldf) makes the “double”
punctuation characters “?”, “!”, “:”, and “;” active. One can eliminate this be-
havior by specifying each as an argument to a \shorthandoff command. This
step is necessary with certain packages, where the same characters have a special
meaning. Below is an example with the xy package, where the use of “;” and “?”
as shorthand characters is turned off inside xy’s xy environment [57, Chapter 5],
because these characters have a functional meaning there.

9-2-6

Voici un exemple avec xypic :

• �� x

Quelle belle flèche !

\usepackage{xy} \usepackage[french]{babel}

Voici un exemple avec \emph{xypic}:
\[\shorthandoff{;?}
\begin{xy} (0,0)*{\bullet}, (0,0) ; (10,0),

**\dir {-} ?>* \dir {>}, (12,0)*{x}, \end{xy}
\]

Quelle belle fl\‘eche !

9.2.3 Language attributes

Sometimes the support for language-dependent typesetting needs to be tailored
for different situations. In such a case it is possible to define attributes for the
particular language. Two examples of the use of attributes can be found in the
support for typesetting of Latin texts. When the attribute medieval is selected, cer-
tain document element names are spelled differently; also, the letters “u” and “V”
are defined to be a lowercase and uppercase pair. The attribute withprosodicmarks
can be used when typesetting grammars, dictionaries, teaching texts, and the like,
where prosodic marks are important for providing complete information on the
words or the verses. This attribute makes special shorthands available for breve
and macron accents that may interfere with other packages.

\languageattribute{language}{langattrs}

The command \languageattribute declares which attributes are to be used for
a given language. It must be used in the preamble of the document following
the command \usepackage[...]{babel} that loads the babel package. The com-
mand takes two arguments: language is the name of a language, and langattrs is
a comma-separated list of attributes to be used for that language. The command
checks whether the language is known in the current document and whether the
attribute(s) are known for this language.

For instance, babel has two variants for the Greek language: monotoniko
(one-accent), the default, and polutoniko (multi-accent). To select the polutoniko
variant, one must specify it in the document preamble, using the command
\languageattribute . The following two examples illustrate the difference.

9-2-7

The Greek word for ‘Index’
is Ευρετήριο.

\usepackage[greek,english]{babel}

The Greek word for ‘Index’ is \selectlanguage{greek}\indexname.

550 LATEX in a Multilingual Environment

With the polutoniko attribute we get a different result:

The Greek word for ‘Index’
is Ε
ρετήριο.

\usepackage[greek,english]{babel}
\languageattribute{greek}{polutoniko}

The Greek word for ‘Index’ is \selectlanguage{greek}\indexname. 9-2-8

9.3 User commands provided by language options

This section gives a general overview of the features typically offered by the vari-
ous language options. It includes translations of language-dependent strings and a
survey of typical shorthands intended to ease language-specific document content
or to solve language-specific typesetting requirements. Some language options de-
fine additional commands to produce special date formats or numbers in a certain
style. Also discussed are layout modifications as undertaken for French and He-
brew as well as the interfaces for dealing with different scripts (e.g., Latin and
Cyrillic) in the same document.

9.3.1 Translations

As discussed earlier, babel provides translations for document element names
that LaTEX uses in its document classes. The English versions of these strings are
shown in Table 9.2 on page 547. Table 9.3 on page 551 shows the translations for
a number of languages, some of them not using the normal Latin script.

Apart from the translated strings in Table 9.3, the language definition files
supply alternative versions of the command \today , as shown in the following
example.

In England the date is
‘29th February 2004’, while in
Bulgaria it is ‘29 февруари
2004 г.’. In Catalonia they write
‘29 de febrer de 2004’.

\usepackage[catalan,bulgarian,british]{babel}
\raggedright

In England the date is ‘\today’, while in Bulgaria
it is ‘{\selectlanguage{bulgarian}\today}’. In Catalonia
they write ‘{\selectlanguage{catalan}\today}’. 9-3-2

9.3.2 Available shorthands

Many of the language definition files provide shorthands. Some are meant to ease
typing, wheras others provide quite extensive trickery to achieve special effects.
You might not be aware of it, but LaTEX itself defines a shorthand (although it is
not called by that name) that you probably use quite often: the character tilde (~),
which is used to enter a “nonbreakable” space.

A number of shorthand definitions deal with “accented characters”. They were
invented in the days when TEX did not yet support 8-bit input or 8-bit hyphenation

9.3 User commands provided by language options 551

9-3-1

Command French Greek Polish Russian

\abstractname Résumé Περίηψη Streszczenie Аннотация
\alsoname voir aussi βέπε επίση� Porównaj także см. также
\appendixname Annexe Παράρτημα Dodatek Приложение
\bibname Bibliographie Βιβιογραφία Bibliografia Литература
\ccname Copie à Κοινοποίηση Kopie: исх.
\chaptername Chapitre Κεφάαιο Rozdział Глава
\contentsname Table des matières Περιεχόμενα Spis treści Содержание
\enclname P. J. Συνημμένα Załącznik вкл.
\figurename FIG. Σχήμα Rysunek Рис.
\glossaryname Glossaire Γωσσάρι Glossary Glossary
\headtoname Προ� Do вх.
\indexname Index Ευρετήριο Indeks Предметный указатель
\listfigurename Table des figures Κατάογο� Σχημάτων Spis rysunków Список иллюстраций
\listtablename Liste des tableaux Κατάογο� Πινάκων Spis tablic Список таблиц
\pagename page Σείδα Strona с.
\partname Deuxième partie Μέρο� Część Часть
\prefacename Préface Πρόογο� Przedmowa Предисловие
\proofname Démonstration Απόδειξη Dowód Доказательство
\refname Références Αναφορέ� Literatura Список литературы
\seename voir βέπε Porównaj см.
\tablename TAB. Πίνακα� Tablica Таблица

In French \partname also generates the part number as a word, e.g., “Première, Deuxième, . . . ”

Table 9.3: Language-dependent strings in babel (French, Greek, Polish, and Russian)

patterns. When proper 8-bit hyphenation patterns are available, it is normally bet-
ter to apply those and to use the inputenc package to select the proper input
encoding (see Section 7.1.2 on page 329). However, if special processing needs to
take place when an accented character appears next to a hyphenation point (as
is the case for the Dutch hyphenation rules), the use of shorthands cannot be
circumvented.1

The double quote

The most popular character to be used as a shorthand character is the dou-
ble quote character ("). This character is used in this way for Basque, Bulgar-
ian, Catalan, Danish, Dutch, Estonian, Finnish, Galician, German, Icelandic, Ital-
ian, Latin, Norwegian, Polish, Portuguese, Russian, Serbian, Slovenian, Spanish,
Swedish, Ukrainian, and Upper Sorbian. To describe all uses of the double quote

1This statement is true only if the underlying formatter is TEX. Omega, for example, provides
additional functionality so that such cases can be handled automatically.

552 LATEX in a Multilingual Environment

character as a shorthand character would go too far. Instead, it is recommended
that you check the documentation that comes with the babel package for each
language if you want to know the details. What can be said here is that its uses
fall into a number of categories, each of which deserves a description and a few
examples.

Insert accented letters For a number of languages shorthands have been created
to facilitate typing accented characters. With the availability of 8-bit input and
output encodings this usage might seem to have become obsolete, but this is
not true for all cases. For the Dutch language, for instance, an accent needs
to be removed when the hyphenation point is next to the accented letter.

Den Koning van Hispaniën heb ik altijd ge-
eerd! Den Koning van Hispaniën heb ik altijd
geëerd!

\usepackage[dutch]{babel}

Den Koning van Hispani"en heb ik altijd ge"eerd!
Den Koning van Hispani"en heb ik altijd ge"eerd! 9-3-3

Insert special characters In the Catalan language a special glyph, the “gemi-
nated l”, is needed for proper typesetting [167].

The “geminated l” appears in words
such as intel.ligència, il.lusió.

\usepackage[catalan,english]{babel}

The ‘‘geminated~l’’ appears in words such as
\foreignlanguage{catalan}{inte"lig\‘encia, i"lusi\’o}. 9-3-4

This character can also be typeset by using the commands \lgem and \Lgem
or through the combinations “\l.” and “\L.” once catalan is selected.

Insert special quoting characters By default, LaTEX supports single and double
quotes: ‘quoted text’ and “quoted text”. This support is not desirable in Eu-
ropean languages. Many have their own conventions and more often than
not require different characters for this purpose. For example, in Dutch tra-
ditional typesetting the opening quote should be placed on the baseline, in
German typesetting the closing quote is reversed, and French typesetting re-
quires guillemets. For Icelandic typesetting the guillemets are used as well,
but the other way around—that is, pointing “inward” instead of “outward” (a
convention also sometimes used in German typography).

English “quoted text” has quotes dif-
ferent from Dutch „quoted text” or Ger-
man „quoted text“ or French « quoted
text ».

\usepackage[dutch,ngerman,french,english]{babel}

English ‘‘quoted text’’ has quotes different from
\selectlanguage{dutch}Dutch "‘quoted text"’ or
\selectlanguage{ngerman}German "‘quoted text"’ or
\selectlanguage{french}French \og quoted text\fg. 9-3-5

The T1 font encoding provides the guillemets (see Table 7.32 on page 449),
but its support for French typesetting relies on the commands \og and \fg .
These commands not only produce the guillemets, but also provide proper
spacing between them and the text they surround.

9.3 User commands provided by language options 553

Insert special hyphenation rules A number of languages have specific rules
about what happens to characters at a line break. For instance, in older Ger-
man spelling ..ck.. is hyphenated as ..k-k.. and a triple f in a compound
word is normally typeset as ff—except when hyphenated, in which case the
third f reappears as shown in the example.

9-3-6

Brote bak-
ken

Farbstoff-
fabrik

\usepackage[german]{babel}

\fbox{\parbox[t]{1,5cm}{Brote ba"cken}} \quad
\fbox{\parbox[t]{1,5cm}{Farbsto"ffabrik}}

Insert special hyphenation indications A number of shorthands are used to in-
form LaTEX about special situations with regard to hyphenation. For instance,
in a number of languages it is sometimes necessary to prevent LaTEX from
typesetting a ligature—for example, in a compound word. This goal can be
achieved by inserting a small kern between the two letters that would nor-
mally form a ligature. The shorthand "| is available for this purpose in many
language definitions.

9-3-7

Das deutsche Wort „Auflage“ sollte nicht
so, sondern als »Auflage« gesetzt werden.

\usepackage[german]{babel}

Das deutsche Wort "‘Auflage"’ sollte nicht so,
sondern als ">Auf"|lage"< gesetzt werden.

Another popular shorthand is "-, which indicates a hyphenation point (like
\-), but without supressing hyphenation in the remainder of the word:

9-3-8

minister-
presi-
dent

minister-
president

ministerpresident
\usepackage[dutch]{babel}

\fbox{\parbox[t]{1cm}{minister"-president}} \quad
\fbox{\parbox[t]{1cm}{minister\-president}} \quad
\fbox{\parbox[t]{1cm}{ministerpresident}}

There is also "" (similar to "-, but does not print the -), "= (inserts an explicit
hyphen with a breakpoint, allowing hyphenation in the combined words sepa-
rately), and "~ (inserts an explicit hyphen without a breakpoint). The following
example shows the effects of these shorthands, using the same word.

9-3-9

1. Gutenberg-
Universität

Gutenberg-
Universität

2. GutenbergUniversität Gutenberg-
Universität

3. GutenbergUniversität Gutenberg
Universität

4. Gutenberg-Universi-
tät

Gutenberg-
Universität

5. Gutenberg-Universität Gutenberg-Universität

\usepackage[german]{babel}
\newcommand\present[1]{%

\fbox{\parbox[t]{31mm}{#1}}
\fbox{\parbox[t]{16mm}{#1}}

\par}

1. \present{Gutenberg-Universit"at}
2. \present{Gutenberg"-Universit"at}
3. \present{Gutenberg""Universit"at}
4. \present{Gutenberg"=Universit"at}
5. \present{Gutenberg"~Universit"at}

554 LATEX in a Multilingual Environment

The tilde

For the languages Basque, Estonian, Galician, Greek, and Spanish, the tilde charac-
ter is used for a different purpose than inserting an unbreakable space.

• For Estonian typography, the tilde-accent needs to be set somewhat lower
than LaTEX’s normal positioning.

• For Greek multi-accented typesetting, LaTEX needs to see the tilde as if it were
a normal letter. This behavior is needed to make the ligatures in the Greek
fonts work correctly.

• For Basque, Galician, and Spanish, the tilde is used in the shorthands ~n (ñ), ~N
(Ñ), and ~- (special dash). The construction ~- (as well as ~-- and ~---) pro-
duces a dash that disallows a linebreak after it. When the tilde is followed by
any other character, it retains its original function as an “unbreakable space”
(producing the overfull first line in the example). If such a space is needed
before an “n”, this can be achieved by inserting an empty group (the second
line in the example).

La eñe está presente en \alph y \Alph.
Como en castellano no se usan números
romanos en minúscula, \roman se rede-
fine para que los dé en versalitas.

\usepackage[spanish,activeacute]{babel}

La e~ne est’a presente en \verb|\alph|~y~\verb|\Alph|.
Como en castellano~{}no se usan n’umeros romanos
en min’uscula, \verb|\roman| se redefine para que
los d’e en versalitas. 9-3-10

The colon, semicolon, exclamation mark, and question mark

For the languages Breton, French, Russian, and Ukrainian, these four characters
are used as shorthands to facilitate the use of correct typographic conventions.
For Turkish typography, this ability is needed only for the colon and semicolon.
The convention is that a little white space should precede these characters.

En français on doit mettre un « petit
espace » devant la ponctuation double :
comme cela ! For English this is not
done: as shown here!

\usepackage[english,french]{babel}

En fran\c{c}ais on doit mettre un \og petit espace\fg\
devant la ponctuation double: comme cela!
\selectlanguage{english}
For English this is not done: as shown here! 9-3-11

This white space is added automatically by default, but this setting can be
changed in a configuration file. The use of the colon as a shorthand character can
lead to problems with other packages or when including PostScript files in a doc-
ument. In such cases it may be necessary to disable this shorthand (temporarily)
by using \shorthandoff , as explained in Example 9-2-6 on page 549.

9.3 User commands provided by language options 555

The grave accent

The support for the languages Catalan and Hungarian makes it possible to use the
grave accent (‘) as a shorthand character.

• For Catalan this use of the grave accent character is not supported by default;
one has to specify the option activegrave when loading babel. The purpose
of this shorthand is to facilitate the entering of accented characters while
retaining hyphenation. The shorthand can be used together with the letters a,
e, o and A, E, O.

9-3-12

“Pàgina, Apèndix, Pròleg” are
Catalan translations for “Page, Ap-
pendix, and Preface”.

\usepackage[english,catalan,activegrave]{babel}

‘‘P‘agina, Ap‘endix, Pr‘oleg’’ \selectlanguage{english}
are Catalan translations for ‘‘Page, Appendix, and Preface’’.

• For Hungarian this shorthand can be used with both uppercase and lower-
case version of the characters c, d, g, l, n, s, t, and z. Its purpose is to insert
discretionaries to invoke the correct behavior at hyphenation points.

9-3-13

loccsan locs-
csan

eddzünk edz-
dzünk

poggyász pogy-
gyász

Kodállya Kodály-
lya

mennyei meny-
nyei

vissza visz-
sza

pottyan poty-
tyan

rizzsel rizs-
zsel

\usepackage[hungarian]{babel}
\newcommand\present[1]{\fbox{\parbox[t]{20mm}{#1}}

\fbox{\parbox[t]{8,5mm}{#1}}\par}

\present{lo‘ccsan}
\present{e‘ddz\"unk}
\present{po‘ggy\’asz}
\present{Kod\’a‘llya}
\present{me‘nnyei}
\present{vi‘ssza}
\present{po‘ttyan}
\present{ri‘zzsel}

The acute accent

The support for the languages Catalan, Galician, and Spanish makes it possible to
use the acute accent (’) as a shorthand character.

• For the support of Catalan typesetting, this shorthand can be used together
with the vowels (a, e, i, o, u), both uppercase and lowercase. Its effect is to add

556 LATEX in a Multilingual Environment

the accent and to retain hyphenation.

• For the support of Galician typesetting, this shorthand offers the same func-
tionality as for Catalan with the addition that entering ’n will produce ñ.

“Páxina, Capítulo, Apéndice” are
Galician translations for “Page, Chap-
ter, and Appendix”.

\usepackage[english,galician,activeacute]{babel}

‘‘P’axina, Cap’itulo, Ap’endice’’
\selectlanguage{english} are Galician translations
for ‘‘Page, Chapter, and Appendix’’. 9-3-14

• For the support of Spanish typesetting, this shorthand offers similar function-
ality as for Catalan and Galician.

The described functionality is made available when the activeacute option is
used. This support is made optional because the acute accent has other uses in
LaTEX, which will fail when this character is turned into a shorthand.

The caret

The support for the languages Esperanto and Latin makes it possible to use the
caret accent (^) as a shorthand character.

• For typesetting the Esperanto language, two accents are needed: the caret and
the breve accent. The caret appears on the letters c, g, h, j, and s; the breve
appears on the character u. Both accents can appear on lowercase and upper-
case letters. The caret is defined as a shorthand that retains hyphenation and
sets the caret accent somewhat lower on the character “h” (ĥ). Used together
with the letter u, this shorthand typesets the breve accent (^u results in ŭ);
used together with the vertical bar, it inserts an explicit hyphen sign, allowing
hyphenation in the rest of the word.

“Paĝo, Ĉapitro, Citaĵoj” are Esperanto
translations for “Page, Chapter, and Ref-
erences”.

\usepackage[english,esperanto]{babel}

‘‘Pa^go, ^Capitro, Cita^joj’’ \selectlanguage{english}
are Esperanto translations for ‘‘Page, Chapter, and
References’’. 9-3-15

• When a Latin text is being typeset and the attribute withprosodicmarks has
been selected, the caret is defined to be a shorthand for adding a breve accent
to the lowercase vowels (except the medieval ligatures æ and œ). This is done
while retaining hyphenation points.

ă ĕ ı̆ ŏ ŭ
\usepackage[latin]{babel} \languageattribute{latin}{withprosodicmarks}

\ProsodicMarksOn ^a ^e ^i ^o ^u 9-3-16

9.3 User commands provided by language options 557

The equals sign

The support for the languages Latin (with the attribute withprosodicmarks se-
lected) and Turkish makes it possible to use the equals sign (=) as a shorthand
character.

• When a Latin text is being typeset and the attribute withprosodicmarks has
been selected, the equals sign is defined to be a shorthand for adding a
macron accent to the lowercase vowels (except the medieval ligatures æ and
œ). This is done while retaining hyphenation points.

9-3-17 ā ē ı̄ ō ū
\usepackage[latin]{babel} \languageattribute{latin}{withprosodicmarks}

\ProsodicMarksOn =a =e =i =o =u

• When Turkish typesetting rules are to be followed, the equals sign needs to be
preceded by a little white space. This is achieved automatically by turning the
equals sign into a shorthand that replaces a preceding space character with a
tiny amount of white space.

9-3-18

a =b
a=b

\usepackage[english,turkish]{babel}

\selectlanguage{english} a =b \par \selectlanguage{turkish} a =b

The disadvantage of having the equals sign turn into a space character is
that it may cause many other packages to fail, including the usage of PostScript
files for graphics inclusions. Make sure that the shorthand is turned off with
\shorthandoff .

The greater than and less than signs

The support for the Spanish language makes it possible to use the greater than and
less than signs (< and >) as shorthand characters for inserting a special quoting
environment. This environment inserts different quoting characters when it is
nested within itself. It supports a maximum of three levels of nested quotations.
It also automatically inserts the closing quote signs when a new paragraph is
started within a quote.

9-3-19

La regla es: «dentro de las comillas
latinas se usan las “inglesas y dentro de
éstas las ‘sencillas’”.

»Las comillas de seguir son como
las de cerrar.»

\usepackage[spanish]{babel}

La regla es: <<dentro de las comillas latinas se usan
las <<inglesas y dentro de éstas las <<sencillas>>>>.

Las comillas de seguir son como las de cerrar.>>

Note that when characters are turned into shorthands, the ligature mecha-
nism in the fonts no longer works for them. In the T1 font encoding, for instance,
a ligature is defined for two consecutive “less than” signs that normally results in
typesetting guillemets. In the example above, the nested quote shows clearly that
this does not happen.

558 LATEX in a Multilingual Environment

The period

The support for the Spanish language also allows the use of the period (.) as a
shorthand character in math mode. Its purpose is to control whether decimal num-
bers are written with the comma (\decimalcomma) or the period (\decimalpoint)
as the decimal character.

1000,10
1000.10

\usepackage[spanish]{babel}

\decimalcomma 1000.10 \par \decimalpoint 1000.10 9-3-20

9.3.3 Language-specific commands

Apart from the translations and shorthands discussed above, some language def-
inition files provide extra commands. Some of these are meant to facilitate the
production of documents that conform to the appropriate typesetting rules. Oth-
ers provide extra functionality not available by default in LaTEX. A number of these
commands are described in this section.

Formatting dates

For some languages more than one format is used for representing dates. In these
cases extra commands are provided to produce a date in different formats. In the
Bulgarian tradition months are indicated using uppercase Roman numerals; for
such dates the command \todayRoman is available.

29 февруари 2004 г.
29. II. 2004 г.

\usepackage[bulgarian]{babel}

\today \par \todayRoman 9-3-21

When writing in the Esperanto language two slightly different ways of repre-
senting the date are provided by the commands \hodiau and \hodiaun .

29–a de februaro, 2004
la 29–a de februaro, 2004
la 29–an de februaro, 2004

\usepackage[esperanto]{babel}

\today \par \hodiau \par \hodiaun 9-3-22

When producing a document in the Greek language the date can also be rep-
resented with Greek numerals instead of Arabic numerals. For this purpose the
command \Grtoday is made available.

29 Φεβρουαρίου 2004
ΚΘ(Φεβρουαρίου)ΒΔ(

\usepackage[greek]{babel}

\today \par \Grtoday 9-3-23

The support for typesetting Hebrew texts offers the command \hebdate to
translate any Gregorian date, given as “day, month, year”, into a Gregorian date in
Hebrew. The command \hebday replaces LaTEX’s normal \today . When you want
to produce “normal” Hebrew dates, you need to use the package hebcal, which

9.3 User commands provided by language options 559

provides the command \Hebrewtoday . When it is used outside the Hebrew envi-
ronment it produces the Hebrew date in English.

9-3-24

���� ������� �	

��� ��
�� ��

29th February 2004: Adar 7, 5764
�		� ������� �

\usepackage[english,hebrew]{babel}
\usepackage{hebcal}

\hebday \par \Hebrewtoday \par
\selectlanguage{english} \today: \Hebrewtoday
\selectlanguage{hebrew} \hebdate{8}{11}{1997}

The support for the Hungarian language provides the command \ontoday to
produce a date format used in expressions such as “on February 10th”.

For the Upper and Lower Sorbian languages two different sets of month
names are employed. By default, the support for these languages produces
“new-style” dates, but “old-style” dates can be produced as well. The “old-style”
date format for the Lower Sorbian language can be selected with the command
\olddatelsorbian ; \newdatelsorbian switches (back) to the modern form. For
Upper Sorbian similar commands are available, as shown in the example.

9-3-25

29. februara 2004
29. małego rožka 2004
29. februara 2004
29. małeho róžka 2004

\usepackage[usorbian,lsorbian]{babel}

\newdatelsorbian \today \par
\olddatelsorbian \today \par
\newdateusorbian \today \par
\olddateusorbian \today

In Swedish documents it is customary to represent dates with just numbers.
Such dates can occur in two forms: yyyy-mm-dd and dd/mm yyyy. The command
\datesymd changes the definition of the command \today to produce dates in
the first numerical form; the command \datesdmy changes the definition of the
command \today to produce dates in the second numerical format.

9-3-26

Default date format: 29 februari 2004
\datesymd gives: 2004-02-29
\datesdmy gives: 29/2 2004

\usepackage[swedish]{babel}

Default date format: \today\\
\verb|\datesymd| gives: \datesymd \today \\
\verb|\datesdmy| gives: \datesdmy \today

Numbering

The support for certain languages provides additional commands for representing
numbers by letters. LaTEX provides the commands \alph and \Alph for this pur-
pose. For the Esperanto language the commands \esper and \Esper are provided.
The support for the Greek language changes the definition of \alph and \Alph
to produce Greek letters while the support for the Bulgarian language changes
them to produce Cyrillic letters. The support for the Russian and Ukrainian lan-
guages provides the commands \asbuk and \Asbuk as alternatives to the LaTEX
commands.

560 LATEX in a Multilingual Environment

default Esperanto Greek Russian Bulgarian Hebrew
Value \alph\Alph \esper\Esper \alph\Alph \asbuk\Asbuk \alph\Alph \alph\Alph\Alphfinal

1 a A a A aþ Aþ а А а А � �� ��
2 b B b B bþ Bþ б Б б Б � �� ��
3 c C c C gþ Gþ в В в В � �� ��
4 d D ĉ Ĉ dþ Dþ г Г г Г � �� ��
5 e E d D eþ Eþ д Д д Д � �� ��
6 f F e E ˚þ ˚þ е Е е Е � �� ��
7 g G f F zþ Zþ ж Ж ж Ж � �� ��
8 h H g G hþ Hþ з З з З 	 �	 �	
9 i I ĝ Ĝ jþ Jþ и И и И
 �
 �

10 j J h H iþ Iþ к К к К � �� ��
11 k K ĥ Ĥ iaþ IAþ л Л л Л �� ��� ���
12 l L i I ibþ IBþ м М м М �� ��� ���
13 m M j J igþ IGþ н Н н Н �� ��� ���
14 n N ĵ Ĵ idþ IDþ о О о О �� ��� ���
15 o O k K ieþ IEþ п П п П �
 ��
 ��

16 p P l L i˚þ I˚þ р Р р Р �
 ��
 ��

17 q Q m M izþ IZþ с С с С �� ��� ���
18 r R n N ihþ IHþ т Т т Т 	� 	�� 	��
19 s S o O ijþ IJþ у У у У
�
��
��
20 t T p P kþ Kþ ф Ф ф Ф � ��
21 u U s S kaþ KAþ х Х х Х � �� ��
22 v V ŝ Ŝ kbþ KBþ ц Ц ц Ц � �� ��
23 w W t T kgþ KGþ ч Ч ч Ч � �� ��
24 x X u U kdþ KDþ ш Ш ш Ш � �� ��
25 y Y ŭ Ŭ keþ KEþ щ Щ щ Щ � �� ��
26 z Z v V k˚þ K˚þ э Э ю Ю � �� ��
27 - - z Z kzþ KZþ ю Ю я Я � �� ��
28 - - - - khþ KHþ я Я - - 	 	� 	�
29 - - - - kjþ KJþ - - - -

�
�
30 - - - - lþ Lþ - - - - � �� ��
40 - - - - mþ Mþ - - - - � �� ��
50 - - - - nþ Nþ - - - - � �� ��
100 - - - - rþ Rþ - - - - � �� ��
250 - - - - svnþ SVNþ - - - - �� ��� ���
500 - - - - fþ Fþ - - - - �� ��� ��� 9-3-27

Table 9.4: Different methods for representing numbers by letters

For Hebrew typesetting the \alph command is changed to produce Hebrew
letter sequences using the “Gimatria” scheme. As there are no uppercase letters
\Alph produces the same letter sequences but adds apostrophes. In addition, an
extra command, \Alphfinal, generates Hebrew letters with apostrophes and final
letter forms, a variant needed for Hebrew year designators. Table 9.4 compares the
various numbering schemes.

9.3 User commands provided by language options 561

In French typesetting, numbers should be typeset following different rules
than those employed in English typesetting. Namely, instead of separating thou-
sands with a comma, a space should be used. The command \nombre is pro-
vided for this purpose. It can also be used outside the French language environ-
ment, where it will typeset numbers according to the English rules. The command
\nombre takes an optional argument, which can be used to replace the default
decimal separator (stored in \decimalsep). This feature can be useful in combi-
nation with the package dcolumn (see Section 5.7.2), in which you have to use the
optional argument to achieve correct alignment.

9-3-28

12,34567
12,345 67

12,345 67
9 876 543,21

12.345,67
9,876,543.21

\usepackage[english,french]{babel} \usepackage{dcolumn}
\newcolumntype{d}{D{,}{\decimalsep}{-1}} % align at explicit ‘,’

% but output \decimalsep

\begin{tabular}{|d|} \hline
12,34567 \\ % recognized but not correctly formatted

\nombre{12,34567} \\ % not recognized but correctly formatted
\nombre[,]{12,34567} \\
\nombre[,]{9876543,21} \\ \hline
\end{tabular}
\par\vspace{1cm} \selectlanguage{english} % change language
\begin{tabular}{|d|} \hline
\nombre[,]{12,34567} \\ \nombre[,]{9876543,21} \\ \hline
\end{tabular}

In Greece an alternative way of writing numbers exists. It is based on using
letters to denote number ranges. This system was used in official publications at
the end of the 19th century and the beginning of the 20th century. At present
most Greeks use it for small numbers. The knowledge of how to write numbers
larger than 20 or 30 is not very widespread, being primarily used by the Eastern
Orthodox Church and scholars. They employ this approach to denote numbers up
to 999999. This system works as follows:

• Only numbers greater than 0 can be expressed.

• For the units 1 through 9 (inclusive), the letters alpha, beta, gamma, delta,
epsilon, stigma, zeta, eta, and theta are used, followed by a mark similar to
the mathematical symbol “prime”, called the “numeric mark”. Because the
letter stigma is not always part of the available font, it is often replaced by
the first two letters of its name as an alternative. In the babel implementation
the letter stigma is produced, rather than the digraph sigma tau.

• For the tens 10 through 90 (inclusive), the letters iota, kappa, lambda, mu, nu,
xi, omikron, pi, and qoppa are used, again followed by the numeric mark. The
qoppa that appears in Greek numerals has a distinct zig-zag form that is quite
different from the normal qoppa, which resembles the Latin “q”.

• For the hundreds 100 through 900 (inclusive), the letters rho, sigma, tau, up-
silon, phi, chi, psi, omega, and sampi are used, also followed by the numeric
mark.

562 LATEX in a Multilingual Environment

• Using these rules any number between 1 and 999 can be expressed by a group
of letters denoting the hundreds, tens, and units, followed by one numeric
mark.

• For the number range 1000 through 999000 (inclusive), the digits denoting
multiples of a thousand are expressed by the same letters as above, this time
with a numeric mark in front of this letter group. This mark is rotated 180
degrees and placed under the baseline. As can be seen in the example below,
when two letter-groups are combined, both numeric marks are used.

123456 in Greek nota-
tion:)ρ)κ)γυν+(

987654 in Greek nota-
tion:),)Π)ΖΧΝΔ(

\usepackage[english,greek]{babel}
\newcommand\eng[1]{\foreignlanguage{english}{#1}}

123456 \eng{in Greek notation:} \greeknumeral{123456} \par
987654 \eng{in Greek notation:} \Greeknumeral{987654} 9-3-29

In ancient Greece yet another numbering system was used, which closely re-
sembles the Roman one in that it employs letters to denote important numbers.
Multiple occurrences of a letter denote a multiple of the “important” number; for
example, the letter I denotes 1, so III denotes 3. Here are the basic digits used in
the Athenian numbering system:

• I denotes the number one (1).

• Π denotes the number five (5).

• Δ denotes the number ten (10).

• H denotes the number one hundred (100).

• X denotes the number one thousand (1000).

• M denotes the number ten thousand (10000).

Moreover, the letters Δ, H, X, and M, when placed under the letter Π, denote five
times their original value; for example, the symbol X denotes the number 5000,
and the symbol Δ denotes the number 50. Note that the numbering system does
not provide negative numerals or a symbol for zero.

The Athenian numbering system, among others, is described in an article in
EncyclopediaΔoμή, Volume 2, seventh edition, page 280, Athens, October 2, 1975.
This numbering system is supported by the package athnum, which comes with
the babel system. It implements the command \athnum .

6284 in Athenian notation:
;ΧΗΗ=ΔΔΔΙΙΙΙ

\usepackage[english,greek]{babel}
\usepackage{athnum}
\newcommand\eng[1]{\foreignlanguage{english}{#1}}

6284 \eng{in Athenian notation:} \\ \athnum{6284} 9-3-30

In Icelandic documents, numbers need to be typeset according to Icelandic
rules. For this purpose the command \tala is provided. Like \nombre it takes an

9.3 User commands provided by language options 563

optional argument, which can be used to replace the decimal separator used, such
as for use with the dcolumn package.

9-3-31

3 141,592 653
3,141.592,653

3,14
123,456 7

9 876,543

\usepackage[english,icelandic]{babel}
\usepackage{dcolumn} \newcolumntype{d}{D{,}{\decimalsep}{-1}}

\tala{3141,592653} \par
\foreignlanguage{english}{\tala{3141,592653}}\par \bigskip
\begin{tabular}{|d|} \hline

3,14 \\
\tala[,]{123,4567} \\ \tala[,]{9876,543} \\ \hline

\end{tabular}

Miscellaneous extras

In French typesetting it is customary to print family names in small capitals, with-
. . . for Frenchout hyphenating a name. For this purpose the command \bsc (boxed small caps)

is provided. Abbreviations of the French word “numéro” should be typeset accord-
ing to specific rules; these have been implemented in the commands \no and \No .
Finally, for certain enumerated lists the commands \primo , \secundo , \tertio ,
and \quarto are available when typesetting in French.

9-3-32 Leslie LAMPORT No 9 1o 3o
\usepackage[french]{babel}

Leslie~\bsc{Lamport} \quad \No9 \ \primo \ \tertio

In some languages, e.g., Italian, it is customary to write together the article and . . . for Catalan,
French, and Italianthe following noun—for example, “nell’altezza”. To carry out the hyphenation of

such constructs the character ’ is made to behave as a normal letter.
In the Hungarian language the definite article can be either “a” or “az”, de-

. . . for Hungarianpending on the context. Especially with references and citations, it is not always
known beforehand which form should be used. The support for the Hungarian
language contains commands that know the rules dictating when a “z” should be
added to the article. These commands all take an argument that determines which
form of the definite article should be typeset together with that argument.

\az{text} \Az{text}

These commands produce the article and the argument. The argument can be a
star (as in \az*), in which case just the article will be typeset. The form \Az is
intended for the start of a sentence.

\aref{text} \Aref{text} \apageref{text} \Apageref{text}

The first two commands should be used instead of a(z)~\ref{label}. When an
equation is being referenced, the argument may be enclosed in parentheses in-
stead of braces. For page references use \apageref (or \Apageref) to allow LaTEX
to automatically produce the correct definite article.

564 LATEX in a Multilingual Environment

LATEX Serbian Russian

\tan tan \tg tg \tg tg
\cot cot \ctg ctg \ctg ctg
\sinh sinh \sh sh \sh sh
\cosh cosh \ch ch \ch ch
\tanh tanh \th th \th th
\coth coth \cth cth \cth cth
\csc csc \cosec cosec
\arcsin arcsin \arsh arsh
\arccos arccos \arch arch
\arctan arctan \arctg arctg \arctg arctg

\arcctg arcctg \arcctg arcctg (extra) 9-3-33

Note that the redefinition of \th conflicts with its standard use as LICR command for
þ (thorn), therefore babel restricts this redefinition to math mode in cyrillic texts.

Table 9.5: Alternative mathematical operators for Eastern European languages

\acite{text} \Acite{text}

For citations the command \acite should be used. Its argument may be a list of
citations, in which case the first element of the list determines which form of the
article should be typeset.

In Eastern Europe a number of mathematical operators have a different ap-
. . . specials for math pearance in equations than they do in “the Western world”. Table 9.5 shows the

relevant commands for different languages. The Russian commands are also valid
for Bulgarian and Ukrainian language support. The package grmath, which comes
as part of the babel distribution, changes the definitions of these operators to
produce abbreviations of their Greek names. The package can only be used in
conjunction with the greek option of babel.

9.3.4 Layout considerations

Some of the language support files in the babel package provide commands for
automatically changing the layout of the document. Some simply change the way
LaTEX handles spaces after punctuation characters or ensure that the first para-
graph that follows a section heading is indented. Others go much further.

In The TEXbook [82, pp.72–74], the concept of extra white space after punc-
Spaces after
punctuation

characters

tuation characters is discussed. Good typesetting practice mandates that inter-
sentence spaces behave a little differently than interword spaces with respect
to shrinkage and expansion (during justification). However, this practice is not
considered helpful in all cases, so for a number of languages (Breton, Bulgar-
ian, Czech, Danish, Estonian, Finnish, French, German, Norwegian, Russian, Span-
ish, Turkish, and Ukrainian) this feature is switched off by calling the command
\frenchspacing .

9.3 User commands provided by language options 565

Another layout concept that is built into most LaTEX classes is the suppression
Paragraph
indention after
heading

of the paragraph indentation for the first paragraph that follows a section heading.
Again, for some languages this behavior is wrong; the support for French, Serbo-
Croatian, and Spanish changes it to have all paragraphs indented. In fact, you can
request this behavior for any document by loading the package indentfirst.

The support for French (and Breton, for which support is derived from the
support for the French language) takes this somewhat further to accomodate the
typesetting rules used in France. It changes the general way lists are typeset by

Layout of listsLaTEX by reducing the amount of vertical white space in them. For the itemize
environment, it removes all vertical white space between the items and changes
the appearance of the items by replacing “•” with “–”.

9-3-34

Some text with a list.

• item 1

• item 2

And some text following.

Some text with a list.
– item 1
– item 2
And some text following.

\usepackage[french,english]{babel}

\begin{minipage}[t]{4cm}
Some text with a list.
\begin{itemize} \item item 1

\item item 2 \end{itemize}
And some text following.

\end{minipage}
\quad \selectlanguage{french}
\begin{minipage}[t]{4cm}
Some text with a list.
\begin{itemize} \item item 1

\item item 2 \end{itemize}
And some text following.

\end{minipage}

\FrenchLayout \StandardLayout

For documents that are typeset in more than one language, the support for French
provides a way to ensure that lists have a uniform layout throughout the docu-
ment, either the “French layout” or the “LaTEX layout”. This result can be achieved
by using the command \FrenchLayout or \StandardLayout in the preamble of
the document. Unfortunately, when your document is being typeset with some-
thing other than one of the document classes provided by standard LaTEX, or
when you use extension packages such as paralist, such layout changes may
have surprising and unwanted effects. In such cases it might be safest to use
\StandardLayout .

\AddThinSpaceBeforeFootnotes \FrenchFootnotes

In the French typesetting tradition, footnotes are handled differently than they are
Layout of footnotesin the Anglo-American tradition. In the running text, a little white space should

be added before the number or symbol that calls the footnote. This behavior is
optional and can be selected by using the \AddThinSpaceBeforeFootnotes com-
mand in the preamble of your document. The text of the footnote can also be

566 LATEX in a Multilingual Environment

typeset according to French typesetting rules; this result is achieved by using the
command \FrenchFootnotes .

Some text a.
awith a footnote

Some text a.

a. with a footnote

\usepackage[french,english]{babel}
\AddThinSpaceBeforeFootnotes

\begin{minipage}{70pt} Some text\footnote{with a footnote}.
\end{minipage}
\selectlanguage{french}\FrenchFootnotes
\begin{minipage}{70pt} Some text\footnote{with a footnote}.
\end{minipage}

9-3-35

The final layout change performed by the babel support for the French lan-
Layout of captions guage is that the colon in captions for tables and figures is replaced with an

en dash when one of the document classes of standard LaTEX is used.
The support for typesetting Hungarian documents goes even further: it rede-

�Internal
commands
redefined for

magyar

fines a number of internal LaTEX commands to produce correct captions for figures
and tables. Using the same means, it changes the layout of section headings. The
definition of the theorem environment is changed as well. As explained above,
such changes may lead to unexpected and even unwanted behavior, so be careful.

To support typesetting Hebrew documents, even more drastic changes are
Right to left
typesetting

needed because the Hebrew language has to be typeset from right to left. This
requires the usage of a TEX extension (i.e., eTEX with a LaTEX format) to correctly
typeset a Hebrew document.

9.3.5 Languages and font encoding

As shown in some of the earlier examples, some languages cannot be supported
by, for instance, simply translating some texts and providing extra support for spe-
cial hyphenation needs. Many languages require characters that are not present
in LaTEX’s T1 encoding. For some, just a few characters are missing and can be
constructed from the available glyphs; other languages are not normally written
using the Latin script. Some of these are supported by the babel system.

Extensions to the OT1 and T1 encodings

For some languages just a few characters are missing in the OT1 encoding and
sometimes even in the T1 encoding. When the missing characters can be con-
structed from the available glyphs, it is relatively easy to rectify this situation.
Such is the case for the Old Icelandic language. It needs a number of characters
that can be represented by adding the “ogonek” to available glyphs. To access
these you should use the shorthands in the next example. Note that each of these
shorthands is composed of " and an 8-bit character, so use of the inputenc pack-
age is required.

9.3 User commands provided by language options 567

9-3-36 ǫ Ǫ ǫ́ Ǫ́ ę Ę ę́ Ę́ but: "é "É

\usepackage[icelandic]{babel}
\usepackage[T1]{fontenc} \usepackage[latin1]{inputenc}

"o "O "ó "Ó "e "E "é "É but: "\’e "\’E

Old Icelandic may not be a language in daily use, but the Polish language
certainly is. For this language the OT1 encoding is missing a few characters (note
that they are all included in T1). Again the missing characters can be constructed,
and their entry is supported with shorthands. The support for entering the letters
“pointed z” and “accented z” comes in two forms, as illustrated below. The reason
for this duality is historical.

9-3-37

ą Ą ć Ć ę Ę ł ń Ń ó Ó ś Ś
ż Ż ź Ź "x "X
"r "R ż Ż ź Ź

\usepackage[polish]{babel}

"a "A "c "C "e "E "l "n "N "o "O "s "S \par
\polishrz "r "R "z "Z "x "X \par
\polishzx "r "R "z "Z "x "X \par

All such shorthands were devised when 7-bit font encodings were the norm and
producing a glyph such as “Ą” required some internal macro processing (if it
was possible at all). With today’s 8-bit fonts there is no requirement to use the
shorthands. For example, with T1-encoded fonts, standard input methods may be
used instead.

9-3-38

ą Ą ć Ć ę Ę ł ń Ń ó Ó ś Ś
ż Ż ź Ź

\usepackage[T1]{fontenc}

\k a \k A \’c \’C \k e \k E \l{} \’n \’N \’o \’O \’s \’S\par
\.z \.Z \’z \’Z

Basic support for switching font encodings

In the situation where simply constructing a few extra characters to support the
correct typesetting of a language does not offer a sufficient solution, switching
from one font encoding to another becomes necessary. This section describes the
commands provided by babel and its language support files for this task. Note
that these commands are normally “hidden” by babel’s user interface.

\latinencoding \cyrillicencoding \hebrewencoding

The babel package uses \latinencoding to record the Latin encoding (OT1 or T1)
used in the document. To determine which encoding is used, babel tests whether
the encoding current at \begin{document} is T1; if it is not, it (perhaps wrongly)
assumes OT1.

The languages that are typeset using the Cyrillic alphabet define the com-
mand \cyrillicencoding to store the name for the Cyrillic encoding. The com-
mand \hebrewencoding serves the same purpose for the Hebrew font encoding.
At the time of writing no \greekencoding command was available, because babel
supported only a single encoding (LGR) for Greek.

568 LATEX in a Multilingual Environment

\textlatin{text}

This command typesets its argument in a font with the Latin encoding, indepen-
dent of the encoding of the surrounding text.

\textcyrillic{text}

This command is (only) defined when one of the options bulgarian, russian, or
ukrainian is used. It typesets its argument using a font in the Cyrillic encoding
stored in \cyrillicencoding .

\textgreek{text} \textol{text}

These commands are defined by the greek language option. Both typeset their
arguments in a font with the Greek encoding; the command \textol uses an
outline font.

Declarative forms for these \text... commands are also available; they are
called \latintext , \greektext , \outlfamily , and \cyrillictext .

Basic support for switching typesetting directions

To support the typesetting of Hebrew texts, the direction of typesetting also needs
to be changed. Several commands with different names have been defined for this
purpose.

\sethebrew \unsethebrew

The command \sethebrew switches the typesetting direction to “right to left”,
switches the font encoding to a Hebrew encoding, and shifts the “point of type-
setting” to start from the right margin. The command \unsethebrew switches the
typesetting direction to “left to right”, switches the font encoding to the one in
use when \sethebrew was called, and shifts the “point of typesetting” to start
from the left margin.

\R{text} \L{text}

The commands \R and \L should be used when a small piece of Hebrew text needs
to appear in the same location relative to the surrounding text. The use of these
commands is illustrated in the following example. Note the location of the second
text typeset with Hebrew characters.

\usepackage[X2,T1]{fontenc} \usepackage[greek,russian,hebrew,english]{babel}

Some English text, \R{hebrew text}, \textgreek{Greek text},
\textcyrillic{Cyrillic text}
\sethebrew more Hebrew text\unsethebrew{}, more English text.

9.4 Support for non-Latin alphabets 569

9-3-39

Some English text, ���� ������, Γρεεκ τεξτ, Ћѫҭі!-
!іћ ҵҿѣҵ , more English text. ���� ����� ���	

9.4 Support for non-Latin alphabets

The babel distribution contains support for three non-Latin alphabets: the Cyrillic
alphabet, the Greek alphabet, and the Hebrew alphabet. They are discussed in the
following sections.

9.4.1 The Cyrillic alphabet

The Cyrillic alphabet is used by several of the Slavic languages in Eastern Europe,
as well as for writing tens of languages used in the territory encompassed by the
former Soviet Union. Vladimir Volovich and Werner Lemberg, together with the
LaTEX team, have integrated basic support for the Cyrillic language into LaTEX. This
section addresses the issues of Cyrillic fonts, the encoding interface, and their
integration with babel.

Historically, support for Russian in TEX has been available from the American
Mathematical Society [14]. The AMS system uses the wncyr fonts and is based on
a transliteration table originally designed for Russian journal names and article
titles in the journal Mathematical Reviews. In this journal the AMS prefers that
the same character sequence in the electronic files produce either the Russian
text with Russian characters or its transliteration with English characters, without
any ambiguities.

However, with the spread of TEX in Russia, proper support for typesetting Rus-
sian (and later other languages written in the Cyrillic alphabet) became necessary.
Over the years several 7- and 8-bit input encodings were developed, as well as
many font encodings. The Cyrillic system is designed to work for any 8-bit input
encoding and is able to map all of them onto a few Cyrillic font encodings, each
supporting a number of languages.

Fonts and font encodings

For compatibility reasons, only the upper 128 characters in an 8-bit TEX font are
available for new glyphs. As the number of glyphs in use in Cyrillic-based lan-
guages during the 20th century far exceeds 128, four “Cyrillic font encodings”
have been defined [17]. Three of them—T2A, T2B, and T2C—satisfy the basic struc-
tural requirements of LaTEX’s T* encodings and, therefore, can be used in multilin-
gual documents with other languages being based on standard font encodings.1

The work on the T2* encodings was performed by Alexander Berdnikov in
collaboration with Mikhail Kolodin and Andrew Janishevsky. Vladimir Volovich
provided the integration with LaTEX.

1The fourth Cyrillic encoding, X2, contains Cyrillic glyphs spread over the 256 character positions,
and is thus suitable only for specific, Cyrillic-only applications. It is not discussed here.

570 LATEX in a Multilingual Environment

Two other LaTEX Cyrillic font encodings exist: the 7-bit OT2 encoding developed
by the American Mathematical Society, which is useful for short texts in Cyrillic,
and the 8-bit LCY encoding, which is incompatible with the LaTEX’s T* encodings
and, therefore, unsuitable for typesetting multilingual documents. The OT2 encod-
ing was designed in such a way that the same source could be used to produce
text either in the Cyrillic alphabet or in a transliteration.

Cyrillic Computer Modern fonts

The default font family with LaTEX is Knuth’s Computer Modern, in its 7-bit (OT1-
encoded CM fonts) or 8-bit (T1-encoded EC fonts) incarnation. Olga Lapko and
Andrey Khodulev developed the LH fonts, which provide glyph designs compat-
ible with the Computer Modern font family and covering all Cyrillic font encod-
ings. They provide the same font shapes and sizes as those available for its
Latin equivalent, the EC family. These fonts are found on CTAN in the directory
fonts/cyrillic/lh. Installation instructions appear in the file INSTALL in that
distribution.1

A collection of hyphenation patterns for the Russian language that support
the T2* encodings, as well as other popular font encodings used for Russian type-
setting (including the Omega internal encoding), are available in the ruhyphen dis-
tribution on CTAN (language/hyphenation/ruhyphen). The patterns for other
Cyrillic languages should be adapted to work with the T2* encodings.

Using Cyrillic in your documents

Support for Cyrillic in LaTEX is based on the standard fontenc and inputenc pack-
ages, as well as on the babel package. For instance, one can write the following in
the preamble of the document:

\usepackage[T2A]{fontenc} \usepackage[koi8-r]{inputenc}
\usepackage[russian]{babel}

The input encoding koi8-r (KOI8 optimized for Russian) can be replaced by any
of the following Cyrillic input encodings:

cp855 Standard MS-DOS Cyrillic code page.

cp866 Standard MS-DOS Russian code page. Several variants, distinguished by
differences in the code positions 242–254, exist: cp866av (Cyrillic Alternative),
cp866mav (Modified Alternative Variant), cp866nav (New Alternative Variant),
and cp866tat (for Tatar).

cp1251 Standard MS Windows Cyrillic code page.

1Other fonts, including Type 1 fonts, can also be used, provided that their TEX font encoding
is compatible with the T2* encodings. In particular, the CM-Super fonts cover the whole range of
Cyrillic encodings; see Section 7.5.1 on page 353 for details.

9.4 Support for non-Latin alphabets 571

koi8-r Standard Cyrillic code page that is widely used on UN*X-like systems for
Russian language support. Variants for Ukrainian are koi8-u and koi8-ru.
An ECMA variant (ISO-IR 111 ECMA) is isoir111.

iso88595 ISO standard ISO 8859-5 (also called ISO-IR 144).

maccyr Apple Macintosh Cyrillic code page (also known as Microsoft cp10007)
and macukr, the Apple Macintosh Ukrainian code page.

ctt, dbk, mnk, mos, ncc Mongolian code pages.

Not all of these code pages are part of the standard inputenc distribution, so some
may have to be obtained separately.

When more than one input encoding is used within a document, you can use
the \inputencoding command to switch between them. To define the case of
text, two standard LaTEX commands, \MakeUppercase and \MakeLowercase , can
produce uppercase or lowercase, respectively. The low-level TEX \uppercase and
\lowercase should never be used in LaTEX and will not work for Cyrillic.

In the previous example of a preamble, the font encoding to be used was
explicitly declared. For multilingual documents all encodings needed should be
enumerated via the \usepackage[...]{fontenc} command. Changing from one
font encoding to another can be accomplished by using the \fontencoding com-
mand, but it is advisable that such changes be performed by a higher-level inter-
face such as the \selectlanguage command. In particular, when using babel, you
can write

\usepackage[koi8-r]{inputenc} \usepackage[russian]{babel}

where babel will automatically choose the default font encoding for Russian,
which is T2A, when it is available. Table 9.6 on the following page shows the layout
of the T2A encoding.

Font encodings for Cyrillic languages

The Cyrillic font encodings support the languages listed below. Note that some
languages, such as Bulgarian and Russian, can be properly typeset with more than
one encoding.

T2A: Abaza, Avar, Agul, Adyghei, Azerbaijani, Altai, Balkar, Bashkir, Bulgarian,
Buryat, Byelorussian, Gagauz, Dargin, Dungan, Ingush, Kabardino-Cherkess,
Kazakh, Kalmyk, Karakalpak, Karachaevskii, Karelian, Kirghiz, Komi-Zyrian,
Komi-Permyak, Kumyk, Lak, Lezghin, Macedonian, Mari-Mountain,
Mari-Valley, Moldavian, Mongolian, Mordvin-Moksha, Mordvin-Erzya, Nogai,
Oroch, Osetin, Russian, Rutul, Serbian, Tabasaran, Tadzhik, Tatar, Tati,
Teleut, Tofalar, Tuva, Turkmen, Udmurt, Uzbek, Ukrainian, Hanty-Obskii,
Hanty-Surgut, Gipsi, Chechen, Chuvash, Crimean-Tatar

572 LATEX in a Multilingual Environment

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x ` ´ ˆ ˜ ¨ ˝ ˚ ˇ
˝0x

0́1x ˘ ¯ ˙ ¸ ˛ Ӏ 〈 〉
0́2x “ ” ˆ ̏ ˘ – —

˝1x
0́3x � ı j ff fi fl ffi ffl
0́4x ␣ ! " # $ % & ’

˝2x
0́5x () * + , - . /
0́6x 0 1 2 3 4 5 6 7

˝3x
0́7x 8 9 : ; < = > ?
1́0x @ A B C D E F G

˝4x
1́1x H I J K L M N O
1́2x P Q R S T U V W

˝5x
1́3x X Y Z [\] ^ _
1́4x ‘ a b c d e f g

˝6x
1́5x h i j k l m n o
1́6x p q r s t u v w

˝7x
1́7x x y z { | } ~ -
2́0x Ґ Ғ Ђ Ћ Һ Җ Ҙ Љ

˝8x
2́1x Ї Қ Ҡ Ҝ Ӕ Ң Ҥ Ѕ

2́2x Ө Ҫ Ў Ү Ұ Ҳ Џ Ҹ
˝9x

2́3x Ҷ Є Ә Њ Ё № ¤ §
2́4x ґ ғ ђ ћ һ җ ҙ љ

˝Ax
2́5x ї қ ҡ ҝ ӕ ң ҥ ѕ
2́6x ө ҫ ў ү ұ ҳ џ ҹ

˝Bx
2́7x ҷ є ә њ ё „ « »
3́0x А Б В Г Д Е Ж З

˝Cx
3́1x И Й К Л М Н О П
3́2x Р С Т У Ф Х Ц Ч

˝Dx
3́3x Ш Щ Ъ Ы Ь Э Ю Я
3́4x а б в г д е ж з

˝Ex
3́5x и й к л м н о п
3́6x р с т у ф х ц ч

˝Fx
3́7x ш щ ъ ы ь э ю я

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Characters marked in blue need to be present (in their specified positions) in every text encod-
ing, as they are transparently passed through TEX.

Table 9.6: Glyph chart for a T2A-encoded font (larm1000)

9.4 Support for non-Latin alphabets 573

T2B: Abaza, Avar, Agul, Adyghei, Aleut, Altai, Balkar, Byelorussian, Bulgarian,
Buryat, Gagauz, Dargin, Dolgan, Dungan, Ingush, Itelmen,
Kabardino-Cherkess, Kalmyk, Karakalpak, Karachaevskii, Karelian, Ketskii,
Kirghiz, Komi-Zyrian, Komi-Permyak, Koryak, Kumyk, Kurdian, Lak,
Lezghin, Mansi, Mari-Valley, Moldavian, Mongolian, Mordvin-Moksha,
Mordvin-Erzya, Nanai, Nganasan, Negidal, Nenets, Nivh, Nogai, Oroch,
Russian, Rutul, Selkup, Tabasaran, Tadzhik, Tatar, Tati, Teleut, Tofalar,
Tuva, Turkmen, Udyghei, Uigur, Ulch, Khakass, Hanty-Vahovskii,
Hanty-Kazymskii, Hanty-Obskii, Hanty-Surgut, Hanty-Shurysharskii, Gipsi,
Chechen, Chukcha, Shor, Evenk, Even, Enets, Eskimo, Yukagir,
Crimean-Tatar, Yakut

T2C: Abkhazian, Bulgarian, Gagauz, Karelian, Komi-Zyrian, Komi-Permyak,
Kumyk, Mansi, Moldavian, Mordvin-Moksha, Mordvin-Erzya, Nanai, Orok
(Uilta), Negidal, Nogai, Oroch, Russian, Saam, Old-Bulgarian, Old-Russian,
Tati, Teleut, Hanty-Obskii, Hanty-Surgut, Evenk, Crimean-Tatar

The basic LaTEX distribution comes with all the encoding and font definition
files for handling Cyrillic. The babel package includes support for Bulgarian, Rus-
sian, and Ukrainian. Together with the font files (to be installed separately), LaTEX
can use this package to provide complete support for typesetting languages based
on the Cyrillic alphabet.

Running MakeIndex and BIBTEX

Recognizing that standard MakeIndex and BIBTEX programs cannot handle 8-bit
input encodings natively, the T2 bundle comes with utilities to allow Cyrillic 8-bit
input to be handled correctly by those programs.

For indexes, rumakeindex is a wrapper for MakeIndex that creates a properly
sorted index when Cyrillic letters are used in the entries. Use of the rumakeindex
utility also requires the sed program.1 The utility should be run instead of stan-
dard MakeIndex when you are creating an index containing Cyrillic characters.
Note that the rumakeindex script on UN*X uses the koi8-r encoding, whereas
the corresponding batch file on MS-DOS, rumkidxd.bat, uses the cp866 encoding,
and the batch file on MS Windows, rumkidxw.bat, uses the cp1251 encoding. If a
different encoding is needed, changes have to be introduced in the relevant files.
Alternatively, you might consider using xindy, a newer index preparation program,
which is described in Section 11.3.

For bibliographic references, rubibtex is a wrapper for BIBTEX that produces
Cyrillic letters in item names, which correspond to the reference keys when a
BIBTEX bibliographic database is used. You should also install the citehack package
from the T2 bundle in that case. Moreover, the installed version of the BIBTEX
program should be able to handle 8-bit input (e.g., the BIBTEX8 program described

1Available on any UN*X and for Microsoft operating systems on PC distributed by GNU (e.g., at
http://www.simtel.net).

574 LATEX in a Multilingual Environment

in Section 13.1.1). As in the case of MakeIndex described above, the rubibtex script
and batch files also require the sed program.

Note that the rubibtex script on UN*X uses the koi8-r encoding, whereas the
corresponding batch file on MS-DOS, rubibtex.bat, uses the cp866 encoding. When
another encoding is needed, changes should be introduced in the relevant files.

9.4.2 The Greek alphabet

Greek support in babel comes in two variants: the one-accent monotoniko (the
default), which is used in most cases in everyday communications in Greece today,
and the multi-accent polutoniko, which has to be specified as an attribute, as
explained in Section 9.2.3.

The first family of Greek fonts for TEX was created during the mid-1980s by
Silvio Levy [114]. Other developers improved or extended these fonts, or devel-
oped their own Greek fonts.

In babel the Greek language support is based on the work of Claudio Bec-
cari in collaboration with Apostolos Syropoulos, who developed the Greek cb font
family [12]. In their paper these authors discuss in some detail previous efforts to
support the Greek language with TEX. The sources of the cb fonts are available on
CTAN in the directory languages/greek/cb or on the TEX Live CD in the directory
texmf/fonts/source/public/cbgreek. Hyphenation patterns corresponding to
this font family are found in the file grhyph.tex or grphyph.tex in the same
directory on CTAN and in texmf/tex/generic/hyphen on TEX Live.

The cb fonts use the LGR font encoding. At the time of this book’s writing,
work was under way to design a font encoding that is compatible with LaTEX’s
standards. When it is ready, it will become the T7 encoding. Table 9.7 on the next
page shows the layout of the complete LGR encoding.

It is possible to use Latin alphabetic characters for inputting Greek according
to the transliteration scheme shown in Table 9.8 on page 576. This table shows
that the Latin “v” character has no direct equivalent in the Greek transcription. In
fact, it is used to indicate that one does not want a final sigma. For example, “sv”
generates a median form sigma although it occurs in a final position.

By default, the greek option of babel will use monotoniko Greek. Multi-
accented mode is requested by specifying the language attribute polutoniko for
the greek option:

\usepackage[greek]{babel}
\languageattribute{greek}{polutoniko}

For both modes, some seldom-used characters have been defined to behave like
letters (\catcode 11). For monotoniko Greek, this is the case for the characters ’
and " . In the polutoniko variant, the characters <, >, ~, ‘, and | also behave like
letters. The reason for this behavior is that the LGR encoding contains many liga-
tures with these characters to produce the right glyphs; see Table 9.9 on page 576.
Table 9.10 shows the available composite accent and spiritus combinations.

9.4 Support for non-Latin alphabets 575

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́0x — ? = @ ; A + B
˝0x

0́1x C D E F G H I J

0́2x K L M N O P Q R
˝1x

0́3x € S ə , U V W ¯

0́4x X ! V ΅ [%] ΄
˝2x

0́5x () * + , - . /

0́6x 0 1 2 3 4 5 6 7
˝3x

0́7x 8 9 : · < = > i

1́0x j Α Β k Δ Ε Φ Γ
˝4x

1́1x Η Ι Θ Κ l Μ Ν Ο

1́2x Π Χ Ρ Σ Τ Υ q Ω
˝5x

1́3x s Ψ Ζ [v] x y

1́4x z α β � δ ε φ γ
˝6x

1́5x η ι θ κ μ ν ο

1́6x π χ ρ � τ υ | ω
˝7x

1́7x ξ ψ ζ ~ ͺ � � ―

2́0x � � � � � � � �
˝8x

2́1x ά � � � � � � �

2́2x � � � � � � � �
˝9x

2́3x � � � � � ¡ ¢

2́4x ή £ ¤ ¥ ¦ § ¨ ©
˝Ax

2́5x ª « ¬ ® ° ± ²

2́6x ³ ´ ¶ · ¸ ¹ º »
˝Bx

2́7x ώ ½ ¾ ¿ À Á Â Ã

3́0x Ä Å Æ Ç È É Ê
˝Cx

3́1x Ë Ì Í Î Ï
 Ð Ñ

3́2x ί Ò Ó Ô ύ Ö × Ø
˝Dx

3́3x Ù Ú Û Ü Ý Þ ß à

3́4x á â ã ä å æ ç è
˝Ex

3́5x έ é ê ë ό ì í î

3́6x ï ð ñ ò ó ô õ ö
˝Fx

3́7x ÷ ø ù ú û ()

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Characters marked in blue should be ASCII characters in every LATEX text encoding (compare
Table 9.6 on page 572), as they are transparently passed through TEX. In LGR this is not the
case for A–Z and a–z, which can produce problems in multilingual documents.

Table 9.7: Glyph chart for an LGR-encoded font (grmn1000)

576 LATEX in a Multilingual Environment

a b c d e f g h i j k l m n o p q r s t u v w x y z
α β � δ ε φ γ η ι θ κ μ ν ο π χ ρ � τ υ ω ξ ψ ζ

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
Α Β k Δ Ε Φ Γ Η Ι Θ Κ l Μ Ν Ο Π Χ Ρ Σ Τ Υ Ω s Ψ Ζ 9-4-1

Table 9.8: Greek transliteration with Latin letters for the LGR encoding

Input Result Example

Acute ’a ’e ’h ’i ’o ’u ’w ά έ ή ί ό ύ ώ g’ata γάτα
Diaeresis "i "u "I "U ï ó Ü à qa"ide’uh|c χαïδεύø�
Rough breathing <a <e <h <i <o <r <u <w � â � Ì æ ú
 ´ <’otan ìταν
Smooth breathing >a >e >h >i >o >r >u >w � ã � Í ç û Ð ¶ >’aneu �νευ
Grave ‘a ‘e ‘h ‘i ‘o ‘u ‘w � á � Ë å Ï ³ dad‘i δαδË
Circumflex ~a ~h ~i ~u ~w α̃ η̃ ι̃ υ̃ ω̃ ful~hc φυη̃�
Diacritic below a| h| w| ÷ ø ù

‘w| ’w| >‘w| >’w| <‘w| <’w| ¸ À Ã Â » Á 9-4-2

Table 9.9: LGR ligatures producing single-accented glyphs

Input Result Input Result

’"i ‘"i ’"u ‘"u ñ ð õ ô
>‘a >‘e >‘h >‘i >‘o >‘u >‘w � ë Ô î Ø¿ >‘A >‘E >‘H >‘I >‘O >‘U >‘W yΑ yΕ yΗ yΙ yΟ yΥ yΩ
>’a >’e >’h >’i >’o >’u >’w � ê ¤ Ó í ×¾ >’A >’E >’H >’I >’O >’U >’W xΑ xΕ xΗ xΙ xΟ xΥ xΩ
<‘a <‘e <‘h <‘i <‘o <‘u <‘w � ä ¥ Î è Ñ· <‘A <‘E <‘H <‘I <‘O <‘U <‘W kΑ kΕ kΗ kΙ kΟ kΥ kΩ
<’a <’e <’h <’i <’o <’u <’w � é £ Ò ì Ö½ <’A <’E <’H <’I <’O <’U <’W qΑ qΕ qΗ qΙ qΟ qΥ qΩ

>~a >~h >~i >~u >~w � ¬ Û ßÆ >~A >~H >~I >~U >~W vΑ vΗ vΙ vΥ vΩ
<~a <~h <~i <~u <~w � « Ú ÞÅ <~A <~H <~I <~U <~W jΑ jΗ jΙ jΥ jΩ 9-4-3

Table 9.10: Available composite spiritus and accent combinations

9.4.3 The Hebrew alphabet

The first support for Hebrew that became part of the babel distribution was devel-
oped by Boris Lavva and Alon Ziv, based on earlier work that offered support for
typesetting Hebrew texts with LaTEX 2.09 and TEX--XET. This support was developed
further by these two authors and Rama Porrat. At the time of writing Tzafrir Co-
hen has started a sourceforge project called “ivritex” (http://ivritex.sf.net)
to extend the work even more.

9.4 Support for non-Latin alphabets 577

9-4-4

LATEX ������� ���	
 ���� �
 �����

�����

���� ���

���� �	��
�
 �

������ ��� �

and continue with English text ������� ����� 	
 ���� ������ ����� ����
������� ������ 83 + a2 = 102 ������� ���
� �� ����

������ ���� 		
�

������ ��� �� ��� ��� �� ��� �

	���� ����� ��� ��� �� ���� �
� ������� ��� �� ����� 	���� �� �
�� ���� ����� ��� �� �� � ������ 10 � ���� �� �������
�
�� 	
 ������� ���� ������ �� ���� 	��� ����� ���� ��

������ ��� �� ����
� ����� �� ���� ���� �� ����

rama@huji.ac.il � ������ �� ���� ��

Last section �

������� ������ �
�� �� �������� �
� ����� ����

Figure 9.1: A Hebrew document

The current support for typesetting Hebrew is based on fonts from the He-
brew University of Jerusalem. These fonts have a particular 7-bit encoding for
which the Local Hebrew encoding (LHE) has been developed. Figure 9.1 used the
Jerusalem font; in Table 9.11 on the following page the encoding of these fonts is
shown. The support in babel uses the Jerusalem font as the regular font, Old Jaffa
for a font with an italic shape, and the Dead Sea font for typesetting bold letters.
When a sans serif font is needed, the Tel Aviv font is used; it is also deployed as a
replacement for a typewriter font.

As an alternative to these fonts, two other (copyrighted, but freely available
on CTAN) fonts are supported: Hclassic is a “modernized Classical Hebrew” font;
Hcaption is a slanted version of it. Furthermore, three shalom fonts are avail-
able: ShalomScript10 contains handwritten Hebrew letters; ShalomStick10 con-
tains sans serif letters; and ShalomOldStyle10 contains old-style letters. Yet an-

578 LATEX in a Multilingual Environment

0́ 1́ 2́ 3́ 4́ 5́ 6́ 7́

0́2x � � � � � � � �
˝1x

0́3x 	
 � �

0́4x � � � �
˝2x

0́5x � � � � �

0́6x � � � � � � � �
˝3x

0́7x � ! " # $ % &

1́0x ' () * + , - .
˝4x

1́1x / 0 1 2 3 4 5 6

1́2x 7 8 9 : ; < = >
˝5x

1́3x ? @ A B C

1́4x D E F G H I J K
˝6x

1́5x L M N O P Q R S

1́6x T U V W X Y Z [
˝7x

1́7x \] ^

˝8 ˝9 ˝A ˝B ˝C ˝D ˝E ˝F

Table 9.11: Glyph chart for an LHE-encoded font (shold10)

other available family of fonts are the Frank Ruehl fonts, which come in regular,
bold extended, and slanted shapes. The Carmel font family offers regular and
slanted shapes and was designed for headers and emphasized text. The Redis
family comes with regular, slanted, and bold extended shapes. For all supported
font families, the package hebfont defines commands to select them. These com-
mands are shown in Table 9.12 on the next page.

A few input encodings are available as part of the support for Hebrew. They
are not automatically provided with the inputenc distribution.

si960 This 7-bit Hebrew encoding uses ASCII character positions 32–127. Also
known as “oldcode”, it is defined by Israeli standard SI-960.

8859-8 This 8-bit mixed Hebrew and Latin encoding is also known as “newcode”.
It is defined by the standard ISO 8859-8.

cp862 This IBM code page is commonly used by MS-DOS on IBM-compatible per-
sonal computers. It is also known as “pccode”.

cp1255 The MS Windows 1255 (Hebrew) code page resembles ISO 8859-8. In ad-
dition to Hebrew letters, this encoding contains vowels and dots (nikud).

9.5 Tailoring babel 579

9-4-5

Command Corresponds to Declaration Font Family Example

\textjm \rmfamily Jerusalem font �������

\textds \bfseries Dead Sea font �������

\textoj \itshape Old Jaffa font �������

\textta \sffamily Tel Aviv font �������

\ttfamily

\textcrml \fontfamily{crml} Carmel fonts �������

\textfr \fontfamily{fr} Frank Ruehl fonts �������

\textredis \fontfamily{redis} Redis fonts �������

\textclas \fontfamily{clas} Classic fonts �������

\textshold \fontfamily{shold} Shalom Old Style font ��������

\textshscr \fontfamily{shscr} Shalom Script font ��������

\textshstk \fontfamily{schstk} Shalom Stick font ��������

Table 9.12: Hebrew font-changing commands

9.5 Tailoring babel

This section explains some of the commands that are made available by the core
babel package to construct language definition files (which are usually loaded
when a language option is requested). Section 9.5.3 then looks in some detail at
the template file language.skeleton, which can be used as a basis to provide
support for additional languages.

Language definition files (file extension .ldf) have to conform to a number of
conventions, since they complement the common shared code of babel provided
in the file babel.def for producing language-dependent text strings. Similarly,
to allow for language switching like the capability built into babel, certain rules
apply. The basic working assumptions follow.

• Each language definition file 〈lang〉.ldf must define five macros, which
are subsequently used to activate and deactivate the language-specific def-
initions. These macros are \〈language〉hyphenmins , \captions〈language〉 ,
\date〈language〉 , \extras〈language〉 , and \noextras〈language〉 , where
〈language〉 is either the name of the language definition file or the name of a
babel package option. These macros and their functions are discussed below.

• When a language definition file is loaded, it can define \l@〈language〉 to be a
variant (dialect) of \language0 when \l@〈language〉 is undefined.

• The language definition files must be written in a way that they can be read
not just in the preamble of the document, but also in the middle of document
processing.

580 LATEX in a Multilingual Environment

9.5.1 Hyphenating in several languages

Since TEX version 3.0, hyphenation patterns for multiple languages can be used
together. These patterns have to be administered somehow. In particular, the
plainTEX user has to know for which languages patterns have been loaded, and
to what values of the command sequence \language they correspond. The babel
package abstracts from this low-level interface and manages this information by
using an external file, language.dat, in which one records which languages have
hyphenation patterns and in which files these patterns are stored. This configura-
tion file is then processed1 when INITEX is run to generate a new LaTEX format. An
example of this file is shown here:

%%% Filename : language.dat
%%% Description : Instruct iniTeX which pattern files to load.

english ushyph.tex % American English
=USenglish
=american
russian ruhyph.tex % Russian
french frhyph.tex frhyphx.tex % French
=patois
=francais
UKenglish gbhyph.tex % UK English
=british
german dehypht.tex % Traditional German
%ngerman dehyphn.tex % New German (not loaded)
%dutch nehyph96.tex % Dutch (not loaded)

dumylang dumyhyph.tex % For testing new language
nohyphenation zerohyph.tex % Language with no patterns

This configuration file language.dat can contain empty lines and comments, as
well as lines that start with an equals (=) sign. Such a line will instruct LaTEX that
the hyphenation patterns just processed will be known under an alternative name.
The first element on each line specifies the name of the language; it is followed
by the name of the file containing the hyphenation patterns. An optional third
entry can specify a hyphenation exception file in case the exceptions are stored in
a separate file (e.g., frhyphx.tex in the previous example).

For each language in language.dat, the command \l@〈language〉 is defined
in the LaTEX format (i.e., \l@english and so on). When the document is pro-
cessed with such a format, babel checks for each language whether the command
\l@〈language〉 is defined and, if so, it loads the corresponding hyphenation pat-

1Make sure that you do not have several such files in your TEX installation, because it is not
always clear which of them will be examined during the format generation. The authors nearly got
bitten during the book production when INITEX picked up the system configuration file and not the
specially prepared one containing all the patterns for the examples.

9.5 Tailoring babel 581

terns; otherwise, it loads the patterns for the default language 0 (the one loaded
first by INITEX); for compatibility reasons this language should contain US-English
hyphenation patterns.

initex latex.ltx
This is TeX, Version 3.14159 (Web2C 7.3.3.1) (INITEX)
(/tex/texmf/tex/latex/base/latex.ltx

....
24 hyphenation exceptions
Hyphenation trie of length 33878 has 835 ops out of 1501
2 for language 5
207 for language 4
224 for language 3
86 for language 2
135 for language 1
181 for language 0

No pages of output.

Seven “languages” are loaded into the format, as defined in the language.dat
file: english (0), russian (1), french (2), UKenglish (3), german (4), dumylang
(5), and nohyphenation (6; implicitly defined with no hyphenation tries). Babel
uses these text strings (or their equivalents, specified preceeded by an = sign in
language.dat) to identify a language.

If language.dat cannot be opened for reading during the INITEX run, babel
will attempt to use the default hyphenation file hyphen.tex instead. It informs
the user in this event.

9.5.2 The package file

To help make use of the features of LaTEX, the babel package contains a package file
called babel.sty. This file is loaded by the \usepackage command and defines all
the language options supported by babel (see Table 9.1 on page 543). It also takes
care of a number of compatibility issues with other packages. Local customization
for babel can be entered in the configuration file bblopts.cfg, which is read at
the end of babel.sty.

Apart from the language options listed in Table 9.1 on page 543, babel pre-
declares a few options that can influence the behavior of language definition files.
For instance, activeacute and activegrave by default do nothing, but they are
used with, for instance, Catalan (catalan.ldf) to activate the acute and grave
accents when the relevant options are specified.

A third option, KeepShorthandsActive, instructs babel to keep shorthand
characters active when processing of the package file ends. Note that this is not
the default as it can cause problems with other packages. Nevertheless, in some
cases, such as when you need to use shorthand characters in the preamble of a
document, this option can be useful.

582 LATEX in a Multilingual Environment

9.5.3 The structure of the babel language definition file

The babel distribution comes with the file language.skeleton, which provides
a convenient skeleton for developing one’s own language file to support a new
language. It serves as a convenient model to understand how the babel core com-
mands are used. The file is shown here, and the commands used in it are described
as they occur.

Throughout language.skeleton, you will find the string “〈language〉”; it
should be replaced by the name of the language for which you are providing
support. If this language is known to have a dialect that needs a slightly differ-
ent support, you can arrange for this support as well. In such a case, the strings
“〈dialect〉” should be replaced by the name of the dialect. If your language does not
need support for a dialect, you should remove the corresponding lines of code.

The file starts with copyright and license information.Copyright and
introduction

1 % \iffalse meta-comment
2 %
3 % Copyright 1989-2003 Johannes L. Braams and any individual authors
4 % listed elsewhere in this file. All rights reserved.
5 %
6 % This file is part of the Babel system release 3.7.
7 % --
8 %
9 % This work may be distributed and/or modified under the
10 % conditions of the LaTeX Project Public License, either version 1.3
11 % of this license or (at your option) any later version.
12 % The latest version of this license is in
13 % http://www.latex-project.org/lppl.txt
14 % and version 1.3 or later is part of all distributions of LaTeX
15 % version 2003/12/01 or later.
16 %
17 % This work has the LPPL maintenance status "maintained".
18 %
19 % This Current Maintainer of this work is Johannes Braams.
20 %
21 % \fi
22 % \CheckSum{0}
23 %%% docstring = " This file can act as a template for
24 %%% people who want to provide extra
25 %%% languages to be included in the babel
26 %%% distribution.
27 %

This is followed by information identifying the file and language.Identification of the
language

28 %<*dtx>
29 % \iffalse
30 % Tell the \LaTeX\ system who we are and write an entry in the
31 % transcript file.
32 \ProvidesFile{<language>.dtx}
33 %</dtx>
34 %<code>\ProvidesLanguage{<language>}
35 %\fi
36 %\ProvidesFile{<language>.dtx}
37 [2003/03/18 v1.5 <Language> support from the babel system]

9.5 Tailoring babel 583

\ProvidesLanguage{name}[release-information]

The command \ProvidesLanguage (line 34) identifies the language definition
file. It uses the same syntax as LaTEX’s \ProvidesPackage . For instance, the file
welsh.ldf contains the following declaration:

\ProvidesLanguage{welsh}

The release-information can be used to indicate that at least this version of babel
is required.

The next section then sets up a documentation driver to allow for typesetting the A documentation
driverfile itself using the doc package. See Chapter 14 for details.

38 %\iffalse
39 %% Babel package for LaTeX version 2e
40 %% Copyright (C) 1989 -- 2003
41 %% by Johannes Braams, TeXniek
42 %
43 %% Please report errors to: J.L. Braams
44 %% babel@braams.cistron.nl
45 %
46 % This file is part of the babel system, it provides the source code for
47 % the <Language> language definition file.
48 %<*filedriver>
49 \documentclass{ltxdoc}
50 \newcommand*{\TeXhax}{\TeX hax}
51 \newcommand*{\babel}{\textsf{babel}}
52 \newcommand*{\langvar}{$\langle \mathit lang \rangle$}
53 \newcommand*{\note}[1]{}
54 \newcommand*{\Lopt}[1]{\textsf{#1}}
55 \newcommand*{\file}[1]{\texttt{#1}}
56 \begin{document}
57 \DocInput{<language>.dtx}
58 \end{document}
59 %</filedriver>
60 %\fi
61 %% \GetFileInfo{<language>.dtx}
62 %

The following part starts with the documentation of the features provided by the Documentation and
initializationlanguage definition file. Use the methods described in Chapter14 for documenting

code and providing a short user manual.

63 % \changes{v1.1}{1994/02/27}{Rearranged the file a little}
64 % \changes{v1.2}{1994/06/04}{Update for \LaTeXe}
65 % \changes{v1.3}{1995/05/13}{Update for \babel\ release 3.5}
66 % \changes{v1.4}{1996/10/30}{Update for \babel\ release 3.6}
67 % \changes{v1.5}{1997/03/18}{Update for \babel\ release 3.7}
68 %
69 % \section{The <Language> language}
70 %
71 % The file \file{\filename}\footnote{The file described in this
72 % section has version number \fileversion\ and was last revised on
73 % \filedate.} defines all the language definition macros for the
74 % <Language> language.
75 %
76 % \StopEventually{}

584 LATEX in a Multilingual Environment

77 %
78 % The macro |\LdfInit| takes care of preventing that this file is
79 % loaded more than once, checking the category code of the
80 % \texttt{@} sign, etc.
81 % \begin{macrocode}
82 %<*code>
83 \LdfInit{<language>}{captions<language>}
84 % \end{macrocode}
85 %

\LdfInit

The macro \LdfInit (line 83) performs a couple of standard checks that have
to be made at the beginning of a language definition file, such as checking the
category code of the @ sign and preventing the .ldf file from being processed
twice.

Defining language
and dialects

86 % When this file is read as an option, i.e. by the |\usepackage|
87 % command, \texttt{<language>} could be an ‘unknown’ language in
88 % which case we have to make it known. So we check for the
89 % existence of |\l@<language>| to see whether we have to do
90 % something here.
91 %
92 % \begin{macrocode}
93 \ifx\undefined\l@<language>
94 \@nopatterns{<Language>}
95 \adddialect\l@<language>0\fi
96 % \end{macrocode}
97 % For the <Dialect> version of these definitions we just add a
98 % ‘‘dialect’’. Also, the macros |\captions<dialect>| and
99 % |\extras<dialect>| are |\let| to their \texttt{<language>}
100 % counterparts when these parts are defined.
101 % \begin{macrocode}
102 \adddialect\l@<dialect>\l@<language>
103 % \end{macrocode}
104 % The next step consists of defining commands to switch to (and
105 % from) the <Language> language.
106 %

\adddialect{\l@variant}{\l@lang}

The command \adddialect adds the name of a variant (dialect) language
\l@variant , for which already defined hyphenation patterns can be used (the ones
for language lang).1 If a language has more than one variant, you can repeat this
section as often as necessary.

“Dialect” is somewhat of a historical misnomer, as lang and variant are at the
same level as far as babel is concerned, without co-notation indicating whether
one or the other is the main language. The “dialect” paradigm comes in handy
if you want to share hyphenation patterns between various languages. Moreover,
if no hyphenation patterns are preloaded in the format for the language lang,
babel’s default behavior is to define this language as a “dialect” of the default
language (\language0).

1When loading hyphenation patterns with INITEX babel uses the \addlanguage command to de-
clare the various languages specified in language.dat; see Section 9.5.1.

9.5 Tailoring babel 585

For instance, the first line below indicates that for Austrian one can use the
hyphenation patterns for German (defined in german.ldf). The second line tells
us that Nynorsk shares the hyphenation patterns of Norsk (in norsk.ldf).

\adddialect{\l@austrian}{\l@german}
\adddialect{\l@nynorsk}{\l@norsk}

The following example shows how language variants can be obtained using
the dialect mechanism, where there can be differences in the names of sectioning
elements or for the date.

9-5-1

Dialectical variants:
Norsk: Bibliografi
Nynorsk: Litteratur
Dutch: 29 februari 2004
Afrikaans: 29 Februarie 2004

\usepackage[dutch,afrikaans,norsk,nynorsk,english]{babel}

Dialectical variants: \par
\selectlanguage{norsk} Norsk: \bibname \par
\selectlanguage{nynorsk} Nynorsk: \bibname \par
\selectlanguage{dutch} Dutch: \today \par
\selectlanguage{afrikaans} Afrikaans: \today

The next part deals with the set-up for language attributes, if necessary. Defining language
attributes

107 % Now we declare the |<attrib>| language attribute.
108 % \begin{macrocode}
109 \bbl@declare@ttribute{<language>}{<attrib>}{%
110 % \end{macrocode}
111 % This code adds the expansion of |\extras<attrib><language>| to
112 % |\extras<language>|.
113 % \begin{macrocode}
114 \expandafter\addto\expandafter\extras<language>
115 \expandafter{\extras<attrib><language>}%
116 \let\captions<language>\captions<attrib><language>
117 }
118 % \end{macrocode}
119 %

\bbl@declare@ttribute{lang}{attr}{exec}

This command (used on line 109) declares that for the attribute attr in the lan-
guage lang, the code exec should be executed. For instance, the file greek.ldf
defines an attribute polutoniko for the Greek language:

\bbl@declare@ttribute{greek}{polutoniko}{...}

When you load the Greek language with the polutonikogreek option (which is
equivalent to setting the attribute polutoniko), Greek will then be typeset with
multiple accents (according to the code specified in the third argument).

If you want to define more than one attribute for the current language, repeat
this section as often as necessary.

586 LATEX in a Multilingual Environment

Now we deal with the minimum number of characters required to the left andAdjusting
hyphenation

patterns
right of hyphenation points.
120 % \begin{macro}{\<language>hyphenmins}
121 % This macro is used to store the correct values of the hyphenation
122 % parameters |\lefthyphenmin| and |\righthyphenmin|.
123 % \begin{macrocode}
124 \providehyphenmins{<language>}{\tw@\thr@@}
125 % \end{macrocode}
126 % \end{macro}
127 %

\providehyphenmins{lang}{hyphenmins} \〈language〉hyphenmins
The command \providehyphenmins (line 124) provides a default setting for the
hyphenation parameters \lefthyphenmin (minimum number of characters on the
left before the first hyphen point) and \righthyphenmin (minimum numbers on
the right) for the language lang, by defining \〈language〉hyphenmins unless it is
already defined for some reason. The babel package detects whether the hyphen-
ation file explicitly sets \lefthyphenmin and \righthyphenmin and automati-
cally defines \〈language〉hyphenmins , in which case the \providehyphenmins
declaration has no effect.

The syntax inside babel is storage optimized, dating back to the days when
every token counted. Thus, the argument hyphenmins contains the values for both
parameters simply as two digits, making the assumption that you will never want
a minimum larger than 9. If this assumption is wrong, you must surround the
values with braces within hyphenmins. For example,

\providehyphenmins{german}{{10}{5}}

would request to leave at least 10 characters before a hyphen and at least 5 char-
acters after it (thus essentially never hyphenate).

If you want to explicitly overwrite the settings regardless of any existing spec-
ification, you can do so by providing a value for \〈language〉hyphenmins yourself.
For instance,

\def\germanhyphenmins{43}

never considers hyphenation points with less than four letters before and three
letters after the hyphen. Thus, it will never hyphenate a word with less than seven
characters.

Hyphenation patterns are built with a certain setting of these parameters in
mind. Setting their values lower than the values used in the pattern generation
will merely result in incorrect hyphenation. It is possible, however, to use higher
values in which case the potential hyphenation points are simply reduced.

The translations for language-dependent strings are set up next.Translations for
language-dependent

strings
128 % \begin{macro}{\captions<language>}
129 % The macro |\captions<language>| defines all strings used in the
130 % four standard documentclasses provided with \LaTeX.
131 % \begin{macrocode}

9.5 Tailoring babel 587

132 \def\captions<language>{}
133 % \end{macrocode}
134 % \end{macro}
135 %
136 % \begin{macro}{\captions<dialect>}
137 % \begin{macrocode}
138 \let\captions<dialect>\captions<language>
139 % \end{macrocode}
140 % \end{macro}
141 %

\captions〈language〉{replacement text definitions}

The macro \captions〈language〉 (line 132) defines the macros that hold the
translations for the language-dependent strings used in LaTEX for the language
〈language〉. It must also be provided for each dialect being set up. If the dialect
uses the same translation, \let can be used (as shown in line 138). Otherwise, you
have to provide a full definition.

142 % \begin{macro}{\date<language>}
143 % The macro |\date<language>| redefines the command |\today| to
144 % produce <Language> dates.
145 % \begin{macrocode}
146 \def\date<language>{%
147 }
148 % \end{macrocode}
149 % \end{macro}
150 %
151 % \begin{macro}{\date<dialect>}
152 % The macro |\date<dialect>| redefines the command |\today| to
153 % produce <Dialect> dates.
154 % \begin{macrocode}
155 \def\date<dialect>{%
156 }
157 % \end{macrocode}
158 % \end{macro}
159 %

\date〈language〉{definition of date}

The macro \date〈language〉 (line 146) defines the text string for the \today com-
mand for the language 〈language〉 being defined in a .ldf file.
For some languages (or dialects), extra definitions have to be provided. This is Providing extra

featuresdone in the next section.

160 % \begin{macro}{\extras<language>}
161 % \begin{macro}{\noextras<language>}
162 % The macro |\extras<language>| will perform all the extra
163 % definitions needed for the <Language> language. The macro
164 % |\noextras<language>| is used to cancel the actions of
165 % |\extras<language>|. For the moment these macros are empty but
166 % they are defined for compatibility with the other
167 % language definition files.
168 %
169 % \begin{macrocode}
170 \addto\extras<language>{}
171 \addto\noextras<language>{}
172 % \end{macrocode}

588 LATEX in a Multilingual Environment

173 % \end{macro}
174 % \end{macro}
175 %
176 % \begin{macro}{\extras<dialect>}
177 % \begin{macro}{\noextras<dialect>}
178 % Also for the ‘‘<dialect>’’ variant no extra definitions are
179 % needed at the moment.
180 % \begin{macrocode}
181 \let\extras<dialect>\extras<language>
182 \let\noextras<dialect>\noextras<language>
183 % \end{macrocode}
184 % \end{macro}
185 % \end{macro}
186 %

\extras〈language〉{extra definitions}

The macro \extras〈language〉 (line 170) contains all extra definitions needed for
the language 〈language〉 being defined in a .ldf file. Such extras can be com-
mands to turn shorthands on or off, to make certain characters active, to initiate
French spacing, to position umlauts, and so on.

\noextras〈language〉{reverse extra definitions}

To allow switching between any two languages, it is necessary to return to a known
state for the TEX engine—in particular, with respect to the definitions initiated
by the command \extras〈language〉 . The macro \noextras〈language〉 (line 171)
must contain code to revert all such definitions so as to bring TEX back to a known
state.

The file finishes with the following lines of code.Clean up and finish

187 % The macro |\ldf@finish| takes care of looking for a
188 % configuration file, setting the main language to be switched on
189 % at |\begin{document}| and resetting the category code of
190 % \texttt{@} to its original value.
191 % \begin{macrocode}
192 \ldf@finish{<language>}
193 %</code>
194 % \end{macrocode}
195 %
196 % \Finale
197 %\endinput

\ldf@finish{lang}

The macro \ldf@finish (line 192) performs a couple of tasks that are necessary
at the end of each .ldf file. The argument lang is the name of the language as it
is defined in the language definition file. The macro starts by verifying whether
the system contains a file lang.cfg—that is, a file with the same name as the
language definition file, but with the extension .cfg. This file can be used to
add site-specific actions to a language definition file, such as adding strings to
\captions〈language〉 to support local document classes, or activating or deacti-
vating shorthands for acute or grave accents. In particular, the babel distribution

9.5 Tailoring babel 589

for French written by Daniel Flipo comes with a file frenchb.cfg that contains
a few (commented-out) supplementary definitions for typesetting French that can
be activated (uncommented) by the user if they appear to be useful. Other tasks
performed by the macro include resetting the category code of the @ sign, and
preparing the language to be activated at the beginning of the document.

Adding definitions to babel’s data structures

On various lines (114, 170, 171), the command \addto was used to extend one of
the babel data structures holding translations or code for a certain language.

\addto\csname{code}

This command extends the definition of the control sequence \csname with the
TEX code specified in code. The control sequence \csname does not have to have
been defined previously. As an example, the following lines are taken from the
file russianb.ldf, where code is added to the commands \captionsrussian ,
\extrasrussian , and \noextrasrussian .

\addto\captionsrussian{%
\def\prefacename{%

{\cyr\CYRP\cyrr\cyre\cyrd\cyri\cyrs\cyrl\cyro\cyrv\cyri\cyre}}%
...
}

\addto\extrasrussian{\cyrillictext}
\addto\noextrasrussian{\latintext}
\initiate@active@char{"}
\addto\extrasrussian{\languageshorthands{russian}}
\addto\extrasrussian{\bbl@activate{"}}
\addto\noextrasrussian{\bbl@deactivate{"}}

Language-level commands for shorthands

Shorthands on the language or system level are set up in the language definition
files. An incomplete example of this process was given in the previous section. In
this section we describe all commands and declarations that can be used for this
purpose.

\initiate@active@char{char}

This macro can be used in language definition files to turn the character char into
a “shorthand character”. When the character is already defined to be a shorthand
character, this macro does nothing. Otherwise, it defines the control sequence
\normal@char〈char〉 to expand to the character char in its “normal state” and it

590 LATEX in a Multilingual Environment

defines the active character to expand to \normal@char〈char〉 by default. Subse-
quently, its definition can be changed to expand to \active@char〈char〉 by call-
ing \bbl@activate〈char〉 . When a character has been made active, it will remain
active until deactivated or until the end of the document is reached. Its definition
can be changed at any time during the typesetting stage of the document.

For example, several language definition files make the double quote character
active with the following statement:

\initiate@active@char{"}

For French the configuration file frenchb.cfg defines two-character shorthands:

\initiate@active@char{<<} \initiate@active@char{>>}

\bbl@activate{char} \bbl@deactivate{char}

The command \bbl@activate “switches on” the active behavior of the charac-
ter char by changing its definition to expand to \active@char〈char〉 (instead
of \normal@char〈char〉). Conversely, the command \bbl@deactivate lets the
active character char expand to \normal@char〈char〉 . This command does not
change the \catcode of the character, which stays active.

\textormath{text-code}{math-code}

Recognizing that some shorthands declared in the language definition files have
to be usable in both text and math modes, this macro allows you to specify the
code to execute when in text mode (text-code) or when in math mode (math-code).
As explained on page 446, providing commands for use in text and math can have
unwanted side effects, so this macro should be used with great care.

\allowhyphens \bbl@allowhyphens

When LaTEX cannot hyphenate a word properly by itself—for instance, because it
is a compound word or because the word contains accented letters constructed
using the \accent primitive—it needs a little help. This help involves making LaTEX
think it is dealing with two words, which appear as one word on the page. For this
purpose babel provides the command \allowhyphens , which inserts an invisible
horizontal skip, unless the current font encoding is T1.1 In some cases one wants
to insert this “help” unconditionally; for these cases \bbl@allowhyphens is avail-
able. This invisible skip has the effect of making LaTEX think it is dealing with two
words that can be hyphenated separately.

1In contrast to the OT1 encoding, the T1 encoding contains most accented characters as real
glyphs so that the \accent primitive is almost never used.

9.6 Other approaches 591

\declare@shorthand{name}{charseq}{exec}

The macro \declare@shorthand defines shorthands to facilitate entering text in
the given language. The first argument, name, specifies the name of the collection
of shorthands to which the definition belongs. The second argument, charseq,
consists of one or more characters that correspond to the shorthand being defined.
The third argument, exec, contains the code to be executed when the shorthand is
encountered in the document. A few examples from various language definition
files follow.

\declare@shorthand{dutch}{"y}{\textormath{\ij{}}{\ddot y}}
\declare@shorthand{german}{"a}{\textormath{\"{a}\allowhyphens}{\ddot a}}
\declare@shorthand{french}{;}{...}
\declare@shorthand{system}{;}{\string;}

The latter two instructions are found in the file frenchb.ldf, where the first
handles the case where the ; character is active and the third argument provides
code for ensuring that a thin space is inserted before “high” punctuation (;, :, !,
and ?). The last command deals with the case where these French punctuation
rules are inactivated (note that these four punctuation characters are made active
in frenchb.ldf).

9.6 Other approaches

In general, the babel package does a good job of translating document element
names and making text input somewhat more convenient. However, for several
languages, individuals or local user groups have developed packages and versions
of TEX that cope with a given language on a deeper level—in particular, by better
integrating the typographic traditions of the target language.

An example of such a package is french [51, 66], which was developed by
Bernard Gaulle. Special customized versions of (LA)TEX exist (e.g., Polish and Czech,
distributed by the TEX user groups GUST and CSTUG, respectively).

9.6.1 More complex languages

In the world of non-Latin alphabets, one more level of complexity is added when
one wants to treat the Arabic or Hebrew [140] languages. Not only are they typeset
from right to left, but, in the case of Arabic, the letter shapes change according to
their positions in a word.

Several systems to handle Hebrew are available on CTAN (language/hebrew).
In particular, babel offers an interface for Hebrew written by Boris Lavva. For

592 LATEX in a Multilingual Environment

Arabic there is the ArabTEX system [102], developed by Klaus Lagally. This pack-
age extends the capabilities of (LA)TEX to generate Arabic writing using an ASCII
transliteration (CTAN nonfree/language/arabtex).

Serguei Dachian, Arnak Dalalyan, and Vardan Hakobian provide Armenian
support (CTAN language/armtex).

For the languages of the Indian subcontinent, most of the support is based on
the work of Frans Velthuis. In particular, recently Anshuman Pandey developed
packages for Bengali (bengali package and associated fonts on CTAN language/
bengali/pandey), Sanskrit (Anshuman Pandey’s devnag package on CTAN
language/devanagari/velthuis), and Gurmukhi (CTAN language/gurmukhi/
pandey).

Oliver Corff and Dorjpalam Dorj’s manjutex package can be used for type-
setting languages using the Manju (Mongolian) scripts (CTAN language/manju/
manjutex).

Ethiopian language support, compatible with babel, is available through
Berhanu Beyene, Manfred Kudlek, Olaf Kummer, and Jochen Metzinger’s ethiop
package and fonts (CTAN language/ethiopia/ethiop).

For Chinese, Japanese, and Korean (the so-called CJK scripts), one can use
Werner Lemberg’s cjk package [113], which contains fonts and utilities (CTAN
language/chinese/CJK).

9.6.2 Omega

No discussion of multilingual typesetting would be complete without mentioning
Omega [137], an extension of TEX developed by Yannis Haralambous and John
Plaice. Omega’s declared aim is to improve on TEX’s multilingual typesetting abil-
ities by making significant changes to the executable TEX, the Program. It poten-
tially provides far simpler solutions in many of the areas addressed by babel by
offering the following features:

• Omega can be used to read text files in any encoding (8-bit, 16-bit, or more).

• Omega handles shorthands internally by applying specified transformations
to recognized sequences of input characters.

• Omega has an internal structure that is far more flexible than that of TEX for
handling large sets of characters and large fonts.

• Omega supports many different types of script and all writing directions used
for present-day scripts.

These enhancements to the TEX typesetting paradigm will make it easier to type-
set a range of languages: Arabic, Bantu, Basque, Georgian, Hindi, Khmer, Chinese,
Cree, or Mongolian—and all within the same document! It is also hoped (at end
2003) that enhancements to LaTEX will soon appear to support these new facilities,
thus providing a fully multilingual LaTEX system.

C H A P T E R 10

Graphics Generation and
Manipulation

TEX probably has the best algorithm for formatting paragraphs and building pages
from them. But in this era of ever-increasing information exchange, most pub-
lications do not limit themselves to text—the importance of graphical material
has grown tremendously. TEX by itself does not address this issue, as it deals
only with positioning (black) boxes on a page. Knuth, however, provided a hook
for implementing “features” that are not available in the basic language, via the
\special command. The latter command does not affect the output page being
formatted, but TEX will put the material, specified as an argument in the \special
command, literally at the current point in the .dvi file.1 The dvi driver then has
to interpret the received information and produce the output image accordingly
(see also [144]).

The LATEX Graphics Companion [57, Chapter1] describes in detail various ap-
proaches that can be used to produce graphics with TEX. The following list gives
a short overview. Interested readers are referred to that book for more details.

1. ASCII drawing, such as PICTEX, which provides a complete plotting language
where most graphical elements are implemented by combining a very large
number of small dots.

2. Picture-element fonts, such as LaTEX’s picture environment. Kristoffer Rose’s
xypic system [57, Chapter5] uses special fonts to typeset diagrams.

1In certain situations the \special command may change the formatting because it can produce
an additional breakpoint and it might prevent LaTEX from noticing spaces.

594 Graphics Generation and Manipulation

3. Picture macro packages, mainly based on the picture environment or on
TEX’s raw line-drawing commands. Among others, packages exist for drawing
chemical formulae [57, Section 6.2], trees, and bar charts (see Section 10.1.6).

4. Picture fonts, where each character to be typeset is one, possibly enormous,
“letter” in a font. One can use METAFONT or MetaPost for generating the
pictures [57, Chapter3], or else use already existing bitmaps and transform
them into a .pk file directly [57, Section 1.3].

5. Half-tone fonts—blocks consisting of various levels of grey, which can be com-
bined in the normal TEX way to generate pictures [39,93].

6. Graphics material included via the \special command. This approach is by
definition device dependent, as it relies on the possibilities of the dvi driver
and the output device. The graphics package, described in Section 10.2, of-
fers a higher-level support layer on top of TEX’s \special command. This ap-
proach has become very common because of the wide availability of low-cost
PostScript printers and previewers. Other high-level systems allowing one to
use PostScript together with LaTEX are psfrag and pstricks [57, Chapter4].

In this chapter we look at techniques for producing portable graphics (mainly
based on item 3) and at the high-level interface to device-dependent graphics sup-
port (item 6).

In particular, the first section discusses LaTEX’s built-in graphics tools. We look
at how to build ornaments, which can be useful for making important material
stand out. Then we turn our attention to two packages, epic and eepic, that ex-
tend the picture environment by introducing a set of new commands. They are
described in detail and examples show how they are used in practice.

LaTEX2ε provides a generalized driver-independent interface to include exter-
nal graphic material and to scale and rotate LaTEX boxes.1 Section 10.2 deals with
graphics file inclusion. For this LaTEX offers both a simple interface (graphics; see
Section 10.2.2), which can be combined with the separate rotation and scaling
commands, and a more complex interface (graphicx; see Section 10.2.3), which
has its own powerful set of image manipulation options. Free-standing scaling
and rotation is the subject of Section 10.3.

In the final section we say a few words about important display languages
(PostScript, PDF, SVG). We also briefly discuss dvips, an often-used dvi to
PostScript translation program, and describe pspicture, an extension of LaTEX’s
picture environment that uses PostScript drawing primitives interfaced to the
dvips driver.

1A generalized package for color is also available; see the LATEX Manual [104] for more details.

10.1 Producing portable graphics and ornaments 595

10.1 Producing portable graphics and ornaments

Portable graphics in LaTEX essentially mean graphics built from boxes, lines, and
characters. LaTEX boxes are reviewed briefly in Appendix A.2. Here, we first present
packages that provide extensions to the usual LaTEX boxes. Later, this section deals
with line graphics.

10.1.1 boxedminipage—Boxes with frames

The boxedminipage environment, defined in the boxedminipage package (by
Mario Wolczko), behaves like the standard minipage environment, but the result
is surrounded by a frame, as if it was placed inside an \fbox . The thickness and
separation of the rules are controlled by the \fboxrule and \fboxsep parame-
ters, respectively. However, in contrast to a construction involving \fbox , one can
use verbatim commands inside the environment body.

10-1-1

This is an example of a small
boxed minipage sporting a foot-
notea and a \verb command.

aVery simple example

\usepackage{boxedminipage}

\begin{boxedminipage}[t]{5cm}
This is an example of a small boxed minipage
sporting a footnote\footnote{Very simple example}
and a \verb=\verb= command.

\end{boxedminipage}

10.1.2 shadow—Boxes with shadows

The shadow package (by Mauro Orlandini) defines the \shabox command. It is sim-
ilar to the LaTEX command \fbox , except that a “shadow” is added to the bottom
and the right side of the box.

Three parameters control the visual appearance of the box (defaults are given
in parentheses): \sboxrule defines the width of the lines for the frame (0.4pt);
\sboxsep defines the separation between the frame and the text (10pt); and \sdim
specifies the dimension of the shadow (4pt).

10-1-2

A complete paragraph can be highlighted
by putting it in a parbox, nested inside a
shabox.

\usepackage{shadow}
\setlength\sdim{10pt}

\shabox{\parbox{6cm}{A complete
paragraph can be highlighted by
putting it in a parbox,
nested inside a \texttt{shabox}.}}

596 Graphics Generation and Manipulation

10.1.3 fancybox—Ornamental boxes

Timothy Van Zandt, in the framework of his seminar package for producing slides,
developed the fancybox package. It introduces various new commands for boxing
and framing data in LaTEX. In this section we review only a few of the more basic
commands. More information can be found in the documentation accompanying
the seminar package.

The package introduces four variants for the \fbox command. As with the
\fbox command, the distance between the box and the frame is given by the
length parameter \fboxsep (LaTEX’s default is 3pt). Other parameters governing
these boxes are described below.

The \shadowbox command adds a shadow with width \shadowsize (default
4pt). The box is aligned at the base of the shadow, which makes it probably less
suitable for inline usage than the \shabox command described earlier. Notice the
different spacing defaults.

X
This is a shadowbox

Y This is a shabox Z

\usepackage{fancybox}
\usepackage{shadow}

X \shadowbox{This is a shadowbox}
Y \shabox{This is a shabox} Z 10-1-3

The \ovalbox command generates a frame with rounded corners. The width
of the frame is the same as that produced by standard picture elements when the
\thinlines declaration is in effect. The \Ovalbox command is similar but has a
frame width corresponding to the size produced by a \thicklines declaration.
The diameter of the corner arcs is set with a \cornersize declaration. The form
\cornersize{num} sets the diameter to num × minimum (width of box, height
of box); the form \cornersize*{len} sets the diameter to the length len. The
default is \cornersize{0.5}.

�� �	This is an ovalbox

� �This is an ovalbox

�

�

�

�
This is an
Ovalbox

\usepackage{fancybox}

\centering
\ovalbox{This is an ovalbox}

\cornersize{1} \ovalbox{This is an ovalbox}
\\[8pt]
\setlength\fboxsep{6pt} \cornersize*{7mm}
\Ovalbox{\shortstack{This is an\\Ovalbox}} 10-1-4

The package also provides \fancyoval as an alternative to LaTEX’s \oval pic-
ture command. While \oval always makes the diameter of the corner arcs as large
as possible, \fancyoval uses the \cornersize declaration to set the diameter.

10.1 Producing portable graphics and ornaments 597

10-1-5

�
�

�
�Test

�
�

�
�

\usepackage{fancybox,color}

\cornersize{0.7}
\begin{picture}(110,40)
\put(25,20){\oval(50,40)}

\color{blue}
\put(85,20){\makebox(0,0){Test}}
\put(85,20){\fancyoval(50,40)}

\end{picture}

Finally, the package offers the \doublebox command, which generates two
square frames. Their widths and relations to each other and the text are frac-
tions of the \fboxrule parameter value: the width of the inner frame is 0.75 of
\fboxrule and that of the outer frame is 1.5 of \fboxrule . The distance between
the two frames is 1.5 of \fboxrule plus 0.5pt.

10-1-6

This is a doublebox

This is a doublebox

\usepackage{fancybox}

\centering
\doublebox{This is a doublebox} \\[5pt]
\setlength\fboxsep {6pt} % default 3pt
\setlength\fboxrule{2pt}
\doublebox{This is a doublebox}

None of the above commands have optional arguments, unlike \framebox
and \makebox . You can get exactly the same functionality by using \makebox in
the argument of these framing commands.

10-1-7

�� ��This is an ovalbox

This is a shadowbox

\usepackage{fancybox}

\centering
\cornersize{0.8}
\ovalbox{\makebox[6cm][l]

{This is an ovalbox}} \\[8pt]
\shadowbox{\makebox[5cm]

{This is a shadowbox}}

For some types of documents, such as slides, it would be nice to allow for
framed pages—that is, to apply commands like those introduced in this section
as part of the page style. This capability is supported by the fancybox package
through the declaration \fancypage{inner}{outer} . The completed page, before
headers and footers are added, is boxed (so it has width \textwidth and height
\textheight) and then passed to the code specified in inner as an argument. Next
the headers and footers are added using the new width of the page, in case it is
changed by inner . The result is passed as an argument to the code in outer , which
again expects one argument. Thus, in the simplest case, you could specify one
of the boxing commands from this section, or even leave one of the arguments

598 Graphics Generation and Manipulation

empty. The next example shows an application where the arguments also contain
some parameter settings to influence the form of the added frames.

6 1 A TEST�

�

�

�

Some text for our page that is reused over
and over again.

1 A Test
Some text for our page that is reused over and
over again. Some text for our page that is

\setlength\textwidth{180pt}
\setlength\textheight{7\baselineskip}
\pagestyle{headings}

\usepackage{fancybox}

\newcommand\sample{ Some text for our
page that is reused over and over again.}

\fancypage
{\setlength\fboxsep{10pt}\ovalbox}
{\setlength{\fboxsep}{8pt}%
\setlength{\shadowsize}{8pt}%
\shadowbox}

\sample \section{A Test}
\sample\sample

10-1-8

Notice that the position of the running header was automatically corrected
Incorrect running
headers or footers

to fit the extended text width covering the frame. However, this correction works
only for standard page styles. If, for example, fancyhdr is used, then the resulting
headers and footers will be too small, as this package uses its own method of
producing these objects.

ABC XYZ�

�

�

�

Some text for
our page that is
reused over and
over again. Some
text for our page
that is reused over
and over again.

6

ABC XYZ�

�

�

�

1 A Test
Some text for our
page that is reused
over and over
again.

7

\usepackage{fancyhdr}
\pagestyle{fancy}
\cfoot{\thepage}
\lhead{ABC} \rhead{XYZ}
% Uncomment next line for
% proper header alignment:
% \fancyhfoffset[R]{20.8pt}
\usepackage{fancybox}
% \sample as before

\fancypage
{\setlength\fboxsep{10pt}%
\ovalbox}

{\setlength{\fboxsep}{8pt}%
\setlength{\shadowsize}{8pt}%
\shadowbox}

\sample\sample
\section{A Test} \sample 10-1-9

In the case of fancyhdr, the problem can be corrected by adding an extra offset
with \fancyhfoffset . The value of 20.8pt was manually calculated as twice the
separation between text and frame (10pt) and the width of the frame line (0.4pt).

10.1 Producing portable graphics and ornaments 599

The \fancypage declaration is applied to all pages starting with the current
Caveatsone until another \fancypage declaration appears within the document. If you

want to add frames only to the current page, use \thisfancypage instead. “Cur-
rent” in this context means the page under construction when the declaration is
first seen by LaTEX, even if that point in the document later ends up on a differ-
ent page. Thus, it behaves like \pagestyle in this respect. If problems arise, you
either have to move the declaration to some earlier or later point in the docu-
ment or stop LaTEX from looking too far ahead by adding a \pagebreak command
somewhere before the declaration.

The other potential problem with the commands \thisfancypage and
\fancypage is that they change LaTEX’s output routine and, therefore, may not
work with other packages that do the same (fancyhdr is an example, though, with
some care, both packages can coexist). Also, bad arguments can cause serious
errors, which generate uninformative error messages.

\fancyput*(x,y){horizontal-material}

A somewhat more powerful way to add material to every page in fixed locations
is provided by the \fancyput declaration. It has a syntax similar to LaTEX’s \put
command, but requires the specification of dimensions for the x and y coordi-
nates. The origin (0pt,0pt) is one inch from the top and left of the paper. Thus,
to put something two inches from the left and three inches from the top, you
would specify (1in,-2in).

10-1-10

DRAFT
Some text for our page that is reused over

and over again. Some text for our page that is
reused over and over again.

1 A Test
Some text for our page that is reused over and
over again. Some text for our page that is

\usepackage{color,fancybox}
\fancyput(2in,-1.2in)
{\Huge\bfseries
\textcolor{blue}{DRAFT}}

% \sample as before

\sample\sample
\section{A Test} \sample \sample

The variant form \thisfancyput affects only the current page, analogous to
\thisfancypage . If the starred form is used (for either command), then, instead
of replacing it, the new material is added to existing material previously inserted
with \fancyput or \thisfancyput .

The package also predefines boxed versions of the standard LaTEX display en-
Boxed display
environments

vironments. The size of the resulting box is determined by the longest line. All
environments support an optional argument for positioning the box in relation to
the objects on the line; it can be t for top alignment or b for bottom alignment,
but the default is to center the box.

The environments Bcenter, Bflushleft, and Bflushright generate a box
with the contents centered, flushleft, and flushright, respectively. The exam-

600 Graphics Generation and Manipulation

ple shows all of them in action. Note the use of \vspace to ensure that the outer
Bflushleft box is bottom aligned. Compare this to the examples discussed in
Section A.2.2 on page 862.

A A A
A A A
A A

B
B B B
B B B

B B
C C C

C
C C

\usepackage{fancybox}
\newcommand\HR{\rule{.5em}{0.4pt}}

\HR\begin{Bflushleft}[b]
\begin{Bflushleft}[t] A A A\\ A A A\\ A A
\end{Bflushleft} \HR
\begin{Bflushright}[t] B\\ B B B\\ B B B\\ B B
\end{Bflushright} \par\vspace{0pt}

\end{Bflushleft} \HR
\begin{Bcenter} C C C\\ C\\ C C\end{Bcenter} \HR 10-1-11

Bitemize, Benumerate, and Bdescription implement boxed versions of the
itemize, enumerate, and description environments, respectively. The internal
implementation uses LaTEX’s tabular environment, which means that vertical-
mode material such as \vspace does not work. Instead, the \item command takes
an optional argument (using parentheses!) to specify extra white space in front of
the item. Its usage is shown in the next example.

For math applications, Beqnarray produces a boxed environment similar to
that created by eqnarray, but the equation number always comes out on the right.
Beqnarray* is like eqnarray*, but the generated box is just large enough to hold
all the equations. An optional position argument is not supported.

Test: • First item

• A second one
on two lines

• A third with extra space

Test:

y = x2 (1)

a2 + 2ab + b2 = (a + b)2 (2)∫ ∞

0

e−axdx =
1
a

(3)

\usepackage{fancybox}

Test: \fbox{\begin{Bitemize}[t]
\item First item
\item A second one\\ on two lines
\item(2pt) A third with extra space

\end{Bitemize}}
\par\bigskip

Test: \fbox{\begin{Beqnarray}
y & = & x^2 \\

a^2 + 2ab + b^2 & = & (a + b)^2 \\
\int_0^\infty e^{-ax} dx & = & \frac{1}{a}
\end{Beqnarray}} 10-1-12

The package also reimplements several commands to typeset verbatim texts.
For such applications, however, the fancyvrb package by the same author provides
superior interfaces (see Section 3.4.3).

10.1.4 epic—An enhanced picture environment

Standard LaTEX provides a picture environment that allows you to generate line-
style graphics of arbitrary complexity through basic commands for drawing lines,

10.1 Producing portable graphics and ornaments 601

vectors, quarter-circles, and Bézier curves. Thus, creating complex graphics, al-
though possible, requires a lot of manual effort. Most of these picture-drawing
commands require explicit specification of coordinates for every object. Using
higher-level commands can reduce the number of coordinates that need to be
manually calculated. Basically, two approaches can be taken to the design of such
commands:

• A set of objects can be selected so that the entire set can be plotted by spec-
ifying one or two coordinate pairs—the \shortstack command falls under
this approach.

• Commands are provided that will do most of the computations internally
and require only simple coordinate pairs to be specified—the \multiput com-
mand is an example of this approach.

The obvious advantage of using commands that implement these approaches
is not only that they are easier to specify initially, but any subsequent modification
to the layout requires minimal recalculations.

The frequently used primitive command \line has severe limitations and
drawbacks. Its arguments are very nonintuitive and require extensive calculations.
Often the thought process in writing a \line command involves several steps:

1. Calculating the coordinates of the two end points

2. Calculating the horizontal and vertical distance

3. Translating these distances into an (x,y) pair for specifying a slope and a
horizontal distance for specifying the length of the line

4. Determining whether the desired slope is available and, if not, repeating steps
1 through 3 until a satisfactory slope is achieved

This mechanism is very cumbersome. Moreover, the length of the shortest
available line at different slopes is not the same due to the way that the \line
command is implemented. To overcome these difficulties, the epic package (by
Sunil Podar) provides a powerful high-level user interface to the picture environ-
ment [139]. Its main aim is to reduce the amount of manual calculations required
to specify the layout of objects. In this way, the epic package makes it possible to
produce sophisticated pictures with less effort than before.

High-level line commands

The package introduces a number of powerful line-drawing commands, while at
the same time providing a simpler syntax. In particular, these commands take
only the coordinates of the end points, thus eliminating the other steps involved
in specifying a line.

602 Graphics Generation and Manipulation

\dottedline[dotchar]{dotgap}(x1, y1)(x2, y2)...(xn,yn)

The \dottedline command connects the specified points by drawing a dotted
line between each pair of coordinates. At least two points must be defined. The
dotted line is drawn with an inter-dot gap as specified in the mandatory argument
dotgap (in \unitlength). Because the number of dots to be plotted must be an
integer, the inter-dot gap may not come out exactly as specified.

\usepackage{epic}\setlength{\unitlength}{1pt}

\begin{picture}(150,80)(0,0)
\dottedline{2}(0,00)(50,20)(100,80)(150,0)
\thicklines
\dottedline{5}(0,0)(30,50)(70,50)(90,30)(150,20)

\end{picture} 10-1-13

By default (i.e., if no optional dotchar argument is used), \dottedline plots
tiny squares, produced internally by the \picsquare command. The size of the
squares depends on the current setting of the \thinlines , \thicklines , or
\linethickness command. In fact, most of the epic commands internally use
\picsquare for plotting lines.

By using the optional dotchar argument, you can plot any object along the
line specified by the coordinates. Note that some characters like “*” in the Roman
font do not come out centered, although most other characters and objects do.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

* * **
*
*
*
** * * * * * * * *LATEX

LATEX

LATEX

LATEX

LATEX

LATEX

LATEXLATEX
LATEX

LATEX
LATEXLATEX

LATEX
LATEX

LATEX
LATEX

LATEX

\usepackage{epic}
\setlength{\unitlength}{1pt} \thicklines

\begin{picture}(140,110)(0,0)
\dottedline {2}(0,110)(140,110)
\dottedline[\diamond]{10}(0,110)(140,110)
\dottedline {2}(20,0)(40,0)(50,40)(120,0)
\dottedline[*]{10}(20,0)(40,0)(50,40)(120,0)
\dottedline {2}(0,0)(30,90)(70,50)(140,0)
\dottedline[\LaTeX]{20}(0,0)(30,90)(70,50)(140,0)

\end{picture} 10-1-14

\dashline[stretch]{dashlength}[dashdotgap](x1, y1)(x2, y2)...(xn,yn)

The \dashline command connects the specified points by drawing a dashed line
between each pair of coordinates. At least two points must be specified. Inter-
nally, each dash is constructed using the \dottedline command. The mandatory
parameter dashlength determines the length of each dash, and the optional argu-

10.1 Producing portable graphics and ornaments 603

ment dashdotgap gives the gap between the dots that are used to construct the
dash, both in \unitlength terms. By default, a solid-looking dash is constructed.

10-1-15

\usepackage{epic}
\setlength{\unitlength}{1mm}

\begin{picture}(70,22)(0,-2)
\dashline{3}[0.7](0,20)(63,20)
\thicklines
\dashline{3}(0,16)(63,16)
\dashline[-30]{3}(0,12)(63,12)
\dashline[+15]{3}(0,8)(63,8)
\dashline[+30]{3}(0,4)(63,4)
\dashline[+30]{3}[0.7](0,0)(63,0)
\end{picture}

In the definition of the \dashline command, the optional stretch parameter
must be an integer between −100 and ∞. It indicates the percentage by which
the number of dashes is “stretched” or increased (stretch > 0) or is “shrunk” or
reduced (stretch < 0). If stretch is zero, the minimum number of dashes compat-
ible with an approximately equal spacing relative to the empty space between
the dashes is used. The idea behind the stretch percentage parameter is that if
several dashed lines of different lengths are being drawn, then all dashed lines
with identical stretch values will have a similar visual appearance. The default
settings for the stretch percentage can be changed by redefining the command
\dashlinestretch :

\renewcommand\dashlinestretch{-50} % Only integers permitted

Its value defines the increase or reduction that will be applied to all subsequent
\dashline commands except for those where the stretch parameter is explicitly
specified as the first optional argument.

\drawline[stretch](x1, y1)(x2, y2)...(xn,yn)

The \drawline command connects the given points by drawing a line between
each pair of coordinates using line segments of the closest slope available in the
line fonts of LaTEX. A minimum of two points must be specified. Only a finite num-

Unwanted jagged
lines

ber of slopes are available in the line segment fonts, so unavailable slopes are
produced by repeatedly using very short line segments of a nearby slope. As a
consequence, some lines may appear jagged (in the next example all sloped lines
show this effect). This is the price you must pay for being allowed to implicitly
specify lines of any slope. However, the problem vanishes if the eepic package is
used in addition to epic.

604 Graphics Generation and Manipulation

A \drawline command can generate thick or thin lines depending on the
setting of the \thinlines or \thicklines parameters in effect. These are the
only two thicknesses available for such lines.

The optional stretch parameter is similar to the one described for the
\dashline command. If stretch is zero, the result is the minimum number of
dashes required to make the line appear solid, with each dash being “connected”
at the ends. If stretch is greater than zero, more dashes are used in constructing
the line, giving a less jagged appearance (compare the two houses in the example).

�
�

�
��

�
�

�
�

�
�

�
�

�	
	

	
	

	
	

��
��

��������
������������������

\usepackage{epic} \setlength{\unitlength}{2mm}

\begin{picture}(25,14)
\drawline(0,0)(0,7)(5,14)(10,7)

(0,7)(10,0)(0,0)(10,7)(10,0)

\thicklines
\drawline[70](15,0)(15,7)(20,14)(25,7)

(15,7)(25,0)(15,0)(25,7)(25,0)
\end{picture} 10-1-16

As with the \dashlinestretch parameter and the \dashline command, the
parameter \drawlinestretch allows you to set the default value for the stretch
percentage parameter of the \drawline command.

Plotting scientific data

When presenting scientific data, it is often desirable to produce graphs that show
obtained (two-dimensional) data sets in relation to each other. One representation
strategy is to plot one set of experimentally obtained data points using a certain
type of graphical representation (e.g., filled circles) and another using some differ-
ent symbol (e.g., diamonds). For further clarification you might want to join the
individual data points with some kind of line, perhaps using different types of
“lines” to help the reader distinguish between the resulting curves.

One way to achieve this result is to plot the experimental results using a
sequence of basic \put statements, followed by a \dottedline , \dashline , or
\drawline command, that connects the data points. In other words, you specify
the coordinates twice. To facilitate this process, epic offers the three environments
dottedjoin, dashjoin, and drawjoin corresponding to the above commands and
accepting the same optional and mandatory arguments. These environments use
the new command \jput (join and put), which is identical to the regular \put
command of LaTEX except that it can be used inside these three environments only.
All objects put within the scope of any of the three environments via a \jput
command are, in addition to being plotted, joined by lines of their respective type.
It is up to the user to center the objects at the plotted points.

An instance of any of the three ..join environments defines a separate
“curve”; hence, every set of points belonging to a different “curve” should be en-

10.1 Producing portable graphics and ornaments 605

closed in a separate ..join environment. The prime motivation for designing the
..join environments was to allow for plotting graphs that use different types of
curves and dissimilar lines.

10-1-17 •

•

•
•

0 0

0

0

0

\usepackage{epic} \setlength{\unitlength}{1pt}
\newcommand\cb{\makebox(0,0){\bullet}}
\newcommand\cd{\makebox(0,0){\diamond}}

\begin{picture}(80,80)
\begin{dashjoin}[30]{10}
\jput(0,0){\cb}\jput(30,70){\cb}\jput(70,50){\cb}\jput(80,60){\cb}

\end{dashjoin}
\begin{dottedjoin}{5}
\jput(0,30){\cd}\jput(20,30){\cd}\jput(45,0){\cd}\jput(60,80){\cd}
\jput(80,50){\cd}

\end{dottedjoin}
\end{picture}

Another way to produce graphs that is offered by the epic package is through
Loading externally
generated graphic
data

the \putfile{file}{object} command. It is similar to LaTEX’s \put command, ex-
cept that the x and y coordinates required by the \put command are read from an
external file and the same object is plotted at each of those coordinates. This com-
mand is provided because TEX lacks the capability of doing floating-point arith-
metic, which is required if you wish to plot a parametric curve different from a
straight line. The coordinates of points on such curves can easily be generated by
a program in some computer language and subsequently read in by TEX. The ex-
ternal file must contain the (x,y) coordinate pairs, one pair per line, with a space
between the two coordinates. The % is available as a comment character, but you
should leave at least one space following the y entry if a comment appears on the
same line as data because a % masks the newline character.

For example, to plot a smooth curve along a set of coordinates, you can use
the following procedure:

1. Create a file with the x,y coordinates of the data points, which you might call
plot.data, for example.

2. If you wish, smooth the data.

3. Place the following code inside a picture environment in your LaTEX file:
\putfile{plot.data}{\picsquare}

As the command name indicates, \putfile uses \put and not \jput . This
choice is unfortunate, as it means that using \putfile inside one of the ..join
environments will plot objects at the coordinates but not connect them, even
though there is technically nothing to prevent this connection. There is, however,
a small trick you can use if you are interested in creating such linkage: ensure
that \put always executes \jput inside your pictures. Because \jput behaves ex-
actly like LaTEX’s \put command if used outside the ..join environments, there

606 Graphics Generation and Manipulation

is no harm in making this a global substitution. This approach is used in the next
example.

0

0

0
0

maximum

\usepackage{epic} \renewcommand\put{\jput} % <- always use \jput
\begin{filecontents}{test.put}
0 0 % sample data in external file
30 70 % note that coordinates are
70 50 % separated by a space
80 60
\end{filecontents}
\newcommand\cd{\makebox(0,0){\diamond}}

\begin{picture}(80,80)
\begin{dashjoin}{6}[2] \putfile{test.put}{\cd} \end{dashjoin}
\put(30,75){\makebox(0,0)[b]{\scriptsize maximum}}

\end{picture} 10-1-18

Placing objects at regular intervals

What is missing in the example graphs so far are labeled axes. The epic package
doesn’t offer off-the-shelf commands to do the full job, but with \multiputlist
and \grid it offers tools that can help you with the more tedious tasks.

\multiputlist(x,y)(Δx,Δy)[pos]{item1,item2,item3,...,itemn}

This command is a variant of LaTEX’s \multiput command, which allows the same
object to be placed at regularly spaced coordinates. The \multiputlist com-
mand is similar, but permits the objects to be different. When the \multiputlist
command is executed, the objects to be “put” are picked up from the list of items,
as the coordinates are incremented. (The first item goes in position 1, the second
item in position 2, and so on.) For example, you can plot numbers along the x-axis
in a graph by specifying

\multiputlist(0,0)(10,0){1.00,1.25,1.50,1.75,2.00}

The objects in the list can be virtually anything, including \makebox , \framebox ,
or math characters. This command enforces a certain regularity and symmetry on
the layout of the various objects in a picture.

\grid(width,height)(Δwidth,Δheight)[initial-X-int,initial-Y-int]

The \grid command makes a grid of dimensions width units by height units.
Vertical lines are drawn at intervals of Δwidth and horizontal lines at intervals
of Δheight. When the third (optional) argument is specified, the borders of the
grid will be labeled with numbers whose starting values are the integer numbers
initial-X-int and initial-Y-int, respectively. They will be incremented by Δwidth and
Δheight along the axes.

10.1 Producing portable graphics and ornaments 607

The \grid command produces a box. Therefore, it must be \put at the re-
quired coordinates. For example:

10-1-19

1.00 1.25 1.50 1.75 2.00 2.25

-50 -40 -30 -20 -10 0 10

-50 -40 -30 -20 -10 0 10

0

10

20

0

10

20

\usepackage{epic}

\begin{picture}(100,60)
\put(0,45){\grid(100,30)(20,5)}
\scriptsize % used to influence the size of the numbers
\multiputlist(0,40)(20,0){1.00,1.25,1.50,1.75,2.00,2.25}

\put(0,0){\tiny\grid(60,20)(10,10)[-50,0]}
\end{picture}

If you need more flexibility than that offered by \grid for producing a regular
two-dimensional structure, then \matrixput might offer the answer.

\matrixput(x,y)(Δx1,Δy1){n1}(Δx2,Δy2){n2}{object}

This command is the two-dimensional equivalent of the primitive LaTEX com-
mand \multiput . It is more efficient, however, to use \matrixput than multiple
\multiput statements. This command is especially useful for drawing pictures
where a pattern is repeated at regular intervals in two dimensions.

10-1-20 � � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � �

� � �
� � � �

� � � �
\usepackage{epic} \setlength{\unitlength}{2pt}

\begin{picture}(62,32) \thicklines
\matrixput(0,0)(10,0){7}(0,10){4}{\circle{2}}
\matrixput(10,0)(20,0){3}(0,20){2}{\circle*{2}}
\matrixput(0,10)(20,0){4}(0,20){2}{\circle*{2}}
\matrixput(1,0)(10,0){6}(0,10){4}{\line(1,0){8}}
\matrixput(0,1)(10,0){7}(0,10){3}{\line(0,1){8}}

\end{picture}

10.1.5 eepic—Extending the epic package

LaTEX provides a basic but limited picture-drawing capability, which is extended by
commands for drawing solid lines, dotted lines, dashed lines, and new environ-
ments suitable for plotting graphs of the epic package (described in the previous
section). However, epic inherits many of LaTEX’s limitations in picture drawing. As
a result, some of the functions take a long time to accomplish or the output is not
of very high quality. In LaTEX, special fonts are used to draw lines and circles. For
this reason only lines with certain slopes are supported and only a limited set of
diameters is available when drawing circles, ovals, or disks.

The following example shows some of these limitations. Here, the circle and
disk on the left are too small (without producing any warning) and the \line

608 Graphics Generation and Manipulation

commands produce errors because the required slope is not available. Loading
epic does not help in this case.

��
���

��
���

�

�

�

�

�
�
�
�
�
�

\usepackage{epic}

\begin{picture}(0,0)
\put(0,0) {\circle{80}} \put(0,0) {\circle*{24}}
\put(30,0){\circle{40}} \put(30,0){\circle*{16}}
\put(15,0){\oval(90,60)}
\put(0,12){\line(15,-2){30}}\put(0,-12){\line(15,2){30}}

\end{picture} 10-1-21

Compare this result to Example 10-1-22 on the next page, which shows the correct
output—it is strikingly different.

At the end of the 1980s, the pic programming language was developed to
provide a “natural language” method of describing simple pictures and graphs
(see [77]). A preprocessor, like GNU’s gpic, can translate these graphics commands
into output that the UN*X formatter, troff, understands. More interestingly for
us, it can also generate TEX \special commands, which many dvi driver pro-
grams support. For instance, the dvips dvi-to-PostScript translator, described in
Section 10.4.2, can interpret these commands.

The eepic package, written by Conrad Kwok, is an extension of both LaTEX and
epic that overcomes some of the limitations in LaTEX, epic, and gpic by generating
gpic \specials using TEX commands. Because eepic is a superset of epic, you can
use it to process any picture that relies on epic commands and get better-looking
output.

eepic’s reimplementation of LATEX commands

The extensions in eepic allow users to draw lines having any slope and to draw
circles of any size. However, the limitation of slopes for vectors remains the same.
Thus, the only slopes that can be handled are of the form x/y , where x and y are
integers in the range [−4,4].

\line(x,y){length}

The syntax of the \line command is the same in eepic as in LaTEX. Now, however,
x and y can be any integers acceptable to TEX. Furthermore, there is no longer a
lower limit for the length parameter (about 3.5mm in standard LaTEX).

\circle{diameter} \circle*{diameter} \oval(x,y)[part]

The syntax for drawing hollow and filled circles, \circle and \circle* , is the
same as that in LaTEX. Now, however, the diameter parameter can be any number
acceptable to TEX, and a circle with a diameter of (exactly) the specified value will

10.1 Producing portable graphics and ornaments 609

be drawn. The \oval command has been modified so that the maximum diameter
of the quarter-circles at the corners can be set to any value by setting the variable
\maxovaldiam to the desired TEX dimension (default 40pt).

The following example repeats Example 10-1-21 on the facing page, except
that now eepic has been loaded and \maxovaldiam has been used. All elements
appear as specified in the revised example.

10-1-22

\usepackage{eepic} \setlength\maxovaldiam{60pt}

\begin{picture}(0,0)
\put(0,0) {\circle{80}} \put(0,0) {\circle*{24}}
\put(30,0){\circle{40}} \put(30,0){\circle*{16}}
\put(15,0){\oval(90,60)}
\put(0,12){\line(15,-2){30}}\put(0,-12){\line(15,2){30}}

\end{picture}

eepic’s reimplementation of epic commands

The epic package generates standard dvi files and requires the presence of only
the standard LaTEX fonts. The eepic package, as an extension to epic, offers bet-
ter line-drawing output, provides faster operation, and requires less memory.
It reimplements the \drawline , \dashline , and \dottedline commands (see
page 601) and the corresponding ..join environments, dashjoin, dottedjoin,
and drawjoin (see page 604).

Compare the diagonal lines in the following example with those in Example 10-
1-16 on page 604. Note that when eepic is loaded in conjunction with epic it
smoothes the result of any line-drawing command. Both packages must be loaded
in the right order.

10-1-23

\usepackage{epic,eepic} \setlength{\unitlength}{2mm}

\begin{picture}(25,14)
\drawline(0,0)(0,7)(5,14)(10,7)

(0,7)(10,0)(0,0)(10,7)(10,0)
\thicklines
\drawline[70](15,0)(15,7)(20,14)(25,7)

(15,7)(25,0)(15,0)(25,7)(25,0)
\end{picture}

The eepic package also introduces a number of new commands. Apart from
the \path command, these commands do not have equivalents in LaTEX and epic.
The end of this section discusses portability issues as they relate to these pack-
ages.

\allinethickness{dimension} \Thicklines

The \allinethickness command sets the line thickness of all line-drawing com-
mands, including lines in slopes, circles, ellipses, arcs, ovals, and splines.

610 Graphics Generation and Manipulation

After issuing \Thicklines , the thickness of all subsequently drawn lines will
be about 1.5 times greater than that with \thicklines .

\path(x1, y1)(x2, y2)...(xn,yn)

The \path command is a fast version of the \drawline command. The optional
stretch argument of the latter command is not allowed, so \path draws only solid
lines. This command is mainly used for drawing complex paths.

\spline(x1, y1)(x2, y2)...(xn,yn)

The \spline command draws a Chaikin’s curve that passes through only the first
and last points. All other points act as control points only.

\ellipse{x-diameter}{y-diameter} \ellipse*{x-diameter}{y-diameter}

In analogy to the \circle and \circle* commands, the \ellipse and
\ellipse* commands draw a hollow or filled ellipse using the specified x-
diameter and y-diameter parameters.

\arc{diameter}{start-angle}{end-angle}

The \arc command draws a circular arc. The first parameter, diameter , is given
in \unitlength terms. Both start-angle and end-angle are in radians; start-angle

must lie within the interval [0,
π
2
], and end-angle can be any value between start-

angle and start-angle + 2π . Arcs are drawn clockwise, with the angle 0 pointing to
the right on the paper.

\filltype{area-fill-type}

The \filltype command specifies the type of area fill for the \circle* and
\ellipse* commands. The instruction itself does not draw anything, but merely
changes the interpretation of * in the two commands specified above. Possible
values for area-fill-type are black (default), white, and shade. For example, you
can change the area fill type to white with \filltype{white}.

The eepic package is not necessarily available at all LaTEX sites or, even if it is
Portability

issues
available, it may not be supported by the chosen output device. To avoid the porta-
bility problems that can arise from its use, and at the same time take advantage
of eepic’s more precise printout, take the following precautions:

• Do not use \line commands, but use \drawline instead. The \line com-
mand in LaTEX supports only a limited set of slopes.

• Do not use the \arc command. Use the command \spline if a complex curve
is really necessary.

10.1 Producing portable graphics and ornaments 611

• Avoid using solid or small inter-dot gaps in drawing long dashed lines, as
these need a lot of TEX memory in the original epic implementation. Use the
\drawline command with negative stretch to draw dashed lines.

If your installation does not support eepic but you have to print your docu- Emulating the eepic
commandsment, then you should use the eepic emulation macros defined with the eepicemu

package. The extended commands are emulated in the following ways:

• Circles larger than 40pt are drawn using \oval .

• Ellipses are drawn using \oval .

• Arcs generate a warning but are ignored otherwise.

• Splines are approximated with \drawline .

• \path is substituted by \drawline .

• \Thicklines is substituted by \thicklines .

• \allinethickness is substituted by \thicklines
and \linethickness .

Because the eepic package redefines several commands of the epic package, the
eepic package declaration must follow the epic package declaration. Although not
strictly necessary, it is good practice to always include epic when using eepic
commands. In any case, the eepic emulation package eepicemu will work only
when both are specified.

10.1.6 Special-purpose languages

Building on LaTEX’s picture environment, possibly extended with the epic and
eepic packages, several package authors have implemented high-level user inter-
faces intended to make entering graphical information more straightforward and
less error prone by adopting a syntax that is more familiar to the end user in a
particular application domain. Some of the systems are quite complex (The Graph-
ics Companion [57] describes several of them in detail). In this section we merely
give a flavor of what is possible in this area by showing a few short examples.

If you do not have access to a drawing package but need to include a few
continuously sloping curves, the curves package written by I. L. Maclaine-cross
offers some intriguing features. It allows you to vary curve thickness over a large
range, to control end slopes, and to specify closed curves with continuous slopes.
It can also build large circles and circular arcs with \arc , providing independent
scaling of curve abscissa and ordinates to fit graphs. Furthermore, it offers affine
scaling for making arcs or circles become elliptical and it supports symbols and
dash patterns. In the simple example that follows, \curve draws a curve through
the specified coordinate pairs, \closecurve draws a closed curve with continuous

612 Graphics Generation and Manipulation

tangents at all points, and \tagcurve generally acts like \curve except that the
first and last segments are not drawn.

������������ ����������
��������� �������� ������ �����

���� ��� ��� ��� ��� ���� ����� ������ �������� ��������� ���������� ����������� ��������������������������
����������������� ����� ����� ������ ������ ������� ������� ������ ������ ����� ����� ��� ���������������������������

����������������� ����� ����� ������ ������ ������� ������� ������ ������ ����� ����� ���

\usepackage{curves}

\setlength{\unitlength}{0.4pt}
\linethickness{0.7mm}
\begin{picture}(400,110)(-10,0)

\curve(0,0, 40,100, 80,0)
\closecurve(150,0, 190,100, 230,0)
\tagcurve(380,0, 300,0, 340,100, 380,0, 300,0)

\end{picture} 10-1-24

Hideki Isozaki’s ecltree package allows you to draw simple tree structures.
It offers a bundle environment for labeling a top node, which can contain one or
more down nodes defined by \chunk commands, whose optional argument can be
used to add comments on a line. The \drawwith command allows you to control
the line style by specifying as an argument one of epic’s line-drawing commands
(described in Section 10.1.4). The bundle environment and \chunk commands can
be nested, as shown in the following LaTEX code.

cousin

uncle

nephew

brother

grandson

son daughter son son

Me sister

older younger

father

grandfather

\usepackage{epic,eepic,ecltree}

\begin{bundle}{grandfather}
\chunk{\begin{bundle}{uncle\strut}

\chunk{cousin}\drawwith{\dottedline{3}}
\end{bundle}}

\chunk{\begin{bundle}{father\strut}
\chunk[\footnotesize older]{%

\begin{bundle}{brother}
\chunk{nephew}

\end{bundle}}
\chunk{\begin{bundle}{\textbf{Me}\strut}

\chunk{\begin{bundle}{son}
\chunk{grandson}

\end{bundle}}
\chunk{daughter}\chunk{son}\chunk{son}

\end{bundle}}
\chunk[\footnotesize younger]{sister}

\end{bundle}}
\end{bundle} 10-1-25

The bar package was written by Joachim Bleser and Edmund Lang to produce
bar charts. A barenv environment encloses the data defining a bar chart. Each
data point is specified using a \bar command, whose two mandatory arguments
give the ordinate of the entry and the hatching type. The package also offers quite
a few \set... commands to fine-tune the presentation of the information, as
shown in the example that follows.

10.2 LATEX’s device-dependent graphics support 613

10-1-26

0
10
20
30
40

10

30

15

5

Feb Mai Aug Nov
Trimester

Anzahl Studenten

\usepackage{epic,eepic,bar}

\begin{barenv}
\setdepth{10}% 3-D effect
\setstretch{1.4}% stretch y-dimension
\setnumberpos{up}% numbers above bars
\setxvaluetyp{month}% (German) months on x-axis
\setxaxis{2}{12}{3}\setxname{Trimester}
\setyaxis{0}{40}{10}\setyname{Anzahl Studenten}
\bar{10}{1} \bar{30}{4}
\bar{15}{6} \bar{5}{7}
\end{barenv}

As already stated, much more complex structural data can be entered in a
convenient way by using a dedicated package. One example is Shinsaku Fujita’s
XΥMTEX bundle for drawing chemical diagrams (see [48,49] or [57, Chapter 6]). By
using command names inspired by standard nomenclature known to practitioners
in the field, complex formulas can be entered simply. In the following example,
we use the hetarom subpackage, designed for specifying the structure of vertical
heterocyclic compounds.

10-1-27

O

CH3

H3C
H

HOCH2

S
N

Cl
\usepackage{eepic,hetarom}

\decaheterov[af]{4==O}
{1==CH$_3$;6==H$_3$C;9A==H;%
{{10}A}==\lmoiety{HOCH$_2$}}

\hspace*{-15mm}
\nonaheterov[bjge]{1==S;2==N}{3==Cl}

10.2 LATEX’s device-dependent graphics support

Since the introduction of LaTEX2ε in 1994, LaTEX has offered a uniform syntax for
including every kind of graphics file that can be handled by the different drivers.
In addition, all kinds of graphic operations (such as resizing and rotating) as well
as color support are available.

These features are not part of the LaTEX2ε kernel, but rather are loaded by the
standard, fully supported color, graphics, and graphicx extension packages. As
the TEX program does not have any direct methods for graphic manipulation, the
packages have to rely on features supplied by the “driver” used to print the dvi
file. Unfortunately, not all drivers support the same features, and even the internal
method of accessing these extensions varies among drivers. Consequently, all of
these packages take options such as dvips to specify which external driver is
being used. Through this method, unavoidable device-dependent information is
localized in a single place, the preamble of the document.

614 Graphics Generation and Manipulation

The packages graphics and graphicx can both be used to scale, rotate, and
reflect LaTEX material, or to include graphics files prepared with other programs.
The difference between the two is that graphics uses a combination of macros
with a “standard” or TEX-like syntax, while the “extended” or “enhanced” graphicx
package presents a key/value type of interface for specifying optional parameters
to the \includegraphics and \rotatebox commands.

10.2.1 Options for graphics and graphicx

When using LaTEX’s graphics packages, the necessary space for the typeset material
after performing a file inclusion or applying some geometric transformation is re-
served on the output page. It is, however, the task of the device driver (e.g., dvips,
xdvi, dvipsone) to perform the actual inclusion or transformation in question and
to show the correct result. As different drivers require different code to carry
out an action like rotation, one has to specify the target driver as an option to the
graphics packages—for example, option dvips if you use one of the graphics pack-
ages with Tom Rokicki’s dvips program, or option textures if you use one of the
graphics packages and work on a Macintosh using Blue Sky’s Textures program.

Some drivers, such as previewers, are incapable of performing certain of the
desired functions. Hence, they may display the typeset material so that it over-
laps with the surrounding text. Table 10.1 on the facing page shows the drivers
currently supported and their possible limitations. Support for other drivers is
added occasionally, so it is worth checking the online documentation of the pack-
age for a driver not listed in this table.

The driver-specific code is stored in files with the extension .def—for exam-
ple, dvips.def for the PostScript driver dvips. As most of these files are main-
tained by third parties, the standard LaTEX distribution contains only a subset of
the available files and not necessarily the latest versions. While there is usually no
problem if LaTEX is installed as part of a full TEX installation, you should watch out
for incompatibilities if you update the LaTEX graphics packages manually.

It is also possible to specify a default driver using the \ExecuteOptions
Setting a default

driver
declaration in the configuration file graphics.cfg. For example, the declaration
\ExecuteOptions{emtex} makes the emTeX drivers become the default. In this
case the graphics packages pick up the driver code for the emTeX TEX system
on a PC if the package is called without a driver option. These days most TEX
installations are distributed with a ready-to-use graphics.cfg file.

In addition to the driver options, the packages support some options control-
ling which features are enabled (or disabled):

draft Suppress all “special” features, such as including external graphics files
in the final output. The layout of the page will not be affected, because
LaTEX still reads the size information concerning the bounding box of the
external material. This option is of particular interest when a document
is under development and you do not want to download the (often huge)

10.2 LATEX’s device-dependent graphics support 615

Option Author of Driver Features

dvips T. Rokicki All functions
dvialw N. Beebe File inclusion with scaling only
dvipdf S. Lesenko All functions
dvilaser Arbortext File inclusion with scaling only
dvipsone Y&Y All functions
dvitops J. Clark All functions, but no nested rotations
dviwin H. Sendoukas File inclusion
dviwindo Y&Y All functions
dvi2ps original File inclusion with scaling only
emtex E. Mattes File inclusion only, but no scaling
ln B. H Kelly File inclusion for DEC’s LN03 printer
oztex A. Trevorrow File inclusion, color, rotation

pdftex Hán Thế Thánh All functions
pctexps PCTeX File inclusion, color, rotation
pctexwin PCTeX File inclusion, color, rotation
pctex32 PCTeX All functions
pctexhp PCTeX File inclusion only
psprint A. Trevorrow File inclusion only
pubps Arbortext Rotation, file inclusion
truetex Kinch Graphics inclusion and some color
tcidvi Kinch TrueTeX with extra support for Scientific Word
textures Blue Sky All functions for Textures

Table 10.1: Overview of color and graphics capabilities of device drivers

graphics files each time you work on it. When draft mode is activated,
the picture is replaced by a box of the correct size containing the name
of the external file.

final The opposite of draft. This option can be useful when, for instance,
“draft” mode was specified as a global option with the \documentclass
command (e.g., for showing overfull boxes), but you do not want to sup-
press the graphics as well.

hiresbb In PostScript files look for bounding box comments that are of the form
%%HiResBoundingBox (which typically have real values) instead of the
standard %%BoundingBox (which should have integer values). With the
graphicx package, this and the previous options are also available locally
for individual \includegraphics commands.

hiderotate Do not show the rotated material (for instance, when the previewer
cannot rotate material and produces error messages).

hidescale Do not show the scaled material (for instance, when the previewer
does not support scaling).

616 Graphics Generation and Manipulation

%!PS-Adobe-2.0
%%BoundingBox:100 100 150 150
100 100 translate % put origin at 100 100

0 0 moveto % define current point
50 50 rlineto % trace diagonal line
50 neg 0 rlineto % trace horizontal line
50 50 neg rlineto % trace other diagonal line

stroke % draw (stroke) the lines
0 0 moveto % redefine current point

/Times-Roman findfont % get Times-Roman font
50 scalefont % scale it to 50 big points

setfont % make it the current font
(W) show % draw an uppercase W

Figure 10.1: The contents of the file w.eps

10.2.2 The \includegraphics syntax in the graphics package

With the graphics package, an image file can be included by using the following
command:

\includegraphics*[llx,lly][urx,ury]{file}

If the [urx,ury] argument is present, it specifies the coordinates of upper-right
corner of the image as a pair of TEX dimensions. The default units are big
(PostScript) points; thus, [1in,1in] and [72,72] are equivalent. If only one op-
tional argument is given, the lower-left corner of the image is assumed to be lo-
cated at [0,0]. Otherwise, [llx,lly] specifies the coordinates of that point. With-
out optional arguments, the size of the graphic is determined by reading the ex-
ternal file (containing the graphics itself or a description thereof; see below).

The starred form of the \includegraphics command “clips” the graphics
image to the size of the specified bounding box. In the normal form (without the
*), any part of the graphics image that falls outside the specified bounding box
overprints the surrounding text.

The examples in the current and next sections use a small PostScript program
(in a file w.eps) that paints a large uppercase letter “W”, and a few lines. Its source
is shown in Figure 10.1. Note the BoundingBox declaration, which stipulates that
the image starts at the point 100, 100 (in big points), and goes up to 150, 150;
that is, its natural size is 50 big points by 50 big points.

In the examples we always embed the \includegraphics command in an
\fbox (with a blue frame and zero \fboxsep) to show the space that LaTEX re-
serves for the included image. In addition, the baseline is indicated by the hor-
izontal rules produced by the \HR command, defined as an abbreviation for
\rule{1em}{0.4pt}.

10.2 LATEX’s device-dependent graphics support 617

The first example shows the inclusion of the w.eps graphic at its natural size.
Here the picture and its bounding box coincide nicely.

10-2-1 left W right

\usepackage{graphics,color}
\newcommand\HR{\rule{1em}{0.4pt}}
\newcommand\bluefbox[1]{\textcolor{blue}{%

\setlength\fboxsep{0pt}\fbox{\textcolor{black}{#1}}}}

left\HR \bluefbox{\includegraphics{w.eps}}\HR right

Next, we specify a box that corresponds to a part of the picture (and an area
outside it) so that some parts fall outside its boundaries, overlaying the material
surrounding the picture. If the starred form of the command is used, then the
picture is clipped to the box, as shown on the right.

10-2-2

leftW middleW right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\includegraphics

[120,120][150,180]{w.eps}}
\HR middle\HR
\bluefbox{\includegraphics*

[120,120][150,180]{w.eps}}
\HR right

In the remaining examples we combine the \includegraphics command
with other commands of the graphics package to show various methods of ma-
nipulating an included image. (Their exact syntax is discussed in detail in Sec-
tion 10.3.) We start with the \scalebox and \resizebox commands. In both cases
we can either specify a change in one dimension and have the other scale propor-
tionally, or specify both dimensions to distort the image.

10-2-3 left W middle W right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\scalebox{.5}{%

\includegraphics{w.eps}}}%
\HR middle\HR
\bluefbox{\scalebox{.5}[1.5]{%

\includegraphics{w.eps}}}%
\HR right

618 Graphics Generation and Manipulation

left W middle W right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\resizebox{10mm}{!}{%
\includegraphics{w.eps}}}%

\HR middle\HR
\bluefbox{\resizebox{20mm}{10mm}{%
\includegraphics{w.eps}}}%

\HR right 10-2-4

Adding rotations makes things even more interesting. Note that in compari-
son to Example 10-2-1 on the preceding page the space reserved by LaTEX is far
bigger. LaTEX “thinks” in rectangular boxes, so it selects the smallest size that can
hold the rotated image.

left W right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\rotatebox{25}{%
\includegraphics{w.eps}}}%

\HR right
10-2-5

10.2.3 The \includegraphics syntax in the graphicx package

The extended graphics package graphicx also implements \includegraphics but
offers a syntax for including external graphics files that is somewhat more trans-
parent and user-friendly. With today’s TEX implementations, the resultant process-
ing overhead is negligible, so we suggest using this interface.

\includegraphics*[key/val-list]{file}

The starred form of the command exists only for compatibility with the standard
version of \includegraphics , as described in Section 10.2.2. It is equivalent to
specifying the clip key.

The key/val-list is a comma-separated list of key=value pairs for keys that
take a value. For Boolean keys, specifying just the key is equivalent to key=true;
not specifying the key is equivalent to key=false. Possible keys are listed below:

bb The bounding box of the graphics image. Its value field must contain
four dimensions, separated by spaces.

10.2 LATEX’s device-dependent graphics support 619

bbllx,bblly,bburx,bbury The lower-left and upper-right x and y coordinates
(obsolete1).

hiresbb Makes LaTEX search for %%HiResBoundingBox comments instead of the
normal %%BoundingBox. Some applications use this key to specify
more precise bounding boxes, because the numbers can normally have
only integer values. It is a Boolean, either “true” or “false”.

viewport Takes four arguments (like bb), but in this case the origin is identified
with respect to the bounding box specified in the file. To view a 20bp
square at the lower-left corner of the picture, for example, you would
specify viewport=0 0 20 20.

trim Similar to the viewport key, but the four dimensions correspond to
the amount of space to be trimmed (cut off) at the left-hand side, bot-
tom, right-hand side, and top of the included graphics.

natheight,natwidth The natural height and width of figure.2

angle The rotation angle (in degrees, counterclockwise).

origin The origin for the rotation, similar to the origin parameter of the
\rotatebox command described on page 632 and in Figure 10.2 on
page 632.

width The required width (the width of the image is scaled to that value).

height The required height (the height of the image is scaled to that value).

totalheight The required total height (height + depth of the image is scaled to
that value). This key should be used instead of height if images are
rotated more than 90 degrees, because the height can disappear (and
become the depth) and LaTEX may have difficulties satisfying the user’s
request.

keepaspectratio A Boolean variable that can have the value “true” or “false”
(see above for defaults). When it is true, specifying both the width and
height parameters does not distort the picture, but the image is scaled
so that neither the width nor height exceeds the given dimensions.

scale The scale factor.

clip Clip the graphic to the bounding box. It is a Boolean, either “true” or
“false”.

1Kept for backward compatibility only. [bbllx=a, bblly=b, bburx=c, bbury=d] is equivalent
to [bb = a b c d], so the latter form should be used.

2These arguments can be used for setting the lower-left coordinate to (0 0) and the upper-right
coordinate to (natwidth natheight) and are thus equivalent to bb=0 0 w h, where w and h are the
values specified for these two parameters.

620 Graphics Generation and Manipulation

draft Locally switch to draft mode. A Boolean-value key, like clip.

type The graphics type; see Section 10.2.5.

ext The file extension of the file containing the image data.

read The file extension of the file “read” by LaTEX to determine the image size,
if necessary.

command Any command to be applied to the file.

If the size is given without units for the first eight keys (bb through trim),
then TEX’s “big points” (equal to PostScript points) are assumed.

The first ten keys (bb through natwidth) specify the size of the image. This
information needs to be given in case TEX cannot read the file, the file contains
incorrect size information, or you wish to clip the image to a certain rectangle.

The next seven keys (angle through scale) have to do with scaling or rota-
tion of the included material. Similar effects can be obtained with the graphics
package and the \includegraphics command by placing the latter inside the ar-
gument of a \resizebox , \rotatebox , or \scalebox command (see the examples
in Section 10.2.2 and the in-depth discussion of these commands in Section 10.3).

It is important to note that keys are read from left to right, so that [angle=90,
totalheight=2cm]means rotate by 90 degrees and then scale to a height of 2 cm,
whereas [totalheight=2cm, angle=90] would result in a final width of 2 cm.

By default, LaTEX reserves for the image the space specified either in the file or
in the key/val-list. If any part of the image falls outside this area, it will overprint
the surrounding text. If the starred form is used or the clip option is specified,
any part of the image outside this area is not printed.

The last four keys (type, ext, read, command) suppress the parsing of the file
name. When they are used, the main file argument should have no file extension
(see the description of the \DeclareGraphicsRule command below).

Below we repeat some of the examples from Section 10.2.2 using the syntax
of the graphicx package, showing extra facilities offered by the extended pack-
age. In most cases the new form is easier to understand than the earlier ver-
sion. In the simplest case without any optional arguments, the syntax for the
\includegraphics command is the same in both packages.

If we use the draft key, we get just a frame showing the bounding box. This
feature is not offered by the graphics package on the level of individual graphics.

left

w.eps

right

\usepackage{graphicx}
% \HR as before

left\HR
\includegraphics[draft]{w.eps}%

\HR right 10-2-6

10.2 LATEX’s device-dependent graphics support 621

The effects of the bb, clip, viewport, and trim keys are seen in the following
examples. Compare them with Example 10-2-2 on page 617.

10-2-7

leftW middleW right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR\bluefbox{\includegraphics
[bb=120 120 150 180]{w.eps}}%

\HR middle\HR
\bluefbox{\includegraphics

[bb=120 120 150 180,clip]{w.eps}}%
\HR right

Using viewport or trim allows us to specify the desired result in yet another
way. Notice that we actually trim a negative amount, effectively enlarging the space
reserved for the picture.

10-2-8

leftW middleW right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR\bluefbox{\includegraphics
[viewport=20 20 50 80]%
{w.eps}}

\HR middle\HR
\bluefbox{\includegraphics

[trim= 20 20 0 -30,clip]{w.eps}}%
\HR right

If you want to apply a scale factor to the image, use the scale key. With this
key, however, you can only scale the picture equally in both directions.

10-2-9 left W right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR \bluefbox{\includegraphics[scale=.5]{w.eps}}\HR right

To make the dimensions of an image equal to a given value, use the width or
height key (the other dimension is then scaled accordingly). If you use both keys
simultaneously, you can distort the image to fit a specified rectangle, as shown in
the following example:

10-2-10 left W middle W right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR \bluefbox{\includegraphics
[width=15mm]{w.eps}}%

\HR middle\HR
\bluefbox{\includegraphics

[height=15mm,width=25mm]{w.eps}}%
\HR right

622 Graphics Generation and Manipulation

You can make sure that the aspect ratio of the image itself remains intact by
specifying the keepaspectratio key. LaTEX then fits the image as best it can to the
rectangle you specify.

left W middle W right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR \bluefbox{\includegraphics
[height=15mm,width=25mm]{w.eps}}%

\HR middle\HR
\bluefbox{\includegraphics[height=15mm,
width=25mm,keepaspectratio]{w.eps}}%

\HR right 10-2-11

Rotations using the angle key add another level of complexity. The reference
point for the rotation is the reference point of the original graphic—normally the
lower-left corner if the graphic has no depth. By rotating around that point, the
height and depth change so that the graphic moves up and down with respect to
the baseline, as can be seen in the next examples.

left W middle Wright

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\includegraphics

[angle=10]{w.eps}}%
\HR middle\HR

\bluefbox{\includegraphics
[angle=125]{w.eps}}%

\HR right 10-2-12

The real fun starts when you specify both a dimension and a rotation angle for
an image, since the order in which they are given matters. The graphicx package
interprets the keys from left to right. You should pay special attention if you plan
to rotate images and want to set them to a certain height. The next examples show
the difference between specifying an angle of rotation before and after a scale
command. In the first case, the picture is rotated and then the result is scaled. In
the second case, the picture is scaled and then rotated.

left W middle W right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR\bluefbox{\includegraphics
[angle=45,width=10mm]{w.eps}}%

\HR middle\HR
\bluefbox{\includegraphics

[width=10mm,angle=45]{w.eps}}%
\HR right 10-2-13

10.2 LATEX’s device-dependent graphics support 623

LaTEX considers the height and the depth of the rotated bounding box sepa-
rately. The height key refers only to the height; that is, it does not include the
depth. In general, the total height of a (rotated) image should fit in a given space,
so you should use the totalheight key (see Figure 10.2 on page 632 for a descrip-
tion of the various dimensions defining a LaTEX box). Of course, to obtain special
effects you can manipulate rotations and combinations of the height and width
parameters at will. Here we show some key combinations and their results.

10-2-14

left W W right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR\bluefbox{%
\includegraphics[angle=-60,%

height=15mm]%
{w.eps}}\HR

\bluefbox{%
\includegraphics[angle=-60,%

totalheight=15mm]%
{w.eps}}\HR right

10-2-15

left W W right

\usepackage{graphicx,color}
% \bluefbox and \HR as before

left\HR\bluefbox{\includegraphics
[angle=-60,totalheight=20mm,%
width=30mm]{w.eps}}\HR

\bluefbox{\includegraphics
[angle=-60,totalheight=20mm,%
width=30mm,keepaspectratio]%

{w.eps}}\HR right

10.2.4 Setting default key values for the graphicx package

Instead of specifying the same set of key/value pairs over and over again on in-
dividual \includegraphics commands, you can specify global default values for
keys associated with such commands. To do so, you use the \setkeys declaration
provided by the keyval package, which is automatically included when graphicx is
used.

\setkeys{identifier}{key/val-list}

The identifier is an arbitrary string defined by the macro designer. For example,
for \includegraphics the string Gin was chosen. The key/val-list is a comma-
separated list of key/value pairs.

624 Graphics Generation and Manipulation

As an example, consider the case where graphicx is used and all figures are
to be scaled to the width of the line. Then you would specify the following:

\setkeys{Gin}{width=\linewidth}

All images included with the \includegraphics command will then be automati-
cally scaled to the current line width. (Using \linewidth in such a case is usually
preferable to using \columnwidth , as the former changes its value depending on
the surrounding environment, such as quote.)

You can specify defaults in a similar way for any key used with the
\rotatebox command (the other command that has a key/value syntax when
graphicx is used). It has the identifier Grot; thus,

\setkeys{Grot}{origin=ct}

specifies that ct should be used for the origin key on all \rotatebox commands
unless locally overwritten.

10.2.5 Declarations guiding the inclusion of images

While key/value pairs can be set only when the graphicx package is used, the
declarations described in this section can be used with both the graphics and the
graphicx packages.

By default, LaTEX looks for graphics files in the same directories where it looks
Where to find

image files
for other files. But for larger projects it might be preferable to keep the image
files together in a single directory or in a set of directories. A list of directories
where LaTEX should search for graphics files can be specified through the command
\graphicspath , whose argument is a list of directories, each inside a pair of
braces {} (even if the list contains only one directory). For example,

\graphicspath{{./eps/}{./tiff/}}

causes LaTEX to look in the subdirectories eps and tiff of the current directory.
The \DeclareGraphicsExtensions command lets you specify the behav-

Defining the file
extension search

order

ior of the system when no file extension is given in the argument of the
\includegraphics command. Its argument {ext-list} is a comma-separated list
of file extensions. Full file names are constructed by appending each extension of
the list ext-list in turn until a file corresponding to the generated full file name is
found.

Because the algorithm tests for the existence of a file to determine which
extension to use, when the \includegraphics command is specified without
an extension, the graphics file must exist at the time LaTEX is run. However,
if a file extension is specified, such as \includegraphics{gr.eps} instead of
\includegraphics{gr}, then the graphics file need not exist at the time of the

10.2 LATEX’s device-dependent graphics support 625

LaTEX run.
1 LaTEX needs to know the size of the image, however, so it must be spec-

ified in the arguments of the \includegraphics command or in a file actually
read by LaTEX. (This file can be either the graphics file itself or another file speci-
fied with the read key or constructed from the list of file extensions. In the latter
case the file must exist at the time LaTEX is run.)

With the declaration shown below, the \includegraphics command will first
look for the file file.ps and, if no such file exists, for the file file.ps.gz:

\DeclareGraphicsExtensions{.ps,.ps.gz}
\includegraphics{file}

If you want to make sure that a full file name must always be specified, then
you should use the following declaration. In the cases shown below, the size of
the (bitmap) image is specified explicitly on the \includegraphics command
each time.

\DeclareGraphicsExtensions{{}}
\includegraphics[1in,1in]{file.pcx}
\includegraphics[75pt,545pt][50pt,530pt]{file.pcx}
\includegraphics[bb=75 545 50 530]{file.pcx}

The action that has to take place when a file with a given extension is encoun-
tered is controlled by the following command:

\DeclareGraphicsRule{ext}{type}{read-file}{cmd}

Any number of these declarations is allowed. The meanings of the arguments are
described below.

ext The extension of the image file. It can be specified explicitly or, if the
argument to \includegraphics does not have an extension, can be deter-
mined from the list of extensions specified in the argument ext-list of the
\DeclareGraphicsExtensions command. A star (*) can be used to specify the
default behavior for all extensions that are not explicitly declared. For example,

\DeclareGraphicsRule{*}{eps}{*}{}

causes all undeclared extensions to be treated as EPS files, and the respective
graphics files are read to search for a %%BoundingBox comment.

type The “type” of the file involved. All files of the same type are input with the
same internal command (which must be defined in the corresponding driver
file). For example, files with an extension of .ps, .eps, or .ps.gz should all be
classified as being of type eps.

1For instance, it can be created on the fly with a suitable \DeclareGraphicsRule declaration.

626 Graphics Generation and Manipulation

ext type read-file cmd

Basic PostScript .ps eps .ps
.eps eps .eps

Dynamic Decompression .pz eps .bb ‘gunzip -c #1
.ps.gz eps .ps.bb ‘gunzip -c #1
.eps.gz eps .eps.bb ‘gunzip -c #1

MS-DOS-related Formats .tif tiff

.pcx bmp

.bmp bmp

.msp bmp

Mac-related Formats .pict pict

.pntg pntg

Table 10.2: Arguments of \DeclareGraphicsRule

read-file The extension of the file that should be read to determine the size of
the graphics image. It can be identical to ext, but, in the case of compressed
or binary images, which cannot be interpreted easily by LaTEX, the size infor-
mation (the bounding box) is normally put in a separate file. For example, for
compressed gzipped PostScript files characterized by the extension .ps.gz, the
corresponding readable files could have extension .ps.bb. If the read-file argu-
ment is empty (i.e., {}), then the system does not look for an external file to
determine the size, and the size must be specified in the arguments of the
command \includegraphics. If the driver file specifies a procedure for read-
ing size files for type, then that procedure is used; otherwise, the procedure for
reading .eps files is used. Therefore, in the absence of any other specific format,
you can select the size of a bitmap picture by using the syntax for PostScript
images (i.e., with a %%BoundingBox line).

cmd The command to be inserted in the \special argument instead of the file
name. In general cmd is empty, but for compressed files you might want to
uncompress the image file before including it in the file to be printed if the
driver supports such an operation. For instance, with the dvips driver, you could
use

\DeclareGraphicsRule{.ps.gz}{eps}{.ps.bb}{‘gunzip #1}

where the argument #1 denotes the full file name. In this case the final argu-
ment causes dvips to use the gunzip command to uncompress the file before
inserting it into the PostScript output.

Various possibilities for the arguments of the \DeclareGraphicsRule command
are shown in Table 10.2.

10.2 LATEX’s device-dependent graphics support 627

The system described so far can give some problems if the extension ext does
not correspond to the type argument. One could, for instance, have a series of
PostScript files called file.1, file.2, Neither the graphics nor the graphicx
package can automatically detect that these are PostScript files. With the graphicx
package, this determination can be handled by using a type=eps key setting on
each \includegraphics command. To handle this situation more generally, you
can define a default type by using a \DeclareGraphicsRule declaration for a
type * as explained above.

10.2.6 A caveat: Encapsulation is important

We will describe PostScript in more detail in Section 10.4, but it is already impor-
tant at this point to emphasize that PostScript is a page description language that
deals with the appearance of a complete printed page. This makes it difficult for
authors to include smaller PostScript pictures created by external tools into their
electronic (LaTEX) documents. To solve this problem Adobe has defined the Encapsu-
lated PostScript file format (EPS or EPSF), which complies with the PostScript Docu-
ment Structuring Conventions Specification [2] and the Encapsulated PostScript File
Format Specification [3].

The EPS format defines standard rules for importing PostScript language files
into different environments. In particular, so as not to interfere destructively with
the PostScript page being built, EPS files should be “well behaved”. For instance,
they must not contain certain PostScript operators, such as those manipulating
the graphics state, interpreter stack, and global dictionaries.

Most modern graphics applications generate an EPS-compliant file that can be
used without difficulty by LaTEX. Sometimes, however, you may be confronted with
a bare PostScript file that does not contain the necessary information. For use
with LaTEX, a PostScript file does not have to conform strictly to the structuring
conventions mentioned previously. If the file is “well behaved” (see above), it is
enough that the PostScript file contains the dimensions of the box occupied by
the picture. These dimensions are provided to LaTEX via the PostScript comment
line %%BoundingBox, as shown below:

%!
%%BoundingBox: LLx LLy URx URy

The first line indicates that we are dealing with a nonconforming EPS file. Note
that the %! characters must occupy the first two columns of the line. The second
line, which is the more important one for our purpose, specifies the size of the
included picture in PostScript “big” points, of which there are 72 to an inch (see
Table A.1 on page 855). Its four parameters are the x and y coordinates of the
lower-left corner (LLx and LLy) and the upper-right corner (URx and URy) of the

628 Graphics Generation and Manipulation

picture. For instance, a full A4 page (210 mm by 297 mm) with zero at the lower-
left corner would need the following declaration:

%!
%%BoundingBox: 0 0 595 842

If your picture starts at (100,200) and is enclosed in a square of 4 inches (288
points), the statement would be

%!
%%BoundingBox: 100 200 388 488

A PostScript display program, such as ghostview, lets you easily determine
the bounding box of a picture by moving the cursor on its extremities and reading
off the corresponding coordinates. In general, it is good practice to add one or
two points to make sure that the complete picture will be included, because of the
potential for rounding errors during the computations done in the interpreter.

10.3 Manipulating graphical objects in LATEX

In addition to the \includegraphics command, the graphics and graphicx pack-
ages implement a number of graphical manipulation commands.

With the exception of the \rotatebox command, which also supports a
key/value pair syntax in the graphicx package, the syntax for these commands
is identical in both packages.

10.3.1 Scaling a LATEX box

The \scalebox command lets you magnify or reduce text or other LaTEX material
by a scale factor.

\scalebox{h-scale}[v-scale]{material}

The first of its arguments specifies the factor by which both dimensions of the
material are to be scaled. The following example shows how this works.

This text is normal.

This text is large.
This text is tiny.

\usepackage{graphics} % or graphicx

\noindent This text is normal. \\
\scalebox{2}{This text is large.}\\
\scalebox{0.5}{This text is tiny.} 10-3-1

A supplementary optional argument, if present, specifies a separate vertical
scaling factor. It is demonstrated in the following examples, which also show how

10.3 Manipulating graphical objects in LATEX 629

multiple lines can be scaled by using the standard LaTEX \parbox command.

10-3-2

America
&
Europe

America
&
Europe

\usepackage{graphics} % or graphicx

\fbox{\scalebox{1.5}{%
\parbox{.5in}{America \&\\Europe}}}

\fbox{\scalebox{1.5}[1]{%
\parbox{.5in}{America \&\\Europe}}}

\reflectbox{material}

This command is a convenient abbreviation for \scalebox{-1}[1]{material}, as
seen in the following example:

10-3-3

America? America?
America? America?

\usepackage{graphics} % or graphicx

\noindent America?\reflectbox{America?} \\
America?\scalebox{-1}[1]{America?}

More interesting special effects can also be obtained. Note in particular the
use of the zero-width \makebox commands, which hide their contents from LaTEX
and thus offer the possibility of fine-tuning the positioning of the typeset material.

10-3-4

America? America?

America?America?

America?America?

America?America?

\usepackage{graphics} % or graphicx

\noindent America?\scalebox{-1}{America?} \\
America?\scalebox{1}[-1]{America?}\\
America?\makebox[0mm][r]{%

\scalebox{-1}{America?}}\\
\makebox[0mm][l]{America?}%

\scalebox{1}[-1]{America?}

10.3.2 Resizing to a given size

It is possible to specify that LaTEX material should be typeset to a fixed horizontal
or vertical dimension:

\resizebox*{h-dim}{v-dim}{material}

When the aspect ratio of the material should be maintained, then it is enough to
specify one of the dimensions, replacing the other dimension with a “!” sign.

10-3-5

London,
Berlin &
Paris

London,
Berlin &
Paris

\usepackage{graphics} % or graphicx

\fbox{\resizebox{5mm}{!}{%
\parbox{14mm}{London,\\ Berlin \&\\ Paris}}}

\fbox{\resizebox{!}{10mm}{%
\parbox{14mm}{London,\\ Berlin \&\\ Paris}}}

630 Graphics Generation and Manipulation

When explicit dimensions for both h-dim and v-dim are supplied, then the
contents can be distorted. In the following example the baseline is indicated by a
horizontal rule drawn with the \HR command.

Köln Lyon Oxford
Rhein Rhône Thames

Köln Lyon Oxford
Rhein Rhône Thames

\usepackage{graphics} % or graphicx

\HR\begin{tabular}{lll}
K\"oln & Lyon & Oxford \\
Rhein & Rh\^one & Thames

\end{tabular}\HR\par\bigskip
\HR\resizebox{2cm}{.5cm}{%

\begin{tabular}{lll}
K\"oln & Lyon & Oxford \\
Rhein & Rh\^one & Thames

\end{tabular}}\HR 10-3-6

As usual with LaTEX commands involving box dimensions, you can refer to
the natural lengths \depth , \height , \totalheight , and \width as dimensional
parameters:

London,
Berlin &
Paris

London,
Berlin &
Paris

\usepackage{graphics} % or graphicx

\HR\fbox{\resizebox{\width}{.7\height}{%
\parbox{14mm}{London,\\ Berlin \&\\Paris}}}\HR

\fbox{\resizebox{\width}{.7\totalheight}{%
\parbox{14mm}{London,\\ Berlin \&\\Paris}}}\HR 10-3-7

The unstarred form \resizebox bases its calculations on the height of the
LaTEX material, while the starred \resizebox* command takes into account the to-
tal height (the depth plus the height) of the LaTEX box. The next tabular examples,
which have a large depth, show the difference.

Köln Lyon Oxford
Rhein Rhône Thames

Köln Lyon Oxford
Rhein Rhône Thames

\usepackage{graphicx}

\HR\resizebox{20mm}{30mm}{%
\begin{tabular}{lll}

K\"oln & Lyon & Oxford \\
Rhein & Rh\^one & Thames

\end{tabular}}\HR
\HR\resizebox*{20mm}{30mm}{%

\begin{tabular}{lll}
K\"oln & Lyon & Oxford \\
Rhein & Rh\^one & Thames

\end{tabular}}\HR 10-3-8

10.3.3 Rotating a LATEX box

LaTEX material can be rotated through an angle with the \rotatebox command. An
alternative technique useful with environments is described in Section 10.3.4.

10.3 Manipulating graphical objects in LATEX 631

\rotatebox{angle}{material}

The material argument is typeset inside a LaTEX box and rotated through angle
degrees counterclockwise around the reference point.

10-3-9 rotation 0◦ ro
tat

ion
45
◦

ro
ta

tio
n

90
◦

ro
tat

ion
13

5◦

rotation180◦

rotation225

◦

\usepackage{graphics} % or graphicx
\newcommand\MyRot[1]{\frame

{\rotatebox{#1}{rotation
$#1^\circ$}}}

\MyRot{0} \MyRot{45} \MyRot{90}
\MyRot{135}\MyRot{180}\MyRot{225}

To understand where the rotated material is placed on the page, we need
The rotation
algorithm

to look at the algorithm employed. Below we show the individual steps carried
out when rotating \fbox{text} by 75 degrees. Step 1 shows the unrotated text;
the horizontal line at the left marks the baseline. First the material (in this case,
\fbox{text}) is placed into a box. This box has a reference point around which,
by default, the rotation is carried out. This point is shown in step 2 (the original po-
sition of the unrotated material is shown as well for reference purposes). Then the
algorithm calculates a new bounding box (i.e., the space reserved for the rotated
material), as shown in step 3. Next the material is moved horizontally so that the
left edges of the new and the old bounding boxes are in the same position (step 4).
TEX’s typesetting position is then advanced so that additional material is typeset
to the right of the bounding box in its new position, as shown by the line denoting
the baseline in step 5. Step 6 shows the final result, again with the baseline on
both sides of the rotated material.

text textte
xt

textte
xt

textt
ex
t

textt
ex
t

te
xt

1 2 3 4 5 6

For more complex material it is important to keep in mind the location of the
reference point of the resulting box. The following example shows how it can be
shifted by using the placement parameter of the \parbox command.

10-3-10

Red

Gree
n

Blue Red

Gree
n

Blue

Red

Gree
n

Blue

\usepackage{color,graphics} % or graphicx

\HR\bluefbox{\rotatebox{45}{%
\fbox{\parbox{3em}{Red\\Green\\Blue}}}}%

\HR\bluefbox{\rotatebox{45}{%
\fbox{\parbox[t]{3em}{Red\\Green\\Blue}}}}%

\HR\bluefbox{\rotatebox{45}{%
\fbox{\parbox[b]{3em}{Red\\Green\\Blue}}}}\HR

The extended graphics package graphicx offers more flexibility in specifying
the point around which the rotation is to take place by using key/val pairs.

632 Graphics Generation and Manipulation

[lb]

[lB]
•

[lc] or [l]

[lt]

[cb] or [b]

[cB] or [B]

[c]0

[ct] or [t]

[rb]

[rB]

[rc] or [r]

[rt]

height

depth

totalheight

width

center
point

reference
point

centerline

baseline

Horizontal alignment l left r right c center
Vertical alignment t top b bottom B baseline 10-3-11

Figure 10.2: A LaTEX box and possible origin reference points

\rotatebox[key/val-list]{angle}{material}

The four possible keys in this case are origin, x, y, and units. The possible
values for the origin key are shown in Figure 10.2 (one value each for the hori-
zontal and vertical alignments can be chosen), as are the actual positions of these
combinations with respect to the LaTEX box produced from material.

The effect of these possible combinations for the origin key on an actual
LaTEX box can be studied below, where two matrices of the results are shown for
90-degree and 45-degree rotated boxes. To better appreciate the effects, the unro-
tated text is shown against a grey background.

t b B t b B

bye!b
ye
!

bye!b
ye
!

bye!

b
ye
! bye!

b
ye
!

bye!by
e!

bye!by
e! bye!

by
e! bye!

by
e!

c bye!

b
ye
!

bye!b
ye
!

bye!

b
ye
! bye!

b
ye
!

bye!
by
e! bye!by

e! bye!
by
e! bye!

by
e!

r bye!

b
ye
! bye!

b
ye
! bye!

b
ye
! bye!

b
ye
! bye!

by
e! bye!

by
e! bye!

by
e!

bye!
by
e!

l bye!b
ye
!

bye!

b
ye
!

bye!b
ye
!

bye!b
ye
!

bye!by
e!

bye!by
e!

bye!by
e!

bye!by
e!

10.3 Manipulating graphical objects in LATEX 633

If the specification of the origin is not enough, you also can supply the x
and y coordinates (relative to the reference point) for the point around which the
rotation is to take place. For this purpose, use the keys x and y and the format
x=dim, y=dim. A matrix showing some sample values and their effect on a box
rotated by 90 degrees appears below.

x=0mm x=5mm x=10mm x=15mm

y=0mm good bye!g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

y=5mm good bye!

g
o
o
d
b
ye
!

good bye!g
o
o
d
b
ye
!

good bye!
g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

y=10mm good bye!

g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

good bye!g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

y=15mm good bye!

g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

good bye!

g
o
o
d
b
ye
!

good bye!g
o
o
d
b
ye
!

The interpretation of the angle argument of \rotatebox can be controlled
by the units keyword, which specifies the number of units counterclockwise in
a full circle. The default is 360, so using units=-360 would mean that angles
are specified clockwise. Similarly, a setting of units=6.283185 changes the de-
gree specification to radians. Rather than changing the units key on individual
\rotatebox commands, you should probably set up a default interpretation using
the \setkeys declaration as described in Section 10.2.4.

10.3.4 rotating—Revisited

The material in this section is similar to that of Sebastian Rahtz’s rotating package,
which was introduced in Section 6.3.3 on page 296. The functionality of rotating is

634 Graphics Generation and Manipulation

implemented in this package through the environments turn and rotate; the lat-
ter environment generates an object that occupies no space. Using environments
has the advantage that the rotated material can contain \verb commands. How-
ever, the extended syntax of the \rotatebox command is not supported, so in
most cases the latter command is preferable.

Turning LATEX\LaT
eX

a bit.
\usepackage{rotating}

Turning \begin{rotate}{-20}\Large\LaTeX\end{rotate}%
\begin{turn}{20}\verb=\LaTeX=\end{turn} a bit.

10-3-12

10.4 Display languages: PostScript, PDF, and SVG

After typesetting an electronic document, one usually would like to view the gen-
erated output “page”—on paper via a printing device, on a PC screen, with a dedi-
cated program or inside a browser, or (why not?) on a portable phone.

Several display languages have been developed over the years. For printing
devices PostScript, which is essentially a language for describing a static output
page, has become the most important player. In the early 1990s, Adobe developed
a light-weight version of PostScript, called the Portable Document Format (PDF) [5].
PDF implements a similar imaging model as PostScript but introduces a more
structured format to improve performance for interactive viewing. It also adds
links and annotations for navigation.

The increasing affordability of the personal computer has drastically reduced
the production cost of electronic documents. The World Wide Web makes dis-
tributing these documents worldwide cheap, easy, and fast. The development of
the XML family of standards has made it possible to apply a unified approach to
handle the huge amount of information stored electronically and to transform it
into various customizable presentation forms.

Various techniques are now available to transform LaTEX documents into PDF,
HTML (XHTML), or XML so that the information can be made available on the web
(several chapters of The Web Companion [56] are dedicated to explaining such
techniques). A particularly interesting approach, described below, involves trans-
forming LaTEX-encoded information into a Scalable Vector Graphics (SVG) format.

Thus, LaTEX can continue to play a major role in the integrated worldwide
cyberspace. Especially in the area of scientific documents, it will remain an impor-
tant (intermediate) format for generating high-quality printable PDF or browsable
SVG output.

This section gives a short introduction to these three display languages—
PostScript, PDF, and SVG. It briefly describes dvips, a dvi-to-PostScript translator,
and discusses pspicture, an enhancement of LaTEX’s picture environment using
PostScript.

10.4 Display languages: PostScript, PDF, and SVG 635

10.4.1 The PostScript language

PostScript [4] is a page description language. It provides a method for expressing
the appearance of a printed page, including text, lines, and graphics.

A device- and resolution-independent, general-purpose, programming lan-
guage, PostScript describes a complete “output page”. The language is stack ori-
ented and uses “reverse Polish” or postfix notation. It includes looping constructs,
procedures, and comparison operators, and it supports many data types, includ-
ing reals, Booleans, arrays, strings, and complex objects such as dictionaries.

PostScript programs are generally written in the form of ASCII source text,
which is easy to create, understand, transmit, and manipulate. Because PostScript
is resolution and device independent, the same ASCII file can be viewed on a com-
puter display with a previewer, such as ghostscript/ghostview, and printed on a
small laser printer or a high-resolution phototypesetter.

The PostScript language lets you mix the following features in any number of
combinations:

• Arbitrary shapes can be constructed from lines, arcs, and cubic curves. The
shapes may self-intersect and contain disconnected sections and holes.

• The painting primitives permit shapes to be outlined with lines of any thick-
ness, filled with any color, or used as a clipping path to crop any other graphic.

• Text is fully integrated with graphics. In PostScript, text characters are treated
as graphical shapes that may be operated on by any of the language’s graphics
operators. This is fully true for Type 3 fonts, where character shapes are de-
fined as ordinary PostScript language procedures. In contrast, Adobe’s Type 1
format defines a special smaller language where character shapes are defined
by using specially encoded procedures (see below). For complex languages
with many thousands of characters (e.g., Chinese and Japanese), composite
Type 0 fonts can be used.

• Images (such as photographs or synthetically generated images) can be sam-
pled at any resolution and with a variety of dynamic ranges. PostScript pro-
vides facilities to control the rendering of images on the output device.

• Several color models (device based: RGB, HSB, CMYK; standard based: CIE) are
available, and conversion from one model to another is possible.

• A general coordinate system facility supports all combinations of linear trans-
formations, including scaling, rotation, reflection, and skewing. These trans-
formations apply uniformly to all page elements, including text, graphical
images, and sampled images.

• Dictionaries for color spaces, fonts, forms, images, half-tones, and patterns
are available.

• Compression filters, such as JPEG and LZW, are available.

636 Graphics Generation and Manipulation

Type 1 and OpenType font outlines

As a complement to the PostScript language, Adobe has defined its Type 1 font
format [1]. A Type 1 font program consists of a clear text (ASCII) portion, plus
an encoded and encrypted portion. The PostScript language commands used in a
Type 1 font program conform to a much stricter syntax than do normal PostScript
language programs.

Adobe’s Type 1 model is, like PostScript, fully device and resolution indepen-
dent. It uses mathematical expressions—in particular, Bézier curves—to define
character outlines, thereby guaranteeing flexibility and rendering accuracy. Char-
acters are defined at a size of 1 point in a 1000 by 1000 coordinate system, which
can then be scaled, rotated, and skewed at will. Hints can be included to make the
representation as exact as possible on a wide variety of devices and pixel densities.

Recently, Adobe and Microsoft jointly developed OpenType,1 a new cross-
platform font file format. This extension of the TrueType font outline format can
also support Type 1 font data. OpenType adds new typographic features as well.

You can move OpenType font files back and forth between platforms (Macin-
tosh and Windows), improving cross-platform portability for any documents that
use these types. The bitmap, outline, and metric data are combined into a single,
cross-platform OpenType font file, simplifying font management.

OpenType fonts are based on Unicode, an international multi-byte character
encoding that covers virtually all of the world’s languages. OpenType thus makes
multilingual typography easier by including multiple language character sets in
one font. The basic OpenType fonts contain the standard range of Latin characters
used in the Western world, as well as several international characters (e.g., the
euro symbol). Pro versions add a full range of accented characters to support
Central and Eastern European languages, such as Turkish and Polish, and many
contain Cyrillic and Greek character extensions in the same font.

Given that OpenType fonts may contain more than 65,000 glyphs, they pro-
vide far more typographic capabilities by combining base character sets, expert
sets, and extensive additional glyphs into one file. For instance, a single font file
may contain many nonstandard glyphs, such as old-style figures, true small capi-
tals, fractions, swashes, superiors, inferiors, titling letters, contextual and stylistic
alternates, and a full range of ligatures.

OpenType manages the mapping between characters and glyphs. In particu-
lar, its layout features can be used to position or substitute glyphs. For any char-
acter, there is a default glyph and positioning behavior. The application of layout
features to one or more characters may change the positioning, or substitute a
different glyph.

Over the years, thousands of typefaces, including those of the world’s major
typesetting companies, such as Linotype, Agfa-Compugraphic, Monotype, Auto-
logic, and Varityper, have become available in PostScript Type 1 format. More

1See http://partners.adobe.com/asn/developer/opentype/main.html.

10.4 Display languages: PostScript, PDF, and SVG 637

recently, Adobe has converted the entire Adobe Type Library (thousands of fonts)
into OpenType, and other type foundries are following Adobe’s example.

In the TEX world, the Ω (Omega) program (http://omega.cse.unsw.edu.au),
an extension of TEX developed by Yannis Haralambous and John Plaice that fea-
tures multi-byte data structures and is based on Unicode for its internal character
representation, can take advantage of OpenType fonts.

10.4.2 The dvips PostScript driver

Tom Rokicki’s dvips program1 is undoubtedly the most widely used dvi-to-
PostScript driver. It is a very mature product, with many important and useful
features. The \special support in dvips is extensive; in particular, it supports
the pic commands of the eepic package mentioned in Section 10.1.5.

The dvips program will automatically generate missing fonts if METAFONT

exists on the system. If a font cannot be generated, a scaled version of the same
font at a different size will be used instead (although dvips will complain about
the poor aesthetics of the resulting output). Moreover, this facility is configurable
and is not limited simply to running METAFONT.

The output from dvips can be controlled in two ways: by command-line
switches for a particular job and by commands in one or more configuration files.
Using configuration files, you can set parameters globally for the whole system,
on a per-printer basis, and on a per-user basis.

When dvips starts up, a global config.ps file is searched for.2

The dvips driver has a plethora of command-line options. Table 10.3 on the
following page presents a summary of those options.

With the help of the -d option for dvips, you can track down errors and un-
derstand what is going on. You must supply an integer specifying the class of
information to be displayed. To get several types of information, simply add the
numbers together for the types in which you are interested. Choose from the fol-
lowing:

1 specials 4 fonts 16 headers 64 files
2 paths 8 pages 32 font compression 128 memory

For example, calling dvips with the -d 4 option yields information about
which fonts are being called and where they are loaded from. An option of -d
-1 (all flags are activated) displays a very detailed log of everything dvips does.
It will, however, generate an enormous volume of data, so this facility should be
used only as a last resort, if a more refined approach fails.

1The manual is at http://www.ctan.org/tex-archive/dviware/dvips/dvips_man.pdf. See
also [57, Chapter11] for a detailed description.

2This file must exist on the search path of dvips which is usually something like texmf/dvips/
config below the root of the TEX installation tree.

638 Graphics Generation and Manipulation

a* Conserve memory, not time y # Multiply by dvi magnification

b # Page copies, e.g., for posters z* Hyper PostScript

c # Uncollated copies A Print only odd (TEX) pages

d # Debugging B Print only even (TEX) pages

e # Maxdrift value C # Collated copies

f* Run as filter D # Resolution

h f Add header file E* Try to create EPSF

i* Separate file per section F* Send control-D at end
k* Print crop marks G* Shift low chars to higher pos.

l # Last page K* Pull comments from inclusions

m* Manual feed M* Don’t make fonts

n # Maximum number of pages N* No structured comments

o f Output file O c Set/change paper offset

p # First page (p=# absolute) P s Load config.$s
pp# One page only R Run securely

ppn1:n2 page range S # Max section size in pages

q* Run quietly T c Specify desired page size

r* Reverse order of pages U* Disable string param trick

s* Enclose output in save/restore X # Horizontal resolution

t s Paper format Y # Vertical resolution

x # Override dvi magnification Z* Compress bitmap fonts

= number f = file name s = string * = suffix, ‘0’ to turn off
c = comma-separated dimension pair (e.g., 3.2in, -32.1cm)

Table 10.3: Major options of the dvips program

10.4.3 pspicture—An enhanced picture environment for dvips

David Carlisle’s pspicture package reimplements, and extends, LaTEX’s picture en-
vironment with the help of PostScript commands that are placed in TEX \special
commands. It eliminates limitations in standard LaTEX where picture offers only a
discrete range of slopes and thicknesses for lines and a limited range of diameters
for circles.

There exists a certain amount of overlap between this package and the eepic
package, described earlier. Moreover, the pspicture package can be considered as
a sort of “stand-in” for the pict2e package that was announced by Leslie Lamport
in 1994 in the second edition of the LaTEX book, but which was never written.

1

However, pspicture has the disadvantage that a picture can no longer be

1For the next LaTEX release a first implementation of the pict2e package (by Hubert Gäßlein and
Rolf Niepraschk) is being considered for inclusion in LaTEX.

10.4 Display languages: PostScript, PDF, and SVG 639

viewed with a dvi program that has no facility to interpret and display PostScript
commands.1 A “poor man’s” workaround is the companion package texpicture.
It uses the standard picture commands as much as possible, but silently omits
any picture object that cannot be drawn with standard LaTEX. Of course, the visual
result in this case will probably not conform to the finally envisaged version—but
at least the document will compile.

The dvi file produced with pspicture contains embedded \special com-
mands that are set up to be recognized by Rokicki’s dvips driver. Thus, the driver
file pspicture.ps, which contains the PostScript code referenced in the \special
commands for use by the downstream PostScript interpreter, must be present on
the TEX installation in the relevant dvips directory, so that it can be found and
included by dvips when needed.

Extended or changed commands

The pspicture package extends the functionality of several commands that are
available inside LaTEX’s picture environment.

The \circle and \circle* commands are similar to their counterparts in
\circle extensionsstandard LaTEX but have no limit on their diameters. The thickness of the circle

is altered by the \linethickness command. The size of the circle produced by
\circle* is not affected by \linethickness .

\oval[radius](x,y)[part]

The \oval command acts as described in the LaTEX book, but there is no maximum
\oval
extensions

diameter for the circular arcs, so the oval (in the absence of the optional parameter
[part]) always consists of two semicircular arcs joined by a pair of parallel lines.
To obtain a “rectangle with rounded corners”, a second optional argument radius
was added at the beginning of the \oval command. If this option is used, \oval
works with circular arcs of radius min(radius, x/2, y/2). The following example
shows the difference.

10-4-1

\usepackage{pspicture}

\begin{picture}(200,120)
\put(90,40) {\oval (180,60)}
\put(110,20){\oval[10](180,60)}

\end{picture}

The \vector and \line commands are as described in the LaTEX book but
\line and \vector
extensions

no longer have any restrictions on their slopes. The thickness of a sloping line is
altered by the \linethickness command. The arrowheads drawn by the vector

1If you use pdftex to generate PDF directly, you will encounter the same problem. In this case
pspicture should not be used.

640 Graphics Generation and Manipulation

command are of triangular shape, and by default, are larger than LaTEX’s defaults.
The size can be controlled with the \arrowlength command described below.

The \thinlines , \thicklines , and \linethickness commands alter the
thickness of all lines, including slanted lines and circular arcs.

All other commands of LaTEX’s picture environment, such as \dashbox ,
\framebox , \makebox , \multiput , \put , and \shortstack , are unaltered and
act as described in the LaTEX book.

The next example shows how the pspicture package uses PostScript to extend
LaTEX’s picture environment. To allow a better understanding of what is going on,
we also use the graphpap’s \graphpaper command to draw a coordinate grid at a
specified position with a given range (first line in the picture environment). Here
is what pspicture produces.

0 50 100

0

50

\usepackage{pspicture}\usepackage{graphpap}

\begin{picture}(140,90)
\graphpaper(0,0)(140,90)
\put(0,50){\vector(1,2){15}}
\put(0,50){\vector(2,-6){15}}
\put(40,20){\oval(50,20)[t]}
\put(40,70){\oval(30,30)[bl]}
\put(100,50){\circle{70}}
\put(100,50){\circle*{50}}
\end{picture} 10-4-2

To clearly see the effects of the extensions implemented by pspicture, we
would like to compare how LaTEX’s standard picture environment would display
the above code. However, these commands cannot be run with LaTEX’s picture
environment, because we have used unsupported arguments for the \vector ,
\circle , and \circle* commands. Therefore, we must specify the texpicture
package instead of pspicture, as shown below. Thanks to the overlayed coordi-
nate grid, the limitations with respect to the pspicture case are clearly visible.
Indeed, the second \vector is not rendered correctly, while the diameters of the
two circles no longer correspond to what is required.

0 50 100

0

50 �
�
��

� �
�

��
���

\usepackage{texpicture}\usepackage{graphpap}

\begin{picture}(140,90)
\graphpaper(0,0)(140,90)
\put(0,50){\vector(1,2){15}}
\put(0,50){\vector(2,-6){15}}
\put(40,20){\oval(50,20)[t]}
\put(40,70){\oval(30,30)[bl]}
\put(100,50){\circle{70}}
\put(100,50){\circle*{50}}
\end{picture} 10-4-3

10.4 Display languages: PostScript, PDF, and SVG 641

New commands

The pspicture package also introduces a set of new commands. The \Line and
\Vector commands make it easier to draw a line by allowing you to specify “rela-
tive coordinates”.

\put(x1,y1){\Line(x2,y2)} \put(x1,y1){\Vector(x2,y2)}

The above syntax will result in drawing a line (or a vector) between points (x1,y1)
and (x1 + x2,y1 +y2).

\put(x1,y1){\Curve(x2,y2){m}}

The \Curve command is similar to \Line , but generates a line whose curvature is
controlled by m (try 1 or −1 first). The value of m does not have to be an integer.
Negative numbers curve the line in the opposite way to positive numbers.

\arrowlength{size}

The \arrowlength command specifies the size of the triangular arrowhead drawn
by the \vector and \Vector commands. Like \linethickness , it is an absolute
value (i.e., not affected by \unitlength), given in any of LaTEX’s units.

Some of the extra features that are not available with the picture environ-
ment in standard LaTEX are shown below. The possibilities of arbitrary slopes
for the \line and \vector commands were mentioned previously. The more
friendly user interface (allowing for relative coordinates) of the \Vector , \Line ,
and \Curve commands is appreciated. The first \oval command draws a nor-
mal ellipse with a thick line (using the \thicklines command), while the second
\oval command draws a rectangle with rounded corners and thin-line borders
(using the \thinlines command). Finally, we set the line width to 3pt with the
\linethickness command and show the effect on circles and lines.

10-4-4 0 50 100 150

0

50

100

\usepackage{pspicture}\usepackage{graphpap}

\begin{picture}(150,120)
\graphpaper(0,0)(150,120)
\arrowlength{4pt} \put(150,00){\vector(-8,1){60}}
\arrowlength{8pt} \put(150,50){\Vector(-30,50)}
\put(60,20){\Line(90,20)}
\put(60,20){\Curve(90,20){2}}
\put(60,20){\Curve(90,20){-2}}
\thicklines \put(50,80){\oval(100,70)}
\thinlines \put(50,80){\oval[10](100,70)}
\linethickness{3pt}

\put(10,20){\circle{20}}
\put(10,20){\line(10,1){30}}

\end{picture}

642 Graphics Generation and Manipulation

10.4.4 The Portable Document Format

Adobe’s Portable Document Format (PDF) [5] is a direct descendant of the
PostScript language. Whereas PostScript is a full-blown programming language,
PDF is a second-generation, more light-weight graphics language optimized for
faster download and display. Most of the advantages of PostScript remain: PDF
guarantees page fidelity, down to the smallest glyph or piece of white space, while
being portable across different computer platforms. For these reasons, PDF is be-
ing used ever more frequently in the professional printing world as a replacement
for PostScript. Moreover, all present-day browsers will embed or display PDF ma-
terial, alongside HTML, using plug-in technology.

The main differences between PostScript and PDF are the following:

• There are no built-in programming language functions: for example, PDF in
general cannot calculate values.

• PDF guarantees full page independence by clearly separating resources from
page objects.

• PDF files are compact and fully searchable.

• Interactive hyperlinks make PDF files easy to navigate.

• PDF’s security features allow PDF documents to have special access rights and
digital signatures applied.

• Font outlines need not be included in the file, because PDF files carry suffi-
cient font information to allow PDF-enabled applications (e.g., Adobe’s Adobe
Reader) to mimic the appearance of a font.

• PDF has advanced compression features to keep the size of PDF files small.
Moreover, .png and .jpeg images can be inserted directly.

• PDF 1.4 and later versions support a transparent imaging model (PostScript
uses an opaque model) and feature multimedia support.

• PDF 1.4 and later versions introduce tagged PDF, a stylized form of PDF that
contains information on content and structure. Tagged PDF lets applications
extract and reuse page data (text, graphics, images). For instance, tagged PDF
allows text to reflow for display on handheld devices, such as Palm OS or
Pocket PC systems.

• PDF 1.5, released at the end of 2003, includes features for further optimizing
multimedia delivery.

PDF can be viewed and printed on many different computer platforms by
downloading and installing the Adobe Reader1 from Adobe. Other PDF viewers
exist as well. The best-known free ones are ghostscript,2 which can also produce
PDF from PostScript, and Xpdf.3

1Freely downloadable from http://www.adobe.com/products/acrobat/readermain.html.
2See http://www.cs.wisc.edu/~ghost/.
3See http://www.foolabs.com/xpdf/home.html.

10.4 Display languages: PostScript, PDF, and SVG 643

Generating PDF directly from TEX

If you have a PostScript file generated from a LaTEX source, you can convert it to
PDF by using a “distiller” program. Adobe’s Acrobat Distiller is the best known
and most sophisticated of these programs, but ghostscript (and ImageMagick’s
convert, which is built on it) also performs well.

To generate PDF directly without going through the dvi-generating step, we
have pdfTEX (see below) and MicroPress’s VTeX,1 which has its own direct PDF-
generating TEX engine. If you already have a dvi file, you can use Mark Wicks’s
dvipdfm dvi driver.2

Hán Thế Thánh’s pdfTEX is an extension of TEX that creates PDF directly from
TEX source files [161]. It also enhances the typesetting capabilities of TEX in some
interesting areas [158,159]. Since 2002 pdfTEX has been part of the standard TEX
distributions.

The pdfTEX program lets you include annotations, hyperlinks, and bookmarks
in the generated PDF output file. It can work with TrueType fonts and supports
the inclusion of pictures in .png and .jpeg formats. The most common technique,
the inclusion of Encapsulated PostScript figures, has been replaced by PDF inclu-
sion in this program. EPS files can be converted to PDF by ImageMagick’s convert
utility, eps2pdf (both of which call ghostscript internally), Acrobat Distiller, or
other PostScript-to-PDF converters.

Navigation is an important aspect of PDF documents. The hyperref package
[56, Chapter2] developed by Sebastian Rahtz and Heiko Oberdiek extends the func-
tionality of the LaTEX cross-referencing commands (including the table of contents,
bibliographies, and so on) to produce \special commands that a dvi driver or
pdfTEX can turn into hypertext links. The hyperref package also provides new
commands to allow the user to write ad hoc hypertext links, including those to
external documents and URLs.

Because PDF lacks programming language commands, it cannot deal with gen-
eral raw PostScript commands, such as those used by the pstricks package [57,
Chapter4]. Thus, these commands are not supported.3

The standard LaTEX graphics and color packages have a pdftex option, which
allow you to use normal color, text rotation, and graphics inclusion commands.
The implementation of graphics inclusion makes sure that however often a
graphic is used (even if it is used at different scales or transformed in different
ways), it is embedded only once.

Producing correct PostScript or PDF

Getting correct PostScript or PDF output from LaTEX systems can sometimes be
quite difficult. Michael Shell, in the context of the IEEEtran document class files,
but independent of them, has developed the “testflow” diagnostic suite. A test file

1See http://www.micropress-inc.com/.
2See http://gaspra.kettering.edu/dvipdfm/.
3General PostScript commands can be used with MicroPress’s VTeX, which has a built-in

PostScript interpreter.

644 Graphics Generation and Manipulation

testflow.tex is first compiled on the user’s system. Next, a PostScript version,
testflow.ps, and a PDF version, testflow.pdf, for the output are produced and
printed on the output device for comparison to reference files. The input test
file is designed to test the various components of LaTEX’s “print work flow”. Its
purpose is to provide helpful information to assist users in getting their LaTEX
system configured correctly so as to produce good PostScript and PDF output.1

10.4.5 Scalable Vector Graphics

Since the mid-1990s, the World Wide Web and the general availability of the per-
sonal computer have made the generation, maintenance, and dissemination of
electronic documents worldwide cheap, easy, and fast. Moreover, the development
of the XML family of standards and the ubiquity of platform-independent script-
ing languages allow one to save and handle huge amounts of electronically stored
information and to transform it into various customizable presentation forms.

For LaTEX documents, a variety of techniques are available to transform them
into PDF, XHTML, or XML so that the information can be made available on the
web. Thus, LaTEX can continue to play a major role in the integrated worldwide
cyberspace, in particular for scientific documents, and especially in areas where
fine typesetting is a must.

After a short introduction to Scalable Vector Graphics (SVG), we explain suc-
cinctly how LaTEX-encoded information can be encoded into an SVG-format (see
[58] for more detail).

SVG for portable graphics on the web

As the web has grown in popularity and complexity, users and content providers
have sought ever better, more precise, and more scalable graphical rendering—not
just the low-resolution .gif or .png images that are commonly used in today’s
web pages. To address this need, the World Wide Web Consortium published the
SVG Recommendation, whose current version is 1.1.2

SVG is an open-standard vector graphics language for describing two-
dimensional graphics using XML syntax. It lets you produce web pages containing
high-resolution computer graphics.

As an XML instance, SVG consists of Unicode text. It features the usual vector
graphics functions. Its fundamental primitive is the graphics object, whose model
contains the following:

• Graphics paths consisting of polylines, Bézier curves, and other elements:

– Simple or compound, closed or open

– (Gradient) filled, (gradient) stroked

1Detailed instructions and a detailed explanation available at CTAN: macros/latex/contrib/
IEEEtran/testflow/testflow_doc.txt.

2Scalable Vector Graphics (SVG) 1.1 Specification, available at http://www.w3.org/TR/SVG11/,
was published on January 14, 2003.

10.4 Display languages: PostScript, PDF, and SVG 645

– Can be used for clipping

– Can be used for building common geometric shapes

• Patterns and markers

• Templates and symbol libraries

• Transformations:

– Default coordinate system: x is right, y is down,1 the unit is one pixel

– Viewport maps an area in world coordinates to an area on screen

– Transformations alter the coordinate system (2×3 transformation matrix
for computers; translate, rotate, scale, skew for humans)

– Can be nested

• Inclusion of bitmap or raster images

• Clipping, filter, and raster effects; alpha masks

• Animations, scripts, and extensions

• Groupings and styles

• SVG fonts (independent from fonts installed on the system)

The W3C SVG web site (http://www.w3.org/Graphics/SVG) is a good first
source of information and has a lot of pointers to other sites.

Transforming a LATEX document into an SVG document

If one has a pure LaTEX source document (i.e., one that includes no EPS files, nor
uses any extensions that need TEX \special commands), the dvi file can be trans-
lated into SVG with Adrian Frischauf’s dvi2svg.2

We interacted with the dvi2svg Java library via a small UN*X script called
dvi2svg.sh, whose use is as follows:

> dvi2svg.sh
Usage: dvi2svg.sh [options] [DVIFILE]
Options:
-o [FILENAME] : Specify an output filename prefix. If not

set, dvi2svg will take the input filename.
-d : set the debug mode to on(1)/off(0 default)

An example of the use of the dvi2svg program is the translation of two exam-
ples in this chapter into SVG. We compile the LaTEX file svgexa.tex and then run

1The reference point of the display area is the upper-left corner. For PostScript, where y runs
upward, the reference point of the page is the lower-left corner.

2See http://www.activemath.org/˜adrianf/dvi2svg/. The dvi2svg program includes SVG
font outlines for the characters referenced in the dvi file. SVG font instances were generated for
all standard Computer Modern and LaTEX fonts and come with the dvi2svg distribution.

646 Graphics Generation and Manipulation

Figure 10.3: SVG generated from a dvi file

dvi2svg.sh on the generated dvi file to obtain the SVG file svgexa1. (If the dvi
file contains more than one page several output files are generated.)

> dvi2svg.sh svgexa.dvi -o svgexa
DEBUG from converter.DviToSvg => Converting file: svgexa.dvi
DEBUG from converter.DviToSvg => Writing result to: svgexa
DEBUG from converter.DviToSvg => Reader has been created
DEBUG from converter.DviToSvg => Writer has been created
ConvertingFINISHED
> ls -l svgexa*.svg
-rw-rw-r-- 1 goossens 23792 Jun 25 19:44 svgexa1.svg

Figure 10.3 shows the generated SVG file as viewed with the squiggle pro-
gram.1 For more complex LaTEX files (in particular, those with EPS or PDF inclu-
sions) you can first generate a PostScript file with dvips, and then use Wolfgang
Glunz’s pstoedit program (see [58] for an explanation of how it works).

1The squiggle SVG browser is part of the Apache Batik distribution (http://xml.apache.org/
batik). SVG can also be viewed with Adobe’s browser plugin svgview (http://www.adobe.com/svg).

C H A P T E R 11

Index Generation

To find a topic of interest in a large document, book, or reference work, you usu-
ally turn to the table of contents or, more often, to the index. Therefore, an index
is a very important part of a document, and most users’ entry point to a source of
information is precisely through a pointer in the index. You should, therefore, plan
an index and develop it along with the main text [38]. For reasons of consistency,
it is beneficial, with the technique discussed below, to use special commands in
the text to always print a given keyword in the same way in the text and the index
throughout the whole document.

This chapter first reviews the basic indexing commands provided by standard
LaTEX, and explains which tools are available to help you build a well-thought-out in-
dex. The LATEX Manual itself does not contain a lot of information about the syntax
of the \index entries. However, several articles in TUGboat deal with the question
of generating an index with TEX or LaTEX [47,162,163]. The syntax described in Sec-
tion 11.1 is the one recognized by MakeIndex [37,103] and xindy [71,76,152], the
most widely used index preparation programs.

Section 11.2 describes how the MakeIndex processor is used. The interpre-
tation of the input file and the format of the output file are controlled by style
parameters. Section 11.2.4 lists these parameters and gives several simple exam-
ples to show how changing them influences the typeset result.

Section 11.3 presents xindy, an alternative to MakeIndex. It’s preferable to
use this program whenever you have non-English documents or other special de-
mands, such as production of technical indexes. The xindy program provides total
flexibility for merging and sorting index entries, and for arbitrary formatting of
references.

The final section describes several LaTEX packages to enhance the index and to
create multiple indexes, which will be discussed with the help of an example.

648 Index Generation

① A raw index (.idx file) is generated
by running LaTEX.

② The raw index, together with some
optional style information (.ist
file), is used as input to the index
processor, which creates an alpha-
betized index (.ind file) and a tran-
script (.ilg file).

③ The index (.ind file) is read by LaTEX
to give the final typeset result.

LaTEX

MakeIndex
xindy

tex

tex

①

②

③ ilgLaTEX

idx

ind

ist

Figure 11.1: The sequential flow of index processing and the various
auxiliary files used by LaTEX and external index processors

The process of generating an index is shown schematically in Figure 11.1.
The steps for generating an index with LaTEX and either MakeIndex or xindy are
illustrated in this figure.

Figure 11.2 on the next page shows, with an example, the various steps in-
volved in transforming an input file into a typeset index. It also shows, in some-
what more detail, which files are involved in the index-generating process. Fig-
ure 11.2(a) shows some occurrences of index commands (\index) in the document
source, with corresponding pages listed on the left. Figure 11.2(b) shows a raw in-
dex .idx file generated by LaTEX. File extensions may differ when using multiple
indexes or glossaries. After running the .idx file through the index processor, it
becomes an alphabetized index .ind file with LaTEX commands specifying a partic-
ular output format [Figure 11.2(c)]. The typeset result after formatting with LaTEX
is shown in Figure 11.2(d).

LaTEX and MakeIndex, when employed together, use several markup conven-
tions to help you control the precise format of the output. The xindy program has
a MakeIndex compatibility mode that supports the same format. In Section 11.1,
which describes the format of the \index command, we always use the default
settings.

11.1 Syntax of the index entries

This section describes the default syntax used to generate index entries with LaTEX
and either MakeIndex or xindy. Different levels of complexity are introduced pro-
gressively, showing, for each case, the input file and the generated typeset output.

11.1 Syntax of the index entries 649

Page vi: \index{animal}
Page 5: \index{animal}
Page 6: \index{animal}
Page 7: \index{animal}
Page 11: \index{animalism|see{animal}}
Page 17: \index{animal@\emph{animal}}

\index{mammal|textbf}
Page 26: \index{animal!mammal!cat}
Page 32: \index{animal!insect}

(a) The input file

\indexentry{animal}{vi}
\indexentry{animal}{5}
\indexentry{animal}{6}
\indexentry{animal}{7}
\indexentry{animalism|see{animal}}{11}
\indexentry{animal@\emph{animal}}{17}
\indexentry{mammal|textbf}{17}
\indexentry{animal!mammal!cat}{26}
\indexentry{animal!insect}{32}

(b) The .idx file

\begin{theindex}
\item animal, vi, 5-7

\subitem insect, 32
\subitem mammal
\subsubitem cat, 26

\item \emph{animal}, 17
\item animalism, \see{animal}{11}
\indexspace
\item mammal, \textbf{17}

\end{theindex}

(c) The .ind file

animal, vi, 5–7
insect, 32
mammal
cat, 26

animal, 17
animalism, see animal

mammal, 17

(d) The typeset output

Figure 11.2: Stepwise development of index processing

Figures 11.3 and 11.4 on page 656 show the input and generated output of
a small LaTEX document, where various simple possibilities of the \index com-
mand are shown, together with the result of including the showidx package (see
Section 11.4.2). To make the index entries consistent in these figures (see Sec-
tion 11.1.7), the commands \Com and \Prog were defined and used. The index-
generating environment theindex has been redefined to get the output on one
page (Section 11.4.1 explains how this can be done).

After introducing the necessary \index commands in the document, we want Generating the raw
indexto generate the index to be included once again in the LaTEX document on a sub-

sequent run. If the main file of a document is main.tex, for example, then the
following changes should be made to that file:

• Include the makeidx package with a \usepackage command.

• Put a \makeindex command in the document preamble.

• Put a \printindex command where the index is to appear—usually at the
end, right before the \end{document} command.

You then run LaTEX on the entire document, causing it to generate the file
main.idx, which we shall call the .idx file.

650 Index Generation

11.1.1 Simple index entries

Each \index command causes LaTEX to write an entry in the .idx file. The fol-
lowing example shows some simple \index commands, together with the index
entries that they produce. The page number refers to the page containing the text
where the \index command appears. As shown in the example below, duplicate
commands on the same page (such as \index{stylistic} on page 23) produce
only one “23” in the index.

style, 14
style , 16
style, iii, 12
style , 15
style file, 34
styles, 12
Stylist, xi
stylist, 34
stylistic, 23

Page iii: \index{style}
Page xi: \index{Stylist}
Page 12: \index{style}

\index{styles}
Page 14: \index{ style}
Page 15: \index{style }
Page 16: \index{ style }
Page 23: \index{stylistic}

\index{stylistic}
Page 34: \index{style file}

\index{stylist}

Pay particular attention to the way spaces are handled in this example. Spaces

�Spaces
can be harmful

inside \index commands are written literally to the output .idx file and, by de-
fault, are treated as ordinary characters by MakeIndex, which places them in front
of all letters. In the example above, look at the style entries on pages 14 and 16.
The leading spaces are placed at the beginning of the index and on two different
lines because the trailing blank on page 16 lengthens the string by one character.
We end up with four different entries for the same term, an effect that was proba-
bly not desired. It is therefore important to eliminate such spurious spaces from
the \index commands when you useMakeIndex. Alternatively, you can specify the
-c option when running the index processor. This option suppresses the effect of
leading and trailing blanks (see Sections 11.2.2 and 11.3.1). Another frequently
encountered error occurs when the same English word is spelled inconsistently
with initial lowercase and uppercase letters (as with Stylist on page xi), leading
to two different index entries. Of course, this behavior is wanted in languages like
German, where “Arm” (arm) and “arm” (poor) are really two completely different
words. In English, such spurious double entries should normally be eliminated.

If you use xindy, space compression is done automatically. Furthermore,
xindy supports international indexing and thus correctly and automatically han-
dles case sensitivity in a language-specific way. Therefore, with xindy you won’t
encounter the problems mentioned above.

11.1.2 Generating subentries

A maximum of three levels of index entries (main, sub, and subsub entries) are
available. To produce such entries, the argument of the \index command should

11.1 Syntax of the index entries 651

contain both the main entries and subentries, separated by a ! character. This
character can be redefined in the MakeIndex style file (see Table 11.1 on page 660).

box, 21
dimensions of, 33
parameters, 5

dimensions
figure, 12
rule
height, 12
width, 3

table, 9

Page 3: \index{dimensions!rule!width}
Page 5: \index{box!parameters}
Page 9: \index{dimensions!table}
Page 12: \index{dimensions!rule!height}

\index{dimensions!figure}
Page 21: \index{box}
Page 33: \index{box!dimensions of}

11.1.3 Page ranges and cross-references

You can specify a page range by putting the command \index{...|(} at the
beginning of the range and the command \index{...|)} at the end of the range.
Page ranges should span a homogeneous numbering scheme (e.g., Roman and
Arabic page numbers cannot fall within the same range). Note that MakeIndex and
xindy do the right thing when both ends of a page range fall on the same page, or
when an entry falls inside an active range.

You can also generate cross-reference index entries without page numbers by
using the see encapsulator. Because the “see” entry does not print any page num-
ber, the commands \index{...|see{...}} can be placed anywhere in the input
file after the \begin{document} command. For practical reasons, it is convenient
to group all such cross-referencing commands in one place.

fonts
Computer Modern, 13–25
math, see math, fonts
PostScript, 5

table, ii–xi, 14

Page ii: \index{table|(}
Page xi: \index{table|)}
Page 5: \index{fonts!PostScript|(}

\index{fonts!PostScript|)}
Page 13: \index{fonts!Computer Modern|(}
Page 14: \index{table}
Page 17: \index{fonts!math|see{math, fonts}}
Page 21: \index{fonts!Computer Modern}
Page 25: \index{fonts!Computer Modern|)}

11.1.4 Controlling the presentation form

Sometimes you may want to sort an entry according to a key, while using a differ-
ent visual representation for the typesetting, such as Greek letters, mathematical
symbols, or specific typographic forms. This function is available with the syntax
key@visual, where key determines the alphabetical position and the string visual
produces the typeset text of the entry.

652 Index Generation

delta, 14
δ, 23
delta wing, 16
flower, 19
ninety, 26
xc, 28
ninety-five, 5
tabular environment, 23

Page 5: \index{ninety-five}
Page 14: \index{delta}
Page 16: \index{delta wing}
Page 19: \index{flower@\textbf{flower}}
Page 23: \index{delta@δ}

\index{tabular@\texttt{tabular} environment}
Page 26: \index{ninety}
Page 28: \index{ninety@xc}

For some indexes, certain page numbers should be formatted specially. For
example, an italic page number might indicate a primary reference, or an n after
a page number might denote that the item appears in a footnote on that page.
MakeIndex allows you to format an individual page number in any way you want
by using the encapsulator syntax specified by the | character. What follows the |
sign will “encapsulate” or enclose the page number associated with the index en-
try. For instance, the command \index{keyword|xxx} will produce a page num-
ber of the form \xxx{n} , where n is the page number in question. Similarly, the
commands \index{keyword|(xxx} and \index{keyword|)xxx} will generate a
page range of the form \xxx{n–m}.

Preexisting commands (like \textit in the example below) or user commands
can be used to encapsulate the page numbers. As an example, a document contain-
ing the command definition

\newcommand\nn[1]{#1n}

would yield something like this:

tabular, ii, 21, 22n
tabbing, 7, 34–37

Page ii: \index{tabular|textbf}
Page 7: \index{tabbing}
Page 21: \index{tabular|textit}
Page 22: \index{tabular|nn}
Page 34: \index{tabbing|(textit}
Page 37: \index{tabbing|)textit}

The see encapsulator is a special case of this facility, where the \see com-
mand is predefined by the makeidx package.

11.1.5 Printing special characters

To typeset one of the characters having a special meaning to MakeIndex or xindy
(!, ", @, or |)1 in the index, precede it with a " character. More precisely, any
character is said to be quoted if it follows an unquoted " that is not part of a
\" command. The latter case allows for umlaut characters. Quoted !, @, ", and |
characters are treated like ordinary characters, losing their special meaning. The
" preceding a quoted character is deleted before the entries are alphabetized.

1As noted earlier, in MakeIndex other characters can be substituted for the default ones and carry
a special meaning. This behavior is explained on page 662.

11.1 Syntax of the index entries 653

@ sign, 2
|, see vertical bar
exclamation (!), 4

Ah!, 5
Mädchen, 3
quote ("), 1
" sign, 1

\index{bar@\texttt{"|}|see{vertical bar}}
Page 1: \index{quote (\verb+""+)}

\index{quote@\texttt{""} sign}
Page 2: \index{atsign@\texttt{"@} sign}
Page 3: \index{maedchen@M\"{a}dchen}
Page 4: \index{exclamation ("!)}
Page 5: \index{exclamation ("!)!Ah"!}

11.1.6 Creating a glossary

LaTEX also has a \glossary command for making a glossary. The \makeglossary
command produces a file with an extension of .glo, which is similar to the
.idx file for the \index commands. LaTEX transforms the \glossary commands
into \glossaryentry entries, just as it translates any \index commands into
\indexentry entries.

MakeIndex can also handle these glossary commands, but you must change
the value for some of the style file keywords, as shown in the style file
myglossary.ist.

% MakeIndex style file myglossary.ist
keyword "\\glossaryentry" % keyword for glossary entry
preamble "\n \\begin{theglossary}\n" % Begin glossary entries
postamble "\n\n \\end{theglossary}\n" % End glossary entries

In addition, you have to define a suitable theglossary environment.

11.1.7 Defining your own index commands

As was pointed out in the introduction, it is very important to use the same visual
representation for identical names or commands throughout a complete docu-
ment, including the index. You therefore can define user commands, which always
introduce similar constructs in the same way into the text and the index.

For example, you can define the command \Index , whose argument is entered
at the same time in the text and in the index.

\newcommand\Index[1]{#1\index{#1}}

As explained in more detail below, you must be careful that the argument
of such a command does not contain expandable material (typically control se-
quences) or spurious blanks. In general, for simple terms like single words, there
is no problem and this technique can be used. You can even go one step further
and give a certain visual representation to the entry—for instance, typesetting it
in a typewriter font.

\newcommand\Indextt[1]{\texttt{#1}\index{#1@\texttt{#1}}

654 Index Generation

Finally, you can group certain terms by defining commands that have a
generic meaning. For instance, LaTEX commands and program names could be
treated with special commands, as in the following examples:

\newcommand\bs{\symbol{’134}} % print backslash in typewriter OT1/T1
\newcommand\Com[1]{\texttt{\bs#1}\index{#1@\texttt{\bs#1}}}
\newcommand\Prog[1]{\texttt{#1}\index{#1@\texttt{#1} program}}

The \Com command adds a backslash to the command’s name in both text and in-
dex, simplifying the work of the typist. The \bs command definition is necessary,
because \textbackslash would be substituted in an OT1 font encoding context,
as explained in Section 7.3.5 on page 346. At the same time, commands will be
ordered in the index by their names, with the \-character being ignored during
sorting. Similarly, the \Prog command does not include the \texttt command
in the alphabetization process, because entries like \index{\texttt{key}} and
\index{key} would then result in different entries in the index.

11.1.8 Special considerations

When an \index command is used directly in the text, its argument is expanded
only when the index is typeset, not when the .idx file is written. However, when
the \index command is contained in the argument of another command, char-
acters with a special meaning to TEX, such as \, must be properly protected
against expansion. This problem is likely to arise when indexing items in a foot-
note, or when using commands that put their argument in the text and enter
it at the same time in the index (see the discussion in Section 11.1.7). Even in
this case, robust commands can be placed in the “@” part of an entry, as in
\index{rose@\textit{rose}}, but fragile commands must be protected with
the \protect command.

As with every argument of a command you need to have a matching number
of braces. However, because \index allows special characters like % or \ in its
argument if the command is used in main text, the brace matching has an anomaly:
braces in the commands \{ and \} take part in the matching. Thus, you cannot
write \index{\{} or something similar.

11.2 makeindex—A program to format and sort indexes

In the previous section we showed examples where we ran the MakeIndex program
using its default settings. In this section we will first take a closer look at the
MakeIndex program, and then discuss ways of changing its behavior.

11.2 makeindex—A program to format and sort indexes 655

11.2.1 Generating the formatted index

To generate the formatted index, you should run the MakeIndex program by typ-
ing the following command (where main is the name of the input file):

makeindex main.idx

This produces the file main.ind, which will be called the .ind file here. If MakeIn-
dex generated no error messages, you can now rerun LaTEX on the document and
the index will appear. (You can remove the \makeindex command if you do not
want to regenerate the index.) Page 658 describes what happens at this point if
there are error messages.

In reading the index, you may discover additional mistakes. These should be
corrected by changing the appropriate \index commands in the document and
regenerating the .ind file (rerunning LaTEX before and after the last step).

An example of running MakeIndex is shown below. The .idx file, main.idx,
is generated by a first LaTEX run on the input shown in Figure 11.3 on the next
page. You can clearly see that two files are written—namely, the ordered .ind
index file for use with LaTEX, called main.ind, and the index .ilg log file, called
main.ilg, which (in this case) will contain the same text as the output on the
terminal. If errors are encountered, then the latter file will contain the line number
and error message for each error in the input stream. Figure 11.4 on the following
page shows the result of the subsequent LaTEX run. The example uses the showidx
package for controlling the index (see Section 11.4.2).

> makeindex main
This is makeindex, version 2.13 [07-Mar-1997] (using kpathsea).
Scanning input file main.idx....done (8 entries accepted, 0 rejected).
Sorting entries....done (24 comparisons).
Generating output file main.ind....done (19 lines written, 0 warnings).
Output written in main.ind.
Transcript written in main.ilg.

11.2.2 Detailed options of the MakeIndex program

The syntax of the options of the MakeIndex program are described below:

makeindex [-ciglqr] [-o ind] [-p no] [-s sty] [-t log] [idx0 idx1 ...]

-c Enable blank compression. By default, every blank counts in the index key.
The -c option ignores leading and trailing blanks and tabs and compresses
intermediate ones to a single space.

-i Use standard input (stdin) as the input file. When this option is specified
and -o is not, output is written to standard output (stdout, the default
output stream).

6
5
6

In
d

ex
G

en
er

at
io

n \documentclass{article}
\usepackage{makeidx,showidx}
\newcommand\bs{\symbol{’134}}% print backslash
\newcommand\Com[1]{\texttt{\bs#1}%

\index{#1@\texttt{\bs#1}}}
\newcommand\Prog[1]{\texttt{#1}%

\index{#1@\texttt{#1} program}}
\makeindex
\begin{document}
\section{Generating an Index}
Using the \textsf{showidx} package users can
see where they define index entries.
\par Entries are entered into the index by the
\Com{index} command. More precisely, the argument
of the \Com{index} command is written literally into
the auxiliary file \texttt{idx}. Note, however, that
information is only actually written into that file
when the \Com{makeindex} command was given in the
document preamble.

\section{Preparing the Index}
In order to prepare the index for printing, the
\texttt{idx} file has to be transformed by an external
program, like \Prog{makeindex}.
This program writes the \texttt{ind} file.
\begin{verbatim}
makeindex filename
\end{verbatim}

\section{Printing the Index}\index{Final production run}
During the final production run of a document the
index can be \index{include index}included by putting
a \Com{printindex} command at the position in the text
where you want the index to appear (normally at the
end).This command will input the \texttt{ind} file
prepared by the \Prog{makeindex} and \LaTeX{} will
typeset the information.
\printindex
\end{document}

Figure 11.3: Example of \index commands and the
showidx package. This file is run through LaTEX once,
then the index processor is executed and LaTEX is run
a second time.

index@\index
index@\index
makeindex@\makeindex
makeindex@makeindex

program
include index
Final

production
run

printindex@\printindex
makeindex@makeindex

program

1 Generating an Index

Using the showidx package users can see where they define
index entries.

Entries are entered into the index by the \index com-
mand. More precisely, the argument of the \index com-
mand is written literally into the auxiliary file idx. Note,
however, that information is actually only written into that
file when the \makeindex command was given in the
document preamble.

2 Preparing the Index

In order to prepare the index for printing, theidxfile has to
be transformed by an external program, like makeindex.
This program writes the ind file.

makeindex filename

3 Printing the Index

During the final production run of a document the index
can be included by putting a \printindex command at
the position in the text where you want the index to appear
(normally at the end). This command will input the ind
file prepared by makeindex and LATEX will typeset the
information.

Index Entries
Final production run, 1

include index, 1
\index, 1

\makeindex, 1
makeindex program,

1

\printindex, 1

1

Figure 11.4: This figure shows the index generated by
the example input of Figure 11.3. All index entries are
shown in the margin, so it is easy to check for errors or
duplications.

11.2 makeindex—A program to format and sort indexes 657

-g Employ German word ordering in the index, following the rules given in Ger-
man standard DIN5007. In this case the normal precedence rule of MakeIn-
dex for word ordering (symbols, numbers, uppercase letters, lowercase let-
ters) is replaced by the German word ordering (symbols, lowercase letters,
uppercase letters, numbers). Additionally, this option enables MakeIndex to
recognize the German TEX commands "a, "o, "u, and "s as ae, oe, ue, and
ss, respectively, for sorting purposes. The quote character must be rede-
fined in a style file (see page 662); otherwise, you will get an error message
and MakeIndex will abort. Note that not all versions of MakeIndex recognize
this option.

-l Use letter ordering. The default is word ordering. In word ordering, a space
comes before any letter in the alphabet. In letter ordering, spaces are ig-
nored. For example, the index terms “point in space” and “pointing” will be
alphabetized differently in letter and word ordering.

-q Operate in quiet mode. No messages are sent to the error output stream
(stderr). By default, progress and error messages are sent to stderr as
well as the transcript file. The -q option disables the stderr messages.

-r Disable implicit page range formation. By default, three or more successive
pages are automatically abbreviated as a range (e.g., 1–5). The -r option
disables this default, making explicit range operators the only way to create
page ranges.

-o ind Take ind as the output index file. By default, the file name base of the first
input file idx0 concatenated with the extension .ind is used as the output
file name.

-p no Set the starting page number of the output index file to no. This option
is useful when the index file is to be formatted separately. Other than pure
numbers, three special cases are allowed for no: any, odd, and even. In these
special cases, the starting page number is determined by retrieving the last
page number from the .log file of the last LaTEX run. The .log file name is
determined by concatenating the file name base of the first raw index file
(idx0) with the extension .log. The last source page is obtained by searching
backward in the log file for the first instance of a number included in square
brackets. If a page number is missing or if the .log file is not found, no
attempt will be made to set the starting page number. The meaning of each
of the three special cases follows:

any The starting page is the last source page number plus one.

odd The starting page is the first odd page following the last source page
number.

even The starting page is the first even page following the last source page
number.

658 Index Generation

-s sty Take sty as the style file. There is no default for the style file name. The
environment variable INDEXSTYLE defines where the style file resides.

-t log Take log as the transcript file. By default, the file name base of the first in-
put file idx0 concatenated with the extension .ilg is used as the transcript
file name.

11.2.3 Error messages

MakeIndex displays on the terminal how many lines were read and written and
how many errors were found. Messages that identify errors are written in the
transcript file, which, by default, has the extension .ilg. MakeIndex can produce
error messages when it is reading the .idx file or when it is writing the .ind file.
Each error message identifies the nature of the error and the number of the line
where the error occurred in the file.

In the reading phase, the line numbers in the error messages refer to theErrors in the
reading phase positions in the .idx file being read.

Extra ‘!’ at position ...
The \index command’s argument has more than two unquoted ! characters.
Perhaps some of them should be quoted.

Extra ‘@’ at position ...
The \index command argument has two or more unquoted @ characters with
no intervening !. Perhaps one of the @ characters should be quoted.

Extra ‘|’ at position ...
The \index command’s argument has more than one unquoted | character.
Perhaps the extras should be quoted.

Illegal null field
The \index command argument does not make sense because some string is
null that shouldn’t be. The command \index{!funny} will produce this error,
since it specifies a subentry “funny” with no entry. Similarly, the command
\index{@funny} is incorrect, because it specifies a null string for sorting.

Argument ... too long (max 1024)
The document contained an \index command with a very long argument. You
probably forgot the right brace that should delimit the argument.

In the writing phase, line numbers in the error messages refer to the positionsErrors in the
writing phase in the .ind file being written.

Unmatched range opening operator
An \index{...|(} command has no matching \index{...|)} command fol-
lowing it. The “...” in the two commands must be completely identical.

Unmatched range closing operator
An \index{...|)} command has no matching \index{...|(} command
preceding it.

11.2 makeindex—A program to format and sort indexes 659

Extra range opening operator
Two \index{...|(} commands appear in the document with no intervening
command \index{...|)}.

Inconsistent page encapsulator ... within range
MakeIndex has been instructed to include a page range for an entry and
a single page number within that range is formatted differently—for ex-
ample, by having an \index{cat|see{animals}} command between an
\index{cat|(} command and an \index{cat|)} command.

Conflicting entries
MakeIndex thinks it has been instructed to print the same page num-
ber twice in two different ways. For example, the command sequences
\index{lion|see{...}} and \index{lion} appear on the same page.

MakeIndex can produce a variety of other error messages indicating that some-
thing is seriously wrong with the .idx file. If you get such an error, it probably
means that the .idx file was corrupted in some way. If LaTEX did not generate any
errors when it created the .idx file, then it is highly unlikely to have produced a
bad .idx file. If, nevertheles, this does happen, you should examine the .idx file
to establish what went wrong.

11.2.4 Customizing the index with MakeIndex

MakeIndex ensures that the formats of the input and output files do not have to
be fixed, but they can be adapted to the needs of a specific application. To achieve
this format independence, the MakeIndex program is driven by a style file, usu-
ally characterized with a file extension of .ist (see also Figure 11.1 on page 648).
This file consists of a series of keyword/value pairs. These keywords can be di-
vided into input and output style parameters. Table 11.1 on the following page
describes the various keywords and their default values for the programming of
the input file. This table shows, for instance, how to modify the index level sepa-
rator (level, with ! as default character value). Table 11.2 on page 661 describes
the various keywords and their default values for steering the translation of the
input information into LaTEX commands. This table explains how to define the way
the various levels are formatted (using the item series of keywords). Examples will
show in more detail how these input and output keywords can be used in practice.
MakeIndex style files use UN*X string syntax, so you must enter \\ to get a single
\ in the output.

In the following sections we show how, by making just a few changes to the
values of the default settings of the parameters controlling the index, you can
customize the index.

A stand-alone index

The example style mybook.ist (shown below) defines a stand-alone index for a
book, where “stand-alone” means that it can be formatted independently of the

660 Index Generation

Keyword Default Value Description

keyword (s) "\\indexentry" Command telling MakeIndex that its argument is an index en-
try

arg_open (c) ’{’ Argument opening delimiter

arg_close (c) ’}’ Argument closing delimiter

range_open (c) ’(’ Opening delimiter indicating the beginning of an explicit page
range

range_close (c) ’)’ Closing delimiter indicating the end of an explicit page range

level (c) ’!’ Delimiter denoting a new level of subitem

actual (c) ’@’ Symbol indicating that the next entry is to appear in the ac-
tual index file

encap (c) ’|’ Symbol indicating that rest of argument list is to be used as
an encapsulating command for the page number

quote (c) ’"’ Symbol that escapes the character following it

escape (c) ’\\’ Symbol without any special meaning unless it is followed by
the quote character, in which case that character loses its
special function and both characters will be printed. This is
included because \" is the umlaut character in TEX. The two
symbols quote and escape must be distinct.

page_compositor (s) "-" Composite page delimiter

(s) attribute of type string, (c) attribute of type char (enclose in double or single quotes, respectively)

Table 11.1: Input style parameters for MakeIndex

main source. Such a stand-alone index can be useful if the input text of the book
is frozen (the page numbers will no longer change), and you only want to reformat
the index.

% MakeIndex style file mybook.ist
preamble
"\\documentclass[12pt]{book} \n\n \\begin{document} \n
\\begin{theindex}\n"

postamble
"\n\n\\end{theindex} \n \\end{document}\n"

Assuming that the raw index commands are in the file mybook.idx, then you
can call MakeIndex specifying the style file’s name:

makeindex -s mybook.ist -o mybookind.tex mybook

A nondefault output file name is used to avoid clobbering the source output (pre-
sumably mybook.dvi). If the index is in file mybook.ind, then its typeset output
will also be in mybook.dvi, thus overwriting the .dvi file for the main document.

11.2 makeindex—A program to format and sort indexes 661

Keyword Default Value Description

Context

preamble (s) "\\begin{theindex}\n" Preamble command preceding the index
postamble (s) "\n\n\\end{theindex}\n" Postamble command following the index

Starting Page

setpage_prefix (s) "\n\\setcounter{page}{" Prefix for the command setting the page

setpage_suffix (s) "}\n" Suffix for the command setting the page
New Group/Letter

group_skip (s) "\n\n\\indexspace\n" Vertical space inserted before a new group

heading_prefix (s) "" Prefix for heading of a new letter group
heading_suffix (s) "" Suffix for heading of a new letter group

headings_flag (n) 0 A zero value inserts nothing between the differ-
ent letter groups; a value >0 (<0) includes an up-
percase (lowercase) instance of the symbol char-
acterizing the new letter group, prefixed with
heading_prefix and appending heading_suffix

Entry Separators

item_0 (s) "\n\\item " Command to be inserted in front of a level 0 entry

item_1 (s) "\n \\subitem " Ditto for a level 1 entry starting at level ≥ 1
item_2 (s) "\n \\subsubitem " Ditto for a level 2 entry starting at level ≥ 2

item_01 (s) "\n \\subitem " Command before a level 1 entry starting at level 0
item_12 (s) "\n \\subsubitem " Ditto for a level 2 entry starting at level 1

item_x1 (s) "\n \\subitem " Command to be inserted in front of a level 1 entry
when the parent level has no page numbers

item_x2 (s) "\n \\subsubitem " Ditto for a level 2 entry
Page Delimiters

delim_0 (s) ", " Delimiter between an entry and the first page num-
ber at level 0

delim_1 (s) ", " Ditto at level 1

delim_2 (s) ", " Ditto at level 2
delim_n (s) ", " Delimiter between different page numbers

delim_r (s) "–" Designator for a page range
Page Encapsulators

encap_prefix (s) "\\" Prefix to be used in front of a page encapsulator
encap_infix (s) "{" Infix to be used for a page encapsulator

encap_suffix (s) "}" Suffix to be used for a page encapsulator

Page Precedence

page_precedence (s) "rnaRA" Page number precedence: a, A are lower-, upper-
case alphabetic; n is numeric; r and R are lower-
and uppercase Roman

Line Wrapping

line_max (n) 72 Maximum length of an output line

indent_space (s) "\t\t" Indentation commands for wrapped lines
indent_length (n) 16 Length of indentation for wrapped lines

“\n” and “\t” are a new line and a tab; (s) attribute of type string; (n) attribute of type number

Table 11.2: Output style parameters for MakeIndex

662 Index Generation

Moreover, if you want the page numbers for the index to come out correctly,
then you can specify the page number where the index has to start (e.g., 181 in
the example below).

makeindex -s mybook.ist -o mybookind.tex -p 181 mybook

MakeIndex can also read the LaTEX log file mybook.log to find the page number
to be used for the index (see the -p option described on page 657).

Changing the “special characters”

The next example shows how you can change the interpretation of special charac-
ters in the input file. To do so, you must specify the new special characters in a
style file (for instance, myinchar.ist shown below). Using Table 11.1 on page 660,
in the following example we change the @ character (see page 651) to =, the sub-
level indicator ! (see page 650) to >, and the quotation character " (see page 652)
to ! (the default sublevel indicator).

% MakeIndex style file myinchar.ist
actual ’=’ % = instead of default @
quote ’!’ % ! "
level ’>’ % > !

In Figure 11.5 on the next page, which should be used in conjunction with the
german option of the babel package, the double quote character (") is used as a
shortcut for the umlaut construct \" . This shows another feature of the ordering
of MakeIndex: namely, the constructs " and \" are considered to be different
entries (Br"ucke and Br\"ucke, M"adchen and M\"adchen, although in the latter
case the key entry was identical, Maedchen). Therefore, it is important to use the
same input convention throughout a complete document.

Changing the output format of the index

You can also personalize the output format of the index. The first thing that we
could try is to build an index with a nice, big letter between each letter group.
This is achieved with the style myhead.ist, as shown below (see Table 11.2 on
the preceding page for more details) and gives the result shown in Figure 11.6.

% MakeIndex style file myhead.ist
heading_prefix "{\\bfseries\\hfil " % Insert in front of letter
heading_suffix "\\hfil}\\nopagebreak\n" % Append after letter
headings_flag 1 % Turn on headings (uppercase)

11.2 makeindex—A program to format and sort indexes 663

" sign, 1
= sign, 2
@ sign, 2
Brücke, 5
Brücke, V
Brücke, v
dimensions

rule
width, 3

exclamation (!), 4
Ah!, 5

Mädchen, c
Mädchen, 3

Page 1: \index{\texttt{"} sign}
Page 2: \index{\texttt{@} sign}
Page 2: \index{\texttt{!=} sign}
Page 3: \index{Maedchen=M\"{a}dchen}
Page c: \index{Maedchen=M"adchen}
Page v: \index{Bruecke=Br"ucke}
Page 5: \index{Br"ucke}
Page V: \index{Br\"ucke}
Page 3: \index{dimensions>rule>width}
Page 4: \index{exclamation (!!)}
Page 5: \index{exclamation (!!)>Ah!!}

Figure 11.5: Example of the use of special characters with MakeIndex

Symbols
@ sign, 2

B
box, 21

dimensions of, 33
parameters, 5

D
dimensions

figure, 17
rule
height, 12
width, 3

table, 9

F
fonts

Computer Modern, 21
PostScript, 5

R
rule

depth, 33, 48
width, 41

Page 2: \index{\texttt{"@} sign}
Page 3: \index{dimensions!rule!width}
Page 5: \index{box!parameters}

\index{fonts!PostScript}
Page 9: \index{dimensions!table}
Page 12: \index{dimensions!rule!height}
Page 17: \index{dimensions!figure}
Page 21: \index{box}

\index{fonts!Computer Modern}
Page 33: \index{box!dimensions of}

\index{rule!depth}
Page 41: \index{rule!width}
Page 48: \index{rule!depth}

Figure 11.6: Example of customizing the output format of an index

664 Index Generation

@ sign . 2
box . 21

dimensions of 33
parameters5

dimensions
figure 17
rule
height 12
width 3

table9
fonts

Computer Modern 21
PostScript 5

rule
depth 33, 48
width 41

Page 2: \index{\texttt{"@} sign}
Page 3: \index{dimensions!rule!width}
Page 5: \index{box!parameters}

\index{fonts!PostScript}
Page 9: \index{dimensions!table}
Page 12: \index{dimensions!rule!height}
Page 17: \index{dimensions!figure}
Page 21: \index{box}

\index{fonts!Computer Modern}
Page 33: \index{box!dimensions of}

\index{rule!depth}
Page 41: \index{rule!width}
Page 48: \index{rule!depth}

Figure 11.7: Adding leaders to an index

You could go a bit further and right-adjust the page numbers, putting in dots
between the entry and the page number to guide the eye, as shown in Figure 11.7.
This effect can be achieved by adding the following commands:

% MakeIndex style file myright.ist
delim_0 "\\dotfill "
delim_1 "\\dotfill "
delim_2 "\\dotfill "

The LaTEX command \dotfill can be replaced by fancier commands, but the
underlying principle remains the same.

Treating funny page numbers

As described earlier, MakeIndex accepts five basic kinds of page numbers: digits,
uppercase and lowercase alphabetic, and uppercase and lowercase Roman numer-
als. You can also build composed page numbers. The separator character for com-
posed page numbers is controlled by the MakeIndex keyword page_compositor;
the default is the hyphen character (-), as noted in Table 11.1 on page 660. The
precedence of ordering for the various kinds of page numbers is given by the key-
word page_precedence; the default is rRnaA, as noted in Table 11.2 on page 661.

Let us start with an example involving simple page numbers. Assume the

�Problems with
letters as page

numbers

pages with numbers ii, iv, 1, 2, 5, a, c, A, C, II, and IV contain an \index com-
mand with the word style. With the default page_precedence of rRnaA this
would be typeset in the index as shown below. The c and C entries are considered

11.2 makeindex—A program to format and sort indexes 665

to be Roman numerals, rather than alphabetic characters:

style, ii, iv, c, II, IV, C, 1, 2, 5, a, A

This order can be changed by using the page_precedence keyword to
"rnAaR". Running MakeIndex on the same index entries now yields:

style, ii, iv, c, 1, 2, 5, A, a, II, IV, C

As you see, the letters like C are still interpreted as roman numerals. Thus, as long
as MakeIndex offers no possibility to modify this behavior, it is ill adapted for
pages numbered by letters—either one accepts a potentially incorrect order in the
page references or one has to manually correct the index in the end.

The situation looks somewhat different if composed page numbers are used,
Composed page
numbers

e.g., page numbers like “B-3” (where “B” is the appendix number and “3” the page
number within this appendix). In this case C will be interpreted as a letter, but I
is still considered a roman numeral. Thus, in this setting you can have up to eight
appendices before you run into trouble.

Suppose that the unsorted index entries show the page numbers C--3, 1--1,
D--1--1, B--7, F--3--5, 2--2, D--2--3, A--1, B--5, and A--2. If this raw index
is processed with MakeIndex, it will result in an empty formatted index and a lot
of error messages, since the default page separator is a single hyphen. However,
by setting the page_compositor keyword to "--" you can process this raw index
successfully getting the following result:

style, 1–1, 2–2, A–1, A–2, B–5, B–7, C–3, D–1–1, D–2–3, F–3–5

Since MakeIndex supports only a single page separator more complex page num-
bering schemes involving several different page separators (such as A–4.1) can
not be processed by this program.

11.2.5 MakeIndex pitfalls

The \index command tries to write its argument unmodified to the .idx file
whenever possible.1 This behavior has a number of different consequences. If the
index text contains commands, as in \index{\Prog}, the entry is likely wrongly
sorted because in main text this entry is sorted under the sort key \Prog (with the
special character \ as the starting sort character) regardless of the definition of
the \Prog command. On the other hand, if it is used in some argument of another
command, \Prog will expand before it is written to the .idx file; the placement in
the index will then depend on the expansion of \Prog. The same thing happens

1The way LaTEX deals with the problem of preventing expansion is not always successful. The
index package (see Section 11.4.3) uses a different approach that prevents expansion in all cases.

666 Index Generation

when you use \index inside your own definitions. That is, all commands inside
the index argument are expanded (except when they are robust or preceded by
\protect).

For sorting, MakeIndex assumes that pages numbered with lowercase Roman
numerals precede those numbered with Arabic numerals, which in turn precede
those numbered with the lowercase alphabet, uppercase Roman numerals and
finally the uppercase alphabet. This precedence order can be changed (see the
entry page_precedence in Table 11.2 on page 661).

MakeIndex will place symbols (i.e., patterns starting with a non-alphanumeric
character) before numbers, and before alphabetic entries in the output. Symbols
are sorted according to their ASCII values. For word sorting, uppercase and lower-
case are considered the same, but for identical words, the uppercase variant will
precede the lowercase one. Numbers are sorted in numeric order.

Spaces are treated as ordinary characters when alphabetizing the en-
tries and for deciding whether two entries are the same (see also the ex-
ample on page 650). Thus, if “�” denotes a space character, the commands
\index{cat}, \index{�cat}, and \index{cat�} will produce three separate en-
tries. All three entries look similar when printed. Likewise, \index{a�space} and
\index{a��space} produce two different entries that look the same on output.
For this reason it is important to check for spurious spaces by being careful when
splitting the argument of an \index command across lines in the input file. The
MakeIndex option -c turns off that behavior and trims leading and trailing white
space, compressing all white space within to one blank. We recommend that you
use it all the time.

11.3 xindy—An alternative to MakeIndex

The xindy program by Roger Kehr and Joachim Schrod is a flexible indexing sys-
tem that represents an alternative to MakeIndex. It avoids several limits, especially
for generating indexes in non-English languages. Usage of xindy is recommended
in the following cases:

• You have an index with non-English words and you want to use a drop-in
replacement.
Migration from MakeIndex is easy because xindy can be used without chang-
ing the index entries in your document. A compatibility style file will produce
results corresponding to MakeIndex’s default set-up. The main difference will
be that sorting index entries will work out of the box.

• You want to ensure that the index is more consistent than that created with
MakeIndex.
Because MakeIndex takes every indexed term literally, you need to specify
index visualization explicitly, as explained in Section 11.1.4 on page 651. In
particular, this step is needed if your visualization needs LaTEX commands. If
you forget your special visualization in one place, you will get an inconsistent

11.3 xindy—An alternative to MakeIndex 667

index. The xindy program takes common LaTEX representations and computes
the index key from them—therefore you do not have to specify the differ-
ence between the index key and the visualization, every time. (For example,
you no longer need the different definitions of \Index and \Indextt from
Section 11.1.7 on page 653.) Of course, you can still provide specific visualiza-
tions in your index entry.

• You want more checks for correctness.
If you have an index cross-reference with see, as explained in Section 11.1.3
on page 651, xindy checks that the referenced index entry really exists. This
way you can avoid dangling references in your indexes.

• You want to create a technical index in an efficient way.
Many technical indexes involve heavy LaTEX markup in the index keys. The
xindy program allows user-defined construction of the index keys from this
markup. This gives you the ability to emit index entries automatically from
your LaTEX commands, so as to get every usage of a technical term into the
index. However, you will have to invest the time to define your index key
construction rules.

• You want to create an index with “unusual” terms.
For certain terms, special sorting rules exist due to historical reasons. For
example, village and people’s names are sometimes sorted differently than
they’re spelled—“St. Martin” is sorted as “Martin” or as “Saint Martin” depen-
dent on context, “van Beethoven” is sorted as “Beethoven”, and so on. Symbol
indexes are another example where sort order is more or less arbitrarily de-
fined, but should be consistent over a series of work.

The xindy program offers these advantages because it has dropped many
of MakeIndex’s hard-wired assumptions that are not valid in international doc-
uments with arbitrary location reference structures. Instead, xindy provides a flex-
ible framework for configuring index creation, together with a simple MakeIndex-
like script for standard tasks.

The power of xindy is largely derived from five key features:

Internationalization xindy can be easily configured for languages with different
letter sets and/or different sorting rules. You can define extra letters or com-
plete alphabets, and you can provide a set of rules to sort and group them. At
the moment, about 50 predefined language sets are available.

Modular configuration xindy is configured with declarations that can be com-
bined and reused. For standard indexing tasks, LaTEX users do not have to do
much except grab available modules.

Markup normalization A tedious problem related to technical or multilanguage
indexes concerns markup and nontext material. The xindy program allows
you to ignore different encodings for the same subject, or to easily strip
markup items such as math mode.

668 Index Generation

User-definable location references An index entry points to locations. Fancy in-
dexes may use not only page numbers, but also book names, law paragraphs,
and structured article numbers (e.g., “I-20”, “Genesis 1, 31”). The xindy pro-
gram enables you to sort and group your location references arbitrarily.

Highly configurable markup xindy provides total markup control. This feature
is usually not of importance for LaTEX users, but comes in handy for indexing
non-TEX material.

If the xindy program is not part of your TEX distribution, its web site (www.
Availability xindy.org) offers distributions for many operating systems and more reference

documentation. Note that its Windows support is not as good as its UN*X or Linux
support. CTAN holds xindy distribution files as well.

11.3.1 Generating the formatted index with xindy

The xindy program comes with a command texindy that allows it to be used in
a simple, MakeIndex-like way for standard tasks. Options equivalent to those of
MakeIndex are not described here in detail again; refer to Section 11.2.2 instead.
The options -M and -L are described in more detail in the following sections.

texindy [-gilqr] [-o ind] [-t log] [-L language] [-M module] [idx0 idx1 ...]

-i Use standard input (stdin) as the input file.

-o ind Take ind as the output index file.

-t log Take log as the transcript file.

-q Operate in quiet mode.

-g Use German mode (equivalent to -L german-din -M german-sty).

-l Use letter ordering; the default is word ordering (equivalent to -M
letter-order).

-r Disable implicit page range formation (equivalent to -M no-ranges).

-M module Use the xindy module module to configure processing.

-L language Take language as the language configuration for word ordering.

The files idx0, idx1, and so on contain raw index entries. If you specify more
than one input file, you might want to use -o to name the output file, as the default
output file name is always computed from idx0.

When you use option -c, -p, or -s, you will be warned that these MakeIndex
options are not supported. In fact, xindy style files are self-written modules and
are specified with option -M; Section 11.3.4 explains their creation in more detail.

11.3 xindy—An alternative to MakeIndex 669

The texindy command compresses blanks by default, since the authors think
that this is the behavior you would expect from an index processor. In fact, the
whole TEX program suite works by default under the assumption that sequences
of white space are essentially one blank. If you insist on MakeIndex-compatible
behavior, you can use the module keep-blanks, as explained in Section 11.3.3.

MakeIndex has the -p option to output a LaTEX command to the .ind file that
sets the page counter. It may even try to parse the LaTEX log file for that purpose.
The xindy program has no such option, and this omission is by design. The xindy
authors believe that having a separate LaTEX document for an index is too prone to
error and that the ability to include a LaTEX file with the \printindex command
into the main document is a much better approach.

The texindy command ignores unknown TEX commands by default under
Indexing LATEX
commands

the assumption that they do not produce text. It also knows about typical text-
producing commands like \LaTeX and \BibTeX and handles them correctly. If
you have your own command definition that produces text, or if you use one sup-
plied by a package, then the entry is sorted incorrectly. You will either need to
specify an explicit sort key in your index entry, as in \index{prog@\Prog}, or
write a xindy style file with a merge rule, as explained in Section 11.3.4.

Be aware that producing index entries in arguments of commands has its own
pitfalls, e.g., in \command{Properties of \Prog\index{\Prog}}. Then LaTEX
commands might be expanded before they are written to the .idx file and the
placement in the index will depend on the expansion of \Prog.

11.3.2 International indexing with xindy

Most non-English languages present additional challenges for index processing.
They have accented characters or language-specific characters that obey special
rules on how to sort them. It is usually not enough to ignore the accents, and, of
course, one must not use the binary encoding of national characters for sorting. In
fact, it would be very hard to use binary encoding for sorting even if one wants to—
most implementations of LaTEX output many non-ASCII characters as ^^xy, where
xy is the hex code of the respective character.

The reality is different: either foreign characters are input with macros, or
the inputenc package is used. For example, LaTEX users in Western Europe on a
Linux system are likely to add \usepackage[latin1]{inputenc} to all their doc-
uments (or on recent Linux distributions the option utf8), while Windows users
would use the inputenc option ansinew or utf8. Then, the raw index file suddenly
has lots of LaTEX commands in it, since all national and accented characters are out-
put as commands. In MakeIndex, the author needs to separately specify sort and
print keys for such index entries. This specification may be managed for some
entries, but matters become very error prone if it must be done for all entries that
have national characters. In addition, creating index entries automatically by LaTEX
commands (as recommended in Section 11.1.7) is no longer possible.

670 Index Generation

Argument to texindy -L Option

albanian finnish kurdish-bedirxan slovak-small
croatian french kurdish-turkish-i slovak-large
czech general (default) latvian slovenian
danish german-din lithuanian spanish-modern
dutch german-duden lower-sorbian spanish-traditional
dutch-ij-as-ij greek-translit norwegian swedish
english hungarian polish turkish
esperanto icelandic portuguese upper-sorbian
estonian kurdish romanian

general is the default language option and provides definitions approximately well suited for Western European
languages, without support for any national characters.

Additional language options are available for xindy, but may not be used easily with texindy.

Table 11.3: Languages supported by texindy

The xindy program deals with this problem. It knows about LaTEX macros for
national characters and handles them as needed. It allows you to define new al-
phabets and their sort order as well as more complex multiphase sort rules to
describe the appropriate sorting scheme. You can then address typical real-world
requirements, such as the following:

German German recognizes two different sorting schemes to handle umlauts:
normally, ä is sorted like ae, but in phone books or dictionaries, it is sorted
like a. The first scheme is known as DIN order, the second as Duden order [44].

Spanish In Spanish, the ligature ll is a separate letter group, appearing after l
and before m.

French In French, the first phase of sorting ignores the diacritics, so that cote,
côte, coté and côté are all sorted alike. In the next phase, within words that
differ only in accents, the accented letters are looked at from right to left.
Letters with diacritics then follow letters without them. Thus, cote and côte
come first (no accent on the e), and then words with o come before words
with ô.

The xindy program provides language modules for a growing number of lan-
guages. Such a language module defines the alphabet with all national characters,
their sort rules, and letter group definitions adapted to that language. In addition,
accented characters commonly used within that language are handled correctly.
The predefined language modules cover Western and Eastern European languages.
Currently, there is no support available for Asian languages.

11.3 xindy—An alternative to MakeIndex 671

There are about 50 predefined languages available, 35 of them are readily
usable with texindy. They are listed in Table 11.3 on the facing page; you select
one of them with the texindy option -L. The other predefined languages have
non-Latin scripts, their usage is described in the xindy documentation.

You can also build your own xindy language module. The xindy utility make-
rules simplifies this procedure if your language fulfills the following criteria:

• Its script system uses an alphabet with letters.

• It has a sort order based on these letters (and on accents).

• No special context backtracking is required for sorting; accents influence only
the sort order of the accented letters.

The xindy web site (www.xindy.org) has more information about language
module creation with or without make-rules. If you create a new one, please con-
tribute it to the xindy project.

11.3.3 Modules for common tasks

Like MakeIndex, xindy may be configured by creating a personal style file, as ex-
plained in Section 11.3.4. Most users, however, do not need the full power of xindy
configuration. They merely want to solve common problems with a predefined set
of possible solutions.

To simplify the completion of common tasks, xindy is distributed with a set
of modules, listed in Table 11.4 on the next page. They provide standard solutions
for sorting, page range building, and layout requirements. If you have no further
demands, you can build your international index without a personal style file;
you just specify a language option and the modules you want on the texindy
command line. If you use the texindy command, you will deal with three categories
of modules:

Automatic modules These modules establish a behavior that is conformant to
MakeIndex. You cannot turn them off as long as you use the texindy command.
If you do not want their behavior, you have to use xindy directly as described
in Section 11.3.4.

Default modules Some modules are activated by default and can be turned off
with texindy options.

Add-on modules You can select one or more additional modules with the xindy
option -M.

The automatic module latex-loc-fmts indicates a difference between xindy
and MakeIndex. In MakeIndex, you can use a general encapsulation notation to en-
close your page number with an arbitrary command (see Section 11.1.4). In xindy,

www.xindy.org

672 Index Generation

xindy Module Category Description

Sorting

word-order Default A space comes before any letter in the alphabet: “index style”
is listed before “indexing”; thus prefix words are listed first.
Turn it off with the texindy option -l.

letter-order Add-on Spaces are ignored: “index style” is listed after “indexing”.
Turn it on with the texindy option -l.

keep-blanks Add-on Leading and trailing white space (blanks and tabs) are not
ignored; intermediate white space is not changed.

ignore-hyphen Add-on Hyphens are ignored: “so-called” is sorted as “socalled”.
ignore-punctuation Add-on All kinds of punctuation characters are ignored: hyphens,

periods, commas, slashes, parentheses, and so on.
numeric-sort Auto Numbers are sorted numerically, not like characters: “V64”

appears before “V128”.

Page Numbers

page-ranges Default Appearances on more than two consecutive pages are listed
as a range: “1–4”. Turn it off with -r.

ff-ranges Add-on Uses implicit “ff” notation for ranges of three pages, and
explicit ranges thereafter: 2f, 2ff, 2–6.

ff-ranges-only Add-on Uses only implicit ranges: 2f, 2ff.
book-order Add-on Sorts page numbers with common book numbering scheme

correctly—Roman numerals first, then Arabic numbers, then
others: i, 1, A-1.

Markup and Layout

tex Auto Handles basic TEX conventions.
latex-loc-fmts Auto Provides LaTEX formatting commands for page number en-

capsulation.
latex Auto Handles LaTEX conventions, both in raw index entries and out-

put markup; implies tex.
makeindex Auto Emulates the default MakeIndex input syntax and quoting

behavior.
latin-lettergroups Auto Layout contains a single Latin letter above each group of

words starting with the same letter.
german-sty Add-on Handles umlaut markup of babel’s german and ngerman op-

tions.

When two entries are identical except for ignored characters, those characters are not ignored any more.

Table 11.4: xindy standard modules

you have to define a location reference class with a corresponding markup defi-
nition for each command (see page 678). The latex-loc-fmts module provides
such definitions for the most common encapsulations, textbf and textit.

11.3 xindy—An alternative to MakeIndex 673

11.3.4 Style files for individual solutions

The xindy program is a highly configurable tool. The chosen functionality is spec-
ified in a style file. The texindy command provides convenient access for most
purposes, by building a virtual style file from existing modules. If you want to
extend the features provided, change functionality, or build your own indexing
scheme, you have to use xindy directly and write your own style file, which is just
another module. The available xindy modules may be reused.

This section demonstrates how to use xindy with your own style file. It de-
scribes the basic concepts underlying the xindy program and gives examples for
typical extensions.

The xindy style files are also the means by which you create indexes for non-
LaTEX documents (e.g., XML documents, other Unicode-based markup systems). Fea-
tures used for that purpose are not described in this section as they are beyond
the scope of this book. If you’re interested, you’ll find more material at the xindy
web site. To understand xindy style files, we need to present more detail on the ba-

The xindy process
model

sic model that xindy uses. Figure 11.8 on the following page shows the processing
steps. A xindy style file contains merge rules, sort rules, location specifications,
and markup specifications. Using these declarations, it defines how the raw index
from the .idx file is transformed into the tagged index in the .ind file.

• Merge rules specify how a sort key is computed from a raw key. A raw index
may contain raw keys that represent the same entry, but are typed in differ-
ently. This may be caused by LaTEX expanding or not expanding commands
depending on the context. Another cause may be authors using different no-
tations, e.g., ä, \"a or "a. Using merge rules makes manual additions for unifi-
cation unnecessary. Merge rules are also helpful for indexing LaTEX commands.
xindy ignores all commands. If, e.g., \MF is used for METAFONT and added to
the index, the entry will not appear within the “M” section. A document spe-
cific merge rule can guarantee correct sorting without being forced to write
\index{METAFONT@\MF} every time.

• Sort rules declare alphabets, and order within alphabets. The alphabet may
not only consist of single characters, but sometimes multiple characters may
form a unit for sorting (e.g., ll in Spanish). Such new characters must be
ordered relative to other characters. A xindy language module consists of
alphabet declarations, sort rules, and letter group definitions.

• After sorting, index entries with the same sort key are combined into a con-
solidated index entry with several locations and a print key. From the raw
keys, the first one that appeared in the document is selected as the print key.
Ordering, grouping, mixing, and omitting locations to get the final list of lo-
cations is a complex task that may be influenced in many ways by location
specifications.

• Markup specifications describe which LaTEX commands are added to the con-
solidated index entries, thus producing a tagged index that can be used as
input for LaTEX.

674 Index Generation

raw index
xindy input:
index entries with key and location

merge rules
Normalize index keys: unify input variants
that are created by input or markup
differences

merged index

sort rules
Sort index entries, according to alphabet
definition; build letter groups

sorted index

location specs Group, mix, subsume, and omit locations

consolidated
index

markup specs Add LaTEX markup

tagged index xindy output: LaTEX input

Figure 11.8: xindy process model

Calling xindy directly

The xindy options are very similar to those available with texindy. You specify
your style file like any other module.

xindy [-qvV] [-o ind] [-d magic] [-t log] [-L lang] [-C codepage]
[-M module] [idx0 idx1 ...]

-o ind Take ind as the output index file.

-M module Use the xindy module module to configure processing.

-L lang Take lang as the language configuration for word ordering.

11.3 xindy—An alternative to MakeIndex 675

-C codepage Use codepage as internal base encoding for sorting. This is used
for fine-grained control of language module selection, needed only
for non-Latin scripts.

-q Operate in quiet mode.

-v Operate in verbose mode.

-V Output the version number and terminate.

-d magic Produce debugging messages; magic decides which xindy component
will output them.

Building a xindy style file

A xindy style file will usually start with loading predefined modules that provide
much of the desired functionality. Recall that you also have to name explicitly
those modules listed as automatic (auto) in Table 11.4 on page 672. Afterwards,
you can provide definitions of your own that extend or override the already loaded
modules.

;;; xindy example style file
;; Use this clause for all texindy predefined languages.
(require "tex/inputenc/latin.xdy")

;; merge rules, for markup normalization
;; double backslash needed because it’s a regexp
(merge-rule "\\PS *" "Postscript")

;; use texindy automatic modules
(require "texindy.xdy")
;; need to specify default and add-on modules
(require "page-ranges.xdy") (require "book-order.xdy")

;; markup change: separate page list entries by LaTeX command
(markup-location-list :sep "\page ")

The previous example of a xindy style file showed some of the syntax ele- Style file syntax

ments that are available. We now give more precise definitions:

• Basically, a style file consists of a list of declarative clauses in parentheses,
starting with a declaration name and followed by several parameters.

• A parameter may be either a string or an option. An option has a keyword,
written as :opt, and may have an argument, usually a string but also a number
or a fixed value like none. As the name indicates, options are optional; which
options are valid depends on the function. A parameter may also comprise a
list of parameters in parentheses, as shown in some examples below.

• Comments start with a semicolon and go until the end of line. The examples
show a typical way to use different numbers of semicolons: one for inline

676 Index Generation

comments (after xindy clauses), two for block comments in front of code, and
three for comments with “section headers” for the style file. But this is merely
a convention—in all places the first semicolon starts the comment.

• Strings are enclosed in double quotes. Newlines are allowed in strings. Within
strings, the tilde is an escape character that makes the following letter do
something special. For example, ~n specifies a newline.

Merge and sort rules

Merge rules help to normalize raw index entries before sorting and grouping take
place. They can be used to unify different notations and to strip the entry from
markup material that is irrelevant to sorting. If you merge different index entries,
they will appear as one entry and consequently have the same printed representa-
tion; that is, all of them will look like the first one that appears in your document.
Note that you can only merge single words, not whole phrases.

A merge rule takes two parameters, and declares that occurrences of the first
parameter within a word are substituted by the second parameter. Within the
second parameter, the virtual characters ~b and ~e may be used: ~b is ordered
in front of all other characters, whereas ~e comes after all characters. These two
virtual characters are not output, as merge rules are used to construct the sort
key from the raw key—and sort keys are internal entry identificators.

For example, in a city index, places with St in their name may also be writtenUnify index entries

with Saint. Those different spellings should be unified to one index entry never-
theless. In other words, indexing St Barth and Saint Barth shall result in only
one index entry.

(merge-rule "St" "Saint")

In a merge rule, you can also specify a pattern (regular expression) and a
Unify using regular

expressions
replacement string. So-called extended regexps are the default and are defined in
the POSIX 1003.2 standard. On UN*X systems, you will find their description in
the man page of egrep. You can also use basic regular expressions, with the option
:bregexp in the merge rule. The replacement string may refer to subexpressions,
which leads to powerful specifications that are often hard to create and debug.
Note also that usage of regular expressions will slow processing down. To index
XML tags without angles, you can write:

(merge-rule "<(.*)>" "\1")

This will cause \index{<HTML>} and \index{HTML} to be unified as one entry,
which may not be the desired effect. To list them separately, but next to each
other, you could modify <HTML> to HTML~e as follows:

(merge-rule "<(.*)>" "\1~e")

11.3 xindy—An alternative to MakeIndex 677

Sort rules specify how characters or character sequences are sorted (i.e., at
which position in the alphabet they should be placed). A sort rule consists of two
strings. The first string is sorted like the second one. The second string may use
~b and ~e to specify the sort order, as explained above.

Letter groups

The xindy program checks for each letter group to see whether it matches a prefix
of the entries’ sort key. The longest match assigns the index entry to this letter
group. If no match is found, the index entry is put into the group default.

The following definitions add all entries with the given prefixes to the same Combine letter
groupsletter group ABC:

(define-letter-group "ABC" :prefixes ("a"))
(define-letter-group "ABC" :prefixes ("b"))
(define-letter-group "ABC" :prefixes ("c"))

With indexes that are a bit unbalanced on, say, the letter X, you may want to Extra letter groups

build an extra letter group named xsl that contains all entries that start with xsl:.
These entries will be sorted before all other entries that start with x.

(define-letter-group "xsl" :before "x" :prefixes ("xsl:"))

Locations

The list of references behind an index entry may contain several groups that have
a nonobvious but required order—perhaps Roman numbers, then Arabic numbers,
then letters-Arabic numbers combined. We associate this scheme with a typical
book having preface matter, normal content, and appendices. In xindy, each such
group is called a location class. Within each location class, references are ordered
as well. References may be combined to ranges like 10–15 or 5ff. As you see, xindy
allows you to manipulate sorting and range building in various ways.

As an example, to change the minimal length of page ranges, just modify your Page range length

location class for pages:

(define-location-class "pages"
("arabic-numbers")
:min-range-length 4)

To suppress ranges for Roman numbers, change the :min-range-length op- Suppress page
rangestion as follows:

(define-location-class "pages"
("roman-numerals-lowercase")
:min-range-length none)

678 Index Generation

If your raw index contains references with non-numeric components and an
Nonstandard

locations
unusual syntax (e.g., Pasta::II.4), you have to define a special alphabet so that
xindy knows how to sort. Use it to define a location class that describes the refer-
ence syntax, including separators:

(define-alphabet "my-chapters" ("Starters" "Pasta" "Meat" "Sweets"))
(define-location-class "my-index"

("my-chapters" :sep "::"
"roman-numerals-uppercase" :sep "."
"arabic-numbers"))

Location formatting

The xindy program has a very flexible mechanism for formatting, sorting, and
grouping locations with special meanings. In your document, you mark up index
entries for special formatting, such as \index{keyword|definition}. In xindy, you
define an attribute with a corresponding markup definition.

You can also configure how your different index entry categories should inter-
act: mix them or list them separately, allow subsuming ranges between them or
not, omit entries once part of a range or not.

The following examples illustrate different variations of handling references
with special formatting.

Input: 1 4 5 6 7 7 9 10
Example 1: mix, subsume, omit 1 4-7 9 10
Example 2: mix, subsume 1 4-7 7 9 10
Example 3: don’t mix, definitions first 7 9 1 4-7 10

Example 1: Mix, subsume, and omit locations.

;; mix definition and default
(define-attributes (("definition" "default")))

;; allow subsuming ranges, omit definition references within ranges
(merge-to "definition" "default" :drop)

;; define markup
(markup-location :attr "definition" :open "\textbf{" :close "}")

Example 2: Mix and subsume locations.

;; mix definition and default
(define-attributes (("definition" "default")))

;; allow subsuming ranges, keep definition references within ranges
(merge-to "definition" "default")

11.4 Enhancing the index with LATEX features 679

;; define markup
(markup-location :attr "definition" :open "\textbf{" :close "}")

Example 3: Do not mix locations, list definitions first.

;; separate definition and default, definitions come first
(define-attributes (("definition") ("default")))

;; define markup
(markup-location :attr "definition" :open "\textbf{" :close "}")

Note that define-attributes has one parameter in parentheses. It consists
of either one list of attribute names enclosed in parentheses or a list of strings,
each string enclosed in parentheses. All attributes that are together in one brace
are mixed. If you have several attributes, an expression like

(("definition" "important") ("default"))

would indicate that definitions may be mixed with the group of important refer-
ences, but not with default references.

11.4 Enhancing the index with LATEX features

This section describes LaTEX’s support for index creation. It presents possibilities
to modify the index layout and to produce multiple indexes.

11.4.1 Modifying the layout

You can redefine the environment theindex, which by default is used to print the
index. The layout of the theindex environment and the definition of the \item ,
\subitem , and \subsubitem commands are defined in the class files article, book,
and report. In the book class you can find the following definitions:

\newenvironment{theindex}
{\@restonecoltrue\if@twocolumn\@restonecolfalse\fi
\columnseprule \z@ \columnsep 35\p@
\twocolumn[\@makeschapterhead{\indexname}]%
\@mkboth{\MakeUppercase\indexname}{\MakeUppercase\indexname}%
\thispagestyle{plain}\parindent\z@ \parskip\z@ \@plus .3\p@\relax
\let\item\@idxitem}

{\if@restonecol\onecolumn\else\clearpage\fi}
\newcommand\@idxitem {\par\hangindent 40\p@}
\newcommand\subitem {\par\hangindent 40\p@ \hspace*{20\p@}}
\newcommand\subsubitem{\par\hangindent 40\p@ \hspace*{30\p@}}

680 Index Generation

Although this is programmed in a fairly low-level internal language, you can prob-
ably decipher what it sets up. First it tests for two-column mode and saves the
result. Then it sets some spacing parameters, resets the page style to plain, and
calls \twocolumn . Finally it changes \item to execute \@idxitem , which produces
a paragraph with a hanging indention of 40 points. A higher-level reimplementa-
tion (using ifthen) might perhaps look as follows:

\renewenvironment{theindex}
{\ifthenelse{\boolean{@twocolumn}}{\setboolean{@restonecol}{false}}%

{\setboolean{@restonecol}{true}}%
\setlength\columnseprule{0pt}\setlength\columnsep{35pt}%
\twocolumn[\chapter*{\indexname}]%
\markkboth{\MakeUppercase\indexname}{\MakeUppercase\indexname}%
\setlength\parindent{0pt}\setlength\parskip{0pt plus 0.3pt}%
\thispagestyle{plain}\let\item\@idxitem }

{\ifthenelse{\boolean{@restonecol}}{\onecolumn}{\clearpage}}

Adjusting this definition allows you to make smaller modifications, such as chang-
ing the page style or the column separation.

You can also make an index in three rather than two columns. To do so, you
can use the multicol package and the multicols environment:

\renewenvironment{theindex}{%
\begin{multicols}{3}[\chapter*{\indexname}][10\baselineskip]%
\addcontentsline{toc}{chapter}{\indexname}%
\setlength\parindent{0pt}\pagestyle{plain}\let\item\@idxitem}

{\end{multicols}}

We require at least 10 lines of free space on the current page; otherwise, we want
the index to start on a new page. In addition to generating a title at the top, we
enter the heading as a “Chapter” in the table of contents (.toc) and change the
page style to plain. Then the \item command is redefined to cope with index
entries (see above), and the entries themselves are typeset in three columns using
the multicols environment.

11.4.2 showidx, repeatindex, tocbibind, indxcite—Little helpers

Several useful little LaTEX packages exist to support index creation. A selection is
listed in this section, but by browsing through the on-line catalogue [169] you will
probably find additional ones.

The package showidx (by Leslie Lamport) can help you improve the entriesShow index entries
in margin in the index and locate possible problems. It shows all \index commands in the

margin of the printed page. Figure 11.4 on page 656 shows the result of including
the showidx package.

The package repeatindex (by Harald Harders) repeats the main item of anHandle page breaks
gracefully index if a page or column break occurs within a list of subitems. This helps the

reader correctly identify to which main item a subitem belongs.

11.4 Enhancing the index with LATEX features 681

The package tocbibind (by Peter Wilson) can be used to add the table of con- Table of contents
supporttents itself, the bibliography, and the index to the Table of Contents listing. See

page 48 for more information on this package.
The package indxcite (by James Ashton) automatically generates an author Automatic author

indexindex based on citations made using BIBTEX. This type of functionality is also
available with the bibliography packages natbib and jurabib, both of which are
described in detail in Chapter 12.

11.4.3 index—Producing multiple indexes

The index package (written by David Jones and distributed as part of the camel
package) augments LaTEX’s indexing mechanism in several areas:

• Multiple indexes are supported.

• A two-stage process is used for creating the raw index files (such as the default
.idx file) similar to that used to create the .toc file. First the index entries
are written to the .aux file, and then they are copied to the .idx file at the
end of the run. With this approach, if you have a large document consisting
of several included files (using the \include command), you no longer lose
the index if you format only part of the document with \includeonly . Note,
however, that this makes the creation of a chapter index more difficult.

• A starred form of the \index command is introduced. In addition to entering
its argument in the index, it typesets the argument in the running text.

• To simplify typing, the \shortindexingon command activates a short-
hand notation. Now you can type ^{foo} for \index{foo} and _{foo}
for \index*{foo}. These shorthand notations are turned off with the
\shortindexingoff command. Because the underscore and circumflex char-
acters have special meanings inside math mode, this shorthand notation is
unavailable there.

• The package includes the functionality of the showidx package. The command
\proofmodetrue enables the printing of index entries in the margins. You
can customize the size and style of the font used in the margin with the
\indexproofstyle command, which takes a font definition as its argument
(e.g., \indexproofstyle{\footnotesize\itshape}).

• The argument of \index is never expanded when the index package is used.
In standard LaTEX, using \index{\command} will sometimes write the expan-
sion of \command to the .idx file (see Section 11.2.5 on page 665). With the
index package, \command itself is always written to the .idx file. While this
is helpful in most cases, macro authors can be bitten by this behavior. In Sec-
tion 11.1.7, we recommended that you define commands that automatically
add index entries. Such commands often expect that \index will expand its
parameter and they may not work when you use the index package. Be careful
and check the results of the automatic indexing—this is best practice, anyhow.

682 Index Generation

You can declare new indexes with the \newindex command. The command
\renewindex , which has an identical syntax, is used to redefine existing indexes.

\newindex{tag}{raw-ext}{proc-ext}{indextitle}

The first argument, tag, is a short identifier used to refer to the index. In partic-
ular, the commands \index and \printindex are redefined to take an optional
argument—namely, the tag of the index to which you are referring. If this optional
argument is absent, the index with the tag “default” is used, which corresponds
to the usual index. The second argument, raw-ext, is the extension of the raw in-
dex file to which LaTEX should write the unprocessed entries for this index (for
the default index it is .idx). The third argument, proc-ext, is the extension of the
index file in which LaTEX expects to find the processed index (for the default index
it is .ind). The fourth argument, indextitle, is the title that LaTEX will print at the
beginning of the index.

As an example we show the set-up used to produce this book. The preamble
included the following setting:

\RequirePackage{index}
\proofmodetrue % while proofing the index entries
\newindex{xauthor}{adx}{and}{People}
\newindex{xcmds}{cdx}{cnd}{Index of Commands and Concepts}

In the backmatter, printing of the index was done with the following lines:

\printindex[xcmds] \printindex[xauthor]

For each generated raw index file (e.g., tlc2.adx for the list of authors) we ran
MakeIndex to produce the corresponding formatted index file for LaTEX:

makeindex -o tlc2.and -t tlc2.alg tlc2.adx

While all of these tools help to get the correct page numbers in the index,
the real difficulty persists: choosing useful index entries for your readers. This
problem you still have to solve (if you are lucky, with help).

In fact, the index of this book was created by a professional indexer, Richard
Evans of Infodex Indexing Services in Raleigh, North Carolina. Dick worked closely
with Frank to produce a comprehensive index that helps you, the reader, find not
only the names of things (packages, programs, commands, and so on) but also the
tasks, concepts, and ideas described in the book. But let him tell you (from the
Infodex FAQ at http://www.mindspring.com/~infodex):

Question: Why do I need an indexer? Can’t the computer create an index?

Answer: To exactly the same degree that a word processor can write the book.
Indexes are creative works, requiring human intellect and analysis.

LaTEX can process the indexing markup, but only a human indexer can decide what
needs to be marked up. Our sincere thanks to Dick for his excellent work.

C H A P T E R 12

Managing Citations

12.1 Introduction

Citations are cross-references to bibliographical information outside the current
document, such as to publications containing further information on a subject and
source information about used quotations. It is certainly not necessary to back ev-
erything by a reference, but background information for controversial statements,
acknowledgments of other work, and source information for used material should
be given.

There are numerous ways to compile bibliographies and reference lists. They
can be prepared manually, if necessary, but usually they are automatically gen-
erated from a database containing bibliographic information (see Chapter 13).
This chapter introduces some of the many presentation forms of bibliographi-
cal sources and it reviews different traditions regarding how such sources are
referred to in a document.

The chapter begins with a short introduction to the major citation schemes
in common use. This is followed by a description of LaTEX’s standard markup for
bibliography lists and its interface to the BIBTEX program that can be used to pro-
duce such lists automatically from a (suitably prepared) document source. More
detailed information on BIBTEX is then given in Chapter 13. In the current chapter
we are only interested in how BIBTEX can be used to produce a bibliography list.

Armed with this knowledge we plunge into a detailed discussion of how LaTEX
supports the different citation schemes. At the time we wrote the first edition
of this book, LaTEX basically supported the “number-only” system. A decade later,
the situation has changed radically. Today, most major citation schemes are well
supported by extension packages.

684 Managing Citations

We end this chapter by discussing packages that can deal with multiple bibli-
ographies in one document. This is not difficult if the reference lists are prepared
manually, but it poses some challenges if you want to interact with BIBTEX, as well.

12.1.1 Bibliographical reference schemes

There are four common methods of referring to sources: the “short-title”, “author-
date”, “author-number”, and “number-only” systems. The first of these is often
used in books on humanities; the second appears mainly in science and social
science works. The other two are less often used, although the last is quite com-
mon within the LaTEX world, as it has been actively promoted by Leslie Lamport
and originally was the only form of citation supported by LaTEX. Outside the LaTEX
world a variation of it, called “numeric by first citation”, is quite popular as well.

In the short-title system, the reference to a source is given directly in the text,
The short-title

system
either inline or as a footnote, often in the form “Hart, Hart’s Rules, p. 52”. In the
context of the publication, if abbreviations for the title are established, the form
“Goossens et al., LGC” may appear as an alternative. Many variations exist. For
instance, the first time a work is cited it might be presented with a lot of detail;
later references might then use a shorter form—citing only the author’s name and
a short title or the year. In case of repeated citations to the same work in direct
succession, you might find Ibid. instead of a repeated reference. An implementa-
tion of the short-title system that allows all kinds of customizations is provided
by the jurabib package (see Section 12.5.1).

Because in the short-title system a full reference is usually given the first time
a work is cited, you can omit a list of references or a bibliography that contains
all cited works in a single place.

In the author-date system (often referred to as the Harvard system after one
The author-date

system
of its better known typographical variants), references to sources are also given
directly in the text. This time, however, they show the author’s name (or names)
and the year of the publication. The full citation is given in a list of references or
a bibliography. If the author published more than one work in a given year, that
year is suffixed with lowercase letters (e.g., 2001a, 2001b).

There have been many attempts over the years to provide author-date citation
support for LaTEX. With the natbib package (discussed in Section 12.3.2) there is
now a very flexible and general solution available.

In all citation schemes that use author names, a work by three or more authors
is usually referred to by using the name of the first author followed by et al.
Especially with the author-date system, this may lead to ambiguous citations if
different groups containing the same main author published in the same year.
This problem can be seen in the following example.

\usepackage{chicago} \bibliographystyle{chicago}

Entries with multiple authors can be problematical, e.g., \shortcite{LGC97}
and \shortcite{test97} or worse \shortcite{LGC97,test97}. \bibliography{tex}

12.1 Introduction 685

12-1-1

Entries with multiple authors can be problematical, e.g., (Goossens et al. 1997)
and (Goossens et al. 1997) or worse (Goossens et al. 1997; Goossens et al. 1997).

References
Goossens, M., S. Rahtz, and F. Mittelbach (1997). The LATEX Graphics Compan-

ion: Illustrating Documents with TEX and PostScript. Tools and Techniques
for Computer Typesetting. Reading, MA, USA: Addison-Wesley Longman.

Goossens, M., B. User, J. Doe, et al. (1997). Ambiguous citations. Submitted to
the IBM Journal of Research and Development.

In the above example the bibliography is produced from the sample BIBTEX
database tex.bib shown in Figure 12.2 on page 690. This database is used in
most examples in this chapter. Above we applied the BIBTEX style chicago to it, a
style that aims to implement a bibliography and reference layout as suggested by
The Chicago Manual of Style [38].

One way to resolve such ambiguous citations is to use all author names in
such a case, although that approach will lead to lengthy citations and is not feasi-
ble if the number of authors exceeds a certain limit. Another solution is to append
a, b, and so on, to the year, even though the citations are actually for different au-
thor groups. This strategy is, for example, advocated in [29]. If the bibliography is
compiled manually, as outlined in Section 12.1.2, this result can be easily achieved.
When using BIBTEX, you have to use a BIBTEX style file that recognizes these cases
and provides the right data automatically. For example, the style chicago can-
not be used in this case, but all BIBTEX styles produced with makebst (see Sec-
tion 13.5.2) offer this feature:

12-1-2

Entries with multiple authors might be problematical, e.g., Goossens
et al. [1997a] and Goossens et al. [1997b] or even Goossens et al. [1997a,b].
But then they might not.

References
M. Goossens, S. Rahtz, and F. Mittelbach. The LATEX Graphics Companion:

Illustrating Documents with TEX and PostScript. Tools and Techniques for
Computer Typesetting. Addison-Wesley Longman, Reading, MA, USA,
1997a. ISBN 0-201-85469-4.

M. Goossens, B. User, J. Doe, et al. Ambiguous citations. Submitted to the
IBM J. Res. Dev., 1997b.

\usepackage{natbib}
\bibliographystyle

{abbrvnat}

Entries with multiple
authors might
be problematical,
e.g., \cite{LGC97} and
\cite{test97} or even
\cite{LGC97,test97}.
But then they might not.

\bibliography{tex}

In the author-number system, the references to the sources are given in the
The author-number
system

form of the author’s name (or names) followed by a number, usually in parenthe-
ses or brackets, indicating which publication of the author is cited. In the corre-
sponding bibliography all publications are numbered on a per-author (or author
group) basis. In the LaTEX world this system is fairly uncommon as it is difficult
to produce manually. As far as we know, there is currently no BIBTEX support

686 Managing Citations

available for it, though this situation might change in the future. A variation of
the above is to number all publications sequentially. For this case suitable BIBTEX
styles exist.

Finally, in the number-only system, publications are sequentially numbered
The number-only

system
in the bibliography. Citations in the text refer to these numbers, which are usu-
ally surrounded by brackets or parentheses. Sometimes raised numbers are used
instead. In a slight variation, known as “alpha” style, citations comprise the au-
thor’s name and the year of the publication. Thus, the bibliographic label and the
citation may look like “[Knu86]”.

One argument against this system—put forward, for example, in The Chicago
Manual of Style [38]—is that it raises the costs of publication since a late addition
or deletion of a reference may require renumbering and consequently costly (and
error-prone) changes to many pages throughout the manuscript. With automatic
cross-referencing facilities as provided by LaTEX, this argument no longer holds
true. In fact, the number-only system is the default system provided with LaTEX.

A fairly popular form of the number-only system numbers the publications
Numerical by first

citation
sequentially by their first citation in the text (and presents them in that order in
the bibliography). This is fairly easy to provide with LaTEX. The next two sections
and Section 12.2.3 explain how to avoid references in the table of contents that
might mess up the expected order.

12.1.2 Markup structure for citations and bibliography

The standard LaTEX environment for generating a list of references or a bibliog-
raphy is called thebibliography. In its default implementation it automatically
generates an appropriate heading and implements a vertical list structure in which
every publication is represented as a separate item.

\begin{thebibliography}{widest-label}
\bibitem[label1]{cite-key1} bibliographic information
\bibitem[label2]{cite-key2} bibliographic information

...
\end{thebibliography}

The widest-label argument is used to determine the right amount of indenta-
tion for individual items. If the works are numbered sequentially, for example,
it should contain the number of items.

Individual publications are introduced with a \bibitem command. Its manda-
tory argument is a unique cross-reference key that refers to this publication in
the text. The optional argument defines the textual representation that is used
in the citation and as the label in the list. If this argument is not specified, the
publications are numbered with Arabic numerals by default. Within a publication
the command \newblock may be used to separate major blocks of information.

12.1 Introduction 687

Depending on the layout produced by the class, it may result in a normal space,
some extra space, or in starting a new line.

12-1-3

References

[1] Goossens, M., S. Rahtz, and F. Mittel-
bach (1997). The LATEX Graphics Com-
panion: Illustrating Documents with TEX
and PostScript. Reading, MA, USA: Ad-
dison-Wesley Longman.

[2] Goossens, M., B. User, J. Doe (1997).
Ambiguous citations.

\begin{thebibliography}{2}
\bibitem{LGC97} Goossens, M., S.~Rahtz,

and F.~Mittelbach (1997).
\newblock \emph{The \LaTeX{} Graphics Companion:
Illustrating Documents with \TeX{} and
PostScript}. \newblock Reading, MA, USA:
Ad\-di\-son-Wes\-ley Longman.

\bibitem{GUD97} Goossens, M., B.~User, J.~Doe
(1997). \newblock Ambiguous citations.

\end{thebibliography}

Producing a large bibliography manually in this way is clearly a tedious and
difficult task and the result is normally not reusable, as nearly all journals and pub-
lishers have their own house styles with different formatting requirements. For
this reason it is generally better to use BIBTEX, a program that generates ready-to-
use LaTEX input from a database of bibliographical information. This is discussed
in the next section.

Note that without the optional argument to \bibitem the references are num-
Order by first
citation done
manually

bered in the order in which they appear in the bibliography. Thus, if you produce
the bibliography manually, numbering and sorting them by order of first citation
becomes your task. In contrast, when using BIBTEX, this result can be achieved
automatically.

Inside a document, publications are cited by referring to the cite-key argu-
ments of the \bibitem commands. For this purpose LaTEX offers the \cite com-
mand, which takes such a key as its argument. It can, in fact, take a comma-
separated list of such keys and offers an optional argument to specify additional
information such as page or chapter numbers. The precise syntax is described in
Section 12.2.1. For short-title or author-date citation schemes, additional citation
commands are available once the supporting packages are loaded.

12.1.3 Using BIBTEX to produce the bibliography input

The BIBTEX program gathers all citation keys used in a document, looks them up
in a bibliographical database, and generates a complete thebibliography envi-
ronment that can be loaded by LaTEX in a subsequent run. Depending on the BIBTEX

Order by first
citation produced
with BIBTEX

style used, it can either sort the entries according to some scheme (e.g., author
names, year of publication) or produce a bibliography with entries in the order
in which they appear in the .aux file. Note that using such a “nonsorting” style
automatically generates a bibliography by order of first citation as required by the
house styles of many publishers. An example of such a BIBTEX style is unsrt.

The procedure for running LaTEX and BIBTEX is shown schematically in Fig-
ure 12.1 on the next page. At least three LaTEX runs are necessary—first to produce

688 Managing Citations

① Run LaTEX, which generates from the \cite
commands a number of \citation refer-
ences in its auxiliary file, .aux.

② Run BIBTEX, which reads the auxiliary file,
looks up the references in a database (one
or more .bib files), and then writes a file
(the .bbl file) containing the formatted ref-
erences according to the format specified in
the style file (the .bst file). Warning and er-
ror messages are written to the log file (the
.blg file). Note that BIBTEX never reads the
original LaTEX source file.

③ Run LaTEX again, which now reads the .bbl
file containing the bibliographic information.

④ Run LaTEX a third time, resolving all refer-
ences.

LaTEX

BIBTEX

LaTEX

LaTEX

tex

bib

bstaux

aux

tex

tex

bbl

①

②

③

④

blg

Figure 12.1: Data flow when running BIBTEX and LaTEX

data for BIBTEX, then to load the result from the BIBTEX run, and finally to resolve
the cross-references to the bibliographical list added by the previous run.

\bibliography{file-list} \bibliographystyle{style}

To inform BIBTEX which databases are to be searched to resolve citations, you
should specify their names, separated by commas (and without the extension
.bib), as an argument to the command \bibliography . This command should
be placed at the point where the bibliography should finally appear. In addition,
you have to tell BIBTEX how the bibliographic entries should be formatted. This is
done by using the command \bibliographystyle in the preamble with a suitable
BIBTEX style as its argument. It is, of course, important that the cite-keys used in
the document uniquely identify an entry in the database file(s), so that the citation
reference can be resolved when the document is processed.

To enable BIBTEX to access the information without the need to parse the LaTEX
source files, these commands write two lines to the .aux file. For a similar reason
the \cite command, as well as any variant of it, writes its key to this file. For
example, in Example 12-1-2 the .aux file would contain (beside other entries):

\bibstyle{abbrvnat}
\citation{LGC97}

12.1 Introduction 689

\citation{test97}
\bibdata{tex}

Do not confuse these commands with those intended for use in the document.
They exist solely to facilitate internal communication between LaTEX and BIBTEX. If
you mistakenly use \bibdata instead of \bibliography , then LaTEX will process
your document without failure, but BIBTEX will complain that it does not find any
database information in the .aux file.

The precise format of a BIBTEX entry will be described in detail in Chapter 13.
To be able to understand the examples in the next sections more easily, you should
nonetheless know that the basic structure of a BIBTEX entry consists of three parts:

1. A publication entry type (e.g., “book”, “article”, “inproceedings”,
“phdthesis”).

2. A user-chosen keyword identifying the publication. If you want to reference
the entry in your document, then the argument cite-key of the \cite com-
mand should be identical (also in case) to this keyword.

3. A series of fields consisting of a field identifier with its data between quotes
or curly braces (e.g., “author”, “journal”, and “title”).

A sample database is shown in Figure 12.2 on the following page. This database
is used in most examples throughout the chapter to show how applying different
BIBTEX style files to it results in different presentation forms.

Various schemes exist for conveniently associating bibliography keywords
with their entries in a database. A popular one is the so-called Harvard system,
where you take the author’s surname (converted to lowercase) and the year of
publication, and combine them using a colon (e.g., smith:1987).

BIBTEX entries are read by BIBTEX in the bibliography database (the .bib file),
and the formatting of the entries is controlled by an associated bibliography style
(the .bst file), which contains a set of instructions written in a stack-based lan-
guage. The latter is interpreted by the BIBTEX program (see Section 13.6).

BIBTEX knows which fields are required, optional, and ignored for any given
entry type (see Table 13.1 on page 763). It will issue warnings, such as “author
name required”, if something is missing. The style file can control the typesetting
of both the citation string in the main text and the actual bibliography entry inside
the thebibliography environment.

It is important to remember that BIBTEX is not required for managing citations
(except for the package jurabib and those packages intended for producing mul-
tiple bibliographies). You can produce a bibliography without BIBTEX by providing
the bibliographic entries yourself using the syntax described in Section 12.1.2. It is
also a simple matter to manually edit the output from BIBTEX to cope with special
cases. Moreover, if your LaTEX document has to be self-contained, you can include
the contents of the .bbl file in your document.

690 Managing Citations

@String{ttct = "Tools and Techniques for Computer
Typesetting" }

@Book{LGC97,
author = "Michel Goossens and Sebastian Rahtz

and Frank Mittelbach",
title = "The {\LaTeX} Graphics Companion:

Illustrating Documents with {\TeX}
and {PostScript}",

publisher = "Ad{\-d}i{\-s}on-Wes{\-l}ey Longman",
address = "Reading, MA, USA",
pages = "xxi + 554",
year = "1997",
ISBN = "0-201-85469-4",
series = ttct

}
@UNPUBLISHED{test97,
author = "Michel Goossens and Ben User

and Joe Doe and others",
title = "Ambiguous citations",
year = "1997",
note = "Submitted to the " # ibmjrd

}
@Book{LWC99,

author = "Michel Goossens and Sebastian Rahtz",
title = "The {\LaTeX} {Web} companion:

integrating {\TeX}, {HTML},
and {XML}",

publisher = "Ad{\-d}i{\-s}on-Wes{\-l}ey Longman",
address = "Reading, MA, USA",
pages = "xxii + 522",
year = "1999",
ISBN = "0-201-43311-7",
note = "With Eitan M. Gurari and Ross Moore

and Robert S. Sutor",
series = ttct

}
@Book{Knuth-CT-a,

Author = "Donald E. Knuth",
Title = "The {\TeX}book",
Publisher = "Ad{\-d}i{\-s}on-Wes{\-l}ey",
Address = "Reading, MA, USA",
Volume = "A",
Series = "Computers and Typesetting",
pages = "ix + 483",
year = 1986,
isbn = "0-201-13447-0",

}
@Article{Knuth:TB10-1-31,

Author = "Donald E. Knuth",
Title = "{Typesetting Concrete

Mathematics}",
Journal = "TUGboat",
Volume = "10",
Number = "1",
Pages = "31--36",
year = 1989,
month = apr,
issn = "0896-3207"

}

@Book{vLeunen:92,
author = "Mary-Claire van Leunen",
gender = "sf",
title = "A handbook for scholars",
publisher = "Oxford University Press",
address = "Walton Street, Oxford OX2 6DP, UK",
pages = "xi + 348",
year = "92"

}

@manual{GNUMake, key = {make},
title = {{GNU Make}, A Program for Directing
Recompilation}, organization= "Free
Software Foundation",address = "Boston,
Massachusetts",ISBN={1-882114-80-9},year = 2000}

@book{G-G,
TITLE = {{Gutenberg Jahrbuch}},
EDITOR = {Hans-Joachim Koppitz},
PUBLISHER = {Gutenberg-Gesellschaft, Internationale

Vereinigung f\"ur Geschichte und
Gegenwart der Druckkunst e.V.},

ADDRESS = {Mainz, Germany},
NOTE = {Contains results on the past and present

history of the art of printing. Founded
by Aloys Ruppel. Published since 1926.}

}
@misc{oddity,

title = "{{TUGboat} The Communications of the
{\TeX} User Group}",

howpublished = "Quarterly published.",
year = {1980ff},

}
@InProceedings{MR-PQ,

author = "Frank Mittelbach and Chris Rowley",
title = "The Pursuit of Quality: How can

Automated Typesetting achieve the
Highest Standards of Craft
Typography?",

pages = "261--273",
crossref = "EP92"}

@InProceedings{Southall,
Author = "Richard Southall",
Title = "Presentation Rules and Rules of

Composition in the Formatting of
Complex Text",

Pages = "275--290",
crossref = "EP92"}

@Proceedings{EP92,
title = "{EP92}---Proceedings of Electronic

Publishing, ’92",
shorttitle = "{EP92}",
editor = "Christine Vanoirbeek and Giovanni Coray",
publisher = "Cambridge University Press",
address = "Cambridge",
year = 1992,
booktitle = "{EP92}---Proceedings of Electronic

Publishing, ’92"
}

Figure 12.2: Sample BIBTEX database tex.bib
This database uses different conventions in individual entries (e.g., lower-, upper-, or mixed-case field names,
different indentations) to show some features and problems in later examples. By applying one of the tools from
Section 13.4 it could be normalized.

12.2 The number-only system 691

12.2 The number-only system

12.2.1 Standard LATEX—Reference by number

As mentioned earlier in this chapter, the number-only system is the default ci-
tation method directly supported by standard LaTEX. That is, without loading any
additional packages, it is the only method supported by the provided markup com-
mands. Bibliographic citations inside the text of a LaTEX document are then flagged
with the command \cite .

\cite[text]{key} \cite[text]{key1,key2,. . . } \nocite{key-list}

The \cite command associates each keyword in the list in its mandatory argu-
ment with the argument of a \bibitem command from the thebibliography en-
vironment to produce the citation reference. As with other LaTEX identifiers, these
keys are case-sensitive.

The citation numbers generated are defined by the order in which the keys
appear on the \bibitem commands inside the thebibliography environment
or, if an optional argument is used with \bibitem , by the data provided in that
argument.

The optional parameter text is an additional note, which will be printed to-
gether with the text generated by the \cite command as shown in the following
example. For comparison we have used an unbreakable space (~) in the first cita-
tion and a small space (\,) in the second. Of course, such typographical details
should be handled uniformly throughout a publication.

12-2-1

Color support for LATEX is described
in [2, chap. 9] and the hyperref pack-
age in [1, pp. 35–67].

\bibliographystyle{plain}

Color support for \LaTeX{} is described in
\cite[chap.~9]{LGC97} and the \texttt{hyperref}
package in \cite[pp.\,35--67]{LWC99}.

To save space, the examples in this chapter often omit the bibliography list.

�A note on the
examples in this

chapter

They are generated by placing \bibliography{tex} at the end of the example
document when automatically generating the example output for the book. Thus,
you should read examples such as 12-2-1 as follows: the result is produced by
generating the bibliography with BIBTEX, applying the style plain (shown), and us-
ing the database tex.bib (not shown; see Figure 12.2). Thus, the actual document
that produced the example contained \bibliography{tex} near the end.

In conjunction with BIBTEX, you can use the \nocite variant of the \cite
command. Its sole purpose is to write the keys from the key-list argument into
the .aux file, so that the associated bibliography information will appear in the
bibliography even if the publication is otherwise not cited. For technical reasons
it has to appear after \begin{document}, even though it does not produce any
output and would logically be best placed in the preamble. It can be used as often

692 Managing Citations

as necessary. As a special case \nocite{*} includes all entries of the chosen
BIBTEX data in the list of references.

As stated above, the association between a \cite command and one or more
bibliography entries is made via the key-list argument. The citation text, which will
actually appear in the typeset text, depends on the chosen bibliographic style.

Customizing citation references and the bibliography

Unfortunately, standard LaTEX is not equipped with an easily customizable inter-
face through which you can adjust the formatting of the citation references. Thus,
to change the default brackets around the numbers into parentheses, for example,
we need to redefine the internal LaTEX command \@cite .

Even worse, the user-level \cite command sets the internal temporary switch
@tempswa to indicate whether an optional argument was present. Thus, if we want
to handle that optional argument, we need to evaluate the value of that switch. The
\@cite command receives two arguments: the list of obtained references and the
note (if present). In the following example we typeset (#1 and, if @tempswa is true,
follow it by a comma and �#2. This is then followed by the closing parenthesis. The
\nolinebreak[3] ensures that a break after the comma is taken only reluctantly.

Color support for LATEX is de-
scribed in (2) and the hyperref
package in (1, pp. 35–67).

\bibliographystyle{plain} \usepackage{ifthen}
\makeatletter
\renewcommand\@cite[2]{({#1\ifthenelse{\boolean{@tempswa}}

{,\nolinebreak[3] #2}{}})}
\makeatother

Color support for \LaTeX{} is described in \cite{LGC97} and
the \texttt{hyperref} package in \cite[pp.\,35--67]{LWC99}. 12-2-2

The redefinition of \@cite for purposes like the above can be avoided by
loading the cite package; see Section 12.2.2.

For the thebibliography environment, which holds the list of the actual
references, the situation is unfortunately not much better—the default implemen-
tation offers few customization possibilities. To modify the layout of the labels
in front of each publication (e.g., to omit the brackets), you have to change the
internal LaTEX command \@biblabel .

References

1. D. E. Knuth. The TEXbook, volume A of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

2. D. E. Knuth. Typesetting Concrete Mathematics. TUGboat,
10(1):31–36, Apr. 1989.

\bibliographystyle{abbrv}
\makeatletter
\renewcommand\@biblabel[1]{#1.}
\makeatother

\nocite{Knuth-CT-a,Knuth:TB10-1-31}
\bibliography{tex} 12-2-3

Packages that implement a variation of the author-date system (e.g.,
the apalike, chicago, or natbib package), typically unconditionally redefine
\@biblabel to simply swallow its argument and typeset nothing. After all, such

12.2 The number-only system 693

a bibliography is used by looking up the author name, so a label is unnecessary.
The natbib package is somewhat more careful: if it detects that \@biblabel was
changed, then it honors the redefinition.

As mentioned earlier, different blocks of information, such as the authors or
the title, are separated inside one \bibitem in the bibliography by \newblock
commands, which are also automatically inserted by most BIBTEX styles. Normally,
bibliographic entries are typeset together in one paragraph. If, however, you want
your bibliography to be “open”, with each block starting on a new line with suc-
ceeding lines inside a block indented by a length \bibindent (default 1.5em),
then the class option openbib should be specified. This option is supported by
all standard classes. The result is shown in the next example; we also redefine
\@biblabel to get raised labels.

12-2-4

References
1 M. Goossens and S. Rahtz.

The LATEX Web companion: integrating TEX, HTML, and XML.
Tools and Techniques for Computer Typesetting. Addison-

Wesley Longman, Reading, MA, USA, 1999.
With Eitan M. Gurari and Ross Moore and Robert S. Sutor.

2 D. E. Knuth.
Typesetting Concrete Mathematics.
TUGboat, 10(1):31–36, Apr. 1989.

\documentclass[openbib]{article}
\bibliographystyle{abbrv}
\setlength\bibindent{24pt}

\makeatletter
\renewcommand\@biblabel[1]

{#1}
\makeatother

\nocite{LWC99,Knuth:TB10-1-31}
\bibliography{tex}

12.2.2 cite—Enhanced references by number

One shortcoming that becomes readily apparent when you use LaTEX’s default
method of citing publications is the fact that it faithfully keeps the order of ci-
tations as given in the key-list argument of the \cite command. The following
example therefore shows a very strangely ordered list of numbers (the unresolved
reference was added deliberately):

12-2-5

Good information about TEX
and LATEX can be found in [2, 1, 3,
?, 4].

\bibliographystyle{plain}

Good information about \TeX{} and \LaTeX{} can be found in
\cite{LGC97,LWC99,Knuth-CT-a,Knuth:ct-b,Knuth:TB10-1-31}.

This situation can be easily improved by simply loading the cite package (by
Donald Arseneau), as in the following example:

12-2-6

Good information about TEX
and LATEX can be found in [?,1–4].

\usepackage{cite} \bibliographystyle{plain}

Good information about \TeX{} and \LaTeX{} can be found in
\cite{LGC97,LWC99,Knuth-CT-a,Knuth:ct-b,Knuth:TB10-1-31}.

By default, the cite package sorts citation numbers into ascending order, repre-
senting three or more consecutive numbers as a number range. Any non-numeric

694 Managing Citations

label is moved to the front (in the above example the “?” generated by the unre-
solved reference). If sorting is not desired you can globally prevent it by loading
the package with the option nosort. Compression into ranges can be suppressed
by using the option nocompress.

To customize the typeset reference the cite package offers a number of com-
Customizing the

citation layout
mands. For example, \citeleft and \citeright determine the material placed
on the left and right sides of the citation string, respectively. These commands
can be used to typeset parentheses instead of brackets as seen in the following
example, which should be compared to Example 12-2-2 on page 692. We can also
redefine \citemid , the separation between citation and optional note, to produce
a semicolon and a space.

Color support for LATEX is de-
scribed in (2) and the hyperref
package in (1; pp. 35–67).

\usepackage{cite} \bibliographystyle{plain}
\renewcommand\citeleft{(} \renewcommand\citeright{)}
\renewcommand\citemid{;\nolinebreak[3] }

Color support for \LaTeX{} is described in \cite{LGC97} and
the \texttt{hyperref} package in \cite[pp.\,35--67]{LWC99}. 12-2-7

Another important aspect of citation management is controlling the behavior
Customizing breaks

within citations
near the end of a line. Consider the string “see [2–3,7,13]”. Besides not allowing
any kind of line break within this string, one could allow breaking after the “see”,
after the commas, or after the en dash in a range.

By default, the cite package discourages line breaks before the citation with
\nolinebreak[3] , discourages line breaks after a comma separating the optional
note with \nolinebreak[2] , and very strongly discourages line breaks after
en dashes in a range and after commas separating individual citation numbers.
You can control the last three cases by redefining \citemid , \citedash , and
\citepunct . For example, to prevent breaks after the en dashes while allowing
breaks after commas without much penalty, you could specify

\renewcommand\citedash{\mbox{--}\nolinebreak}
\renewcommand\citemid{,\nolinebreak[1] }
\renewcommand\citepunct{,\nolinebreak[1]\hspace{.13em plus .1em minus .1em}}

There are several interesting points to note here. All three definitions are respon-
sible not only for controlling any line breaks but also for adding the necessary
punctuation: a dash for the range, a comma and a full blank before the optional
note, or a comma and a tiny space between individual citations. For instance, if
you want no space at all between citations, you can redefine \citepunct to con-
tain only a comma. The other important and probably surprising aspect is the
\mbox surrounding the en dash. This box is absolutely necessary if you want to
control LaTEX’s ability to break at this point. TEX automatically adds a break point
after an explicit hyphen or dash, so without hiding it in a box, the \nolinebreak
command would never have any effect—the internally added break point would
still allow a line break at this point. Finally, the \hspace command allows for

12.2 The number-only system 695

some stretching or shrinking; if you prefer a fixed space instead, remove the plus
and minus components.

The high penalty that is added before a citation is hard-wired in the code. It
is, however, inserted only if you have not explicitly specified a penalty in your doc-
ument. For instance, “see~\cite{..}” will be honored and no break will happen
between “see” and the citation.

One more customization command, \citeform , allows you to manipulate the Customizing citation
numbersindividual reference numbers. By default, it does nothing, so the labels are typeset

unchanged. In the following example we colored them. Other kinds of manipula-
tion are possible, too (e.g., adding parentheses in Example 12-2-9).

12-2-8

Color support for LATEX is de-
scribed in [2] and the hyperref
package in [1, pp. 35–67].

\usepackage{cite,color} \bibliographystyle{plain}
\renewcommand\citeform[1]{\textcolor{blue}{#1}}

Color support for \LaTeX{} is described in \cite{LGC97} and
the \texttt{hyperref} package in \cite[pp.\,35--67]{LWC99}.

\citen{key-list}

The package offers an additional command, \citen (its aliases are \citenum and
\citeonline), that can be used to get a list of numbers without the surrounding
\citeleft and \citeright (e.g., the default brackets). Other formatting is still
done. In the next example we surround individual references to citations with
parentheses, something that admittedly looks a little strange when used together
with the default bracketing of the whole citation.

12-2-9 (1)–(3),(5) but [(4), §5]

\usepackage[nospace]{cite} \bibliographystyle{plain}
\renewcommand\citeform[1]{(#1)}

\citen{LGC97,LWC99,test97,vLeunen:92} but \cite[\S5]{Knuth-CT-a}

The package offers a number of options to handle standard configuration
requests or to influence the package behavior in other ways. Some of them have
already been discussed, but here is the full list:

adjust/noadjust Enables (default) or disables “smart” handling of space before
a \cite or \citen command. By default, spaces before such commands are
normalized to an interword space. If you write see\cite{..}, a space is in-
serted automatically.

compress/nocompress Enables (default) or disables compression of consecutive
numbers into ranges.

sort/nosort Enables (default) or prevents sorting of the numbers.

space A full interword space is used after commas, and breaking at this point is
not actively discouraged. The default (option not specified) is to use a small
space and to discourage, but allow, breaking.

nospace Eliminates the spaces after commas in the list of numbers, but retains
the space after the comma separating the optional note. The result of this

696 Managing Citations

option is shown in Example 12-2-9 on the previous page. It is not the opposite
of the space option!

verbose By default, cite warns only once per reference for undefined citations.
When this option is specified, the warning is repeated each time an undefined
reference is cited.

The latest release of the cite package can also display citation references as
Citations with

superscript numbers
superscript numbers if the package is loaded with the option superscript (or
super). In the past this ability was provided by the separate package overcite
(developed by the same author), which is still available for compatibility reasons.

If the \cite command is used with an optional argument, then the whole list
of citations will be typeset as though the cite package was loaded without the
superscript option.

With the superscript or super option in effect, the customization com-
mands \citeleft , \citeright , and \citemid affect only citations with an op-
tional argument, while \citedash , \citepunct , and \citeform affect all cita-
tions. For details of their use, see the discussion on pages 694–695.

Good information about TEX
and LATEX can be found in.?, 1–4

For hyperref see (1, pp. 35–67).

\usepackage[superscript]{cite} \bibliographystyle{plain}
\usepackage{color}
\renewcommand\citeform[1]{\textcolor{blue}{#1}}
\renewcommand\citeleft{(} \renewcommand\citeright{)}

Good information about \TeX{} and \LaTeX{} can be found in
\cite{LGC97,LWC99,Knuth-CT-a,Knuth:ct-b,Knuth:TB10-1-31}.
For \texttt{hyperref} see \cite[pp.\,35--67]{LWC99}. 12-2-10

You will probably not need to change your source document, regardless of
whether the superscript option is used. In particular, a space before the citation
command will be ignored if the citations are raised. In principle, you can add this
option without having to adjust your document sources, provided your writing
style does not use the numerical citation as part of the sentence structure, as in
the above example.

If superscript numbers are used for citation labels, special care is needed
when punctuation characters surround the citation. By default, the cite package
automatically moves a punctuation character following a citation in front of the
superscript. Punctuation characters that will migrate in this way are stored in
the command \CiteMoveChars , with “.,;:” being the default (! and ? are not in-
cluded, but can be added). A problem that can result from this process is doubling
of periods. This case is detected by the package and one punctuation character is
suppressed; see the second citation in the next example.

. . . book;2 see also
Goossens et al.1

\usepackage[superscript]{cite} \bibliographystyle{plain}

\ldots\ book~\cite{Knuth-CT-a}; see also Goossens et al.~\cite{LGC97}. 12-2-11

Unfortunately, with capitalized abbreviations or the use of \@ after a period,
the suppression of double periods fails. Possible workarounds are shown in the

12.2 The number-only system 697

next example. Note, however, that the solution with U.S.A\@. only works together
with the cite package, but it gives the wrong spacing if no citation is present (you
are effectively claiming that the sentence ends after the abbreviation)!

12-2-12

et al..1 et al.1

U.S.A..? U.S.A.?

\usepackage[super]{cite} \bibliographystyle{plain}

et al.\@ \cite{LGC97}. \hfil et al.\ \cite{LGC97}.\par
U.S.A. \cite{unknown}. \hfil U.S.A\@. \cite{unknown}.

There is yet another pitfall that you may encounter: the final punctuation
character does not migrate inside a preceding quotation—a style, for example, ad-
vocated by The Chicago Manual of Style [38]. In this case you may have to rewrite
part of your source text accordingly.

12-2-13

For details see “The TEXbook”.1 But
wanted is “The TEXbook.”1

\usepackage[super]{cite} \bibliographystyle{plain}

For details see ‘‘The \TeX book’’ \cite{Knuth-CT-a}.
But wanted is ‘‘The \TeX book.’’ \cite{Knuth-CT-a}

The main options of the cite package were discussed on page 695. Three more
options related to raising the reference numbers exist. With the option nomove
specified, punctuation characters are not migrated before the superscript citation.
With the option ref specified, citations with an optional argument have the word
“Ref.” prepended. This is internally implemented by changing \citeleft , so if
you want a different string or want to change from brackets to, say, parentheses,
you have to redefine the customization commands instead of using this option.

12-2-14

Color support is described in
“LGC”2 and the hyperref pack-
age in “LWC” [Ref. 1, pp. 35–67].

\usepackage[super,ref]{cite} \bibliographystyle{plain}

Color support is described in ‘‘LGC’’ \cite{LGC97} and the
\texttt{hyperref} package in ‘‘LWC’’ \cite[pp.\,35--67]{LWC99}.

Finally, the biblabel option raises the labels in the bibliography. (By de-
fault, they retain their default layout regardless of whether you use the option
superscript or its alias super.)

12.2.3 notoccite—Solving a problem with unsorted citations

If you want the publications in the bibliography to appear in exactly the order in
which they are cited in the document, then you should use unsorted citation styles
(e.g., the BIBTEX style unsrt). This approach will not work, however, if citations are
present inside headings or float captions. In that case, these citations will also
appear in the table of contents or list of figures, and so on. As a result they will be
moved to the beginning of the bibliography even though they appear much later
in the text.

You can circumvent this problem by specifying an optional argument for
\caption , \section , or similar commands without the citation, so that no ci-
tations will be written into such tables. If you have to use citations in these places,

698 Managing Citations

then a “manual” solution is to first delete any auxiliary files left over from previ-
ous LaTEX runs, then run LaTEX once, and then run BIBTEX. In that case BIBTEX will
pick up only citations from the main document. Clearly, this approach is prone to
error and you may find that your citation order got mangled after all when you
finally see your article in print.

Donald Arseneau developed the small package notoccite to take care of this
problem by redefining the internal command \@starttoc in such a way that ci-
tations do not generate \citation commands for BIBTEX within the table of con-
tents and similar lists. Simply loading that package will take care of the prob-
lem in all cases—provided you have not used some other package that redefines
\@starttoc (for example, notoccite cannot be combined with hyperref or the AMS
document classes).

12.3 The author-date system

Depending on the structure of the sentence, the author-date system normally uses
one of two different forms for references: if the author’s name appears naturally
in the sentence, it is not repeated within the parentheses or brackets; otherwise,
both the author’s name and the year of publication are used. This style poses
an unsolvable problem when LaTEX’s standard syntax should be used, as only one
command (\cite) is available.

Consequently, anyone developing support for the author-date system has had
to extend the LaTEX syntax for citing publications. The following example shows the
two forms and their implementation (with two new commands) as provided by the
natbib system.

Knuth (1989) shows . . . This is ex-
plained in the authoritative man-
ual on TEX (Knuth, 1986).

\usepackage{natbib}

\citet{Knuth:TB10-1-31} shows \ldots\ This is explained
in the authoritative manual on \TeX{}~\citep{Knuth-CT-a}. 12-3-1

Extending the LaTEX syntax for citing publications does not solve the problem
completely. In order to produce the different forms of citation references needed
in the author-date system, the information that is passed back from the bibli-
ography through the optional argument of the \bibitem command needs to be
structured. Without a special structure it is impossible to pick up the data needed
for the textual references (e.g., producing just the year in parentheses). That is, a
bibliographical entry like

\bibitem[Donald~E. Knuth 1986]{Knuth-CT-a} Donald~E. Knuth.
\newblock \emph{The {\TeX}book}, volume~A of \emph{Computers and

Typesetting}. \newblock Addison-Wesley, Reading, MA, USA, 1986.

will allow the \cite command to produce “(Donald E. Knuth 1986)” but not “Don-
ald E. Knuth (1986)” or just “Knuth” or just “1986” as well. You also have to

12.3 The author-date system 699

ensure that \bibitem does not display the label, but that outcome can be fairly
easily arranged.

The solution used by all implementations for author-date support is to intro-
duce a special syntax within the optional argument of \bibitem . In some imple-
mentations this structure is fairly simple. For instance, chicago requires only

\bibitem[\protect\citeauthoryear{Goossens, Rahtz, and Mittelbach}
{Goossens et~al.}{1997}]{LGC97}

This information can still be produced manually, if needed. Other packages go
much further and encode a lot of information explicitly. For example, jurabib asks
for the following kind of argument structure (same publication):

\bibitem[{Goossens\jbbfsasep Rahtz\jbbstasep Mittelbach\jbdy {1997}}%
{}{{0}{}{book}{1997}{}{}{}{xxi + 554}{Reading, MA, USA\bpubaddr {}
Ad{\-d}i{\-s}on-Wes{\-l}ey Longman\bibbdsep {} 1997}}{{The {\LaTeX}
Graphics Companion: Illustrating Documents with {\TeX} and {PostScript}}%
{}{}{}{}{}{}{}{}}]{LGC97}

As we shall see (Section 12.5.1), this approach gives a lot of flexibility when refer-
ring to the publication, but it is clear that no one wants to produce a bibliography
environment with such a structure manually. Hence, the only usable solution in
this case is to use an external tool like BIBTEX to generate the entries automatically.

12.3.1 Early attempts

Over the years several independent add-on packages have been developed to
support the author-date system. Unfortunately, each one introduced a different
set of user-level commands. Typically, the add-ons consist of a LaTEX package
providing the user commands and one or more BIBTEX styles to generate the
thebibliography environment with a matching syntax in the optional argument
of the \bibitem command.

For example, the chicago package, which aimed to implement the recommen-
dations of The Chicago Manual of Style [38], offers the following list of commands
(plus variants all ending in NP to omit the parentheses—for example, \citeNP):

12-3-2

(Goossens, Rahtz, and Mittelbach 1997)
(Goossens, Rahtz, and Mittelbach)
Goossens, Rahtz, and Mittelbach (1997)
(Goossens and Rahtz 1999)
(Goossens and Rahtz)
Goossens and Rahtz (1999)
(1999), 1999

\usepackage{chicago} \bibliographystyle{chicago}

\cite{LGC97} \\
\citeA{LGC97} \\
\citeN{LGC97} \\
\shortcite{LWC99} \\
\shortciteA{LWC99} \\
\shortciteN{LWC99} \\
\citeyear{LWC99}, \citeyearNP{LWC99}

700 Managing Citations

Several BIBTEX styles (chicago, chicagoa, jas99, named, and newapa) are compati-
ble with the chicago package. All of them are still in use, even though the package
itself is rarely included in LaTEX distributions these days (natbib can be used in-
stead to provide the user-level syntax).

In contrast, only two commands are provided by David Rhead’s authordate1–4
package, the original support package for the BIBTEX styles authordate1 to
authordate4. It implements recommendations by the Cambridge and Oxford Uni-
versity Presses and various British standards.

(Goossens et al. , 1997) or (1997)

\usepackage{authordate1-4}
\bibliographystyle{authordate2}

\cite{LGC97} or \shortcite{LGC97} 12-3-3

As a final example we look briefly at the harvard package by Peter Williams and
Thorsten Schnier. In contrast to the two previously described packages, harvard
has been further developed and updated for LaTEX2ε . It implements a number of
interesting features. For example, a first citation gives a full author list, whereas a
later citation uses an abbreviated list (unless explicitly requested otherwise). The
user-level commands are shown in the next example.

(Goossens, Rahtz & Mittelbach 1997)
(Goossens et al. 1997) second citation
(Goossens, Rahtz & Mittelbach 1997) long names forced
Goossens et al. (1997)
(e.g., Goossens et al. 1997)
Goossens et al.
Knuth’s (1986)

\usepackage{harvard}
\bibliographystyle{agsm}

\cite{LGC97} \\
\cite{LGC97} \hfill second citation \\
\cite*{LGC97}\hfill long names forced\\
\citeasnoun{LGC97} \\
\citeaffixed{LGC97}{e.g.,} \\
\citename{LGC97} \\
\possessivecite{Knuth-CT-a} 12-3-4

The harvard package requires a specially prepared bibliography environment in
which \bibitem is replaced by \harvarditem , a command with a special syntax
used to carry the information needed for author-date citations. A few BIBTEX styles
(including agsm, dcu, kluwer, and nederlands) implement this special syntax.

Many of these packages support the author-date system quite well. Never-
theless, with different packages using their own syntax and supporting only half
a dozen BIBTEX styles each, the situation stayed unsatisfactory for a long time.
Matters changed for the better when Patrick Daly published his natbib support
package, described in the next section.

12.3.2 natbib—Customizable author-date references

Although most publishers will indicate which bibliographic style they prefer, it
is not always evident how to change from one system to the other if one has to
prepare source texts adhering to multiple styles.

12.3 The author-date system 701

To solve the problem of incompatible syntaxes described in the previ-
ous section, Patrick Daly developed the natbib package (for “NATural sciences
BIBliography”). This package can accept several \bibitem variants (including
\harvarditem) as produced by the different BIBTEX styles. Thus, for the first time,
(nearly) all of the author-date BIBTEX styles could be used with a single user-level
syntax for the citation commands.

The natbib package is compatible with packages like babel, chapterbib,
hyperref, index, and showkeys, and with various document classes including the
standard LaTEX classes, amsbook and amsart, classes from the KOMA-Script bun-
dle, and memoir. It cannot be used together with the cite package, but provides
similar sorting and compressing functions via options.

The natbib package therefore acts as a single, flexible interface for most of
the available bibliographic styles when the author-date system is required. It can
also be used to produce numerical references, as we will see in Section 12.4.1.

The basic syntax

The two central commands of natbib are \citet (for textual citation) and \citep
(for parenthetical citation).

\citet[post-note]{key-list} \citet[pre-note][post-note]{key-list}
\citep[post-note]{key-list} \citep[pre-note][post-note]{key-list}

Both commands take one mandatory argument (the key-list that refers to one or
more publications) and one or two optional arguments to add text before and af-
ter the citation. LaTEX’s standard \cite command can take only a single optional
argument denoting a post-note. For this reason the commands implement the fol-
lowing syntax: with only one optional argument specified, this argument denotes
the post-note (i.e., a note placed after the citation); with two optional arguments
specified, the first denotes a pre-note and the second a post-note. To get only a
pre-note you have to add an empty second argument, as seen in lines 4 and 8 in
the next example. Also note that natbib redefines \cite to act like \citet .1

12-3-5

Goossens et al. (1997)
Goossens et al. (1997, chap. 2)
Goossens et al. (see 1997, chap. 2)
pre-note only: Goossens et al. (see 1997)

(Goossens et al., 1997)
(Goossens et al., 1997, chap. 2)
(see Goossens et al., 1997, chap. 2)
pre-note only: (see Goossens et al., 1997)

\usepackage{natbib}

\citet{LGC97} \\
\citet[chap.~2]{LGC97} \\
\citet[see][chap.~2]{LGC97} \\
pre-note only: \citet[see][]{LGC97} \\[5pt]
\citep{LGC97} \\
\citep[chap.~2]{LGC97} \\
\citep[see][chap.~2]{LGC97} \\
pre-note only: \citep[see][]{LGC97}

1To be precise, \cite is redefined to act like \citet if natbib is used in author-date mode as
discussed in this section. If used in author-number mode (see Section 12.4.1), it works like \citep .

702 Managing Citations

Both commands have starred versions, \citet* and \citep* (with otherwise
identical syntax), that will print the full list of authors if it is known.1 These ver-
sions will work only when this feature is supported by the used BIBTEX style file.
In other words, the information must be made available through the optional ar-
gument of \bibitem; if it is missing, the abbreviated list is always printed.

Goossens, Rahtz, and Mittelbach (1997)
(see Goossens, Rahtz, and Mittelbach, 1997)

\usepackage{natbib}

\citet*{LGC97} \\
\citep*[see][]{LGC97} 12-3-6

Two other variant forms exist: \citealt works like \citet but does not gen-
erate parentheses, and \citealp is \citep without parentheses. Evidently, some
of the typeset results come out almost identically.

Goossens et al. 1997
Goossens et al., 1997
Goossens, Rahtz, and Mittelbach 1997
Goossens, Rahtz, and Mittelbach, 1997
Goossens and Rahtz, 1999, p. 236 etc.

\usepackage{natbib}

\citealt{LGC97} \\
\citealp{LGC97} \\
\citealt*{LGC97} \\
\citealp*{LGC97} \\
\citealp[p.~236]{LWC99} etc. 12-3-7

When using the author-date system it is sometimes desirable to just cite the
author(s) or the year. For this purpose natbib provides the following additional
commands (\citeauthor* is the same as \citeauthor when the full author in-
formation is unavailable):

Goossens et al.
Goossens, Rahtz, and Mittelbach
1997 or (1997)

\usepackage{natbib}

\citeauthor{LGC97} \\
\citeauthor*{LGC97} \\
\citeyear{LGC97} or \citeyearpar{LGC97} 12-3-8

Even more complex mixtures of text and citation information can be handled
with the command \citetext . It takes one mandatory argument and surrounds
it with the parentheses used by other citation commands. By combining this com-
mand with \citealp or other commands that do not produce parentheses, all
sorts of combinations become possible.

(see Goossens et al., 1997 or Knuth,
1986)

\usepackage{natbib}

\citetext{see \citealp{LGC97} or \citealp{Knuth-CT-a}} 12-3-9

Sometimes a sentence starts with a citation, but the (first) author of the cited

�Forcing names
to upper case

publication has a name that starts with a lowercase letter. In that case the com-
mands discussed so far cannot be used. The natbib package solves this problem
by providing for all commands variants that capitalize the first letter. They are

1If you plan to also use the jurabib package (see Section 12.5.1), then avoid the starred forms as
they are not supported by that package.

12.3 The author-date system 703

easy to remember: just capitalize the first letter of the corresponding original com-
mand. For example, instead of \citet* , use \Citet* . Here are some additional
examples.

12-3-10

Normal citation: van Leunen (92)
Van Leunen (92) or Van Leunen 92
(Van Leunen, 92) or Van Leunen, 92
Van Leunen

\usepackage{natbib}

Normal citation: \citet{vLeunen:92} \\
\Citet{vLeunen:92} or \Citealt{vLeunen:92} \\
\Citep{vLeunen:92} or \Citealp{vLeunen:92} \\
\Citeauthor{vLeunen:92}

As a final goody, natbib lets you define alternative text for a citation that
can be used instead of the usual author-date combination. For the definition use
\defcitealias (usually in the preamble), and for the retrieval use \citetalias
or \citepalias .

12-3-11

Goossens et al. (1997) = Dogbook II
(Goossens et al., 1997) = (Dogbook II)
Alias changed: (see Dogbook II 2ed)

\usepackage{natbib} \defcitealias{LGC97}{Dogbook~II}

\citet{LGC97} = \citetalias{LGC97} \\
\citep{LGC97} = \citepalias{LGC97} \par
\defcitealias{LGC97}{Dogbook~II~2ed}
Alias changed: \citepalias[see][]{LGC97}

With the commands introduced in this section, natbib offers the same features
(with minor differences) as other support packages for the author-date system
(e.g., the packages described in Section 12.3.1). In addition, it provides features
not found elsewhere. On the other hand, in a few cases natbib does not offer di-
rectly equivalent commands. For example, harvard’s \possessivecite command
(shown in Example 12-3-4) has no direct correspondence in natbib, but it can be
easily built manually. To emulate it, you can either directly use \citeauthor and
\citeyearpar , as is done in the first line of the next example, or define your own
command if this type of construction is used more often.

12-3-12

Knuth’s (1986)
Knuth’s (1986)

\usepackage{natbib} \bibliographystyle{agsm}
\newcommand\possessivecite[1]{\citeauthor{#1}’s \citeyearpar{#1}}

\citeauthor{Knuth-CT-a}’s \citeyearpar{Knuth-CT-a} \\
\possessivecite{Knuth-CT-a}

Multiple citations

In standard LaTEX, multiple citations can be made by including more than one
citation key-list argument to the \cite command. The same is possible for the
citation commands \citet and \citep (as well as their variant forms). The natbib
package then automatically checks whether adjacent citations in the key-list have
the same author designation. If so, it prints the author names only once. This
feature requires that the author names be spelled identically. For instance, natbib

704 Managing Citations

will consider “D. Knuth” and “Donald Knuth” to be two different authors.

Goossens et al. (1997); Goossens and Rahtz (1999)
(Goossens et al., 1997; Goossens and Rahtz, 1999)
(Knuth, 1989, 1986)

\usepackage{natbib}

\citet{LGC97,LWC99} \\
\citep{LGC97,LWC99} \\
\citep{Knuth:TB10-1-31,Knuth-CT-a} 12-3-13

The last line in the previous example exhibits a potential problem when using
several keys in one citation command: the references are typeset in the order of
the key-list. If you specify the option sort, then the citations are sorted into the
order in which they appear in the bibliography, usually alphabetical by author and
then by year.

(Knuth, 1986, 1989)

\usepackage[sort]{natbib}

\citep{Knuth:TB10-1-31,Knuth-CT-a} 12-3-14

While all the citation commands support key-lists with more than one citation
key, they are best confined to \citep; already \citet gives questionable results.
The situation gets worse when you use optional arguments: with \citet any pre-
note is added before each year (which could be considered a defect in the package).
More generally, it is not at all clear what these notes are supposed to refer to.
Hence, if you want to add notes it is better to separate your citations.

(see van Leunen, 92; Knuth, 1986, p. 55)
(see Knuth, 1986, 1989, p. 55)
van Leunen (see 92); Knuth (see 1986, p. 55)
Knuth (see 1986, 1989, p. 55)

\usepackage{natbib}

\citep[see][p.~55]{vLeunen:92,Knuth-CT-a} \\
\citep[see][p.~55]{Knuth-CT-a,Knuth:TB10-1-31} \\
\citet[see][p.~55]{vLeunen:92,Knuth-CT-a} \\
\citet[see][p.~55]{Knuth-CT-a,Knuth:TB10-1-31} 12-3-15

Full author list only with the first citation

The harvard package automatically typesets the first citation of a publication with
the full list of authors and subsequent citations with an abbreviated list. This style
of citation is quite popular in some disciplines, and natbib supports it if you load
it with the option longnamesfirst. Compare the next example to Example 12-3-4
on page 700.

(Goossens, Rahtz & Mittelbach 1997) first citation
(Goossens et al. 1997) second
(Goossens, Rahtz & Mittelbach 1997) names forced
Goossens et al. (1997)
(e.g., Goossens et al. 1997)
Goossens et al.

\usepackage[longnamesfirst]{natbib}
\bibliographystyle{agsm}

\citep{LGC97} \hfill first citation \\
\citep{LGC97} \hfill second \\
\citep*{LGC97}\hfill names forced \\
\citet{LGC97} \\
\citep[e.g.,][]{LGC97} \\
\citeauthor{LGC97} 12-3-16

Some BIBTEX style files are quite cleverly programmed. For example, when the
agsm BIBTEX style, used in the previous example, detects that shortening a list of

12.3 The author-date system 705

authors leads to ambiguous citations, it will refuse to produce an abbreviated list.
Thus, after adding the test97 citation to the example, all citations suddenly come
out in long form.1 BIBTEX styles produced with makebst avoid such ambiguous
citations by adding a suffix to the year, but other BIBTEX styles (e.g., chicago)
happily produce them; see Example 12-3-18 below.

12-3-17

(Goossens, Rahtz & Mittelbach 1997) first citation
(Goossens, Rahtz & Mittelbach 1997) second
(Goossens, User, Doe et al. 1997) first citation
(Goossens, User, Doe et al. 1997) second citation

\usepackage[longnamesfirst]{natbib}
\bibliographystyle{agsm}

\citep{LGC97} \hfill first citation \\
\citep{LGC97} \hfill second \\
\citep{test97}\hfill first citation \\
\citep{test97}\hfill second citation

Some publications have so many authors that you may want to always cite
them using their abbreviated name list, even the first time. You can achieve
this effect by listing their keys, separated by commas, in the argument of the
\shortcites declaration. This example also shows that use of the chicago style
can lead to ambiguous citations (lines 1 and 2 versus line 5).

12-3-18

(Goossens et al., 1997) first citation
(Goossens et al., 1997) second citation
(Goossens, Rahtz, and Mittelbach, 1997) forced
(Goossens, User, Doe, et al., 1997) first citation
(Goossens et al., 1997) second citation

\usepackage[longnamesfirst]{natbib}
\bibliographystyle{chicago}
\shortcites{LGC97}

\citep{LGC97} \hfill first citation \\
\citep{LGC97} \hfill second citation \\
\citep*{LGC97}\hfill forced \\
\citep{test97}\hfill first citation \\
\citep{test97}\hfill second citation

Customizing the citation reference layout

So far, all of the examples have shown round parentheses around the citations,
but this is by no means the only possibility offered by natbib. The package in-
ternally knows about more than 20 BIBTEX styles. If any such style is chosen
with a \bibliographystyle command, then a layout appropriate for this style
is selected as well. For example, when using the agu style (American Geophysical
Union) we get:

12-3-19

Goossens et al. [1997]
[Knuth, 1986; Goossens and Rahtz, 1999]
[see Knuth, 1986, chap. 2]

\usepackage{natbib} \bibliographystyle{agu}

\citet{LGC97} \\ \citep{Knuth-CT-a,LWC99} \\
\citep[see][chap.~2]{Knuth-CT-a}

By default, the citation layout is determined by the chosen BIBTEX style (or
natbib’s defaults if a given style is unknown to natbib). By including a \citestyle
declaration you can request to use the citation style associated with a BIBTEX style
that is different from the one used to format the bibliography. In the next example

1Something that puzzled the author when he first encountered it while preparing the examples.

706 Managing Citations

we use the agsm style for the citations while the overall style remains agu. If you
compare this example to Example 12-3-19 you see that the textual formatting is
unchanged (e.g., italic for author names), but the parentheses and the separation
between authors and year have both changed.

Goossens et al. (1997)
(Knuth 1986, Goossens and Rahtz 1999)
(see Knuth 1986, chap. 2)

\usepackage{natbib} \bibliographystyle{agu}
\citestyle{agsm}

\citet{LGC97} \\ \citep{Knuth-CT-a,LWC99} \\
\citep[see][chap.~2]{Knuth-CT-a} 12-3-20

It is also possible to influence the layout by supplying options: round (default
for most styles), square, curly, or angle will change the type of parentheses
used, while colon1 (default for most styles) and comma will change the separation
between multiple citations. In the next example, we overwrite the defaults set by
the agu style, by loading natbib with two options.

Goossens et al. {1997}
{Knuth, 1986, Goossens and Rahtz, 1999}
{see Knuth, 1986, chap. 2}

\usepackage[curly,comma]{natbib}
\bibliographystyle{agu}

\citet{LGC97} \\ \citep{Knuth-CT-a,LWC99} \\
\citep[see][chap.~2]{Knuth-CT-a} 12-3-21

Yet another method to customize the layout is mainly intended for package
and/or class file writers: the \bibpunct declaration. It takes seven arguments (the
first optional) that define various aspects of the citation format. It is typically used
to define the default citation format for a particular BIBTEX style. For example, the
natbib package contains many definitions like this:

\newcommand\bibstyle@chicago{\bibpunct{(}{)}{;}{a}{,}{,}}

That definition will be selected when you choose chicago as your BIBTEX style
or when you specify it as the argument to \citestyle . Similar declarations can
be added for BIBTEX styles that natbib does not directly support. This effect is
most readily realized by grouping such declarations in the local configuration file
natbib.cfg. For details on the meanings of the arguments, see the documenta-
tion accompanying the natbib package.

If there are conflicting specifications, then the following rules apply: the low-
est priority is given to internal \bibstyle@〈name〉 declarations, followed by the
options specified in the \usepackage declarations. Both are overwritten by an
explicit \bibpunct or \citestyle declaration in the document preamble.

Normally, natbib does not prevent a line break within the author list of a
Forcing all author
names on a single

line

citation. By specifying the option nonamebreak, you can ensure that all author
names in one citation will be kept on a single line. In normal circumstances this is
seldom a good idea as it is likely to cause overfull hboxes, but it helps with some
hyperref problems.

1Despite its name this option will produce a “;” semicolon.

12.3 The author-date system 707

Customizing the bibliography layout

The thebibliography environment, as implemented by natbib, automatically
adds a heading before the list of publications. By default, natbib selects an un-
numbered heading of the highest level, such as \chapter* for a book type class
or \section* for the article class or a variant thereof. The actual heading inserted
is stored in the command \bibsection . Thus, to modify the default, you have to
change its definition. For instance, you can suppress the heading altogether or
choose a numbered heading.

For one particular situation natbib offers direct support: if you specify the op-
tion sectionbib, you instruct the package to use \section* , even if the highest
sectional unit is \chapter . This option is useful if natbib and chapterbib are used
together (see Section 12.6.1).

Between \bibsection and the start of the list, natbib executes the hook
\bibpreamble , if defined. It allows you to place some text between the heading
and the start of the actual reference list. It is also possible to influence the font
used for the bibliography by defining the command \bibfont . This hook can also
be used to influence the list in other ways, such as setting it unjustified by adding
\raggedright . Note that both \bibpreamble and \bibfont are undefined by
default (and thus need \newcommand), while \bibsection needs redefining with
\renewcommand .

Finally, two length parameters are available for customization. The first line
in each reference is set flush left, and all following lines are indented by the
value stored in \bibhang (default 1em). The vertical space between the refer-
ences is stored in the rubber length \bibsep (the default value is usually equal to
\itemsep as defined in other lists).

To show the various possibilities available we repeat Example 12-1-2 on
page 685 but apply all kinds of customization features (not necessarily for the
better!). Note the presence of \par at the end of \bibpreamble . Without it the
settings in \bibfont would affect the inserted text!

12-3-22

Entries with multiple authors might be problem-
atical, e.g., Goossens et al. [1997a] and Goossens
et al. [1997b] or even Goossens et al. [1997a,b]. But
then they might not.

1 References
Some material inserted between heading and list.

M. Goossens, S. Rahtz, and F. Mittelbach. The LATEX Graphics
Companion: Illustrating Documents with TEX and
PostScript. Tools and Techniques for Computer
Typesetting. Addison-Wesley Longman, Reading, MA,
USA, 1997a. ISBN 0-201-85469-4.

M. Goossens, B. User, J. Doe, et al. Ambiguous citations.
Submitted to the IBM J. Res. Dev., 1997b.

\usepackage{natbib}
\bibliographystyle{abbrvnat}
\renewcommand\bibsection{\section{\refname}}
\newcommand\bibpreamble{Some material

inserted between heading and list.\par}
\newcommand\bibfont

{\footnotesize\raggedright}
\setlength\bibhang{30pt}
\setlength\bibsep{1pt plus 1pt}

Entries with multiple authors might be
problematical, e.g., \cite{LGC97} and
\cite{test97} or even \cite{LGC97,test97}.
But then they might not.
\bibliography{tex}

708 Managing Citations

Publications without author or year information

To use the author-date citation system, the entries in your list of publications need
to contain the necessary information. If some information is missing, citations
with \citet or its variants may produce strange results.

If the publication has no author but an editor, then most BIBTEX styles will use
the latter. However, if both are missing, the solutions implemented differ greatly.
BIBTEX files in “Harvard” style (e.g., agsm) use the first three letters from the key
field if present; otherwise, they use the first three letters from the organization
field (omitting “The ” if necessary); otherwise, they use the full title. If an entry
has no year, then “n.d.” is used. This will result in usable entries except in the case
where part of the key field is selected:

Koppitz (n.d.) / TUGboat The Communica-
tions of the TEX User Group (1980ff) / mak
(2000)

\usepackage{natbib} \bibliographystyle{agsm}

\citet{G-G} / \citet{oddity} / \citet{GNUMake}
12-3-23

With the same entries, BIBTEX styles produced with makebst (e.g., unsrtnat)
use the following strategy: if a key field is present, the whole field is used as an
“author”; otherwise, if an organization field is specified, its first three letters are
used (omitting “The ” if necessary); otherwise, the first three letters of the citation
label are used. A missing year is completely omitted. In case of textual citations,
this means that only the author name is printed. In that situation, or when the key
field is used, it is probably best to avoid \citet and always use \citep to make
it clear to the reader that you are actually referring to a publication and not just
mentioning some person in passing.

Koppitz / odd [1980ff] / make
[Koppitz] / [odd, 1980ff] / [make]

\usepackage{natbib} \bibliographystyle{unsrtnat}

\citet{G-G} / \citet{oddity} / \citet{GNUMake} \\
\citep{G-G} / \citep{oddity} / \citep{GNUMake} 12-3-24

As a final example we show the results when using the chicago BIBTEX style.
Here the GNU manual comes out fine (the full organization name is used), but the
entry with the date missing looks odd.

Koppitz (Koppitz) / odd (80ff) / Free Software
Foundation (2000)
(Koppitz, Koppitz) / (odd, 80ff) / (Free Soft-
ware Foundation, 2000)

\usepackage{natbib} \bibliographystyle{chicago}

\citet{G-G} / \citet{oddity} / \citet{GNUMake} \\
\citep{G-G} / \citep{oddity} / \citep{GNUMake} 12-3-25

Forcing author-date style

The natbib package produces author-date citations by default, when used together
with most BIBTEX styles. You can also explicitly request the author-date system by
loading the package with the option authoryear.

However, for this approach to work, it is important that the BIBTEX style passes
author-date information back to the document. Hence, .bst files, such as LaTEX’s

12.3 The author-date system 709

plain, which have been developed for numerical citation systems only, are unable
to transfer this information. In that case natbib will ignore the authoryear option
and, if you use \citet or one of its variants, you get warnings about missing
author information and output similar to the following:

12-3-26 (author?) [3] / (author?) [1] / (author?) [2]
\usepackage{natbib} \bibliographystyle{plain}

\citet{G-G} / \citet{oddity} / \citet{GNUMake}

Here it is best to switch to a BIBTEX style that supports the author-date system,
such as plainnat instead of plain.

Indexing citations automatically

Citations can be entered in the index by inserting a \citeindextrue command
at any point in the document. From that point onward, and until the next
\citeindexfalse (or the end of the current group) is encountered, all variants
of the \citet and \citep commands will generate entries in the index file (if
one is written). With \citeindextrue in effect, the \bibitem commands in the
thebibliography environment will also generate index entries. If this result is
not desired, issue a \citeindexfalse command before entering the environment
(e.g., before calling \bibliography).

The index format is controlled by the internal command \NAT@idxtxt . It has
the following default definition:

\newcommand\NAT@idxtxt{\NAT@name\ \NAT@open\NAT@date\NAT@close}

Thus, it produces entries like “Knuth (1986)”. For citations without author or year
information the results will most likely come out strangely. The citations in Exam-
ple 12-3-24 will generate the following entries:

\indexentry{{Koppitz}\ []}{6}
\indexentry{{odd}\ [1980ff]}{6}
\indexentry{{make}\ []}{6}

If you want to redefine the command, for example, to just generate the author’s
name, you can do so in the file natbib.cfg or in the preamble of your document.
In the latter case, do not forget \makeatletter and \makeatother !

It is also possible to produce a separate index of citations by using David
Jones’s index package (see Section 11.4.3). It allows you to generate multiple index
lists using the \newindex command. For this to work you must first declare the
list and then associate automatic citation indexing with this list in the preamble:

\usepackage{index}
\newindex{default}{idx}{ind}{Index} % the main index
\newindex{cite}{cdx}{cnd}{Index of Citations}
\renewcommand\citeindextype{cite}

710 Managing Citations

Later on use \printindex[cite] to indicate where the citation index should ap-
pear in the document.

BIBTEX styles for natbib

As mentioned in the introduction, natbib was developed to work with various
BIBTEX styles that implement some form of author-date scheme. In addition to
those third-party styles, natbib works with all styles that can be produced with
the custom-bib bundle (see Section 13.5.2 on page 798). It is distributed with
three styles—abbrvnat, plainnat, and unsrtnat—that are extensions of the cor-
responding standard styles. They have been adapted to work better with natbib, al-
lowing you to use some of its features that would be otherwise unavailable. These
styles also implement a number of extra fields useful in the days of electronic
publications:

doi For use with electronic journals and related material. The Digital Object Iden-
tifier (DOI) is a system for identifying and exchanging intellectual property
in the digital environment, and is supposedly more robust than URLs (see
http://www.doi.org for details). The field is optional.

eid As electronic journals usually have no page numbers, they use a sequence
identifier (EID) to locate the article within the journal. The field is optional
and will be used in place of the page number if present.

isbn The International Standard Book Number (ISBN), a 10-digit unique identifi-
cation number (see www.isbn.org). The ISBN is defined in ISO Standard 2108
and has been in use for more than 30 years. The field is optional.

issn The International Standard Serial Number (ISSN), an 8-digit number that
identifies periodical publications (see www.issn.org). The field is optional.

url The Uniform Resource Locator (URL) for identifying resources on the web.
The field is optional. As URL addresses are typically quite long and are set
in a typewriter font, line-breaking problems may occur. They are therefore
automatically surrounded with a \url command, which is given a simple de-
fault definition if undefined. Thus, by using the url package (see Section 3.1.8),
you can drastically improve the line-breaking situation as then URLs can be
broken at punctuation marks.

12.3.3 bibentry—Full bibliographic entries in running text

Instead of grouping all cited publications in a bibliography, it is sometimes re-
quired to directly typeset the full information the first time a publication is ref-
erenced. To help with this task Patrick Daly developed the bibentry package as a
companion to the natbib package.

12.3 The author-date system 711

\nobibliography{BIBTEX-database-list} \bibentry{key}

This command works as follows: instead of the usual \bibliography command,
which loads the .bbl file written by BIBTEX and typesets the bibliography, you use
\nobibliography with the same list of BIBTEX database files. This command will
read the .bbl and process the information, so that references to entries can be
made elsewhere in the document. To typeset a citation with the full bibliographical
information, use \bibentry . The usual author-date citation can be produced with
any of the natbib commands. Here is an example:

12-3-27

For details see Knuth, D. E., Typesetting
Concrete Mathematics, TUGboat, 10, 31–36, 1989.
General information can be found in Knuth, D. E.,
The TEXbook, vol. A of Computers and Typesetting,
Addison-Wesley, Reading, MA, USA, 1986.

As shown by Knuth [1989] . . .

\usepackage{bibentry,natbib}
\bibliographystyle{agu}

\raggedright \setlength\parindent{12pt}

\nobibliography{tex}
For details see \bibentry{Knuth:TB10-1-31}.
General information can be found in
\bibentry{Knuth-CT-a}.

As shown by \citet{Knuth:TB10-1-31} \ldots

There are a number of points to be noted here: the \nobibliography com- �
Potential pitfallsmand must be placed inside the body of the document but before the first use

of a \bibentry command. In the preamble a \nobibliography will be silently ig-
nored, and any \bibentry command used before it will produce no output. Such
a command is therefore best placed directly after \begin{document}.

Another potential problem relates to the choice of BIBTEX style. The bibentry
package requires the entries in the .bbl file to be of a certain form: they must
be separated by a blank line, and the \bibitem command must be separated
from the actual entry text by either a space or a newline character. This format is
automatically enforced for BIBTEX styles produced with makebst but other BIBTEX
styles may fail, including some that work with natbib.

The \bibentry command automatically removes a final period in the entry
so that the reference can be used in mid-sentence. However, if the entry contains
other punctuation, such as a period as part of a note field, the resulting text might
still read strangely. In that case the only remedy might be to use an adjusted BIBTEX
database entry.

One can simultaneously have a bibliography and use the \bibentry command
to produce full citations in the text. In that case, place the \bibliography com-
mand to produce the bibliography list at the point where it should appear. Di-
rectly following \begin{document}, add the command \nobibliography* . This
variant takes no argument, because the BIBTEX database files are already specified
on the \bibliography command. As a consequence, all publications cited with
\bibentry will also automatically appear in the bibliography, because a single
.bbl file is used.

712 Managing Citations

12.4 The author-number system

As mentioned in the introduction, currently there exists no BIBTEX style file that
implements the author-number system for documents in which the publications
should be numbered individually for each author. If, however, the publications are
numbered sequentially throughout the whole bibliography, then ample support is
provided by BIBTEX and by the natbib package already encountered in conjunction
with the author-date system.

12.4.1 natbib—Revisited

Although originally designed to support the author-date system, natbib is also
capable of producing author-number and number-only references. Both types of
references are provided with the help of BIBTEX styles specially designed for num-
bered bibliographies, similar to the BIBTEX styles normally used for the author-date
style of citations.

By default, natbib produces author-date citations. If you are primarily inter-
ested in citing references according to the number-only or author-number system,
load natbib with the numbers option.

For comparison, we repeat Example 12-3-5 on page 701 with the numbers
option loaded. This option automatically implies the options square and comma;
thus, if you prefer round parentheses, use the option round and overwrite the
default choice.

Goossens et al. [1]
Goossens et al. [1, chap. 2]
Goossens et al. [see 1, chap. 2]
pre-note only: Goossens et al. [see 1]

[1]
[1, chap. 2]
[see 1, chap. 2]
pre-note only: [see 1]

\usepackage[numbers]{natbib}

\citet{LGC97} \\
\citet[chap.~2]{LGC97} \\
\citet[see][chap.~2]{LGC97} \\
pre-note only: \citet[see][]{LGC97} \\[5pt]
\citep{LGC97} \\
\citep[chap.~2]{LGC97} \\
\citep[see][chap.~2]{LGC97} \\
pre-note only: \citep[see][]{LGC97} 12-4-1

As you can see, the \citet command now generates citations according to
the author-number system, while \citep produces number-only citations. In fact,
if natbib is set up to produce numerical citations, LaTEX’s \cite command behaves
like \citep . In author-date mode, natbib makes this command act as short form
for the command \citet .

All variant forms of \citet and \citep , as discussed in Section 12.3.2, are
also available in numerical mode, though only a few make sense. For example,
\citep* gives the same output as \citep , because there are no authors inside
the parentheses.

12.4 The author-number system 713

12-4-2

Goossens, Rahtz, and Mittelbach [1]
Goossens et al.
Goossens, Rahtz, and Mittelbach
1997 or [1997]

\usepackage[numbers]{natbib}

\citet*{LGC97} \\
\citeauthor{LGC97} \\
\citeauthor*{LGC97} \\
\citeyear{LGC97} or \citeyearpar{LGC97}

The commands \citealt and \citealt* should probably not be used, as
without the parentheses the citation number is likely to be misinterpreted. How-
ever, in certain situations \citealp might be useful to obtain that number on its
own and then perhaps use it together with \citetext .

12-4-3

Goossens et al. 1
Goossens, Rahtz, and Mittelbach 1
1
1, p. 236 etc.

\usepackage[numbers]{natbib}

\citealt{LGC97} \\
\citealt*{LGC97} \\
\citealp{LGC97} \\
\citealp[p.~236]{LGC97} etc.

Some journals use numerical citations with the numbers raised as super-
scripts. If loaded with the option super, the natbib package supports this type
of citation. In that case our standard example (compare with Example 12-4-1) will
produce the following:

12-4-4

Goossens et al. 1

Goossens et al. 1, chap. 2
Goossens et al. see1, chap. 2
pre-note only: Goossens et al. see1

1

1 (chap. 2)
1 (chap. 2)
pre-note only:1

\usepackage[super]{natbib}

\citet{LGC97} \\
\citet[chap.~2]{LGC97} \\
\citet[see][chap.~2]{LGC97} \\
pre-note only: \citet[see][]{LGC97} \\[5pt]
\citep{LGC97} \\
\citep[chap.~2]{LGC97} \\
\citep[see][chap.~2]{LGC97} \\
pre-note only: \citep[see][]{LGC97}

As you will observe, the use of the optional arguments produces somewhat ques-
tionable results; in the case of \citep the pre-note will not appear at all. Thus,
with this style of citation, it is usually best to stick to the basic forms of any such
commands.

For superscript citations natbib removes possible spaces in front of the cita-
tion commands so as to attach the number to the preceding word. However, in
contrast to the results produced with the cite package, punctuation characters
will not migrate in front of the citation, nor is there any check for double periods.
To illustrate this we repeat Example 12-2-11 from page 696.

12-4-5

. . . Knuth’s book2; see also
Goossens et al. 1.
. . . Knuth’s book;2 see also
Goossens et al. 1

\usepackage[super]{natbib}

\ldots Knuth’s book~\citep{Knuth-CT-a}; see also \citet{LGC97}.
\par %%% Manually corrected in two places:
\ldots Knuth’s book;\citep{Knuth-CT-a} see also \citet{LGC97}

714 Managing Citations

The packages natbib and cite are unfortunately incompatible (both modify
LaTEX’s internal citation mechanism), so in cases like Example 12-4-5 you have to
change the input if natbib is to be used.

Sorting and compressing numerical citations

As seen in Section 12.2.2 the cite package sorts multiple citations and optionally
compresses them into ranges. This feature is also implemented by natbib and can
be activated through the options sort and sort&compress.

We have already encountered sort in connection with author-date citations.
With numerical citations (i.e., the options numbers and super), the numbers are
sorted. To show the effect we repeat Example 12-2-5 from page 693, except that
we omit the undefined citation.

Good information about TEX
and LATEX can be found in [1, 2, 3,
4].

\usepackage[sort]{natbib} \bibliographystyle{plain}

Good information about \TeX{} and \LaTeX{} can be found in
\citep{LGC97,LWC99,Knuth-CT-a,Knuth:TB10-1-31}. 12-4-6

With the option sort&compress, the numbers are not only sorted but also
compressed into ranges if possible. In author-date citation mode, this option has
the same effect as sort.

Good information about TEX
and LATEX can be found in [1–4].

\usepackage[sort&compress]{natbib}\bibliographystyle{plain}

Good information about \TeX{} and \LaTeX{} can be found in
\citep{LGC97,LWC99,Knuth-CT-a,Knuth:TB10-1-31}. 12-4-7

The rules for selecting numerical mode

As mentioned previously, natbib, by default, works in author-date mode. However,
for the previous two examples, natbib selected numerical mode without being ex-
plicitly told to do so (via the numbers or super option). This result occurs because
the plain BIBTEX style does not carry author-date information in the \bibitem
commands it generates. Whenever there is a single \bibitem without the relevant
information, natbib automatically switches to numerical mode. Even specifying
the option authoryear will not work in that case.

If a BIBTEX style supports author-date mode, then switching to numerical mode
can be achieved by one of the following methods, which are listed here in increas-
ing order of priority:

1. By selecting a \bibliographystyle with a predefined numerical citation
style (e.g., defined in a local configuration file, or in a class or package file).

2. By specifying the option numbers or super, as shown in most examples in
this section.

3. By explicitly using \bibpunct with the fourth mandatory argument set to n
or s (for details, see the package documentation).

12.5 The short-title system 715

4. By explicitly using \citestyle with the name of a predefined numerical bib-
liography style.

Customizing natbib in numerical mode

The majority of options and parameters to customize natbib have already been dis-
cussed on pages 705–707, but in numerical mode there are two more commands
available to modify the produced layout. By default, citation numbers are typeset
in the main body font. However, if you define \citenumfont (as a command with
one argument), it will format the citation number according to its specification.

Similarly, you can manipulate the format of the number as typeset within the
bibliography by redefining \bibnumfmt using \renewcommand .1 The default defi-
nition for this command usually produces square brackets around the number.

12-4-8

Images are discussed elsewhere, see (1, 2).

References
1. M. Goossens, S. Rahtz, and F. Mittelbach. The LATEX

Graphics Companion: Illustrating Documents with
TEX and PostScript. Tools and Techniques for
Computer Typesetting. Addison-Wesley Longman,
Reading, MA, USA, 1997. ISBN 0-201-85469-4.

2. D. E. Knuth. The TEXbook, volume A of Computers
and Typesetting. Addison-Wesley, Reading, MA,
USA, 1986. ISBN 0-201-13447-0.

\usepackage[numbers,round]{natbib}
\bibliographystyle{abbrvnat}
\newcommand\bibfont{\small\raggedright}
\setlength\bibhang{30pt} % ignored!
\setlength\bibsep{1pt plus 1pt}
\newcommand\citenumfont[1]{\textbf{#1}}
\renewcommand\bibnumfmt[1]{\textbf{#1.}}

Images are discussed elsewhere,
see \citep{LGC97,Knuth-CT-a}.

\bibliography{tex}

While \bibsection , \bibpreamble , \bibfont , and \bibsep work as before, the
parameter \bibhang has no effect, since in a numbered bibliography the indenta-
tion is defined by the width of the largest number.

12.5 The short-title system

12.5.1 jurabib—Customizable short-title references

Classifying the jurabib package developed by Jens Berger as a package implement-
ing the short-title system is not really doing it justice (no pun intended), as in fact
it actually supports other citation systems as well.

Besides short-title citations it offers support for author-date citations (by pro-
viding the natbib command interface), various options to handle specific require-
ments from the humanities, and special support for citing juridical works such as
commentaries (hence the name jurabib).

1The package is unfortunately somewhat inconsistent in providing or not providing defaults for
the customization hooks. This means that you have to use either \newcommand or \renewcommand
depending on the context.

716 Managing Citations

The package uses an extended option concept where options are specified
with a “key=value” syntax. The package supports more than 30 options, each of
which may be set to a number of values, covering various aspects of presenting
the citation layout in the text and the references in the bibliography. In this book
we can show only a small selection of these possibilities. For further information
refer to the package documentation, which is available in English and German.

It is inconvenient to handle so many options as part of the \usepackage
Default used for all

examples in this
section!

declaration, so jurabib offers the \jurabibsetup command as an alternative. It
can be used in the preamble or in the package configuration file jurabib.cfg (to
set the defaults for all documents). Settings established when loading the package
or via \jurabibsetup in the preamble will overwrite such global defaults. For the
examples in this section we will use the following defaults

\jurabibsetup{titleformat=colonsep,commabeforerest=true}

and extend or overwrite them as necessary. Their meaning is explained below.
In contrast to natbib, the jurabib package requires the use of specially de-

signed BIBTEX style files. It expects a \bibitem command with a specially struc-
tured optional argument to pass all kinds of information back to the user-level
citation commands (see page 699). These BIBTEX styles also implement a number
of additional fields useful in conjunction with jurabib.

To show the particular features of jurabib, we use the small BIBTEX database
shown in Figure 12.3 on the facing page together with the database used previ-
ously (Figure 12.2 on page 690). If not explicitly documented otherwise, all exam-
ples in this section have the line

\newpage\bibliography{tex,jura}

implicitly appended at the end when processed.

The basic syntax

Like the natbib package, the jurabib package extends the standard LaTEX citation
command \cite with a second optional argument.

\cite[post-note]{key(s)} \cite[annotator][post-note]{key(s)}

If two optional arguments are present, then the post-note argument moves to the
second position, the same behavior found with the natbib syntax. But in the de-
fault set-up there is a big difference in that we do not have a pre-note argument
but rather an annotator argument provided for a citation method used in legal
works.1 In that discipline, works often have an original author (under which the
work is listed in the bibliography) as well as annotators who provide commen-
taries in the particular edition. These annotators are mentioned in the citation but

1See page 721 if you want it to be a pre-note instead.

12.5 The short-title system 717

@BOOK{zpo,
author = {Adolf Baumbach and Wolfgang Lauterbach

and Jan Albers and Peter Hartmann},
title = {Zivilproze\ss ordnung mit

Gerichtsverfassungsgesetz und anderen
Nebengesetzen},

shorttitle = {ZPO},
language = {ngerman},
edition = {59. neubearb.},
year = 2002,
address = {M\"unchen}

}
@BOOK{aschur,

author = {Hans Brox and Wolf-Dietrich Walker},
title = {Allgemeines Schuldrecht},
language = {ngerman},
edition = {29.},
year = 2003,
address = {M\"unchen}

}

@BOOK{bschur,
author = {Hans Brox and Wolf-Dietrich Walker},
title = {Besonderes Schuldrecht},
shorttitle = {BSchuR},
language = {ngerman},
edition = {27.},
year = 2002,
address = {M\"unchen}

}
@BOOK{bgb,

author = {Otto Palandt},
shortauthor= {Otto Palandt},
title = {B\"urgerliches Gesetzbuch},
shorttitle = {BGB},
language = {ngerman},
edition = {62.},
year = 2003,
publisher = {Beck Juristischer Verlag},
address = {M\"unchen}

}

Figure 12.3: Sample BIBTEX database jura.bib

not in the bibliography. Without further adjustments a citation will list only the au-
thor surnames (separated by slashes if there are several authors), followed by the
annotator if present, followed by a possible post-note. If the BIBTEX entry contains
a shortauthor field, then it is used instead of the surnames. If you only want to
specify an annotator , use an empty post-note. By default, a title or short title is
shown only if the author is cited with different works in the same document.

12-5-1

Brox/Walker
Brox/Walker, § 123
Otto Palandt/Heinrichs
Otto Palandt/Heinrichs, § 26

\usepackage{jurabib} \bibliographystyle{jurabib}

\cite{aschur} \\
\cite[\S\,123]{aschur} \\
\cite[Heinrichs][]{bgb} \\
\cite[Heinrichs][\S\,26]{bgb}

As you see, there is no way to determine from the typeset result that “Walker”
is a co-author but “Heinrichs” is an annotator. To make this distinction immedi-
ately visible, jurabib offers a number of options implementing common citation
styles. You can, for example, change the font used for the annotator, or change the
separator between author and annotator. Both of these changes have been speci-
fied in the first part of the next example. You can also move the annotator before
the author, a solution shown in two variants in the second part of the example.

12-5-2

Brox/Walker
Otto Palandt–Heinrichs, § 26
Heinrichs, Otto Palandt, § 26
Heinrichs in: Otto Palandt, § 26

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{annotatorformat=italic,annotatorlastsep=divis}

\cite{aschur} \\ \cite[Heinrichs][\S\,26]{bgb} \\
\jurabibsetup{annotatorfirstsep=comma}
\cite[Heinrichs][\S\,26]{bgb} \\
\jurabibsetup{annotatorfirstsep=in,annotatorformat=normal}
\cite[Heinrichs][\S\,26]{bgb}

718 Managing Citations

Another way to clearly distinguish authors and annotators is to use the op-
tion authorformat with the keyword and (which replaces slashes with commas
and “and”), the keyword dynamic (in which case different fonts are used depend-
ing on whether an annotator is present), or the keyword year (which moves the
publication year directly after the author). The authorformat option can also be
used to influence other aspects of the formatting of author names. Some exam-
ples are shown below. A complete list of allowed keywords is given in the package
documentation. Note that if you use several keywords together (as done below),
you need an additional set of braces to indicate to jurabib where the keyword list
ends and the next option starts.

BROX and WALKER

OTTO PALANDT/HEINRICHS, § 26

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{authorformat={and,smallcaps}}

\cite{aschur} \\ \cite[Heinrichs][\S\,26]{bgb} \par 12-5-3

If the keyword dynamic is used, the annotator’s name is set in italics while the
original author’s name is set in the body font.1 For works without an annotator,
author names are set in italics. One can think of this style as labeling those people
who have actually worked on the particular edition.

Brox/Walker
Otto Palandt/Heinrichs, § 26

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{authorformat=dynamic}

\cite{aschur} \\ \cite[Heinrichs][\S\,26]{bgb} \par 12-5-4

The keywords and, dynamic, and year can be combined, while smallcaps
and italic contradict each other with the last specification winning:

Brox and Walker (2003)
Otto Palandt (2003)/Heinrichs, § 26

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{authorformat={and,smallcaps,year,italic}}

\cite{aschur} \\ \cite[Heinrichs][\S\,26]{bgb} \par 12-5-5

The information passed back by BIBTEX is very detailed and structured into
individual fields whose contents can be accessed using the \citefield command.

\citefield[post-note]{field}{key(s)}

The field argument is one of the following fields from the BIBTEX database entry
referenced by the key argument: author, shortauthor, title, shorttitle, url,
or year. It can also be apy (address-publisher-year combination).

1The fonts used can be customized by redefining the commands \jbactualauthorfont and
\jbactualauthorfontifannotator .

12.5 The short-title system 719

Whether more than a single key is useful is questionable for most fields. In-
deed, even with \cite multiple keys are seldom useful unless no optional argu-
ments are present.

12-5-6

BROX, HANS/WALKER, WOLF-DIETRICH

BSchuR, § 53
Reading, MA, USA: Addison-Wesley Long-
man, 1997
Allgemeines Schuldrecht; Besonderes Schul-
drecht

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{authorformat=smallcaps}

\citefield{author}{aschur} \\
\citefield[\S\,53]{shorttitle}{bschur} \\
\citefield{apy}{LGC97} \\
\citefield{title}{aschur,bschur}

If you are familiar with the German language, you will notice that the hyphen-
ation of “Schul-drecht” is incorrect: it should have been “Schuld-recht”. How to
achieve this hyphenation automatically is explained on page 733.

Citations with short and full titles

As mentioned before, by default jurabib does not include a title in the citation text.
The exception occurs when there are several works cited by the same author, so
that a title is necessary to distinguish between them. This behavior can be changed
in several ways, but first we have a look at the “title” that will be used:

12-5-7

Brox/Walker: Allgemeines Schuldrecht
Brox/Walker: BSchuR

Knuth: The TEXbook
Knuth: TUGboat 10 [1989]

\usepackage{jurabib} \bibliographystyle{jurabib}

\cite{aschur} \\ \cite{bschur} \\[2pt]
\cite{Knuth-CT-a} \\ \cite{Knuth:TB10-1-31}

If you compare the first two lines of the previous example with the BIBTEX
database files listed in Figure 12.3 on page 717, you see that the shorttitle field
was used if available; otherwise, the title field was used. In fact, you will get
a warning from jurabib for this adjustment: “shorttitle for aschur is missing –
replacing with title”. A different approach is taken for entries of type article or
periodical; there, a missing shorttitle is replaced by the journal name, volume
number, and year of publication, which is why we got “TUGboat 10 [1989]”.

\citetitle[post-note]{key(s)} \citetitle[annotator][post-note]{key(s)}
\cite*[post-note]{key(s)} \cite*[annotator][post-note]{key(s)}

To force the production of a title in the citation, you can use \citetitle instead
of \cite . To leave out the title, you can use \cite* . You should, however, be
aware that the latter command can easily lead to ambiguous citations, as shown
in the next example.

12-5-8

Baumbach et al.: ZPO, Brox/Walker, and Brox/
Walker are three different books, or not?

\usepackage{jurabib} \bibliographystyle{jurabib}

\citetitle{zpo}, \cite*{aschur}, and \cite*{bschur}
are three different books, or not?

720 Managing Citations

Also note that this meaning of \cite* is quite different from its use in natbib
(where it denotes using a full list of authors). If you switch between both packages
depending on the circumstances, it might be better to avoid it altogether.

\citetitleonly[post-note]{key}

It is also possible to refer to only the title, including a post-note if desired.

ZPO, § 13
\usepackage{jurabib} \bibliographystyle{jurabib}

\citetitleonly[\S\,13]{zpo} 12-5-9

Short-title citations can be generated by default by specifying the option
Getting short-title

citations
automatically

titleformat and the keyword all. Like authorformat, this option can take sev-
eral keywords. We already know about colonsep, which we used as a default
setting for all the examples. In the next example we overwrite it with commasep
and print the titles in italic.

Brox/Walker, Allgemeines Schuldrecht, § 123
Brox/Walker, BSchuR
Otto Palandt/Heinrichs, BGB
Knuth, TUGboat 10 [1989]

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{titleformat={all,commasep,italic}}

\cite[\S\,123]{aschur} \\ \cite{bschur} \\
\cite[Heinrichs][]{bgb} \\ \cite{Knuth:TB10-1-31} 12-5-10

\citetitlefortype{BIBTEX-type-list} \citenotitlefortype{BIBTEX-type-list}

Instead of citing all works with titles you can select short-title citations based on
a particular BIBTEX type. For example,

\citetitlefortype{article,book,manual}

would reference these three types with the title and all other publication types
without it, unless the author is cited with several works. Since such a list can
grow quite large, alternatively you can select automatic title citations for all works
(with titleformat) and then specify those types that should have no titles when
referenced. This is done in the next example for the type book. Nevertheless, the
book by Knuth is cited with its title, since we also cite an article by him.

Brox/Walker
Goossens/Rahtz
Knuth: The TEXbook
Knuth: TUGboat 10 [1989]

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{titleformat=all} \citenotitlefortype{book}

\cite{bschur} \\ \cite{LWC99} \\
\cite{Knuth-CT-a} \\ \cite{Knuth:TB10-1-31} 12-5-11

Indexing citations automatically

The author names in citations can be entered in the index by using the option
authorformat with the keyword indexed. By default, this is done only for cita-

12.5 The short-title system 721

tions inside the text; authors referred to only in the bibliography are not listed.
This behavior can be changed by setting \jbindexbib in the preamble or in a con-
figuration file. For formatting the index entries, \jbauthorindexfont is available.
For example,

\renewcommand\jbauthorindexfont[1]{\textit{#1}}

means that the author names will appear in italic in the index.
Instead of placing the author names in the main index, you can produce a

separate author index by loading the index package (see Section 11.4.3) and then
using a construction like

\usepackage{index}
\newindex{default}{idx}{ind}{Index} % the main index
\newindex{authors}{adx}{and}{Index of Authors}
\renewcommand\jbindextype{authors}

in the preamble, and later on \printindex[authors] to indicate where the au-
thor index should appear in the document.

No support is available for more elaborate indexes as required for some types
of law books (e.g., “Table of Cases” or “Table of Statutes”). If this is required,
consider using the camel package instead of jurabib.

Using natbib citation semantics

The optional annotator argument is useful only in legal studies. In other disci-
plines, it is more common to require a pre-note (e.g., “compare. . . ”). To account
for this, the meanings of the optional arguments can be modified by loading the
package with the option see.

\cite[pre-note][post-note]{key(s)} (with option see)

The see option replaces the default annotator optional argument with a pre-note
argument in case two optional arguments are used. The \cite command then has
the same syntax and semantics as it does with the natbib package.

12-5-12

(Goossens/Rahtz/Mittelbach)
(Goossens/Rahtz/Mittelbach, chap. 2)

(compare Goossens/Rahtz/Mittelbach)
(see Goossens/Rahtz/Mittelbach, chap. 2)

\usepackage[see,round]{jurabib}
\bibliographystyle{jurabib}

\cite{LGC97} \\
\cite[chap.~2]{LGC97} \\[3pt]
\cite[compare][]{LGC97} \\
\cite[see][chap.~2]{LGC97}

This work was cited as . . .

When using a short-title system for citations (e.g., by setting titleformat to all),
it can be helpful to present the reader with a mapping between the full entry and

722 Managing Citations

the short title. This is commonly done by displaying the short title in parentheses
at the end of the corresponding entry in the bibliography. The jurabib package
supports this convention with the option howcited. It can take a number of key-
words that configure the mechanism in slightly different ways. For example, the
keyword all instructs the package to add “how cited” information to all entries
in the bibliography. Thus, if we add to Example 12-5-10 on page 720 the line

\jurabibsetup{howcited=all}

we will get the following bibliography listing. Note that the short title is formatted
in exactly the same way as it will appear in the citation.

Brox, Hans/Walker, Wolf-Dietrich: Besonderes Schuldrecht. 27th edition. München,
2002 (cited: Brox/Walker, BSchuR)

Brox, Hans/Walker, Wolf-Dietrich: Allgemeines Schuldrecht. 29th edition. München,
2003 (cited: Brox/Walker, Allgemeines Schuldrecht)

Knuth, Donald E.: Typesetting Concrete Mathematics. TUGboat, 10 April 1989, Nr. 1,
31–36, ISSN 0896–3207 (cited: Knuth, TUGboat 10 [1989])

Palandt, Otto: Bürgerliches Gesetzbuch. 62th edition. München: Beck Juristischer Ver-
lag, 2003 (cited: Otto Palandt, BGB) 12-5-13

However, it is usually not necessary to display for all entries how they are
cited. For articles, the short-title citation is always “author name, journal, volume,
and year”. If a work is cited with its full title (i.e., if there is no shorttitle field)
or if only a single publication is cited for a certain author, then the reader will
generally be able to identify the corresponding entry without any further help. To
allow for such a restricted type of “back-references”, jurabib offers the keywords
compare, multiple, and normal.

If you use compare, then a back-reference is created only if the entry contains
a shorttitle field and the title and shorttitle fields differ. With respect to
Example 12-5-13 this means that only the first and last entries would show the
back-references.

If you use multiple instead, then back-references are generated whenever an
author is cited with several works except for citations of articles. In the above
example, the first two entries would get back-references. If we also had a citation
to Knuth-CT-a, then it would also show a back-reference, while Knuth’s article in
TUGboat would be still without one.

Both keywords can be used together. In that case back-references are added
to entries for authors with several publications as well as to entries whose short
titles differ from their main titles.

Finally, there is the keyword normal (it is also used if you specify the option
without a value). This keyword works slightly differently from the others in that

12.5 The short-title system 723

it needs support to be present in the BIBTEX database. If it is used, an entry gets
a back-reference if and only if the BIBTEX field howcited is present. The field can
have two kinds of values. If it has a value of “1”, the back-reference lists exactly
what is shown in the citation in text. With any other value, the actual contents
of the howcited field are used for the back-reference, including any formatting
directives contained therein.

The text surrounding the back-reference can be customized by redefining the
commands \howcitedprefix and \howcitedsuffix . In addition, you can specify
what should happen with entries that have been added via \nocite by changing
\bibnotcited (empty by default). Because these commands may contain text that
should differ depending on the main language of the document, they are redefined
using a special mechanism (\AddTo) that is explained on page 733.

12-5-14

. . . Brox/Walker: BSchuR . . . Knuth . . .

References

Brox, Hans/Walker, Wolf-Dietrich: Besonderes Schuld-
recht. 27th edition. München, 2002 (cited as Brox/
Walker: BSchuR).

Brox, Hans/Walker, Wolf-Dietrich: Allgemeines
Schuldrecht. 29th edition. München, 2003 (not ci-
ted).

Knuth, Donald E.: Typesetting Concrete Mathematics.
TUGboat, 10 April 1989, Nr. 1, 31–36, ISSN 0896–
3207 (cited as Knuth).

\usepackage{jurabib}
\bibliographystyle{jurabib}
\jurabibsetup{howcited=all}
\AddTo\bibsall{%

\renewcommand\howcitedprefix
{ (cited as }%

\renewcommand\howcitedsuffix{).}%
\renewcommand\bibnotcited

{ (not cited).}}

\nocite{aschur}
\ldots \cite{bschur} \ldots
\cite{Knuth:TB10-1-31} \ldots
\bibliography{jura,tex}

Full citations inside the text

While producing full citations inside the text with natbib requires a separate pack-
age and some initial preparation, this citation method is fully integrated in jurabib.
The complete entry can be shown for one or more individual citations, for all cita-
tions, or automatically for only the first citation of a work. This citation method
is most often used in footnotes; see page 726 for information on how to automat-
ically arrange footnote citations.

\fullcite[post-note]{key(s)} \fullcite[annotator][post-note]{key(s)}

This command works like \cite but displays the full bibliographical data.
The annotator , if present, will be placed in front of the citation just as if
annotatorfirstsep=in had been specified.

Compare the next example with Example 12-3-27 from page 711. The keyword
citationreversed arranges for the author name to appear with surname last (in
the bibliography the surname comes first). Related keywords are allreversed

724 Managing Citations

(surname last in text and bibliography) and firstnotreversed (surname first for
first author, last for all others in multiple-author works).

For details see Donald E. Knuth: Typesetting
Concrete Mathematics. TUGboat, 10 April 1989,
Nr. 1, ISSN 0896–3207. General information can
be found in Donald E. Knuth: The TEXbook.
Volume A, Computers and Typesetting. Reading,
MA, USA: Addison-Wesley, 1986, ISBN
0–201–13447–0.

As shown by Knuth (1989) . . .

\usepackage{jurabib}
\bibliographystyle{jurabib}
\jurabibsetup{authorformat=citationreversed}

\raggedright \setlength\parindent{12pt}

For details see \fullcite{Knuth:TB10-1-31}.
General information can be found in
\fullcite{Knuth-CT-a}.

As shown by \citet{Knuth:TB10-1-31} \ldots 12-5-15

The \cite command automatically generates full citations if the citefull
Getting full citations

automatically
option is specified together with one of the following keywords: all (all ref-
erences are full citations), first (first citation is full, subsequent ones are
abbreviated), chapter (same as first but restarts with each chapter), and
section (like chapter but restarts at the \section level). All settings imply
annotatorfirstsep=in, as can be seen in the second citation in the example.
If one of the above settings has been included in the configuration file and you
want to turn it off for the current document, use the keyword false.

See Baumbach, Adolf et al.: Zivilprozeßord-
nung mit Gerichtsverfassungsgesetz und anderen
Nebengesetzen. 59th edition. München, 2002 . . .

As shown by Heinrichs in: Baumbach et al.,
§ 216 the interpretation . . .

\usepackage{jurabib}
\bibliographystyle{jurabib}
\jurabibsetup{citefull=first}

See \cite{zpo} \ldots

As shown by \cite[Heinrichs][\S\,216]{zpo}
the interpretation \ldots 12-5-16

\citefullfirstfortype{BIBTEX-type-list}

Further control is possible by specifying the BIBTEX entry types for which a full
citation should be generated on the first occurrence. In the example below (oth-
erwise similar to Example 12-5-15), we request that only entries of type article
should be subject to this process.

For details see Knuth, Donald E.: Type-
setting Concrete Mathematics. TUGboat, 10
April 1989, Nr. 1, ISSN 0896–3207. Gen-
eral information can be found in Knuth: The
TEXbook.

As shown by Knuth: TUGboat 10 [1989]

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{citefull=first}
\citefullfirstfortype{article}

For details see \cite{Knuth:TB10-1-31}. General
information can be found in \cite{Knuth-CT-a}.

As shown by \cite{Knuth:TB10-1-31} 12-5-17

12.5 The short-title system 725

\nextciteshort{key-list} \nextcitefull{key-list}
\nextcitereset{key-list} \nextcitenotitle{key-list}

Sometimes it is not correct to make the first citation to a work be the full entry,
such as in an abstract or preface. On the other hand, you may want to have a
certain citation show the full entry again, even though it appeared earlier. For this
purpose four commands are available that modify how individual citations are
presented from the given point onward.1

If you use \nextciteshort , all citations specified in the key-list will be type-
set as short-title citations from then on (e.g., lines A, B, D in the example). If
you use \nextcitereset , the citations will (again) be typeset in the normal
way; thus, the next citation will be a full citation if there has not been one
yet (lines C and F) and otherwise citations will be set as short-title citations
(line E). With \nextcitefull , you force full entries from then on (line G). With
\nextcitenotitle , you get only the author name(s), even if it results in ambigu-
ous citations.

12-5-18

A) Knuth: The TEXbook
B) Knuth: TUGboat 10 [1989]
C) Knuth, Donald E.: The TEXbook. Volume A,
Computers and Typesetting. Reading, MA, USA:
Addison-Wesley, 1986, ISBN 0–201–13447–0
D) Knuth: TUGboat 10 [1989]
E) Knuth: The TEXbook
F) Knuth, Donald E.: Typesetting Concrete Mathe-
matics. TUGboat, 10 April 1989, Nr. 1, ISSN 0896–
3207
G) Knuth, Donald E.: The TEXbook. Volume A,
Computers and Typesetting. Reading, MA, USA:
Addison-Wesley, 1986, ISBN 0–201–13447–0
H) Knuth

\usepackage[citefull=first]{jurabib}
\bibliographystyle{jurabib}

\nextciteshort{Knuth-CT-a,Knuth:TB10-1-31}
A) \cite{Knuth-CT-a} \\
B) \cite{Knuth:TB10-1-31} \\
\nextcitereset{Knuth-CT-a}
C) \cite{Knuth-CT-a} \\
D) \cite{Knuth:TB10-1-31} \\
\nextcitereset{Knuth-CT-a,Knuth:TB10-1-31}
E) \cite{Knuth-CT-a} \\
F) \cite{Knuth:TB10-1-31} \\
\nextcitefull{Knuth-CT-a}
\nextcitenotitle{Knuth:TB10-1-31}
G) \cite{Knuth-CT-a} \\
H) \cite{Knuth:TB10-1-31}

If full citations are used within the main document it is not absolutely neces-
sary to assemble them in a bibliography or reference list. You may, for example,
have all citations inline and use a bibliography for suggested further reading or
other secondary material.

\citeswithoutentry{key-list}

This declaration lists those keys that should not appear in the bibliography even
though they are cited in the text. The key-list is a list of comma-separated keys
without any white space. You can repeat this command as often as necessary.

1The command names seem to indicate that they change the “next” citation, but in fact they
change all further citations until they are overwritten.

726 Managing Citations

Think of it as the opposite of \nocite . Both commands are used in the next
example.

This is explained in Brox, Hans/Walker, Wolf-Dietrich:
Allgemeines Schuldrecht. 29th edition. München, 2003.

As shown in Brox/Walker. . .

Selected further reading

Baumbach, Adolf et al.: Zivilprozeßordnung mit
Gerichtsverfassungsgesetz und anderen Nebenge-
setzen. 59th edition. München, 2002

\usepackage{jurabib}
\renewcommand\refname

{Selected further reading}
\bibliographystyle{jurabib}
\citeswithoutentry{aschur}
\jurabibsetup{citefull=first}

This is explained in \cite{aschur}.
\par As shown in \cite{aschur}\ldots
\nocite{zpo}
\bibliography{jura} 12-5-19

While \citeswithoutentry prevents individual works from appearing in the
Suppressing the

bibliography
altogether

bibliography it is not possible to use it to suppress all entries, as you would get
an empty list consisting of just the heading. If you want to omit the bibliography
altogether, use \nobibliography in place of the usual \bibliography command.
This command will read the .bbl file produced by BIBTEX to enable citation refer-
ences, but without producing a typeset result. You still need to specify jurabib
as the BIBTEX style and run BIBTEX in the normal way.

Citations as footnotes or endnotes

All citation commands introduced so far have variants that generate footnote ci-
tations or, when used together with the endnotes package, generate endnotes.
Simply prepend foot to the command name (e.g., \footcite instead of \cite ,
\footcitetitle instead of \citetitle , and so forth). This allows you to mix
footnote and other citations freely, if needed.

The footnote citations produced by jurabib are ordinary footnotes, so you can
influence their layout by loading the footmisc package, if desired.

. . . to use LATEX on the web.∗ Also discussed by Goossens/
Rahtz is generating PDF and HTML.

∗Goossens, Michel/Rahtz, Sebastian: The LATEX Web companion:
integrating TEX, HTML, and XML. Reading, MA, USA: Addison-Wesley
Longman, 1999, Tools and Techniques for Computer Typesetting, ISBN
0–201–43311–7.

\usepackage[ragged,symbol]{footmisc}
\usepackage{jurabib}
\bibliographystyle{jurabib}

\ldots to use \LaTeX{} on the
web.\footfullcite{LWC99}
Also discussed by \cite{LWC99}
is generating PDF and HTML. 12-5-20

If all your citations should be automatically typeset as footnotes, use the
Getting footnote

citations
automatically

super option. In that case jurabib will automatically choose the \foot.. variants,
so \cite will produce \footcite , and so forth. This is shown in the next example.
There we also use citefull=first so that the first footnote looks like the one in
the previous example (to save space we show only the second page, where due to
the ridiculously small height of the example page the last line of that footnote is

12.5 The short-title system 727

carried over). The other two citations are then automatically shortened, with the
third being shortened even further because of the ibidem option (explained on
the following page).

We also use the option lookat, which is responsible for the back-reference
to the earlier note containing the full citation. This option is allowed only if you
simultaneously use the citefull option and have all your initial citations in foot-
notes, as it requires a “number” to refer to.

You have to be careful to use a footnote style that produces unique numbers.
If footnotes are numbered by chapter or by page, for example, then such refer-
ences are ambiguous. This problem can be solved by loading the varioref pack-
age, in which case these back-references will also show page numbers. If varioref
is loaded for other reasons and you do not want page references in this place,
use \jbignorevarioref to suppress them. If footnotes are numbered by chapter,
then an alternative solution is to use the \labelformat declaration as provided
by varioref to indicate to which chapter the footnote belongs:

\labelformat{footnote}{\thechapter--#1}

The lookat option is particularly useful in combination with command
\nobibliography , so that all your bibliographical information is placed in foot-
notes without a summary bibliography.

12-5-21

Also discussed is generating PDF2 and
HTML.3

2Goossens/Rahtz (as in n. 1), chap. 2.
3Ibid., chap. 3–4.

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{super,citefull=first,ibidem,lookat}

\ldots to use \LaTeX{} on the web.\cite{LWC99}
\newpage % Next page shown on the left:

Also discussed is generating PDF\cite[chap.~2]
{LWC99} and HTML.\cite[chap.~3--4]{LWC99}

It is possible to customize the appearance of the back-references by using the
commands \lookatprefix and \lookatsuffix . Both are language dependent,
which is the reason for using the \AddTo declaration (see page 733). The example
sets up a style commonly seen in law citations [21].

12-5-22

Also discussed is generating PDF2 and
HTML.3

2Goossens/Rahtz, supra note 1, chap. 2.
3Goossens/Rahtz, supra note 1, chap. 3–4.

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{super,citefull=first,lookat}
\AddTo\bibsall{\renewcommand\lookatprefix

{, \emph{supra} note }
\renewcommand\lookatsuffix{}}

\ldots to use \LaTeX{} on the web.\cite{LWC99}
\newpage % Next page shown on the left:

Also discussed is generating PDF\cite[chap.~2]
{LWC99} and HTML.\cite[chap.~3--4]{LWC99}

By loading the endnotes package in a set-up similar to the one from the pre-
vious example, you can turn all your citations into endnotes. As you can see, the

728 Managing Citations

endnotes do not have a final period added by default. If you prefer a period, add
the option dotafter with the keyword value endnote.

. . . to typeset with graphics.1 Also discussed is typesetting
music2 and games.3

Notes
1Goossens, Michel/Rahtz, Sebastian/Mittelbach, Frank: The LATEX Graphics

Companion: Illustrating Documents with TEX and PostScript. Reading, MA,
USA: Addison-Wesley Longman, 1997, Tools and Techniques for Computer
Typesetting, ISBN 0–201–85469–4

2Goossens/Rahtz/Mittelbach (as in n. 1), chap. 7
3Goossens/Rahtz/Mittelbach (as in n. 1), chap. 8

\usepackage{jurabib,endnotes}
\bibliographystyle{jurabib}
\jurabibsetup{citefull=first,%

super,lookat}

\ldots to typeset with
graphics.\cite{LGC97} Also
discussed is typesetting
music\cite[chap.~7]{LGC97} and
games.\cite[chap.~8]{LGC97}
\theendnotes 12-5-23

Ibidem—In the same place

In some disciplines it is customary to use the Latin word “ibidem” (abbreviated as
“ibid.” or “ib.”) if you repeat a reference to the immediately preceding citation. The
jurabib package supports this convention in several variants if the option ibidem
is specified. This option must be used with footnote-style citations (e.g., when
using \footcite or with the option super activated).

If ibidem is used without a value (which is the same as using it with the
keyword strict), then the following happens: if a citation refers to the same
publication as the immediately preceding citation on the current page, then it is
replaced by “Ibid.”, if necessary keeping a post-note. You can see this situation
in the next example: the first citation is a short-title citation; the second citation
is identical so we get “Ibid.” with the post-note dropped; and the third and forth
citations refer to different parts of the same publication so we get the post-note
as well. The fifth citation refers to a different publication by the same authors,
so another short-title citation is produced. The sixth citation refers to the same
publication, but the short-title citation is repeated because it is on a new page.
The seventh and eighth citations are again to the other publication, so we get first
a short-title citation and then “Ibid.” with a post-note.

text1 text2,3 text4,5

1 Brox/Walker: BSchuR, § 7.
2 Ibid.
3 Ibid., § 16.
4 Ibid., § 7.
5 Brox/Walker: Allgemeines

Schuldrecht.

text6,7 text8

6 Brox/Walker: Allgemeines
Schuldrecht, § 3.

7 Brox/Walker: BSchuR.
8 Ibid., § 15.

\usepackage[marginal,multiple]{footmisc}
\usepackage[super,ibidem]{jurabib}
\bibliographystyle{jurabib}

text \cite[\S\,7]{bschur}
text \cite[\S\,7]{bschur}

\cite[\S\,16]{bschur}
text \cite[\S\,7]{bschur}
\cite{aschur} \newpage % <---
text \cite[\S\,3]{aschur}

\cite{bschur}
text \cite[\S\,15]{bschur} 12-5-24

12.5 The short-title system 729

If you typeset your document with the class option twoside, then you can
use the keyword strictdoublepage. It means that “Ibid.” will also be used across
page boundaries as long as the preceding citation is still visible (i.e., on the same
spread). Repeating Example 12-5-24 with this setting will change the sixth citation
to “Ibid., §3”.

The ibidem option usually generates a lot of very short footnotes, so it might
be economical to use it together with the para option of footmisc. We also add the
perpage option so that the footnote numbers remain small. Note, however, that
this makes it impossible to use the lookat option because the footnote numbers
are no longer unique.

12-5-25

text1 text2,3 text4,5

1 Brox/Walker: BSchuR,
§ 7. 2 Ibid. 3 Ibid., § 16.
4 Ibid., § 7. 5 Brox/Walker:
Allgemeines Schuldrecht.

text1,2 text3

1 Ibid., § 3. 2 Brox/Walker:
BSchuR. 3 Ibid., § 15.

\usepackage[para,multiple,perpage]{footmisc}
\usepackage{jurabib}
\bibliographystyle{jurabib}
\jurabibsetup{super,ibidem=strictdoublepage}

text \cite[\S\,7]{bschur} text
\cite[\S\,7]{bschur} \cite[\S\,16]{bschur}
text \cite[\S\,7]{bschur} \cite{aschur}
\newpage text \cite[\S\,3]{aschur}
\cite{bschur} text \cite[\S\,15]{bschur}

It is even possible to ignore all page boundaries by using the nostrict key-
word. The reader might find it difficult to decipher the references, however, be-
cause “Ibid.” and the citation to which it refers may be moved arbitrarily far apart.
If necessary, you can disable the ibidem mechanism for the next citation by pre-
ceding it with \noibidem .

12-5-26

A page without
a citation.

This page has
references.2 Or like
this?3

2Ibid.
3Brox/Walker.

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{super,ibidem=nostrict}

\ldots \fullcite{bschur} \ldots
\newpage % page above not shown on the left

A page without a citation.
\newpage This page has references.\cite{bschur}

Or like this? \noibidem\cite{bschur}

The use of “Ibid.” without any further qualification allows you to reference
just the immediately preceding citation. Thus, if citations are frequently mixed,
the mechanism will insert short-title references most of the time. This situation
will change if you use the ibidem option with the keyword name (which automati-
cally implies citefull=first). In that case “Ibid.” will be used with the full name
of the author, thus allowing a reference to an earlier—not directly preceding—
citation. If only the surnames of the authors are required, add the authorformat
option with the keyword reducedifibidem. Its effect is seen in the next exam-
ple, where citations to bschur and zpo alternate. A variant is to always use name
and short title except for the first citation of a publication; this format can be
requested with the keyword name&title.

730 Managing Citations

If the same author is cited with more than one publication, then using
the ibidem option with the name keyword is likely to produce ambiguous ref-
erences. For those citations the jurabib package automatically switches to the
name&title&auto method described below.

text1 text2,3 text4,5 text6

1 Brox, Hans/Walker, Wolf-Dietrich: Besonderes
Schuldrecht. 27th edition. München, 2002, § 7.

2 Brox/Walker, ibid., § 8.
3 Baumbach, Adolf et al.: Zivilprozeßordnung mit

Gerichtsverfassungsgesetz und anderen Nebengesetzen.
59th edition. München, 2002, § 16.

4 Brox/Walker, ibid., § 7.
5 Baumbach et al., ibid.
6 Baumbach et al., ibid., § 3.

\usepackage[marginal,ragged,multiple]{footmisc}
\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{super,ibidem=name}
\jurabibsetup{authorformat=reducedifibidem}

text \cite[\S\,7]{bschur} text
\cite[\S\,8]{bschur} \cite[\S\,16]{zpo}
text \cite[\S\,7]{bschur} \cite{zpo}
text \cite[\S\,3]{zpo} 12-5-27

If name&title&auto was selected (either implicitly or explicitly), then the fol-
lowing happens: the first citation of a publication automatically displays the full
entry (citation 5 in the next example). In case of repeated citations to unambigu-
ous works only the name of the author(s) are shown (citation 8). For ambiguous
citations this will be done only for immediately following citations (citation 4).
However, if there are intervening citations, then the name(s) and short titles are
shown (citations 3, 6, and 7).

text3 text4,5 text6,7 text8

3 Brox, Hans/Walker, Wolf-Dietrich: Allgemeines
Schuldrecht, ibid., § 7.

4 Brox, Hans/Walker, Wolf-Dietrich, ibid., § 8.
5 Baumbach, Adolf et al.: Zivilprozeßordnung mit

Gerichtsverfassungsgesetz und anderen Nebengesetzen.
59th edition. München, 2002, § 16.

6 Brox, Hans/Walker, Wolf-Dietrich: BSchuR, ibid., § 7.
7 Brox, Hans/Walker, Wolf-Dietrich: Allgemeines

Schuldrecht, ibid.
8 Baumbach, Adolf et al., ibid., § 3.

\usepackage[marginal,ragged,multiple]{footmisc}
\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{super,ibidem=name&title&auto}

Full citations: \cite{aschur} \cite{bschur}
not shown on the left!

\newpage
text \cite[\S\,7]{aschur} text
\cite[\S\,8]{aschur} \cite[\S\,16]{zpo}
text \cite[\S\,7]{bschur} \cite{aschur}
text \cite[\S\,3]{zpo} 12-5-28

Another convention in certain disciplines is to replace the author’s name with
the Latin word “Idem” (meaning “the same”) if the author of successive citations
is identical. This is catered for by the option idem, which accepts the keywords
strict, strictdoublepage, and nostrict with the same semantics as used with
the ibidem option. Both options can be combined as shown in the next example.
Due to the keywords used we get different citations: some use “Idem, ibid.”; after
the page break “Idem” is suppressed, because of the option strict; and in the
last three citations it is used again (even with the full citation) because they all
refer to different publications of Donald Knuth.

12.5 The short-title system 731

12-5-29

. . . text1 text2 text3,4. . .

1Knuth, Donald E.: The TEXbook. Vol-
ume A, Computers and Typesetting.
Reading, MA, USA: Addison-Wesley,
1986, ISBN 0–201–13447–0.

2Idem, ibid., p. 22.
3Leunen, Mary-Claire van: A hand-
book for scholars. Walton Street, Ox-
ford OX2 6DP, UK: Oxford University
Press, 92.

4Idem, ibid.

. . . text5 text6 text7 text8,9. . .

5Leunen, Mary-Claire van, ibid.
6Idem, ibid., p. 16.
7Knuth, Donald E.: The TEXbook, ibid.,
p. 308.

8Idem: Typesetting Concrete Mathe-
matics. TUGboat, 10 April 1989, Nr. 1,
ISSN 0896–3207.

9Idem: The TEXbook, ibid., p. 80.

\usepackage[flushmargin,%
multiple]{footmisc}

\usepackage[super,idem=strict,%
ibidem=name]{jurabib}

\bibliographystyle{jurabib}

\ldots text \cite{Knuth-CT-a}
text \cite[p.~22]{Knuth-CT-a}
text \cite{vLeunen:92}
\cite{vLeunen:92}\ldots
\newpage % <--
\ldots text \cite{vLeunen:92}
text \cite[p.~16]{vLeunen:92}
text \cite[p.~308]{Knuth-CT-a}
text \cite{Knuth:TB10-1-31}
\cite[p.~80]{Knuth-CT-a}\ldots

You have to ask yourself whether this type of citation is actually helpful to
your readers. Butcher [29], for example, argues against it. Of course, you may
not have a choice in the matter—it might be required. You should, however, note
that two citations in the previous example are actually wrong: van Leunen is a
female author, so the correct Latin form would be “Eadem” and not “Idem” (though
some style manuals do not make that distinction). If necessary, jurabib offers
possibilities for adjusting your citations even on that level of detail; see page 734.

There is another convention related to recurring citations, though it is becom-
ing less common: to signal that a citation refers to an earlier reference, it is flagged
with op. cit. (opere citato, “in the work cited”). This practice is supported with the
option opcit. The citation should be “close by” so that the reader has a chance
to find it. For this reason jurabib offers the keywords chapter and section in
analogy to the citefull option.

12-5-30

. . . text1 text2 text3 some more text4,5

1Knuth, Donald E.: The TEXbook. Volume A, Computers and Typesetting.
Reading, MA, USA: Addison-Wesley, 1986, ISBN 0–201–13447–0.

2Idem, op. cit., p. 22.
3Free Software Foundation: GNU Make, A Program for Directing Recom-

pilation. 2000.
4Knuth, op. cit.
5Free Software Foundation, op. cit.

\usepackage[multiple]{footmisc}
\usepackage[super,idem=strict,%

citefull=first,opcit]{jurabib}
\bibliographystyle{jurabib}

\ldots text \cite{Knuth-CT-a} text
\cite[p.~22]{Knuth-CT-a} text
\cite{GNUMake} some more text
\cite{Knuth-CT-a}\cite{GNUMake}

In law citations [21], it is common to use the word “supra” to indicate a ref-
erence to a previous citation. This can be accomplished by changing the \opcit
command, which holds the generated string, as follows:

\renewcommand\opcit{\textit{supra}}

Alternatively, you can use the method shown in Example 12-5-22 on page 727.

732 Managing Citations

Cross-referencing citations

BIBTEX supports the notion of cross-references between bibliographical entries via
the crossref field. For example, an entry of type inproceedings can reference
the proceedings issue in which it appears. Depending on the number of references
to such an issue, BIBTEX then decides whether to produce a separate entry for
the issue or to include information about it in each inproceedings entry. See
Section 13.2.5 for details.

If BIBTEX decides to produce separate entries for the cross-referenced citations,
a question arises about what should happen if they are referenced in a \fullcite
or \footfullcite command in the text. To handle this situation jurabib offers
three keywords applicable to the crossref option: with the keyword normal (the
default), cross-references are typeset as an author/editor, title combination
(or shortauthor, shorttitle if available); with the keyword short, only the
author or editor is used as long as there are no ambiguities; and with the key-
word long, cross-references are listed in full. The default behavior is shown below
(where the editors and the short title were selected by jurabib).

Mittelbach, Frank/Rowley, Chris: The Pursuit of Quality: How
can Automated Typesetting achieve the Highest Standards of Craft Ty-
pography? In Vanoirbeek/Coray: EP92

Southall, Richard: Presentation Rules and Rules of Composition
in the Formatting of Complex Text. In Vanoirbeek/Coray: EP92

Mittelbach/Rowley

\usepackage{jurabib}
\jurabibsetup{citefull=first,

crossref=normal}
\bibliographystyle{jurabib}

\cite{MR-PQ} \par
\cite{Southall} \par
\cite{MR-PQ} 12-5-31

You can combine any of the three keywords with the keyword dynamic, in
which case a cross-reference is given in a longer form when cited the first time and
in the shorter form on all later occasions. Here we combine it with the keyword
long so that we get a full citation to Vanoirbeek/Coray in the first citation and a
short title citation in the second.

Frank Mittelbach/Chris Rowley: The Pursuit of Quality: How can
Automated Typesetting achieve the Highest Standards of Craft Typog-
raphy? In Christine Vanoirbeek/Giovanni Coray, editors: EP92—
Proceedings of Electronic Publishing, ’92. Cambridge: Cambridge
University Press, 1992

Richard Southall: Presentation Rules and Rules of Composition in
the Formatting of Complex Text. In Vanoirbeek/Coray: EP92

\usepackage{jurabib}
\jurabibsetup{citefull=first,

authorformat=
citationreversed,

crossref={dynamic,long}}
\bibliographystyle{jurabib}

\cite{MR-PQ} \par
\cite{Southall} 12-5-32

Author-date citation support

As mentioned earlier, jurabib supports the commands \citet and \citep as in-
troduced by natbib. It also offers \citealt , \citealp , \citeauthor , \citeyear ,
and \citeyearpar . Those forms for which it makes sense are also available as

12.5 The short-title system 733

footnote citations by prefixing the command name with foot (e.g., \footcitet).
Not provided are the starred forms available with natbib.

12-5-33

Goossens/Rahtz (1999)
Goossens/Rahtz (1999, chap. 2)
see Goossens/Rahtz (1999, chap. 2)
pre-note only: see Goossens/Rahtz (1999)

(Goossens/Rahtz, 1999)
(Goossens/Rahtz, 1999, chap. 2)
(see Goossens/Rahtz, 1999, chap. 2)
pre-note only: (see Goossens/Rahtz, 1999)

Knuth, 1986
Knuth
(1986)

\usepackage{jurabib}
\bibliographystyle{jurabib}

\citet{LWC99} \\
\citet[chap.~2]{LWC99} \\
\citet[see][chap.~2]{LWC99} \\
pre-note only: \citet[see][]{LWC99} \\[5pt]
\citep{LWC99} \\
\citep[chap.~2]{LWC99} \\
\citep[see][chap.~2]{LWC99} \\
pre-note only: \citep[see][]{LWC99} \\[5pt]
\citealp{Knuth-CT-a} \\
\citeauthor{Knuth-CT-a} \\
\citeyearpar{Knuth-CT-a}

A combination of author-date and short-title citations is achieved by setting
authorformat=year, as already introduced in Example 12-5-5. The formatting of
the year can be influenced with \jbcitationyearformat , and the position of the
date can be moved after the title (if present) by specifying \jbyearaftertitle .

12-5-34

Brox/Walker 2003
Otto Palandt/Heinrichs 2003, § 26

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{authorformat=year,annotatorformat=italic}
\renewcommand\jbcitationyearformat[1]{\oldstylenums{#1}}
\jbyearaftertitle

\cite{aschur} \\ \cite[Heinrichs][\S\,26]{bgb}

Language support

Most strings that are generated automatically in a bibliography entry or as part
of a full citation, are language dependent; they depend on the main language of
the document. The jurabib package supports this by collaborating with the babel
package. Depending on the main language of the document (determined by the
last option to the babel package), jurabib loads a special language definition file
(extension .ldf) that contains definitions for all kinds of commands that produce
textual material within citations and bibliography entries. At the moment approx-
imately 10 languages are supported. These language files (e.g., enjbbib.ldf for
English) are a good source for finding out details about customization possibili-
ties. To modify such a command from such files for a particular language (or for
all languages), jurabib offers the \AddTo declaration.

\AddTo\bibsall{code} \AddTo\bibs〈language〉{code}

The declaration \AddTo takes two arguments: a command name that holds all
language-related definitions for one language and the code that should be added

734 Managing Citations

to this storage place.1 The first argument is either \bibsall , in which case code
is used for all languages, or \bibs〈language〉 (e.g., \bibsgerman), in which case
code is applied for that particular language.2 In Example 12-5-14 on page 723 and
Example 12-5-22 on page 727 we used \AddTo to change the presentation of back-
references for all languages, by adding the redefinitions to \bibsall . Below we
shorten the “Ibid.” string when typesetting in the English language. The default
for other languages is left unchanged in this case.

Some text1 and2 or3 and more text.4

1van Leunen: A handbook for scholars.
2Ib.
3Knuth, Donald E.: The TEXbook. Volume A,

Computers and Typesetting. Reading, MA, USA:
Addison-Wesley, 1986, ISBN 0–201–13447–0.

4Knuth, Donald E., ib.

\usepackage[super,ibidem,titleformat=all]{jurabib}
\AddTo\bibsenglish{\renewcommand\ibidemname{Ib.}%

\renewcommand\ibidemmidname{ib.}}
\bibliographystyle{jurabib}

Some text\cite{vLeunen:92} and\cite{vLeunen:92}
\jurabibsetup{ibidem=name} % <-- change convention
or\cite{Knuth-CT-a} and more text.\cite{Knuth-CT-a} 12-5-35

While certain strings—calling an editor (\editorname) “(Hrsg.)”, for example—
should clearly be consistent throughout the whole bibliography, certain other
aspects—most importantly, hyphenation—depend on the language used in the ac-
tual entry. For instance, a book with a German title should be hyphenated with Ger-
man hyphenation patterns, regardless of the main language of the document. This
is supported by jurabib through an extra field (language) in the BIBTEX database
file. If that field is specified in a given entry, then jurabib assumes that the title
should be set in that particular language. Thus, if hyphenation patterns for that
language are available (i.e., loaded in the format), they will be applied. For instance,
if we repeat the last part of Example 12-5-6 from page 719 with babel loaded, we
get the correct hyphenation:

Allgemeines Schuldrecht; Besonderes Schuld-
recht

\usepackage[ngerman,english]{babel}
\usepackage{jurabib} \bibliographystyle{jurabib}

\citefield{title}{aschur,bschur} 12-5-36

Distinguishing the author’s gender

Earlier, we mentioned that the female form of “Idem” is “Eadem”. In the German
language, we have “Derselbe” (male), “Dieselbe” (female), “Dasselbe” (neuter), and
“Dieselben” (plural). To be able to distinguish the gender of the author, jurabib
offers the BIBTEX field gender, which takes a two-letter abbreviation for the gender
as its value.

1The babel package uses a similar mechanism with the \addto declaration.
2Unfortunately, jurabib does not use exactly the same concept as babel. If you specify ngerman

with babel to get German with new hyphenation patterns, then this is mapped to german, so you
have to update \bibsgerman . If you use any of the dialects (e.g., austrian), then jurabib will not
recognize those and will use english after issuing a warning. In that case use \bibsall for changing
definitions.

12.5 The short-title system 735

gender Meaning In Citation In Bibliography
sf single female \idemSfname , \idemsfname \bibidemSfname , \bibidemsfname
sm single male \idemSmname , \idemsmname \bibidemSmname , \bibidemsmname
pf plural female \idemPfname , \idempfname \bibidemPfname , \bibidempfname
pm plural male \idemPmname , \idempmname \bibidemPmname , \bibidempmname
sn single neuter \idemSnname , \idemsnname \bibidemSnname , \bibidemsnname
pn plural neuter \idemPnname , \idempnname \bibidemPnname , \bibidempnname

Table 12.1: Gender specification in jurabib

Possible values and the commands that contain the “Idem” strings, if spec-
ified, are given in Table 12.1. The commands with an uppercase letter in their
name are used at the beginning of a sentence, the others in mid-sentence. Those
starting with \bibidem.. are used in the bibliography if the option bibformat
with the keyword ibidem is specified. Since the feature is computing intensive, it
is not activated by default but has to be requested explicitly. Thus, to change to
“Eadem” in case of female authors, we have to specify values for \idemSfname and
\idemsfname and use the option lookforgender.

12-5-37

Some text1 and2 or3 and more text.4

1van Leunen: A handbook for scholars.
2Eadem: A handbook for scholars.
3Knuth: The TEXbook.
4Idem: The TEXbook.

\usepackage[super,idem=strict,titleformat=all,
lookforgender=true]{jurabib}

\AddTo\bibsenglish{\renewcommand\idemSfname{Eadem}%
\renewcommand\idemsfname{eadem}}

\bibliographystyle{jurabib}

Some text\cite{vLeunen:92} and\cite{vLeunen:92}
or\cite{Knuth-CT-a} and more text.\cite{Knuth-CT-a}

Customizing the in-text citation layout further

Most of the author and title formatting is handled by the options authorformat
and titleformat, which were discussed earlier. There also exist a few more op-
tions and commands that we have not mentioned so far.

If the whole citation should be surrounded by parentheses, simply specify the
option round or square.

To place information about the edition as a superscript after the short title,
specify the option superscriptedition. With a value of all this will be applied
to all short-title citations, with the keyword commented applying only to publica-
tions of type commented, and with the keyword multiple applying only to pub-
lications that are cited with several different editions. The last two options are
primarily intended for juridical works.

12-5-38

[Baumbach et al.: ZPO59]
[Brox/Walker27, § 3]
[Otto Palandt/Heinrichs62]

\usepackage{jurabib} \bibliographystyle{jurabib}
\jurabibsetup{square,superscriptedition={all}}

\citetitle{zpo}\\ \cite[\S\,3]{bschur}\\ \cite[Heinrichs][]{bgb}

736 Managing Citations

Alternatively, you can explicitly specify in the BIBTEX database for each entry
whether the edition should be shown as a superscript by setting the special field
ssedition to the value 1 and by using the option superscriptedition with the
keyword switch.

By specifying authorformat=and you will get author names separated by com-
mas and “and” (actually by \andname , a command that has different values in
different languages). But you cannot have the second and third author names sep-
arated by “, and” in this way. For adjustments on such a fine level, you can rede-
fine \jbbtasep (between two authors separation), \jbbfsasep (between first and
second authors separation), and \jbbstasep (between second and third authors
separation).1

(Brox and Walker)
(Goossens, Rahtz, and Mittelbach)

\usepackage[round]{jurabib}
\renewcommand\jbbtasep{ and } \renewcommand\jbbfsasep{, }
\renewcommand\jbbstasep{, and } \bibliographystyle{jurabib}

\cite{aschur} \\ \cite{LGC97} 12-5-39

You may also want to manually specify the fonts used for the author
names and the short title, instead of relying on the possibilities offered by
the supplied options. For this you have \jbauthorfont , \jbannotatorfont ,
\jbactualauthorfont , \jbauthorfontifannotator , and \jbtitlefont at
your disposal, all of which are commands with one argument.

Customizing the bibliography layout

The formatting of the bibliography in standard LaTEX or with natbib is largely con-
trolled by the used BIBTEX style file or, if the bibliography entries are manually
produced, by the formatting directives entered by the user. For example, a cita-
tion to the entry Knuth-CT-a from our sample database would be formatted by
natbib’s plainnat as follows:

Donald~E. Knuth.
\newblock {\em The {\TeX}book}, volume~A of {\em Computers and Typesetting}.
\newblock Ad{\-d}i{\-s}on-Wes{\-l}ey, Reading, MA, USA, 1986.

This means that formatting decisions, such as using emphasis for the title of the
book and the series, and the presentation of the “volume” field, have all been
made by the BIBTEX style file.

In contrast, the BIBTEX styles that come with the jurabib package use a dras-
tically different approach: their output is highly structured, consisting of a large
number of LaTEX commands, so that the final formatting (as well as the order of
elements to some extent) can still be tweaked on the LaTEX level. In fact, they have
to be adjusted on that level if you are not satisfied with the formatting produced

1No other possibilities are needed, since jurabib always uses “et al.” whenever there are four or
more authors.

12.5 The short-title system 737

from their default definitions. For example, the same citation as above processed
with the jurabib BIBTEX style results in the following entry:

\jbbibargs {\bibnf {Knuth} {Donald~E.} {D.~E.} {} {}} {Donald~E. Knuth} {au}
{\bibtfont {The {\TeX}book}\bibatsep\ \volumeformat {A} Computers and
Typesetting\bibatsep\ \apyformat {Reading, MA, USA\bpubaddr {}
Ad{\-d}i{\-s}on-Wes{\-l}ey\bibbdsep {} 1986} \jbPages{ix + 483}\jbisbn {
0--201--13447--0}} {\bibhowcited} \jbdoitem \bibAnnoteFile {Knuth-CT-a}

Most of the above commands are further structured. The \bibnf command takes
five arguments (the different parts of the author’s name) and, depending on which
are nonempty, passes them on to commands like \jbnfIndNoVonNoJr (name with-
out “von” and “Junior” parts) for further processing. Consequently, it is possible
to interact with this process at many levels so that all kinds of requirements can
be catered for, although this somewhat complicates the customization of the lay-
out. For this reason we restrict ourselves to showing just the most important
customization possibilities. For further control strategies, consult the package
documentation.

In the default set-up, the formatting of the bibliography is fairly independent
of that used for the citations. If you specify authorformat=italic, author names
are typeset in italics in the text but there is no change in the bibliography. The
easiest way to change that is to use the option biblikecite; then formatting
decisions for the citations will also be used in the bibliography as far as possible.
If that is not desired or not sufficient, explicit formatting directives are available;
they are discussed below.

The fonts used in a bibliographical entry are controlled by the following set of
commands: \biblnfont and \bibfnfont for formatting the last and first names
of the author, and \bibelnfont and \bibefnfont for the last and first names
of the editor, if present. The command \bibtfont is used for titles of books,
\bibbtfont for titles of essays (i.e., entries involving a BIBTEX booktitle field),
and \bibjtfont for titles, or rather names, of journals. The font for article titles
within such a journal is customized with \bibapifont . The commands all receive
the text they act upon as an argument, so any redefinition must also use an ar-
gument or \text.. font commands as shown in the next example (picking the
argument up implicitly).

12-5-40

KNUTH, DONALD E.: The TEXbook. Volume A,
Computers and Typesetting. Reading, MA,
USA: Addison-Wesley, 1986, ix + 483, ISBN
0–201–13447–0

KNUTH, DONALD E.: “Typesetting Concrete
Mathematics”. TUGboat, 10 April 1989,
Nr. 1, 31–36, ISSN 0896–3207

\usepackage{jurabib}
\bibliographystyle{jurabib}
\renewcommand\biblnfont{\MakeUppercase}
\renewcommand\bibfnfont{\textsc}
\renewcommand\bibtfont {\textsf}
\renewcommand\bibapifont[1]{\textit{‘‘#1’’}}

\nocite{Knuth-CT-a,Knuth:TB10-1-31}
\bibliography{tex}

738 Managing Citations

The punctuation separating different parts in the entry can be customized by
another set of commands: \bibansep sets the punctuation and space after the
author name, \bibeansep does the same after the editor name, \bibatsep pro-
duces punctuation after the title (the space is already supplied!), and \bibbdsep
is the punctuation before the date. With \bibjtsep the journal title separation is
set. There are similar commands for adjusting other parts.1 In the next example
we use these commands to remove the default colon after the author’s name and
then typeset a semicolon after the title, no comma before the year, and the word
“in” before the journal name. We also use the dotafter option with the keyword
bibentry to add a final period after each entry.

Knuth, Donald E. Typesetting Concrete Mathematics; in TUGboat,
10 April 1989, Nr. 1, 31–36, ISSN 0896–3207.

Mittelbach, Frank/Rowley, Chris The Pursuit of Quality: How can
Automated Typesetting achieve the Highest Standards of Craft
Typography? In Vanoirbeek/Coray EP92, 261–273.

Vanoirbeek, Christine/Coray, Giovanni, editors EP92—
Proceedings of Electronic Publishing, ’92; Cambridge:
Cambridge University Press 1992.

\usepackage[dotafter=bibentry]
{jurabib}

\bibliographystyle{jurabib}
\renewcommand\bibjtsep{in }
\renewcommand\bibansep{ }
\renewcommand\bibatsep{;}
\renewcommand\bibbdsep{}

\nocite{Knuth:TB10-1-31,MR-PQ}
\bibliography{tex} 12-5-41

We already saw that the separation between different author names in a cita-
tion can be adjusted by means of the authorformat option and various keywords.
However, except for the keyword allreversed, this has no effect on the entries
in the bibliography. To modify the formatting there, you have to redefine the com-
mands \bibbtasep , \bibbfsasep , and \bibbstasep . The naming convention is
the same as for the corresponding citation commands. A similar set of commands,
\bibbtesep , \bibbfsesep , and \bibbstesep , is available to specify the separa-
tion between editor names in an entry.

Hans Brox and Wolf-Dietrich Walker: Allgemeines Schuld-
recht. 29th edition. München, 2003

Michel Goossens, Sebastian Rahtz, and Frank Mittelbach:
The LATEX Graphics Companion: Illustrating Documents
with TEX and PostScript. Reading, MA, USA: Addison-
Wesley Longman, 1997, Tools and Techniques for Com-
puter Typesetting, xxi + 554, ISBN 0–201–85469–4

\usepackage[authorformat=allreversed]
{jurabib}

\bibliographystyle{jurabib}
\renewcommand\bibbtasep{ and }
\renewcommand\bibbfsasep{, }
\renewcommand\bibbstasep{, and }

\nocite{aschur,LGC97}
\bibliography{tex,jura} 12-5-42

The main option for influencing the general layout of the bibliography listAdjusting the
general layout of
the bibliography

is bibformat, which can take a number of keywords as its value. If you specify
the keyword nohang, then the default indentation (of 2.5em) for the second and

1This area of jurabib is somewhat inconsistent in its naming conventions and command behavior.
Perhaps this will change one day.

12.5 The short-title system 739

subsequent lines of a bibliographical entry is suppressed. Alternatively, you can
explicitly set the indentation by changing the dimension parameter \jbbibhang,
as in the next example. There we also use the keywords compress (using less space
around entries) and raggedright (typesetting entries unjustified). For improved
quality, especially when typesetting to a small measure, you may want to load
the package ragged2e. Note the use of the newcommands option to overload the
standard \raggedright (as used by jurabib) with \RaggedRight .

12-5-43

Brox, Hans/Walker, Wolf-Dietrich: Allgemeines Schuldrecht.
29th edition. München, 2003

Baumbach, Adolf et al.: Zivilprozeßordnung mit Gerichtsver-
fassungsgesetz und anderen Nebengesetzen. 59th edition.
München, 2002

Brox, Hans/Walker, Wolf-Dietrich: Besonderes Schuldrecht.
27th edition. München, 2002

\usepackage[newcommands]{ragged2e}
\usepackage[bibformat={compress,%

raggedright}]
{jurabib}

\bibliographystyle{jurunsrt}
\setlength\jbbibhang{1pc}

\nocite{aschur,zpo,bschur}
\bibliography{jura}

If you use the keyword tabular, then the bibliography is set in a two-column
table with the left column containing the author(s) and the right column the re-
mainder of the entry. By default, the first column is one third of \textwidth and
both columns are set ragged. The defaults can be changed by redefining a number
of commands, as shown in the next example. The width of the right column is
specified by

\renewcommand\bibrightcolumn{\textwidth-\bibleftcolumn-\bibcolumnsep}

Normally it is enough to change \bibleftcolumn and/or \bibcolumnsep . The
calc package is automatically loaded by jurabib, so we can make use of it when
specifying dimensions.

12-5-44

Brox, Hans/
Walker,
Wolf-Dietrich

Allgemeines Schuldrecht.
29th edition. München, 2003

Knuth, Donald E. Typesetting Concrete Math-
ematics. TUGboat, 10 April
1989, Nr. 1, 31–36, ISSN
0896–3207

Free Software
Foundation

GNU Make, A Program
for Directing Recompilation.
2000

\usepackage[bibformat=tabular]{jurabib}
\bibliographystyle{jurabib}
\renewcommand\bibleftcolumn{6.5pc}
\renewcommand\bibcolumnsep{1pc}
\renewcommand\bibleftcolumnadjust

{\raggedright}
\renewcommand\bibrightcolumnadjust{}

\nocite{aschur,Knuth:TB10-1-31}
\nocite{GNUmake}
\bibliography{tex,jura}

If you use the keyword numbered, the bibliography will be numbered even
though the actual citations in the text use the author-date or short-title scheme.
Currently, it is impossible to refer to those numbers.

740 Managing Citations

Some publishers’ house styles omit the author’s name (or replace it by
a dash or other character) if that author is cited with several works. This is
supported through the keyword ibidem, which by default generates “Idem” or,
more precisely, the result from executing \bibidemSmname . To get a (prede-
fined) rule instead, use \jbuseidemhrule . If you want something else, redefine
\bibauthormultiple . Both possibilities are shown in the next example. The
jurabib package automatically detects if an entry appears on the top of a page
and will use the author name in that case. Because of this mechanism it may take
several (extra) LaTEX runs before the document compiles without “Rerun to get. . . ”

Brox, Hans/Walker, Wolf-Dietrich: Besonderes Schuldrecht.
27th edition. München, 2002

Allgemeines Schuldrecht. 29th edition. München, 2003

Knuth, Donald E.: The TEXbook. Volume A, Computers and
Typesetting. Reading, MA, USA: Addison-Wesley, 1986,
ix + 483, ISBN 0–201–13447–0

Typesetting Concrete Mathematics. TUGboat, 10 April
1989, Nr. 1, 31–36, ISSN 0896–3207

\usepackage[bibformat=ibidem]
{jurabib}

\bibliographystyle{jurabib}
\jbuseidemhrule % use default rule
% Alternative generic redefinition
% instead of the default rule:
%\renewcommand\bibauthormultiple
% {[same name symbol]}

\nocite{aschur,bschur}
\nocite{Knuth-CT-a,Knuth:TB10-1-31}
\bibliography{tex,jura} 12-5-45

A variant bibliography layout collecting works under the author names is
available through the keyword ibidemalt. This keyword automatically implies
the keyword compress.

Baumbach, Adolf et al.:
� Zivilprozeßordnung mit Gerichtsverfassungsgesetz und an-

deren Nebengesetzen. 59th edition. München, 2002

Brox, Hans/Walker, Wolf-Dietrich:
� Besonderes Schuldrecht. 27th edition. München, 2002

� Allgemeines Schuldrecht. 29th edition. München, 2003

Palandt, Otto:
� Bürgerliches Gesetzbuch. 62th edition. München: Beck Ju-

ristischer Verlag, 2003

\usepackage{jurabib}
\jurabibsetup{bibformat=ibidemalt}
\bibliographystyle{jurabib}

\nocite{aschur,bschur,zpo,bgb}
\bibliography{jura} 12-5-46

If you want to produce an annotated bibliography, use the option annote. If
Annotated

bibliographies
the current BIBTEX entry has an annote field, it will be typeset after the entry using
\jbannoteformat to format it (the default is to typeset it in \small). If there is
no annote field, then jurabib searches for a file with the extension .tex and the
key of the entry as its base name. If this file exists, its contents will be used as the
annotation text.

12.5 The short-title system 741

12-5-47

Knuth, Donald E.: The TEXbook. Vol-
ume A, Computers and Typeset-
ting. Reading, MA, USA: Ad-
dison-Wesley, 1986, ix + 483,
ISBN 0–201–13447–0

The authoritative user man-
ual on the program TEX by
its creator.

\begin{filecontents}{Knuth-CT-a.tex}
The authoritative user manual on the program \TeX{}
by its creator.

\end{filecontents}
\usepackage[annote]{jurabib}\bibliographystyle{jurabib}
\renewcommand\jbannoteformat[1]
{{\footnotesize\begin{quote}#1\end{quote}}}

\nocite{Knuth-CT-a}
\bibliography{tex}

Since it is a nuisance to have many files (one for each annotation) cluttering
your current directory, jurabib offers a search path declaration in analogy to the
\graphicspath command provided by the graphics package. Thus, after

\bibAnnotePath{{./books}{./articles}}

annotation files are searched for in the subdirectories books and articles of the
current directory.

Using external configuration files

Customization of jurabib is possible on two levels: by specifying options or, for
finer control, by redefining certain declarations or executing commands. In the
previous sections we have already encountered a number of package options to-
gether with the keywords they accept but they represented less than a third of
what is available. In the default configuration file jurabib.cfg, you will find
a \jurabibsetup declaration listing all options together with all their keyword
values—nearly 100 possibilities in total. They are all commented out so that you
can produce your own configuration file by copying the default one and uncom-
menting those options you want to execute normally. If you save this configura-
tion in a file with extension .cfg, you can load it instead of the default configura-
tion by using the config option. For example,

\usepackage[config=law]{jurabib}

will load the option file law.cfg, which should contain a \jurabibsetup declara-
tion and possibly some additional customization commands. For example, such a
file might contain

\jurabibsetup{lookat,opcit,commabeforerest,titleformat=colonsep}
\renewcommand\opcit{\textit{supra}}

and perhaps some other initializations to implement citations for juridical publi-
cations. As mentioned earlier, such defaults stored in a file can be overwritten by
using additional options during loading or with a \jurabibsetup declaration in
the preamble.

742 Managing Citations

BIBTEX styles for jurabib

The jurabib package is distributed together with four BIBTEX style files: jurabib,
jureco, jurunsrt, and jox. They differ only in minor details: jureco produces a
slightly more compact bibliography, leaving out some data, while jurunsrt is the
same as jurabib without sorting, so that the references appear in order of their
citation in the document. The jox style produces references in “Oxford style”.
Since jurabib requires very specially formatted \bibitem commands, the above
styles are currently the only ones that can be used together with the package.

All four styles provide a number of additional BIBTEX entries as well as a num-
ber of additional fields for existing entries. Having additional fields in a BIBTEX
database is usually not a problem, since BIBTEX ignores any field it doesn’t know
about. Thus, such a database can be used with other BIBTEX styles that do not pro-
vide these fields. Additional entries are slightly different, since using them means
you have to use jurabib to be able to refer to them.

The additional entries are www for citing a URL, periodical for periodicalsAdditional BIBTEX
types that are not cited by year but by volume number, and commented for commen-

taries in juridical works.
The standard BIBTEX fields are described in Table 13.2 on page 765. The fol-

lowing additional fields are available when using one of the jurabib BIBTEX styles:

annote An annotation that is typeset if jurabib is used with the option annote;
see page 740 for details.

booktitleaddon Extra information to be typeset after a booktitle text of a
collection.

dissyear Year of a dissertation, habilitation, or other source if that work is also
being published as a book (perhaps with a different year).

editortype Position of the person mentioned in the editor field (if not really
an “editor”).

flanguage Foreign language, in case of a translated work.

founder In juridical works, the original founder of a publication (in contrast
to the editor). The name is shown followed by the replacement text of
\foundername , which defaults to “�(Begr.)”.

gender Gender of the author or authors. The jurabib package uses this informa-
tion to select the right kind of words for “Idem” in the current language; see
page 734.

howcited Text to use for back-reference information, or 1 to indicate that a nor-
mal back-reference should be generated. This field is evaluated by the option
howcited if used together with the keyword normal; see page 721.

oaddress/opublisher/oyear Information about the first edition of a work.

12.5 The short-title system 743

shortauthor Text to use as the author information in a short-title citation. By de-
fault, jurabib automatically selects the last name (or names) from the author
or editor field.

shorttitle Text to use as the title information in a short-title citation. If it is
not specified the whole title is used.

sortkey String to be used for sorting in unusual situations. To sort “von Bis-
marck, Otto” under B, you can use sortkey="Bismarck, Otto von".

ssedition Flag to indicate that this entry should be typeset with the edition
shown as a superscript. It requires the use of the superscriptedition op-
tion together with the keyword switch; see page 735.

titleaddon Extra information to be placed after a title but not used, for example,
when generating a short title.

totalpages Total number of pages in a publication. If present, it will be shown
followed by the replacement text of the command \bibtotalpagesname ,
which is language dependent.

translator Translator of the publication.

updated Date of the last update in a loose-leaf edition or a similar work. The field
is only available for the BIBTEX type commented. By default, “last update date”
is generated. This can be customized through the commands \updatename
and \updatesep .

urldate Date when a URL was known to be current. By default, jurabib produces
the string “visited on date” when this field is used. It can be changed by re-
defining the command \urldatecomment .

url A URL related to the current publication. In case of the entry type www, it is
required; otherwise, it is optional.

volumetitle A volume title that follows the volume number in the presenta-
tion. This field is available for the types book, commented, incollection, and
inbook.

12.5.2 camel—Dedicated law support

Anyone who needs to comply with the conventions used in (Anglo-American) legal
works may also be interested in the camel “bibliography engine” [15, 16] written
by Frank Bennett, Jr., in 1997. It implements citation conventions as specified
in the Blue Book [21] (though for an earlier edition) and offers features such as
classified citations. It can be used to generate table of cases, statutes, and much
more. However, as camel is currently not being developed any further (volunteers
welcome), one has to take some rough edges in the software as features.

744 Managing Citations

In contrast to the packages described so far, camel uses its own set
of commands to specify citations (\source instead of \cite), bibliographi-
cal databases (\citationdata instead of \bibliography), citation conventions
(\citationstyle instead of \bibliographystyle), and printed bibliographies
(\printbibliography as the second part of the functionality of \bibliography).

The next example shows these commands in action. The \source command
takes an optional first argument in which one can specify what kind of citation
should be given (e.g., “f” for full reference, “t” for title omitted, “a” for author
name omitted). A second optional argument after the key can be used to specify
page numbers in the reference.

An interesting feature is that the package recognizes so-called interword con-
nectors between citations (e.g., “see-also” and “cited-in” in our example). As
a result those citations are considered to belong together and are automatically
placed into the same footnote.

. . . text 1 . . . somewhat later . . . 2

References

D. E. KNUTH, THE TEXBOOK (Computers and Typeset-
ting, 1986).

1 D. E. KNUTH, (Computers and Typesetting, 1986); see also Knuth,
TUGBOAT, V. 10, N. 1, p. 31 (1989).

2H. BROX AND W.-D. WALKER, BESONDERES SCHULDRECHT

24, 130, 216 (27. ed. 2002) cited in ZIVILPROZESSORDNUNG MIT

GERICHTSVERFASSUNGSGESETZ UND ANDEREN NEBENGESETZEN

(59. neubearb. ed. 2002).

\usepackage{camel}
\forcefootnotes

\citationstyle{law}
\citationdata{jura,tex}

\ldots text \source[t]{Knuth-CT-a}
see-also \source[f]{Knuth:TB10-1-31}
\ldots\ somewhat later \ldots
\source[f]{bschur}[24,130,216]
cited-in \source[a]{zpo}

\printbibliography[labels=false]{all} 12-5-48

Another feature that can be of interest is the ability to produce subject bibli-
ographies using the \citationsubject declaration.

. . . text 1 . . . later. . . 2

Law

[1] H. BROX AND W.-D. WALKER, BESONDERES SCHULDRECHT

(27. ed. 2002)

TEX literature

[1] D. E. KNUTH, THE TEXBOOK (Computers and Typesetting,
1986)

[2] Knuth, Typesetting Concrete Mathematics, TUGBOAT, V. 10,
N. 1, p. 31 (1989)

1THE TEXBOOK (Computers and Typesetting, 1986); see also Typesetting Concrete
Mathematics, TUGBOAT, V. 10, N. 1, p. 31 (1989).

2H. BROX AND W.-D. WALKER, (27. ed. 2002).

\usepackage{camel}
\citationsubject[o=tts,i=ttb]

{tex}{\TeX{} literature}
\citationsubject[o=lts,i=ltb]

{jur}{Law}
\forcefootnotes

\citationstyle{law}
\citationdata{jura,tex}

\ldots text
\source[a,s=tex]{Knuth-CT-a}
see-also \source[f,s=tex]

{Knuth:TB10-1-31}
\ldots later\ldots
\source[t,s=jur]{bschur}
\printbibliography{jur}
\printbibliography{tex} 12-5-49

12.6 Multiple bibliographies in one document 745

The citation data are written to external files (extension specified with o= on the
\citationsubject declaration). Such files have to be processed by MakeIndex:

makeindex -s camel.ist -o 〈jobname〉.ttb 〈jobname〉.tts
makeindex -s camel.ist -o 〈jobname〉.ltb 〈jobname〉.lts

The results are then read back in (i= argument) on the next LaTEX run.

12.6 Multiple bibliographies in one document

In large documents that contain several independent sections, such as conference
proceedings with many different articles, or in a book with separate parts written
by different authors, it is sometimes necessary to have separate bibliographies for
each of the units. In such a scenario citations are confined to a certain part of the
document, the one to which the bibliography list belongs.

A complementary request is to have several bibliographies in parallel, such
as one for primary sources and one for secondary literature. In that case one has
to be able to reference works in different bibliographies from any point in the
document.

Both requests can be automatically resolved if none of the bibliographies con-
tain the same publication1 and you are prepared to produce the bibliographies
manually, by means of several thebibliography environments without using
BIBTEX. In that case the \bibitem commands within the environment provide the
right cross-referencing information for the \cite commands (or their variants) to
pick up from anywhere in the document. Having the same publication in several
bibliographies (or more exactly the same reference key) is not possible, since that
would lead to a “multiply defined labels” warning (see page 928) and to incorrect
references. Of course, this could be manually corrected by choosing a different
key for such problematical citations.

Being deprived of using BIBTEX has a number of consequences. First, it will be
more difficult to impose a uniform format on the bibliographical entries (some-
thing that BIBTEX automatically handles for you). Second, using an author-date or
short-title citation scheme will be difficult (since natbib requires a special struc-
ture within the optional argument of \bibitem) to downright impossible (since
the structure required by jurabib is not suitable for manual production); see Sec-
tion 12.3 for a discussion of the required \bibitem structures in both cases.

To be able to use BIBTEX for this task people had to find a way to generate
several .bbl files from one source document. As discussed in Section 12.1.3,
the interaction with BIBTEX normally works as follows: each citation command
(e.g., \cite) writes its key-list as a \citation command into the .aux file. Sim-
ilarly, \bibliography and \bibliographystyle commands simply copy their ar-
guments to the .aux file. BIBTEX then reads the master .aux file (and, if necessary,

1This could happen, for example, if you compile the proceedings of a conference and each article
therein has its own bibliography.

746 Managing Citations

Bibliographies per Unit

chapterbib bibunits bibtopic multibib

Bibliography per chapter x x x n/a

Bibliography per other unit Restrictions x x n/a

Deal with escaping citations x Restrictions Error n/a

Additional global bibliography Labor x No n/a

Group bibliographies together x No No n/a

Multiple global bibliographies No No x x

Multiple bibliographies per unit No No x No

cite compatible x x x x

jurabib compatible x x Restrictions x

natbib compatible x x x x

Support for unsorted BIBTEX styles x x No x

Works with standard .bib files x x No x

chapterbib bibunits bibtopic multibib

Per Topic

Blue entries indicate features (or missing features) that may force a selection.

Table 12.2: Comparison of packages for multiple bibliographies

those from \included files) searching for occurrences of the above commands.
From the provided information it produces a single .bbl file. To make BIBTEX work
for the above scenarios, four problems have to be solved:

1. Generate one .aux file for every bibliography in the document that can be
used as input for BIBTEX.

2. Ensure that each citation command writes its information to the correct .aux
file, so that BIBTEX, when it processes a given .aux file, will add the correspond-
ing bibliographical data in the .bbl file but not in the others.

3. Ensure that the resulting .bbl files are read back into LaTEX at the right place.

4. Handle the problem of escaping citations due to their placement in sectioning
or \caption commands. A citation in such a place would later appear in the
table of contents or list of figures, and there (in a different context) LaTEX would
have problems in resolving it.

The packages chapterbib, bibunits, bibtopic, and multibib, which are de-
scribed in this section, solve the above problems in different ways. They all have
their own advantages and disadvantages. A short comparison of these packages
appears in Table 12.2, where blue entries indicate features (or missing features)
that may force a selection when one is looking for a solution for bibliographies
per unit or with bibliographies per topic, or a combination of both.

12.6 Multiple bibliographies in one document 747

12.6.1 chapterbib—Bibliographies per included file

The chapterbib package (developed by Donald Arseneau based on original work
by Niel Kempson) allows multiple bibliographies in a LaTEX document, including
the same cited items occurring in more than one bibliography.

It solves the problem of producing several .aux files for BIBTEX, by relying on
the \include mechanism of LaTEX; you can have one bibliography per \included
file. This package can be used, for example, to produce a document with bibliogra-
phies per chapter (hence the name), where each chapter is stored in a separate file
that is included with the \include command. This approach has the following
restrictions:

• Each \include file needs to have its own \bibliography command. The
database files that are listed in the argument can, of course, be different
in each file. What is not so obvious is that each file must also contain a
\bibliographystyle command, though for reasons of uniformity preferably
with the same style argument (Example 12-6-1 on the next page shows that dif-
ferent styles can be applied).

• An \include file not containing a \bibliography command cannot contain
citation commands, as they would not get resolved.

• Citation commands outside of \include files (with the exception of those
appearing in the table of contents; see below) will not be resolved, unless
you include a thebibliography environment on that level. Without special
precautions, this environment has to be entered manually. If you use BIBTEX
on the document’s .aux file you will encounter errors, because BIBTEX sees
multiple \bibdata and \bibstyle commands (when processing the included
.aux files). In addition, you will get all citations from all \include files added,
and that is perhaps not desirable. If you do want a cohesive bibliography for
the whole document, there is a rootbib option to help with this task. However,
it requires adding and removing the option at different stages in the process;
see the package documentation for details.

• Units containing a local bibliography will always start a new page (because of
the \include command). For cases where this is not appropriate, chapterbib
offers some support through a \cbinput command and cbunit environment;
see the package documentation for details. Unless you need the gather op-
tion, it might be better to use the bibunits package in such situations.

By default, the thebibliography environment generates a numberless head-
ing corresponding to the highest sectioning level available in the document class
(e.g., \chapter* with the book class). However, if bibliographies are to be gener-
ated for individual parts of the document this may not be the right level. In that
case you can use the option sectionbib1 to enforce \section* headings for the
bibliographies.

1If both chapterbib and natbib are used, use the sectionbib option of natbib instead!

748 Managing Citations

In the following example, we present the \include files article-1.tex and
article-2.tex in filecontents environments, which allows us to process this
example automatically for the book. In real life these would be different files on
your computer file system. We also use \stepcounter to change the chapter
counter rather than using \chapter to avoid getting huge chapter headings in
the example. Note that both included files refer to a publication with the key
Knuth-CT-a. These are actually treated as different keys in the sense that one
refers to the publication from article-1.bbl and the other refers to that from
article-2.bbl.

. . . see [Knu86] . . .

Bibliography
[Knu86] Donald E. Knuth.

The TEXbook,
volume A of
Computers and
Typesetting. Ad-
dison-Wesley,
Reading, MA,
USA, 1986.

. . . see [2] and [1] . . .

Bibliography
[1] Hans Brox and Wolf-

Dietrich Walker.
Besonderes Schul-
drecht. München, 27.
edition, 2002.

[2] Donald E. Knuth. The
TEXbook, volume A
of Computers and
Typesetting. Addison-
Wesley, Reading, MA,
USA, 1986.

\begin{filecontents}{article-1.tex}
\stepcounter{chapter}
\ldots\ see \cite{Knuth-CT-a} \ldots
\bibliographystyle{alpha}
\bibliography{tex}

\end{filecontents}
\begin{filecontents}{article-2.tex}
\stepcounter{chapter}
\ldots see \cite{Knuth-CT-a}
and \cite{bschur} \ldots

\bibliographystyle{plain}
\bibliography{tex,jura}

\end{filecontents}

\usepackage[sectionbib]{chapterbib}

\include{article-1}
\include{article-2} 12-6-1

If you wish to group all the bibliographies together (for example, at the end of
the document), use the option gather and place a \bibliography command at
the point where the combined bibliography should appear. The argument to that
command can be left empty as it is not used to communicate with BIBTEX.

Instead of gather, you may want to use the option duplicate. It will produce
“chapter bibliographies”, plus the combined listing. Both options work only in doc-
ument classes that have a \chapter command. The headings generated by either
option can be customized by redefining the command \StartFinalBibs , which
is executed at the point where the top-level \bibliography command is encoun-
tered. In the following example it generates an unnumbered \chapter heading,
sets up the running head via \chaptermark , and then redefines \bibname , which
provides the text used in the heading for each sub-bibliography. As you can see
\thechapter is used to number the sub-bibliographies, so this mechanism works
only if all chapters have bibliographies; otherwise, the numbering will be wrong.

If you do not place the combined bibliography at the end of the document,
make sure that \bibname is properly reset afterwards. Otherwise, any subsequent
bibliography in an \include file will inherit the modified definition.

12.6 Multiple bibliographies in one document 749

If the highest heading unit in your document is \section , the redefinition of
\StartFinalBibs can be done in a similar way. You then have to use \refname
instead of \bibname , since that is the command used in classes derived from the
article document class.

12-6-2

References by article

Article 1
[Knu86] Donald E. Knuth. The TEXbook, volume A of Computers and

Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

Article 2
[1] Hans Brox and Wolf-Dietrich Walker. Besonderes Schuldrecht.

München, 27. edition, 2002.

[2] Donald E. Knuth. The TEXbook, volume A of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986.

% included files as in
% previous example
\usepackage

[gather,sectionbib]
{chapterbib}

\renewcommand\StartFinalBibs
{\chapter*

{References by article}%
\chaptermark
{References by article}%

\renewcommand\bibname
{Article~\thechapter}}

\include{article-1}
\include{article-2}
\bibliography{}

If citations are placed into sectioning or \caption commands they will ap-
pear eventually in some table of contents list (i.e., at the top level). Nevertheless,
chapterbib will properly resolve them, by inserting extra code into .toc, .lof, and
.lot files so that a \cite command is able to determine to which local bibliogra-
phy it belongs. If you have additional table of contents lists set up, as explained
in Section 2.3.4, you have to be careful to avoid citations that may end up in these
new contents lists, as chapterbib is unaware of them.

Some BIBTEX styles unfortunately use \newcommand declarations instead of

�Command
already defined

error

\providecommand in the generated .bbl files, which makes such files unsuitable
for repeated loading. If you get “Command 〈name〉 already defined” errors for this
reason, surround the \bibliography commands and their arguments in braces.
For example, write

{\bibliography{tex,jura}}

The chapterbib package is compatible with most other packages, including the
citation packages discussed earlier in this chapter. If you plan to use it together
with babel, load the chapterbib package first.

12.6.2 bibunits—Bibliographies for arbitrary units

The bibunits package developed by Thorsten Hansen (from original work by José
Alberto Fernández) generates separate bibliographies for different units (parts) of
the text (chapters, sections, or bibunit environments). The package will separate
the citations of each unit of text into a separate file to be processed by BIBTEX. A

750 Managing Citations

global bibliography can also appear in the document, and citations can be placed
in both at the same time.

One way to denote the units that should have a separate bibliography is by
enclosing them in a bibunit environment.

\begin{bibunit}[style] . . . \putbib[file-list] . . . \end{bibunit}

The optional parameter style specifies a style for the bibliography different from a
default that may have been set up (see below). Instead of \bibliography you use
a \putbib command to place the bibliography. It can appear anywhere within the
unit as proven by the example. The optional argument file-list specifies a comma-
separated list of BIBTEX database files; again a default can be set up. A defaultSetting up defaults

BIBTEX style can be set with \defaultbibliographystyle; without it, plain is
used as the default. Similarly, \defaultbibliography can be used to define a de-
fault list of BIBTEX databases. In its absence \jobname.bib is tried. To be effective
the default declarations have to appear after \begin{document}.

1 First one
[1] was used to produce [2].

References
[1] Free Software Foundation,

Boston, Massachusetts.
GNU Make, A Program for
Directing Recompilation,
2000.

[2] Donald E. Knuth. Typeset-
ting Concrete Mathemat-

ics. TUGboat, 10(1):31–
36, April 1989.

2 Another one

References
[1] Hans Brox and Wolf-

Dietrich Walker. All-
gemeines Schuldrecht.
München, 29. edition,
2003.

As described by [1] . . .

\usepackage{bibunits}
\defaultbibliographystyle{plain}

\section{First one}
\begin{bibunit}[plain]
\cite{GNUMake} was used to
produce \cite{Knuth:TB10-1-31}.
\putbib[tex]

\end{bibunit}
\section{Another one}
\begin{bibunit}[plain]
\putbib[jura]
As described by \cite{aschur}
\ldots

\end{bibunit} 12-6-3

For each unit bibunits writes the \citation commands (used to communicate
with BIBTEX) into the file bu〈num〉.aux, where 〈num〉 is an integer starting with 1.
Thus, to generate the necessary bibliographies, you have to run BIBTEX on the files
bu1, bu2, and so forth. As a consequence, with the default settings you cannot
process more than one document that uses bibunits in the same directory, as the
auxiliary files would be overwritten.1

After generating the bibliographies you have to rerun LaTEX at least twice to
resolve the new cross-references. Be aware that older versions of the package do
not warn you about the need for a further rerun.

A global bibliography, in addition to the bibliographies for the individual
units, can be generated by using \bibliography and \bibliographystyle as
usual. Outside of a bibunit environment, the standard commands should be used

1If necessary, you can direct the package to use different names; see the package documentation.

12.6 Multiple bibliographies in one document 751

to generate a citation for the global bibliography. Inside bibunit, use \cite* and
\nocite* instead of \cite and \nocite to generate a citation for both the local
and the global bibliography. There are, however, a number of restrictions. If the
natbib package is also loaded, then \cite* has the meaning defined by natbib
and cannot be used for generating a global citation (use \nocite outside the unit
in that case). In addition, refrain from using numerical citation labels, since they
are likely to produce ambiguous labels in the global bibliography, as shown in the
next example. A better choice would be a BIBTEX style such as alpha.

12-6-4

1 First one
[1] was used to produce [2].

References
[1] Free Software Foundation,

Boston, Massachusetts.
GNU Make, A Program for
Directing Recompilation,
2000.

[2] Donald E. Knuth. Typeset-
ting Concrete Mathemat-
ics. TUGboat, 10(1):31–
36, April 1989.

2 Another one
As described by [1] . . .

References
[1] Donald E. Knuth. Typeset-

ting Concrete Mathemat-
ics. TUGboat, 10(1):31–
36, April 1989.

Global References
[1] Donald E. Knuth. Typeset-

ting Concrete Mathemat-
ics. TUGboat, 10(1):31–
36, April 1989.

\usepackage{bibunits}

\section{First one}
\begin{bibunit}[plain]
\cite{GNUMake} was used to
produce \cite*{Knuth:TB10-1-31}.
\putbib[tex]

\end{bibunit}
\section{Another one}
\begin{bibunit}[plain]
As described by
\cite*{Knuth:TB10-1-31}
\ldots \putbib[tex]

\end{bibunit}
\renewcommand\refname

{Global References}
\bibliographystyle{plain}
\bibliography{tex}

Rather than using \cite* everywhere in your document, you can specify the pack-
age option globalcitecopy. All local citations are then automatically copied to
the global bibliography as well.

Instead of specifying the bibliography units with bibunit environments ex-
plicitly, you can specify the sectioning unit for which bibliography units should
be generated automatically.

\bibliographyunit[unit]

This command specifies for which document unit references must be gener-
ated, such as unit=\chapter (for each chapter) or unit=\section (for each sec-
tion). If the optional argument is not given, the command \bibliographyunit
deactivates further bibliography units. When \bibliographyunit is active, the
\bibliographystyle and \bibliography commands specify the BIBTEX files and
the style to be used by default for a global bibliography, as well as in the lo-
cal units. If you wish to specify information for local bibliographies only, use
\bibliography* and \bibliographystyle* instead. These declarations cannot
be used in the preamble but must be placed after \begin{document}.

752 Managing Citations

There is, however, a catch with the approach: the normal definition of the

�Getting
unresolved

references

thebibliography environment, which surrounds the reference lists, generates
a heading of the highest sectioning level. Hence, if you use \chapter units in a
report, the heading generated by that environment will prematurely end the unit
and consequently you will end up with undefined references, as shown in the
example (using \section units in an article class).

1 First one
[?] was used to produce [?].

References
[1] Free Software Foundation,

Boston, Massachusetts.
GNU Make, A Program for
Directing Recompilation,
2000.

[2] Donald E. Knuth. Typeset-
ting Concrete Mathemat-

ics. TUGboat, 10(1):31–
36, April 1989.

2 Another one
As described by [?] . . .

References
[1] Hans Brox and Wolf-

Dietrich Walker. All-
gemeines Schuldrecht.

\usepackage{bibunits}

\bibliographyunit[\section]
\bibliographystyle*{plain}
\bibliography*{tex,jura}
\section{First one}

\cite{GNUMake} was
used to produce
\cite{Knuth:TB10-1-31}.
\putbib

\section{Another one}
As described by
\cite{aschur} \ldots
\putbib 12-6-5

To resolve this problem, you can provide your own definition for the
thebibliography environment, so that it uses a different sectioning level than
the one specified on the \bibliographyunit declaration. Alternatively, you can
use the option sectionbib (use \section* as a heading in thebibliography)
or subsectionbib (use \subsection*) to change the thebibliography environ-
ment for you.

1 First one
[1] was used to produce [2].

References
[1] Free Software Foundation,

Boston, Massachusetts.
GNU Make, A Program for
Directing Recompilation,
2000.

[2] Donald E. Knuth. Typeset-
ting Concrete Mathemat-

ics. TUGboat, 10(1):31–
36, April 1989.

2 Another one
As described by [1] . . .

References
[1] Hans Brox and Wolf-

Dietrich Walker. All-
gemeines Schuldrecht.
München, 29. edition,
2003.

\usepackage[subsectionbib]
{bibunits}

\bibliographyunit[\section]
\bibliographystyle*{plain}
\bibliography*{tex,jura}
\section{First one}

\cite{GNUMake} was
used to produce
\cite{Knuth:TB10-1-31}.
\putbib

\section{Another one}
As described by
\cite{aschur} \ldots
\putbib 12-6-6

Note that the unit specified on the \bibliographyunit command has to be dif-
ferent from the one referred to in the option. In the above example the unit was
\section , so we used the subsectionbib option.

12.6 Multiple bibliographies in one document 753

To resolve the problem of escaping citations (see page 746), the package offers
the option labelstoglobalaux. However, this has the side effects that such cita-
tions will appear in the global bibliography and that numerical reference schemes
are likely to produce incorrect labels; see the package documentation for details.

12.6.3 bibtopic—Combining references by topic

In contrast to chapterbib and bibunits, which collect citations for individual units
of a document, the package bibtopic written by Stefan Ulrich (based on earlier
work by Pierre Basso) combines reference listings by topic. You can, for exam-
ple, provide a primary reference listing separate from a reference list for further
reading, or put all references to books separate from those to articles.

Within the document all citations are produced with \cite , \nocite , or vari-
ants thereof (if natbib or similar packages are also loaded). Thus, separation into
topics is handled at a later stage. To produce separate bibliographies by topic
you have to group the bibliographical entries that belong to one topic in a sep-
arate BIBTEX database file (e.g., one for primary sources and one for secondary
literature). The bibliographies are then generated by using several btSect envi-
ronments. Ways to generate separate database files are described in Chapter 13.
You can, for example, use the program bibtool to extract reference entries accord-
ing to some criteria from larger BIBTEX database collections.

\begin{btSect}[style]{file-list}

The btSect environment generates a bibliography for all citations from the whole
document that have entries in the BIBTEX database files listed in the comma-
separated file-list argument. If the optional style argument is present, it specifies
the BIBTEX style to use for the current bibliography. Otherwise, the style specified
by a previous \bibliographystyle declaration is used. If no such declaration
was given, the BIBTEX style plain is used as a default.

Unless the package was loaded with the option printheadings the environ-
ment produces no heading. Normally, you have to provide your own heading using
\section* or a similar command.

\btPrintCited \btPrintNotCited \btPrintAll

Within a btSect environment one of the above commands can be used to define
which bibliographical entries are included among those from the specified file-list
databases. The \btPrintCited command prints all references from file-list that
have been somewhere cited in the document, \btPrintNotCited prints those that
have not been cited, and \btPrintAll prints all entries in the BIBTEX database files.

The following example shows the basic concepts using two topics: “TEX re-
lated” and “Juridical” literature. The first bibliography uses the default plain
style; for the second bibliography we explicitly specified the BIBTEX style abbrv

754 Managing Citations

(this is meant as an illustration—mixing styles is usually a bad idea). As you can
see, if you specify numerical BIBTEX styles, bibtopic automatically uses consecu-
tive numbers throughout all bibliographies, to ensure that the references in the
document are unique.

We saw the citations [3], [2], and [1].

Juridical literature

[1] Hans Brox and Wolf-Dietrich Walker. Besonderes
Schuldrecht. München, 27. edition, 2002.

[2] Hans Brox and Wolf-Dietrich Walker. Allgemeines
Schuldrecht. München, 29. edition, 2003.

TEX literature

[3] D. E. Knuth. The TEXbook, volume A of Comput-
ers and Typesetting. Addison-Wesley, Reading, MA,
USA, 1986.

\usepackage{bibtopic}

We saw the citations \cite{Knuth-CT-a},
\cite{aschur}, and \cite{bschur}.
\begin{btSect}{jura}

\section*{Juridical literature}
\btPrintCited

\end{btSect}
\begin{btSect}[abbrv]{tex}

\section*{\TeX{} literature}
\btPrintCited

\end{btSect} 12-6-7

For every btSect environment, the bibtopic package generates a separate
.aux file that by default is constructed from the base name of the source docu-
ment (\jobname) and a sequence number. You can change this naming scheme by
redefining \thebtauxfile using the counter btauxfile to automatically obtain
a sequence number. For the book examples we used the following redefinition:

\renewcommand\thebtauxfile{\jobname+\arabic{btauxfile}}

The bibtopic package is incompatible with chapterbib and bibunits. However,
Bibliographic topics

per logical unit
it provides the environment btUnit to confine the citations to logical units. Within
such units the btSect environment can be used in the normal way, allowing for
topic bibliographies by chapter or other unit. In that case all citations have to
appear within such units (escaping citations, discussed on page 746, are not han-
dled so you have to ensure that they do not happen). By default, numerical styles
restart their numbering per unit (e.g., per article in a proceedings issue). If you
want continuous numbering use the option unitcntnoreset.

While bibtopic works with most BIBTEX styles, there are some exceptions. The
Problem with

nonsorting BIBTEX
styles

most important one is that it does not work as expected with “unsorted” styles
(e.g., unsrt). If such a style is used, then the order in the bibliography is deter-
mined by the order in the BIBTEX database file and not by the order of citation in
the document. If the latter order is required, you should use the multibib package
described in the next section.

The bibtopic package is compatible with most other packages that provide
extensions to the citation mechanism, including cite, natbib, and jurabib. There
are some restrictions with respect to the production of the bibliography lists. For

12.6 Multiple bibliographies in one document 755

example, hooks to influence the layout as provided by natbib or jurabib may not
be functional. Details are given in the package documentation.

12-6-8

We saw the citations Knuth: The TEXbook and Brox/
Walker: Allgemeines Schuldrecht.

TEX literature

Knuth, Donald E.: The TEXbook. Volume A, Comput-
ers and Typesetting. Reading, MA, USA: Addison-
Wesley, 1986, ix + 483, ISBN 0–201–13447–0

Juridical literature

Brox, Hans/Walker, Wolf-Dietrich: Allgemeines Schul-
drecht. 29th edition. München, 2003

\usepackage{bibtopic,jurabib}
\bibliographystyle{jurabib}

We saw the citations \cite{Knuth-CT-a}
and \cite{aschur}.
\begin{btSect}{tex}
\section*{\TeX{} literature}
\btPrintCited

\end{btSect}
\begin{btSect}{jura}
\section*{Juridical literature}
\btPrintCited

\end{btSect}

12.6.4 multibib—Separate global bibliographies

Like bibtopic, the multibib package written by Thorsten Hansen provides separate
global bibliographies. While the former package separates the bibliographies by
using separate BIBTEX database files, multibib works by providing separate citation
commands to distinguish citations in different bibliographies.

There are advantages and disadvantages with either method. With multibib,
different types of citations are clearly marked already in the source document. As
a consequence, however, moving a citation from one bibliography to a different
one in a consistent manner requires changes to the document in various places.
In contrast, with bibtopic it merely requires moving the corresponding database
entry from one file to another. On the other hand, bibtopic often requires tailored
.bib files for each new document, while with multibib one can use generally avail-
able collections of BIBTEX database files.

Recent versions of multibib are compatible with most other packages that
provide extensions to the cite mechanisms, including cite, jurabib, and natbib.
Moreover, the package provides a general interface which allows to add arbitrary
extensions of cite commands to be recognized by multibib.

\newcites{type}{title}

The \newcites declaration defines an additional set of citation commands for a
new type of citations. The heading for the additional bibliography listing is title.
Once this declaration is given the four additional commands are available for
use. The command \cite〈type〉 , like \cite , generates a citation within the text
and its corresponding reference appears in the bibliography listing for the new
type. Similarly, \nocite〈type〉 adds a citation to the type bibliography without
appearing in the text. The corresponding bibliography appears at the point where

756 Managing Citations

the \bibliography〈type〉 command is given, and the BIBTEX style used for this
bibliography is defined with \bibliographystyle〈type〉 . An example is shown
below.

A book on graphics in LATEX is [1]; suggestions on citations
can be found in [vL92].

LATEX references

[1] Michel Goossens, Sebastian Rahtz, and Frank Mittel-
bach. The LATEX Graphics Companion: Illustrating Docu-
ments with TEX and PostScript. Tools and Techniques for
Computer Typesetting. Addison-Wesley Longman, Read-
ing, MA, USA, 1997.

General references

[vL92] Mary-Claire van Leunen. A handbook for scholars. Ox-
ford University Press, Walton Street, Oxford OX2 6DP,
UK, 92.

\usepackage{multibib}
\newcites{latex}

{\LaTeX{} references}

A book on graphics in \LaTeX{} is
\citelatex{LGC97}; suggestions on
citations can be found in
\cite{vLeunen:92}.

\bibliographystylelatex{plain}
\bibliographylatex{tex}

\renewcommand\refname
{General references}

\bibliographystyle{alpha}
\bibliography{tex} 12-6-9

The \newcites declaration can be used several times, thereby creating addi-
tional citation types. It is limited only by the number of output files that can be
used simultaneously by TEX. The .aux file written for communication with BIBTEX
has the name 〈type〉.aux. For this reason one has to be a bit careful when select-
ing the type in the first argument to \newcites , to avoid overwriting other .aux
files.

For numerical citation styles the references are by default numbered sequen-
tially over all bibliographies to avoid ambiguous references. When using the op-
tion resetlabels, each bibliography restarts the numbering.

LATEX offers an interface to include graphics.1 LATEX’s
default citation scheme is number-only.2

LATEX references

[1] Michel Goossens, Sebastian Rahtz, and Frank Mit-
telbach. The LATEX Graphics Companion: Illustrat-
ing Documents with TEX and PostScript. Tools and
Techniques for Computer Typesetting. Addison-Wes-
ley Longman, Reading, MA, USA, 1997.

General references

[2] Mary-Claire van Leunen. A handbook for scholars.
Oxford University Press, Walton Street, Oxford OX2
6DP, UK, 92.

\usepackage[super]{cite}
\usepackage{multibib}
\newcites{latex}{\LaTeX{} references}

\LaTeX{} offers an interface to include
graphics \citelatex{LGC97}. \LaTeX’s
default citation scheme is
number-only \cite{vLeunen:92}.

\bibliographystylelatex{plain}
\bibliographylatex{tex}

\renewcommand\refname
{General references}

\bibliographystyle{plain}
\bibliography{tex} 12-6-10

C H A P T E R 13

Bibliography Generation

While a table of contents (see Section 2.3) and an index (discussed in Chapter 11)
make it easier to navigate through a book, the presence of bibliographic references
should allow you to verify the used sources and to probe further subjects you
consider interesting. To make this possible, the references should be precise and
lead to the relevant work with a minimum of effort.

There exist many ways for formatting bibliographies, and different fields of
scholarly activities have developed very precise rules in this area. An interesting
overview of Anglo-Saxon practices can be found in the chapter on bibliographies in
The Chicago Manual of Style [38]. Normally, authors must follow the rules laid out
by their publisher. Therefore, one of the more important tasks when submitting
a book or an article for publication is to generate the bibliographic reference list
according to those rules.

Traditional ways of composing such lists by hand, without the systematic help
of computers, are plagued with the following problems:

• Citations, particularly in a document with contributions from many authors,
are hard to make consistent. Difficulties arise, such as variations in the use
of full forenames versus abbreviations (with or without periods); italicization
or quoting of titles; spelling “ed.”, “Ed.”, or “Editor”; and the various forms of
journal volume number.

• A bibliography laid out in one style (e.g., alphabetic by author and year) is
extremely hard to convert to another (e.g., numeric citation order) if requested
by a publisher.

• It is difficult to maintain one large database of bibliographic references that
can be reused in different documents.

758 Bibliography Generation

In Chapter 12 we were mainly concerned with the citation of sources within
the text. In the present chapter we concentrate on the formatting of reference
lists and bibliographies, and we discuss possibilities for managing collections of
citations in databases. The chapter is heavily based on the BIBTEX program, written
by Oren Patashnik, which integrates well with LaTEX.

We start by introducing the program and variants of it, touching on recent
developments geared toward creating a successor. This is followed by a detailed
introduction to the BIBTEX database format, which collects information on how to
specify bibliographical data in a suitable form to be processed by BIBTEX. Instead of
collecting your own bibliographical data, there is also the possibility of drawing
information from various on-line sources that offer such data in BIBTEX format.
Some of them are introduced in Section 13.3.

Having collected data for BIBTEX databases, the next natural step is to look for
tools that help in managing such databases. Section 13.4 offers tools of various
flavors for this task, ranging from command-line utilities to GUI-based programs
for various platforms.

Once everything is under control, we return in Section 13.5 to the task of
typesetting and look at how different BIBTEX styles can be used to produce different
bibliography layouts from the same input. As there may not be a suitable style for
a particular set of layout requirements available, Section 13.5.2 discusses how to
generate customized styles using the custom-bib package without the need for
any BIBTEX style programming.

For those readers who really want to (or have to) dig into the mysteries of
BIBTEX style programming, the final section gives more details about the format
of such style files, including a short overview of the commands and intrinsic
functions available. The global structure of the generic style documentation file
btxbst.doc is explained, and it is shown how to adapt an existing style file to the
needs of a particular house style or foreign language.

13.1 The BIBTEX program and some variants

The BIBTEX program was designed by Oren Patashnik to provide a flexible solution
to the problem of automatically generating bibliography lists conforming to differ-
ent layout styles. It automatically detects the citation requests in a LaTEX document
(by scanning its .aux file or files), selects the needed bibliographical information
from one or more specified databases, and formats it according to a specified lay-
out style. Its output is a file containing the bibliography listing as LaTEX code that
will be automatically loaded and used by LaTEX on the following run. Section 12.1.3
on page 687 discussed the interface between the two programs in some detail.

At the time of this book’s writing BIBTEX was available as version 0.99c, but
if you look into the first edition of this book (a decade back), you will find that it
also talks about version 0.99c. The version 0.99a probably dates back to 1986. In
other words, the program has been kept stable for a very long period of time. As a

13.1 The BIBTEX program and some variants 759

consequence, the BIBTEX database format is very well established in the LaTEX world,
with many people having numerous citation entries collected over the years. Thus,
it comes as no surprise that all development that happened in the last decade is
based on that format as a standard.

In this section we briefly survey a number of developments in this arena. Some
new projects have surfaced especially in recent years, but there are also some
projects that date back a few years.

13.1.1 bibtex8—An 8-bit reimplementation of BIBTEX

Due to its age and origins BIBTEX is 7-bit, ASCII based. Although it is able to handle
foreign characters, its functionality in this respect is rather limited. The BIBTEX8
program written by Niel Kempson and Alejandro Aguilar-Sierra is an 8-bit reimple-
mentation of BIBTEX with the ability to specify sorting order information. This al-
lows you to store your BIBTEX database entries in your favorite 8-bit code page, and
to use the inputenc package in your LaTEX document (see Sections 7.5.2 and 7.11.3).
Sorting order information related to a specific encoding can be specified on the
command line—for example,

bibtex8 -c 88591lat tlc2

on the author’s machine. The sorting order is stored in files with the extension
.csf (e.g., in the above example in the file 88591lat.csf). The distribution comes
with a number of such files for the most popular encodings. The format is well doc-
umented so that it should be possible to provide your own .csf file if necessary.
Related command-line options are -7 and -8 to force 7-bit or 8-bit processing,
respectively, without a special sorting order.

The BIBTEX8 program offers a second set of command-line options that allows
you to enlarge its internal tables. In 1995, when the first release of the program
was written, standard BIBTEX had only small, hard-wired internal tables, making it
impossible to typeset, say, a bibliography listing with several hundred citations.
These days most installations use higher compile defaults (e.g., 5000 citations) so
that the flexibility of BIBTEX8 in this respect is seldom needed. But in case a partic-
ular job hits one of the limits and emits a message like “Sorry—you’ve exceeded
BibTeX’s...” you can use BIBTEX8 with a suitable command-line setting to get
around the problem. You can find out about the possible options by calling the
program without any input or with the option -h or --help.

13.1.2 Recent developments

Besides BIBTEX and BIBTEX8, both of which have been available for a long time, there
have been some more recent developments that target bibliography generation. In
this section we briefly introduce three projects that might be of interest to the
reader. It is quite possible that one or the other project merge together in the

760 Bibliography Generation

future, so this list should be viewed as a snapshot of the situation in 2003 and as
proof that there is a renewed interest in further development.

bibulus—Bibliographies with XML and perl

The program bibulus by Thomas Widmann is a BIBTEX replacement written in
perl.1 It does not use BIBTEX’s database file format but rather works with biblio-
graphical entries stored in XML format and provides its own document type def-
inition (bibulus.dtd). This way bibliographical entries can be manipulated and
processed with any application that understands XML. To enable the reuse of ex-
isting .bib files, the program provides a tool to convert your BIBTEX databases to
XML format.

The bibulus program uses Unicode internally and thus is truly multilingual; at
the same time it is able to read and write output in other encodings. The textual
strings generated by the program have been translated into a large number of
languages. The current implementation of bibulus provides support for more than
a dozen languages.

From the program’s point of view LaTEX is only one of the different possible
target output formats. Alternatives range from plain text output, to HTML, to
input formats for other programs dealing with citations.

Like the other two programs described below, bibulus is work in progress.
It is available from http://www.nongnu.org/bibulus, where you will also find
further information on the project.

BIBTEX++—A BIBTEX successor in Java

The BIBTEX++ project is a Java-based implementation of a citation manager written
by Emmanuel Donin de Rosière in the course of a master thesis [146] supervised
by Ronan Keryell. Being intended to serve as a BIBTEX successor, it can, of course,
be used in the LaTEX world, but it also accepts other bibliography formats and
different style languages and can produce output for several typesetting systems.
The program is integrated in a web-based environment, so it can retrieve lacking
information from various Internet sources. BIBTEX++ uses a plug-in concept that
allows you to dynamically extend its functionalities, perhaps to support special
formatting conventions or to generate output for other formatters.

Existing BIBTEX style files can be converted to a BIBTEX++ style using a transla-
tion program that was developed as part of the project. The result can be further
customized by using the BIBTEX++ concepts, thus easing the initial development of
a new style.

The project’s home is at http://bibtex.enstb.org, where you will find a
CVS repository as well as compiled binaries and further information.

1For installation and use it needs a recent perl implementation (5.8+).

13.2 The BIBTEX database format 761

MlBIBTEX—A multilingual successor of BIBTEX

The program MlBIBTEX, developed by Jean-Michel Hufflen, is a reimplementation
and extension of BIBTEX with particular focus on multilingual features. A first re-
lease became available in 2001. However, the author found that the approach
taken back then was not really suitable for the typographical conventions used
in some languages. At that stage of the project he developed a questionnaire to
obtain more insight into the problems and conventions with bibliographic data in
different European countries. In response, a new implementation was started; its
first results were presented at various conferences in 2003.

The current release (v1.3) implements a style language named nbst, for speci-
fying layout and formatting directives. This language is close, but not identical, to
XSLT, the language for manipulating and processing XML documents.

The project’s home is at http://lifc.univ-fcomte.fr/~hufflen/texts/
mlbibtex/mlbibtex/mlbibtex.html, where further information can be found.

13.2 The BIBTEX database format

A BIBTEX database is a plain text (ASCII) file that contains bibliographical entries
internally structured as keyword/value pairs. A typical database file was shown in
Figure 12.2 on page 690. In this section we study the allowed syntax of its entries
in some detail; see also [135].

Each entry in a BIBTEX database consists of three main parts: a type specifier,
followed by a key, and finally the data for the entry itself. The type describes
the general nature of the entry (e.g., whether it is an article, book, or some other
publication). The key is used in the interface to LaTEX; it is the string that you have
to place in the argument of a \cite command when referencing that particular
entry. The data part consists of a series of field entries (depending on the type),
which can have one of two forms as seen in the following generic format and
example:

@type_specifier{key_identifier, @book{lamport86,
field_name_1 = "field_text_1", author = "Leslie Lamport",
field_name_2 = {field_text_2}, title = "{\LaTeX{}} A Document

. . . Preparation system",
field_name_n = {field_text_n} publisher = {Addison-Wesley},

} year = 1986 }

The comma is the field separator. Spaces surrounding the equals sign or the
comma are ignored. Inside the text part of a field (enclosed in a pair of double
quotes or a pair of braces) you can have any string of characters, but braces must
be matched. The quotes or braces can be omitted for text consisting entirely of
numbers (like the year field in the example above). Note that LaTEX’s comment

762 Bibliography Generation

character % is not a comment character inside .bib database files. Instead, any-
thing outside an entry is considered a comment as long as it does not contain an
@ sign (which would be misinterpreted as the start of a new entry).

BIBTEX ignores the case of the letters for the entry type, key, and field names.
You must, however, be careful with the key. LaTEX honors the case of the keys spec-
ified as the argument of a \cite command, so the key for a given bibliographic
entry must match the one specified in the LaTEX file (see Section 12.2.1).

13.2.1 Entry types and fields

As discussed above, you must describe each bibliographic entry as belonging to a
certain class, with the information itself tagged by certain fields.

The first thing you have to decide is what type of entry you are dealing with.
Although no fixed classification scheme can be complete, with a little creativity
you can make BIBTEX cope reasonably well with even the more bizarre types of
publications. For nonstandard types, it is probably wise not to attach too much
importance to BIBTEX’s warning messages (see below).

Most BIBTEX styles have at least the 13 standard entry types, which are shown
in Table 13.1 on the facing page. These different types of publications demand
different kinds of information; a reference to a journal article might include the
volume and number of the journal, which is usually not meaningful for a book.
Therefore, different database types have different fields. In fact, for each type of
entry, the fields are divided into three classes:

Required Omission of the field will produce a warning message and, possibly, a
badly formatted bibliography entry. If the required information is not mean-
ingful, you are using the wrong entry type. If the required information is
meaningful but, say, already included in some other field, simply ignore the
warning.

Optional The field’s information will be used if present, but you can omit it
without causing formatting problems. Include the optional field if it can help
the reader.

Ignored The field is ignored. BIBTEX ignores any field that is not required or op-
tional, so you can include any fields in a .bib file entry. It is a good idea to put
all relevant information about a reference in its .bib file entry, even informa-
tion that may never appear in the bibliography. For example, the abstract of
a paper can be entered into an abstract field in its .bib file entry. The .bib
file is probably as good a place as any for the abstract, and there exist bibli-
ography styles for printing selected abstracts (see the abstract bibliography
style mentioned in Table 13.4 on page 791).

Table 13.1 on the facing page describes the standard entry types, along with
their required and optional fields, as used by the standard bibliography styles.

13.2 The BIBTEX database format 763

article An article from a journal or magazine.

Required: author, title, journal, year.

Optional: volume, number, pages, month, note.

book A book with an explicit publisher.

Required: author or editor, title, publisher, year.

Optional: volume or number, series, address, edition, month, note.

booklet A work that is printed and bound, but without a named publisher or sponsoring institution.

Required: title.

Optional: author, howpublished, address, month, year, note.

inbook A part of a book, e.g., a chapter, section, or whatever and/or a range of pages.

Required: author or editor, title, chapter and/or pages, publisher, year.

Optional: volume or number, series, type, address, edition, month, note.

incollection A part of a book having its own title.

Required: author, title, booktitle, publisher, year.

Optional: editor, volume or number, series, type, chapter, pages, address, edition,
month, note.

inproceedings An article in a conference proceedings.

Required: author, title, booktitle, year.

Optional: editor, volume or number, series, pages, address, month, organization,
publisher, note.

manual Technical documentation.

Required: title.

Optional: author, organization, address, edition, month, year, note.

mastersthesis A master’s thesis.

Required: author, title, school, year.

Optional: type, address, month, note.

misc Use this type when nothing else fits. A warning will be issued if all optional fields are empty
(i.e., the entire entry is empty or has only ignored fields).

Required: none.

Optional: author, title, howpublished, month, year, note.

phdthesis A Ph.D. thesis.

Required: author, title, school, year.

Optional: type, address, month, note.

proceedings Conference proceedings.

Required: title, year.

Optional: editor, volume or number, series, address, publisher, note, month,
organization.

techreport A report published by a school or other institution, usually numbered within a series.

Required: author, title, institution, year.

Optional: type, number, address, month, note.

unpublished A document having an author and title, but not formally published.

Required: author, title, note.

Optional: month, year.

Table 13.1: BIBTEX’s entry types as defined in most styles

764 Bibliography Generation

The fields within each class (required or optional) are listed in the typical order of
occurrence in the output. A few entry types, however, may perturb the alphabetic
ordering slightly, depending on which fields are missing. The meaning of the indi-
vidual fields is explained in Table 13.2 on the next page. Nonstandard bibliography
styles may ignore some optional fields or use additional ones like isbn when cre-
ating the reference (see also the examples starting on page 793). Remember that,
when used in a .bib file, the entry-type name is preceded by an @ character.

Most BIBTEX style files sort the bibliographical entries. This is done by inter-
Sorting of

entries
nally generating a sort key from the author’s/editor’s name, the date of the publi-
cation, the title, and other information. Entries with identical sort keys will appear
in citation order.

The author information is usually the author field, but some styles use the
editor or organization field. In addition to the fields listed in Table 13.1, each
entry type has an optional key field, used in some styles for alphabetizing, for
cross-referencing, or for forming a \bibitem label. You should therefore include
a key field for any entry whose author information is missing. Depending on the
style the key field can also be used to overwrite the automatically generated inter-
nal key for sorting.1 A situation where a key field is useful is the following:

organization = "The Association for Computing Machinery",
key = "ACM"

Without the key field, the alpha style would construct a label from the first three
letters of the information in the organization field. Although the style file will
strip off the article “The”, you would still get a rather uninformative label like
“[Ass86]”. The key field above yields a more acceptable “[ACM86]”.

We now turn our attention to the fields recognized by the standard bibliog-
raphy styles. These “standard” fields are shown in Table 13.2 on the facing page.
Other fields, like abstract, can be required if you use one of the extended non-
standard styles shown in Table 13.4 on page 791. As nonrecognized fields are
ignored by the BIBTEX styles, you can use this feature to include “comments” in-
side an entry: it is enough to put the information to be ignored inside braces
following a field name (and = sign) that is not recognized by the BIBTEX style.

As with the names of the entry types in Table 13.1 on the preceding page,
the names of the fields should be interpreted in their widest sense to make them
applicable in a maximum number of situations. And you should never forget that
a judicious use of the note field can solve even the more complicated cases.

13.2.2 The text part of a field explained

The text part of a field in a BIBTEX entry is enclosed in a pair of double quotes or
curly braces. Part of the text itself is said to be enclosed in braces if it lies inside a
matching pair of braces other than the ones enclosing the entire entry.

1Some BIBTEX styles (e.g., jurabib) use the sortkey field instead.

13.2 The BIBTEX database format 765

address Usually the address of the publisher or other institution. For major publishing houses,
just give the city. For small publishers, specifying the complete address might help the
reader.

annote An annotation. Not used by the standard bibliography styles, but used by others that
produce an annotated bibliography (e.g., annote). The field starts a new sentence and
hence the first word should be capitalized.

author The name(s) of the author(s), in BIBTEX name format (Section 13.2.2).

booktitle Title of a book, part of which is being cited (Section 13.2.2). For book entries use the
title field.

chapter A chapter (or section or whatever) number.

crossref The database key of the entry being cross-referenced (Section 13.2.5).
edition The edition of a book (e.g., “Second”). This should be an ordinal, and should have the

first letter capitalized, as shown above; the standard styles convert to lowercase when
necessary.

editor Name(s) of editor(s), in BIBTEX name format. If there is also an author field, then the
editor field gives the editor of the book or collection in which the reference appears.

howpublished How something strange has been published.

institution Institution sponsoring a technical report.
journal Journal name. Abbreviations are provided for many journals (Section 13.2.3).

key Used for alphabetizing and creating a label when the author and editor information
is missing. This field should not be confused with the key that appears in the \cite
command and at the beginning of the database entry.

month The month in which the work was published or, for an unpublished work, in which it was
written. For reasons of consistency the standard three-letter abbreviations (jan, feb, mar,
etc.) should be used (Section 13.2.3).

note Any additional information that can help the reader.

number The number of a journal, magazine, technical report, or work in a series. An issue of a
journal or magazine is usually identified by its volume and number; a technical report
normally has a number; and sometimes books in a named series carry numbers.

organization The organization that sponsors a conference or that publishes a manual.
pages One or more page numbers or range of numbers (e.g., 42–111 or 7,41,73–97 or 43+,

where the ‘+’ indicates pages that do not form a simple range).
publisher The publisher’s name.

school The name of the school where the thesis was written.

series The name of a series or set of books. When citing an entire book, the title field gives its
title and an optional series field gives the name of a series or multivolume set in which
the book is published.

title The work’s title, typed as explained in Section 13.2.2.
type The type of a technical report (e.g., “Research Note”). This name is used instead of the

default “Technical Report”. For the entry type phdthesis you could use the term “Ph.D.
dissertation” by specifying: type = "{Ph.D.} dissertation". Similarly, for the inbook
and incollection entry types you can get “section 1.2” instead of the default “chap-
ter 1.2” with chapter = "1.2" and type = "Section".

volume The volume of a journal or multivolume book.

year The year of publication or, for an unpublished work, the year it was written. Generally, it
should consist of four numerals, such as 1984, although the standard styles can handle
any year whose last four nonpunctuation characters are numerals, such as “about 1984”.

Table 13.2: BIBTEX’s standard entry fields

766 Bibliography Generation

The structure of a name

The author and editor fields contain a list of names. The exact format in which
these names are typeset is decided by the bibliography style. The entry in the .bib
database tells BIBTEX what the name is. You should always type names exactly as
they appear in the cited work, even when they have slightly different forms in two
works. For example:

author = "Donald E. Knuth" author = "D. E. Knuth"

If you are sure that both authors are the same person, then you could list both
in the form that the author prefers (say, Donald E. Knuth), but you should always
indicate (e.g., in our second case) that the original publication had a different form.

author = "D[onald] E. Knuth"

BIBTEX alphabetizes this as if the brackets were not there, so that no ambiguity
arises as to the identity of the author.

Most names can be entered in the following two equivalent forms:

"John Chris Smith" "Smith, John Chris"
"Thomas von Neumann" "von Neumann, Thomas"

The second form, with a comma, should always be used for people who have
multiple last names that are capitalized. For example,

"Parra Benavides, Miguel"

If you enter "Miguel Parra Benavides", BIBTEX will take "Parra" as the middle
name, which is wrong in this case. When the other parts are not capitalized, no
such problem occurs (e.g., "Johann von Bergen" or "Pierre de la Porte").

If several words of a name have to be grouped, they should be enclosed in
braces. BIBTEX treats everything inside braces as a single name, as shown below.

"{Boss and Friends, Inc.} and {Snoozy and Boys, Ltd.}"

In this case, Inc. and Ltd. are not mistakenly considered as first names.
In general, BIBTEX names can have four distinct parts, denoted as First, von,

Last, and Jr. Each part consists of a list of name tokens, and any list but Last
can be empty. Thus, the two entries below are different:

"von der Schmidt, Alex" "{von der Schmidt}, Alex"

The first has von, Last, and First parts, while the second has only First and
Last parts (von der Schmidt), resulting possibly in a different sorting order.

13.2 The BIBTEX database format 767

A “Junior” part can pose a special problem. Most people with “Jr.” in their
name precede it with a comma, thus entering it as follows:

"Smith, Jr., Robert"

Certain people do not use the comma, and these cases are handled by considering
the “Jr.” as part of the last name:

"{Lincoln Jr.}, John P." "John P. {Lincoln Jr.}"

Recall that in the case of “Miguel Parra Benavides, you should specify

"Parra Benavides, Miguel"

The First part of his name has the single token “Miguel”; the Last part has two
tokens, “Parra and “Benavides; and the von and Jr parts are empty.

A complex example is

"Johannes Martinus Albertus van de Groene Heide"

This name has three tokens in the First part, two in the von part, and two in the
Last part. BIBTEX knows where one part ends and the other begins because the
tokens in the von part begin with lowercase letters (van de in this example).

In general, von tokens have the first letter at brace-level 0 in lowercase. Techni-
cally speaking, everything in a “special character” is at brace-level 0 (see page 768),
so you can decide how BIBTEX treats a token by inserting a dummy special charac-
ter whose first letter past the TEX control sequence is in the desired case, upper
or lower. For example, in

Maria {\MakeUppercase{d}e La} Cruz

BIBTEX will take the uppercase “De La” as the von part, since the first character
following the control sequence is lowercase. With the abbrv style you will get the
correct abbreviation M. De La Cruz, instead of the incorrect M. D. L. Cruz if you
did not use this trick.

BIBTEX handles hyphenated names correctly. For example, an entry like

author = "Maria-Victoria Delgrande",

with the abbrv style, results in “M.-V. Delgrande”.
When multiple authors are present, their names should be separated with the

word “and”, where the “and” must not be enclosed in braces.

author = "Frank Mittelbach and Rowley, Chris"
editor = "{Lion and Noble, Ltd.}"

768 Bibliography Generation

There are two authors, Frank Mittelbach and Chris Rowley, but only one editor,
since the “and” is enclosed in braces. If the number of authors or editors is too
large to be typed in extenso, then the list of names can be ended with the string
“and others”, which is converted by the standard styles into the familiar “et al.”

To summarize, you can specify names in BIBTEX using three possible forms
(the double quotes and curly braces can be used in all cases):

"First von Last" e.g. {Johan van der Winden}
"von Last, First" e.g. "von der Schmidt, Alexander"
"von Last, Jr, First" e.g. {de la Porte, Fils, {\’Emile}}

The first form can almost always be used. It is, however, not suitable when there
is a Jr part, or when the Last part has multiple tokens and there is no von part.

The format of the title

The bibliography style decides whether a title is capitalized. Usually, titles of
books are capitalized, but those for articles are not. A title should always be typed
as it appears in the original work. For example:

TITLE = "A Manual of Style"
TITLE = "Hyphenation patterns for ancient Greek and Latin"

Different languages and styles have their own capitalization rules. If you want
to override the decisions of the bibliography style, then you should enclose the
parts that should remain unchanged inside braces. Note that this will not be suf-
ficient when the first character after the left brace is a backslash (see below). It is
usually best to enclose whole words in braces, because otherwise LaTEX may lose
kerning or ligatures when typesetting the word. In the following example, the first
version is preferable over the second:

TITLE = "The Towns and Villages of {Belgium}"
TITLE = "The Towns and Villages of {B}elgium"

Accented and special characters

BIBTEX accepts accented characters. If you have an entry with two fields

author = "Kurt G{\"o}del",
year = 1931,

then the alpha bibliography style will yield the label [Göd31], which is probably
what you want. As shown in the example above, the entire accented character
must be placed in braces; in this case either {\"o} or {\"{o}} will work. These
braces must not themselves be enclosed in braces (other than the ones that might

13.2 The BIBTEX database format 769

delimit the entire field or the entire entry); also, a backslash must be the very
first character inside the braces. Thus, neither {G{\"{o}}del} nor {G\"{o}del}
works here.

This feature handles accented characters and foreign symbols used with LaTEX.
It also allows user-defined “accents”. For purposes of counting letters in labels,
BIBTEX considers everything inside the braces to be a single letter. To BIBTEX, an
accented character is a special case of a “special character”, which consists of
everything from a left brace at the topmost level, immediately followed by a back-
slash, up through the matching right brace. For example, the field

author = "\OE{le} {\’{E}mile} {Ren\’{e}} van R{\i\j}den"

has two special characters: “{\’{E}mile}” and “{\i\j}”.
In general, BIBTEX does not process TEX or LaTEX control sequences inside a

special character, but it will process other characters. Thus, a style that converts
all titles to lowercase transforms

“The {\TeX BOOK\NOOP} Saga” into “The {\TeX book\NOOP} saga”

The article “The” remains capitalized because it is the first word in the title.
The special character scheme has its uses for handling accented characters

(although the introduction of additional braces may upset the generation of lig-
atures and kerns). It may help to make BIBTEX’s alphabetizing do what you want,
but again with some caveats; see the discussion of the \SortNoop command on
page 771. Also, since BIBTEX counts an entire special character as just one letter,
you can force extra characters inside labels.

13.2.3 Abbreviations in BIBTEX

BIBTEX text fields can be abbreviated. An abbreviation is a string of ASCII charac-
ters starting with a letter and not containing a space or any of the following 10
characters:

" # % ’ () , = { }

You can define your own abbreviations with the @string command in a .bib
file, as shown below.

@string{AW = "Addison--Wesley Publishing Company"}
@STRING{cacm = "Communications of the ACM"}
@String{pub-AW = {{Ad\-di\-son-Wes\-ley}}}
@String{pub-AW:adr = "Reading, MA, USA"}
@String{TUG = "\TeX{} Users Group"}
@String{TUG:adr = {Providence, RI, USA}}

770 Bibliography Generation

Abbreviations can be used in the text part of BIBTEX fields, but they should not
be enclosed in braces or quotation marks. With the above string definitions, the
following two ways of specifying the journal field are equivalent:

journal = "Communications of the ACM"
journal = cacm

The case of the name for an abbreviation is not important, so CACM and cacm
are considered identical, but BIBTEX produces a warning if you mix different cases.
Also, the @string command itself can be spelled as all lowercase, all uppercase,
or a mixture of the two cases.

@string commands can appear anywhere in the .bib file, but an abbrevia-
tion must be defined before it is used. It is good practice to group all @string
commands at the beginning of a .bib file, or to place them in a dedicated .bib
file containing only a list of abbreviations. The @string commands defined in the
.bib file take precedence over definitions in the style files.

You can concatenate several strings (or @string definitions) using the con-
catenation operator #. Given the definition

@STRING{TUB = {TUGboat }}

you can easily construct nearly identical journal fields for different entries:

@article(tub-98, journal = TUB # 1998, ...
@article(tub-99, journal = TUB # 1999, ...
@article(tub-00, journal = TUB # 2000, ...

Most bibliography styles contain a series of predefined abbreviations. As a
convention, there should always be three-letter abbreviations for the months: jan,
feb, mar, and so forth. In your BIBTEX database files you should always use these
three-letter abbreviations for the months, rather than spelling them explicitly.
This assures consistency inside your bibliography. Information about the day of
the month is usually best included in the month field. You might, for example,
make use of the possibility of concatenation:

month = apr # "~1,"

Names of popular journals in a given application field are also made available
as abbreviations in most styles. To identify them you should consult the docu-
mentation associated with the bibliographic style in question. The set of journals
listed in Table 13.3 on the facing page should be available in all styles. You can
easily define your own set of journal abbreviations by putting them in @string
commands in their own database file and listing this database file as an argument
to LaTEX’s \bibliography command.

13.2 The BIBTEX database format 771

acmcs ACM Computing Surveys

acta Acta Informatica

cacm Communications of the ACM

ibmjrd IBM Journal of Research and
Development

ibmsj IBM Systems Journal

ieeese IEEE Transactions on Software
Engineering

ieeetc IEEE Transactions on Computers

ieeetcad IEEE Transactions on Computer-Aided
Design of Integrated Circuits

ipl Information Processing Letters

jacm Journal of the ACM

jcss Journal of Computer and System Sciences

scp Science of Computer Programming

sicomp SIAM Journal on Computing

tocs ACM Transactions on Computer Systems

tods ACM Transactions on Database Systems

tog ACM Transactions on Graphics

toms ACM Transactions on Mathematical
Software

toois ACM Transactions on Office Information
Systems

toplas ACM Transactions on Programming
Languages and Systems

tcs Theoretical Computer Science

Table 13.3: Predefined journal strings in BIBTEX styles

13.2.4 The BIBTEX preamble

BIBTEX offers a @preamble command with a syntax similar to that of the @string
command except that there is no name or equals sign, just the string. For example:

@preamble{ "\providecommand\url[1]{\texttt{#1}}" #
"\providecommand\SortNoop[1]{}" }

You can see how the different command definitions inside the @preamble are
concatenated using the # symbol. The standard styles output the argument of the
@preamble literally to the .bbl file, so that the command definitions are available
when LaTEX reads the file. If you add LaTEX commands in this way, you must ensure
that they are added using \providecommand and not \newcommand. There are two
reasons for this requirement. First, you deprive yourself of the ability to change
the definition in the document (e.g., the bibliography might add a simple definition
for the command \url that you may want to replace by the definition from the url
package). Second, sometimes the bibliography is read in several times (e.g., with
the chapterbib package), an operation that would fail if \newcommand is used.

The other example command used above (\SortNoop) was suggested by Oren
Patashnik to guide BIBTEX’s sorting algorithm in difficult cases. This algorithm nor-
mally does an acceptable job, but sometimes you might want to override BIBTEX’s
decision by specifying your own sorting key. This trick can be used with foreign
languages, which have sorting rules different from those of English, or when you
want to order the various volumes of a book in a way given by their original date
of publication and independently of their re-edition dates.

772 Bibliography Generation

Suppose that the first volume of a book was originally published in 1986, with
a second edition appearing in 1991, and the second volume was published in 1990.
Then you could write

@book{ ... volume=1, year = "{\SortNoop{86}}1991" ...
@book{ ... volume=2, year = "{\SortNoop{90}}1990" ...

According to the definition of \SortNoop , LaTEX throws away its argument
and ends up printing only the true year for these fields. For BIBTEX \SortNoop
is an “accent”; thus, it will sort the works according to the numbers 861991 and
901990, placing volume 1 before volume 2, just as you want.

Be aware that the above trick may not function with newer BIBTEX styles (for
example, those generated with custom-bib) and that some styles have added a
sortkey field that solves such problems in a far cleaner fashion.

13.2.5 Cross-referencing entries

BIBTEX entries can be cross-referenced. Suppose you specify \cite{Wood:color}
in your document, and you have the following two entries in the database file:

@Inbook{Wood:color, author = {Pat Wood}, crossref={Roth:postscript},
title = {PostScript Color Separation}, pages={201--225}}

@Book{Roth:postscript, editor = {Stephen E. Roth}, title =
{{Real World PostScript}}, booktitle = {{Real World PostScript}},
publisher=AW, address=AW:adr, year=1988, ISBN={0-201-06663-7}}

The special crossref field tells BIBTEX that the Wood:color entry should in-
herit missing fields from the entry it cross-references—Roth:postscript. BIBTEX
automatically puts the Roth:postscript entry into the reference list if it is cross-
referenced by a certain number of entries (default 2) on a \cite or \nocite com-
mand, even if the Roth:postscript entry itself is never the argument of a \cite
or \nocite command. Thus, with the default settings, Roth:postscript will au-
tomatically appear on the reference list if one other entry besides Wood:color
cross-references it.

The default is compiled into the BIBTEX program, but on modern installations
1

it can be changed on the command-line by specifying --min-crossrefs together
with the desired value:

bibtex --min-crossrefs=1 12-5-41

For instance, the bibliography for Example 12-5-41 from page 738 was produced
with the above setting to ensure that the proceedings entry was typeset as a sepa-
rate reference even though there was only one cross-reference to it. On the other
hand, if you want to avoid a separate entry for the whole proceedings regardless

1In BIBTEX8 this option is named –min_crossrefs or -M.

13.3 On-line bibliographies 773

of the number of entries referencing it, set the --min-crossrefs option to a suit-
ably large value (e.g., 500).

A cross-referenced entry must occur later in the database files than every
entry that cross-references it. Thus, all cross-referenced entries could be put at the
end of the database. Cross-referenced entries cannot themselves cross-reference
another entry.

You can also use LaTEX’s \cite command inside the fields of your BIBTEX en-
tries. This can be useful if you want to reference some other relevant material
inside a note field:

note = "See Eijkhout~\cite{Eijkhout:1991} for more details"

However, such usage may mean that you need additional LaTEX and BIBTEX runs to
compile your document properly. This will happen if the citation put into the .bbl
file by BIBTEX refers to a key that was not used in a citation in the main document.
Thus, LaTEX will be unable to resolve this reference in the following run and will
need an additional BIBTEX and two additional LaTEX runs thereafter.

13.3 On-line bibliographies

If you search the Internet you will find a large number of bibliography entries for
both primary and secondary publications in free as well as commercial databases.
In this section we mention a few free resources on scientific publications that offer
bibliographic data in BIBTEX and some other formats.

Nelson Beebe maintains nearly 400 BIBTEX databases related to scientific jour-
nals and particular scientific topics.1 These range from “Acta Informatica” and
“Ada User Journal” to “X Journal” and “X Resource [journal]”. All are available as
.bib source file, .html, .pdf, and .ps listings.

Nelson Beebe’s most interesting .bib databases, as far as TEX is concerned,
are the files texbook2.bib and texbook3.bib (books about TEX, METAFONT,
and friends), type.bib (a list of articles and books about typography), gut.bib
(the contents of the French Cahiers Gutenberg journal), komoedie.bib (the con-
tents of the German Die TEXnische Komödie journal), texgraph.bib (sources ex-
plaining how to make TEX and graphics work together), texjourn.bib (a list of
journals accepting TEX as input), tugboat.bib (all the articles in TUGboat), and
standard.bib (software standards). The web resources provided by Nelson Beebe
also include a series of BIBTEX styles and many command-line tools for manipulat-
ing bibliography data (discussed in Section 13.4.3).

The Collection of Computer Science Bibliographies by Alf-Christian Achilles,
containing more than 1.2 million references, can be found at http://liinwww.
ira.uka.de/bibliography/index.html and at several mirror sites. The data

1The bibliographic databases and support programs for maintaining and manipulating them can
be found at http://www.math.utah.edu:8080/pub/tex/bib/index-table.html.

774 Bibliography Generation

included comes from external bibliographical collections like those created by
Nelson Beebe. One added-value feature is the search functionality, which allows
you to research authors, particular subjects, topics, and other categories. Nearly
all of the reference data is available in BIBTEX format.

Another interesting source is CiteSeer, Scientific Literature Digital Library, de-
veloped by Steve Lawrence, which can be found at http://citeseer.nj.nec.com.
Helpful features include extensive search possibilities, context information on
publications (e.g., related publications), citations to the document from other pub-
lications, statistical information about citations to a citation, and much more.

These examples represent merely a small selection of the vast amount of
material found on the Internet. They might prove useful if you are interested in
research papers on mathematics, computer science, and similar subjects.

13.4 Bibliography database management tools

As BIBTEX databases are plain text files, they can be generated and manipulated
with any editor that is able to write ASCII files. However, with large collections
of BIBTEX entries, this method can get quite cumbersome and finding information
becomes more and more difficult. For this reason people started to develop tools
to help with these tasks. Many of them can be found at http://www.tug.org/
tex-archive/biblio/bibtex/utils/.

A selection of such tools is described in this section. They range from
command-line tools for specific tasks to programs with a graphical user inter-
face for general database maintenance. New products of both types are emerg-
ing, so it is probably worthwhile to check out available Internet resources (e.g.,
http://bibliographic.openoffice.org/biblio-sw.html).

13.4.1 biblist—Printing BIBTEX database files

A sorted listing of all entries in a BIBTEX database is often useful for easy reference.
Various tools, with more or less the same functionality, are available, and choosing
one or the other is mostly a question of taste. In this section we discuss one
representative tool, the biblist package written by Joachim Schrod. It can create a
typeset listing of (possibly large) BIBTEX databases. Later sections show some more
possibilities.

To use biblist you must prepare a LaTEX document using the article class. Op-
tions and packages like twoside, german, or geometry can be added. Given that
entries are never broken across columns, it may not be advisable to typeset them
in several columns using multicol, however.

The argument of the \bibliography command must contain the names of all
BIBTEX databases you want to print. With a \bibliographystyle command you
can choose a specific bibliography style. By default, all bibliography entries in the
database will be output. However, if you issue explicit \nocite commands (as we

13.4 Bibliography database management tools 775

did in the example), only the selected entries from the databases will be printed.
Internal cross-references via the crossref field or explicit \cite commands are
marked using boxes around the key instead of resolving the latter.

13-4-1 (June 19, 2004) tex.bib

References
MR-PQ .

Frank Mittelbach and Chris Rowley.
The pursuit of quality: How can automated typesetting achieve the highest standards of
craft typography?
In Vanoirbeek and Coray EP92 , pages 261–273.

EP92 .
Christine Vanoirbeek and Giovanni Coray, editors.
EP92—Proceedings of Electronic Publishing, ’92, Cambridge, 1992. Cambridge
University Press.

\usepackage{biblist}
\bibliographystyle

{alpha}

\nocite{MR-PQ}
\footnotesize
\bibliography{tex}

Youmust run LaTEX, BIBTEX, and LaTEX. No additional LaTEX run is necessary, since
the cross-references are not resolved to conserve space. For this reason you will
always see warnings about unresolved citations.

13.4.2 bibtools—A collection of command-line tools

Several sets of interesting BIBTEX tools are widely available. The first set was writ-
ten (mostly) by David Kotz. His tools are collectively available for UN*X systems
(or cygwin under Windows). You may have to adjust the library path names at the
top of the scripts to make them work in your environment.

aux2bib Given an .aux file, this perl script creates a portable .bib file containing
only the entries needed for the particular document. This ability is useful
when LaTEX files need to be shipped elsewhere. The script works by using a
special BIBTEX style file (subset) to extract the necessary entries, which means
that only standard fields are supported.

bibkey This C-shell script uses the sed, egrep, and awk utilities to prepare the
list of all entries having a given string as (part of) their citation key.

Usage: bibkey string file

Characters in the string parameter above that have a special meaning in regu-
lar expressions used by either sed or egrep must be escaped with a \ (e.g., \\
for the backslash). Case is ignored in the search. Any valid egrep expression
is allowed, including, for example, a search for multiple keys:

bibkey ’bgb|zpo’ jura.bib

looktex Entries containing a given string in a BIBTEX database are listed when
this C-shell script is run. It is a generalization of the bibkey script, and all
comments about that script also apply in this case.

776 Bibliography Generation

Bibliography files
../EX/jura

July 13, 2003

References

[aschur] Hans Brox and Wolf-Dietrich Walker. Allgemeines Schuldrecht. München, 29. edition, 2003.

[bgb] Otto Palandt. Bürgerliches Gesetzbuch. Beck Juristischer Verlag, München, 62. edition, 2003.

[bschur] Hans Brox and Wolf-Dietrich Walker. Besonderes Schuldrecht. München, 27. edition, 2002.

[zpo] Adolf Baumbach, Wolfgang Lauterbach, Jan Albers, and Peter Hartmann. Zivilprozeßordnung
mit Gerichtsverfassungsgesetz und anderen Nebengesetzen. München, 59. neubearb. edition, 2002.

Figure 13.1: Output of the program printbib

makebib This C-shell script makes an exportable .bib file from a given set of
.bib files and an optional list of citations.

Usage: makebib bibfile(s) [citekey(s)]

The output is written to subset.bib. If citekey(s) is not given, then all refer-
ences in the bibfile(s) are included.

printbib This C-shell script makes a .dvi file from a .bib file for handy reference.
It is sorted by cite key and includes keyword and abstract fields.

Usage: printbib bibfile(s)

The file abstract.dvi is generated and can be run through a dvi driver to be
printed. Figure 13.1 shows the output when running this shell script on the
database jura.bib from page 717.

bib2html This perl script produces an HTML version of one or more BIBTEX
database files.

Usage: bib2html style [-o outputfile] bibfile(s)

There are several styles from which to choose; Figure 13.2 on the facing page
was produced using the style alpha on the jura.bib database. If no outputfile
is given, the file bib.html is used as a default. Instead of generating a listing
of a complete database you can use the option -a and specify an .aux file, in
which case a bibliography containing only references from this document is
created.

Usage: bib2html style [-o outputfile] -a auxfile

13.4 Bibliography database management tools 777

Figure 13.2: Output of the program bib2html

13.4.3 bibclean, etc.—A second set of command-line tools

A second set of tools to handle BIBTEX databases were developed by Nelson Beebe.
We give a brief description of each of them.

bibclean This C program is a pretty-printer, syntax checker, and lexical analyzer
for BIBTEX bibliography database files [13]. The program, which runs on UN*X,
Vax/VMS, and Windows platforms, has many options, but in general you can
just type

bibclean < bibfile(s) > outfile

For example, when used on the database file tex.bib, the bibclean program
reports the following problem:

%% "EX/tex.bib", line 92: Unexpected value in ‘‘year = "1980ff"’’.

bibextract This program extracts from a list of BIBTEX files those bibliography
entries that match a pair of specified regular expressions, sending them to
stdout, together with all @preamble and @string declarations. Two regular
expressions must be specified: the first to select keyword values (if this string
is empty then all fields of an entry are examined), and the second to further
select from the value part of the fields which bibliography entries must be
output. Regular expressions should contain only lowercase strings.

778 Bibliography Generation

For example, the following command will extract all entries containing
“PostScript” in any of the fields:

bibextract "" "postscript" bibfile(s) > new-bibfile

The next command will extract only those entries containing the string Adobe
in the author or organization field:

bibextract "author|organization" "adobe" bibfile(s) > new-bibfile

Note that one might have to clean the .bib files using bibclean before bibex-
tract finds correct entries. For example, the two entries with author “Mittel-
bach” are found with

bibclean tex.bib | bibextract "author" "mittelbach"

Using bibextract alone would fail because of the entry containing the line
year={1980ff}.

citefind and citetags Sometimes you have to extract the entries effectively refer-
enced in your publication from several large BIBTEX databases. The Bourne
shell scripts citefind and citetags use the awk and sed tools to accomplish
that task. First, citetags extracts the BIBTEX citation tags from the LaTEX source
or .aux files and sends them to the standard output stdout. There, citefind
picks them up and tries to find the given keys in the .bib files specified. It
then writes the resulting new bibliography file to stdout. For instance,

citetags *.aux | citefind - bibfile(s) > outfile

Nelson Beebe also developed the showtags package, which adds the citation
key to a bibliography listing. In other words, it does a similar job to biblist as
shown in Example 13-4-1 on page 775 or the program printbib as shown in Fig-
ure 13.1 on page 776.

References
MR-PQ

[MR92] Frank Mittelbach and Chris Rowley. The pursuit of quality: How can automated
typesetting achieve the highest standards of craft typography? In Vanoirbeek and
Coray [VC92], pages 261–273.

EP92

[VC92] Christine Vanoirbeek and Giovanni Coray, editors. EP92—Proceedings of Electronic
Publishing, ’92, Cambridge, 1992. Cambridge University Press.

\usepackage
{showtags}

\bibliographystyle
{is-alpha}

\nocite{MR-PQ}
\footnotesize
\bibliography{tex} 13-4-2

13.4.4 bibtool—A multipurpose command-line tool

The program bibtool was developed by Gerd Neugebauer for manipulating BIBTEX
databases. It combines many of the features from the programs and scripts dis-
cussed earlier and adds several new features under the hood of a single program.
It is distributed as a C source file, though you may find precompiled binaries—for

13.4 Bibliography database management tools 779

example, in the Debian distribution. It has been successfully compiled on many
architectures, provided a suitable C compiler is available.

In this section we show some of the features provided by the program. Many
more are described in the user manual [132] accompanying it.

Pretty-printing, merging, and sorting

In its simplest invocation you can call the program with one or more BIBTEX
databases as its argument(s), in which case the program acts as a pretty-printer
and writes the result to stdout.1 If the option -o file is used, then the result is
written to the specified file. For example, to use it on the database shown in Fig-
ure 12.2 on page 690, we could write

bibtool tex.bib -o new-tex.bib

This would produce a pretty-printed version of that database in new-tex.bib.
All entries will be nicely indented, with every field on a separate line, and all the
equals signs will be lined up. For instance, the worst-looking entry in tex.bib

@manual{GNUMake, key = {make},
title = {{GNU Make}, A Program for Directing
Recompilation}, organization= "Free
Software Foundation",address = "Boston,
Massachusetts",ISBN={1-882114-80-9},year = 2000}

has now been reformatted as follows:

@Manual{ gnumake,
key = {make},
title = {{GNU Make}, A Program for Directing Recompilation},
organization = "Free Software Foundation",
address = "Boston, Massachusetts",
isbn = {1-882114-80-9},
year = 2000

}

If you specify several database files, then all are merged together in the output. Merging and sorting

If desired, you can sort them according to the reference keys (using the option -s
or -S for reverse sort). Alternatively, you can specify your own sort key using the
resource2 sort.format:

bibtool -- ’sort.format="%N(author)"’ tex.bib jura.bib

1If no input files are specified bibtool reads from stdin. Thus, you can also use it as a filter in a
UN*X pipe construction, which can be handy sometimes.

2Resources are program directives that you assign values. This is often done in external files
(explained later); on the command line they can be specified after the -- option.

780 Bibliography Generation

Be aware that sorting may produce an invalid bibliography file if the file con-
tains internal cross-references, since the entries referenced via a BIBTEX crossref
field have to appear later in the database and this may not be the case after sorting.
The manual explains how to define sort keys that take this problem into account.

Merging databases together may also result in duplicate entries or, more pre-
Removing duplicate

keys
cisely, in entries that have the same reference keys for use with LaTEX. A database
containing such duplicates will produce errors if processed by BIBTEX. If you spec-
ify the option -d, then the duplicates are written out as comments rather than
as real entries, which keeps BIBTEX happy. However, it might mean that different
entries are actually collapsed into a single one (if they happened to have identical
keys), so you need to use this option with some care.

Normalization and rewriting of entries

BIBTEX supports both double quotes and braces as field delimiters, so the mixture
used in the GNUmake entry is perfectly legal though perhaps not advisable. A better
approach is to stick to one scheme, always using braces or always using double
quotes. The rewriting rule

bibtool -- ’rewrite.rule {"^\"\([^#]*\)\"$" "{\1}"}’ tex.bib

changes the field delimiters to brace groups, except in cases where strings are
concatenated. It produces the following result for the sample entry:

@Manual{ gnumake,
key = {make},
title = {{GNU Make}, A Program for Directing Recompilation},
organization = {Free Software Foundation},
address = {Boston, Massachusetts},
isbn = {1-882114-80-9},
year = 2000

}

Readers who are familiar with regular expressions will probably be able to under-
stand the rather complex field rewriting rule above without further explanation. If
not, the manual discusses these features at great length.

Rewriting rules (and, in fact, any other resource definitions) can also be placedExternal resource
files in a separate file (default extension .rsc) and loaded using the option -r. For

example, to remove double-quote delimiters you can use

bibtool -r braces tex.bib

which loads the distribution file braces.rsc containing three rewriting rules sim-
ilar to the one above covering additional cases.

13.4 Bibliography database management tools 781

Rewriting rules can be restricted to work only on certain fields by specifying
those fields followed by a # sign before the regular expression pattern. For ex-
ample, the following rule will rewrite the year field if it contains only two digits
potentially surrounded by double quotes or braces and the first digit is not zero
(since we do not know if 02 refers to 2002 or 1902):

rewrite.rule {year # "^[\"{]?\([1-9][0-9]\)[\"}]?$" "19\1"}

Instead of rewriting you can do semantic checks using the check.rule re- Semantic
checkssource. For instance,

check.rule {year # "^[\"{]?\([0-9][0-9]\)[\"}]?$" "\@ \$: year = \1\n"}

will generate a warning that a year field with suspicious contents was found if the
field contains only two digits (in the message part \@ is replaced by the entry type
and \$ by the reference key). Applying it to our sample database, we get

*** BibTool: Book vleunen:92: year = 92

More elaborate semantic checks are discussed in the user manual.
BIBTEX databases may also contain @string declarations used as abbreviations Removing @string

declarationsin the entries. In certain cases you may want those to be replaced by the strings
themselves. This can be done as follows:

bibtool -- ’expand.macros=ON’ tex.bib

This has the result that the series field for the entries lgc97 and lwc99 changes
from

series = ttct

to the expanded form

series = {Tools and Techniques for Computer Typesetting}

The bibtool program expands strings whose definitions are found in the database
files themselves—abbreviations that are part of the BIBTEX style file are left un-
touched. If they should also get expanded, you have to additionally load a .bib
file that contains them explicitly as @string declarations.

Extracting entries

For selecting a subset of entries from a database a number of possibilities exist.
The option -x aux-file will check in the specified aux-file for \citation requests

782 Bibliography Generation

and generate from them a new .bib file containing only entries required for the
particular document. For example:

bibtool -x 12-1-1.aux -o 12-1-1.bib

There is no need to specify any source database(s), since this information is also
picked up from the .aux file. Any cross-referenced entries will automatically be
included as necessary.

Another possibility is provided with the option -X regexp, which extracts all
entries whose reference key matches the regular expression regexp. For example,

bibtool -X ’^mr-\|^so-’ tex.bib

will select the two entries with the reference keys MR-PQ and Southall. Details
on regular expressions can be found in the manual. Using regular expressions will
select only entries that are explicitly matched. Thus, cross-referenced entries such
as EP92 in this example will not be included automatically, though this outcome
can be forced by setting the resource select.crossrefs to ON.

In addition, several resources can be set to guide selection. For example, to
select all entries with Knuth or Lamport as the author or editor, you could say

bibtool -- ’select={author editor "Knuth\|Lamport"}’ tex.bib

To find all entries of type book or article, you could say

bibtool -- ’select={@book @article}’ tex.bib

To find all entries that do not have a year field, you could say

bibtool -- ’select.non={year ".+"}’ tex.bib

By combining such resource definitions in a resource file and by passing the re-
sults of one invocation of bibtool to another, it is possible to provide arbitrarily
complicated rewriting and searching methods.

Reference key generation

As we learned in Chapter 12 the reference key, the string used as an argument in
the \cite command to refer to a bibliography entry, can be freely chosen (with a
few restrictions). Nevertheless, it is often a good idea to stick to a certain scheme
since that helps you remember the keys and makes duplicate keys less likely. The
bibtool program can help here by changing the keys in a database to conform to
such a scheme. Of course, that makes sense only for databases not already in use;
otherwise, BIBTEX would be unable to find the key specified in your documents.

Two predefined schemes are available through the options -k and -K. They
both generate keys consisting of author names and the first relevant word of the

13.4 Bibliography database management tools 783

title in lowercase (excluding “The” and similar words) and ignoring commands and
braces. Thus, when running bibtool on the database from Figure 12.3 on page 717,
and then searching for lines containing an @ sign (to limit the listing),

bibtool -k jura.bib | grep @

we get the following output:

@Book{ baumbach.lauterbach.ea:zivilproze,
@Book{ brox.walker:allgemeines,
@Book{ brox.walker:besonderes,
@Book{ palandt:burgerliches,

The slightly strange key ending in :zivilproze is due to the fact that the entry
contains Zivilproze\ss�ordnung, making the program believe the word ends
after \ss , which itself is discarded because it is a command. Similarly, \"u is rep-
resented as “u” in the fourth key. You can dramatically improve the situation by
additionally loading the resource file tex_def.rsc. This file uses the tex.define
resource to provide translation for common LaTEX commands, so that

bibtool -r tex_def -k jura.bib | grep @

produces the keys

@Book{ baumbach.lauterbach.ea:zivilprozessordnung,
@Book{ brox.walker:allgemeines,
@Book{ brox.walker:besonderes,
@Book{ palandt:buergerliches,

Other BIBTEX database-manipulating programs have similar problems in pars-
ing blank-delimited commands, so it is usually better to use \ss{} or {\ss} in
such places. For example, in Figure 13.2 on page 777 you can see that bib2html
was also fooled by the notation and added an incorrect extra space in the first
entry.

The other key-generating option (-K) is similar. It adds the initials of the au-
thor(s) after the name:

@Book{ baumbach.a.lauterbach.w.ea:zivilproze,
@Book{ brox.h.walker.w:allgemeines,

Other schemes can be specified using the powerful configuration options docu-
mented in the user manual.

784 Bibliography Generation

13.4.5 pybliographer—An extensible bibliography manager

The pybliographer scripting environment developed by Frédéric Gobry is a tool for
managing bibliographic databases. In the current version it supports the following
formats: BIBTEX, ISI (web of knowledge), Medline, Ovid, and Refer/EndNote. It can
convert from one format to another. It is written in Python, which means that it is
readily available on UN*X platforms; usage on Windows systems may prove to be
difficult, even though there are Python implementations for this platform as well.
The home of pybliographer is http://pybliographer.org .

The graphical front end for pybliographer, which builds on the Gnome li-
braries, is called pybliographic. Upon invocation you can specify a database to
work with, usually a local file, though it can be a remote database specified as a
URL. For example,

pybliographic http://www.math.utah.edu:8080/pub/tex/bib/tugboat.bib

will bring up a work space similar to the one shown in Figure 13.3 on the facing
page. It will be similar, but not identical, because the graphical user interface is
highly customizable. For instance, in the version used by the author an “editor”
column was added between “author” and date columns in the main window. If
you wish to see other fields use the preference dialog (Settings → Preferences →
Gnome). On UN*X systems the preferences are stored in the file .pybrc.conf.
Although this file is not user editable, you can remove it to restore the default
configuration if necessary.

Figure 13.3 shows several other interesting features. On the bottom of the
main window you see that the loaded database (tugboat.bib) contains 2446 en-
tries, 3 of which are currently displayed. This is due to the fact that we searched

Hierarchical
searching

it for entries matching the regular expression pattern Mittelbach in the author
field (30 entries found), within the results searched for entries containing LaTeX3
or class design in the title field (5 entries found), and within these results
restricted the search to publications from the years 1995 to 1999. The search
dialog window shows the currently defined hierarchical views available. By click-
ing on either of them you can jump between the different views; by right-clicking
you can delete views no longer of interest. The fields available for searching are
customizable. The initial settings offer only a few fields.

To edit an existing entry you can double-click it in the main window. Alter-
natively, you can use the Edit menu from the toolbar, or you can right-click an
entry, which pops up a context menu. The latter two possibilities can also be used
to delete entries or add new ones. The edit dialog window shows the entry in a
format for manipulation opened at the “Mandatory” tab holding the fields that are
mandatory for the current entry type. In addition, there are the optional fields in
the “Optional” tab and possibly other fields in the “Extra” tab. This classification
is done according to the current settings and can be easily adjusted according to
your own preference. While pybliographic is capable of correctly loading databases
with arbitrary field names, they will all appear in the Extra tab, which may not be

13.4 Bibliography database management tools 785

Figure 13.3: The pybliographic work space

convenient if you work with extended BIBTEX styles such as jurabib that consider
additional fields to be either required or optional. In such cases it pays to adjust
the default settings (Settings → Entries, Fields).

To the right of the fields you can see round buttons that are either green
Signaling dangerous
contents

or red. With the red buttons pybliographic signals that the field content contains
some data that the program was unable to parse correctly and that editing the text
is likely to result in loss of data. For example, in the title field it was unable to
interpret the command \LaTeX{} correctly and so displayed LaTeX instead. The
journal field is flagged because the database actually contains

Journal = j-tugboat,

This reference to an abbreviation would get lost the moment you modify that

786 Bibliography Generation

Figure 13.4: Native editing in pybliographic

particular field. To modify such entries you have to change to “Native Editing”,
as shown in Figure 13.4. This can be done by clicking the “Native Editing” button
in the editing dialog window. The window then changes to the format shown in
the middle window of Figure 13.4, offering a standard BIBTEX entry format that
you can manipulate at will. It is then your responsibility to ensure that the BIBTEX
syntax is obeyed. As seen in the right window in that figure, there is the possibility
to make the native editing mode serve as the default.

While loading a database pybliographic does some capitalization normaliza-�Default
capitalization

rules
tion on a number of fields (e.g., title). As this is better done by BIBTEX when
formatting for a particular journal you should consider disabling this feature (Set-
tings → Preferences → Bibtex+ → Capitalize). In fact, with languages other than
English you have to disable it to avoid proper nouns being incorrectly changed to
lowercase.

The distribution also contains a number of command-line scripts. The docu-
mentation describes how to provide additional ones. For example, to convert files

13.4 Bibliography database management tools 787

between different formats you can use pybconvert. The script

pybconvert bibtex..refer tex.bib

converts the BIBTEX database tex.bib to the Refer format, resulting in output such
as the following:

%T A handbook for scholars
%P xi + 348
%I Oxford University Press
%F vLeunen:92
%D 92
%C Walton Street, Oxford OX2 6DP, UK
%A van Leunen, Mary-Claire

Depending on the contents of individual fields you may receive warnings, such
as “warning: unable to convert ‘\textsl’”, since pybliographer has no idea
how to convert such commands to a non-TEX format such as Refer. In that case
you should manually correct the results as necessary.

The script pycompact is similar to the aux2bib perl script or the -x option
of bibtool discussed earlier. However, unlike the latter option, it does not include
cross-referenced entries, so it is safer to use bibtool if available.

An interesting script is pybcheck, which expects a list of BIBTEX database files
or a directory name as its argument. It then checks all databases for correct syntax,
duplicate keys, and other issues. For example, running pybcheck EX results in

file ‘EX/jura.bib’ is ok [4 entries]
file ‘EX/tex.bib’ is ok [12 entries]

This script simply verifies the individual databases, so duplicate entries across
different files are not detected.

Emacs users can run the command directly from a compile buffer via
M-x compile followed by pybcheck file(s). From the output window you can then
jump directly to any error detected using the middle mouse button.

13.4.6 JBibtexManager—A BIBTEX database manager in Java

The JBibtexManager program developed by Nizar Batada is a BIBTEX database man-
ager written in Java; see Figure 13.5 on the following page. Due to the choice of
programming language it works on all platforms for which Java 1.4 or higher is
available (e.g., Windows, UN*X flavors, Mac).

This program offers searching on the author, editor, title, and keyword values;
sorting on the type, reference key, author, year, title, journal, editor, and keywords;
and, of course, standard editing functions, including adding, deleting, copying,
and pasting between different bibliographies. It automatically detects duplicate
reference keys if bibliographies are merged. In addition, it offers the possibility

788 Bibliography Generation

Figure 13.5: The JBibtexManager work space (German locale)

to search a bibliography for duplicate entries (i.e., entries that differ only in their
reference keys, if at all).

Like pybliographic, this program can import data in several bibliography for-
mats: BIBTEX, INSPEC, ISI (web of knowledge), Medline (XML), Ovid, and Scifinder.
Export formats of HTML and plain text are available. With formats that do not
contain any reference key information, the program automatically generates suit-
able keys provided the author information is structured in a way the program
understands.

Although JBibtexManager is intended to work primarily with BIBTEX databases,
importing such files for the first time can pose some problems as not all syntax
variations of the BIBTEX format are supported. In particular, there should be at
most one field per line. Thus, the GNUmake entry in our sample tex.bib database
would not be parsed correctly. In addition, entries are recognized only if the en-
try type (starting with the @ sign) starts in the first column. If not, the entry is
misinterpreted as a comment and dropped.1

Of course, these types of problems happen only the first time an externally
generated bibliography is loaded; once the data is accepted by the system, it will

1Most of these restrictions have been lifted in the new version of JBibtexManager.

13.4 Bibliography database management tools 789

be saved in a way that enables it to be reloaded again. One way to circumvent the
problems during the initial loading is to preprocess the external database with a
tool like bibtool or bibclean, since after validation and pretty-printing the entries
are in an acceptable format.

Unknown fields in a database entry are neither visible nor modifiable except
when using the “raw BIBTEX” mode in the newest version of the program. It is,
however, possible to customize the recognized fields on a per-type basis so that
the program is suitable for use with extended BIBTEX styles such as those used by
jurabib or natbib.

The program is not available on CTAN. Its current home is http://jabref.
sourceforge.net/, where it was merged with a similar project called BibKeeper
under the new name JabRef.

13.4.7 BibTexMng—A BIBTEX database manager for Windows

The BibTexMng program developed by Petr and Nikolay Vabishchevich imple-
ments a BIBTEX database manager on Windows; see Figure 13.6 on the next page.
It supports all typical management tasks—editing, searching, sorting, moving, or
copying entries from one file to another.

In contrast to pybliographic or JBibtexManager, the BibTexMng program deals
solely with BIBTEX databases; it has no import or export functions to other biblio-
graphical formats. The only “foreign” export formats supported are .bbl files and
.htm files (i.e., processing a selection of entries with BIBTEX or BIBTEX8 from within
the program and producing HTML from a selection of entries).

In the current release the program unfortunately knows about only the stan-
dard BIBTEX entry types (see Table 13.1 on page 763), the standard BIBTEX fields
(Table 13.2), and the following fields:

abstract, affiliation, contents, copyright, isbn, issn, keywords,
language, lccn, location, mrnumber, price, size, and url

Any other field is silently discarded the first time a BIBTEX database is loaded; the
same thing happens to entry types if they do not belong to the standard set. This

Not usable with
jurabib et al.

means that the program is not usable if you intend to work with BIBTEX styles, such
as jurabib, that introduce additional fields or types, as neither can be represented
by the program. It does, however, work for most styles available, including those
intended for natbib (e.g., styles generated with custom-bib).

Another limitation to keep in mind is that the BibTexMng program does
not support @string declarations. If those are used in an externally generated
BIBTEX database, you have to first remove them before using the database with
BibTexMng. Otherwise, the entries will be incorrectly parsed. To help with this
task the program offers to clean an external database for you (via File → Clean-
ing of BIBTEX database). This operation replaces all strings by their definitions and
removes all unknown fields, if any exist.

790 Bibliography Generation

Figure 13.6: The BibTexMng work space

13.5 Formatting the bibliography with BIBTEX styles

Now that we know how to produce BIBTEX database entries and manipulate them
using various management tools, it is time to discuss the main purpose of the
BIBTEX program. This is to generate a bibliography containing a certain set of en-
tries (determined from the document contents) in a format conforming to a set of
conventions.

We first discuss the use of existing styles and present example results pro-
duced by a number of standard and nonstandard styles. We then show how the
custom-bib package makes it possible to produce customized styles for nearly
every requirement with ease.

13.5 Formatting the bibliography with BIBTEX styles 791

13.5.1 A collection of BIBTEX style files

Various organizations and individuals have developed style files for BIBTEX that
correspond to the house style of particular journals or editing houses. Nelson
Beebe has collected a large number of BIBTEX styles. For each style he provides an
example file, which allows you to see the effect of using the given style.1 Some of
the BIBTEX styles—for instance, authordate〈i〉, jmb, and named—must be used in
conjunction with their accompanying LaTEX packages (as indicated in Table 13.4)
to obtain the desired effect.

You can also customize a bibliography style, by making small changes to one
of those in the table (see Section 13.6.3 for a description of how this is done).
Alternatively, you can generate your own style by using the custom-bib program
(as explained in Section 13.5.2 on page 798).

Table 13.4: Selected BIBTEX style files

Style Name Description

abbrv.bst Standard BIBTEX style

abbrvnat.bst natbib variant of abbrv style
abstract.bst Modified alpha style with abstract keyword
acm.bst Association for Computing Machinery BIBTEX style

agsm.bst Australian government publications BIBTEX style

alpha.bst Standard BIBTEX style

amsalpha.bst alpha-like BIBTEX style forAMS-TEX
amsplain.bst plain-like BIBTEX style forAMS-TEX (numeric labels)
annotate.bst Modified alpha BIBTEX style with annote keyword
annotation.bst Modified plain BIBTEX style with annote keyword
apa.bst American Psychology Association BIBTEX style

apalike.bst Variant of apa BIBTEX style
apalike LaTEX package for use with apalike.bst
apalike2.bst Variant of apalike BIBTEX style
astron.bst Astronomy BIBTEX style

authordatei.bst i=[1,4]; series of BIBTEX styles producing author-date refer-
ence list

authordate1-4 LaTEX package to be used together with authordatei.bst
bbs.bst Behavioral and Brain Sciences BIBTEX style

cbe.bst Council of Biology Editors BIBTEX style (includes such jour-
nals as American Naturalist and Evolution)

cell.bst Small modifications to jmb BIBTEX style
continued on next page

1See Appendix C to find out how you can obtain these files from one of the TEX archives if they
are not already on your system.

792 Bibliography Generation

continued from previous page

Style name Description

harvard LaTEX package for use with Harvard styles (e.g., agsm)
humanbio.bst Human Biology BIBTEX style

humannat.bst Human Nature and American Anthropologist journals

ieeetr.bst Transactions of the Institute of Electrical and Electronic En-
gineers BIBTEX style

is-abbrv.bst abbrv BIBTEX style with ISSN and ISBN keyword added

is-alpha.bst alpha BIBTEX style with ISSN and ISBN keyword added

is-plain.bst plain BIBTEX style with ISSN and ISBN keyword added

is-unsrt.bst unsrt BIBTEX style with ISSN and ISBN keyword added

jmb.bst Journal of Molecular Biology BIBTEX style

jmb LaTEX package for use with jmb.bst
jox.bst Style for use with jurabib (Oxford style)

jtb.bst Journal of Theoretical Biology BIBTEX style

jurabib.bst Style for use with jurabib
jureco.bst Style for use with jurabib (compact)

jurunsrt.bst Style for use with jurabib (unsorted)

kluwer.bst Kluwer Academic Publishers BIBTEX style

named.bst BIBTEX style with [author(s), year] type of citation

named LaTEX package for use with named.bst
namunsrt.bst Named variant of unsrt BIBTEX style
nar.bst Nucleic Acid Research BIBTEX style

nar LaTEX package for use with nar.bst
nature.bst Nature BIBTEX style

nature LaTEX package for use with nature.bst
newapa.bst Modification of apalike.bst
newapa LaTEX package for use with newapa.bst
phaip.bst American Institute of Physics journals BIBTEX style

phapalik.bst American Psychology Association BIBTEX style

phcpc.bst Computer Physics Communications BIBTEX style

phiaea.bst Conferences of the International Atomic Energy Agency
BIBTEX style

phjcp.bst Journal of Computational Physics BIBTEX style

phnf.bst Nuclear Fusion BIBTEX style

phnflet.bst Nuclear Fusion Letters BIBTEX style

phpf.bst Physics of Fluids BIBTEX style

phppcf.bst Physics version of apalike BIBTEX style
phreport.bst Internal physics reports BIBTEX style

phrmp.bst Reviews of Modern Physics BIBTEX style

continued on next page

13.5 Formatting the bibliography with BIBTEX styles 793

continued from previous page

Style name Description

plain.bst Standard BIBTEX style

plainnat.bst natbib variant of plain style
plainyr.bst plain BIBTEX style with primary sort by year
siam.bst Society of Industrial and Applied Mathematics BIBTEX style

unsrt.bst Standard BIBTEX style

unsrtnat.bst natbib variant of unsrt style

In theory, it is possible to change the appearance of a bibliography by simply
using another BIBTEX style. In practice, there are a few restrictions due to the fact
that the BIBTEX style interface was augmented by some authors so that their styles
need additional support from within LaTEX. We saw several such examples in Chap-
ter 12. For instance, all the author-date styles need a special LaTEX package such
as natbib or harvard to function, and the BIBTEX styles for jurabib will work only if
that package is loaded.

On the whole the scheme works quite well, and we prove it in this section by
showing the results of applying different BIBTEX styles (plus their support packages
if necessary) without otherwise altering the sample document. For this we use the
by now familiar database from Figure 12.2 on page 690 and cite five publications
from it: an article and a book by Donald Knuth, which will show us how different
publications by the same author are handled; the manual from the Free Software
Foundation, which is an entry without an author name; the unpublished entry
with many authors and the special BIBTEX string “and others”; and a publication
that is part of a proceeding, so that BIBTEX has to include additional data from a
different entry.

In our first example we use the standard plain BIBTEX style, which means we
use the following input:

\bibliographystyle{plain}

\nocite{Knuth:TB10-1-31,GNUMake,MR-PQ,Knuth-CT-a,test97}
\bibliography{tex}

To produce the final document, the example LaTEX file has to be run through
LaTEX once to get the citation references written to the .aux file. Next, BIBTEX
processes the generated .aux file, reading the relevant entries from the BIBTEX
database tex.bib. The actual bibliography style in which the database entries
are to be output to the .bbl file for later treatment by LaTEX is specified with
the command \bibliographystyle in the LaTEX source. Finally, LaTEX is run twice
more—first to load the .bbl file and again to resolve all references.1 A detailed
explanation of this procedure was given in Section 12.1.3 on page 687, where you
will also find a graphical representation of the data flow (Figure 12.1).

1In fact, for this example only one run is necessary—there are no cross-references to resolve
because we used \nocite throughout.

794 Bibliography Generation

The plain style has numeric labels (in brackets) and the entries are alphabeti-
cally sorted by author, year, and title. In case of the GNU manual the organization
was used for sorting. This will give the following output:

References

[1] Free Software Foundation, Boston, Massachusetts. GNU Make, A Program for Directing
Recompilation, 2000.

[2] Michel Goossens, Ben User, Joe Doe, et al. Ambiguous citations. Submitted to the IBM
Journal of Research and Development, 1997.

[3] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

[4] Donald E. Knuth. Typesetting Concrete Mathematics. TUGboat, 10(1):31–36, April 1989.

[5] Frank Mittelbach and Chris Rowley. The pursuit of quality: How can automated typesetting
achieve the highest standards of craft typography? In Christine Vanoirbeek and Giovanni
Coray, editors, EP92—Proceedings of Electronic Publishing, ’92, pages 261–273, Cambridge,
1992. Cambridge University Press. 13-5-1

By replacing plain with abbrv we get a similar result. Now, however, the en-
tries are more compact, since first names, month, and predefined journal names
(Table 13.3 on page 771) are abbreviated. For instance, ibmjrd in the second ref-
erence now gives “IBM J. Res. Dev.” instead of “IBM Journal of Research and Devel-
opment”.

[1] Free Software Foundation, Boston, Massachusetts. GNU Make, A Program for Directing
Recompilation, 2000.

[2] M. Goossens, B. User, J. Doe, et al. Ambiguous citations. Submitted to the IBM J. Res. Dev.,
1997.

[3] D. E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley, Read-
ing, MA, USA, 1986.

[4] D. E. Knuth. Typesetting Concrete Mathematics. TUGboat, 10(1):31–36, Apr. 1989.

[5] F. Mittelbach and C. Rowley. The pursuit of quality: How can automated typesetting achieve
the highest standards of craft typography? In C. Vanoirbeek and G. Coray, editors, EP92—
Proceedings of Electronic Publishing, ’92, pages 261–273, Cambridge, 1992. Cambridge Uni-
versity Press. 13-5-2

13.5 Formatting the bibliography with BIBTEX styles 795

With the standard BIBTEX style unsrt we get the same result as with the plain
style, except that the entries are printed in order of first citation, rather than
being sorted. The standard sets of styles do not contain a combination of unsrt
and abbrv, but if necessary it would be easy to integrate the differences between
plain and abbrv into unsrt to form a new style.

13-5-3

[1] Donald E. Knuth. Typesetting Concrete Mathematics. TUGboat, 10(1):31–36, April 1989.

[2] Free Software Foundation, Boston, Massachusetts. GNU Make, A Program for Directing
Recompilation, 2000.

[3] Frank Mittelbach and Chris Rowley. The pursuit of quality: How can automated typesetting
achieve the highest standards of craft typography? In Christine Vanoirbeek and Giovanni
Coray, editors, EP92—Proceedings of Electronic Publishing, ’92, pages 261–273, Cambridge,
1992. Cambridge University Press.

[4] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-Wesley,
Reading, MA, USA, 1986.

[5] Michel Goossens, Ben User, Joe Doe, et al. Ambiguous citations. Submitted to the IBM
Journal of Research and Development, 1997.

The standard style alpha is again similar to plain, but the labels of the en-
tries are formed from the authors’ names and the year of publication. The slightly
strange label for the GNU manual is due to the fact that the entry contains a key
field from which the first three letters are used to form part of the label. Also note
the interesting label produced for the reference with more than three authors. The
publications are sorted, with the label being used as a sort key, so that now the
GNU manual moves to fourth place.

13-5-4

[GUD+97] Michel Goossens, Ben User, Joe Doe, et al. Ambiguous citations. Submitted to the
IBM Journal of Research and Development, 1997.

[Knu86] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting. Addison-
Wesley, Reading, MA, USA, 1986.

[Knu89] Donald E. Knuth. Typesetting Concrete Mathematics. TUGboat, 10(1):31–36, April
1989.

[mak00] Free Software Foundation, Boston, Massachusetts. GNU Make, A Program for Di-
recting Recompilation, 2000.

[MR92] Frank Mittelbach and Chris Rowley. The pursuit of quality: How can automated type-
setting achieve the highest standards of craft typography? In Christine Vanoirbeek
and Giovanni Coray, editors, EP92—Proceedings of Electronic Publishing, ’92, pages
261–273, Cambridge, 1992. Cambridge University Press.

796 Bibliography Generation

Many BIBTEX styles implement smaller or larger variations of the layouts pro-
duced with the standard styles. For example, the phaip style for American Insti-
tute of Physics journals implements an unsorted layout (i.e., by order of citation),
but omits article titles, uses abbreviated author names, and uses a different struc-
ture for denoting editors in proceedings. Note that the entry with more than three
authors has now been collapsed, showing only the first one.

[1] D. E. Knuth, TUGboat 10, 31 (1989).

[2] Free Software Foundation, Boston, Massachusetts, GNU Make, A Program for Directing
Recompilation, 2000.

[3] F. Mittelbach and C. Rowley, The pursuit of quality: How can automated typesetting achieve
the highest standards of craft typography?, in EP92—Proceedings of Electronic Publishing,
’92, edited by C. Vanoirbeek and G. Coray, pages 261–273, Cambridge, 1992, Cambridge
University Press.

[4] D. E. Knuth, The TEXbook, volume A of Computers and Typesetting, Addison-Wesley, Read-
ing, MA, USA, 1986.

[5] M. Goossens et al., Ambiguous citations, Submitted to the IBM J. Res. Dev., 1997. 13-5-5

If we turn to styles implementing an author-date scheme, the layout usually
changes more drastically. For instance, labels are normally suppressed (after all,
the lookup process is by author). The chicago style, for example, displays the
author name or names in abbreviated form (first name reversed), followed by the
date in parentheses. In addition, we see yet another way to handle the editors in
proceedings and instead of the word “pages” we get “pp.” For this example we
loaded the natbib package to enable author-date support.

Free Software Foundation (2000). GNU Make, A Program for Directing Recompilation. Boston,
Massachusetts: Free Software Foundation.

Goossens, M., B. User, J. Doe, et al. (1997). Ambiguous citations. Submitted to the IBM Journal
of Research and Development.

Knuth, D. E. (1986). The TEXbook, Volume A of Computers and Typesetting. Reading, MA, USA:
Addison-Wesley.

Knuth, D. E. (1989, April). Typesetting Concrete Mathematics. TUGboat 10(1), 31–36.

Mittelbach, F. and C. Rowley (1992). The pursuit of quality: How can automated typesetting
achieve the highest standards of craft typography? In C. Vanoirbeek and G. Coray (Eds.),
EP92—Proceedings of Electronic Publishing, ’92, Cambridge, pp. 261–273. Cambridge Uni-
versity Press. 13-5-6

13.5 Formatting the bibliography with BIBTEX styles 797

As a final example we present another type of layout that is implemented with
the help of the jurabib package. Since more customizing is necessary we show the
input used once more. The trick used to suppress the heading is not suitable for
use in real documents as the space around the heading would be retained!

\usepackage[bibformat=ibidem]{jurabib}
\bibliographystyle{jurabib} \jbuseidemhrule % use default rule
\renewcommand\refname{} % suppress heading for the example

\nocite{Knuth:TB10-1-31,GNUMake,MR-PQ,Knuth-CT-a,test97,LGC97}
\bibliography{tex}

This will produce a layout in which the author name is replaced by a rule if it
has been listed previously. In case of multiple authors the complete list has to
be identical (see first two entries). Also, for the first time ISBN and ISSN numbers
are shown when present in the entry. If you look closely, you will see many other
smaller and larger differences. For example, this is the first style that does not
translate titles of articles and proceeding entries to lowercase but rather keeps
them as specified in the database (see page 809 for a discussion of how BIBTEX
styles can be modified to achieve this effect).

As the original application field for jurabib was law citations, it is one of
the BIBTEX styles that does not provide default strings for the journals listed in
Table 13.3 on page 771; as a result, we get an incomplete second entry. BIBTEX will
warn you about the missing string in this case. You can then provide a definition
for it in the database file or, if you prefer, in a separate database file that is loaded
only if necessary.

13-5-7

Goossens, Michel/Rahtz, Sebastian/Mittelbach, Frank: The LATEX Graphics Companion: Illus-
trating Documents with TEX and PostScript. Reading, MA, USA: Addison-Wesley Long-
man, 1997, Tools and Techniques for Computer Typesetting, xxi + 554, ISBN 0–201–
85469–4

Goossens, Michel et al.: Ambiguous citations. 1997, Submitted to the

Knuth, Donald E.: The TEXbook. Volume A, Computers and Typesetting. Reading, MA, USA:
Addison-Wesley, 1986, ix + 483, ISBN 0–201–13447–0

Typesetting Concrete Mathematics. TUGboat, 10 April 1989, Nr. 1, 31–36, ISSN 0896–
3207

Free Software Foundation: GNU Make, A Program for Directing Recompilation. 2000

Mittelbach, Frank/Rowley, Chris: The Pursuit of Quality: How can Automated Typesetting
achieve the Highest Standards of Craft Typography? In Vanoirbeek, Christine/Coray,
Giovanni, editors: EP92—Proceedings of Electronic Publishing, ’92. Cambridge: Cam-
bridge University Press, 1992, 261–273

798 Bibliography Generation

13.5.2 custom-bib—Generate BIBTEX styles with ease

So far, we have discussed how to influence the layout of the bibliography by using
different bibliography styles. If a particular BIBTEX style is recommended for the
journal or publisher you are writing for, then it is all that is necessary. However,
a more likely scenario is that you have been equipped with a detailed set of in-
structions that tell you how references should be formatted, but without pointing
you to any specific BIBTEX style—a program that may not even be known at the
publishing house.

Hunting for an existing style that fits the bill or can be adjusted slightly to do
so (see Section 13.6.3) is an option, of course, but given that there are usually sev-
eral variations in use for each typographical detail, the possibilities are enormous
and thus the chances of finding a suitable style are remote. Consider the following
nine common requirements for presenting author names:

Requirement Example

Full name surname last Donald Erwin Knuth/Michael Frederick Plass

Full name surname first Knuth, Donald Erwin/Plass, Michael Frederick

Initials and surname D. E. Knuth/M. F. Plass

Surname and initials Knuth, D. E./Plass, M. F.

Surname and dotless initials Knuth D E/Plass M F

Surname and concatenated initials Knuth DE/Plass MF

Surname and spaceless initials Knuth D.E./Plass M.F.

Only first author reversed with initials Knuth, D. E./M. F. Plass

Only first author reversed with full names Knuth, Donald Ervin/Michael Frederick Plass

Table 13.5: Requirements for formatting names

Combining these with a specification for the separation symbol to use (e.g.,
comma, semicolon, slash), the fonts to use for author names (i.e., Roman, bold,
small caps, italic, other), and perhaps a requirement for different fonts for sur-
name and first names, you will get more than 500 different styles for presenting
author names in the bibliography. Clearly, this combinatorial explosion cannot be
managed by providing predefined styles for every combination.

Faced with this problem, Patrick Daly, the author of natbib, started in 1993
to develop a system that is capable of providing customized BIBTEX styles by col-
lecting answers to questions like the above (more than 70!) and then building a
customized .bst file corresponding to the answers.

The system works in two phases: (1) a collection phase in which questions are
interactively asked and (2) a generation phase in which the answers are used to
build the BIBTEX style. Both phases are entirely done by using LaTEX and thus can
be carried out on any platform without requiring any additional helper program.

The collection is started by running the program makebst.tex through LaTEX
and answering the questions posed to you. Most of the questions are presented in

13.5 Formatting the bibliography with BIBTEX styles 799

the form of menus that offer several answers. The default answer is marked with
a * and can be selected by simply pressing 〈return〉. Other choices can be selected
by typing the letter in parentheses in front of the option. Selecting a letter not
present produces the default choice.

Initializing the system

We now walk you through the first questions, which are somewhat special because
they are used to initialize the system. Each time we indicate the suggested answer.

Do you want a description of the usage? (NO)

Replying with y will produce a description of the procedure (as explained above);
otherwise, the question has no effect.

Enter the name of the MASTER file (default=merlin.mbs)

Here the correct answer is 〈return〉. The default merlin.mbs is currently the only
production master file available, though this might change one day.

Name of the final OUTPUT .bst file? (default extension=bst)

Specify the name for your new BIBTEX style file, without an extension—for exam-
ple, ttct (Tools and Techniques for Computer Typesetting series). As a result of
completing the first phase you will then receive a file called ttct.dbj from which
the BIBTEX style file ttct.bst is produced in the second phase.

Give a comment line to include in the style file.
Something like for which journals it is applicable.

Enter any free-form text you like, but note that a 〈return〉 ends the comment. It
is carried over into the resulting files and can help you at a later stage to identify
the purpose of this BIBTEX style.

Do you want verbose comments? (NO)

If you enter y to this question the context of later questions will be shown in the
following form:

<<STYLE OF CITATIONS:
...

>>STYLE OF CITATIONS:

Whether this provides any additional help is something you have to decide for
yourself. The default is not to provide this extra information.

Name of language definition file (default=merlin.mbs)

800 Bibliography Generation

catalan Language support for Catalan italian Language support for Italian
dansk Language support for Danish norsk Language support for Norwegian
dutch Language support for Dutch polski Language support for Polish
esperant Language support for Esperanto portuges Language support for Portuguese
finnish Language support for Finnish slovene Language support for Slovene
french Language support for French spanish Language support for Spanish
german Language support for German

Table 13.6: Language support in custom-bib (summer 2003)

If you are generating a BIBTEX style for a language other than English you can enter
the name of the language here. Table 13.6 lists currently supported languages.
Otherwise, reply with 〈return〉.

Include file(s) for extra journal names? (NO)

By answering y you can load predefined journal names for certain disciplines into
the BIBTEX style. You are then asked to specify the files containing these predefined
names (with suitable defaults given).

This concludes the first set of questions for initializing the system. What fol-
lows are many questions that offer choices concerning layout and functional de-
tails. These can be classified into three categories:

Citation scheme The choice made here influences later questions. If you choose
author-date support, for example, you will get different questions than if you
choose a numerical scheme.

Extensions These questions are related to extending the set of supported BIBTEX
fields, such as whether to include a url field.

Typographical details You are asked to make choices about how to format spe-
cific parts of the bibliographical entries. Several of the choices depend on the
citation scheme used.

While it is possible to change your selections in the second phase of the processing
(or to start all over again), it is best to have a clear idea about which citation
scheme and which extensions are desired before beginning the interactive session.
The typographical details can be adjusted far more easily in the second phase if
that becomes necessary. We therefore discuss these main choices in some detail.

Selecting the citation scheme

The citation scheme is selected by answering the following question:

STYLE OF CITATIONS:
(*) Numerical as in standard LaTeX

13.5 Formatting the bibliography with BIBTEX styles 801

(a) Author-year with some non-standard interface
(b) Alpha style, Jon90 or JWB90 for single or multiple authors
(o) Alpha style, Jon90 even for multiple authors
(f) Alpha style, Jones90 (full name of first author)
(c) Cite key (special for listing contents of bib file)

The default choice is “numerical”. If you want to produce a style for the author-
date scheme, select a (and disregard the mentioning of “nonstandard interface”).
For alpha-style citations, use either b, o, or f depending on the label style you
prefer. Choice c is of interest only if you want to produce a style for displaying
BIBTEX databases, so do not select it for production styles.

If the default (i.e., a numerical citation scheme) was selected, the follow-up
question reads:

HTML OUTPUT (if non author-year citations)
(*) Normal LaTeX output
(h) Hypertext output, in HTML code, in paragraphs
(n) Hypertext list with sequence numbers
(k) Hypertext with keys for viewing databases

Select the default. All other choices generate BIBTEX styles that produce some sort
of HTML output (which needs further manipulation before it can be viewed in
browsers). This feature is considered experimental.

If you have selected an author-date citation scheme (i.e., a), you will be re-
warded with a follow-up question for deciding on the support interface from
within LaTEX:

AUTHOR--YEAR SUPPORT SYSTEM (if author-year citations)
(*) Natbib for use with natbib v5.3 or later
(o) Older Natbib without full authors citations
(l) Apalike for use with apalike.sty
(h) Harvard system with harvard.sty
(a) Astronomy system with astron.sty
(c) Chicago system with chicago.sty
(n) Named system with named.sty
(d) Author-date system with authordate1-4.sty

The default choice, natbib, is usually the best, offering all the possibilities de-
scribed in Sections 12.3.2 and 12.4.1. The option o should not be selected. If you
have documents using citation commands from, say, the harvard package (see Ex-
ample 12-3-4 on page 700), the option h would be suitable. For the same reason,
the other options might be the right choice in certain circumstances. However,
for document portability, natbib should be the preferred choice. Note in partic-
ular that some of the other packages mentioned in the options are no longer
distributed in the mainstream LaTEX installation.

802 Bibliography Generation

Determining the extensions supported

Besides supporting the standard BIBTEX entry types (Table 13.1 on page 763) and
fields (Table 13.2), makebst.tex can be directed to support additional fields as
optional fields in the databases, so that they will be used if present. Some of these
extensions are turned off by default, even though it makes sense to include them
in nearly every BIBTEX style file.

LANGUAGE FIELD
(*) No language field
(l) Add language field to switch hyphenation patterns temporarily

Replying with l will greatly help in presenting foreign titles properly. Example 12-
5-6 on page 719 shows the problems that can arise and explains how they can be
resolved when a language field is present (see Example 12-5-36 on page 734). So
a deviation from the default is suggested.

ANNOTATIONS:
(*) No annotations will be recognized
(a) Annotations in annote field or in .tex file of citekey name

Choosing a will integrate support for an annote field in the .bst file as well
as support for including annotations stored in files of the form 〈citekey〉.tex.
However, in contrast to jurabib, which also offers this feature, the inclusion cannot
be suppressed or activated using a package option. Since you are quite likely to
want this feature turned on and off depending on the document, you might be
better served by using two separate BIBTEX styles differing only in this respect.

The nonstandard field eid (electronic identifier) is automatically supported
by all generated styles. The fields doi, isbn, and issn are included by default
but can be deselected. Especially for supporting the REVTEX package from the
American Physical Society, a number of other fields can be added.

Finally, support for URLs can be added by answering the following question
with something different from the default.

URL ADDRESS: (without REVTeX fields)
(*) No URL for electronic (Internet) documents
(u) Include URL as regular item block
(n) URL as note
(l) URL on new line after rest of reference

We suggest including support for URLs as references to electronic resources
become more and more common. In the bibliography the URL is tagged with
\urlprefix\url{field-value}, with default definitions for both commands. By
loading the url package, better line breaking can be achieved.

13.5 Formatting the bibliography with BIBTEX styles 803

As one of the last questions you are offered the following choice:

COMPATIBILITY WITH PLAIN TEX:
(*) Use LaTeX commands which may not work with Plain TeX
(t) Use only Plain TeX commands for fonts and testing

We strongly recommend retaining the default! LaTEX2ε is nearly a decade old, and
NFSS should have found its way into every living room. Besides, the plain TEX
commands (\rm , \bf , and so on) are no longer officially part of LaTEX. They may be
defined by a document class (for compatibility reasons with LaTEX 2.09)—but then
they may not. Thus, choosing the obsolete syntax may result in the BIBTEX style
not functioning properly in all circumstances.1

Note that the questions about the extensions are mixed with those about ty-
pographical details and do not necessarily appear in the order presented here.

Specifying the typographical details

The remaining questions (of which there are plenty) concern typographical details,
such as formatting author names, presenting journal information, and many more
topics. As an example we show the question block that deals with the formatting
of article titles:

TITLE OF ARTICLE:
(*) Title plain with no special font
(i) Title italic (\em)
(q) Title and punctuation in single quotes (‘Title,’ ..)
(d) Title and punctuation in double quotes (‘‘Title,’’ ..)
(g) Title and punctuation in guillemets (<<Title,>> ..)
(x) Title in single quotes (‘Title’, ..)
(y) Title in double quotes (‘‘Title’’, ..)
(z) Title in guillemets (<<Title>>, ..)

If you make the wrong choice with any of them, do not despair. You can correct
your mistake in the second phase of the processing as explained below.

Generating the BIBTEX style from the collected answers

The result of running makebst.tex through LaTEX and answering all these ques-
tions is a new file with the extension .dbj. It contains all your selections in a
special form suitable to be processed by docstrip, which in turn produces the
final BIBTEX style (see Section 14.2 for a description of the docstrip program).
Technically speaking, a BIBTEX bibliographic style file master (merlin.mbs by de-
fault) contains alternative coding that depends on docstrip options. By choosing

1Warning: in older versions the question was “NEW FONT SELECTION SCHEME” and the default
was to use the obsolete commands. So be careful.

804 Bibliography Generation

entries from the interactive menus discussed above, some of this code is activated,
thereby providing the necessary customization.

If you specified ttct in response to the question for the new .bst file, for
example, you would now have a file ttct.dbj at your disposal. Hence, all that is
necessary to generate the final BIBTEX style ttct.bst is to run

latex ttct.dbj

The content of the .dbj files generated from the first phase is well docu-
mented and presented in a form that makes further adjustments quite simple.
Suppose you have answered y in response to the question about the title of arti-
cles on the previous page (i.e., use double quotes around the title) but you really
should have replied with d (use double quotes around title and punctuation). Then
all you have to do is open the .dbj file with a text editor and search for the block
that deals with article titles:

%--------------------
%TITLE OF ARTICLE:
% %: (def) Title plain
% tit-it,%: Title italic
% tit-qq,qt-s,%: Title and punctuation in single quotes
% tit-qq,%: Title and punctuation in double quotes
% tit-qq,qt-g,%: Title and punctuation in guillemets
% tit-qq,qt-s,qx,%: Title in single quotes

tit-qq,qx,%: Title in double quotes
% tit-qq,qt-g,qx,%: Title in guillemets
%--------------------

Changing the behavior then entails nothing more than uncommenting the line you
want and commenting out the line currently selected:

%--------------------
%TITLE OF ARTICLE:
% %: (def) Title plain
% tit-it,%: Title italic
% tit-qq,qt-s,%: Title and punctuation in single quotes

tit-qq,%: Title and punctuation in double quotes
% tit-qq,qt-g,%: Title and punctuation in guillemets
% tit-qq,qt-s,qx,%: Title in single quotes
% tit-qq,qx,%: Title in double quotes
% tit-qq,qt-g,qx,%: Title in guillemets
%--------------------

After that, rerun the file through LaTEX to obtain an updated BIBTEX style.

13.6 The BIBTEX style language 805

13.6 The BIBTEX style language

This section presents a condensed introduction to the language used in BIBTEX
style files. The information should suffice if you want to slightly modify an exist-
ing style file. For more details, consult Oren Patashnik’s original article, “Designing
BIBTEX Styles” [136].

BIBTEX styles use a postfix stack language (like PostScript) to tell BIBTEX how to
format the entries in the reference list. The language has 10 commands, described
in Table 13.7 on page 807, to manipulate the language’s objects: constants, vari-
ables, functions, the stack, and the entry list.

BIBTEX knows two types of functions: built-in functions, provided by BIBTEX
itself (see Table 13.8 on page 808), and user functions, which are defined using
either the MACRO or FUNCTION command.

You can use all printing characters inside the pair of double quotes delimiting
string constants. Although BIBTEX, in general, ignores case differences, it honors
the case inside a string. Spaces are significant inside string constants, and a string
constant cannot be split across lines.

Variable and function names cannot begin with a numeral and may not con-
tain any of the 10 restricted characters shown on page 769. BIBTEX ignores case
differences in the names of variables, functions, and macros.

Constants and variables can be of type integer or string (Boolean true and
false are represented by the integers 1 and 0, respectively).

There are three kinds of variables:

Global variables These are either integer- or string-valued variables, which are
declared using an INTEGERS or STRINGS command.

Entry variables These are integer- or string-valued variables, which are declared
using the ENTRY command. Each of these variables will have a value for each
entry on the list read in a BIBTEX database.

Fields These are string-valued, read-only variables that store the information
from the database file. Their values are set by the READ command. As with
entry variables there is a value for each entry.

13.6.1 The BIBTEX style file commands and built-in functions

Table 13.7 on page 807 gives a short description of the 10 BIBTEX commands. Al-
though the command names appear in uppercase, BIBTEX ignores case differences.

It is recommended (but not required) to leave at least one blank line between
commands and to leave no blank lines within a command. This convention helps
BIBTEX recover from syntax errors.

Table 13.8 on page 808 gives a short overview of BIBTEX’s 37 built-in functions
(for more details, see [136]). Every built-in function with a letter in its name ends
with a $ sign.

806 Bibliography Generation

13.6.2 The documentation style btxbst.doc

Oren Patashnik based the standard BIBTEX style files abbrv, alpha, plain, and
unsrt on a generic file, btxbst.doc, which is well documented and should be
consulted for gaining a detailed insight into the inner workings of BIBTEX styles.

In the standard styles, labels have two basic formatting modes: alphabetic,
like [Lam84], and Numeric, like [34]. References can be ordered in three ways:

Sorted, alphabetic labels Alphabetically ordered, first by citation label, then by
author(s) (or its replacement field), then by year and title.

Sorted, numeric labels Alphabetically ordered, first by author(s) (or its replace-
ment field), then by year and title.

Unsorted Printed in the order in which the references are cited in the text.

The basic flow of a style file is controlled by the following command-lines,
which are found at the end of the btxbst.doc file:

EXECUTE {begin.bib} % Preamble and \begin{thebibliography}
EXECUTE {init.state.consts} % Initialize the state constants
ITERATE {call.type$} % Loop over entries producing output
EXECUTE {end.bib} % Write \end{thebibliography} command

These commands are explained in Tables 13.7 and 13.8.
The code of a style file starts with the declaration of the available fields with

the ENTRY declaration and the string variables to be used for the construction of
the citation label.

Next come some functions for formatting chunks of an entry. There are
functions for each of the basic fields. The format.names function parses names
into their “First von Last, Junior” parts, separates them by commas, and puts
an “and” before the last name (but ending with “et al.” if the last of multiple
authors is "others"). The format.authors function applies to authors, and
format.editors operates on editors (it appends the appropriate title: “, editor”
or “, editors”).

The next part of the file contains all the functions defining the different types
accepted in a .bib file (i.e., functions like article and book). These functions
actually generate the output written to the .bbl file for a given entry. They must
precede the READ command. In addition, a style designer should provide a func-
tion default.type for unknown types.

Each entry function starts by calling output.bibitem to write \bibitem and
its arguments to the .bbl file. Then the various fields are formatted and printed
by the function output or output.check, which handles the writing of separators
(commas, periods, \newblock’s) as needed. Finally, fin.entry is called to add the
final period and finish the entry.

13.6 The BIBTEX style language 807

ENTRY {field-list} {integer-variable-list} {string-variable-list}
Declares the fields and entry variables. BIBTEX declares automatically one supplementary field crossref,
used for cross-referencing, and an additional string entry variable sort.key$, used by the SORT command.
There should be only one ENTRY command per style file. For instance, for the styles alpha and plain you
have, respectively,

ENTRY { address author booktitle ... } {} { label extra.label sort.label }
ENTRY { address author booktitle ... } {} { label }

EXECUTE {function-name}

Executes a single function.

EXECUTE {begin.bib}

FUNCTION {function-name} {definition}

Defines a new function. You cannot change the definition of a FUNCTION outside a style file.

FUNCTION {end.bib}
{ newline$ "\end{thebibliography}" write$ newline$ }

MACRO {macro-name} {definition}

Defines a string macro. You can change the definition of a MACRO outside a style file.

MACRO {feb} {"February"}

INTEGERS {global-integer-variable-list}

Declares global integer variables.

INTEGERS { longest.label.width last.extra.num }

STRINGS {global-string-variable-list}

Declares global string variables.

STRINGS { longest.label last.sort.label next.extra }

ITERATE {function-name}

Executes a single function, once for each entry in the list, in the list’s current order.

ITERATE {longest.label.pass}

REVERSE {function-name}

Executes a single function, once for each entry in the list, in reverse order.

REVERSE {reverse.pass}

READ

Extracts from the database file the field values for each entry in the list. There should be only one READ
command per style file. The ENTRY and MACRO commands must precede READ.

SORT

Sorts the entry list using the values of the string entry variable sort.key$.

Table 13.7: BIBTEX style file commands

808 Bibliography Generation

I1 I2 > (I) 1 (if I1>I2) or 0 (otherwise)
I1 I2 < (I) 1 (if I1<I2) or 0 (otherwise)
I1 I2 = (I) 1 (if I1=I2) or 0 (otherwise)
S1 S2 = (I) 1 (if S1=S2) or 0 (otherwise)
I1 I2 + (I1+I2) Add two integers

I1 I2 − (I1-I2) Subtract two integers
S1 S2 ∗ (S1S2) Concatenate two strings

L V := Assign to V the value of L
S add.period$ (S.) Add dot to string unless that string ends with ‘.’, ‘?’, or ‘!’

call.type$ Execute function whose name is the type of an entry (e.g., book)
S "t" change.case$ (S) Convert S to lowercase except at beginning
S "l" change.case$ (S) Convert S completely to lowercase
S "u" change.case$ (S) Convert S completely to uppercase

S chr.to.int$ (I) Translate single string character to ASCII equivalent

cite$ (cite-string) Push \cite command argument
L duplicate$ (L L) Duplicate entry

L empty$ (I) 1 (if L missing field or blank string) or 0 (otherwise)
S1 I S2 format.name$ (S) Format I names S1 according to name specifications S2
I F1 F2 if$ Execute F1 if I>0, else execute F2

I int.to.chr$ (S) Translates integers into characters using the ASCII mapping
I int.to.str$ (S) Push string equivalent of integer

L missing$ (I) 1 (if L missing field) or 0 (otherwise)
newline$ Start a new line in the .bbl file

S num.names$ (I) Number of names in S
L pop$ Throw away top element on stack

preamble$ (S) Push concatenation of all @preamble strings read in database files
S purify$ (S) Remove non-alphanumeric characters

quote$ (S) Push double-quote character string

skip$ Do nothing
stack$ Pop and print whole stack

S I1 I2 substring$ (S) Substring of S starting at I1 and with a length of I2
L1 L2 swap$ (L2 L1) Swap the literals

S text.length$ (I) Number of “text” characters

S I text.prefix$ (S) Front I characters of S
L top$ Pop and print top of stack

type$ (S) Push current entry’s type (e.g., book or "" if unknown)
S warning$ Pop and print top (string) literal and a warning message

F1 F2 I while$ Execute F2 while function value I of F1 has I>0
S width$ (I) Push width of S (TEX units)
S write$ Write S to output buffer

Table 13.8: BIBTEX style file built-in functions

The built-in functions are preceded by the variable they consume on the stack. If they leave a result on
the stack, it is shown in parentheses. A “literal” L is an element on the stack. It can be an integer I , a
string S, a variable V , a function F , or a special value denoting a missing field. If the popped literal
has an incorrect type, BIBTEX complains and pushes the integer 0 or the null string, depending on the
function’s resulting type.

13.6 The BIBTEX style language 809

The next section of the btxbst.doc file contains definitions for the names
of the months and for certain common journals. Depending on the style, full or
abbreviated names may be used. These definitions are followed by the READ com-
mand, which inputs the entries in the .bib file.

Then the labels for the bibliographic entries are constructed. Exactly which
fields are used for the primary part of the label depends on the entry type.

The labels are next prepared for sorting. When sorting, the sort key is com-
puted by executing the presort function on each entry. For alphabetic labels you
might have to append additional letters (a, b, . . .) to create a unique sorting order,
which requires two more sorting passes. For numeric labels, either the sorted or
the original order can be used. In both cases, you need to keep track of the longest
label for use with the thebibliography environment.

Finally, the .bbl file is written by looping over the entries and executing the
call.type$ function for each one.

13.6.3 Introducing small changes in a style file

Often it is necessary to make slight changes to an existing style file to suit the
particular needs of a publisher.

As a first example, we show you how to eliminate the (sometimes unpleasant)
standard BIBTEX style feature that transforms titles to lowercase. In most cases,
you will want the titles to remain in the same case as they are typed. A variant of
the style unsrt can be created for this purpose. We will call it myunsrt, since it is
different from the original style. Similar methods can be used for other styles.

Looking at Table 13.8 on the facing page, you will probably have guessed that
function change.case$ is responsible for case changes. With the help of an editor
and looking for the above string, you will find that function format.title must
be changed. Below we show that function before and after the modification:

FUNCTION {format.title}
{

title empty$
{ "" }
{ title "t" change.case$ }

if$
}

FUNCTION {format.title}
{

title empty$
{ "" }
{ title } % <== modified

if$
}

Before Modification After Modification

With the help of Table 13.8 on the preceding page, you can follow the logic of the
function and the substitution performed.

Another function that must be changed in a similar way is format.edition.
Here we can omit the inner if statement since there would be no difference in the
branches.

810 Bibliography Generation

FUNCTION {format.edition}
{ edition empty$

{ "" }
{ output.state mid.sentence =

{ edition "l" change.case$
" edition" * }

{ edition "t" change.case$
" edition" * }

if$
}

if$
}

FUNCTION {format.edition}
{ edition empty$

{ "" }
{ edition " edition" * }

if$
}

Before Modification After Modification

In format.chapter.pages, format.thesis.type, and format.tr.number,
similar changes must be made.

Adding a new field

Sometimes you may want to add a new field. As an example, let’s add an annote
field. Two approaches can be taken: the one adopted in the style annotate or
the one used in the style annotation. Let us look at the simpler solution first.
The style annotation, based on plain, first adds the field annote to the ENTRY
definition list; the fin.entry function is changed then to treat the supplementary
field. As seen in the example of the function book, the function fin.entry is
called at the end of each function defining an entry type.

FUNCTION {fin.entry}
{ add.period$

write$
newline$

}

FUNCTION {fin.entry}
{ add.period$

write$
newline$
"\begin{quotation}\noindent\textsc{Key:\ }" cite$ * write$

annote missing$
’skip$
{ "\\\textsc{Annotation:\ }" write$ annote write$ }

if$
"\end{quotation}" write$ newline$

}
Before Modification After Modification

After outputting the citation string inside a quotation environment, the annota-
tion text is written following the text “Annotation”, which starts a separate line. If
the field is absent, nothing is written (the test, annote missing$, takes the skip$
branch of the if$ command).

The other style, annotate, based on alpha, takes a more complicated ap-
proach. After adding the element annotate to the ENTRY definition list, the func-
tion format.annotate is created to format that supplementary field. The function
has a decision flow similar to the code shown above.

13.6 The BIBTEX style language 811

FUNCTION {format.annotate}
{ annotate empty$
{ "" }
{ " \begin{quotation}\noindent " annotate * " \end{quotation} " * }
if$

}

The formatting routine for each of the entry types of Table 13.1 on page 763
has a supplementary line format.annotate write$ just following the call to
fin.entry.

Foreign language support

If you want to adapt a BIBTEX style to languages other than English, you will, at the
very least, have to translate the hard-coded English strings in the BIBTEX style files,
like “edition” in the example at the facing page.

First you should edit a style file and introduce the new terms in the neces-
sary places. As you are working with only one language, it is possible to introduce
the proper language-specific typographic conventions at the same time. An exam-
ple of this approach is the nederlands style developed by Werenfried Spit. This
harvard-based style has been adapted to Dutch following the recommendations
of Van Dale (1982). We will now look at some examples of functions that were
adapted by this style.

In Dutch, one does not distinguish between one or more editors. The generic
Dutch word redactie replaces the two possibilities.

FUNCTION {format.editors}
{ editor empty$

{ "" }
{ editor format.names

editor num.names$ #1 >
{ " (eds)" * }
{ " (ed.)" * }

if$
}

if$
}

FUNCTION {format.editors}
{ editor empty$

{ "" }
{ editor format.names

", redactie" *
}

if$
}

Before Modification After Modification

The following examples show how, for one particular language, you can go
relatively far in the customization (in form and translation) of an entry—in this
case, the format of the edition field. In this example, up to the third edition, Dutch-
specific strings are used. Starting with the fourth edition, the generic string ie is
used, where i is the number of the edition. You can also see the nesting of the
if$ statements and the use of the case-changing command change.case$.

812 Bibliography Generation

FUNCTION {format.edition}
{ edition empty$

{ "" }
{ output.state mid.sentence =

{ edition "l" change.case$ " edition" * }
{ edition "t" change.case$ " edition" * }
if$

}
if$

}

FUNCTION {format.edition}
{ edition empty$

{ "" }
{ edition "1" =

{ "Eerste" }
{ edition "2" =

{ "Tweede" }
{ edition "3" =

{ "Derde" }
{ edition "e " * }
if$

}
if$

}
if$
output.state mid.sentence =

{ "l" change.case$ " druk" * }
{ "t" change.case$ " druk" * }

if$
}
if$

}
Before Modification After Modification

Of course, the strings for the names of the months should be changed and
some other language-specific strings can be defined.

MACRO {jan} {"januari"} MACRO {feb} {"februari"}
MACRO {mar} {"maart"} ...

In addition, the sorting routine for the names, sort.format.names, must know
about the language-dependent rules for showing names in the right order.

Also, most languages have articles or other short words that should be ig-
nored for sorting titles.

FUNCTION {sort.format.title}
{ ’t :=

"A " #2
"An " #3

"The " #4 t chop.word
chop.word

chop.word
sortify
#1 global.max$ substring$

}

FUNCTION {sort.format.title}
{ ’t :=

"De " #3
"Een " #4 t chop.word

chop.word
sortify
#1 global.max$ substring$

}

Before Modification After Modification

Here the chop.word function chops the word specified from the string presented
on the stack—in this case, the definite (De) and indefinite (Een) articles.

C H A P T E R 14

LATEX Package
Documentation Tools

In this chapter we describe the doc system, a method to document LaTEX macros
and environments. A large proportion of the LaTEX code available is documented
using its conventions and support tools. The underlying principle is that LaTEX
code and comments are mixed in the same file and that the documentation or
the stripped package file(s) are obtained from the latter in a standard way. In
this chapter we explain the structure that these files should have, and show how,
together with the program docstrip, you can build self-installing procedures for
distributing your LaTEX package(s) and generating the associated documentation.
This chapter will also help you understand the code written by others, install it
with ease, and produce the documentation for it (not necessarily in that order).

We end the chapter with a few words about how version control works and
how RCS/CVS information can be extracted with LaTEX. Applying version control
methods can be useful for any larger documentation project.

14.1 doc—Documenting LATEX and other code

The idea of integrated documentation was first employed by Donald Knuth when
he developed the TEX program using the WEB system, which combines Pascal-like
meta source code and documentation. Thanks to his approach, it was particularly
easy to port TEX and its companion programs to practically any computer platform
in the world.

814 LATEX Package Documentation Tools

Subsequently, authors of LaTEX packages started to realize the importance of
documenting their LaTEX code. Many now distribute their LaTEX macros using the
framework defined with the doc package (by Frank Mittelbach) and its associated
docstrip utility (originally by Frank Mittelbach with later contributions by Jo-
hannes Braams, Denys Duchier, Marcin Woliński, and Mark Wooding). We should
mention at this point that there exists an experimental reimplementation with
new features and a cleaner and streamlined interface written by Lars Hellström.
It is currently distributed as xdoc2, indicating that this is a frozen (and therefore
usable) snapshot of work in progress; the final version will be called xdoc.

Both systems allow LaTEX code and documentation to be held in one and the
same TEX source file. The obvious advantage is that a sequence of complex TEX
instructions becomes easier to understand with the help of comments inside the
file. In addition, updates are more straightforward because only a single source
file needs to be changed.

The doc package provides a set of commands and establishes some conven-
tions that allow specially prepared sources files to contain both code and its doc-
umentation intermixed with each other.

To produce the documentation you need a driver (file) that loads the doc
package and then interprets the source file. To produce a ready-to-run version
of your code you need to first process the source package with docstrip (see
Section 14.2). This step is usually implicitly done by providing an .ins file that is
run through LaTEX.

In its simplest form the driver for the documentation is an external file. How-
ever, these days the driver is more commonly made part of the source file, so that
all you have to do to produce the documentation is to run the source file through
LaTEX. The possibilities are discussed in detail in Section 14.1.4.

The most important commands and concepts are discussed in the next sec-
tions. Table 14.1 on page 820 gives an overview of all doc user commands. Fur-
ther details on any of them can be found in the documented source doc.dtx
of the doc package, which can also serve as a prime (though somewhat aged)
example of the doc system. You may additionally want to refer to the tutorial
“How to Package Your LaTEX Package” by Scott Pakin, which describes various as-
pects of the doc package and docstrip. This tutorial is available on CTAN at
http://www.ctan.org/tex-archive/info/dtxtut.

14.1.1 General conventions for the source file

A LaTEX file to be used with the doc system consists of documentation parts inter-
mixed with code parts. Every line of a documentation part starts with a percent
sign (%) in the first column. It can contain arbitrary TEX or LaTEX commands, but the
% character cannot be used as a comment character. User comments are created by
using the ^^A character instead. Longer text blocks can be turned into comments
by surrounding them with %�\iffalse . . . %�\fi . All other parts of the file are
called code parts. They contain the code described in the documentation parts.

14.1 doc—Documenting LATEX and other code 815

Depending on how the code parts are structured it is possible to use such a file
directly with LaTEX, although these days this is seldom done. Instead, docstrip is
typically used to produce the production files. If the former approach is taken LaTEX
bypasses the documentation parts at high speed and pastes the macro definitions
together, even if they are split into several code parts.

On the other hand, if you want to produce the documentation of the macros,
then the code parts should be typeset verbatim. This is achieved by surrounding
these parts by the macrocode environment.

%����\begin{macrocode}

〈code lines〉
%����\end{macrocode}

It is mandatory that you put exactly four spaces between the % character and
\end{macrocode} . The reason being that when LaTEX is processing the macrocode
environment, it is actually looking for that particular string and not for the com-
mand \end with the argument macrocode.

Inside a code part all TEX commands are allowed. Even the percent sign can
be used to suppress unwanted spaces at the ends of lines.

If you prefer, instead of the macrocode environment, you can use the
macrocode* environment. It produces the same results except that spaces are
displayed as � characters when the documentation is printed.

14.1.2 Describing new macros and environments

Most packages contain commands and environments to be employed by users in
their documents. To provide a short manual describing their features, a number
of constructs are offered by the doc package.

\DescribeMacro{\macro-name} \DescribeEnv{environment-name}

The \DescribeMacro command takes one argument, which will be shown in the
margin and produces a special index entry, for example,

% \DescribeMacro{\DocInput} \DescribeMacro{\IndexInput}
% Finally the \meta{input commands} part ...

A similar macro, \DescribeEnv , can be used to indicate that at this point a LaTEX
environment is being explained.

\begin{macro}{\macro-name} \begin{environment}{environment-name}

To describe the definition of a new macro, you use the macro environment. It takes
one argument: the name of the new macro. This argument is also used to print
the name in the margin and to produce an index entry. Actually, the index entries

816 LATEX Package Documentation Tools

for usage and for definition are different, which allows for easy reference. Here is
an example taken from the sources of the doc package itself:

% \begin{macro}{\MacroTopsep}
% Here is the default value for the \verb+\MacroTopsep+
% parameter used above.
% \begin{macrocode}
\newlength\MacroTopsep
\setlength\MacroTopsep{7pt plus 2pt minus 2pt}
% \end{macrocode}
% \end{macro}

Another environment, with the unimaginative name environment, documents the
code of environments. It works like the macro environment but expects the name
of an environment as its argument.

\MakeShortVerb{\c} \MakeShortVerb*{\c} \DeleteShortVerb{\c}

When you have to quote a lot of material verbatim, such as command names, it
is awkward to always have to type \verb+. . . +. Therefore, the doc package pro-
vides an abbreviation mechanism that allows you to pick a character c, which you
plan to use only very rarely inside your document, to delimit your verbatim text
(the character " is often chosen, but if that character is already used for another
purpose, such as for generating umlauts, then you may prefer “|”). Then, after
including the command \MakeShortVerb{\c}, the sequence ctextc becomes the
equivalent of \verbctextc.

The variant form \MakeShortVerb* does the same but uses \verb*. If you
later want to use c with its original meaning, just type \DeleteShortVerb {\c}.
You can repeat this sequence using c as a shorthand for \verb and reverting to its
original meaning as many times as needed.1 Note that such short forms for \verb,
just like \verb itself, cannot appear in the argument of another command, but the
characters may be used freely inside verbatim and macrocode environments.

You can divide your documented package file into two parts, the first typically
containing a general description and the second giving a detailed description of
the implementation of the macros. When generating the document the user will
be able to suppress this latter part if you place the command \StopEventually
at the division point between the two parts.

\StopEventually{final text} \Finale

The \StopEventually macro takes one argument in which you put all the infor-
mation that you want to see printed if the user decides to stop typesetting the
document at that point (for example, a bibliography, which is usually printed at

1This feature has also been made available as a stand-alone package, shortvrb; it was discussed
in Section 3.4. See Example 3-4-2 on page 152.

14.1 doc—Documenting LATEX and other code 817

the end of the document). When the driver file contains an \OnlyDescription
declaration, LaTEX will process the argument of \StopEventually and then stop
reading the file.1 Otherwise, the \StopEventually macro saves its argument in a
macro called \Finale , which can later be used to get things back (usually at the
very end). This scheme makes changes in two places unnecessary.2

To document the change history, the \changes command can be placed
within the description part of the changed code.

\changes{version}{date}{text}

The information in the \changes command may be used to produce an auxil-
iary file (LaTEX’s \glossary mechanism is used for this purpose), which can be
printed after suitable formatting. To cause the change information to be written,
include \RecordChanges in the driver file. To read and print the sorted change
history, put the \PrintChanges command at a suitable point, typically after the
\PrintIndex command in the driver.

To generate the sorted file containing the changes, you should run the raw
glossary file through MakeIndex using an adequate style (like gglo.ist, supplied
with the doc distribution; see Section 11.1.6 on page 653 for more information
about how MakeIndex treats glossaries).

14.1.3 Cross-referencing all macros used

Inside a macrocode or macrocode* environment, index entries are produced for
every command name. In this way you can easily find out where a specific macro
is used. Since TEX works considerably more slowly when it has to produce such an
array of index entries you can turn off this feature by using \DisableCrossrefs
in the driver file. To turn it on again, use \EnableCrossrefs .

Finer control is provided with the \DoNotIndex command, which takes one
argument containing a comma-separated list of commands that are not to be en-
tered in the index. More than one \DoNotIndex command can be present, and
their contents will be combined. A frequent use of this macro is to exclude native
LaTEX commands from the index.

Production (or not) of index entries is controlled by using or omitting the
following declarations in the driver file preamble (if no declaration is provided, no
index is produced). Using \PageIndex makes all index entries refer to their page
number. With \CodelineIndex , index entries produced by \DescribeMacro and
\DescribeEnv refer to the relevant page numbers, but those produced by the
macro and macrocode environments refer to the code lines, which are numbered
automatically.

1The slightly strange command name is due to a misunderstanding by the package author: the
German word for “perhaps” is “eventuell” and when he found out it had been in use for years.

2The default is to typeset the whole document. This default can also be explicitly set by using the
\AlsoImplementation macro.

818 LATEX Package Documentation Tools

If index entries are produced they have to be sorted by an external program,
such as MakeIndex (see Chapter 11). The doc package uses special conventions
for the index entries, so you need to run MakeIndex with the -s switch (see Sec-
tion 11.2.4 on page 659) to specify a suitable style—for example, gind.ist, which
is distributed with the doc system.

To read and print the sorted index, you must put the \PrintIndex command
near the end of your driver file, possibly preceded by bibliography commands, as
needed for your citations.

14.1.4 The documentation driver

To get the documentation for a set of macros with the doc system, you have to
prepare a driver (file) with the following characteristics:

\documentclass[〈options〉]{〈document-class〉}
\usepackage{doc}
〈preamble〉
\begin{document}

〈input-commands〉
\end{document}

The 〈document-class〉 may be any legal class, such as article or ltxdoc (described
in Section 14.3); in the latter case the doc package is already loaded by the
class. In the 〈preamble〉, you should place declarations that manipulate the be-
havior of the doc system, such as \DisableCrossrefs , \OnlyDescription , and
\CodelineIndex .

\DocInput{file name} \IndexInput{file name}

Finally, the 〈input-commands〉 part should contain one or more \DocInput and/or
\IndexInput commands. The \DocInput command is used for files prepared for
the doc system, whereas \IndexInput can be used for macro files that do not
obey the conventions of the doc system. The latter command takes a file name as
its argument and produces a verbatim listing of the file, indexing every command
as it goes along. This functionality can be handy if you want to learn something
about macros without enough documentation.

It is also possible to use the \PrintIndex and \PrintChanges (if the changes
are recorded by \RecordChanges) commands. Some people put them directly into
the source file, but it is better practice to place them into the driver. You can then
combine several packages in one document and produce a combined index.

As mentioned in the introduction, most often the driver is included directly
in the source file instead of being a separate file of its own. How this works is
explained in the next section.

14.1 doc—Documenting LATEX and other code 819

14.1.5 Conditional code in the source

The features discussed so far can be used to produce a LaTEX source in literate
programming style that can be directly used by loading it as a package (where TEX
bypasses the comments) or printed by processing it with a driver file as explained
in the previous section. But this requires the structure of such a file to be linear;
in other words, TEX will see all code exactly in the order in which it is present in
the file.

Experiences with the doc system soon suggested that it would be a valuable
extension to be able to conditionally produce the ready-to-run files—by building
them from several source files or extracting them from parts of one or more
source files, for example. For this reason the doc system was extended in two
directions:

• A syntax was developed to label parts of the code so that the components
could be referred to separately.

• The docstrip program (see Section 14.2), which was originally used only to
strip the comments from doc files, was extended to offer a scripting language
in which it became possible to specify how a ready-to-run file is generated
from labeled code parts of one or more source files.

Of course, a source containing such conditional code can usually no longer be
used directly and requires the docstrip program before it can be turned into a
ready-to-run file. However, the additional possibilities offered by this approach
outweigh the inconvenience of an extra production step during installation so
much that these days nearly all usages of doc take advantage of it.

Code fragments for conditional inclusion are marked in the source file with
“tags”. The simplest format is a <*name> and </name> pair surrounding some
part of the code. This enables us to include or exclude that part by referring to its
name in a docstrip script. The tags must be placed at the beginning of the line
preceded by a %. For example:

%<*style>
some lines of code

%</style>

It is possible to attach more than one tag to a part by combining several names
with the Boolean operators | for logical or, & for logical and, and ! for negation
(using lazy evaluation from the left). For example,

%<*Aname|Bname&!Cname>
some lines of code

%</Aname|Bname&!Cname>

means that this block should be included when either Aname is asked for, or Bname
is requested but Cname is not.

820 LATEX Package Documentation Tools

There are two other forms of directives for including or excluding single lines
of code. A line starting with %<+name> will be included (without its tag) if name is
requested. A line starting with %<-name> will be included if name is not requested
in a docstrip run.

The above directives can be nested in each other. If this is done the inner tags
are evaluated only if the outer tags are true (i.e., if the whole block is requested
for inclusion).

%<*Aname>
code line 1

%<+Bname> code line 2
%<-Bname> code line 3

code line 4
%</Aname>

Here nothing is included if Aname is not requested. If it is requested, we get code
lines 1, 2, and 4 if Bname is also asked for, and lines 1, 3, and 4 otherwise.

You may have wondered how the conditional coding allows us to include the
driver in the main source file. For this you have to place the code for the driver
as the first code block and surround it by some tag (e.g., driver). If the user now
runs the source file through LaTEX, the driver code is the first code that is not
behind % signs so it will be executed. Since it ends in \end{document}, the LaTEX
run will not execute any later code in the file. Thus, the documentation is typeset
assuming that the driver loads the whole file using \DocInput . To generate the
actual package file(s), you use a docstrip script (see Section 14.2 on page 824)
that ignores the driver code by not requesting code from a block tagged driver.

Table 14.1: Overview of doc package commands

Preamble and input commands
\AlsoImplementation

Typeset complete file marked up according to doc conventions, including code
part (default).

\CharacterTable{character table}
User interface to character table checking.

\CheckModules
Format module directives of docstrip specially (default).

\CheckSum{checksum}
User interface to set the checksum of the document (number of backslashes in the

code).

\CodelineIndex
Index commands using code line numbers.

\CodelineNumbered
Number code lines but don’t index commands.

continued on next page

14.1 doc—Documenting LATEX and other code 821

continued from previous page

\DisableCrossrefs
Don’t produce index entries for commands within the code.

\DocInput{file}
Read in file assuming doc conventions.

\DontCheckModules
Don’t format module directives of docstrip specially.

\EnableCrossrefs
Produce index entries for commands within the code.

\IndexInput{file}
Read in file, print it verbatim, and produce a command cross-reference index.

\OnlyDescription
Don’t format code; stop at \StopEventually .

\PageIndex
Index commands using page numbers.

\PrintChanges
Print the history listing here.

\PrintIndex
Print the index listing here.

\RecordChanges
Produce a history listing.

Document structure commands
\bslash

Print a backslash (\). Only useful in typewriter fonts!
\DeleteShortVerb{\char}

Undo the previous definition of \MakeShortVerb or \MakeShortVerb* for char .

\DescribeEnv{env}
Flags point in text where environment env is described.

\DescribeMacro{\cmd}
Flags point in text where macro \cmd is described.

\begin{environment}{env}
Environment surrounding description of environment env.

\Finale
Command executed at very end of document (see also \StopEventually).

\begin{macro}{\cmd}
Environment surrounding description of macro \cmd.

\begin{macrocode}
Environment surrounding the TEX code.

\begin{macrocode*}
Same as the macrocode environment, but spaces are printed as � characters.

\MakeShortVerb{\char}
Define abbreviation character char for \verb .

continued on next page

822 LATEX Package Documentation Tools

continued from previous page

\MakeShortVerb*{\char}
Define abbreviation character char for \verb* .

\meta{arg}
Print the argument as a meta sentence (default 〈arg〉).

\SpecialEscapechar{\char}
Specify new single escape character char to be used instead of \.

\StopEventually{cmds}
In the argument cmds, specify which commands should be executed at the end of

the document (they are stored in \Finale).
\begin{verbatim}

Slightly altered version of LaTEX’s standard verbatim environment to surround ver-
batim text ignoring percent characters in column 1.

\begin{verbatim*}
Same as the verbatim environment, but spaces are printed as � characters.

Index commands
*

Symbol used in index entries to refer to a higher-level entry (default ˜).
\actualchar

Character used to separate “key” and actual index in an index entry (default =).
\DoNotIndex{cmd1,. . . ,cmdn}

Names of commands that should not show up in the index.

\encapchar
Character used to separate the actual index and the command to format the page

number in an index entry (default |).
\IndexMin

Length parameter (default 80pt) defining the minimal amount of space that should
be left on a page to start an index.

\IndexParms
Macro controlling the formatting of the index columns.

\IndexPrologue{text}
Overwrite default text to be placed on top of index.

\levelchar
Character used to separate different index levels in an index entry (default >).

\main{number}
Define the formatting style for page numbers or code line numbers of index entries

for major references (default underlined digits).

\quotechar
Character used to suppress the special meaning of the following character in an

index entry (default !).
\SortIndex{key}{entry}

Produce an index entry for entry, sorting it by key.

continued on next page

14.1 doc—Documenting LATEX and other code 823

continued from previous page

\SpecialEnvIndex{entry}
Produce an index entry for usage of environment entry.

\SpecialIndex{\cmd}
Produce a command index (printing the argument verbatim in the index).

\SpecialMainEnvIndex{env}
Produce a main index entry for an environment (\main page encapsulator).

\SpecialMainIndex{\cmd}
Produce a main index entry for a macro (\main page encapsulator).

\SpecialUsageIndex{\cmd}
Produce an index entry for a macro (\usage page encapsulator).

\usage{number}
Define the formatting style for page numbers of index entries for usage descrip-

tions (default italic digits).

\verbatimchar
Character used to delimit \verb constructs within an index entry (default +).

History information
\changes{version}{date}{reason}

Record history information for use in a history listing.

\docdate
By convention holds the date of the most recent documentation update.

\filedate
By convention holds the date of the most recent code update.

\filename
By convention holds the name of the source file.

\fileversion
By convention holds the version number of the source file.

\GlossaryMin
Length parameter (default 80pt) defining the minimal amount of space that should

be left on a page to start the change history.

\GlossaryParms
Macro controlling the formatting of the change history columns.

\GlossaryPrologue{text}
Overwrite default text placed on top of history listing.

Layout and typesetting parameters
\@idxitem

Macro specifying how index items should be typeset (by default, they are set as a
paragraph with a hanging indentation of 30pt for items requiring more than one line).

\AltMacroFont
Font used to typeset docstrip module code (default \small\ttfamily\slshape).

\DocstyleParms
Macro controlling the formatting of the TEX code.

continued on next page

824 LATEX Package Documentation Tools

continued from previous page

\generalname
String placed before change entries on the top level.

\MacrocodeTopsep
Vertical space above and below each macrocode environment.

\MacroFont
Font used to typeset the main part of the code (default \small\ttfamily).

\MacroIndent
Width of the indentation for every code line.

\MacroTopsep
Vertical space above and below each macro environment.

\MakePercentComment
Activate “%” as TEX’s comment initiator character.

\MakePercentIgnore
Deactivate “%” as TEX’s comment initiator character.

\MakePrivateLetters
Macro specifying symbols to be considered as letters (default @).

\Module
Macro with one argument defining the formatting of docstrip module directives.

\PrintDescribeEnv
Macro with one argument defining the formatting of \DescribeEnv .

\PrintDescribeMacro
Macro with one argument defining the formatting of \DescribeMacro .

\PrintEnvName
Like \PrintDescribeEnv but for the argument of the environment environment.

\PrintMacroName
Like \PrintDescribeMacro but for the argument of the macro environment.

\ps@titlepage
Macro specifying page style for the title page of articles bundled in a journal (de-

fault \ps@plain).
StandardModuleDepth

Counter holding the highest level of docstrip directives, which are still formatted
using \MacroFont . Deeper-nested directives are formatted using \AltMacroFont .
\theCodelineNo

Control the typesetting of line numbers (default script-size Arabic numerals).

14.2 docstrip.tex—Producing ready-to-run code

When doc was originally written in the late 1980s, the intention was to provide a
“literate programming” environment [81] for LaTEX, in which LaTEX code and docu-
mentation were intermixed in the same source file. As it soon turned out, making
TEX parse (and then ignore) all the documentation when reading a file added a

14.2 docstrip.tex—Producing ready-to-run code 825

heavy time penalty.1 To avoid this problem Frank Mittelbach looked for ways to
automatically strip all comments from files written for the doc system.

The problem with any external program developed for such a purpose is that
it may or may not be available for the user’s operating system and even if avail-
able may not be installed. But one program is always available on a system that
can run LaTEX: the TEX program itself. To achieve widest portability, the docstrip
program was therefore written in low-level TEX language. Since those early days
the program has undergone many revisions that changed its purpose from being
a simple stripping device to serving as a fully customizable installation tool—one
that is even able to distribute files to the right directories on a target machine.
Johannes Braams, Denys Duchier, Marcin Woliński, Mark Wooding, David Carlisle,
and others contributed to this metamorphosis; details of the program’s evolution
can be found in the documented source (which uses literate programming, of
course). Here are today’s main applications of the docstrip program:

• Strip a literate programming source of most of its documentation (i.e., the
lines that start with a single % sign in the first column).

• Build ready-to-run code files by using code from one or more source files and
including parts of it according to options specified.

• Automatically install the produced files in the right directories on the target
machine if desired, thereby enormously easing the installation of updates or
additions to a LaTEX installation.

The last possibility in particular is not very widely known but deserves the atten-
tion of a wider audience as it can be set up with relatively little effort.

14.2.1 Invocation of the docstrip utility

From its first days of existence docstrip could be run interactively by processing
docstrip.tex with LaTEX:

latex docstrip.tex

LaTEX then asks a few questions about how to process a given file. When the user
has answered these questions, docstrip does its job and strips the comments
from the source.

However, this method of processing was intended to do nothing more than
stripping off comments. With today’s sources, which contain conditional code and
are intended to be combined to form the final “executable”, it is usually no longer
appropriate. Instead, the developers of packages typically provide an installation
file (by convention having the extension .ins) that is used to invoke docstrip
behind the scenes. In this case the user simply says

latex name.ins

1In those days producing a single page with TEX could easily take half a minute or longer.

826 LATEX Package Documentation Tools

This results in the generation of all “executables” from the source distribution
and optionally installs them in the right places. All standard LaTEX distributions
(e.g., base, graphics, and tools) are distributed in this form and so are most
contributed packages that are described in this book.

In the next section we discuss how to construct your own installation scripts
for docstrip. Section 14.2.3 then shows how to set up docstrip for automatically
installing the generated files in the right places.

14.2.2 docstrip script commands

A docstrip installation script has the following general form:

\input docstrip
〈other docstrip commands〉
\endbatchfile

It starts by loading the docstrip code using the TEX primitive \input (without
braces around the file name), which makes it possible to process such a script with
TEX formats other than LaTEX. This is followed by the docstrip commands that ac-
tually do the work of building new files, communicating with the user, and carry-
ing out other necessary tasks. At the very end the script contains \endbatchfile .
Without that statement docstrip would display a * prompt while waiting for fur-
ther input from the user.

Generating new files

The main reason for constructing a docstrip script is to describe which files
should be generated, from which sources, and which optional (tagged) pieces of
code should be included. This is done by using \generate declarations.

\generate{\file{result-file1}{\from{source-file1}{tag-list1}
\from{source-file2}{tag-list2}

. . .
\from{source-filen}{tag-listn}}

. . .
\file{result-filen}{. . . }

}

Within the argument to \generate you specify the result-files you want to pro-
duce by using \file declarations. The second argument to \file contains one or
more \from commands listing the source-files that should be used to build one
result-file. With each \from declaration the second argument specifies the tag-list
to use with the particular source-file. Then only the code pieces tagged with the
appropriate tags and all the untagged source pieces from that file are included
(see Section 14.1.5 on page 819).

14.2 docstrip.tex—Producing ready-to-run code 827

The source-files are used in the order specified: first the code from source-file1
is included (according to the tag specification), then the code from source-file2,
and so on. The tag-lists in each \from command are comma-separated lists and
indicate that code with these tags should be included.

With the syntax specification for \generate as given above, you can produce a
single result-file from one or more source-files by using a single \file declaration.
By repeating this as often as needed any kind of distribution can be produced. It
is, however, not very efficient. Suppose you have one large source file from which
you want to produce many small files—for example, suppose the source for the
doc package, doc.dtx, is used to generate doc.sty, shortvrb.sty, gind.ist,
and gglo.ist. The file is nearly 5000 lines long, so by using four \generate dec-
larations, docstrip would have to process 20000 lines. To speed up this process,
\generate allows you to specify several \file commands within its argument.
These files are processed in parallel, meaning that the source-files are opened only
once and distribution of source code to result-files is done in parallel.

\generate{\file{doc.sty}{\from{doc.dtx}{package}}
\file{shortvrb.sty}{\from{doc.dtx}{shortvrb}}
\usepostamble\istpost
\file{gind.ist}{\from{doc.dtx}{gind}}
\file{gglo.ist}{\from{doc.dtx}{gglo}}}

As you can see, certain other commands (\usepostamble , for example) are al-
lowed within the argument of the \generate command. In the above example
this has the effect of replacing the standard postamble with a different one (since
the standard postamble will add an \endinput to the end of the generated file,
something not desirable in a style file for MakeIndex).

There are some restrictions with this approach. For instance, docstrip will
Restrictions on
parallel extraction

complain if the order of source files in one \file command conflicts with the or-
der in a different one; the precise rules are discussed in the docstrip documenta-
tion [125]. If that happens, the simplest solution is to use two separate \generate
declarations.

Communicating with the user

The docstrip scripting language offers some limited possibilities for communi-
cation with the user. Keep in mind that interactive questions, though sometimes
useful, can make an installation process quite cumbersome, so these tools should
be used with care.

\Msg{message} \Ask{cmd}{question}

The \Msg command can be used to present a message on the terminal; thus, it
offers a similar functionality as LaTEX’s \typeout command. \Ask is similar to
LaTEX’s \typein command, with the difference that no trailing space is generated

828 LATEX Package Documentation Tools

from pressing return in reply to a question. This way simple questions can be
asked (using a bit of low-level programming). For example:

\Ask\answer{Should we continue? (y/n)}
\ifx\answer\y

% code for ‘‘y’’ as answer
\else

% otherwise
\fi

\ifToplevel{code}

You may want to give certain information, or run certain code, only if a docstrip
script is executed on its own, but not if it is called as part of a larger installa-
tion (see below). Such information or code can be placed in the argument of an
\ifToplevel command. For example, all the individual installation scripts from
the LaTEX base distribution say what to do with the generated files. But if you use
the master installation script unpack.ins, the messages in the sub-scripts are
suppressed to avoid repeating the same information over and over again.

\askforoverwritetrue \askforoverwritefalse

Before docstrip writes its output to a file, it checks whether that operation
will overwrite some existing version of this file. If so, the default behavior is to
ask the user if overwriting is acceptable. This check can explicitly be turned off
(or on if it was turned off) by using the command \askforoverwritefalse or
\askforoverwritetrue , respectively, in the docstrip script.

\askonceonly

Setting \askforoverwritefalse in a distribution script may not be the right
thing to do, as it essentially means that it is okay to overwrite other people’s
files, no matter what. However, for large installations, such as the base LaTEX distri-
bution, being asked individually about hundreds of files is not very helpful either.
For this reason docstrip offers the declaration \askonceonly . This means that
after the first time the script asks the user a question, the user is given an option
to have docstrip assume that all future questions will get a “yes” as the answer.
This applies to all future questions (manually produced by \Ask or generated
through a file overwrite).

\showprogress \keepsilent

For amusement and because in the original implementation everything was so
slow, there was a way to direct docstrip to show its progress when stripping
comments and building new files. These days most scripts run in silent mode.

14.2 docstrip.tex—Producing ready-to-run code 829

Master installation scripts

In large distributions, such as the LaTEX base distribution, it is convenient to pro-
vide individual docstrip scripts for processing individual parts. For example,
format.ins generates the main format file latex.ltx and its customization files
such as fonttext.cfg, and classes.ins generates the standard classes, such as
the files article.cls and report.cls.

Nevertheless, you do not want to force the user to process a dozen or more
installation scripts (30 in case of the LaTEX base distribution). Therefore, doc-
strip offers the command \batchinput , which enables you to include installation
scripts in some master installation script. Do not use \input for this purpose, be-
cause this command is exclusively reserved for loading the docstrip code once,
as explained above, and is ignored otherwise. Except for the fact that it contains
some special handcrafted code at the beginning so that it can be processed using
initex, the file unpack.ins from the base LaTEX distribution is a good example
for such a master installation script.

Setting up preambles and postambles

As mentioned earlier docstrip not only writes selected lines of code to the out-
put files, but also precedes them with a preamble and finishes each file with a
postamble. There are default texts for both operations, but usually a docstrip
script explicitly defines what should be used in these places, such as a copyright
notice or your standard disclaimer (see also [108]).

\preamble \postamble
〈text lines〉 〈text lines〉

\endpreamble \endpostamble

The information you want to add to the start of docstrip’s output file should be
listed between the \preamble and \endpreamble commands. Lines that you want
to add at the end should be listed between the \postamble and \endpostamble
commands. Everything that docstrip finds for both the preamble and postamble
is written to the output file, but preceded with two % characters (or, more ex-
actly, with the current definition of the command \MetaPrefix). In general, only
straight text should be used, and literal command names should be of the form
\string\foo . In addition to the user preamble, docstrip also includes some in-
formation about the current file (i.e., its name and the sources from which it was
generated). This information is always added unless you use \nopreamble (see be-
low) or you sidestep the standard preamble generation (explained in the docstrip
package documentation [125]).

It is also possible to define a number of “named” preambles or postambles
and later refer to them when generating files. In fact, this is the usual way to
produce the preambles in larger projects.

830 LATEX Package Documentation Tools

\declarepreamble\cmd 〈text〉 \endpreamble \usepreamble\cmd
\declarepostamble\cmd 〈text〉 \endpostamble \usepostamble\cmd

The \declarepreamble declaration works like \preamble except that it stores the
preamble text for later use in \cmd. To activate such a preamble, \usepreamble is
called in a docstrip script. For postambles, the declarations \declarepostamble
and \usepostamble are provided. Examples of them can be found in all docstrip
installation scripts in the distributions of the standard LaTEX components.

\nopreamble \nopostamble

To fully suppress the writing of a preamble or a postamble, you can use the decla-
rations \nopreamble and \nopostamble , respectively.

14.2.3 Installation support and configuration

A number of years ago the TEX users community decided on a standard direc-
tory structure for TEX installations (TDS), designed to be usable on all platforms
for which TEX and LaTEX are available [164]. Since then this standard has further
evolved to the point that it is now in use on most major TEX distributions.

To make it easier to integrate new packages into a TDS-conforming installa-
tion or to install package upgrades, the docstrip program was extended so that
under certain circumstances it can be directed to automatically install the gen-
erated files in the right places in this structure. For this operation to work, the
docstrip scripts must contain certain directives. In addition, the user has to con-
figure the docstrip program by providing a docstrip.cfg file suitable for the
installation on the current machine.

\usedir{relative-directory-path}

For the developer of a docstrip script there is minimal extra work involved: for
each generated file its position in the TDS directory tree needs to be known, but
this is usually clear for all such files. This place is then specified with \usedir as a
directory path relative to the TDS root directory in the docstrip script just before
calling the \generate command or within the argument to \generate before the
next \file declaration. For most packages, one such \usedir declaration is suffi-
cient. For example, the file format.ins in the standard LaTEX distribution states

\usedir{tex/latex/base}
\generate{\file{latex.ltx}{\from{ltdirchk.dtx}{initex,2ekernel,dircheck}

\from{ltplain.dtx}{2ekernel}
...}

\file{tracefnt.sty}{\from{ltfsstrc.dtx}{package,trace}}
\file{flafter.sty}{\from{ltoutput.dtx}{flafter}}
...}

14.2 docstrip.tex—Producing ready-to-run code 831

to place the LaTEX format file (and others) in the correct directory. In more complex
bundles, files may need to be distributed to different directories depending on
their type. For example, the installation script for the jurabib package states

\generate{
\usedir{tex/latex/jurabib}

\file{jurabib.sty}{\from{jurabib.dtx}{package}}
\file{dejbbib.ldf}{\from{jurabib.dtx}{german}}
...

\usedir{bibtex/bst/jurabib}
\file{jurabib.bst}{\from{jurabib.dtx}{jurabst}}
...

\usedir{doc/latex/jurabib}
\file{jbtest.tex}{\from{jurabib.dtx}{test}}
...

}

to generate the files needed by LaTEX in tex/latex/jurabib, the BIBTEX styles
in bibtex/bst/jurabib, test documents in doc/latex/jurabib, and so on. By
itself, the \usedir declaration has no effect: docstrip still generates files only in
the current directory.

To allow docstrip to make use of such \usedir declarations, you have to
provide it with a configuration file (docstrip.cfg) that contains a declaration for
the root directory of your installation and a set of translations to local directories
for the paths used in the argument to \usedir .

\BaseDirectory{directory}
\DeclareDir{usedir-path}{local-translation}

The \BaseDirectory declaration specifies the absolute path to the root directory
of your TEX installation; other paths are then given relative to this starting direc-
tory. In addition, you have to provide for each relative-directory-path used in the
argument of \usedir a translation to a local directory. For example, to teach doc-
strip the directory structure used by the emTEX distribution, you might have a set
of declarations like this:

\BaseDirectory{c:/emtex}
\DeclareDir{tex/latex/base}{texinputs/latex}
\DeclareDir{tex/latex/jurabib}{texinputs/latex}

Once docstrip knows about a \BaseDirectory , it will attempt to interpret all
\usedir declarations in its scripts. If it finds one for which it doesn’t know a
translation to a local directory (through \DeclareDir), it will complain and gen-
erate the file in the current directory instead. You should then add an appropriate
declaration to the .cfg file.

832 LATEX Package Documentation Tools

Sometimes it is necessary to put some files outside of the base directory, such
as when your BIBTEX program is on a different disc. In that case use the starred
form of \DeclareDir , which expects an absolute path name in the second argu-
ment. For example:

\DeclareDir*{bibtex/bst/jurabib}{d:/bibtex/bst}

Since TEX is unable to create new directories, it is a prerequisite that all localInstallation
directories
must exist

directories specified with \DeclareDir actually exist. If one of them is not avail-
able when you run a docstrip script, you will receive a TEX error message stating
that it cannot write to some file, and asking you to specify a different one.

On a fully TDS-conforming installation, all translations to local directory
names are trivial. For example,

\BaseDirectory{/usr/local/lib/texmf-local}
\DeclareDir{tex/latex/base}{text/latex/base}
\DeclareDir{tex/latex/jurabib}{tex/latex/jurabib}
\DeclareDir{bibtex/bst/jurabib}{bibtex/bst/jurabib}

directs docstrip to install into a local TDS tree (i.e., texmf-local) and not into
the main installation tree. You have then to make sure that your local tree is
searched first.

\UseTDS

To ease the configuration work necessary to describe a TDS-conforming installa-
tion, docstrip offers the declaration \UseTDS . It directs the program to use the
\usedir specifications literally if no explicit \DeclareDir declaration is specified.
Thus, on most installations, a \UseTDS and a \BaseDirectory declaration in the
.cfg file is all that is needed.

By default, docstrip will generate files only in the current working directory.
Security

considerations
Even with a configuration file containing a \BaseDirectory declaration, it will
always write to directories explicitly specified with \DeclareDir or, if you use
\UseTDS , to the appropriate TDS directories below your base directory. It will
not overwrite files in other places, though (in these days of viruses and other
nasty creatures) you should be aware that TEX, as such, is capable of doing so
and therefore might pose some security threat. In fact, some implementations
(for example, those on the TEX Live CD) will not let TEX write to files specified
with absolute path names or to files starting with a period in their name, unless
explicitly authorized. For example, on the author’s system one has to specify

openout_any=r latex jurabib.ins

to take advantage of the automatic installation features of docstrip.

14.2 docstrip.tex—Producing ready-to-run code 833

\maxfiles{number} \maxoutfiles{number}

There are two other declarations that you may wish to add to a docstrip configu-
ration file. On some operating systems there is a limit on the number of files that
can be opened by a program. If that is the case you can limit the total number
of open files with a \maxfiles declaration and the total number of concurrently
opened output files with \maxoutfiles (TEX itself has a limit of 16). Use these
declarations only when necessary.

14.2.4 Using docstrip with other languages

With some restrictions it is possible to use the docstrip mechanism to distribute
and generate files not intended for a TEX installation. What you have to bear in
mind is that docstrip operates on a line-by-line basis when reading source files.
As a result, doing something like unpacking binary files with it is bound to pro-
duce unusable files.

Furthermore, the use of preambles and postambles is likely to conflict with
Changing the
comment character

the syntax requirements of the language for which the file is intended. For exam-
ple, generating a shell script with a number of lines starting with %% is probably
not a good idea. This problem can be circumvented by changing the \MetaPrefix
(which by default produces \DoubleperCent). For a shell script, where you proba-
bly want a # sign as the comment character, this modification can be a little tricky
as TEX regards the # as special. Try

\renewcommand\MetaPrefix{\string##}

to produce a single hash sign as a \MetaPrefix . To return to the default setting,
use the following definition:

\renewcommand\MetaPrefix{\DoubleperCent}

Another potential problem to watch out for is docstrip’s standard behavior Verbatim copying

of stripping away all lines starting with a single percent sign. If your code contains
such lines you may want to retain them. This can be achieved by surrounding that
block with two special lines as follows:

%<<tag-name
〈code lines to be copied verbatim〉

%tag-name

You can use any tag-name. The important point is that this “verbatim” block ends
when docstrip encounters a single line just containing a percent sign followed by
tag-name. The other important point to note is that the tag-name is not used for
conditional exclusion or inclusion but only for specifying the block to be copied

834 LATEX Package Documentation Tools

verbatim. If such a block should be written only in some circumstances, as con-
trolled through the second argument of \from , you have to additionally surround
it by a set of conditional tags (see Section 14.1.5).

14.3 ltxdoc—A simple LATEX documentation class

The ltxdoc class was designed for documenting the core LaTEX source files, which
are used to build the LaTEX format and all packages distributed as part of the core
distribution. This class is built on the article class, but extends it slightly with a
few commands helpful for documenting LaTEX code. It also includes some layout
settings specially tailored to accommodate the typical requirements of a source
file in doc style (e.g., a line width to hold 72 characters in typewriter fonts and a
wider left margin to allow for long macro names to be placed into it).

A special feature is that the class can be used to produce a single document
from a larger number of source files in doc style. This has the advantage that
one can produce a full index of macro usage across all source files. For example,
the driver file source2e.tex generates the documented source listing of the 40
files that make up the LaTEX kernel. It generates a document with nearly 600 pages
including an index and a change history (reaching back to the early 1990s).

14.3.1 Extensions provided by ltxdoc

As extensions, the class offers a small set of commands to describe LaTEX com-
mands and their arguments. These commands really should have been in the doc
package, but due to some historical accident have never been added there.

\cmd{\name} \cs{name}
\marg{arg} \oarg{arg} \parg{arg}

The command \cmd prints a command name in typewriter font; for example, writ-
ing \cmd{\foo} typesets \foo . In contrast to \verb+\foo+ (which is otherwise
similar), it can be used anywhere—even in the arguments of other commands.
The command \cs offers the same functionality for those who prefer the syntax
without the backslash. In fact, it is slightly more powerful because it can also
typeset commands that are made \outer—a plain TEX concept normally not used
in LaTEX. Furthermore, ltxdoc makes “|” an abbreviation for \verb so that you can
type |\foo| in the documentation. If this is not desired for some reason, you have
to cancel it in the source (after \begin{document}) via \DeleteShortVerb{\|} .

The commands \marg , \oarg , and \parg produce the LaTEX syntax for manda-
tory, optional, and picture arguments, respectively. Thus, writing

\cs{makebox}\parg{x-dimen,y-dimen}\oarg{pos}\marg{text}

14.3 ltxdoc—A simple LATEX documentation class 835

produces the (probably less-known) syntax diagram for \makebox in picture en-
vironments: \makebox(〈x-dimen,y-dimen〉)[〈pos〉]{〈text〉} .

\DocInclude{file}

The \DocInclude command is similar to \include except that it uses \DocInput
on file (with the implicit extension .dtx or .fdd) instead of using \input on a
file (with the implicit extension .tex). This command is used in source2e.tex to
“include” all .dtx files that form the LaTEX kernel.

14.3.2 Customizing the output of documents that use ltxdoc

To customize documents using the ltxdoc class you can create a configuration
file (ltxdoc.cfg). This configuration file will be read whenever the ltxdoc class is
used, so it can be used to customize the typesetting of all the source files, without
having to edit lots of small driver files, which would be the manual alternative.

If ltxdoc.cfg is installed in a directory always searched by LaTEX, it is applied
to all documentation files using the ltxdoc class. If it is placed in the current
directory, it applies only to documents processed in this directory.

The simplest form of customization is to pass one or more options to the
article class upon which ltxdoc is based. For instance, if you wish all your docu-
mentation to be formatted for A4 paper, add the line

\PassOptionsToClass{a4paper}{article}

to ltxdoc.cfg and install it in a place searched by LaTEX.
As discussed in Section 14.1.2, the \StopEventually command separates

the source files into a “user” documentation and an “implementation” part. To be
able to produce only the user manual, the doc package provides the command
\OnlyDescription , which suppresses the implementation part. This command
may also be used in the configuration file, but as the doc package is loaded after
the configuration file is read, you must delay the execution of \OnlyDescription .
The simplest way is to use \AtBeginDocument :

\AtBeginDocument{\OnlyDescription}

For example, the documented source of the fixltx2e package, the file
fixltx2e.dtx, generates 30 pages of documented code listings if you run

latex fixltx2e.dtx

without a configuration file. However, most people are not interested in how cer-
tain macros from the LaTEX kernel are patched in this package, but rather which
problems are solved when loading it. With the above configuration line the output
is reduced to a 10-page user manual, listing only the problems that are solved.

836 LATEX Package Documentation Tools

When the driver source2e.tex for the kernel documentation is processed,
an index and a change history are produced by default; however, indexes are not
normally produced for individual files. If you are really interested in the source
listings in detail, you will probably want to have an index as well. Again the index
commands provided by the doc package may be used, and again their execution
must be delayed. Thus, the addition to the configuration file could look as follows:

\AtBeginDocument{\AlsoImplementation % force processing everything
\CodelineIndex % select index per code line
\EnableCrossrefs } % enable it

\AtEndDocument{\PrintIndex}

Similar lines would be necessary if you want to produce a change history listing.
Recall that the doc package generates .idx and .glo files with a special syntax
that require adequate style files for processing with MakeIndex (see Section 14.1.3
on page 817).

14.4 Making use of version control tools

When developing a program or writing a large document, such as a user manual
or a book (like this one), version control—the task of keeping a software system
consisting of many versions and configurations well organized—is an important
issue. The Revision Control System (RCS) is a software tool that can assist you
with that task. RCS manages revisions of text documents—in particular, source
programs, documentation, and test data. It automates storage, retrieval, logging,
and identification of revisions, and it provides selection mechanisms for compos-
ing configurations. In addition, it is able to insert management information in the
text document, in so-called RCS fields.

The Concurrent Versions System (CVS; see http://www.cvshome.org), origi-
nally developed as a front end to RCS, extends the notion of revision control from
a collection of files in a single directory to a hierarchical collection of directories
consisting of revision-controlled files. These directories and files can be combined
to form a software release. CVS provides the functions necessary to manage these
software releases and to control the concurrent editing of source files among mul-
tiple software developers.

RCS and CVS offer a keyword substitution interface in which fields with a
certain structure are updated with management information whenever a file is
checked into the system. The most important keywords are $Author$ (account of
the person doing the check-in), $Date$ (date and time of check-in in UTC), Id
(combination field, with file name, revision, date, time, author, state, and optional
locked by), $RCSfile$ (archive file without path name), $Revision$ (revision
number assigned to the revision), and $Source$ (full path name of archive file).
Initially, one simply adds one or more of these keywords (e.g., Id) to the source.

14.4 Making use of version control tools 837

Upon first check-in, they are replaced by the structure $〈keyword〉:�〈value〉�$,
as can be seen in the next example. Later check-ins then update the 〈value〉 as
appropriate.

If you put LaTEX documents under source control, you will often want to have
access to the data of the RCS fields within your document—perhaps to place the
date of the last check-in and the revision number into the running header. Because
of the syntax using dollar signs (which indicate formulas in LaTEX), you cannot use
the keywords directly in your text, but there exist packages that provide LaTEX tags
to give you access to this information in a way suitable for typesetting.

14.4.1 rcs—Accessing individual keywords

The rcs package written by Joachim Schrod lets you extract RCS information from
any keyword field and places the data into command names for later use.

\RCS $keyword$ \RCS $keyword:�value�$
\RCSdef $keyword$ \RCSdef $keyword:�value�$

The \RCS command parses a dollar-delimited string for a keyword and its corre-
sponding value; it is able to recognize the two variants shown above. From the
keyword, it constructs a command name \RCSkeyword that can be used to later
retrieve the value. The keyword can be any string containing only letters that are
usable in a command name; thus, you are not limited to the RCS keyword names
mentioned above (though only these keywords are automatically updated by a
standard RCS/CVS system). The \RCSdef command works like \RCS but addition-
ally prints the keyword and value on the terminal.

In the next example we retrieve four typical keys and typeset their values
later in the text. As all examples in this book are automatically generated from
the book sources (see page 162), the values that you see after the keywords are
those corresponding to the file for this chapter.

14-4-1

The file ch-ldoc.tex,v has the re-
vision number 1.75. Last check-
in was done by frank on Septem-
ber 11, 2005 at 19:44:41 UTC.

\usepackage{rcs}
\RCS $Date: 2005/09/11 19:44:41 $ \RCS $Author: frank $
\RCS $RCSfile: ch-ldoc.tex,v $ \RCS $Revision: 1.75 $

The file \RCSRCSfile{} has the revision number
\RCSRevision. Last check-in was done by \RCSAuthor{}
on \RCSDate{} at \RCSTime\,\textsc{utc}.

If you look closely at the previous example, you will notice that \RCSDate
does not reproduce the value of $Date$ (which is a numeric date format and the
time) but instead produces a date string that looks suspiciously like those being
produced by \today . This is, in fact, what happens: the value is internally parsed
and the check-out date in the format used by \today is stored in \RCSDate . In
this way language-specific packages (e.g., from the babel system) may supply their
own methods of presenting a date.

838 LATEX Package Documentation Tools

For keywords whose values are further manipulated, the original value is au-
tomatically made available in the command \RCSRawkeyword (e.g., \RCSRawDate).
It is possible to provide your own manipulation routines for other keywords; how
this is done is explained in the package documentation (rcs-user.tex).

For convenience, the package defines a couple of additional commands. To
parse the $Date$, you can use the command \RCSdate (lowercase “d”) instead of
the \RCS command used above. This is equivalent to writing

\RCS $Date: 2004/08/04 21:57:14 $ \date{\RCSDate}

The last check-in date is now automatically used as the date in the document
title.1 Of course, the \RCSDate command is still available for other uses.

Another alternative to \RCS is to use the command \RCSID for parsing a key-
word. Besides setting up the corresponding \RCSkeyword command to hold the
value, it typesets the keyword and value literally in the running footer. This com-
mand can be used at most once (since each invocation overwrites the footer line)
and is best combined with the keyword Id or $Header$. As the rcs package
more or less bypasses LaTEX’s page style interface, the command does not work if
you use \pagestyle commands in your source that update the running footer. In
that case use \RCS and manually place the relevant information in the page style
using the methods and packages described in Section 4.4.

The package also contains some code to typeset RCS revision history logs that
can be produced with the Log keyword. However, this is most likely of no use
to the majority of our readers, as it requires a special RCS version and does not
work with CVS. If you are interested consult the package documentation.

14.4.2 rcsinfo—Parsing the Id keyword

In contrast to the rcs package, which deals with any string that conforms to the
RCS/CVS keyword syntax, the rcsinfo package by Jürgen Vollmer concentrates on
a single keyword: Id.

\rcsInfo Id \rcsInfo $Id:�value�$

If present, the \rcsInfo command parses the value and stores all information
obtained in a set of commands for later retrieval. Otherwise, it places default
values in the retrieval commands—in case of date information, the current date
as known to LaTEX and for all other data strings like --owner-- .

The following example shows all commands set up by the package and their
respective output. As you can see, the \rcsInfoLongDate depends on the current
language. Here we get a date in Italian format.

1You often see \date{\today} in documents, but this is seldom a good idea because it produces
the date of the last formatting run and not the date of the last modification.

14.4 Making use of version control tools 839

14-4-2

ch-ldoc.tex 1.75
2005/09/11 19:44:41
11 settembre 2005
2005, 9, 11 frank
Exp –not-locked–

\usepackage[italian]{babel} \usepackage{rcsinfo}
\rcsInfo $Id: ch-ldoc.tex,v 1.75 2005/09/11 19:44:41 frank Exp $

\rcsInfoFile \quad \rcsInfoRevision \par
\rcsInfoDate \quad \rcsInfoTime \par
\rcsInfoLongDate \par
\rcsInfoYear, \rcsInfoMonth, \rcsInfoDay \quad \rcsInfoOwner\par
\rcsInfoStatus \quad \rcsInfoLocker

To influence its behavior the package offers a few options:

today/notoday By default, \rcsinfo changes LaTEX’s internal date information
to the check-in information obtained. The \today command will then gener-
ate a date string based on this information. If notoday is used, \today will
produce a date string showing the date of the LaTEX run.

fancyhdr/nofancy When specifying fancyhdr the rcsinfo package issues a num-
ber of fancyhdr declarations to set up a running footer. You still have to
provide your own running header definitions and activate everything with
\pagestyle{fancy} , so it is probably better to keep full control and do the
full set-up yourself.

long/short This option works only if the fancyhdr option is used. It then de-
cides whether a long (default) or a short date string is used in the footer line.

For those who want to convert their LaTEX documents to HTML using the la-
tex2html program [56, Chapter 3], rcsinfo offers direct support in the form of a
perl file, rcsinfo.perl; this file must be placed in the appropriate directory in
the latex2html installation. Refer to the rcsinfo manual for more information.

This page intentionally left blank

A p p e n d i x A

A LATEX Overview
for Preamble, Package,

and Class Writers

This appendix gives an overview of the basic programming concepts underlying
the LaTEX formatter. We explain how to define new commands and environments,
including those with an optional argument. We discuss how LaTEX handles counters
and their representation; we also introduce horizontal and vertical space parame-
ters and explain how they are handled. The second section reviews the important
subject of (LA)TEX boxes and their use. A good understanding of this topic is very
important to fully appreciate and exploit the information presented in this book.
The third section is devoted to two package files, calc and ifthen, that make calcu-
lations and building control structures with LaTEX easier. They have been used in
many examples of LaTEX code throughout this book. Finally, we describe in detail
the LaTEX2ε interface that allows you to define your own options for packages and
class files.

A.1 Linking markup and formatting

This section reviews the syntax for defining commands and environments with
LaTEX. It is important that you exclusively use the LaTEX constructs described below,
rather than the lower-level TEX commands. Then, not only will you be able to

842 A LATEX Overview for Preamble, Package, and Class Writers

take advantage of LaTEX’s consistency checking, but your commands will also be
portable, (probably) without modification, to future versions of LaTEX.

A.1.1 Command and environment names

In the current LaTEX incarnation, it is possible to enter accented characters and
Commands other non-ASCII symbols directly into the source, so it would seem reasonable

to expect that such characters could also be used in command and environment
names (e.g., \größer). However, this is not the case—LaTEX multi-character com-
mand names must be built from basic ASCII letters (i.e., a. . . z and A. . . Z).1 This
means that \vspace* is actually not a command by itself; rather, it is the com-
mand \vspace followed by the modifier *. Technically, you could write \vspace�*
(as the space is ignored) or even put the * on the next line of your document.2

On the other hand, names of environments are different. In this case the *
Environments is part of the name and spaces preceding it are not ignored. Thus, when writing

\begin{figure�*}, the space would become part of the name and is not rec-
ognized as the start of a figure* environment. This is due to implementation
details and seems to indicate that with environment names some additional ASCII
characters work. For example:

\newenvironment{foo.bar:baz�with�space}{}{}

However, this is not true in general because, depending on additional packages be-
ing loaded, such environment names may no longer be recognized or may produce
strange errors. Thus, it is best not to explore that implementation (mis)feature and
instead to rely on officially supported names—those containing only lowercase
and uppercase letters and the star character.

Strictly speaking, \cite and \label keys have the same kind of restriction.
Citation and

label keys
Nevertheless, it has become common practice to use keys containing colons (e.g.,
sec:cmds), so that most packages provide extra support to allow for at least the
colon character in such keys. Characters outside the ASCII range and characters
used in LaTEX’s syntax (e.g., _ or #) can never be used in names, whether they are
keys, counters, environments, or multi-character command names.

With single-character command names, the situation is different again: any
(single) character can be used. For example, \$ is a perfectly valid LaTEX com-
mand, but \foo$bar would be interpreted as the command \foo followed by the
start of a math formula (signaled by $) followed by the (math) characters b, a,
and r. Any following text will also be typeset in math mode.

LaTEX commands (i.e., those constructs starting with a backslash) are classified
into three basic categories: document-level commands, package and class writer
commands, and internal “kernel” commands.

1Strictly speaking this is not true, as TEX can be configured to support other configurations. There
are, however, valid reasons why this is not being done for standard LaTEX. Some of these reasons are
discussed in Section 7.11 describing LaTEX’s encoding model.

2It is bad style to use this in your documents but there is unfortunately no way to prevent it.

A.1 Linking markup and formatting 843

Document-level commands, such as \section , \emph , and \sum , usually have Document-level
commands(reasonably) short names, all in lowercase.

Class and package writer commands, by convention, have longer mixed-case Class and package
writer commandsnames, such as \InputIfFileExists and \RequirePackage . Some of them can

be usefully applied in the document source, but many will stop working after
\begin{document} has been processed.

Most of the internal commands used in the LaTEX implementation, such as Internal LATEX
commands\@tempcnta , \@ifnextchar , and \z@ contain @ in their name. This effectively

prevents these names from being used in documents for user-defined commands.
However, it also means that they cannot appear in a document, even in the pream-
ble, without taking special precautions.

As a few of the examples in this book demonstrate, it is sometimes nec-
essary to have such bits of “internal code” in the preamble. The commands

�Careful
with internal

commands!

\makeatletter and \makeatother make this easy to do; the difficult bit is to
remember to add them, failure to do so can result in some strange errors. For an
example of their use, see page 852. Note that package and class files should never
contain these commands: \makeatletter is not needed as this is always set up
when reading such files; and the use of \makeatother would prematurely stop
this behavior, causing all kinds of havoc.

Unfortunately, for historical reasons the distinction between these categories
is often blurred. For example, \hbox is an internal command that should prefer-
ably be used only in the LaTEX kernel, whereas \m@ne is the constant -1 and could
have been \MinusOne .

Nevertheless, this rule of thumb is still useful: if a command has @ in its name,
then it is not part of the supported LaTEX language—and its behavior may change
in future releases! Any such command should be used with great care. On the
other hand, mixed-case commands or those described in the LATEX Manual [104]
are guaranteed to be supported in future releases of LaTEX2ε .

A.1.2 Defining new commands

It is often advantageous to define new commands (e.g., for representing repeti-
tive input strings or recurring combinations of commands). A new command is
defined using the \newcommand command sequence, which can have one optional
argument, defining the number of arguments taken by the new command.

\newcommand{cmd}[narg]{command definition}

The number of arguments is in the range 0 ≤ narg ≤ 9. If your new command has
no arguments, then the [0] can be omitted. Inside the command definition part,
the arguments are referenced as #1 to #narg.

A-1-1

PostScript and its variant Encapsu-
lated PostScript are often used for in-
cluding graphics in LATEX documents . . .

\newcommand{\PS}{Post\-Script}
\newcommand{\EPS}{Encapsulated \PS}

\PS{} and its variant \EPS{} are often used for
including graphics in \LaTeX{} documents \ldots

844 A LATEX Overview for Preamble, Package, and Class Writers

The cmd argument always has to contain a single “token” (the name of the
command to be defined), so one can omit the braces around this argument. WhileOmitting argument

braces we do not recommend the use of this TEX syntax feature in other places, it is
commonly used with \newcommand and similar declarations. In fact, we have often
used this more concise syntax in this book:

\newcommand\PS {Post\-Script}
\newcommand\EPS{Encapsulated \PS}

Note, however, that this is only possible with arguments that are single tokens to
TEX (i.e., names starting with a backslash). Trying to do the same with, for instance,
environment or counter names will fail. For example,

\setcounter mycount {5}
\newenvironment myenv{...}{...}

is invalid LaTEX syntax.
If a command should work both in math mode and in text mode, special care

should be taken in its definition. One could, for example, use \mbox but this has
a number of drawbacks.

The series of x1, . . . , xn or x1, . . . , xn +
Gx1, . . . , xn

\newcommand\xvec{\mbox{x_1,\ldots,x_n}}

The series of \xvec\ or $\xvec+G_{\xvec}$ A-1-2

A better solution is offered by the LaTEX2ε command \ensuremath . As the
name implies, \ensuremath ensures that its argument is always typeset in math
mode by surrounding it, if necessary, with $ signs. Thus, the definition in the
above example should be replaced as follows:

The series of x1, . . . , xn or x1, . . . , xn +
Gx1,...,xn

\newcommand\xvec{\ensuremath{x_1,\ldots,x_n}}

The series of \xvec\ or $\xvec+G_{\xvec}$ A-1-3

This has the additional advantage of producing correctly sized symbols in sub-
scripts or superscripts, which is not the case if an \mbox is used in the definition.

Existing commands must be redefined with the command \renewcommand ,
which otherwise has the same syntax as \newcommand . Note that you can rede-
fine a command with a different number of arguments than the original one has.
Therefore, you could redefine the \xvec command of the above example, so that
it now takes one argument:

The series of x1, . . . , xn or x1, . . . , xn +
Gx1,...,xn

The series of x1, . . . , xn or x1, . . . , xk +
Gx1,...,xk

\newcommand\xvec{\ensuremath{x_1,\ldots,x_n}}

The series of \xvec\ or $\xvec+G_{\xvec}$ \par
\renewcommand\xvec[1]{\ensuremath{x_1,\ldots,x_{#1}}}
The series of \xvec{n} or $\xvec{k}+G_{\xvec{k}}$

A-1-4

When redefining a command (or an environment—see below), you must, of
course, be cautious. Commands that you are planning to redefine might be used in

A.1 Linking markup and formatting 845

the class or packages you have loaded (try redefining \uppercase in a document
that is formatted with the class book).

Commands with one optional argument

In LaTEX, you can also define commands so that their first argument is optional.
The syntax is

\newcommand{cmd}[narg][default]{command definition}

An example of such a command definition is shown below:

\newcommand\LB[1][3]{\linebreak[#1]}

The default for the optional argument is given between the second pair of square
brackets—the string “3” in this case. Inside the command definition, the optional
argument has the number #1, while the mandatory arguments (when present) are
addressed #2 to #narg. Thus, typing \LB is a short way of saying \linebreak[3] ,
while \LB[2] uses the actual specified value. That is, you will obtain the same
effect as when typing \linebreak[2] .

In the next example we define the command \lvec , which can be used inside
or outside of formulas (due to \ensuremath). Under the assumption that the up-
per subscript is usually n we made it optional, while the vector variable has to be
given explicitly.

A-1-5

For the series x1 + · · ·+ xn we have

x1 + · · ·+ xn =
n∑

k=1

Gy1+···+yk

\newcommand\lvec[2][n]
{\ensuremath{#2_1+\cdots + #2_{#1}}}

For the series \lvec{x} we have
\[\lvec{x} = \sum_{k=1}^{n} G_{\lvec[k]{y}} \]

In general, it is most practical to associate the case that occurs most often
with the form of the command without parameters and to represent the cases
that are used less often with longer command strings with an optional argument.

Argument restrictions

As explained above, user-defined commands can have one optional argument and
up to nine arguments in total. If defined with \newcommand , each of the arguments
can receive arbitrary text with a small number of restrictions:

• Braces must be properly balanced because otherwise LaTEX will be unable to
determine where the argument ends.

• The \verb command, the verbatim environment, and related commands or
environments are not supported within arguments.

846 A LATEX Overview for Preamble, Package, and Class Writers

• In an optional argument a closing bracket “]” is allowed only if hidden inside
braces (e.g., \item[{a]}] is allowed). Without the braces the first] would be
misinterpreted as the end of the optional argument.

The allowed content of arguments can be deliberately further restricted by usingDeliberately
restricting

argument contents
the \newcommand* variant of the declaration.

\newcommand*{cmd}[narg][default]{command definition}

The starred form works like \newcommand but defines a cmd that is not, in TEX
terms, long. This means that the newly defined command does not accept empty
lines or \par commands in its argument(s). This restriction can be useful for com-
mands whose arguments are not intended to contain whole paragraphs of text.

Commands that have been defined with the low-level TEX primitive \def do not accept�Relation
to TEX primitives \par in their argument. Thus, they are equivalent to being defined with \newcommand* .

The low-level TEX equivalent to \newcommand is \long\def .

Nesting new commands in each other

Sometimes it is necessary to nest command definitions, most commonly in the
combination of commands being defined as part of the definition of some new
environment. If the inner command (or environment) has arguments there is a
problem referring to them. Clearly we cannot use #1, #2, and so on, since this
notation already denotes the argument(s) of the outer command or environment.
The TEX solution is to double the hash marks; thus, ##1 would refer to the first
argument of the inner definition and in case of three nested definitions we would
need ####1.

To make this abstract concept a bit clearer, we define a command \DEFlvec
that (re)defines the \lvec command from Example A-1-5 on the preceding page
over and over again. As a first argument to \DEFlvec we pass the vector name that
is being hard-wired into the redefinition of \lvec . As the second argument we
pass the upper index that will become the default value for the optional argument
of \lvec . Thus, since the vector name is now part of the definition, \lvec has
only an optional argument.

Default: x1 + · · ·+ xn �= x1 + · · ·+ xk

Now: y1 + · · ·+ yi �= y1 + · · ·+ yk

\newcommand\lvec{}
\newcommand\DEFlvec[2]{\renewcommand\lvec[1][#2]%

{\ensuremath{#1_1+\cdots + #1_{##1}}}}
\DEFlvec{x}{n} % initial definition

Default: $\lvec \neq \lvec[k]$ \par
\DEFlvec{y}{i} Now: $\lvec \neq \lvec[k]$ A-1-6

The technique used in the above example is worth studying. Try to visualize
the actual definitions being carried out, for example, when the “initial definition”
is executed. Also note the need for a top-level definition for \lvec: the actual

A.1 Linking markup and formatting 847

definition is irrelevant but without it we would be unable to “redefine” it inside
\DEFlvec command.

Special declarations for use in packages and classes

Beside \newcommand and \renewcommand , which were originally provided as user
commands (e.g., for the document preamble), LaTEX offers some extra methods of
(re)defining commands that are intended for use in class and package files.

\providecommand*{cmd}[narg][default]{command definition}

This declaration works exactly like \newcommand and \newcommand* , except that
it is ignored if the command to be defined already exists. Such a feature is useful
in sources that may get used in several documents, such as bibliography entries.
For example, instead of using \newcommand in the @preamble of BIBTEX for logos
and other constructs used in the BIBTEX entries, you can use \providecommand to
avoid error messages if such commands are already defined in the document.

\DeclareRobustCommand*{cmd}[narg][default]{command definition}

This command takes the same arguments as \newcommand and \newcommand* but
declares a robust command, even if some code within the command definition is
fragile. You can use this command to define new robust commands, or to rede-
fine existing commands and make them robust. Information is placed into the
transcript file if cmd is redefined, so it does not produce an error in this case.

\CheckCommand*{cmd}[narg][default]{command definition}

This command takes the same arguments as \newcommand and \newcommand* but,
rather than defining cmd, checks that the current definition of cmd is exactly as
given by command definition. An error is raised if the definitions differ, or if one
accepts \par in its arguments and the other does not (i.e., was defined using a
starred form). This command is useful for checking the state of the system before
a package starts altering the definitions of commands. It allows you to check, in
particular, that no other package has redefined the same command.

A.1.3 Defining new environments

You can define and redefine an environment with the \newenvironment and
\renewenvironment commands, respectively. You must specify, in each case,
which actions should take place when you enter and leave an environment. For
an environment called “myenv” this is signaled by the commands \begin{myenv}
and \end{myenv} inside your document.

848 A LATEX Overview for Preamble, Package, and Class Writers

\newenvironment{name}[narg]{begdef }{enddef }
\renewenvironment{name}[narg]{begdef }{enddef }

As with the \newcommand declaration, the number of arguments is in the range
0 ≤ narg ≤ 9. In the case of no parameters, you can omit [0]. Inside the definition
part, begdef , these parameters are referenced as #1 to #narg. If arguments are
present, then they are defined when entering the environment by specifying them
on the command \begin{myenv}, as shown below:

\begin{myenv}{arg_1}...{arg_k}

When exiting an environment with the command \end{myenv} no parameters
�Arguments

not available in
end-tag

can be specified. Moreover, the parameters specified with the \begin{myenv} com-
mand when entering the environment (see above) are no longer available in the
definition part enddef , where you define the actions that should take place when
leaving the myenv environment. This means that it is your responsibility to store
information needed at the end of an environment (see the Citation environment
defined below).

Technically, a \newenvironment declaration for the environment myenv de-
fines a command \myenv that is called during the \begin{myenv} process-
ing and a command \endmyenv that is executed (besides other things) by
\end{myenv}. You may find that it is sometimes these commands rather than
the environment tags that are used inside packages and classes to define related
environments or commands. An example where this might be useful is given on
page 468. In other situations, it is not advisable to follow this practice without a
thorough understanding of LaTEX’s kernel implementation.

Our first example defines an environment of type “Abstract”, which is often
used to give a short summary of the contents of an article or a book. It starts
by typesetting a boldfaced and centered title, followed by the text of the abstract
inside a quote environment. The final \par command ensures that any following
text starts a new paragraph.

Abstract

This abstract explains the approach
used to solve the problems at hand.

Some text following the abstract. Some
text following the abstract. And some more.

\newenvironment{Abstract}
{\begin{center}\normalfont\bfseries Abstract%
\end{center}\begin{quote}}{\end{quote}\par}

\begin{Abstract}
This abstract explains the approach used
to solve the problems at hand.

\end{Abstract}
Some text following the abstract. Some text
following the abstract. And some more. A-1-7

Our second example is somewhat more complex. It shows you how a
Citation environment can be defined for quoting citations by famous people.

A.1 Linking markup and formatting 849

The LaTEX code shown below defines the counter Citctr, for numbering the
citations, and a box \Citname , for storing the name of the person whom we are cit-
ing so that we can typeset it at the end of the citation, when the \end{Citation}
command is encountered (remember that the value of the argument specified on
the \begin{Citation} command is no longer available at that stage). When enter-
ing the environment, we save the value of the argument, typeset in italic, in the box
\Citname and increment our counter. We then start a description environment.
This environment will have a single \item containing the counter value preceded
by the word “Citation”. When exiting the Citation environment, we twice issue
a stretchable horizontal space separated by an allowed—but discouraged—line
break. It is important that this space survives if a line break happens before or
after it, so \hspace* is used. We also throw in a \quad of space that ensures a
proper separation between the citation and the name if they appear on the same
line, but will vanish if a break is taken between them. Then we typeset the con-
tents of the box \Citname before leaving the description environment. This will
put the author’s name flush right and the last line of the citation flush left, regard-
less of whether they end up on separate lines, as you can see in the next example.
Without this adjustment the text of the citation would always be fully justified,
often with a lot of white space between the words. For a discussion of the counter
and box commands used in this example, see Sections A.1.4 and A.2.

A-1-8

Citation 1 Man is the measure of all things.
Protagoras

This is some regular text in between two Citation
environments.

Citation 2 On mourra seul. Blaise Pascal

More regular text . . .

Citation 3 Necessity is the plea for every infringe-
ment of human freedom.

William Pitt

\newcounter{Citctr} \newsavebox{\Citname}
\newenvironment{Citation}[1]

{\sbox\Citname{\emph{#1}}%
\stepcounter{Citctr}\begin{description}

\item[Citation \arabic{Citctr}]}
{\hspace*{\fill}\nolinebreak[1]%
\quad\hspace*{\fill}%

%% \finalhyphendemerits=0 %% see text below
\usebox{\Citname}\end{description}}

\begin{Citation}{Protagoras} Man is the
measure of all things. \end{Citation}

This is some regular text in between two
Citation environments.
\begin{Citation}{Blaise Pascal}
On mourra seul. \end{Citation}

More regular text \ldots
\begin{Citation}{William Pitt} Necessity
is the plea for every infringement of
human freedom. \end{Citation}

Surprisingly, the name in the last citation is typeset on a line of its own, even
though there is clearly enough space to place it alongside with the citation. The
reason is that TEX’s paragraph-breaking algorithm prefers solutions that do not
have the second-to-last line ending in a hyphen and therefore selects a three-line
paragraph breaking at the \nolinebreak .

850 A LATEX Overview for Preamble, Package, and Class Writers

There are two ways to correct this behavior. First, we can discourage breaking

�A hyphen on
the second-to-last
line of a paragraph

at this point by using an optional argument of [3] instead of [1], which would
work in that particular example but may not work always. Second, we can tell TEX’s
algorithm not to take that hyphen into account by setting the low-level TEX integer
parameter \finalhyphendemerits to zero. This requires a somewhat unusual
syntax, as shown in the example code above (though commented out there to
display the behavior without it).

As with \newcommand one can make the first argument of an environment
optional:

\newenvironment{name}[narg][default]{begdef }{enddef }

The default value for the optional argument is given between the second pair of
square brackets. Inside the begdef part, which is executed when the environment
name is entered, the optional argument can be accessed with #1. The mandatory
arguments (when present) are addressed as #2 to #narg. When the name environ-
ment is used without an optional parameter, #1 will contain the string specified
as default.

As an example, we reimplement the altDescription environment from Ex-
ample 3-3-27 on page 149, this time with an optional argument instead of a manda-
tory argument specifying the width of the indentation. Another difference from
the earlier definition is that the list labels will be placed flush right if possible
(by placing \hfil at the left in \makelabel). When used without an optional ar-
gument the indentation will be 1em (i.e., a \quad). By specifying the widest entry
as an optional argument, you will make sure that the description parts of all your
entries line up nicely.

The example first shows the (default) behavior of the altDescription list,
then displays what it looks like when using the optional argument.

First This is a short term with text that
wraps.

Long term This is a long term.

Even longer term A very long term.

First This is a short term
with text that wraps.

Long term This is a long term.

Even longer term A very long term.

\usepackage{calc}
\newenvironment{altDescription}[1][\quad]%
{\begin{list}{}{%
\renewcommand\makelabel[1]{\hfil\textsf{##1}}%
\settowidth\labelwidth{\makelabel{#1}}%
\setlength\leftmargin{\labelwidth+\labelsep}}}

{\end{list}}

\begin{altDescription}
\item[First] This is a short term with text that wraps.
\item[Long term] This is a long term.
\item[Even longer term] A very long term.
\end{altDescription}
\begin{altDescription}[Even longer term]
\item[First] This is a short term with text that wraps.
\item[Long term] This is a long term.
\item[Even longer term] A very long term.
\end{altDescription} A-1-9

A.1 Linking markup and formatting 851

A.1.4 Defining and changing counters

Every number internally generated by LaTEX has a counter (register) associated with
it. The name of the counter is usually identical to the name of the environment or
the command that generates the number except that it does not start with \. The
following is the list of all counters used in LaTEX’s standard document classes:

part paragraph figure enumi
chapter subparagraph table enumii
section page footnote enumiii
subsection equation mpfootnote enumiv
subsubsection

An environment declared by \newtheorem can also have a counter with the
same name associated with it, unless the optional argument indicates that it is to
be numbered together with another environment.

The value of a counter is a single integer. Several counters can be combined
into a number, as is usually the case for numbering section headings. For example,
in the book or report classes, 7.4.5 identifies the fifth subsection of the fourth
section in the seventh chapter.

Below we describe all the basic LaTEX commands that define counters and mod-
ify or display their values. These commands are much more powerful if used in
conjunction with the calc package, which is discussed in Section A.3.1.

\newcounter{newctr}[oldctr]

This command globally defines a new counter, newctr , and initializes it to zero. If
a counter with the name newctr is already defined, an error message is printed.
When you specify the name of another counter as the optional argument, oldctr ,
then the newly defined newctr is reset when the counter oldctr is incremented with
the \stepcounter or \refstepcounter command. It also defines the command
\thenewctr to expand to \arabic{newctr}.

\@addtoreset{reset-ctr}{ctr} \@removefromreset{reset-ctr}{ctr}

The operation that defines that one counter is reset whenever another counter is
stepped is also available as the kernel command \@addtoreset .1 Unfortunately,

�
Warning:

\@removefromreset
needs a package!

the opposite declaration is not available in the kernel, but only when loading the
package remreset. If this small package is loaded, then counters can be unraveled
if necessary. For example, the report class defines that the footnote counter is to
be reset whenever a new chapter starts. If you want your footnotes nevertheless

1See also the \numberwithin declaration provided by the amsmath package. It is discussed in
Section 8.2.14 on page 485.

852 A LATEX Overview for Preamble, Package, and Class Writers

to be numbered sequentially throughout a document, then specifying

\usepackage{remreset}
\makeatletter \@removefromreset{footnote}{chapter} \makeatother

in the preamble, or the equivalent code1 in a package or class, will do the job.

\setcounter{ctr}{val} \addtocounter{ctr}{val}

With \setcounter the value of counter ctr is globally set equal to the value val.
With \addtocounter it is globally incremented by val.

\stepcounter{ctr} \refstepcounter{ctr}

Both commands globally increment the counter ctr and reset all subsidiary
counters—that is, those declared with the optional argument oldctr on the
\newcounter command or with the first argument of \@addtoreset . The
\refstepcounter command additionally defines the current \ref value to be the
text generated by the command \thectr . Note that whereas stepping a counter is
a global operation, setting the current \ref value is done locally and thus is only
valid inside the current group. As a result the next example does not produce
the desired result but instead picks up the section number. The correct solution
would be to move \refstepcounter before the \textbf command.

5 A Failure

Exercise 5.a: A test.

Exercise 5.b: Another test.

Referencing exercises: 5 and 5.

\newcounter{ex} \renewcommand\theex{\thesection.\alph{ex}}
\newenvironment{EX}{\begin{flushleft}%

\textbf{\refstepcounter{ex}Exercise~\theex:}}
{\end{flushleft}}

\setcounter{section}{4} % for testing

\section{A Failure}
\begin{EX} \label{A} A test. \end{EX}
\begin{EX} \label{B} Another test. \end{EX}
Referencing exercises: \ref{A} and \ref{B}. A-1-10

\value{ctr} \arabic{ctr} \roman{ctr} \Roman{ctr}
\alph{ctr} \Alph{ctr} \fnsymbol{ctr}

The \value command produces the current value of a counter to be used in places
where LaTEX expects to see a number, such as in the val argument of the com-
mand \setcounter or \addtocounter or when comparing numbers using the
\ifthenelse command from the ifthen package. However, the command cannot
be used to typeset the value of the counter! For that purpose a set of presentation
commands are available, all of which take a counter name as argument.

1In that case use \RequirePackage and omit \makeatletter and \makeatother !

A.1 Linking markup and formatting 853

With \arabic the counter value is represented as an Arabic numeral. With
\roman and \Roman lowercase and uppercase Roman numerals are produced, re-
spectively.

The remaining commands can be used only if the counter value is within a

�Counter
presentations

with restricted
ranges

certain range. The \alph command displays the value as a lowercase letter: a, b,
c, . . . , z. Thus, the value should lie in the range 1, . . . , 26; otherwise, an error is
signaled. The \Alph command is similar but produces uppercase letters. Finally,
\fnsymbol represents the counter value as a traditional footnote symbol (e.g., ∗,
†). In that case the value must not be greater than 9, unless an extension package,
like footmisc, is used. The next example shows all of these commands in action.

A-1-11

8, viii, VIII, h, H, ††
Anno Domini MCMXCIV

\newcounter{exa}\setcounter{exa}{8}

\arabic{exa}, \roman{exa}, \Roman{exa}, \alph{exa},
\Alph{exa}, \fnsymbol{exa} \par
\setcounter{exa}{1994} Anno Domini \scshape{\roman{exa}}

\the〈ctr〉
A shorthand to produce the default visual representation for a counter ctr is pro-
vided by the command \the〈ctr〉 (e.g., \thesection for the section counter).
As mentioned earlier this command is initialized by the \newcounter declaration
to produce \arabic{ctr}. However, in LaTEX such a visual representation often
involves more than a single number. For example, with sectioning counters one
usually displays the value of the current section as well as the value of the current
subsection, and so on. For this reason \the〈ctr〉 is typically (re)defined to pro-
duce a more complex representation. This practice becomes even more important
when you consider that \refstepcounter not only increments a certain counter
and resets lower-level counters but also defines the “current” label (as picked up
by \label) to be the result of \the〈ctr〉 for the counter being stepped.

As an example, inside the standard article class, we find definitions for sec-
tioning counters equivalent to the following:

\newcounter{part} \newcounter{section}
\newcounter{subsection}[section] \newcounter{subsubsection}[subsection]
\renewcommand\thepart {\Roman{part}}
\renewcommand\thesection {\arabic{section}}
\renewcommand\thesubsection {\thesection.\arabic{subsection}}
\renewcommand\thesubsubsection{\thesubsection.\arabic{subsubsection}}

You see how lower-level counters are reset when upper-level counters are stepped,
as well as how the representation of the counters (the \the... commands) are
constructed from the current counter and the counters at a higher level. Note how
the part counter does not influence any of the lower levels.

As another example, we look at Table 3.6 on page 130, which shows the struc-
ture of the enumeration list counters. In fact, these counters are defined inside the

854 A LATEX Overview for Preamble, Package, and Class Writers

file latex.ltx, which contains the kernel code for LaTEX. Only the representation,
prefix, and label field commands are defined in the standard class files as follows:

\renewcommand\theenumi {\arabic{enumi}} \renewcommand\theenumii{\alph{enumii}}
\renewcommand\theenumiii{\roman{enumiii}} \renewcommand\theenumiv{\Alph{enumiv}}

\renewcommand\p@enumii{\theenumi}
\renewcommand\p@enumiii{\theenumi(\theenumii)} \renewcommand\p@enumiv{\p@enumiii\theenumiii}

\newcommand\labelenumi {\theenumi.} \newcommand\labelenumii{(\theenumii)}
\newcommand\labelenumiii{\theenumiii.} \newcommand\labelenumiv{\theenumiv.}

Finally, we show how the standard classes handle the equation counter. Like
the enumeration counters, this counter is declared inside latex.ltx. In the article
class the counter is never reset:

\renewcommand\theequation{\arabic{equation}}

In the report and book classes the equation number is reset for each chapter with
the \@addtoreset command:

\@addtoreset{equation}{chapter}
\renewcommand\theequation{\thechapter.\arabic{equation}}

Also, the representation differs in both cases.1

A.1.5 Defining and changing space parameters

In (LA)TEX two kinds of space parameters (lengths) exist: “rigid” lengths (called
<dimen> in The TEXbook [82]), which are fixed, and “rubber” lengths (called
<skip> in The TEXbook), which have a natural length and a degree of positive
and negative elasticity. New lengths in LaTEX are allocated as type <skip>, so that
you always have the choice of initializing them as rigid or rubber lengths (by spec-
ifying plus and minus parts). On the other hand, all standard lengths in LaTEX are
of type rigid, unless specifically declared in Appendix C of the LATEX Manual to be
rubber. Here we discuss the commands provided by LaTEX for dealing with lengths.

\newlength{cmd}

The declaration \newlength allocates a new (rubber) length register and asso-
ciates the command name cmd with it. If a command cmd already exists, you will
get an error message. The new length is preset to zero. Just like with \newcommand
you will find that the braces around cmd are often omitted in actual code since
the argument must consist of a single command name.

1The actual definition is somewhat more complex, since some low-level code is used to suppress
the chapter number if it is zero.

A.1 Linking markup and formatting 855

sp Scaled point (65536sp = 1pt) TEX’s smallest unit

pt Point = 1
72.27 in = 0.351mm

bp Big point = 1
72 in = 0.353mm, also known as PostScript point

dd Didot point = 1
72 of a French inch = 0.376mm

mm Millimeter = 2.845pt
pc Pica = 12pt = 4.218mm
cc Cicero = 12dd = 4.531mm
cm Centimeter = 10mm = 2.371pc
in Inch = 25.4mm = 72.27pt = 6.022pc
ex Height of a small “x” in the current font (approximately)

em Width of capital “M” in current font (approximately)

mu Math unit (18mu = 1em) for positioning in math mode

Table A.1: LaTEX’s units of length

\setlength{cmd}{length} \addtolength{cmd}{length}

This sets the value of the length command cmd equal to the length length or, in
case of \addtolength , adds the specified amount to the existing value. In the
examples below, the TEX command \the is used to typeset the actual contents of
the length variable. It requires the register command name without braces!

A-1-12

Mylen = 28.45274pt
Mylen = 28.45274pt plus 4.0pt minus 2.0pt

\newlength\Mylen

\setlength \Mylen{10mm} Mylen = \the\Mylen
\addtolength\Mylen{0pt plus 4pt minus 2pt}
\par Mylen = \the\Mylen

Lengths can be specified in various units, as shown in Table A.1. Notice the
difference between the typographic point (pt), which is normally used in TEX, and
the (big) point used by PostScript, for example. Thus, when reserving space for
an EPS picture you need to specify the bounding box dimension in bp to get the
correct space.

\settowidth{cmd}{text}
\settoheight{cmd}{text} \settodepth{cmd}{text}

Instead of specifying a length value explicitly, three commands are available that
allow you to measure a given text and assign the result. With \settowidth the
value of the length command cmd is set equal to the natural width of the typeset
version of text. This command is very useful for defining lengths that vary with
the string contents or the type size. The other two commands work similarly but

856 A LATEX Overview for Preamble, Package, and Class Writers

\hspace{len} Horizontal space of width len that can be a rigid or a rubber length
\enspace Horizontal space equal to half a quad
\quad Horizontal space equal to the em value of the font
\qquad Twice a \quad
\hfill Horizontal rubber space that can stretch between 0 and ∞
\hrulefill Similar to \hfill , but draws a solid horizontal line
\dotfill Similar to \hfill , but draws a dotted line

Table A.2: Predefined horizontal spaces

measure the height and the depth rather than the width of the typeset text.

width = 48.03pt
height = 6.7799pt
depth = 2.16492pt
Use larger font and recalculate:
width = 57.63602pt

\newlength\Mylen \raggedright% to make example nicer

\settowidth \Mylen{Typography} width = \the\Mylen \\
\settoheight\Mylen{Typography} height = \the\Mylen \\
\settodepth \Mylen{Typography} depth = \the\Mylen \par
Use larger font and recalculate: \\
\settowidth\Mylen{\large Typography} width = \the\Mylen A-1-13

\fill \stretch{dec-num}

These two rubber lengths are intended to be used in the argument of \vspace
and similar commands. The \fill rubber length is preset with a natural length
of zero but can stretch to any positive value. Do not change its value! It is used in
various places in the kernel and a change would produce strange effects.

An often more useful rubber length is provided by the \stretch command—
in fact, \fill is equivalent to \stretch{1}. More generally, \stretch{dec-num}
has a stretchability of dec-num times \fill . It can be used to fine-tune the posi-
tioning of text horizontally or vertically—for instance, to provide spaces that have
a certain relation to each other. Example A-1-15 demonstrates its application.

Horizontal space

Table A.2 shows horizontal space commands known to LaTEX. A flexible horizontal
space of any desired width is produced by the \hspace command. The command
\hspace* is the same as \hspace , but the space is never removed—not even at a
line boundary.

A space in front of or following an \hspace or \hspace* command is signifi-
cant, as the following example shows:

This is a 0.5 in wide space.
This is a 0.5 in wide space.
This is a 0.5 in wide space.

\par This is a\hspace{0.5in}0.5~in wide space.
\par This is a \hspace{0.5in}0.5~in wide space.
\par This is a \hspace{0.5in} 0.5~in wide space. A-1-14

The next example shows how rubber lengths can be used to fine-tune the
positioning of information on a line. Note that the \hfill command is, in fact,

A.1 Linking markup and formatting 857

\vspace{len} Vertical space of height len that can be a rigid or a rubber length
\smallskip Vertical skip of \smallskipamount (default about one quarter of \baselineskip)
\medskip Vertical skip of \medskipamount (default about one half of \baselineskip)
\bigskip Vertical skip of \bigskipamount (default about one \baselineskip)
\vfill Vertical rubber length that can stretch between 0 and ∞

Table A.3: Predefined vertical spaces

an abbreviation for \hspace{\fill}. To save typing, we also defined a command
with an optional argument, \HS , which behaves like \hfill when used without an
argument, but can be made less or more flexible than that command by specifying
the stretchability (a value of 1 has the same effect as \hfill).

A-1-15

left right

left 2
5 right

left middle right
left middle right
left . right
left . right
left . right
left right

\newcommand{\HS}[1][1.]{\hspace{\stretch{#1}}}
\begin{center}
left \hfill right\\
left \HS[2]\fbox{$\frac{2}{5}$}\HS[5] right\\
left \HS middle \hfill right\\
left \hrulefill\ middle \hrulefill\ right\\
left \dotfill\ right\\
left \dotfill\ \HS[.5] \dotfill\ right\\
left \dotfill\ \HS \dotfill\ right\\
left \dotfill\ \HS[2.] \dotfill\ right
\end{center}

Vertical space

A vertical space is produced with the \vspace command, which works similarly to
\hspace . In particular, a \vspace* command will generate vertical space that will
never be eliminated, even when it falls on a page break where a \vspace command
will be ignored at this point. Table A.3 shows vertical space commands known to
LaTEX that are common to all standard classes.

LaTEX users are often confused about the behavior of the \vspace command.
When used inside a paragraph, the vertical space is added after the end of the line
with \vspace; between paragraphs it behaves as you would expect.

A-1-16

The use of a \vspace command inside

a paragraph is considered somewhat odd. It
could perhaps be used with a negative space
value to get rid of redundant space.

Between paragraphs, adjusting the spac-
ing is somewhat more useful, and it allows
control of the white space before and after dis-
played material.

The \vspace{3mm}use of a \verb!\vspace! command
inside a paragraph is considered somewhat odd.
It could perhaps be used with a negative space
value to get rid of redundant space.

\vspace{\baselineskip}

Between paragraphs, adjusting the spacing is
somewhat more useful, and it allows control
of the white space before and after displayed
material.

858 A LATEX Overview for Preamble, Package, and Class Writers

Stretchable space as introduced on page 856 can also be used for vertical ma-
terial. The \vfill command is, in fact, an abbreviation for a blank line followed
by \vspace{\fill}. More generally, you can use the \stretch command in com-
bination with \vspace to control the layout of a complete page. This could be
useful for designing a title page: if the title should be placed one third of the way
down the page, one simply has to place \vspace*{\stretch{1}} before it and
\vspace*{\stretch{2}} after it.

Geoffrey Chaucer
The Canterbury Tales

LONDON 1400

\newcommand\HRule{\noindent\rule{\linewidth}{1.5pt}}

\begin{titlepage}
\vspace*{\stretch{1}}
\HRule
\begin{flushright}

\LARGE Geoffrey Chaucer \\
The Canterbury Tales

\end{flushright}
\HRule
\vspace*{\stretch{2}}
\begin{center}

\textsc{London 1400}
\end{center}

\end{titlepage}
A-1-17

\addvspace{space}

While LaTEX’s user command \vspace unconditionally adds a vertical space (which is re-

�Use with
care—if at all

moved only at page boundaries, while its starred form even suppresses this action), there
exists another command for adding vertical space that is often used in the kernel and
in some package files. The \addvspace command has somewhat different semantics, and
although it appears to be a user-level command judging from its name, in fact it is not.

In contrast to \vspace the command \addvspace is allowed only in vertical mode
(i.e., between paragraphs). If used in horizontal mode, it issues the famous “Something’s
wrong–perhaps a missing \item” error, which most LaTEX users know and love. Most of
the time this error has nothing to do with a missing or misplaced \item but simply signals
a misplaced \addvspace command. But it shows some of the history of this command:
originally, it was developed and used solely for spacing items in list environments.

The other important semantic difference between \vspace and \addvspace is that
the latter adds a space whose size depends on any directly preceding space. The precise
rules are inherited from LaTEX 2.09 and show some strange discontinuities that nobody
these days seems to be able to explain fully, though for backward compatibility the com-
mand is retained in this form. If s is the space to be added by \addvspace and � is the

A.1 Linking markup and formatting 859

size of the vertical space (if any) before the current point, then the following rules apply:

If s < 0pt < � do backup by s
elseif � = 0pt do add an additional space of s

else make a space of max(�, s) out of the two

If we ignore for the moment the special cases in the first two lines of the rules, then the
idea behind \addvspace can be described as follows: if we have two vertically oriented
constructs, such as a list and a heading, and both want to surround themselves with some
vertical spacing before and after, it is probably not a good idea if both such spaces are
applied if the objects directly follow each other. In that case using the maximum of both
spaces is usually a better solution. This is why lists, headings, and other typeset elements
use \addvspace rather than \vspace .

This has some rather surprising effects. If you have two such display objects following
each other, then only the maximum of the space surrounding them is used. But if you �Surprising space

size changestry to enlarge that space slightly, such as by placing \vspace{4pt} between them, then
suddenly the space will be far larger. This result occurs because in a sequence like

\addvspace{10pt} \vspace{4pt} \addvspace{8pt}

the second \addvspace will be unable to see the first and will add all of its space (with the
result that the total space is 22pt); without the \vspace in the middle you would get 10pt
total. The \vspace does not interact with the following \addvspace because it actually
generates a space of 4pt followed by a space of 0pt, so that the second rule applies.

If you notice that your space got too large and you reduce your correction to, say,
\vspace{2pt}, nothing will change substantially (you still get 20pt). Even more surpris-
ingly, if you try to make the original space smaller by using, say, \vspace{-3pt}, you will
end up with 15pt total space—still more than before.

To actually get a space of 7pt in that place, you would need to back up by 11pt.
Unfortunately, there is no way to determine the size of the necessary space other than by
experimenting or looking into the definitions of the objects above and below, to find out
what \addvspace values are used at a given point.

The same problem arises if some other invisible object separates two consecutive
\addvspace commands. For example, a color-changing command or a \label will effec-
tively hide a previous \addvspace , with the result that suddenly not the maximum, but
the sum of both spaces, appears.

\addpenalty{penalty}

Although \addpenalty is not a spacing command it is described here because it is in-
tended to work together with \addvspace . A penalty is TEX’s way of assigning a “badness”
to break points. A high penalty means that this is a bad place to break, while a negative
penalty indicates to TEX that this is a rather good place to start a new line or a new page.
Details of this mechanism can be found in Chapters 14 and 15 of [82].

The \addpenalty command requires a TEX penalty value as an argument (useful val-
ues are between −10000 and 10000). For example, \@startsection discussed in Chap-
ter 2 uses \addpenalty to make the space before a heading become a good place to break
(default value -300). If \addpenalty and \addvspace are mixed, then this has two effects:

• LaTEX will still use the maximum of the spaces even if \addpenalty appears between
two \addvspace commands.

860 A LATEX Overview for Preamble, Package, and Class Writers

• LaTEX moves the potential break “visually” to the beginning of the white space, even if
there is an \addvspace before the \addpenalty .

The second feature is important to avoid white space remaining at the bottom of pages.
See page 937 for a discussion of how this is achieved.

A.2 Page markup—Boxes and rules

The theory of composing pages out of boxes lies at the very heart of TEX, and
several LaTEX constructs are available to take advantage of this method of compo-
sition. A box is a rectangular object with a height, depth, and width. Its contents
can be arbitrarily complex, involving other boxes, characters, spaces, and so forth.
Once built it is used by LaTEX as a single, fixed object that behaves much like a (po-
tentially huge) character. A box cannot be split and broken across lines or pages.
Boxes can be moved up, down, left, and right. LaTEX has three types of boxes:

LR (left–right) The contents of this box are typeset from left to right. Line break-
ing is impossible and commands like \\ and \newline are ignored or produce
error messages.

Par (paragraphs) This kind of box can contain several lines, which will be typeset
in paragraph mode just like normal text. Paragraphs are put one on top of the
other. Their widths are controlled by a user-specified value.

Rule This (thin or thick) line is often used to separate various logical elements
on the output page, such as table rows and columns, and running titles and
the main text.

LaTEX’s boxes all start a paragraph (just like characters) if used in vertical mode,
while TEX’s primitive box commands (e.g., \hbox) behave differently depending
on where they are used. There are a number of reasons to avoid using the TEX
primitives directly; see the discussion in Section A.2.5. The situation with rules is
slightly different; we therefore will discuss TEX’s primitive rule commands below.

A.2.1 LR boxes

\mbox{text} \fbox{text}
\makebox[width][pos]{text} \framebox[width][pos]{text}

The first line considers the text inside the curly braces as a box, without or with
a frame drawn around it. For example, \fbox{some words} gives some words .
The two commands on the second line are a generalization of these commands.
They allow the user to specify the width of the box and the positioning of the text
inside.

some words
some words

\makebox[5cm]{some words} \par
\framebox[5cm][r]{some words} A-2-1

A.2 Page markup—Boxes and rules 861

In addition to centering the text with the positional argument [c] (the default),
you can position the text flush left ([l]) or flush right ([r]). There is also an [s]
specifier that will stretch your text from the left margin to the right margin of
the box provided it contains some stretchable space (e.g., some \hspace or the
predefined spaces given in Table A.2 on page 856). Interword spaces are also
stretchable (and shrinkable to a certain extent), as explained on page 428. The
appearance of frameboxes can be controlled by two style parameters:

\fboxrule The width of the lines for the box produced with the command \fbox
or \framebox . The default value in all standard classes is 0.4pt.

\fboxsep The space left between the edge of the box and its contents by \fbox
or \framebox . The default value in all standard classes is 3pt.

Any changes to these parameters obey the normal scoping rules and affect all
frameboxes within the scope. The change to \fboxsep in the next example, for
instance, applies only to the second box.

A-2-2
Boxed Text Boxed Text Boxed Text

\fbox{Boxed Text} \hfill
\setlength\fboxrule{2pt}%
{\setlength\fboxsep{2mm}\fbox{Boxed Text}}
\hfill \fbox{Boxed Text}

The box commands with arguments for specifying the dimensions of the
box allow you to make use of four special length parameters: \width , \height ,
\depth , and \totalheight . They specify the natural size of the text, where
\totalheight is the sum of \height and \depth .

A-2-3

A few words of advice

A few words of advice

A few words of advice

\usepackage{calc}

\framebox{ A few words of advice } \par
\framebox[\width + 8mm][s]{ A few words of advice }
\par \framebox[1.5\width]{ A few words of advice }

Zero-width boxes are very handy if you want to put a marker on the page (e.g.,
for placement of figures) or to allow text to be put into the margins. The principle
of operation is shown below, where a zero-width box is used to tag text, without
influencing the centering. Note that the optional parameter [l] ([r]) makes the
material stick out to the right (left).

A-2-4

A sentence.123

Some more text in the middle.
321A sentence.

\centering
A sentence.\makebox[0pt][l]{123}\\
Some more text in the middle. \\
\makebox[0cm][r]{321}A sentence.

⇐⇒As seen in the margin of the current line, boxes with a vanishing width can be used
to make text stick out into the margin. This effect was produced by beginning the

862 A LATEX Overview for Preamble, Package, and Class Writers

current paragraph in the following way:

\noindent\makebox[0cm][r]{\Longleftrightarrow}%
As seen in the margin ...

An interesting possibility is to raise or lower boxes. This can be achieved by
the very powerful \raisebox command, which has two mandatory arguments and
two optional arguments:

\raisebox{lift}[height][depth]{contents}

To raise or lower the box produced from the contents, one specifies the amount
of lift as a dimension, with negative values lowering the box. As with other boxes,
one can make use of the special commands \height , \depth , \totalheight , or
even \width to refer to the natural dimensions of the box produced from contents.
This is used in the next example to raise the word “upward” so that the descender
of the “p” aligns with the baseline and to lower the word “downward” so that it is
placed completely below the baseline.

x111x upward x222x
downward

x333x x111x \raisebox{\depth}{upward} x222x
\raisebox{-\height}{downward} x333x A-2-5

Normally, LaTEX takes the added height and depth into account when calculat-
ing the distance between the lines, so that a raised or lowered box can result in
spreading lines apart. This can be manipulated by specifying a height and a depth
that the user wants LaTEX to actually use when placing its material on the page.
The second pair of lines below shows that LaTEX does not realize that text has been
moved upward and downward; thus, it composes the lines as though all the text
was on the baseline.

x111x downward x222x

x333x upward x444x

x111x downward x222x
x333x upward x444x

\begin{flushleft}
x111x \raisebox{-1ex}{downward} x222x \\
x333x \raisebox{1ex}{upward} x444x \\[4mm]
x111x \raisebox{-1ex}[0cm][0cm]{downward} x222x\\
x333x \raisebox{1ex}[0cm]{upward} x444x
\end{flushleft} A-2-6

A somewhat more useful application is discussed in Section 5.7 on page 272,
which addresses the subject of columns spanning multiple rows in tabular mate-
rial.

A.2.2 Paragraph boxes

Paragraph boxes are constructed using the \parbox command or minipage envi-
ronment. The text material is typeset in paragraph mode inside a box of width

A.2 Page markup—Boxes and rules 863

width. The vertical positioning of the box with respect to the text baseline is con-
trolled by the one-letter optional parameter pos ([c], [t], or [b]).

\parbox[pos]{width}{text} \begin{minipage}[pos]{width}
text

\end{minipage}

The center position is the default, as shown in the next example. Note that LaTEX
might produce wide interword spaces if justification is requested (default) and the
measure is incredibly small.

A-2-7

This is the con-
tents of the left-
most parbox.

CURRENT LINE

This is the right-
most parbox. Note
that the typeset text
looks sloppy be-
cause LATEX cannot
nicely balance the
material in these
narrow columns.

\parbox{.3\linewidth}{This is
the contents of the left-most
parbox.}

\hfill CURRENT LINE \hfill
\parbox{.3\linewidth}{This is
the right-most parbox.
Note that the typeset text
looks sloppy because \LaTeX{}
cannot nicely balance the
material in these narrow
columns.}

The minipage environment is very useful for the placement of material on
the page. In effect, it is a complete miniversion of a page and can contain its
own footnotes, paragraphs, and array, tabular, multicols, and other environ-
ments. Note, however, that it cannot contain floats or \marginpar commands,
but it can appear inside figure or table environments, where it is often used for
constructing a pleasing layout of the material inside the float. A simple example
of a minipage environment at work is given below. The baseline is shown with
an en dash generated by the command \HR . Note the use of the pos placement
parameter ([c], [t], or [b]) on the three minipage environments.

A-2-8

A A A
A A A
A A A
A A A
A A A

B B B B
B B B B
B B B B
B B B B
B B B B
B B B B

C C C C
C C C

\newcommand\HR{\rule{.5em}{0.4pt}}

\HR
\begin{minipage}[b]{12mm}

A A A A A A A A A A A A A A A
\end{minipage}\HR
\begin{minipage}[c]{12mm}

B B
\end{minipage}\HR
\begin{minipage}[t]{12mm}

C C C C C C C
\end{minipage}\HR

If you desire more complicated alignments, then you might have to stack the
different minipage environments. Compare the behavior of the next examples.

864 A LATEX Overview for Preamble, Package, and Class Writers

Below, we try to align the two leftmost blocks at their top and align the resulting
block at the bottom with a third block by adding another level of minipages.

A A A
A A A
A A A
A A A
A A A

xx B B B B
B B B B
B B B B
B B B B
B B B B
B B B B

C C C C
C C C

\newcommand\HR{\rule{.5em}{0.4pt}}

\HR\begin{minipage}[b]{30mm}
\begin{minipage}[t]{12mm}

A A A A A A A A A A A A A A A
\end{minipage} xx \begin{minipage}[t]{12mm}

B B
\end{minipage}

\end{minipage}\HR
\begin{minipage}[b]{12mm} C C C C C C C \end{minipage}\HR A-2-9

However, we do not get the expected result. Instead, the two top-aligned
minipages inside the bottom-aligned minipage form a paragraph with a single
line (the minipages are considered to be large units in the line containing xx).
Thus, the bottom line of the outer minipage is still the one containing the xx
characters. To prevent this we need to add some invisible space after the para-
graph, as shown next.

A A A
A A A
A A A
A A A
A A A

xx B B B B
B B B B
B B B B
B B B B
B B B B
B B B B

C C C C
C C C

\newcommand\HR{\rule{.5em}{0.4pt}}

\HR\begin{minipage}[b]{30mm}
\begin{minipage}[t]{12mm}

A A A A A A A A A A A A A A A
\end{minipage} xx \begin{minipage}[t]{12mm}

B B
\end{minipage}
\par\vspace{0mm}

\end{minipage}\HR
\begin{minipage}[b]{12mm} C C C C C C C \end{minipage}\HR A-2-10

In the case below, the two rightmost environments are aligned at their top
inside another enclosing environment, which is aligned at its bottom with the first
one. If you compare it with the previous example, then you see that you obtain a
quite different result, although the sequence of alignment parameters is the same.
Only the stacking order of the minipage environments is different.

A A A
A A A
A A A
A A A
A A A

B B B B
B B B B
B B B B
B B B B
B B B B
B B B B

xx C C C C
C C C

\newcommand\HR{\rule{.5em}{0.4pt}}

\HR\begin{minipage}[b]{12mm}
A A A A A A A A A A A A A A A \end{minipage}\HR

\begin{minipage}[b]{30mm} \begin{minipage}[t]{12mm}
B B

\end{minipage} xx
\begin{minipage}[t]{12mm} C C C C C C C \end{minipage}
\par\vspace{0mm}

\end{minipage}\HR A-2-11

A.2 Page markup—Boxes and rules 865

Again, we had to add some vertical space to achieve alignment. This does
not, however, always produce the desired result. If, for instance, a letter with a
descender appears in the last line of the stacked minipage, as in the example
below, then the alignment of the baselines is not perfect.

A-2-12

A A A
A A A
A A A
A A A
A A A

B B B B
B B B B
B B B B
B B B B
B B B B
B B B B
gg jj

xx C C C C
C C C

\newcommand\HR{\rule{.5em}{0.4pt}}

\HR\begin{minipage}[b]{12mm}
A A A A A A A A A A A A A A A \end{minipage}\HR

\begin{minipage}[b]{30mm} \begin{minipage}[t]{12mm}
B gg jj

\end{minipage} xx
\begin{minipage}[t]{12mm} C C C C C C C \end{minipage}
\par\vspace{0mm}

\end{minipage}\HR

To correct this problem, you have to add (negative) vertical space that com-
pensates for the depth of the letters.

Perhaps the easiest way (albeit the most dangerous) is to use the TEX primitive
\prevdepth . This dimension register can be used only in vertical mode (i.e., after a para-
graph has ended), and contains the depth of the previous line. In the next example this
primitive is used to back up by this amount, thereby pretending that the bottom of the
box is located at the baseline of the last line.

When using \prevdepth in this way one has to be careful. As already mentioned, it
gives an error if used outside vertical mode. Furthermore, TEX overloads this primitive

�Surprising effects
of \prevdepth

by setting it to −1000pt at the beginning of a vertical box and after a horizontal rule.1

Thus, using \vspace* instead of \vspace in the example would give a nasty surprise,
because \vspace* actually puts in an invisible rule to ensure that the space will survive at
a page break. As a result the value of \prevdepth inside would be −1000pt and we would
effectively be adding a space of 1000 points at the bottom of the box.

A-2-13

A A A
A A A
A A A
A A A
A A A

B B B B
B B B B
B B B B
B B B B
B B B B
B B B B
gg jj

xx C C C C
C C C

\newcommand\HR{\rule{.5em}{0.4pt}}

\HR\begin{minipage}[b]{12mm}
A A A A A A A A A A A A A A A \end{minipage}\HR

\begin{minipage}[b]{30mm} \begin{minipage}[t]{12mm}
B gg jj
\par\vspace{-\prevdepth}

\end{minipage} xx
\begin{minipage}[t]{12mm} C C C C C C C \end{minipage}
\par\vspace{0pt}

\end{minipage}\HR

Sometimes it is helpful to predefine the vertical dimension of a paragraph box.
For this purpose today’s LaTEX offers additional optional arguments for \parbox
and the minipage environment.

1TEX uses \prevdepth to calculate the interline space needed and −1000pt indicates that this
space should be suppressed.

866 A LATEX Overview for Preamble, Package, and Class Writers

\parbox[pos][height][inner-pos]{width}{text}
\begin{minipage}[pos][height][inner-pos]{width} text \end{minipage}

The inner-pos argument determines the position of the text within the box. It can
be t, c, b, or s. If not specified, the value of pos will be used. You can think of
height and inner-pos as the vertical equivalent of the width and pos arguments of
a \makebox . If you use the s position, the text will be vertically stretched to fill
the given height. Thus, in this case you are responsible for providing vertically
stretchable space if necessary, using, for example, the \vspace command.

As with the other box commands you can use \height , \totalheight , and
so on to refer to the natural dimensions of the box when specifying the optional
argument.

xx

Some text on
top.

And a few
lines on the
bottom of the
box.

This time a
few lines on
the top of the
box. But only
one line

down here. xx

\usepackage{calc}

xx \fbox{\parbox[b][\height+\baselineskip][s]
{20mm}{Some text on top. \par\vfill

And a few lines on the
bottom of the box.}}

\fbox{\parbox[b][\height+\baselineskip][s]
{20mm}{This time a few lines on the

top of the box. But only one
line \par\vfill down here.}} xx A-2-14

A.2.3 Rule boxes

LaTEX’s rule boxes are drawn with the \rule command:

\rule[lift]{width}{height}

If we write \rule[4pt]{2cm}{1mm} then we get a 2cm long rule that is 1mm
thick and raised 4pt above the baseline: . The \rule command can
also be used to construct rule boxes with zero width, that is invisible rules (also
called struts). These struts are useful if you need to control the height or width
of a given box (for example, to increase the height of a box framed with \fbox or
\framebox , or to adjust locally the distance between rows in a table). Compare
the following:

x111x some text x222x more text x333x

x111x
\fbox{some text}

x222x
\fbox{\rule[-5mm]{0cm}{15mm}more text}

x333x A-2-15

As mentioned earlier, LaTEX makes boxes (including rules) behave like charac-
ters. For example, if used outside a paragraph they automatically start a new para-
graph. With rules this is not always the desired behavior. To get a rule between

A.2 Page markup—Boxes and rules 867

two paragraphs, for instance, we have to use \noindent to suppress a paragraph
indentation; otherwise, the line would be indented and stick out to the right.

A-2-16

. . . Some text for our page that might get reused
over and over again.

A following paragraph. Some text for our page
that might get reused over and over again.

\newcommand\sample{ Some text for our page
that might get reused over and over again.}

\ldots \sample \par
\noindent\rule{\linewidth}{0.4pt} \par
A following paragraph. \sample

Due to this behavior the rule sits on the baseline of a one-line paragraph
and is therefore visually much closer to the following paragraph. To place it at
equal distance between the two lines, one could use the optional lift argument,
but determining the right value (roughly 2.5pt in this particular case) remains a
matter of trial and error.

One solution is to suppress the generation of interline space, using the low-
level TEX command \nointerlineskip , and to add the necessary spaces explicitly
as shown in the next example. This time we omit \noindent so that the rule is
indented by \parindent , and we use calc to calculate the rule width such that it
leaves a space of size \parindent on the right as well.

A-2-17

. . . Some text for our page that might get reused
over and over again.

A following paragraph. Some text for our page
that might get reused over and over again.

\usepackage{calc} % \sample as before

\ldots \sample \par
\nointerlineskip \vspace{5.8pt}
\rule{\linewidth-2\parindent}{0.4pt}\par
\nointerlineskip \vspace{5.8pt}
A following paragraph. \sample

The sum of the vertical spaces used plus the height of the rule amounts to
12 points (i.e., \baselineskip). However, this does not make the baselines of the
two paragraphs 12 points apart; rather, it makes the distance from the bottom
of the last line in the first paragraph (i.e., as produced by the “g” in “again”) to
the top of the first line in the next paragraph (i.e., as produced by the “A”) be 12
points. Thus, if the text baselines should preferably fall onto a grid, a variant of
Example A-2-16 using the optional lift argument is more appropriate.

Instead of using \rule together with \nointerlineskip , package or class
writers often use the primitive TEX rule commands. They have the advantage of
automatically suppressing interline space and do not require you to specify all
dimensions. On the downside, they have an unusual syntax and cannot be used if
the rule needs horizontal or vertical shifting, as in the previous example.

\hrule height height depth depth width width \relax
\vrule height height depth depth width width \relax

The \hrule primitive can only be used between paragraphs, while the \vrule
primitive has to appear within paragraphs. If encountered in the wrong place,

868 A LATEX Overview for Preamble, Package, and Class Writers

width height depth
\hrule * 0.4pt 0.0pt
\vrule 0.4pt * *

Table A.4: Default values for TEX’s rule primitives

the commands stop or start a paragraph as necessary. The commands can be
followed by one or more of the keywords height, depth, and width together with
a dimension value. Any order is allowed, and missing keywords get the defaults
shown in Table A.4. An asterisk in that table means that the rule will extend to
the boundary of the outer box. The \relax command at the end is not required
but ensures that TEX knows that the rule specification has ended and will not
misinterpret words in the text as keywords.

In the next example we use the default value for \hrule , resulting in a rule of
0.4pt height running through the whole galley width (since this is effectively the
next outer box).

. . . Some text for our page that might get reused
over and over again.

A following paragraph. Some text for our page
that might get reused over and over again.

% \sample as before

\ldots \sample \par
\vspace{3pt}\hrule\relax\vspace{3pt}
A following paragraph. \sample \par A-2-18

A.2.4 Manipulating boxed material

Material can be typeset once and then stored inside a named box, whose contents
can later be retrieved.

\newsavebox{cmd} Declare box
\sbox{cmd}{text} Fill box
\savebox{cmd}[width][pos]{text} Fill box
\usebox{cmd} Use contents

The command \newsavebox globally declares a command cmd (for example,
\mybox), which can be thought of as a named bin. Typeset material can be stored
there for later (multiple) retrieval.

The \sbox and \savebox commands are similar to \mbox and \makebox , ex-
cept that they save the constructed box in the named bin (previously allocated
with \newsavebox) instead of directly typesetting it. The \usebox command then
allows the nondestructive use of the material stored inside such named bins. You
can reuse the same bin (e.g., \mybox) several times within the scope of the current
environment or brace group. It will always contain what was last stored in it.

Be careful not to use the command name \mybox directly, since it contains
only the TEX number of the box in question. As a consequence, \mybox on its

A.2 Page markup—Boxes and rules 869

own will merely typeset the character at the position corresponding to the box
number in the current font. Thus, you should manipulate boxes exclusively using
the commands described above.

A-2-19

x1x inside box a x2x inside box b x3x
x1x inside box a x2x inside box b x3x

\newsavebox{\myboxa}\newsavebox{\myboxb}

\sbox{\myboxa}{inside box a}
\savebox{\myboxb}[2cm][l]{inside box b}
x1x \usebox{\myboxa} x2x \usebox{\myboxb} x3x

\savebox{\myboxb}[2cm][r]{inside box b}
\par
x1x \usebox{\myboxa} x2x \usebox{\myboxb} x3x

In addition to the above commands, there exists the lrbox environment with
the following syntax:

\begin{lrbox}{cmd} text \end{lrbox}

Here cmd should be a box register previously allocated with \newsavebox . The en-
vironment lrbox will save the text in this box for later use with \usebox . Leading
and trailing spaces are ignored. Thus, lrbox is basically the environment form of
\sbox . You can make good use of this environment if you want to save the body
of some environment in a box for further processing. For example, the following
code defines the environment fcolumn, which works like a column-wide minipage
but surrounds its body with a frame.

A-2-20

In this environment ver-
batim text like \fcolbox
can be used.

\usepackage{calc}
\newsavebox{\fcolbox} \newlength{\fcolwidth}
\newenvironment{fcolumn}[1][\linewidth]
{\setlength{\fcolwidth}{#1-2\fboxsep-2\fboxrule}%
\begin{lrbox}{\fcolbox}\begin{minipage}{\fcolwidth}}

{\end{minipage}\end{lrbox}\noindent\fbox{\usebox{\fcolbox}}}

\begin{fcolumn} In this environment verbatim text like
\verb=\fcolbox= can be used. \end{fcolumn}

The above definition is interesting in several respects. The environment is de-
fined with one optional argument denoting the width of the resulting box (default
\linewidth). On the next line we calculate (using the calc package) the internal
line length that we have to pass to the minipage environment. Here we have to
subtract the extra space added by the \fbox command on both sides. Then the
lrbox and minipage environments are started to typeset the body of the fcolumn
environment into the box \fcolbox . When the end of the environment is reached
those environments are closed. Then the \fcolbox is typeset inside an \fbox
command. The \noindent in front suppresses any indentation in case the envi-
ronment is used at the beginning of a paragraph or forms a paragraph by itself.

The boxedminipage described in Section 10.1.1 on page 595 can be imple-
mented in a similar fashion. The only essential difference from the previous code

870 A LATEX Overview for Preamble, Package, and Class Writers

is that we omit \noindent and pass the width as a mandatory argument and the
position as an optional argument.

left

In this environment verba-
tim text like \fcolbox can
be used. right

\usepackage{calc}
\newsavebox{\fcolbox} \newlength{\fcolwidth}
\newenvironment{boxedminipage}[2][c]
{\setlength{\fcolwidth}{#2-2\fboxsep-2\fboxrule}%
\begin{lrbox}{\fcolbox}%
\begin{minipage}[#1]{\fcolwidth}}

{\end{minipage}\end{lrbox}\fbox{\usebox{\fcolbox}}}

left \begin{boxedminipage}[b]{4cm}
In this environment verbatim text like
\verb=\fcolbox= can be used.

\end{boxedminipage}
right A-2-21

If you compare this definition with the actual code in the package (which
originates in LaTEX 2.09), it will be apparent that the coding features offered with
the current version of LaTEX have their advantages.

A.2.5 Box commands and color

Even if you do not intend to use color in your own documents, by taking note of
the points in this section you can ensure that your class or package is compatible
with the color package. This may benefit people who choose to use your class or
package together with the color package extensions.

The simplest way to ensure “color safety” is to always use LaTEX box com-
mands rather than TEX primitives—that is, to use \sbox rather than \setbox ,
\mbox rather than \hbox , and \parbox or the minipage environment rather than
\vbox . The LaTEX box commands have new options that make them as powerful as
the TEX primitives.

As an example of what can go wrong, consider that in {\ttfamily text}
the font is restored just before the }, whereas in the similar-looking construct
{\color{green} text} the color is restored just after the final }. Normally, this
distinction does not matter. But consider a primitive TEX box assignment such as

\setbox0=\hbox{\color{green} some text}

Now the color-restore operation occurs after the } and so is not stored in the box.
Exactly which bad effects this introduces will depend on how color is implemented:
the problems can range from getting the wrong colors in the rest of the document
to causing errors in the dvi driver used to print the document.

Also of interest is the command \normalcolor . This is normally just \relax
(i.e., does nothing), but you can use it like \normalfont to set regions of the page,
such as captions or section headings, to the “main document color”.

A.3 Control structure extensions 871

A.3 Control structure extensions

A.3.1 calc—Arithmetic calculations

The package calc (by Kresten Thorup and Frank Jensen) contains a set of macros
for enhanced arithmetic in LaTEX. Usual arithmetic in TEX is done by simple
low-level operations like \advance and \multiply . This package defines an in-
fix notation arithmetic for LaTEX. In fact, it reimplements the LaTEX commands
\setcounter , \addtocounter , \setlength , and \addtolength so that they can
accept integer and length expressions rather than simple numbers and lengths.

An integer expression can contain integer numbers, TEX’s integer registers,
LaTEX’s counters (e.g., \value{ctr}), parentheses, and binary operators (-, +, *, /).
For instance, to advance a counter by five:

A-3-1

The value is currently “2”.
The value has now changed to “7”.

\usepackage{calc} \newcounter{local}
\setcounter{local}{2} % initial setting for the example

The value is currently ‘‘\thelocal’’.\\
\setcounter{local}{\value{local}+5}
The value has now changed to ‘‘\thelocal’’.

An example is the definition of a command to print the time (note that the
TEX register \time contains the number of minutes since midnight):

A-3-2 The time is 18h 53min.

\usepackage{calc}
\newcounter{hours}\newcounter{minutes}
\newcommand\printtime{\setcounter{hours}{\time/60}%

\setcounter{minutes}{\time-\value{hours}*60}%
\thehours h \theminutes min}

The time is \printtime.

When dealing with lengths, the subexpressions that are added or subtracted
must be of the same type. That is, you cannot have “2cm+4”, but an expression like
“2cm+4pt” is legal because both subexpressions have dimensions. You can only
divide or multiply by integers, so “2cm*4” is a legal subexpression but “2cm*4pt”
is forbidden. Also, the length part must come first in an expression; thus, “4*2cm”
is not allowed.

The commands described above allow you to calculate the width of one col-
umn in an n-column layout using the following single command (supposing that
the variable n is stored as the first argument of a LaTEX macro):

\setlength\linewidth{(\textwidth-\columnsep*(#1-1))/#1}

The restriction that you can only multiply and divide by integers has been
relaxed for calculations on lengths (dimensions). Those operations are allowed
with real numbers.

872 A LATEX Overview for Preamble, Package, and Class Writers

\real{decimal constant} \ratio{length expression}{length expression}

A real number can be represented in two forms: the first command converts the
decimal constant into a form that can be used in a calc formula. The second form
denotes the real number obtained by dividing the value of the first expression by
the value of the second expression.

As an example, assume you want to scale a figure so that it occupies the full
width of the page (\textwidth). If the original dimensions of the figure are given
by the length variables \Xsize and \Ysize, then the height of the figure after
scaling will be:

\setlength\newYsize{\Ysize*\ratio{\textwidth}{\Xsize}}

The calc package is used in many examples in this book. If you do not want
to apply it, you need to express the code given in the examples in the form of
primitive (LA)TEX constructs. For example, the setting of \fcolwidth on page 869
has to be translated from

\setlength\fcolwidth{#1-2\fboxsep-2\fboxrule}%

to the following statements:

\setlength\fcolwidth{#1}%
\addtolength\fcolwidth{-2\fboxsep}%
\addtolength\fcolwidth{-2\fboxrule}

Besides the fact that the infix notation provided by the calc package is certainly
more readable (and much easier to modify), it contains constructs for division
and multiplication that cannot be expressed with standard LaTEX constructs. For
example, to express the \topmargin calculation from page 198, the following
code is necessary:

\setlength\topmargin{297mm}
\addtolength\topmargin{-\textheight}
\divide\topmargin by 3 % TeX calculation
\addtolength\topmargin{-1in}
\addtolength\topmargin{-\headheight}
\addtolength\topmargin{-\headsep}

A.3.2 ifthen—Advanced control structures

Sometimes you may want to typeset different material depending on the value of
a logical expression. This is possible with the standard package ifthen (written by
Leslie Lamport, and reimplemented for the current LaTEX version by David Carlisle),
which defines commands for building control structures with LaTEX.

A.3 Control structure extensions 873

\ifthenelse{test}{then-code}{else-code}

If the condition test is true, the commands in the then-code part are executed.
Otherwise, the commands in the else-code part are executed.

A simple form of a condition is the comparison of two integers. For example,
if you want to translate a counter value into English:

A-3-3

This is the 3rd section in
the 1st appendix.

\usepackage{ifthen}
\newcommand\toEng[1]{\arabic{#1}\textsuperscript{%
\ifthenelse{\value{#1}=1}{st}{%
\ifthenelse{\value{#1}=2}{nd}{%
\ifthenelse{\value{#1}=3}{rd}{%
\ifthenelse{\value{#1}<20}{th}}%

{\typeout{Value too high}}}}}}

This is the \toEng{section} section in the \toEng{chapter}
appendix.

The following example defines a command to print the time in short form.
It shows how complex operations (using the calc package) can be combined with
conditional control statements.

A-3-4 The current time is “18:53”.

\usepackage{ifthen,calc}
\newcounter{hours}\newcounter{minutes}

\newcommand{\Printtime}{\setcounter{hours}{\time/60}%
\setcounter{minutes}{\time-\value{hours}*60}%
\ifthenelse{\value{hours}<10}{0}{}\thehours:%
\ifthenelse{\value{minutes}<10}{0}{}\theminutes}

The current time is ‘‘\Printtime’’.

\equal{string1}{string2}

The \equal command evaluates to true if the two strings string1 and string2 are
equal after they have been completely expanded. You should be careful when
using fragile commands in one of the strings; they need protection with the
\protect command.

A-3-5

\BB=\EE? False.
\BB=\CC? True.
\DD=\BB? True.

\usepackage{ifthen,shortvrb} \MakeShortVerb\|

\newcommand\BB{\CC}\newcommand\CC{\DD}
\newcommand\DD{AA} \newcommand\EE{EE}
|\BB|=|\EE|? \ifthenelse{\equal{\BB}{\EE}}{True}{False}.\par
|\BB|=|\CC|? \ifthenelse{\equal{\BB}{\CC}}{True}{False}.\par
|\DD|=|\BB|? \ifthenelse{\equal{\DD}{\BB}}{True}{False}.

One application for the preceding command could be in the definition of a
command for printing an item and for entering it in the index. In the case where
it is defined, the index entry will be typeset in boldface; otherwise, it will appear

874 A LATEX Overview for Preamble, Package, and Class Writers

in a normal face. We use an optional argument for the least frequently occurring
situation of the definition.

we define item AAAA . . . we reference item AAAA

\usepackage{ifthen}

\newcommand{\IX}[2][R]{\texttt{#2}%
\ifthenelse{\equal{#1}{D}}%

{\index{#2|textbf}}{\index{#2}}}
we define item \IX[D]{AAAA}
\ldots{} we reference item \IX{AAAA} A-3-6

This gives the required visual representation in the .idx file by specifying entries
of the following type:

\indexentry{AAAA|textbf}{874} \indexentry{AAAA}{874}

A more complicated example, where you have complete control of what goes
or does not go into the index or in the text, involves the extended index command
\IXE , defined in the following example. Its default optional argument “!*!,!”
contains a string that you will probably never want to use in the text (we hope).
If you use the command \IXE with only one (normal) argument, then you will
enter the same information into the index and the text. By specifying an optional
argument, you can enter something in the index that is different from what is
printed in the text. All possible combinations are shown below. The vertical bars
around the commands show that no unwanted spaces are generated.

Identical in text and index |both|.
Different in text and index |text|.
Only to index ||.
In text only |textonly|.
Nothing in text or index ||.

\usepackage{ifthen}
\newcommand\IXE[2][!*!,!]{%
\ifthenelse{\equal{#1}{!*!,!}}%
{\ifthenelse{\equal{#2}{}}{}{\textbf{#2}\index{#2}}}%
{\ifthenelse{\equal{#1}{}}{}{\index{#1}}%
\ifthenelse{\equal{#2}{}}{}{\textbf{#2}}}}

\par Identical in text and index |\IXE{both}|.
\par Different in text and index |\IXE[index]{text}|.
\par Only to index |\IXE[indexonly]{}|.
\par In text only |\IXE[]{textonly}|.
\par Nothing in text or index |\IXE[]{}|. A-3-7

The .idx file contains only three entries, since the case with the empty optional
argument “[]” does not generate an index entry:

\indexentry{both}{874}
\indexentry{index}{874}
\indexentry{indexonly}{874}

A.3 Control structure extensions 875

TEX switches (can only be queried)

hmode true, if typesetting is done in a horizontal direction (e.g., inside a paragraph
or an LR box).

vmode true, if typesetting is done vertically (e.g., if TEX is between paragraphs).
mmode true, if TEX is typesetting a formula.

LaTEX switches (last two can be set)

@twoside true, if LaTEX is typesetting for double-sided printing.
@twocolumn true, if LaTEX is typesetting in standard two-column mode (false inside

multicols environments).
@firstcolumn true, if @twocolumn is true and LaTEX is typesetting the first column.
@newlist true, if LaTEX is at the beginning of a list environment (will be set to false

when text after the first \item command is encountered).
@inlabel true, after an \item command until the text following it is encountered.
@noskipsec true, after a run-in heading until the text following it is encountered.
@afterindent Switch checked by command \@afterheading (usually used in headings) to

prevent (if false) indentation of next paragraph.
@tempswa Temporary switch used internally by many LaTEX commands to communicate

with each other.

Table A.5: LaTEX’s internal \boolean switches

\boolean{string} \newboolean{string} \setboolean{string}{value}

Basic TEX knows about some switches that can have the value true or false.1 To
define your own switch, use \newboolean where string is a sequence of letters.
This switch is initially set to false. To change its value, use \setboolean where
the value argument is either the string true or false. You can then test the value
by using \boolean in the first argument of \ifthenelse . It is also possible to
test all such internal flags of LaTEX with this command (the most common ones
are shown in Table A.5). An example could be a test to see whether a document is
using a one- or two-sided layout.

A-3-8 Two-sided printing.
\usepackage{ifthen}

\ifthenelse{\boolean{@twoside}}{Two-sided}{One-sided} printing.

\lengthtest{test}

To compare dimensions, use \lengthtest . In its test argument you can compare
two dimensions (either explicit values like 20cm or names defined by \newlength)
using one of the operators <, =, or >.

1In the LaTEX kernel they are normally built using the more primitive \newif command.

876 A LATEX Overview for Preamble, Package, and Class Writers

As an example, let us consider a figure characterized by its dimensions
\Xsize and \Ysize . It should be made to fit into a rectangular area with dimen-
sions \Xarea and \Yarea , but without changing the aspect ratio of the figure. The
following code calculates the new dimensions of the figure (\newX and \newY). The
trick is to first calculate and compare the aspect ratios of both the rectangle and
the figure, and then to use the result to obtain the magnification factor.

\newlength{\sizetmp}\newlength{\areatmp}
\setlength\sizetmp{1pt*\ratio{\Xsize}{\Ysize}}
\setlength\areatmp{1pt*\ratio{\Xarea}{\Yarea}}
\ifthenelse{\lengthtest{\sizetmp > \areatmp}}%
{\setlength\newX{\Xarea}\setlength\newY{\newX*\ratio{\Ysize}{\Xsize}}}
{\setlength\newY{\Yarea}\setlength\newX{\newY*\ratio{\Xsize}{\Ysize}}}

\isodd{number}

With the \isodd command you can test whether a given number is odd. If, for
example, the string generated by a \pageref command is a valid number (as it
normally is), then you can use the command in the following way:

This is an even-
numbered page.

6

This is an odd-
numbered page.

7

\usepackage{ifthen} \newcounter{pl}
\newcommand\pcheck{\stepcounter{pl}\label{pl-\thepl}%
\ifthenelse{\isodd{\pageref{pl-\thepl}}}{odd}{even}}

This is an \pcheck-numbered page. \newpage
This is an \pcheck-numbered page. A-3-9

The \isodd command is specially tailored to support the above application
even though the result of \pagerefmight be undefined in the first LaTEX run. Note
that you cannot omit the \label and \pageref and instead simply use \thepage .
The reason is that pages are built asynchronously. As a consequence, your code
might get evaluated while a page is being built, and later on LaTEX’s output routine
might decide to move that bit of the text to the next page, making the evaluation
invalid if \thepage were used.

\whiledo{test}{do-clause}

The \whiledo command is valuable for executing certain repetitive command se-
quences. The following simple example shows how the command works:

I should not talk during seminar (1). I
should not talk during seminar (2). I should
not talk during seminar (3). I should not talk
during seminar (4).

\usepackage{ifthen} \newcounter{howoften}

\setcounter{howoften}{1}
\whiledo{\value{howoften}<5}{I should not talk

during seminar (\thehowoften).
\stepcounter{howoften}} A-3-10

A.4 Package and class file structure 877

\and \or \not \(\)

Multiple conditions can be combined into logical expressions via the logical op-
erators (\or , \and , and \not), using the commands \(and \) as parentheses. A
simple example is seen below.

A-3-11

You agree “OK” or don’t “not OK”.
D’accord “OK” ou pas “not OK”?

\usepackage{ifthen}
\newcommand{\QU}[2]{%
\ifthenelse{\(\equal{#1}{ENG}\and\equal{#2}{yes}\)

\or \(\equal{#1}{FRE}\and\equal{#2}{oui}\)}%
{‘‘OK’’}{‘‘not OK’’}}

You agree \QU{ENG}{yes} or don’t \QU{ENG}{no}. \par
D’accord \QU{FRE}{oui} ou pas \QU{FRE}{non}?

A.4 Package and class file structure

In this section we discuss what commands are available for the authors of package
or class files. Even if you do not intend to write your own package, this section
will help you understand the structure and content of class and package files like
book or varioref, and thus help you to make better use of them.

The general structure of class and package files is identical and consists of
the following parts:

〈identification〉
〈initial code〉
〈declaration of options〉
〈execution of options〉
〈package loading〉
〈main code〉

All these parts are optional. We discuss the commands available in each of the
individual parts below. Table A.6 on page 879 gives a short overview.

A.4.1 The identification part

This part of a class or package file is used to define the nature of the file and may
also state the LaTEX2ε distribution release minimally required.

\ProvidesClass{name}[release information]

A class file identifies itself with a \ProvidesClass command. The argument name
corresponds to the name of the class as it will be used in the mandatory argument
of the \documentclass command (i.e., the file name without an extension). The

878 A LATEX Overview for Preamble, Package, and Class Writers

optional argument release information, if present, should begin with a date in the
form YYYY/MM/DD, separated with a space from the version number or identi-
fication, followed optionally by some text describing the class. For example, the
class report contains something like

\ProvidesClass{report}[2001/04/21 v1.4e Standard LaTeX document class]

In a document you can make use of the release information by specifying the date
as a second optional argument to the \documentclass command as follows:

\documentclass[twocolumn]{report}[2001/04/21]

This enables LaTEX to check that the report class used has at least a release date of
2001/04/21 or is newer. If the class file is older, a warning is issued. Thus, if you
make use of a new release of a class file and send your document to another site,
the people there will be informed if their LaTEX distribution is out of date.

\ProvidesPackage{name}[release information]

This command identifies a package file. The structure is the same as for the
\ProvidesClass command. Again, the date in the release information can be used
in a second optional argument to \usepackage to ensure that an up-to-date ver-
sion of the package file is loaded. For example:

\usepackage[german]{varioref}[2001/09/01]

\ProvidesFile{filename}[release information]

This command identifies any other type of file. For this reason filename must
contain the full file name including the extension.

\NeedsTeXFormat{format}[release]

In addition to one of the above commands, the 〈identification〉 part usually con-
tains a \NeedsTeXFormat declaration. The format must be the string LaTeX2e. If
the optional release argument is specified, it should contain the release date of
the required LaTEX2ε distribution in the form YYYY/MM/DD. For example,

\NeedsTeXFormat{LaTeX2e}[2001/06/01]

would require at least the LaTEX2ε release distributed on June 1, 2001. If this com-
mand is present, anyone who tries to use your code together with an older LaTEX
release will receive a warning message that something might fail. A newer release
date is accepted without a warning.

All four declarations are optional. Nevertheless, their use in distributed class
and package files will ease the maintenance of these files.

A.4 Package and class file structure 879

Identification part

\NeedsTeXFormat{format}[release]
Needs to run under format (LaTeX2e) with a release date not older than release

\ProvidesClass{name}[release info] \ProvidesPackage{name}[release info]
Identifies class or package name and specifies release information

\ProvidesFile{name}[release info]
Identifies other file name (with extension) and specifies release information

Declaration of options

\DeclareOption{option}{code}
Declares code to be executed for option

\PassOptionsToPackage{option-list}{package-name}
Passes option-list to package-name

\DeclareOption*{code}
Declares code to be executed for any unknown option

\CurrentOption
Refers to current option for use in \DeclareOption*

Execution of options

\ExecuteOptions{option-list}
Executes code for every option listed in option-list

\ProcessOptions \ProcessOptions*
Processes specified options for current class or package; starred form obeys the specified order

Package loading

\RequirePackage[option-list]{package}[release]
Loads package with given option-list and a release date not older than release

Special commands for package and class files

\AtEndOfPackage{code} \AtEndOfClass{code}
Defers execution of code to end of current package or class

\AtBeginDocument{code} \AtEndDocument{code}
Executes code at \begin{document} or \end{document}

\IfFileExists{file}{then-code}{else-code}
Executes then-code if file exists, else-code otherwise

\InputIfFileExists{file}{then-code}{else-code}
If file exists, executes then-code and then inputs file; otherwise executes else-code

Special class file commands

\LoadClass[option-list]{class}[release]
Like \RequirePackage for class files, but does not see global options if not explicitly passed to it

\PassOptionsToClass{option-list}{class}
Passes option-list to class

\OptionNotUsed
For use in \DeclareOption* if necessary

Table A.6: Commands for package and class files

880 A LATEX Overview for Preamble, Package, and Class Writers

A.4.2 The initial code part

You can specify any valid LaTEX code in the 〈initial code〉 part, including code that
loads packages with the \RequirePackage command (see Section A.4.5) if their
code is required in one of the option declarations. For example, you might want to
load the calc package at this point, if you plan to use it later. However, normally
this part is empty.

A.4.3 The declaration of options

In this part all options known to the package or class are declared using the
\DeclareOption command. It is forbidden to load packages in this part.

\DeclareOption{option}{code}

The argument option is the name of the option being declared and code is the
code that will execute if this option is requested. For example, the paper size
option a4paper normally has a definition of the following form:

\DeclareOption{a4paper}{\setlength\paperheight{297mm}%
\setlength\paperwidth{210mm}}

In principle, any action—from setting a flag to complex programming
instructions—is possible in the code argument of \DeclareOption .

An important function for use in \DeclareOption is the command
\PassOptionsToPackage . It can pass one or more options to some other pack-
age that is loaded later.

\PassOptionsToPackage{option-list}{package-name}

The argument option-list is a comma-separated list of options that should be
passed to the package with name package-name when it is loaded in the 〈package
loading〉 part.1 Suppose, for example, that you want to define a class file that
makes use of two packages, say, A and B, both supporting the option infoshow.
To support such an option in the class file as well, you could declare

\DeclareOption{infoshow}{%
\PassOptionsToPackage{infoshow}{A}%
\PassOptionsToPackage{infoshow}{B}%
〈code to support infoshow in the class〉}

If a package or class file is loaded with an option that it does not recognize, it
will issue a warning (in case of a package file) or silently ignore the option (in case
of a class file), assuming that it is a global option to be passed to other packages

1It is the responsibility of the package writer to actually load such packages. LaTEX does not check
that packages receiving options via \PassOptionsToPackage are actually loaded later on.

A.4 Package and class file structure 881

subsequently loaded with \usepackage . However, this behavior is not hard-wired
and can be modified using a \DeclareOption* declaration.

\DeclareOption*{code}

The argument code specifies the action to take if an unknown option is speci-

�Command does
not act on global

options!

fied on the \usepackage or \RequirePackage command. Within this argument
\CurrentOption refers to the name of the option in question. For example, to
write a package that extends the functionality of some other package, you could
use the following declaration:

\DeclareOption*{\PassOptionsToPackage{\CurrentOption}{A}}

This would pass all options not declared by your package to package A. If no
\DeclareOption* declaration is given, the default action, described above, will
be used.

By combining \DeclareOption* with \InputIfFileExists (see below), you
can even implement conditional option handling. For example, the following code
tries to find files whose names are built up from the option name:

\DeclareOption*{\InputIfFileExists{g-\CurrentOption.xyz}{}%
{\PackageWarning{somename}{Option \CurrentOption\space

not recognized}}}

If the file g-option.xyz can be found, it will be loaded; otherwise, the option is
ignored with a warning.

A.4.4 The execution of options

Two types of actions are normally carried out after all options are declared. You
might want to set some defaults, such as the default paper size. Then the list of
options specified needs to be examined and the code for each such option needs
to be executed.

\ExecuteOptions{option-list}

The \ExecuteOptions command executes the code for every option listed in
option-list in the order specified. It is just a convenient shorthand to set up de-
faults by executing code specified earlier with a \DeclareOption command. For
example, the standard class book issues something similar to

\ExecuteOptions{letterpaper,twoside,10pt}

to set up the defaults. You can also use \ExecuteOptions when declaring
other options, such as a definition of an option that automatically implies oth-
ers. The \ExecuteOptions command can be used only prior to executing the

882 A LATEX Overview for Preamble, Package, and Class Writers

\ProcessOptions command because, as one of its last actions, the latter com-
mand reclaims all of the memory taken up by the code for the declared options.

\ProcessOptions

When the \ProcessOptions command is encountered, it examines the list of op-
tions specified for this class or package and executes the corresponding code.
More precisely, when dealing with a package the global options (as specified on
the \documentclass command) and the directly specified options (the optional
argument to the \usepackage or \RequirePackage command) are tested. For
every option declared by the package, the corresponding code is executed. This
execution occurs in the same order in which the options were specified by the
\DeclareOption declarations in the package, not in the order in which they ap-
pear on the \usepackage command. Global options that are not recognized are ig-
nored. For all other unrecognized options the code specified by \DeclareOption*
is executed or, if this declaration is missing, an error is issued.

Thus, packages that use only \DeclareOption* when declaring options will
not act upon global options specified on the \documentclass , but rather will ac-
cept only those that are explicitly given on the \usepackage or \RequirePackage
declaration.

In the case of a class file, the action of \ProcessOptions is the same without
the added complexity of the global options.

There is one potential problem when using \ProcessOptions: the command
Preventing

unwanted expansion
searches for a following star (even on subsequent lines) and thereby may incor-
rectly expand upcoming commands following it. To avoid this danger use \relax
at the end to stop the search immediately and start the execution of the options.

\ProcessOptions*

For some packages it may be more appropriate if they process their options in
the order specified on the \usepackage command rather than using the order
given through the sequence of \DeclareOption commands. For example, in the
babel package, the last language option specified is supposed to determine the
main document language. Such a package can execute the options in the order
specified by using \ProcessOptions* instead of \ProcessOptions .

A.4.5 The package loading part

Once the options are dealt with, it might be time to load one or more addi-
tional packages—for example, those to which you have passed options using
\PassOptionsToPackage .

\RequirePackage[option-list]{package}[release]

This command is the package/class counterpart to the document command
\usepackage . If package was not loaded before, it will be loaded now with the

A.4 Package and class file structure 883

options specified in option-list, the global options from the \documentclass com-
mand, and all options passed to this package via \PassOptionsToPackage .

LaTEX loads a package only once because in many cases it is dangerous to
execute the code of a package several times. Thus, if you require a package with
a certain set of options, but this package was previously loaded with a different
set not including all options requested at this time, then the user of your package
has a problem. In this situation LaTEX issues an error message informing users of
your package about the conflict and suggesting that they load the package with a
\usepackage command and all necessary options.

The optional release argument can be used to request a package version not
older than a certain date. For this scheme to work, the required package must
contain a \ProvidesPackage declaration specifying a release date.

\RequirePackageWithOptions{package}[release]

This command works like \RequirePackage except that the options passed to
it are exactly those specified for the calling package or class. This facilitates the
generation of variant packages that take exactly the same set of options as the
original. See also the discussion of \LoadClassWithOptions on page 887.

A.4.6 The main code part

This final part of the file defines the characteristics and implements the func-
tions provided by the given class or package. It can contain any valid LaTEX con-
struct and usually defines new commands and structures. It is good style to use
standard LaTEX commands, as described in this appendix, such as \newlength ,
\newcommand , \CheckCommand , and so on, rather than relying on primitive TEX
commands, as the latter do not test for possible conflicts with other packages.

A.4.7 Special commands for package and class files

\AtEndOfPackage{code} \AtEndOfClass{code}

Sometimes it is necessary to defer the execution of some code to the end of the
current package or class file. The above declarations save the code argument and
execute it when the end of the package or class is reached. If more than one such
declaration is present in a file, the code is accumulated and finally executed in the
order in which the declarations were given.

\AtBeginDocument{code} \AtEndDocument{code}

Other important points at which you might want to execute deferred code are the
beginning and the end of the document or, more exactly, the points where the
\begin{document} and \end{document} are processed. The above commands

884 A LATEX Overview for Preamble, Package, and Class Writers

allow packages to add code to this environment without creating any conflicts
with other packages trying to do the same.

Note, however, that code in the \AtBeginDocument hook is part of the pream-
ble. Thus, restrictions limit what can be put there; in particular, no typesetting
can be done.

\IfFileExists{file}{then-code}{else-code}
\InputIfFileExists{file}{then-code}{else-code}

If your package or class tries to \input a file that does not exist, the user ends up
in TEX’s file-error loop. It can be exited only by supplying a valid file name. Your
package or class can avoid this problem by using \IfFileExists . The argument
file is the file whose existence you want to check. If this file is found by LaTEX, the
commands in then-code are executed; otherwise, those in else-code are executed.
The command \InputIfFileExists not only tests whether file exists, but also
inputs it immediately after executing then-code. The name file is then added to
the list of files to be displayed by \listfiles .

\PackageWarning{name}{warning-text}
\PackageWarningNoLine{name}{warning-text}
\PackageInfo{name}{info-text}

When a package detects a problem it can alert the user by printing a warning
message on the terminal. For example, when the multicol package detects that
multicols* (which normally generates unbalanced columns) is used inside a box,
it issues the following warning:1

\PackageWarning{multicol}{multicols* inside a box does
not make sense.\MessageBreak Going to balance anyway}

This will produce a warning message, which is explicitly broken into two lines via
the \MessageBreak command:

Package multicol Warning: multicols* inside a box does not make sense.
(multicol) Going to balance anyway on input line 6.

The current line number is automatically appended. Sometimes it would be nice
to display the current file name as well, but unfortunately this information is not
available on the macro level.

Depending on the nature of the problem, it might be important to tell the user
the source line on which the problem was encountered. In other cases this infor-
mation is irrelevant, such as when the problem happens while the package is being
loaded. In this situation \PackageWarningNoLine should be used; it produces the
same result as \PackageWarning but omits the phrase “on input line num”.

1In a box, balancing is essential since a box can grow arbitrarily in vertical direction, so all material
would otherwise end up in the first column.

A.4 Package and class file structure 885

If the information is of lower importance and should appear just in the
transcript file, then one can use \PackageInfo . For example, after loading the
shortvrb package and issuing the declaration \MakeShortVerb\= , the transcript
file will show the following:

Package shortvrb Info: Made = a short reference for \verb on input line 3.

A \PackageInfoNoLine command is not provided. If you really want to suppress
the line number in an informational message, use \@gobble as the last token in
the second argument of \PackageInfo .

\PackageError{name}{short-text}{long-text}

If the problem detected is severe enough to require user intervention, one can
signal an error instead of a warning. If the error is encountered, the short-text is
displayed immediately and processing stops. For example, if inputenc encounters
an 8-bit character it does not recognize, it will produce the following error:

! Package inputenc Error: Keyboard character used is undefined
(inputenc) in inputencoding ‘latin1’.

See the inputenc package documentation for explanation.
Type H <return> for immediate help.
...

l.5 abc^^G
?

If the user then presses “h” or “H”, the long-text is offered. In this case it is:

You need to provide a definition with \DeclareInputText
or \DeclareInputMath before using this key.

As before, you can explicitly determine the line breaks in the error and help texts
by using \MessageBreak .

\ClassWarning{name}{warning-text}
\ClassWarningNoLine{name}{warning-text}
\ClassInfo{name}{info-text}
\ClassError{name}{short-text}{long-text}

Information, warning, and error commands are not only available for packages—
similar commands are provided for document classes. They differ only in the
produced texts: the latter commands print “Class” instead of “Package” in the
appropriate places.

886 A LATEX Overview for Preamble, Package, and Class Writers

% -------------------------------- identification ------------------------
\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{myart}[1994/01/01]
% -------------------------------- initial code -------------------------
\RequirePackage{ifthen} \newboolean{cropmarks}
% --------------------------- declaration of options --
\DeclareOption{cropmarks}{\setboolean{cropmarks}{true}}
\DeclareOption{bind} {\AtEndOfClass{\addtolength\oddsidemargin{.5in}%

\addtolength\evensidemargin{-.5in}}}
\DeclareOption* {\PassOptionsToClass{\CurrentOption}{article}}
% ---------------------------- execution of options ---------------------
\ProcessOptions \relax % cf. hint on p. 882!
% --------------------------------package loading ------------------------
\LoadClass{article} % the real code
% -------------------------------- main code ----------------------------
\newenvironment{Notes}{...}{...} % the new environment
\ifthenelse{\boolean{cropmarks}} % support for cropmarks

{\renewcommand{\ps@plain}{...} ...}{}

Figure A.1: An example of a class file extending article

A.4.8 Special commands for class files

It is sometimes helpful to build a class file as a customization of a given general
class. To support this concept two commands are provided.

\LoadClass[option-list]{class}[release]

The \LoadClass command works like the \RequirePackage command with the
following three exceptions:

• The command can be used only in class files.

• There can be at most one \LoadClass command per class.

• The global options are not seen by the class unless explicitly passed to it via
\PassOptionsToClass or specified in the option-list.

\PassOptionsToClass{option-list}{class}

The command \PassOptionsToClass can be used to pass options to such a gen-
eral class. An example of such a class file augmentation is shown in Figure A.1. It
defines a class file myart that accepts two extra options, cropmarks (making crop
marks for trimming the pages) and bind (shifting the printed pages slightly to
the outside to get a larger binding margin), as well as one additional environment,
Notes.

A.4 Package and class file structure 887

The cropmarks option is implemented by setting a Boolean switch and re-
defining various \pagestyles if this switch is true. The bind option modifies
the values of \oddsidemargin and \evensidemargin . These length registers do
not have their final values at the time the bind option is encountered (they are
set later, when the article class is loaded by \LoadClass), so the modification is
deferred until the end of the myart class file using the \AtEndOfClass command.

\OptionNotUsed

If your code for \DeclareOption* inside a class file is more complex (e.g., trying
to handle some options but rejecting others), you might need to explicitly inform
LaTEX that the option was not accepted with the help of the \OptionNotUsed com-
mand. Otherwise, LaTEX will think that the option was used and will not produce a
warning if the option is not picked up by a later package.

\LoadClassWithOptions{class}[release]

This command is similar to \LoadClass , but it always calls the class with exactly
the same option list that is being used by the current class, rather than the options
explicitly supplied or passed on by \PassOptionsToClass . It is mainly intended
to allow one class to build on another. For example:

\LoadClassWithOptions{article}

This should be contrasted with the following slightly different construction:

\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions \LoadClass{article}

As used here, the effects are more or less the same, but the version using
\LoadClassWithOptions is slightly quicker (and less onerous to type). If, how-
ever, the class declares options of its own, then the two constructions are different.
Compare, for example,

\DeclareOption{landscape}{...}
\ProcessOptions \LoadClassWithOptions{article}

with:

\DeclareOption{landscape}{...}
\DeclareOption*{\PassOptionsToClass{\CurrentOption}{article}}
\ProcessOptions \LoadClass{article}

In the first example, the article class will be called with the option landscape only
when the current class is called with this option. In the second example, however,

888 A LATEX Overview for Preamble, Package, and Class Writers

the option landscape will never be passed to the article class, because the default
option handler only passes options that are not explicitly declared.

\@ifpackageloaded{package}{true-code}{false-code}
\@ifpackagelater{package}{date}{true-code}{false-code}
\@ifpackagewith{package}{options}{true-code}{false-code}

Sometimes it is useful to be able to find out if a package was already loaded,
and if so, how. For this purpose, three commands are made available to class
(and package) writers. To find out if a package has already been loaded, use
\@ifpackageloaded . If it was loaded, the true-code is executed; otherwise, the
false-code is executed. To find out if a package has been loaded with a version
more recent than date, use \@ifpackagelater . Finally, to find out if a package
has been loaded with at least the options in the (comma-separated) list options,
use \@ifpackagewith .

The fontenc package cannot be tested with the above commands. That’s be-
cause it pretends that it was never loaded to allow for repeated reloading with
different options (see the file ltoutenc.dtx in the LaTEX distribution for details).

A.4.9 A minimal class file

Every class file must contain four things: a definition of \normalsize , values for
\textwidth and \textheight , and a specification for page numbering. Thus, a
minimal document class file1 looks like this:

\NeedsTeXFormat{LaTeX2e}
\ProvidesClass{minimal}[1995/10/30 Standard LaTeX minimal class]
\renewcommand\normalsize{\fontsize{10pt}{12pt}\selectfont}
\setlength\textwidth{6.5in}
\setlength\textheight{8in}
\pagenumbering{arabic} % needed even though this class will

% not show page numbers

This class file will, however, not support footnotes, marginals, floats, or other
features. Naturally, most classes will contain more than this minimum!

1This class is in the standard distribution, as minimal.cls.

A p p e n d i x B

Tracing and Resolving
Problems

In an ideal world all documents you produced would compile without problems
and give high-quality output as intended. If you are that lucky, there will be no
need for you to consult this appendix, ever. However, if you run into a problem of
some kind, the material in this appendix should help you to resolve your problem
easily.

We start with an alphabetical list of all error messages, those after which LaTEX
stops and asks for advice. “All” in this context means all LaTEX kernel errors (their
text starts with LaTeX Error:), practically all TEX errors (i.e., those directly pro-
duced by the underlying engine), and errors from the packages amsmath, babel,
docstrip, calc, color, graphics, graphicx, inputenc, fontenc, and textcomp. Errors
reported by other packages—those that identify themselves as

! Package 〈package〉 Error: 〈error text〉

where 〈package〉 is not one of the above—are not included. For such errors you
should refer to the package description elsewhere in the book or consult the orig-
inal package documentation.

But even if there are no real errors that stop the processing, warning and
information messages might be shown on the terminal or in the transcript file.
They are treated in Section B.2, where you will find all LaTEX core messages and all
relevant TEX messages that may need your attention, together with an explanation
of their possible causes and suggestions on how to deal with them.

890 Tracing and Resolving Problems

The final section deals with tools for tracing problems in case the error or
warning information itself is not sufficient or does not exist. We will explore ways
to display command definitions and register values, then take a look at diagnosing
and solving page-breaking problems. This is followed by suggestions for identify-
ing and solving paragraph-breaking problems. We finish with a description of the
trace package, which helps in thoroughly tracing command execution, in case your
own definitions or those of others produce unexpected results.

Some of the material in this appendix can be considered “low-level” TEX, some-
thing that, to the authors’ knowledge, has never been described in a “LaTEX” book.
It is, however, often important information. Directing the reader to books like The
TEXbook does not really help, since most of the advice given in books about plain
TEX is not applicable to LaTEX or produces subtle errors when used. We therefore
try to be as self-contained as possible by offering all relevant information about
the underlying TEX engine as far as it makes sense within the LaTEX context.

B.1 Error messages

When LaTEX stops to display an error message, it also shows a line number indi-
cating how far it got in the document source. However, because of memory con-
siderations in the design of TEX itself, it does not directly show to which file this
source line number belongs. For simple documents this is not a problem, but if
your document is split over many files you may have to carefully look at the ter-
minal output or the transcript file to identify the file LaTEX is currently working on
when the error occurs.

Whenever LaTEX starts reading a file, it displays a “(” character that is immedi-
Finding the source

line of an error
ately followed by the file name. Once LaTEX has finished reading the file, it displays
the matching “)” character. In addition, whenever it starts preparing to output a
page, it displays a “[” character followed by the current page number. Thus, if you
see something like

(./trial.tex [1] (./ch-1.tex [2] [3] (./table-1.tex [4] [5]) [6]
! Undefined control sequence.
<argument> A \textss

{Test}
l.235 \section{A \textss{Test}}

\label{sec:test}
?

you can deduce that the error happened inside an argument of some command
(<argument>) and was detected when LaTEX gathered material for page 7. It got as
far as reading most of line 235 in the file ch-1.tex. In this example the error is
readily visible in the source line: \textsf was misspelled as \textss inside the
argument to the \section command. In some cases, however, the relationship
between error and source line is blurred or even nonexistent.

B.1 Error messages 891

For example, if you define \renewcommand\thepart{\Alp{part}}, then the
typo will appear only when you use the \part command that executes your defi-
nition. In that case you get

! Undefined control sequence.
\thepart ->\Alp

{part}
l.167 \part{Test}

In this particular case the actual error is not on line 167 andmost likely not even in
the current file—the \part command merely happens to call the faulty definition
of \thepart .

Sometimes an error is detected by LaTEX while it is preparing a new page. Since
this is an asynchronous operation, the source line listed in the error message is of
no value whatsoever. So if you do not understand how the error should be related
to the source line, you may well be right—there is, indeed, no relationship. Here
is an example:

! Undefined control sequence.
\thepage ->\romen

{page}
l.33 T

his is a sample text to fill the page.

One way to obtain additional information about an error (or information
about how LaTEX intends to deal with it) is to reply 〈h〉 in response to the ? that
follows the error message. If used with a TEX error such as the one above, we get

? h
The control sequence at the end of the top line
of your error message was never \def’ed. If you have
misspelled it (e.g., ‘\hobx’), type ‘I’ and the correct
spelling (e.g., ‘I\hbox’). Otherwise just continue,
and I’ll forget about whatever was undefined.

You probably already see the problem with advice coming directly from the TEX
engine: you may have to translate it, because it often talks about commands
that are not necessarily adequate for LaTEX documents (e.g., for \def you should
read \newcommand or \renewcommand). With real LaTEX errors this is not the case,
though here you sometimes get advice that is also not really helpful:

You’re in trouble here. Try typing <return> to proceed.
If that doesn’t work, type X <return> to quit.

Well, thank you very much, we already knew that! It is, however, worth a try, since
there are many messages with more detailed advice.

892 Tracing and Resolving Problems

Another way to get additional information about an encountered error is to set theDisplaying the stack
of partially

expanded macros
counter errorcontextlines to a large positive value. In that case LaTEX will list the stack
of the current macro executions:

1 ! Undefined control sequence.
2 \thepage ->\romen
3 {page}
4 \@oddfoot ->\reset@font \hfil \thepage
5 \hfil
6 \@outputpage ...lor \hb@xt@ \textwidth {\@thefoot
7 }\color@endbox }}\globa...
8

9 \@opcol ...lumn \@outputdblcol \else \@outputpage
10 \fi \global \@mparbotto...
11 <output> ...specialoutput \else \@makecol \@opcol
12 \@startcolumn \@whilesw...
13 <to be read again>
14 T
15 l.33 T
16 his is a sample text to fill the page.

You read this bottom up: LaTEX has seen the T (lines 15 and 16) but wants to read it again
later (<to be read again>, lines 13 and 14) because it switched to the output routine
(<output>). There it got as far as executing the command \@opcol (lines 11 and 12), which
in turn got as far as calling \@outputpage (lines 9 and 10), which was executing \@thefoot
(lines 6 and 7). Line 4 is a bit curious since it refers to \@oddfoot rather than \@thefoot as
one would expect (\@thefoot expands to \@oddfoot , so it is immediately fully expanded
and not put onto the stack of partially expanded macros). Inside \@oddfoot we got as far
as calling \thepage , which in turn expanded to \romen (lines 2 and 3), which is finally
flagged as an undefined command (line 1).

Fortunately, in most cases it is sufficient only to display the error message and the
source line. This is why LaTEX’s default value for errorcontextlines is -1, which means
not showing any intermediate context.

Errors can also occur when LaTEX is processing an intermediate file used to

�Persistent errors transfer information between two runs (e.g., .aux or .toc files). Data in such files
can be corrupted due to an error that happened in a previous run. Even if you
have corrected that error in your source, traces of it may still be present in such
external files. Therefore, in some cases you may have to delete those files before
running LaTEX again, although often the problem vanishes after another run.

Common sources for such nasty errors in LaTEX are so-called fragile commands

�Errors
due to fragile

commands

used unprotected in moving arguments. Technically, a moving argument is an ar-
gument that is internally expanded by LaTEX without typesetting it directly (e.g., by
using the internal LaTEX construct \protected@edef1). But as a rule of thumb you

1Some people have heard that the TEX primitive \edef exists for this purpose. It is not advisable
to use it in your own commands, however, unless you know that it will never receive arbitrary
document input. You should use \protected@edef instead, since that command prevents fragile
commands from breaking apart if they are prefixed by \protect!

B.1 Error messages 893

can think of it as an argument that is moved somewhere else before typesetting—
for example, the arguments of sectioning commands, such as \section (sent to
the table of contents), the argument of \caption (sent to the list of figures or
tables), and the arguments of \markboth and \markright .

The best, though not very helpful, definition of a fragile command is that it
is a command that produces errors if it is not preceded with a \protect com-
mand when used in a moving argument. Today, most common LaTEX commands
have been made robust, so that such protection is not necessary. However, if you
get strange errors from a command used in a moving argument, try preceding it
with \protect . Typically, core LaTEX commands with optional arguments are frag-
ile, but \sqrt[3]{-1} is robust and so are all user-defined commands with an
optional argument. On the other hand, \[. . . \] is fragile in standard LaTEX, yet it
becomes robust once the amsmath package is loaded. In other words, there are
no precise rules defining which commands belong to which category. User-defined
commands with only mandatory arguments are fragile if they contain any fragile
commands in their definition. For example, the definition

\newcommand\frail{\ifthenelse{\value{section}<10 \and
\value{subsection}=1}%

{\typeout{Yes}}{\typeout{No}}}

is fragile because the comparison argument of \ifthenelse is fragile. If you used
\frail in the @ expression of a tabular (not that this makes much sense),

\nonstopmode \begin{tabular}{@{\frail}l} x \end{tabular}

you would see the following 134 errors before LaTEX finally gives up (the left col-
umn displays the number of occurrences):

1 ! Argument of \@array has an extra }.
2 ! Argument of \@firstoftwo has an extra }.
1 ! Extra }, or forgotten $.
4 ! Extra }, or forgotten \endgroup.
1 ! LaTeX Error: Illegal character in array arg.
1 ! LaTeX Error: Can be used only in preamble.

51 ! Misplaced \cr.
2 ! Missing # inserted in alignment preamble.
1 ! Missing = inserted for \ifnum.

49 ! Missing \cr inserted.
2 ! Missing control sequence inserted.
2 ! Missing number, treated as zero.
1 ! Missing { inserted.
2 ! Missing } inserted.
1 ! Paragraph ended before \renew@command was complete.
2 ! Paragraph ended before \reserved@b was complete.
1 ! Paragraph ended before \reserved@c was complete.

894 Tracing and Resolving Problems

2 ! Undefined control sequence.
1 ! Use of \@argtabularcr doesn’t match its definition.
7 ! Use of \@array doesn’t match its definition.

In fact, in this particular example TEX gets into a loop in which it tries to insert a
\cr command, immediately rejects its own idea, and then repeats this process.

What we can learn from this example is the following: whenever you encounter�All TEX errors
can be caused by
a fragile command

in a moving
argument!

a strange TEX error that has no simple explanation (e.g., a misspelled command
name), it is possibly due to a fragile command that got broken in a moving
argument—so try protecting it with \protect at the point where the error oc-
curs. Since this can be the reason behind every TEX error, we shall not repeat this
possible cause for every one of them (after all, more than 60 TEX error messages
are explained below).

As discussed in Section A.1.1, a few restrictions are placed on the charac-

�Errors
produced by

cross-reference keys

ters that can be used in reference key arguments of \label and \bibitem . In a
nutshell, such keys sometimes act like moving arguments and, depending on the
combination characters used and the packages loaded, all kinds of dreadful TEX
errors may show up. In that case protection with using the \protect command
will not work; instead, you have to use a simpler key conforming to the syntax
restrictions for such keys.

Alphabetical listing of TEX and LATEX errors

In the list of errors below, all TEX and all package errors are flagged with a boxed
reference at the end of the error message. Unflagged error messages are LaTEX
errors with the prefix “LaTeX Error:” omitted.

* If LaTEX stops by just displaying a star, then it has reached the end of
your source document without seeing a request to finish the job (i.e.,
\end{document} or \stop) and is now waiting for input from the terminal.
While this is in itself not an error, in most circumstances it means that some-
thing went seriously wrong. If there have been no previous errors and your
document finishes with \end{document} , then you might have forgotten to
close a verbatim environment so that the remainder of the document was
processed “verbatim”.

To find the source of this problem in a large document, reply \end{foo} ,
which either should give you an “Environment . . . ended by. . . ” error (indicat-
ing what environment LaTEX thinks is still open) or will be swallowed without
any reaction, in which case you know that you are indeed in some “verbatim”
context. In the latter event, try to interrupt LaTEX (by pressing Control-C or
whatever your installation requires) and reply with “x” to the “Interruption”
error to quit the job. Looking afterwards at the last page in the typeset docu-
ment usually gives some hint about where things started to go wrong.

B.1 Error messages 895

‘〈character〉’ invalid at this point calc

You loaded the calc package and one of the formulas in \setcounter ,
\setlength , \addtocounter , or \addtolength used a syntax not supported
by calc. See Section A.3.1 for details.

〈command〉 allowed only in math mode amsmath

This command or environment can be used only in math mode. Check care-
fully to see what is missing from your document.

〈name〉 undefined
This error is triggered when you use \renewcommand for a 〈name〉 that is
unknown to LaTEX. Either 〈name〉 was misspelled or you should have used
\newcommand instead.

\< in mid line
The \< , defined within a tabbing environment, was encountered in the mid-
dle of a line. It can be used only at the beginning of a line (e.g., after \\).

A <Box> was supposed to be here TEX

This error is the result of using a box command, such as \sbox , with an
invalid first argument (i.e., one not declared with \newsavebox). Usually, you
first get the error “Missing number, treated as zero” indicating that TEX uses
box register zero.

Accent 〈command〉 not provided by font family 〈name〉 textcomp

The textcomp package implements the TS1 encoding, which is unfortunately
implemented fully by just a minority of the font families usable with LaTEX. No
accent will be printed. See Section 7.5.4 for information on how to provide an
alternative representation for it.

Argument of 〈command〉 has an extra } TEX

A right brace was used in place of a mandatory command argument (e.g.,
\mbox}). Fragile commands, when used without \protect in a moving argu-
ment, often break in a way that generates this or one of the other “extra”
errors discussed below.

Bad \line or \vector argument
LaTEX issues this error if you specified a negative length or used an illegal
slope with either \line or \vector . In the latter case, see Chapter 10 for
alternatives.

Bad math environment delimiter
This error is triggered when a \(or \[command is encountered inside a
formula, or when \) or \] is found in normal text. Check whether these com-
mands are properly matched in your document.

\begin{〈env〉} allowed only in paragraph mode amsmath

There are many places, such as within LR-mode text or math mode, where it

896 Tracing and Resolving Problems

does not make sense to have a math display. With amsmath the whole display
〈env〉 will simply be ignored.

\begin{〈env〉} on input line 〈line number〉 ended by \end{〈other env〉}
You receive this error when LaTEX detects that the environment 〈env〉 was in-
correctly terminated with the end-tag for the environment 〈other env〉. The
most likely case is that you, indeed, forgot to close the environment 〈env〉.

Another possible source of this error is trying to use verbatim-like environ-
ments or an amsmath display environment inside the definition of your own
environments, which is often impossible. See Section 3.4.3 on page 164 for
solutions involving verbatim-like environments.

If neither is the case and you are absolutely sure that all environments
are properly nested, then somewhere between the start of 〈env〉 and the
point where the error was found there must be a command that issues an
\endgroup without a prior matching \begingroup so that LaTEX is fooled into
believing that the 〈env〉 environment ended at this point. One way to find
that problem is to move the end-tag closer to the begin-tag, until the problem
disappears.

\begin{split} won’t work here amsmath

Either this split environment is not within an equation or perhaps you need
to use aligned here.

Can be used only in preamble
LaTEX has encountered a command or environment that should be used only
inside a package or the preamble (i.e., before \begin{document}). This error
can also be caused by a second \begin{document}.

Cannot be used in preamble
Some commands—for example, \nocite—are allowed only in the document
body (i.e., after \begin{document}). Move the declaration to that point.

Cannot define Unicode char value < 00A0 inputenc

Values less than "00A0 (decimal 160) are either invalid as Unicode values for
text characters or must not be redefined in LaTEX.

Cannot determine size of graphic in 〈file〉 graphics/graphicx

You did not specify an explicit image size on the \includegraphics com-
mand and LaTEX was unable to determine the image size from the graphics
〈file〉 directly. It usually does this automatically, for example, for .eps files
by reading the bounding box information. However, depending on the graph-
ics driver, it may be unable to extract this information from binary bitmap
images such as .jpg, .gif, and .png files.

Cannot include graphics of type: 〈ext〉 graphics/graphicx

You will get this error if you have specified a graphics type in the sec-
ond argument of \DeclareGraphicsRule or used the type keyword of
\includegraphics for which the loaded graphics driver has no support.

B.1 Error messages 897

\caption outside float
A \caption command was found outside a float environment, such as a
figure or table. This error message is disabled by some of the extension
packages described in Chapter 6.

Command 〈name〉 already defined
You try to declare a command, an environment, a new savebox, a length, or
a counter with a 〈name〉 that already has a meaning in LaTEX. Your declara-
tion is ignored and you have to choose a different name. This error is also
triggered if you use \newcommand with a 〈name〉 starting in \end..., even if
\renewcommand claims the 〈name〉 is unused. It will also be issued if you try
to define an environment 〈name〉 but the command \end〈name〉 already has
a definition. For instance, you cannot define an environment graf because
TEX has a low-level command called \endgraf .

Command 〈name〉 invalid in math mode
This is either a warning or an error message indicating that you have used a
command in math mode that should be used only in normal text. In case of
an error message, use h to get further help.

Command 〈name〉 not defined as a math alphabet
This error is issued when you try to use \SetMathAlphabet on a
〈name〉 that was not previously declared with \DeclareMathAlphabet or
\DeclareSymbolFontAlphabet to be a math alphabet identifier.

Corrupted NFSS tables
LaTEX tried some font substitution and detected an inconsistency in its internal
tables. This error happens if font substitution was triggered and the substitu-
tion rules contain a loop (i.e., some circular sub declarations exist) or when
the default substitution arguments for the current encoding point to a nonex-
istent font shape group.

Counter too large
This error is produced if you try to display a counter value with \fnsymbol ,
\alph , or \Alph and the value is outside the available range for the chosen
display form.

Dimension too large TEX

TEX can only deal with absolute sizes that are less than 16383.99998pt (about
226 inches). Even on a huge page this range should be enough.

\displaybreak cannot be applied here amsmath

An enclosing environment such as split, aligned, or gathered has created
an unbreakable block.

Division by 0 graphics/graphicx

Usually, you will get this error when you scale a graphic that has a
height of zero. This can happen unintentionally—for example, if you specify

898 Tracing and Resolving Problems

angle=-90,height=3cm on \includegraphics. The rotation turns the image
sideways, making the height zero, a value difficult to scale. In such a case use
totalheight instead.

Double subscript TEX

Two subscripts appear in a row (e.g., x_i_2) and LaTEX does not know whether
you mean xi2 or xi2 . Add braces to indicate the subscripts: x_{i_2}.

Double superscript TEX

LaTEX found two superscripts in a row. See the explanation above.

Encoding file ‘〈name〉’ not found fontenc

If you ask for encoding 〈enc〉, LaTEX tries to load the definitions for this encod-
ing from the file 〈enc〉enc.def (after converting 〈enc〉 to lowercase letters). If
this encoding file does not exist or cannot be found by LaTEX, you will get this
error message.

Encoding scheme 〈name〉 unknown
The encoding scheme 〈name〉 you have specified in a declaration or in
\fontencoding is not known to the system. Either you forgot to declare it
using \DeclareFontEncoding or you misspelled its name.

Environment 〈name〉 undefined
You get this error if you use \renewenvironment on an environment name
that is unknown to LaTEX. Either the 〈name〉 was misspelled or you should have
used \newenvironment instead.

Erroneous nesting of equation structures;
trying to recover with ‘aligned’

amsmath

Only certain amsmath display structures can be nested; aligned is one of
these, so the system replaces a wrongly nested environment with it. This is
probably not what you intended, so you should change the wrongly nested
environment.

Extra & on this line amsmath

This error occurs only when you are using old amsmath environments that
are not described in this book. If it does occur, then it is disastrous and you
need to check very carefully the environment where it occurred.

Extra alignment tab has been changed to \cr TEX

If you use an alignment structure, such as tabular or one of the display math
environments (e.g., eqnarray or split from the amsmath package), then each
row is divided into a defined number of columns separated by & signs. The
error means that there are too many such characters, probably because you
forgot a \\ indicating the end of the row (\cr is TEX’s name for the row end,
but it is not a fully functional equivalent to \\).

Extra \endgroup TEX

TEX has seen an \endgroup without a preceding matching \begingroup .

B.1 Error messages 899

Extra \or TEX

TEX encountered an \or primitive that has no matching low-level \ifcase
conditional. The extra \or can be the result from a bad use of \ifthenelse.

Extra \right TEX

This error is issued by TEX if it finds a \right command without a matching
\left in a formula. Recall that \left/\right pairs must be part of the same
“sub-formula”. They cannot, for example, be separated by & in an alignment
or appear on different grouping levels.

Extra }, or forgotten $ TEX

This error is triggered when math formula delimiters (e.g., $. . .$, \[. . .\]) and
brace groups are not properly nested. TEX thinks it has found a superfluous
}, as in $x}$, and is going to ignore it. While in this example the deletion of
the closing brace is the right choice, it would be wrong in \mbox{\(a} . There
a closing \) is missing, so deleting the } will produce additional errors.

Extra }, or forgotten \endgroup TEX

The current group was started with \begingroup (used, for example, by
\begin{..}) but TEX found a closing } instead of the corresponding
\endgroup . You will get this error if you leave a stray } inside a body of
an environment.

File ‘〈name〉’ not found
LaTEX is trying to load the file 〈name〉 but cannot find it, either because it does
not exist or because the underlying TEX program is looking in the wrong place.
If the file exists but LaTEX claims it is not available, it is possible that your
TEX installation uses a hashing mechanism to speed up file access, and you
may have to run a special program to make your installation aware of newly
installed files (e.g., mktexlsr with the TEX Live distribution on the CD-ROM).

The error is issued by commands like \input and \usepackage if they
cannot find the requested file. You can suggest an alternate file in response to
the error. If the new name is specified without an extension, the old extension
is reused if known to LaTEX. If you want to omit loading the file, press 〈Enter〉;
to quit the run, type x or X. In some cases you might receive a similar low-level
TEX error “! I can’t find file ‘〈name〉’” that is slightly more difficult to quit; see
the entry on page 901.

If a graphics file requested with \includegraphics is missing, it may help
to press h to learn which extensions have been tried when looking for the file.

File ended while scanning 〈something〉 TEX

This error is part of a “Runaway...” error; check the explanations on
page 909.

Float(s) lost
One or more floats (e.g., figure or table) or \marginpar commands have not
been typeset. The most likely reason is that you placed a float environment or
marginal note inside a box by mistake—inside another float or \marginpar ,

900 Tracing and Resolving Problems

or inside a minipage environment, a \parbox , or a \footnote . LaTEX might
detect this problem very late, such as when finishing the document. This can
make it very difficult to find the offending place in the source. The best solu-
tion in this case is to half your document repeatedly (for example, by using the
primitive \endinput), until the fraction producing the error is small enough
that you spot it.

If incorrect nesting is not the root cause, then you may have encountered a
serious coding problem in the float algorithm, probably caused by some extra
packages you loaded.

Font family 〈cdp〉+〈family〉 unknown
You tried to declare a font shape group with \DeclareFontShape without
first declaring the font 〈family〉 as being available in the encoding 〈cdp〉 using
\DeclareFontFamily .

Font 〈name〉 not found
LaTEX’s internal font tables contain wrong information, so LaTEX was unable to
find the external font 〈name〉. Either this font was never installed, its .tfm
file cannot be found by TEX for some reason, or the \DeclareFontShape dec-
laration referring to it contains a spelling error.

Font 〈internal-name〉=〈external-name〉 not loadable: 〈reason〉 TEX

TEX was unable to load a font with the LaTEX name 〈internal-name〉 having the
structure \〈encoding〉/〈family〉/〈series〉/〈shape〉/〈size〉 in NFSS notation.1

For example, it might say \T1/cmr/m/it/10 (Computer Modern medium italic
10 points in T1 encoding). This should give you a good hint as to which font
has a problem, even if you are not able to do much about it. There are two
possible 〈reason〉s:
Bad metric (TFM) file TEX

The TEX metric file for the font (i.e., 〈external-name〉.tfm) is corrupted.
Your installation may have some utility programs to check .tfm files in
detail, although this usually requires expert help.

Metric (TFM) file not found TEX

The TEX metric file for the font (i.e., 〈external-name〉.tfm) was not found.
Your installation may have a package (e.g., cmbright) to support a cer-
tain font family but the corresponding fonts are not available or are not
properly installed.

Font 〈internal-name〉=〈external〉 not loaded: Not enough room left TEX

TEX can load only a certain number of fonts and there was no space left to
load 〈internal-name〉. To find out which fonts are loaded, use the package
tracefnt described in Section 7.5.6. One possible reason for excessive loading
of fonts is the use of unusual font sizes for which LaTEX has to calculate and
load the corresponding math fonts; see Section 7.10.7 for details.

1This is, in fact, a single command name, but due to the slashes in the name you cannot enter it
directly in your document.

B.1 Error messages 901

Font shape 〈font shape〉 not found
This error message is issued when there is something very wrong with a
\DeclareFontShape declaration—perhaps if it does not contain any size spec-
ifications. Check the set-up for the font shape group in question.

I can’t find file ‘〈name〉’ TEX

A low-level TEX error raised when TEX cannot find a file that was requested to
load. This error can be bypassed only by providing TEX with a file that it can
find, or by stopping the run altogether (if your operating system allows that).
To get past this error, many installations offer a file null.tex so that you can
reply null in response. LaTEX normally uses the error message “File ‘〈name〉’
not found”, which supports various user actions. However, depending on the
package coding, you may get the current error instead.

I can’t write on file ‘〈name〉’ TEX

TEX is not allowed to write data to the file 〈name〉. It is probably read-only
or you may not have writing permission for its directory. On some TEX imple-
mentations (e.g., those on the TEX Live CD), the error may be preceded by a
line like the following:

tex: Not writing to /texmf/tex/latex/base/latex.ltx (openout_any = p).

These TEX installations are by default configured to be “paranoid” (hence, “p”
above) when writing to files. They allow you to write only to files below the
current directory and not to any files specified with an absolute path name or
starting with a dot in their name. To change that behavior you have to modify
the settings in the file texmf.cnf .

Illegal character in array arg
You will get this error if the column specification for a tabular or array
environment or a \multicolumn command contains characters that are not
defined as column specifiers to LaTEX. A likely cause is that you used the ex-
tended syntax of the array package, described in Chapter 5, but forgot to load
the package in the preamble (e.g., after you have copied a table from one
document to another).

Illegal parameter number in definition of 〈command〉 TEX

This error occurs when a (re)defined command or environment uses #〈digit〉
in the replacement text, with a digit higher than the declared number of
parameters. This error can be implicitly caused by nesting declaration com-
mands, such as \newcommand , and forgetting that inner commands refer to
their arguments by doubling the # characters; see page 846 for details. An-
other possible cause is referring to environment arguments in the second
mandatory argument of \newenvironment or \renewenvironment .

Illegal unit of measure (pt inserted) TEX

You will get this error if you misspell or forget the unit when specifying the
value for a length parameter; see Section A.1.5.

902 Tracing and Resolving Problems

Improper argument for math accent:
Extra braces must be added to prevent wrong output

amsmath

The whole of the “accented sub-formula” must be surrounded by braces.

Improper discretionary list TEX

This error is produced by TEX if it encounters a \discretionary command
whose arguments contain anything other than characters, boxes, or kerns,
after expansion.

Improper \hyphenation TEX

If you want to specify a hyphenation exception with \hyphenation , then you
have to ensure that the argument contains only letters and - characters to
indicate the hyphenation points. The problem is that, for example, accented
characters in some font encodings are individual glyphs (allowed) but in other
font encodings produce complicated constructs requiring the \accent primi-
tive. For example, if the T1 encoding is used, then \"u refers to a single glyph.
Thus,

\usepackage[T1]{fontenc} \hyphenation{T\"ur-stop-per}

is valid. The same hyphenation exception used with the default OT1 encod-
ing would produce this error. See page 455 for an explanation of character
differences in the major encodings.

Improper \prevdepth TEX

You used \the\prevdepth or \showthe\prevdepth outside of vertical mode,
which is not allowed. This error will also show up if you mistakenly placed a
float (e.g., a figure or table) inside a math display environment.

Improper \spacefactor TEX

You used \the\spacefactor or \showthe\spacefactor outside of horizon-
tal mode, which is not allowed.

\include cannot be nested
LaTEX encountered an \include command inside a file loaded with \include .
Because of implementation constraints this is impossible. Either change the
inner \include into \input or rearrange your document file structure so that
all \include statements are in the main document file.

Incompatible list can’t be unboxed TEX

TEX was asked to unpack a box with horizontal material while trying to build a
vertical list, or vice versa. Either you encountered a serious programming error
in a package or you used some commands in a way explicitly not supported.
For example, the commands from the soul package will produce this error
when they are nested into each other.

Incomplete 〈conditional〉; all text was ignored after line 〈number〉 TEX

A low-level TEX conditional was unfinished (no matching \fi) when LaTEX
reached the end of the current input file.

B.1 Error messages 903

Infinite glue shrinkage found 〈somewhere〉 TEX

To break paragraphs into lines or the galley into pages, TEX assumes that there
is no rubber length that can arbitrarily shrink, since that would mean that any
amount of material can be placed into a single line or onto a single page. Thus,
\hspace{0pt minus 1fil} in a paragraph, or \vspace{0pt minus 1fil}
between paragraphs is not allowed and will raise this error (〈somewhere〉
gives some indication about where the offending material was found).

Interruption TEX

You will get this error after interrupting the LaTEX run (with Control-C or what-
ever your installation offers), so you should not be surprised by it. To finish
the run prematurely, press x followed by 〈Return〉. Just pressing 〈Return〉 will
continue the run.

Invalid use of 〈command〉 amsmath

You have used an amsmath command in a place where it does not make sense.
Look up the correct use of this command.

Keyboard character used is undefined in input encoding 〈name〉 inputenc

The 8-bit number encountered in the document is not mapped by the input
encoding 〈name〉 to some LICR object (see Sections 7.5.2 and 7.11.3). Check
whether the document is really stored in the specified encoding.

Language definition file 〈language〉.ldf not found babel

When LaTEX processes the option list for babel and encounters an unknown
option 〈language〉, it tries to load a file by the name of 〈language〉.ldf. This
message is displayed when LaTEX fails to find it. This error can be caused by a
simple typing mistake, or the file might not be stored on LaTEX’s search path.

Limit controls must follow a math operator TEX

You can use \limits or \nolimits only following math operators such as
\sum . See Table 8.4 for a list of common operator commands.

\LoadClass in package file
The \LoadClass command is only allowed in class files; see Section A.4.

Lonely \item—perhaps a missing list environment
The \item command is only allowed within list structures but LaTEX believes
that this one was found outside a list.1

Math alphabet identifier 〈id〉 is undefined in math version 〈name〉
The math alphabet identifier 〈id〉 was used in a math version (〈name〉) for
which it was not set up. An additional \SetMathAlphabet declaration should
be added to the preamble of the document to assign a font shape group for
this alphabet identifier.

1In contrast to the “. . . perhaps a missing \item” error, LaTEX’s diagnosis in this case is usually
correct.

904 Tracing and Resolving Problems

Math version 〈name〉 is not defined
A math alphabet or a symbol font was assigned to a math version that is
unknown to LaTEX. Either you misspelled its name or you forgot to declare
this version (perhaps you have to add some package file). It is also possible
that the math version you selected with \mathversion is not known to the
system.

Misplaced alignment tab character & TEX

LaTEX found an & character outside of tabular, align, or one of the other
alignment environments. If you want to typeset &, use \& instead. A possible
cause is use of the amsmath environment cases or matrix without loading
the package.

Misplaced \cr or Misplaced \crcr TEX

A \cr is the TEX low-level command for ending a row in an alignment structure
(\crcr is a variation thereof); the corresponding LaTEX command is \\. TEX
believes it came across such a command outside of an alignment structure.

Misplaced \noalign TEX

The TEX primitive \noalign is internally used to place “nonaligned” material
between rows of alignment displays. It is therefore allowed only directly fol-
lowing the command that finishes a row. For example, you get this error when
you use \hline outside of array or tabular, or not directly after \\ within
these environments.

Misplaced \omit TEX

The TEX primitive \omit is internally used to change the column specifica-
tions in an alignment display (e.g., to span rows with \multicolumn inside a
tabular). The \omit command (and thus the commands calling it) is allowed
only at the very beginning of an alignment cell (i.e., following \\ or &).

Missing \begin{document}
This error occurs if typesetting is attempted while still within the document
preamble.1 It is most likely due to a declaration error that is misinterpreted
by LaTEX. The error is also produced by text following \begin{filecontents}
on the same line.

Missing control sequence inserted TEX

You used \newcommand or \renewcommand without providing a command
name (starting with a backslash) as the first argument.

Missing \cr inserted TEX

TEX thinks it is about time to end the row in an alignment structure and in-
serted its low-level command for this purpose. In a LaTEX document, this guess
is usually wrong, so TEX’s recovery attempt usually fails in such a case.

1Typesetting inside an \sbox or \savebox declaration is accepted, but it is usually wise to move
such declarations after \begin{document} , since some packages may delay their final set-up until
that point.

B.1 Error messages 905

Missing delimiter (. inserted) TEX

A \left , \right , or one of the \big.. commands was not followed by a
delimiter. As corrective action the empty delimiter “.” was inserted. See Sec-
tion 8.5.3 on page 498 for details.

Missing \endcsname inserted TEX

This error can arise from using commands as part of the name of a counter
or environment (e.g., \newenvironment{Bl\"ode}).

Missing number, treated as zero TEX

This error occurs when TEX is looking for a number or a dimension but finds
something else. For example, using \value{page} instead of \thepage would
produce this error, since an isolated \value makes TEX expect a low-level
counter assignment. In general, using a length register without a proper muta-
tor function like \setlength can trigger this error. You also get this message
when \usebox is not followed by a box bin defined with \newsavebox , since
internally such bins are represented by numbers.

Missing p-arg in array arg
There is a p column specifier not followed by an expression in braces (contain-
ing the width) in the argument to tabular, array, or \multicolumn .

Missing @-exp in array arg
There is an @ column specifier not followed by an expression in braces (con-
taining the inter-column material) in the argument to tabular, array, or
\multicolumn .

Missing # inserted in alignment preamble TEX

An alignment preamble specifies the layout of the columns in an alignment
structure. Internally, TEX uses # to denote the part of the column that should
receive input. In LaTEX this is unlikely to appear as a first error.

Missing = inserted for \ifnum TEX

TEX complains that the low-level \ifnum conditional is not followed by two
numbers separated by <, =, or >. This error can occur when you forget the
comparison operator in \ifthenelse .

Missing = inserted for \ifdim TEX

The low-level \ifdim conditional is not followed by a comparison between
two lengths.

Missing $ inserted TEX

TEX has encountered something in normal text that is allowed only in math
mode (e.g., \sum , \alpha , ^), or something that is not allowed inside math
(e.g., \par) while processing a formula. It has therefore inserted a $ to switch
to math mode or to leave it. If, for example, you tried to get an underscore by
simply using _ instead of _ , LaTEX would typeset the rest of the paragraph as
a formula, most likely producing more errors along the way.

906 Tracing and Resolving Problems

Missing \endgroup inserted TEX

This error indicates that a grouping structure in the document is incorrectly
nested. Environments internally use \begingroup and \endgroup and for
some reason TEX thinks that such a group was not properly closed. If you can-
not determine why the group structure is faulty, try using the \showgroups
or \tracinggroups feature of eTEX, as explained on page 917.

Missing \right. inserted TEX

Your formula contains a \left without a matching \right . Recall that
\left/\right delimiter pairs must be part of the same “sub-formula”; they
cannot, for example, be separated by & in an alignment or appear on different
grouping levels.

Missing { inserted TEX

TEX thinks there is an open brace missing and inserted one. This error is, for
example, caused by a stray } inside a tabular cell.

Missing } inserted TEX

Something is wrong in the grouping structure of the document and TEX tries
to recover by inserting a closing brace. This attempt either gets it onto the
right track again or causes you to receive more errors. Usually, the problem be-
comes apparent if you look at the typeset output. If you cannot determine why
the group structure is faulty, try using the \showgroups or \tracinggroups
feature of eTEX, as explained on page 917.

Multiple \label’s: label 〈label〉 will be lost amsmath

Within the amsmath display environments, you can have only one \label per
equation. It is usually best to remove all but the last, as it is the only one that
will be effective.

Multiple \tag amsmath

Within the amsmath display environments, you can have only one \tag com-
mand per equation. All but the first will be ignored.

No counter ’〈name〉’ defined
The counter 〈name〉 referenced in either \setcounter , \addtocounter , or
the optional argument of \newcounter or \newtheorem is unknown to LaTEX.
It must first be declared with \newcounter .

No Cyrillic encoding definition files were found babel

The language definition files for the supported “Cyrillic languages” check
whether any of the known Cyrillic font encoding files (e.g., T2A, T2B) can be
found. If not, this error message is displayed and you need to install Cyrillic
support for LaTEX first.

No declaration for shape 〈font shape〉
The sub or ssub size function used in a \DeclareFontShape command refers
to a substitution shape that is unknown to LaTEX’s font selection scheme.

B.1 Error messages 907

No driver specified color/graphics/graphicx

The package graphics, graphicx, or color was loaded without specifying a tar-
get device option. On most installations this is done using the configuration
files graphics.cfg and color.cfg.

No room for a new 〈register〉 TEX

The packages loaded in your document require more internal registers
(\count, \dimen, . . .) than there are available in TEX. Try processing your doc-
ument with eTEX and additionally load the etex package.

No \title given
A LaTEX class has executed \maketitle without seeing a \title declaration.
Only \date is optional when this command is used.

Not a letter TEX

You specified a hyphenation exception with \hyphenation but the argument
to this command contained some characters that TEX does not consider to be
letters. For example, \hyphenation{la-ryn-gol-o-gist’s} would produce
such an error since ’ is not a “letter” in TEX’s categorization.

Not in outer par mode
This error is issued when a \marginpar or a float environment, such as table
or figure, is encountered inside a box-producing command or environment.
For instance, you cannot use a \marginpar in a footnote, a float, a tabular,
or a similar place (since all of them produce boxes). Move the offending object
to the main galley.

Number too big TEX

You assigned or used a number in \setcounter or \addtocounter that is
larger than the largest number that TEX can handle (2147483647, hexadecimal
7FFFFFFF). This error can also happen when modifying a length register with
\setlength or \addtolength .

OK TEX

You used a TEX tracing command, like \show or \showthe; after displaying
the data LaTEX stopped with this message to allow for some interaction on
the command line (e.g., entering i\show.. to view some other values). This
message is also shown if \tracingonline is positive and commands are used
that normally only write to the transcript file; see the next message.

OK (see the transcript file) TEX

You used a TEX tracing command, like \showbox or \showlists , without also
directing LaTEX to display the result on the terminal.

Old form 〈command〉 should be \begin{〈envname〉} amsmath

You have used cases, matrix, or pmatrix in its non-amsmath command form
(probably with its old internal syntax). Change to the amsmath environment
form with standard internal syntax.

908 Tracing and Resolving Problems

Only one # is allowed per tab TEX

This error indicates a broken alignment template. In LaTEX it should not occur,
unless caused by a fragile command in a moving argument.

Option clash for package 〈name〉
The package 〈name〉 was requested twice with a conflicting set of options.
When you press H in response to this error, LaTEX will show you the sets of
conflicting options. As LaTEX loads a package only once,1 the best solution is
to specify all options on the first occasion. If this is not possible, because the
package is already loaded as part of the class or another package, you can try
to specify the required options as global options to the \documentclass com-
mand. In an emergency you can even load a package before \documentclass
by using \RequirePackage . See Section 2.1.1 for details.

Page height already too large
You used \enlargethispage on a page whose vertical size is already larger
than 8191.99998pt, or roughly 113 inches. LaTEX thinks that this is danger-
ously large and will not extend the page size as requested.

Paragraph ended before 〈command〉 was complete TEX

As discussed in Section A.1.2, commands defined with \newcommand* or
\renewcommand* are not allowed to contain \par or an empty line. If
they do, you will get a Runaway argument together with this error. The
〈command〉 listed may not be the one used in your document. For example,
\emph{..\par..} will list \text@command in the error message (i.e., the in-
ternal command called by \emph).

(Please type a command or say ‘\end’) TEX

You have replied with 〈Return〉 in response to *. See first entry on page 894.
\pushtabs and \poptabs don’t match

You issued a \poptabs command in a tabbing environment, but there was
no previous \pushtabs command issued.

\RequirePackage or \LoadClass in Options Section
A \RequirePackage or \LoadClass was found inside a package or class
file between the \DeclareOption commands and \ProcessOptions . Load-
ing packages or classes in this part is not allowed as it would clobber the
data structure holding the current set of options; see Section A.4 for details.
If you want to load a package when a certain option is specified, use a flag to
indicate that the option was selected and load it after the \ProcessOptions
command has done its job.

Rotation not supported graphics/graphicx

You have requested rotation with \rotatebox or a similar command but the
selected graphics driver does not support rotation of objects. LaTEX will leave

1The only exception is the fontenc package, which can be loaded as often as needed with different
options; see Section 7.5.3 on page 361.

B.1 Error messages 909

the right amount of space but the printed document might show the image in
the wrong position.

Runaway 〈something〉 TEX

TEX thinks it has scanned too far while looking for the end of 〈something〉,
where 〈something〉 can be either argument, definition, preamble, or text.
Unless low-level TEX code is at fault, the most likely cause is argument.
For example, you forgot the closing brace of an argument, it might cause
TEX to scan until it reaches the end of the file or until its memory is
filled—whichever comes first. Incomplete definitions done with \newcommand ,
\newenvironment, and so forth also claim that the argument has run away.
Only low-level definitions, involving TEX primitives like \def , produce a
Runaway definition.

A Runaway preamble means that an alignment structure has problems
(that should not occur in normal LaTEX documents) and Runaway text usu-
ally refers to a token register assignment (this should never happen unless
there is a serious package implementation error).

In contrast to the situation with normal error messages, you will not get a
line number that indicates where the error was detected (since TEX often has
reached the end of the file). Instead, you will see the beginning of the material
that was being absorbed. For example, if you have a definition without the
final closing brace,

\newcommand\foo{bar
\begin{document} Some text \end{document}

you will get

Runaway argument?
{bar \begin {document} Some text \end {document}
! File ended while scanning use of \@argdef.
<inserted text>

\par
<*> samplefile.tex

?

The fact that TEX in that case inserted \par as a recovery action is of little
help, since the complete document was already swallowed. Instead of “File
ended while...”, you might see some other message at this point, such as
“Paragraph ended before...”.

Scaling not supported graphics/graphicx

You have requested scaling with \resizebox or a similar command but the
selected graphics driver does not support scaling of objects. LaTEX will leave
the right amount of space but the printed document will show the image at
the original (unscaled) size.

Something’s wrong–perhaps a missing \item
This error message is produced by an \addvspace command when encoun-
tered in horizontal mode. The follow-up remark about “perhaps a missing

910 Tracing and Resolving Problems

\item” is unfortunately seldom correct. For example, forgetting the closing
brace on \mbox as in \mbox{...\section{..}... would produce this error,
since the \section command that executes \addvspace internally is now
used in horizontal mode.

Identify which command issued the \addvspace causing the error, and
check whether that command was used incorrectly. Refer to page 858 for an
in-depth discussion of the \addvspace command.

Sorry, I can’t find 〈format〉 ... TEX

If you get this message, then LaTEX never started because TEX did not find the
〈format〉 containing the basic LaTEX definitions. There is a problem with your
TEX installation and you have to consult the installation documentation.

Suggested extra height (〈value〉) dangerously large
Using the 〈value〉 with \enlargethispage would make the resulting page too
large (more than 113 inches) for LaTEX’s liking.

Symbol font 〈name〉 is not defined
You tried to make use of the symbol font 〈name〉—for example,
within a \DeclareMathSymbol command—without declaring it first with a
\DeclareSymbolFont declaration.

Symbol 〈command〉 not provided by font family 〈name〉 textcomp

The textcomp package implements the TS1 encoding, which is unfortu-
nately implemented fully by just a minority of the font families usable with
LaTEX. The package will typeset the symbol using a default family stored in
\textcompsubstdefault . You can turn the error into a warning by loading
textcomp with the option warn. See Section 7.5.4 for more details.

Tab overflow
LaTEX supports up to 13 tabulator positions (\=) inside a tabbing environment,
and you have used a larger number. If not all of them are needed at the same
time, you can try solving the problem by using \pushtabs and/or providing
template lines with \kill .

\tag not allowed here amsmath

The \tag command is allowed only within the top level of a mathematical
display. It is usually best to move it to the end of the logical equation in
which it occurs.

TeX capacity exceeded, 〈explanation〉 TEX

TEX ran out of some sort of memory and died. This error is discussed in detail
in Section B.1.1 on page 915.

Text line contains an invalid character TEX

The input file contains a strange, nonprinting character that is rejected by TEX.
This may happen if you used a word processor to create the file and did not
save it as “text”.

B.1 Error messages 911

The attribute 〈attrib〉 is unknown for language 〈lang〉 babel

You tried to activate an attribute for a language 〈lang〉 that is not defined
in the language definition file for this language. Check the documentation of
babel with respect to this language.

The character ’〈char〉’ is not a shorthand character in 〈language〉 babel

When a user uses the command \shorthandon and passes it a 〈char〉 that is
not defined to be a shorthand for the current 〈language〉, this error message
is displayed and the instruction is ignored.

The font size command \normalsize is not defined...
A class file needs to provide a minimal set-up, including a definition for
\normalsize; see Section A.4.9 on page 888 for details.

There’s no line here to end
This error is triggered if \newline or \\ is found outside a paragraph (i.e.,
after a \par or an empty line). If the intention was to produce extra vertical
space, use \vspace or any of the other commands described on page 857.

This may be a LaTeX bug
To the author’s knowledge, until now this message never actually signaled a
LaTEX bug. It means, however, that LaTEX got thoroughly confused by previous
errors and lost track of the state of its float data structure. It is best to stop
and correct previous errors first.

This NFSS system isn’t set up properly
This error occurs when LaTEX detects a mistake while trying to verify
the font substitution tables at \begin{document}. It means that either
a \DeclareFontSubstitution or \DeclareErrorFont1 declaration is cor-
rupted. These declarations need to point to valid font shapes (declared with
\DeclareFontShape). Type h for additional information and inform your
system maintainer. If you are the system maintainer, read the end of Sec-
tion 7.10.5.

Too deeply nested
Standard LaTEX supports a total of six levels of lists nested in each other. Those
levels can include up to four lists of type itemize or enumerate. This error
signals that your document has overflowed one of these limits. You probably
have forgotten to end some list environments properly. If you really need addi-
tional levels, you need to copy the base definitions for list, itemize, and/or
enumerate into a private package and modify their hard-wired constants.

Too many columns in eqnarray environment
The eqnarray environment supports a maximum of three columns (i.e., two
& signs per row). For serious math, consider the amsmath package described
in Chapter 8, which allows for more complex display structures.

1The declaration \DeclareErrorFont is used during installation and points to a font (font shape
+ size) that should be used when everything else fails. Its default is Computer Modern Roman 10pt,
which should be available with any TEX installation. See [109] for further details.

912 Tracing and Resolving Problems

Too many math alphabets used in version 〈name〉
You used too many different math alphabet identifiers in your formulas. If
this error occurs after adding the bm package, define \newcommand\bmmax{0}
before loading bm and try again; this prevents the package from preallocating
math alphabets.

Too many unprocessed floats
Floats that cannot be placed immediately are deferred by LaTEX, possibly caus-
ing subsequent floats to be deferred as well. LaTEX can defer up to 18 floats,
then you will receive this error message. Using the package morefloats will
increase this limit to 36 but if there is a float that cannot be placed for some
reason this change will merely delay receiving the above error. See Chapter 6
for ways to deal with this situation.

This error can also be triggered if you have too many \marginpar com-
mands within a single paragraph. A \marginpar temporarily uses two storage
bins for deferred floats as long as the current paragraph has not been type-
set (this allows a maximum of nine marginal notes per paragraph, or fewer if
there are already some deferred floats).

Two \documentclass or \documentstyle commands
Only one such command is allowed per document. Your document includes
more than one, perhaps as the result of combining two originally separate
documents.

Two \LoadClass commands
A class can load at most one other class to do the bulk of processing. See
Section A.4 for a detailed discussion of how classes are built.

Undefined color 〈name〉 color

You have requested a color with \color or a similar command from the color
package without previously defining it with \definecolor . See [57] or the
color package documentation for details.

Undefined control sequence TEX

This is perhaps the most common of all LaTEX errors, though it shows up as a
TEX error message: you have used a command name that was not previously
defined. Often you may have simply mistyped the name in your document
(e.g., \bmox instead of \mbox). To carry on in such a case, you can respond
with i\mbox , inserting the correct name. Later on you can correct your source
document. It is also possible to get this error as a result of using a fragile
command in a moving argument.

Undefined font size function 〈name〉
A size function used in \DeclareFontShape was misspelled. Check the entry
or tell your system maintainer.

Undefined tab position
This error is raised if you try to advance in a tabbing environment with \> ,
\+ , \- , or \< to a tabulator position that was not previously set up with \= .

B.1 Error messages 913

Either the \= is actually missing or perhaps you have used \+ or \pushtabs
and got confused when specifying the tabular position to which you actually
want to move.

Unknown graphics extension: 〈ext〉 graphics/graphicx

You will get this error if you try to load a fully specified graphics file (with ex-
tension 〈ext〉) and the graphics driver does not know the particular extension
and there is no default rule set up. The dvips program, for example, inter-
prets every unknown extension as EPS, so with this driver you will never see
this error but probably others.

Unknown option ‘〈option〉’ for package ‘〈name〉’
You specified an 〈option〉 for package 〈name〉 that is not declared by that
package. Consult the package documentation on the available options.

Use of 〈command〉 doesn’t match its definition TEX

Low-level macro definitions made with \def , instead of \newcommand and
friends, sometimes require special argument delimiters (e.g., the (..) of the
picture commands). If 〈command〉 is a LaTEX command, check its syntax. Oth-
erwise, this is most likely a spurious error due to using a fragile command in
a moving argument without \protect .

\usepackage before \documentclass
The \usepackage declaration can be used only after the main class was
loaded with \documentclass . Inside a class file you instead have to use
\RequirePackage .1

UTF-8 string \u8:〈8-bit-sequence〉 not set up for LaTeX use inputenc

The Unicode character denoted by the UTF-8 〈8-bit-sequence〉 is not known
to LaTEX. Under the precondition that it is available in a font encoding used
in the document, it has to be set up using the \DeclareUnicodeCharacter
declaration; see Section 7.11.3 on page 443.

\verb ended by end of line
To better detect errors, the argument of \verb must be placed on a single
line. Thus, this error signals that you either forgot the final delimiter for the
argument or the argument was broken over several lines in the source. In
case of very long arguments, it may help to split them over several \verb
commands and, if necessary, masking a line break in the source with a % sign.

\verb illegal in command argument
Except in very special situations (explicitly documented in this book), it is
not possible to use \verb (or verbatim) in the argument of other commands.
If you need verbatim text in such a place, use, for example, \SaveVerb and
\UseVerb from the fancyvrb package described in Section 3.4.3.

You already have nine parameters TEX

LaTEX supports command or environment definitions with a maximum of

1It is technically possible to load a package before a class by using \RequirePackage , but this
should be avoided unless you know what you are doing.

914 Tracing and Resolving Problems

nine parameters, but your \newcommand or \newenvironment specified 10
or more.

You can’t use ‘macro parameter #’ in 〈some〉 mode TEX

TEX found a stray # character somewhere that does not seem to be a reference
to an argument of some command. If you wanted to typeset this symbol, use
\# instead.

You can’t use ‘\spacefactor’ in vertical mode TEX

TEX lets you refer to the \spacefactor only when you are building a horizon-
tal list. You will get this error when you use the LaTEX command \@ outside of
a paragraph. Since many internal commands start with an @ in their names,
you might also get this error if you use code containing such internal com-
mands (e.g., \@startsection) in the preamble of your document without
surrounding it with \makeatletter and \makeatother . In that case TEX sees
\@ followed by the letters startsection , and a later use of this code then
executes \@ that in turn produces this error message.

You can’t use ‘\prevdepth’ in horizontal mode TEX

The \prevdepth dimension can be used only while in vertical mode (i.e., be-
tween paragraphs).

You can’t use ‘\end’ in internal vertical mode TEX

This is one of the more misleading TEX error messages, since it refers to the
TEX primitive \end (ending a TEX run) that was redefined by LaTEX to become
the end-tag of environments. The error means that LaTEX’s \end{document}
or the \stop command was encountered while LaTEX was building a box. For
example, \begin{figure}...\stop would generate it.

You can’t use ‘〈command〉’ in 〈some〉 mode TEX

TEX complains that 〈command〉 is not allowed in one of its modes. Some spe-
cific variations of this theme have already been discussed. If you haven’t used
〈command〉 directly, then the most likely cause for this error is a broken frag-
ile command in a moving argument.

You haven’t defined output directory for ‘〈path〉’ docstrip

The configuration file docstrip.cfg contains a declaration for
\BaseDirectory but the internal 〈path〉 in the docstrip script has no
translation to a local directory. Use \DeclareDirectory or \UseTDS in
docstrip.cfg to specify a translation as described in Section 14.2.3 on
page 830.

You haven’t defined the language 〈language〉 yet babel

Various user interface commands of babel check whether their argument is a
language that was specified in the option list when babel was loaded. If the
〈language〉 was not specified, processing is stopped and this error message
is displayed.

B.1 Error messages 915

You haven’t specified a language option babel

This message is shown when no known languages have been specified for
babel—that is, neither in the option list to babel nor in the global option list
(this is likely to be due to a typo). You should expect that processing your
document will nevertheless produce many more errors.

B.1.1 Dying with memory exceeded

The TEX program contains a number of internal tables of fixed size used for stor-
ing away different kinds of information needed at run time. Whenever any of these
tables overflows, LaTEX will abort with a “TeX capacity exceeded” error.

Until the mid-1990s, memory problems could, in fact, be due to the size of the
document. In some cases it was impossible to process a document as a whole.1

These days such limitations are gone or are at least less severe. For one, the aver-
age TEX implementation is already equipped with huge internal tables. In addition,
most implementations allow you to modify the table sizes via configuration files
instead of requiring you to manually recompile TEX. In some cases you may have
to generate a new LaTEX format; for more details, consult the documentation of
your TEX distribution.

2

Nevertheless, people experience this dreadful error once in a while, usually
as the result of a faulty command definition. Below are four candidates reduced
to the bare bones of the problem we want to discuss—in reality, such problems
usually lurk in more complex definitions.

\newcommand\FAILa{.\FAILa} \newcommand\FAILb{\FAILb x}
\newcommand\FAILc{\typeout{.}\FAILc} \newcommand\FAILd{.\par\FAILd}

If you execute \FAILa as defined above, you will receive the following output (the
reported memory size possibly differs) after a short while:

! TeX capacity exceeded, sorry [main memory size=1500001].
\FAILa ->.

\FAILa

The main memory is the part of TEX in which macro definitions and the material for
the current page are stored. Looking at the above recursive definition, it is clear
that it generates a never-ending sequence of periods. Since paragraph breaking
is deferred until TEX sees a \par command or a blank line to globally optimize
the line breaks, TEX waits in vain for a chance to break the paragraph material
into lines.

1The first edition of this book required a specially compiled version of the TEX program with all
such tables enlarged by a factor of 10 and could be processed only on a large UN*X workstation.

2The TEX live distribution, which comes with this book, lets you specify the size of most tables
through the configuration file texmf.cnf . See the TEX live manual for details.

916 Tracing and Resolving Problems

Exceeding main memory because of too many macro definitions is less likely
these days. Nevertheless, even that can happen (in theory) if the size of this mem-
ory is small and you load many packages, have a large number of huge deferred
floats, or use macro packages1 that produce new macros on the fly.

If you get this error only with larger documents and LaTEX actually produces
pages before giving up, you can try to find out whether the memory is gradually
filling up (which suggests a table size problem) by setting \tracingstats=2 in
the preamble of your document. TEX will then report the main memory status
after finishing each page, producing output like the following:

[765]
Memory usage before: 4262&161788; after: 1286&157691; still untouched: 1323176
[766]
Memory usage before: 3825&160983; after: 636&156520; still untouched: 1323176
[767]
Memory usage before: 3652&160222; after: 771&156307; still untouched: 1323176

The number reported to the left of the & is the memory devoted to large objects
such as boxes; the number on the right is the amount of memory used by macro
definitions and character data. Thus, one can expect a reduction in both values
whenever a page has finished (i.e., the after: value). If the right-hand value is
slowly increasing, however, then something is probably adding more and more
definitions.

If we use \FAILb , we overflow a different table. Here the recursion happens
before LaTEX actually reaches the end on the macro expansion and thus needs to
store away the unprocessed part of the expansion.

! TeX capacity exceeded, sorry [input stack size=1500].
\FAILb ->\FAILb

x

With today’s size for the input stack, this message usually appears only if a
recursion like the one above makes that stack grow at a frightening speed. In
a normal LaTEX document you will seldom find nested definitions that make this
stack grow beyond a value of 50 (for this book the maximum value was 35).

What happens if you execute either \FAILc or \FAILd? Both are similar to
\FAILa but neither overflows any internal TEX table. Instead, both will simply fill
your hard disk. The only action of \FAILc is to show periods on your screen and
in the transcript file, thereby very slowly filling up the disk with a huge transcript.
\FAILd , on the other hand, contains a \par in its definition and therefore is able
to typeset paragraphs (each consisting of a single dot); as a result it produces
pages in rapid succession. Such an experiment ended on the author’s machine
with a document containing 22279 pages and the following message:

tex: fwrite: No space left on device

1For example, varioref defines two labels internally for every use of \vref , which can result in a
noticeable amount of memory consumption in large documents.

B.1 Error messages 917

On your private machine, this is merely a nuisance, easily rectified. On systems
with shared resources, however, you should be careful when letting LaTEX run unat-
tended. This type of error once hit a student very badly; this individual processed
such a document on a mainframe in batch mode without a time or size limit and
was presented a bill for computer processing time of several thousand dollars.

Several other internal tables can overflow in principle. Below is the complete
list of those not already discussed, along with an explanation for the most likely
reason for the overflow. Some additional information can be found in [82, p.300].

buffer size The characters in the lines being read from a file. Since the default
size is usually quite large, the most likely cause for an overflow is lost line
breaks due to a faulty conversion of a file during transfer from one operating
system to another. A buffer overflow can also be caused by some PC word
processing programs, which internally put an entire paragraph on a single line
even though the text appears to be broken into several lines on the screen.

exception dictionary The number of hyphenation exceptions as specified by
\hyphenation . LaTEX has some exceptions specified for the English language,
and some language packages specify additional exceptions. However, if this
table overflows, you must have been doing a very thorough job.

font memory The font metric data loaded by LaTEX. These days an overflow is
unlikely. If it happens, LaTEX has loaded too many fonts—probably because
you used many different font sizes and LaTEX calculated and loaded math fonts
for all the sizes. Increase the table size, if possible, or refer to Chapter 7 for
information on how to reduce the number of fonts.

grouping levels The number of unfinished groups that delimit the scope for
setting parameters, definitions, and other items—for instance, braces, the
start of environments, or math mode delimiters. An overflow usually indi-
cates a programming error (e.g., a definition that opens more groups than
it closes). That type of error is sometimes difficult to identify. Good help is
available with the eTEX program,1 which offers the command \showgroups
to produce a listing of stacked groups starting with the innermost one. For
example, placing it into the footnote on the current page will yield

semi simple group (level 3) entered at line 2955 (\begingroup)
insert group (level 2) entered at line 2955 (\insert0{)
semi simple group (level 1) entered at line 2921 (\begingroup)
bottom level

The semi simple group on level 1 is due to the fact that this text is type-
set in a description environment (the \begin command issues internally a
\begingroup command). The \footnote command is implemented with the
TEX primitive \insert, which contributes level 2. In fact, another semi simple
group is started by \footnote, which ensures that color changes remain local.

1In modern distributions LaTEX is automatically using the eTEX program. On older installations you
may have to call a different program (e.g., elatex instead of latex) when processing a document.

918 Tracing and Resolving Problems

What we can deduce from this example is that the relationships among
top-level document commands and internal groups are far from obvious or
simple. However, the line numbers that show when a group was entered do
help, since there are usually no long-ranging groups in normal documents.

As an alternative, the eTEX program offers the internal tracing counter
\tracinggroups . If it is set to a positive number, the entry and exit of
groups is recorded in the transcript file; with \tracingonline having a
positive value, this information also appears on screen.

hash size The number of command names known to TEX. Most packages con-
tribute a fixed number of new command names. Each \label or \bibitem
command in the document generates one new internal command name.
Thus, packages that internally use the \label command (e.g., varioref) may
significantly contribute to filling that table in large documents.

number of strings The number of strings—command names, file names, and
built-in error messages—remembered by TEX. In some cases TEX is able to
free unused space but usually such strings survive even if they are used only
locally. One possible reason for overflowing this table is the use of many files
in an application. Each opening for reading or writing of a file contributes,
even when the same file is used many times over.

For historical reasons, TEX has a somewhat unusual string-handling
concept involving several tables, each of which can overflow. Thus, if you
change the hash size to allow for more commands, you may need to adjust
the number of strings and quite likely the pool size, and vice versa.

parameter stack size The total number of command parameters of nested
commands being expanded but not yet fully processed. For example, suppose
a command with 4 arguments calls a command with 5 arguments, which in
turn calls a command with 3 arguments, thereby using up 12 slots in this
table. The moment TEX reaches the end of a macro replacement text it will free
the stack. Thus, with today’s implementations it is quite difficult to hit that
limit, unless you use a flaky recursive definition with arguments, for example:

\newcommand\FAIL[3]{\typeout{Got #1, #2 and #3 but \FAIL is a mess}\DO}

Do you see the problem? Since the \typeout contains \FAIL by mistake,
it gets called again, before its replacement text has been fully processed
(picking up the characters i, s, and a as arguments). As a result, \DO is never
executed and we finally get

! TeX capacity exceeded, sorry [parameter stack size=1500].
\FAIL #1#2#3->

\typeout {Got #1, #2 and #3 but \FAIL is a mess}\DO
l.18 \FAIL 123

B.1 Error messages 919

This is similar to the \FAILb example from page 916, except that because of
the number of arguments the parameter stack overflowed first.

pattern memory The memory available to store hyphenation patterns. This
table cannot overflow during normal document processing, since such pat-
terns are loaded only during format generation. If you receive this error
during that process, reduce the number of languages for which you load hy-
phenation patterns into your format. These days pattern loading is normally
defined in the file language.dat.

pool size The characters in strings—command names and file names (includ-
ing the full path on some implementations). If this table overflows, the
most likely cause is the use of too many files, especially if they have long
absolute path names. This can, for example, happen if a document includes
many graphics and one uses \graphicspath to make LaTEX search for the
images in several directories—every attempt to open a file contributes to this
string pool.

save size The set of values to restore when a group ends. With today’s default
limits, this is again difficult to overflow. The most likely cause is the use
of both local and global assignments to the same object, something that
can happen only through the use of low-level TEX programming, since LaTEX
assignments are either always local (for most types) or always global (e.g.,
counter assignments).

To avoid unnecessary growth of the save stack, the document environ-
ment has a special implementation1 so that it does not produce a group (as
normal environments do). Without it every new definition would automatically
push an unnecessary “undefined” value onto the save stack—unnecessary,
because by the time that group would end all processing would stop anyhow.

semantic nest size The number of token lists being worked on simultane-
ously. Boxes, math formulas, and other elements start a new list, suspending
work on the current structure. Once they are finished TEX has to continue
constructing the suspended object, so all such unfinished objects are re-
membered in the semantic nest stack. With a default size of several
hundred objects, it is very difficult to get even close to this limit with normal
documents.2 In an emergency, TEX offers \showlists , which displays all
unfinished lists that TEX is currently working on.

text input levels The number of simultaneously open input sources (e.g.,
files opened by \include , \input , or \usepackage). On the author’s imple-
mentation of TEX one would need to nest 1500 files to reach this limit.

1As a side effect it is impossible to use \begin{document} inside another environment since the
grouping structure is not obeyed.

2The author could not think of any problematic definition that would not hit any of the other
limits first.

920 Tracing and Resolving Problems

B.2 Warnings and informational messages

While error messages make LaTEX stop and wait for user input, warning messages
are simply displayed on the terminal and in the transcript file and processing
continues. If applicable, LaTEX also shows the source line number that triggered
the warning. The warnings are prefixed by “LaTeX Warning:” or “LaTeX Font
Warning:” if they are issued by the core LaTEX code. Otherwise, they identify the
issuing package or class by starting with “Package 〈name〉 Warning:” or “Class
〈name〉 Warning:”, respectively. TEX warnings, such as “Overfull...”, have no
standard prefix string.

In addition to warnings, LaTEX writes informational messages to the transcript
file without displaying this information on the terminal. To better distinguish be-
tween informational and warning messages, warnings are shown in blue in the
following alphabetical listing.

Calculating math sizes for size 〈text size〉
LaTEX has to guess the correct font sizes for subscripts and superscripts be-
cause it could not find the information for the current 〈text size〉 in its inter-
nal tables. This message usually is followed by several font size correction
warnings because LaTEX’s initial guess is seldom successful. This situation can
arise when you select an uncommon size using the \fontsize command; see
Section 7.10.7 if the math formulas look strange.

Checking defaults for 〈cdp〉/〈font shape〉
This message is written in the transcript file at \begin{document} while LaTEX
is verifying that the substitution defaults for the encoding 〈cdp〉 are sensible.
It is followed either by ...okay or by an error message that is generated when
the 〈font shape〉 group specified with \DeclareFontEncoding is unknown
to LaTEX.

Citation ‘〈key〉’ on page 〈number〉 undefined
The 〈key〉 specified as an argument to \cite or \nocite is not defined by a
\bibitem command or you need another run of LaTEX (and perhaps BIBTEX) to
make it known to LaTEX. The latter case is indicated by an additional warning,
“Label(s) may have changed. . . ”, as discussed on page 924. The page number
is omitted if the warning is emitted by \nocite .

Command 〈name〉 invalid in math mode
This is either a warning or an error message indicating that you have used a
command in math mode that should be used only in normal text. A warning
will be generated when an obsolete, yet still valid, construction is used.

Document Class: 〈name〉 〈date〉 〈additional-info〉
This line is produced by a \ProvidesClass command in the document class
code. Although not a warning, it appears both on the terminal and in the
transcript file. If a document produces different output on different installa-

B.2 Warnings and informational messages 921

tions, you should compare the “Document Class:”, “File:”, and “Package:”
messages to identify any release differences.

Empty ‘thebibliography’ environment
This warning is issued if a thebibliography environment has no \bibitem
commands. It often indicates a problem with a BIBTEX run. For example, the
BIBTEX program may have been unable to resolve a single citation.

Encoding 〈name〉 has changed to 〈new name〉 for ...
This warning is issued when in the declaration of a symbol font different
encoding schemes in different math versions have been used. It may mean
that the \DeclareMathSymbol commands for this symbol font are not valid
in all math versions.

(\end occurred 〈when〉 TEX

You receive this warning at the very end of your run whenever TEX finds the
\end{document} or \stop command to be premature. As a warning the mes-
sage is unfortunately misleading, because it refers to a TEX primitive \end
that was reused by LaTEX to become the environment end-tag. The 〈when〉 can
be one of two cases:

inside a group at level 〈number〉) TEX

In this case the LaTEX run ended while there were still some open
groups. Such groups include explicit braces that are not closed (e.g.,
{\itshape..), use of \bgroup and \begingroup in macro code without
their counterparts, and unclosed environments in the source. The latter
normally triggers a suitable LaTEX error first (i.e., “\begin{〈env〉} on. . . ”)
unless you ended the run with \stop , since in that case no check for
mismatched environments is made.

when 〈condition〉 on line 〈line number〉 was incomplete) TEX

In this case LaTEX completed the run while a low-level TEX conditional re-
mained unfinished. With LaTEX documents using only standard commands,
this problem should not occur unless you ended the document inside a
file loaded with \include . In other cases it probably means there is a bug
in a package. Try to identify the source of the conditional (by looking at
the 〈line number〉) to see in which command it was used. Note that the
〈line number〉may not be in the current file—unfortunately, TEX does not
divulge the file name. In very difficult situations you can try to use eTEX’s
advanced tracing options to pinpoint the problem: if \tracingifs is set
to 1, you will get detailed trace information about nested conditionals as
they are executed.

External font 〈name〉 loaded for size 〈size〉
LaTEX has ignored your request to load some font shape at size 〈size〉 and has
loaded the external font 〈name〉 instead. (This message is generated by the
size function fixed.)

922 Tracing and Resolving Problems

Faking 〈command〉 for font family 〈name〉 in TS1 encoding textcomp

The glyph 〈command〉 is not available in the TS1 encoding of the current font
family. LaTEX has responded by “faking” it in some way. This is, for example,
done for the \texteuro glyph (€), if unavailable. Section 7.8.7 describes ways
to get a real euro symbol.

File ‘〈name〉’ already exists on the system.
Not generating it from this source

This warning is generated by a filecontents environment when the file
〈name〉 already exists somewhere in the search path of LaTEX. If you want to
unpack the file nevertheless, either delete (or rename) the version found by
LaTEX or extract the file manually with the help of an editor.

File: 〈name〉 〈date〉 〈additional-info〉
This line is produced from the \ProvidesFile command used to identify a
file and its last modification date. By convention, the 〈additional-info〉 starts
with a version number, though it is not required. Although of the same im-
portance as \ProvidesClass , this information is written only to the tran-
script file to avoid cluttering the terminal with messages. If a document pro-
duces different output on different installations, you should compare the
“Document Class:”, “File:”, and “Package:” messages to identify any re-
lease differences.

File: 〈encoding〉〈family〉.fd 〈date〉 〈additional-info〉
This important special case of the previous informational message indicates
that a font definition file for some 〈encoding〉 (usually displayed in lowercase)
and 〈family〉 combination was loaded. Such files contain font shape group
declarations and are described in Section 7.10.6.

Float too large for page by 〈value〉
A float is too tall by 〈value〉 to fit in the current \textheight . It will be printed
on a page by itself (if permitted), thereby possibly overflowing into the bottom
margin. If the float is not allowed to go on a float page, it will prevent all
further floats in its class from being placed.

Font shape 〈font shape〉 in size 〈size〉 not available
LaTEX issues this message when it tries to select a font for which the requested
font attribute combination is not available and a substitution is defined in
the internal tables. Depending on the contents of these tables, one of the
following additional messages will be issued:

external font 〈name〉 used
LaTEX has selected the external font 〈name〉 in that particular situation
and does not know to which font shape group it belongs. (This message
is generated by the size function subf.)

size 〈size〉 substituted
LaTEX has selected the correct shape, but since the requested size is not

B.2 Warnings and informational messages 923

available LaTEX has chosen the nearby size 〈size〉. This action is taken au-
tomatically if none of the simple sizes or size ranges in the 〈font shape〉
group declaration matches.

shape 〈font shape〉 tried
LaTEX has selected a different 〈font shape〉 group because the requested
one is not available for the requested 〈size〉. (This message is generated
by the size function sub.)

Font shape 〈font shape〉 undefined. Using ‘〈other shape〉’ instead
This warning is given when a combination of font attributes is speci-
fied for which LaTEX has no font shape definition. For example, requesting
\fontseries{b}\ttfamily would normally trigger this warning, since Com-
puter Modern fonts have neither bold typewriter nor bold extended type-
writer. However, when the latter combination is requested, you will not re-
ceive this warning but only some information in the transcript file because for
\textbf{\texttt{..}} the .fd files contain an explicit substitution rule.

If LaTEX identifies a particular symbol that it cannot typeset in the requested
shape, the above warning is followed by “for symbol 〈name〉”.

Font shape 〈font shape〉 will be scaled to size 〈size〉
LaTEX has loaded the requested font by scaling it to the desired size. To print a
document containing scaled fonts, your printer driver must have these fonts
in the correct size or must be able to scale them automatically.

Foreign command 〈command〉;
\frac or \genfrac should be used instead

amsmath

Although the use of 〈command〉 is not an error, you are strongly discouraged
from using this old form for your (generalized) fractions in LaTEX. Use the
amsmath commands instead.

Form feed has been converted to Blank Line
The filecontents environment detected a “form feed” character (^^L) in
the source and will write it as an empty line (\par command if interpreted
by LaTEX) into the external file. As filecontents was designed to distribute
textual data, it cannot be used for handling arbitrary binary files.

‘h’ float specifier changed to ‘ht’ or
‘!h’ float specifier changed to ‘!ht’

You specified h or !h as a float placement without giving any other options.
LaTEX requires some alternative in case “here” leads to an impossible place-
ment because not enough room is left on the current page. If you really want
to prevent floats from floating, consider using the float package described in
Section 6.3.1.

Ignoring text ‘〈text〉’ after \end{〈env〉}
This warning is issued by filecontents or filecontents* when textual ma-
terial is detected following the \end tag.

924 Tracing and Resolving Problems

Label ‘〈key〉’ multiply defined
The document contains two or more \label commands with the same 〈key〉.
References to this 〈key〉 will always refer to the last \label defined. Ensure
that all 〈key〉s are different.

Label(s) may have changed. Rerun to get cross-references right
LaTEX has detected that the label definitions, as compared to those in the pre-
vious run, have been modified and that (at least) one additional LaTEX run is
necessary to resolve cross-references properly.

In theory it is possible, though unlikely, that this message will persist re-
gardless of the number of processing runs.1 If this is the case, compare the
.aux files of different runs to determine which label alternates between dif-
ferent states and resolve the problem manually.

Loose \hbox (badness 〈number〉) 〈somewhere〉 TEX

TEX produced a horizontal box with a badness of 13 or greater (which cor-
responds to using 50% or more of the available stretchability). This warning
can be safely ignored unless you are a perfectionist; in fact, it will not be
produced unless you change the default for \hbadness . See the message “Un-
derfull \hbox. . . ” on page 928 for more details.

Loose \vbox (badness 〈number〉) 〈somewhere〉 TEX

TEX produced a vertical box with a badness of 13 or greater (which corre-
sponds to using 50% or more of the available stretchability). The warning is
produced only if \vbadness was set to a value below 100. See the message
“Underfull \vbox. . . ” on page 930 for more details.

Making 〈char〉 an active character babel

For each character that is turned into a shorthand character, this information
message will be written to the transcript file. When a document shows un-
expected results, this information might help if the problems are caused by
inadvertent use of a shorthand character.

Marginpar on page 〈number〉 moved
A \marginpar could not be aligned with the text line to which it was originally
attached, because a preceeding \marginpar already occupies the space.

Missing character: There is no 〈char〉 in font 〈name〉! TEX

Although this message usually indicates a serious problem, unfortunately it

�Watch out for
this message in

the transcript!

is only written to the transcript file (unless \tracingonline is positive). It
means that somewhere in the source a request for a symbol 〈char〉 was made
for which the current font (〈name〉 is the external name) has no glyph in
the corresponding position. The displayed 〈char〉 may differ on different TEX

1For example, if the \label is near the page boundary between pages “iii” and “iv”, the use of
\pageref before the \label might result in a situation where the \label will be moved to page “iv”
if the textual reference “iii” is used, and vice versa.

B.2 Warnings and informational messages 925

installations.1 For example, using the command \symbol can produce this
warning because you can ask for any font slot with this command. However,
standard font-encoding–specific commands, as discussed in Section 7.11.4 on
page 455, should never produce this warning.

No \author given
You used \maketitle without specifying an author first. In contrast to a miss-
ing \title this omission generates a warning.

No auxiliary output files
This information is displayed when you use a \nofiles declaration in the
document preamble.

No characters defined by input encoding change to 〈name〉
The input encoding file 〈name〉.def does not seem to contain any input en-
coding declarations. For the ascii encoding, this is the expected behavior;
for all other encodings, it indicates a problem.

No file 〈name〉
LaTEX displays this information whenever it tries to read from an auxiliary file
(e.g., .aux or .toc) but cannot find the file. This is not considered an error
since such files are created only after the first run. However, the same routine
is also used by \include , so that, unfortunately, a missing “include file” will
trigger this unsuspicious warning too.

No hyphenation patterns were loaded for the language ‘〈language〉’ babel

All language definition files check whether hyphenation patterns for the lan-
guage selected were loaded into the LaTEX format. If this is not the case, this
message is displayed and a default set of hyphenation patterns will be used.
The default patterns are those loaded into pattern register 0 (typically Ameri-
can English).

No input encoding specified for 〈language〉 language babel

This message can appear when no specific input encoding was specified in
the document and one of the supported languages needs the Cyrillic alpha-
bet for typesetting. For these languages several input encodings are popular;
therefore, the language definition insists that the one used must be explicitly
mentioned.

No positions in optional float specifier. Default added ...
A float environment (e.g., figure or table) was used with its optional place-
ment argument, but it did not contain any suitable information. Hence, LaTEX
used its default placement rules.

1Sometimes you see something like ^^G, sometimes real characters are displayed. Unfortunately,
there is no guarantee that they correspond to your input: some translation that depends on the
operating system may happen when the characters are written to the transcript file.

926 Tracing and Resolving Problems

Oldstyle digits unavailable for family 〈name〉 textcomp

You used \oldstylenums with a font family that does not contain old-style
digits. As an emergency measure LaTEX produced lining digits (from the current
font family) instead. See Section 7.5.4 for details.

Optional argument of \twocolumn too tall on page 〈number〉
The material in the optional argument to \twocolumn was so tall, that fewer
than three lines remain on the page. LaTEX will not start two-column mode on
the current page and will start a new page instead.

\oval, \circle, or \line size unavailable
The requested size for the mentioned commands is unavailable. LaTEX will
choose the closest available size. See, for example, Section 10.4.3 for ways
to avoid this problem.

Overfull \hbox (〈number〉pt too wide) 〈somewhere〉 TEX

TEX was forced to build a horizontal box (e.g., the line of a paragraph or a
\makebox) of a certain width and was unable to squeeze the material into the
given width, even after shrinking any available space as much as possible. As
a result, the material will stick out to the right. In most cases this is quite
noticeable, even if the total amount is small. You have to correct this prob-
lem manually, since TEX was unable to resolve it (Sections 3.1.11 and B.3.3
give some advice). For a list and explanation of the possible origins (i.e., the
〈somewhere〉), see the warning “Underfull \hbox. . . ” on page 928.

Overfull \vbox (〈number〉pt too wide)) 〈somewhere〉 TEX

TEX was asked to build a vertical box of a fixed size (e.g., a \parbox or a
minipage with a second optional argument; see Appendix A.2.2 on page 866)
and found more material than it could squeeze in. The excess material will
stick out at the bottom. Whether this result poses a problem depends on
the circumstances. For a list and explanation of the possible origins (i.e., the
〈somewhere〉), see the warning “Underfull \vbox. . . ” on page 930.

Overwriting encoding scheme 〈something〉 defaults
This warning is issued by \DeclareFontEncodingDefaults when it over-
writes previously declared defaults for “text” or “math”.

Overwriting 〈something〉 in version 〈name〉 ...
A declaration, such as \SetSymbolFont or \DeclareMathAlphabet , changed
the assignment of font shapes to 〈something〉 (a symbol font or a math alpha-
bet) in math version 〈name〉.

Package: 〈name〉 〈date〉 〈additional-info〉
This line is produced by the \ProvidesPackage command, which is used
to identify a package and its last modification date. By convention, the
〈additional-info〉 starts with a version number, though it is not required. Al-
though of the same importance as \ProvidesClass , this information is writ-
ten to just the transcript file to avoid cluttering the terminal with messages. If

B.2 Warnings and informational messages 927

a document produces different output on different installations, you should
compare the “Document Class:”, “File:”, and “Package:” messages to iden-
tify any release differences.

Redeclaring font encoding 〈name〉
This warning is issued if \DeclareFontEncoding is used for an encoding that
is already defined (thereby potentially changing its defaults).

Redeclaring math accent 〈name〉
This warning is issued if \DeclareMathAccent is used for a math accent that
was previously declared. If the command to be declared is known but not an
accent, you get an error message instead.

Redeclaring math alphabet 〈name〉
A \DeclareMathAlphabet or \DeclareSymbolFontAlphabet command was
issued to declare 〈name〉, which was already defined to be a math alphabet
identifier. The new declaration overrides all previous settings for 〈name〉.

Redeclaring math symbol 〈name〉
The command 〈name〉 was already declared as a math symbol and your dec-
laration overrides the old definition.

Redeclaring math version 〈name〉
You issued a \DeclareMathVersion command for a version that was already
declared. The new declaration overrides all previous settings for this version
with the default values.

Redeclaring symbol font 〈name〉
You issued a \DeclareSymbolFont command for a symbol font that was pre-
viously declared. The new declaration overrides the symbol font in all known
math versions.

Reference ‘〈key〉’ on page 〈number〉 undefined
A reference created with \ref , \pageref , or one of the other cross-reference
commands discussed in Chapter 2 used a 〈key〉 for which LaTEX has not seen
a corresponding \label command. If the \label is somewhere in the docu-
ment, you simply need another LaTEX run to make it known to LaTEX. This sit-
uation is indicated by the additional warning “Label(s) may have changed. . . ”
discussed on page 924.

Size substitutions with differences up to 〈size〉 have occurred
This message will appear at the end of the run if LaTEX selected at least one
significantly different font size because a requested size was not available.
The 〈size〉 is the maximum deviation that was needed.

Some font shapes were not available, defaults substituted
This message will appear at the end of the run if LaTEX had to use automatic
font substitution for some font shapes.

928 Tracing and Resolving Problems

Tab has been converted to Blank Space
The filecontents environment detected a “tab” character (^^I) in the source
and will write it as a space into the external file.

Text page 〈number〉 contains only floats
One or more floats processed as “top” or “bottom” floats are together so tall
that very little space (less than two lines) is left for normal text on the current
page. Therefore, LaTEX decided to place only floats on the page in question
(even if some or all of the floats do not explicitly allow for this placement).
This message can appear only when the placement parameters for floats were
changed drastically from their default values; see the beginning of Chapter 6
for details.

There were multiply-defined labels
This warning appears at the end of a LaTEX run when LaTEX detected at least
one pair of \label or \bibitem commands with the same key. Check the
transcript file and make sure that all keys used are different.

There were undefined references
This warning appears at the end of a LaTEX run when LaTEX detected references
to unknown keys and concluded that rerunning the document would not re-
solve them. You should check the transcript file for all occurrences of “Ref-
erence 〈key〉 undefined” and “Citation 〈key〉 undefined” and correct them,
either by fixing a misprint or by adding the necessary \label or \bibitem
commands. In case of missing citation 〈keys〉, all you may have to do is rerun
BIBTEX and then LaTEX.

Tight \hbox (badness 〈number〉) 〈somewhere〉 TEX

TEX produced a horizontal box and had to shrink the interior spaces. You will
see this message only if \hbadness is set to a value less than 100. See the
message “Underfull \hbox. . . ” below for more details.

Tight \vbox (badness 〈number〉) 〈somewhere〉 TEX

TEX produced a vertical box and had to shrink the interior spaces. You will
see this message only if \vbadness is set to a value less than 100. See the
message “Underfull \vbox. . . ” on page 930 for more details.

Try loading font information for 〈cdp〉+〈family〉
You will find such a message in the transcript file whenever LaTEX tries to load
a .fd file for the encoding/family combination 〈cdp〉/〈family〉.

Unable to redefine math accent 〈accent〉 amsmath

This warning is rare but it may be issued when loading the amsmath package
with nonstandard mathematical fonts.

Underfull \hbox (badness 〈number〉) 〈somewhere〉 TEX

TEX was forced to build a horizontal box (e.g., the line of a paragraph or a
\makebox) of a certain width, and the white space within that box had to

B.2 Warnings and informational messages 929

stretch more than it was designed to do (i.e., stretched more than 100% of
the available plus parts in stretchable spaces). Internally, this situation is
expressed by a badness value greater than 100; a value of 800 means that
twice the total stretchability was used to produce the required width.1

Whether such an underfull box actually presents a noticeable problem is
something that you may have to check visually in the produced output. If the
badness is 10000 the box can be arbitrarily bad. Since TEX’s value for infinity
is quite low, it might mean that TEX has favored one very bad line over several
bad but still acceptable lines that appear in succession. In that case using
\emergencystretch can help you; see Section 3.1.11.

The limit of badness values above which such warnings are shown is con-
trolled by the integer parameter \hbadness . LaTEX’s default is 1000, so warn-
ings appear only for really bad boxes. If you want to produce an important
document try a more challenging value, such as \hbadness=10, to find out
how many lines TEX really considers imperfect.

Note that the warning always talks about \hbox , regardless of the actual
box construct used in the source, since it is directly generated by TEX. The
location where the problem occurred is indicated by 〈somewhere〉, which is
one of the following four possibilities:

detected at line 〈line number〉 TEX

An explicitly constructed box (construction ending at line 〈line number〉
in the source) has the problem—for example, a \makebox with an explicit
width argument or some other LaTEX construct that builds boxes.

has occurred while \output is active TEX

TEX was in the process of building a page and encountered the problem
while attaching running headers and footers and the like. Since this is
an asynchronous operation, no line number is given. Look at the page
generated closest to where the warning was issued to determine whether
it warrants manual correction.

in alignment at lines 〈line numbers〉 TEX

The box is part of a tabular or some math alignment environment. The
〈line numbers〉 give you the source position of the whole alignment struc-
ture, since by the time TEX encounters the problem it no longer has a way
to relate it back to the source in more detail.

in paragraph at lines 〈line numbers〉 TEX

The underfull box is due to a badly spaced line in the paragraph (source
line numbers given as 〈line numbers〉). The additional symbolic display of
the line in question should help you to pinpoint the problem.

1The exact formula is min(100r3,10000) where r is the ratio of “stretch used” to “stretch avail-
able”, unless there is infinite stretch present (e.g., introduced by a command like \hfill), in which
case the badness will be zero.

930 Tracing and Resolving Problems

Underfull \vbox (badness 〈number〉) 〈somewhere〉 TEX

TEX was forced to build a vertical box (e.g., a \parbox or a minipage) of a
certain height, and the vertical space in that box had to stretch more than it
was supposed to; see the discussion of badness and stretchability in the de-
scription of the “Underfull \hbox. . . ” warning. You can suppress all warnings
for badness values below a certain limit by setting \vbadness=〈value〉. Then
LaTEX issues warnings only for boxes with a badness larger than 〈value〉 (the
default is 1000). The 〈somewhere〉 indicates the origin of the problem and can
be one of the following cases:

detected at line 〈line number〉 TEX

The box was explicitly constructed (the 〈line number〉 points to the end of
the box construction) and there is not enough stretchable space available.
For example,

\parbox[c][2in][s]{4cm}{test test}

would produce this warning because the box should be 2 inches high and
the contents should fill this height (argument [s]), but there is nothing
stretchable available. For instance, something like \par\vfill between
the two words. See Appendix A.2.2 for details on paragraph boxes.

has occurred while \output is active TEX

In the most frequent case, the space on the current page needed stretch-
ing beyond acceptable limits in TEX’s eyes. Whether this is visually a real
problem depends on many factors, such as the type of spaces on the
page. For example, a large stretch in front of a heading is usually less
severe than a spaced-out list. Thus, the best advice is to check such pages
manually. Often, \enlargethispage or \pagebreak will help.

If the problem appears surprisingly often, then the spacing param-
eters for lists, paragraphs, and headings should be examined to see
whether they are too rigid (see Chapters 2 to 4). Also check whether the
\textheight corresponds to an integral number of text lines; see the
discussion on page 197.

in alignment at lines 〈line-numbers〉 TEX

This warning should not arise with standard LaTEX but can occur in some
specialized applications. In such a case use 〈line-numbers〉 to identify the
source lines in your document.

Unused global option(s): [〈option-list〉]
Some of the options specified on \documentclass have been used by neither
the class nor any package in the preamble. A likely reason is that the names
of the options have been misspelled. Also note that some packages do not
react to global options, but only to those explicitly specified when loading the
package. See Appendix A.4 for details.

B.3 TEX and LATEX commands for tracing 931

Writing file ‘〈name〉’
This informational message is produced by both filecontents and
filecontents* when they write their body to an external file 〈name〉.

Writing text ‘〈text〉’ before \end{〈env〉} as last line of 〈file〉
This warning is issued by the filecontents or filecontents* environment
when it detects textual material directly preceeding the \end tag.

You have more than once selected the attribute ‘〈attrib〉’
for language 〈language〉

babel

This message is displayed if the same attribute is entered more than once in
the second argument of \languageattribute; only the first occurrence will
trigger the activation of the attribute.

You have requested 〈package-or-class〉 ‘〈name〉’,
but the 〈package-or-class〉 provides ‘〈alternate-name〉’

You requested loading of 〈name〉 via \usepackage or \RequirePackage (in
case of a package) or via \documentclass or \LoadClass (in case of a class),
but the package or class provides a variant of the original with the inter-
nal name 〈alternate-name〉. Unless this was a typo by the package or class
provider, it means that your installation has a package or class variant that
is likely to behave differently from the original. Thus, your document may be
formatted differently when processed on another installation. Whether this is
the correct behavior is something you need to investigate by looking at the
package or class in question.

Specifying a relative or absolute path name triggers this warning as a side
effect.

You have requested release ‘〈date〉’ of LaTeX,
but only release ‘〈old-date〉’ is available

A \NeedsTeXFormat command has requested a LaTEX release of at least 〈date〉
but the date of your format is 〈old-date〉. Usually, such a request is made
to ensure that a certain feature of the LaTEX format is available, so it is likely
that your document will produce additional errors or strange formatting later.
Update to a more recent version of LaTEX.

You have requested, on line 〈num〉, version ‘〈date〉’ of 〈name〉,
but only version ‘〈old-date〉’ is available

A class or package was required to have a date not older than 〈date〉 but the
version on your installation is from the date 〈old-date〉. Update the class or
package in question.

B.3 TEX and LATEX commands for tracing

In this section we discuss tools and techniques for tracing and for displaying
status information—for example, finding out why something is strangely spaced
on the page or why your own command definition does the wrong thing.

932 Tracing and Resolving Problems

B.3.1 Displaying command definitions and register values

In many situations it is useful to get some information about LaTEX’s current inter-
nals, the precise definitions of commands, the values of registers, and so on. For
example, if the use of \newcommand reports that the command to be defined is
already defined, you may want to know its current definition, to ensure that you
do not redefine an important command.

For this purpose TEX offers the command \show , which displays the definitionDisplaying
command
definitions

of the token following it and then stops and displays a question mark while wait-
ing for user intervention. For example, after defining \xvec as in Example A-1-4
on page 844, we can display its definition as follows:

\newcommand\xvec[1]{\ensuremath{x_1,\ldots,x_{#1}}}
\show\xvec

This will produce the following output on the terminal and in the transcript file:

> \xvec=\long macro:
#1->\ensuremath {x_1,\ldots ,x_{#1}}.
l.6 \show\xvec

?

The first line, which starts with >, shows the token being displayed (\xvec)
and gives its type (\long macro), indicating that \xvec is a macro that accepts
\par commands in its argument; in other words, this macro was defined with
\newcommand rather than \newcommand* . The second line shows the argument
structure for the command (up to ->), revealing that the command has one ar-
gument (#1). Note that while the argument on the \newcommand declaration was
indicated with [1], it is now shown differently. The rest of the line—and possibly
further lines, if necessary—shows the definition part. The code is terminated with
a period that is not part of the definition but helps to identify stray spaces at the
end of the definition, if any. Note that the code display is normalized. Thus, after a
command that would swallow subsequent spaces, you will see a space regardless
of whether a space was coded in the original definition.

Following the display of the definition, the source line (including the line num-
ber in the input file) is shown. Then LaTEX stops with a question mark. To continue
you can press enter. Alternatively, you can type h to see what other possibilities
are available.

Not all commands produce such easily understandable output. Assume that
you try to display a command that was defined to have an optional argument, such
as \lvec as defined in Example A-1-5 on page 845:

\newcommand\lvec[2][n]
{\ensuremath{#2_1+\cdots + #2_{#1}}}

\show\lvec

B.3 TEX and LATEX commands for tracing 933

In that case you will get this result:

> \lvec=macro:
->\@protected@testopt \lvec \\lvec {n}.

Apparently, the \lvec command has no arguments whatsoever (they are picked
up later in the processing). And something else is strange in this output: what
is \\lvec? Is it the command \\ followed by the letters lvec, or is it a strange
command \\lvec that has two backslashes as part of its name? It is actually the
latter, though there is no way to determine this fact from looking at the output
of the \show command. Such strange command names, which cannot be gener-
ated easily by the user, are sometimes used by LaTEX internally to produce new
command names from existing ones using \csname and \endcsname and other
low-level mechanisms of TEX.

So what should you do, if you want to see the definition of \\lvec? It should be clear Displaying internal
commands with
strange names

that writing \show in front of such a command will not work, as in normal situations TEX
will see \\ and think that it is the command to “show”. For that reason, you have to use
the same low-level mechanisms first to generate the command name in a way that it is
considered a single token by TEX and then to feed this token to \show :

\expandafter\show\csname \string\lvec \endcsname

Technically, what happens is that a command name is generated from the tokens be-
tween \csname and \endcsname . Inside that construct, the \string command turns the
command \lvec into a sequence of characters starting with a backslash that no longer
denotes the start of a command. This is why the resulting command name contains two
backslashes at the beginning. The \expandafter command delays the evaluation of the
following \show command so that \csname can perform all of its work before \show is
allowed to look at the result.

That’s quite a mouthful of low-level TEX, but after typing it in, we are rewarded with
the following output:

> \\lvec=\long macro:
[#1]#2->\ensuremath {#2_1+\cdots + #2_{#1}}.
<recently read> \\lvec

This time we do not see a source file line after the command display, but the words
<recently read>. They indicate that TEX has assembled the token \\lvec somewhere in
memory rather than reading it directly from a file.

What would happen if we forgot the initial \expandafter in the previous input? We
would get the following result:

> \csname=\csname.
l.5 \show\csname

\string\lvec \endcsname
?
! Extra \endcsname.
l.5 \show\csname \string\lvec \endcsname

?

934 Tracing and Resolving Problems

First we are told that \csname is a \csname , which seems like totally useless infor-

Detecting a
primitive command

mation but, in fact, indicates that \csname is a primitive command or register already
built into the TEX program—in contrast to, say, \lvec , which was a macro defined via
\newcommand . LaTEX also shows how far it has read the input line by placing the unread
tokens (\string and friends) into the next line. Since we carry on, TEX will stop again
shortly (after having consumed the whole line) to complain about a spurious \endcsname
because the matching \csname was shown but not executed.

The \show command is useful for learning about commands and their defi-Displaying
register values nitions or finding out if something is a primitive of TEX. But it does not help in

finding the current values of length or counter registers. For example,

\show\parskip \show\topmargin \show\topsep

will give us the following information:

> \parskip=\parskip.
l.5 \show\parskip

\show\topmargin \show\topsep
?
> \topmargin=\dimen73.
l.5 \show\parskip \show\topmargin

\show\topsep
?
> \topsep=\skip23.
l.5 \show\parskip \show\topmargin \show\topsep

From the above we can deduce that \parskip is a TEX primitive (the fact that it is
a rubber length is not revealed), that \topmargin is actually the \dimen register
(rigid length) with register number 73, and that \topsep is the \skip register
(rubber length) with number 23.

If we want to know the value of any such register, we need to deploy a differ-
ent TEX primitive, called \showthe instead of \show , which gives us the following
output on the terminal and also proves that \parskip is, indeed, a rubber length:

> 0.0pt plus 1.0pt.
l.5 \showthe\parskip

Using \showthe in this way allows us to display the values of the length
registers allocated with \newlength and of internal TEX registers such as
\baselineskip and \tolerance . What we cannot display directly with it are the
values of LaTEX counters allocated with \newcounter . For this we have to addition-
ally deploy a \value command that turns a LaTEX counter name into a form that is
accepted by \showthe . For example,

\showthe\value{footnote}

would show the current value of the footnote counter on the terminal.

B.3 TEX and LATEX commands for tracing 935

Instead of displaying the meaning of a macro or the value of a register on
Typesetting
command
definitions or
register values

the terminal, you can alternatively typeset this kind of data by using \meaning
instead of \show and \the instead of \showthe . The output is slightly different:
the name of the token is not shown by \meaning; instead, only its type and “mean-
ing” is presented. Compare the next example with the output shown earlier in this
section.

B-3-1 \long macro:#1->\ensuremath
{x_1,\ldots ,x_{#1}}
0.0pt plus 1.0pt
16.0pt
8.0pt plus 2.0pt minus 4.0pt
footnote=0

\newcommand\xvec[1]{\ensuremath{x_1,\ldots,x_{#1}}}

\ttfamily % use typewriter
\raggedright
\meaning\xvec \par \the\parskip\par
\the\topmargin \par \the\topsep \par
footnote=\the\value{footnote}

If displaying command definitions or register values is insufficient for deter-
mining a problem, you can alternatively trace the behavior of the commands in
action; see Section B.3.5 on page 945.

B.3.2 Diagnosing page-breaking problems

Once in a while LaTEX produces unexpected page breaks or shows some strange
vertical spaces and you would like to understand where they are coming from or
what precise dimensions are involved. For these tasks TEX offers a few low-level
tracing tools.

Symbolic display of the page contents

If you specify \showoutput somewhere in your document, TEX will display (start-
ing with the current page) symbolic representations of complete pages on the
terminal and the transcript file. This will generate a large amount of output, of
which we will show some extracts that have been produced by compiling the first
paragraph of this section separately.

Every page output will start with the string Completed box being shipped
out followed by the current page number in brackets. Then you get many lines
showing the boxes that make up the page, starting with a \vbox (vertical box)
and its sizes in pt containing the whole page. To indicate that something is the
contents of a box, everything inside is recursively indented using periods instead
of blanks. Spaces, even if they are rigid, are indicated by the keyword \glue (see
line 3 or 6); stretchable space has some plus and/or minus components in its
value, as we will see later. Whether it is a horizontal or a vertical space is de-
termined by the box in which this space is placed. For example, the \glue of
16.0pt on line 3 is a vertical space that came from \topmargin; see also Exam-
ple B-3-1. In the extract you also see an empty \vbox of height 12pt (lines 5
to 7), which is the empty running header, followed in line 8 by the space from
\headsep (25pt), followed by the box containing the text area of the page starting

936 Tracing and Resolving Problems

at line 10. Lines 15 and following show how individual characters are displayed;
here \T1/cmr/m/n/10 indicates the font for each character. The \glue in between
(e.g., line 19), marks an interword space with its stretch and shrink components.

1 Completed box being shipped out [1]
2 \vbox(633.0+0.0)x407.0
3 .\glue 16.0
4 .\vbox(617.0+0.0)x345.0, shifted 62.0
5 ..\vbox(12.0+0.0)x345.0, glue set 12.0fil
6 ...\glue 0.0 plus 1.0fil
7 ...\hbox(0.0+0.0)x345.0
8 ..\glue 25.0
9 ..\glue(\lineskip) 0.0
10 ..\vbox(550.0+0.0)x345.0, glue set 502.00241fil
11 ...\write-{}
12 ...\glue(\topskip) 3.1128
13 ...\hbox(6.8872+2.15225)x345.0, glue set - 0.17497
14\hbox(0.0+0.0)x15.0
15\T1/cmr/m/n/10 O
16\T1/cmr/m/n/10 n
17\T1/cmr/m/n/10 c
18\T1/cmr/m/n/10 e
19\glue 3.33252 plus 1.66626 minus 1.11084
20\T1/cmr/m/n/10 i
21\T1/cmr/m/n/10 n
22\glue 3.33252 plus 1.66626 minus 1.11084
23\T1/cmr/m/n/10 a

As a second example from a page trace, we show the symbolic display of the
structures near a line break. You see the space added by TEX at the right end of
a text line (\rightskip on line 5) and the box containing the line. Thus, line 6
is outdented again. It contains a symbolic representation for the costs to TEX to
break after this line, indicated by the command \penalty . The actual value here
is due to the value of the \clubpenalty parameter.1 This is followed in line 7 by
the vertical space added between the lines, computed by TEX by taking the value of
\baselineskip and subtracting the depth of the previous line box and the height
of the following line box, which starts at line 8.

1\T1/cmr/m/n/10 s
2\T1/cmr/m/n/10 o
3\T1/cmr/m/n/10 m
4\T1/cmr/m/n/10 e
5\glue(\rightskip) 0.0

1The penalty to break after the first line in a paragraph is given by the integer parameter
\clubpenalty ; the cost for breaking before the last line by \widowpenalty . Both default to 150,
that is, they slightly discourage a break.

B.3 TEX and LATEX commands for tracing 937

6 ...\penalty 150
7 ...\glue(\baselineskip) 2.96054
8 ...\hbox(6.8872+1.94397)x345.0, glue set 0.55421
9\T1/cmr/m/n/10 s
10\T1/cmr/m/n/10 t

As a final example, we look at some part of the symbolic page output pro-
duced from a line like this:

\begin{itemize} \item test \end{itemize} \section{Test}

The particular part of interest is the one generated from \end{itemize} and
\section{Test}. What we see here (lines 1 to 7) is a curious collection of
\glue statements, most of which cancel each other, intermixed with a number
of \penalty points:

1 ...\penalty -51
2 ...\glue 10.0 plus 3.0 minus 5.0
3 ...\glue -10.0 plus -3.0 minus -5.0
4 ...\penalty -300
5 ...\glue 10.0 plus 3.0 minus 5.0
6 ...\glue -10.0 plus -3.0 minus -5.0
7 ...\glue 15.0694 plus 4.30554 minus 0.86108
8 ...\glue(\parskip) 0.0 plus 1.0
9 ...\glue(\baselineskip) 8.12001
10 ...\hbox(9.87999+0.0)x345.0, glue set 290.70172fil

These lines are generated from various \addpenalty and \addvspace commands
issued; for example, lines 1 and 2 are the penalty and the rubber space added by
\end{itemize}. The \section command then adds a breakpoint to indicate that
the place before the section is a good place to break a page (using \@secpenalty
with a value of -300). In fact, the break should be taken before the \glue from
line 2, or else there would be a strange space at the bottom of that page. As it is
technically impossible to remove material from the vertical galley, \addpenalty
uses the trick to back up by adding a negative space (line 3), add the penalty
(line 4), and then reissue the \glue (line 5). In lines 6 and 7, the same method is
used by \addvspace to add the vertical space before the heading.

Lines 8 and 9 are added by TEX when placing the actual heading text (line 10)
into the galley. Note that technically the heading is considered a “paragraph”, so
\parskip is added. This is the reason why enlarging this parameter requires care-
ful planning. The same care should be taken when adjusting other parameters
(like the one added on line 7).

The \showoutput command will also produce symbolic displays of overfull Side effect of
\showoutputboxes. Tracing ends at the next closing brace or environment. Thus, to see the

output for full pages, you have to ensure that the page break happens before the
next group ends.

938 Tracing and Resolving Problems

Tracing page-break decisions

If you want to trace page-breaking decisions, TEX offers symbolic information that
you can turn on by setting the internal counter \tracingpages to a positive inte-
ger value:

\tracingonline=1 \tracingpages=1

Setting \tracingonline to a positive value will ensure that the tracing informa-
tion will appear not only in the transcript file (default), but also on the terminal.

Processing the previous paragraph starting with “If you want to. . . ” as a
separate document, we get the following lines of tracing information:

1 %% goal height=522.0, max depth=4.0
2 % t=10.0 g=522.0 b=10000 p=150 c=100000#
3 % t=22.0 g=522.0 b=10000 p=150 c=100000#
4 % t=55.0 plus 4.0 g=522.0 b=10000 p=-51 c=100000#
5 % t=77.0 plus 8.0 g=522.0 b=10000 p=300 c=100000#
6 % t=89.0 plus 8.0 g=522.0 b=10000 p=0 c=100000#
7 % t=90.94397 plus 8.0 plus 1.0fil g=522.0 b=0 p=-10000 c=-10000#

The first line starting with two percent signs shows the target height for the page
(i.e., 522pt in this case), which means 43 lines at a \baselineskip of 12pt with
2pt missing since the skip to position the first base line, \topskip, has a value of
10pt. If the goal height does not result in an integral number of lines, problems
like underfull \vboxes are likely to happen.

The remaining lines, starting with one percent sign, indicate a new potentialTarget size of
a break page-break position that TEX has considered. You can interpret such lines as fol-

lows: t= shows the length of the galley so far and, if the galley contains vertical
rubber spaces, their total amount of stretch and shrink. Line 4, for example, shows
that in the layout of this book verbatim displays have an extra space of 10pt plus
a stretch of 4pt (the verbatim lines are typeset in a smaller font with only 11pt of
\baselineskip) and the same amount is added between lines 4 and 5.

The g= specifies the goal height at this point. This value changes only if ob-Page goal height

jects like floats have reduced the available space for the galley in the meantime.
With b= , TEX indicates the badness of the page if a break would be takenPage badness

at this point. The badness is calculated from the factor by which the available
stretch or shrink in t= must be multiplied to reach the goal height given in g=. In
the example the page is barely filled, so it is always 10000 (infinitely bad), except
for line 7, where, due to the added fil stretch, the page is suddenly considered
optimal (b=0).

With each breakpoint TEX associates a numerical \penalty as the cost toBreak penalty

break at this point. Its value is given by p= . For example, it is not allowed to break
directly before the verbatim display, which is why there is a large increase in t=
between lines 3 and 4. On the other hand, a break after the display is given a bonus

B.3 TEX and LATEX commands for tracing 939

(p=-51). Line 5 shows that breaking after the first line of the two-line paragraph
fragment following the verbatim text is considered bad (p=300), as it would result
in both a club and a widow line (\clubpenalty and \widowpenalty each have a
value of 150 and their values are added together).

Finally, c= describes the calculated cost to break at this breakpoint, which Costs of
a page breakis derived from a formula taking the badness of the resulting page (b=) and the

penalty to break here (p=) into account. TEX looks at these cost values and will
eventually break at the point with minimal cost. If the line ends in #, then TEX
thinks that it would be the best place to break the page after evaluating all break-
points seen so far. In the example, all lines show this #—not surprising, given that
TEX considers all but the last breakpoint to be equally bad.

If the pages would become too full if a break is taken at a particular break-
point, then TEX indicates this fact with b=* . At this point TEX stops looking for
other breakpoints and instead breaks the page at the best breakpoint seen so far.

For additional details on the output produced by these low-level display de-
vices, consult [82, p.112].

B.3.3 Diagnosing and solving paragraph-breaking problems

If TEX is unable to find a suitable set of points at which to break a paragraph into
lines, it will, as a last resort, produce one or more lines that are “overfull”. For
each of them you will get a warning on the screen and in the transcript file, such
as

Overfull \hbox (17.57108pt too wide) in paragraph at lines 3778--3793
/hlhr8t@8.80005pt/showing you a sym-bolic dis-play of the text line and the
line num-ber(s) of the paragraph|

showing you a symbolic display of the text line and the line number(s) of the paragraph
containing it. If you look at the symbolic display, you can easily diagnose that
the problem is TEX’s inability

1 to hyphenate the word “paragraph”. To explicitly
flag such lines in your document, you can set the parameter \overfullrule to
a positive value. For the present paragraph it was set to 5pt, producing the blob
of ink clearly marking the line that is overfull. The standard document classes
enable this behavior with the option draft. On the other hand, you may not
mind lines being only slightly overfull. In that case you can change the parameter
\hfuzz (default 0.1pt); only lines protruding by more than the value of \hfuzz
into the margin will then be reported.

If TEX is unable to break a paragraph in a satisfying manner, the reasons are
often hyphenation problems (unbreakable words, as in the above example), prob-
lems with the parameter settings for the paragraph algorithm, or simply failure
of the text to fit the boundary conditions posed by the column measure or other

1TEX is, in fact, perfectly capable of hyphenating para-graph; for the example, we explicitly pre-
vented it from doing so. The paragraph would have been perfect otherwise.

940 Tracing and Resolving Problems

parameters, together with aesthetic requirements like the allowed looseness of
individual lines. In the latter case the only remedy is usually a partial rewrite.

Dealing with hyphenation problems

With the relevant hyphenation patterns loaded, TEX is able to do a fairly good job
for many languages [115]. However, it usually will not find all potential hyphen-
ation points, so that sometimes one has to assist TEX in this task. To find out
which hyphenation points in words like “laryngologist” are found by TEX, you can
place such words or phrases in the argument of the command \showhyphens :

\showhyphens{laryngologist laryngopharyngeal}

Running this statement through LaTEX will give you some tracing output on the
terminal and in the transcript file. The hyphenation points determined by TEX are
indicated by a hyphen character:

[] \OT1/cmr/m/n/10 laryn-gol-o-gist laryn-gopha-ryn-geal

If you want to add the missing hyphenation points, you can specify all hyphen-
ation points for one word locally in the text using \- , for example,

la\-ryn\-gol\-o\-gist la\-ryn\-go\-pha\-ryn\-ge\-al

Alternatively, you can use a \hyphenation declaration in the preamble:

\hyphenation{la-ryn-gol-o-gist la-ryn-go-pha-ryn-ge-al}

The latter technique is particularly useful when you detect a wrong hyphenation,
or often use a word for which you know that TEX misses important hyphenation
points. Note that such explicit specifications tell TEX how to hyphenate words that
are exactly in the form given. Thus, the plural “laryngologists” would be unaf-
fected unless you specify its hyphenation points as well.

The \hyphenation declarations apply to the current language, so if a docu-
ment uses several languages—for example, by using the methods provided by the
babel system—then you need to switch to the right language before issuing the
relevant declarations.

Tracing the paragraph algorithm

As TEX uses a global algorithm for optimizing paragraph breaking, it is not always easy to
understand why a certain solution was chosen. If necessary, one can trace the paragraph-
breaking decisions using the following declarations:1

\tracingparagraphs=1 \tracingonline=1

1These parameters are also turned on by a \tracingall command, so you may get many lines of
paragraph tracing data, even if you are interested in something completely different.

B.3 TEX and LATEX commands for tracing 941

For readers who really want to understand the reasons behind certain decisions, we show
some example data with detailed explanations below.

Paragraph tracing will produce output that looks somewhat scary. For instance, one
of the previous paragraphs generated data that starts like this:

1 @firstpass
2 @secondpass
3 []\T1/cmr/m/n/10 The [] dec-la-ra-tions ap-ply to the cur-rent lan-guage, so
4 @ via @@0 b=3219 p=0 d=10436441

Line 2 says that TEX has immediately given up trying to typeset the paragraph without

Up to three passes
over paragraph
data

attempting hyphenation. This is due to the value of \pretolerance being set to 100 in the
sources for the book; otherwise, TEX may have gotten further or even succeeded (in English
text quite a large proportion of paragraphs can be reasonably set without hyphenating1).
In addition to @secondpass, you sometimes see @emergencypass, which means that even
with hyphenation it was impossible to find a feasible solution and another pass using
\emergencystretch was tried.2 Line 3 shows how far TEX had to read to find that first
potential line ending that results in a badness of less than ∞ = 10000. Line 4 gives details
about this possible break. Such lines start with a single @; the via gives the previous
breakpoint (in this case @@0, which refers to the paragraph start), the line badness (b=), the
penalty to break at this point (p=), and the so-called demerits (d=) associated with taking
that break (a “cost” that takes into account badness, penalty, plus context information like
breaking at a hyphen or the visual compatibility with the previous line).

5 @@1: line 1.0 t=10436441 -> @@0

In line 5, TEX informs us that it would be possible to form a very loose first line ending in
the breakpoint given by line 3 with a total cost (t=) equal to the demerits shown on line 4.
This line would be formed by starting at breakpoint @@0. The notation line 1.0 gives the
line number being made and the suffixes.0,.1,.2,.3, respectively, stand for very loose,
loose, decent, and tight interword spacing in the line. This classification is important when
comparing the visual compatibility of consecutive lines.

TEX now finds more and more potential line breaks, such as after “if” in line 6, and
after “a” in line 9. Each time TEX tells us what kind of lines can be formed that end in the
given breakpoint. If b=* appears anywhere in the trace data, it means that TEX could not
find a feasible breakpoint to form a line and had to choose an infeasible solution (i.e., one
exceeding \tolerance for the particular line).

6 if
7 @ via @@0 b=1087 p=0 d=1213409
8 @@2: line 1.0 t=1213409 -> @@0
9 a
10 @ via @@0 b=334 p=0 d=128336
11 @@3: line 1.0 t=128336 -> @@0
12 doc-
13 @\discretionary via @@0 b=0 p=50 d=2600
14 @@4: line 1.2- t=2600 -> @@0
15 u-

1For the LATEX Companion with its many long command names this is less likely.
2For this to happen \emergencystretch needs to have a positive value. See also the discussion

in Section 3.1.11.

942 Tracing and Resolving Problems

16 @\discretionary via @@0 b=1 p=50 d=2621
17 @@5: line 1.2- t=2621 -> @@0

By hyphenating the word doc-u-ment it finds two more breakpoints (lines 12 and 15). This
time you see a penalty of 50—the value of the parameter \hyphenpenalty (breaking after
a hyphen)—being attached to these breaks. Line 15 is the last breakpoint that can be used
to produce the first line of the paragraph. All other breakpoints would produce an overfull
line. Hence, the next tracing line again shows more text; none of the potential breakpoints
therein can be used as they would form a second line that exceeds \tolerance .

18 ment uses sev-eral languages---for ex-am-ple, by us-ing the meth-
19 @\discretionary via @@1 b=1194 p=50 d=1452116
20 @\discretionary via @@2 b=2875 p=50 d=8325725
21 @@6: line 2.0- t=9539134 -> @@2

Here the breakpoint can be used to form a second line in two different ways: by starting
from breakpoint @@1 (line 19) or by starting from breakpoint @@2 (line 20). If we compare
just these two solutions to form the second line of the paragraph, then the first would be
superior: it has a badness of 1194, whereas the second solution has a badness of 2875,
which results in a factor of 5 in “costs” (d=). Nevertheless, TEX considers the second break
a better solution, because a first line ending in @@1 is so much inferior to a line ending in
@@2 that the total cost for breaking is less if the second alternative is used. TEX therefore
records in line 21 that the best way to reach the breakpoint denoted by line 18 is by
coming via @@2 and results in a total cost of t=9539134. For the rest of the processing,
TEX will not need to know that there were several ways to reach @@6; it just needs to record
the best way to reach it.

More precisely, TEX needs to record the best way to reach a breakpoint for any of the
four types of lines (very loose, loose, decent, tight), since the algorithm attaches different
demerits to a solution if adjacent lines are visually incompatible (e.g., a loose line following
a tight one). Thus, later in the tracing (lines 22–40 are not shown), we get the following
output:

41 by
42 @ via @@3 b=19 p=0 d=10841
43 @ via @@4 b=9 p=0 d=361
44 @ via @@5 b=42 p=0 d=2704
45 @@10: line 2.1 t=5325 -> @@5
46 @@11: line 2.2 t=2961 -> @@4

This output indicates that there are three ways to form a line ending in “by”: by starting
from @@3, @@4, or @@5. A line with a badness of 12 or less is considered decent (suffix.2); a
line stretching, but with a badness not higher than 100, is considered loose (suffix.1). So
here TEX records two feasible breakpoints for further consideration—one going through
@@5 and one going through @@4.

Which path through the breakpoints is finally selected will be decided only when
the very end of the paragraph is reached. Thus, any modification anywhere in the para-
graph, however minor, might make TEX decide that a different set of breakpoints will
form the best solution to the current line-breaking problem, because it will produce the
lowest total cost. Due to the complexity of the algorithm, minor modifications some-
times have surprising results. For example, the deletion of a word may make the para-
graph a line longer. This may happen because TEX decides that using uniformly loose

B.3 TEX and LATEX commands for tracing 943

lines, or avoiding hyphenation of a word, is preferable to some other way to break the
paragraph. Further details, describing all parameters that influence the line-breaking de-
cisions, can be found in [82, p.98]. If necessary, you can force breakpoints in certain
places with \linebreak , or prevent them with \nolinebreak or by using ~ in place of
a space. Clearly, choices in the early parts of a paragraph are rather limited and you
may have to rewrite a sentence to avoid a bad break. But later in a paragraph nearly ev-
ery potential break will become feasible, being reachable without exceeding the specified
\tolerance .

Shortening or lengthening a paragraph

Another low-level tool that can be used is the internal counter \looseness . If
you set it to a nonzero integer n, TEX will try to make the next paragraph n lines
longer (n positive) or shorter (n negative), while maintaining all other boundary
conditions (e.g., the allowed \tolerance). In fact, the last paragraph of the previ-
ous section was artificially lengthened by one line by starting it in the following
way:

\looseness=1
Which path through the breakpoints is finally selected

Setting the value of \looseness is not guaranteed to have any effect. Shortening
a paragraph is more difficult for TEX than lengthening it, since interword spaces
have a limited shrinkability that is small in comparison to their normal stretcha-
bility. The best results are obtained with long paragraphs having a short last line.
Consequently, extending a paragraph works best on long paragraphs with a last
line that is already nearly full, though you may have to put the last words of the
paragraph together in an \mbox to ensure that more than one word is placed into
the last line.

B.3.4 Other low-level tracing tools

TEX offers a number of other internal integer parameters and commands that can
sometimes help in determining the source of a problem. They are listed here with
a short explanation of their use.

We already encountered \tracingonline . If it is set to a positive value all On-line
tracingtracing information is shown on the terminal; otherwise, most of it is written only

to the transcript file. This parameter is automatically turned on by \tracingall .
With \tracingoutput , tracing of page contents is turned on. What is shown

depends on two additional parameters: \showboxdepth (up to which level nested
boxes are displayed) and \showboxbreadth (the amount of material shown for
each level). Anything exceeding these values is abbreviated using etc. or [] (in-
dicating a nested box) in the symbolic display. The LaTEX command \showoutput
sets these parameters to their maximum values and \tracingoutput to 1, so
that you get the most detailed information possible. The \showoutput command
is automatically called by \tracingall .

944 Tracing and Resolving Problems

To see the contents of a box produced with \sbox or \savebox , you can useThe contents
of boxes the TEX command \showbox :

\newsavebox\test \sbox\test{A test} {\tracingonline=1 \showbox\test }

However, the result is fairly useless if you do not adjust both \showboxdepth
and \showboxbreadth at the same time. Hence, a better strategy is to use LaTEX’s
\showoutput :

{\showoutput \showbox\test }

Notice the use of braces to limit the scope of \showoutput . Without the braces
you would see all of the following page boxes, which might not be of much interest.
The same type of symbolic display as discussed in Section B.3.2 will be displayed
on the terminal:

> \box26=
\hbox(6.83331+0.0)x27.00003
.\OT1/cmr/m/n/10 A
.\glue 3.33333 plus 1.66498 minus 1.11221
.\OT1/cmr/m/n/10 t
.\OT1/cmr/m/n/10 e
.\OT1/cmr/m/n/10 s
.\OT1/cmr/m/n/10 t

If you add \scrollmode or \batchmode before the \showbox command, LaTEX will
not stop at this point. You can then study the trace in the transcript.

To see what values and definitions TEX restores when a group ends, youLocal
restores can set \tracingrestores to a positive value. It is automatically turned on by

\tracingall .
With \showlists you can direct TEX to display the stack of lists (vertical,TEX’s stack of lists

horizontal) that it is currently working on. For instance, putting \showlists into
the footnote1 of the present paragraph, we obtain the following output in the
transcript file:

horizontal mode entered at line 3066 []
spacefactor 1000
internal vertical mode entered at line 3066
prevdepth ignored
horizontal mode entered at line 3060 []
spacefactor 1000
vertical mode entered at line 0
current page: []
total height 514.70349 plus 26.0 minus 2.0
goal height 522.0

prevdepth 1.70349

Here the text of the footnote started at line 3066 and the \spacefactor was set to
1000 at its beginning. The footnote itself was started on that same line, contribut-

1A footnote starts a new vertical list and, inside it, a new horizontal list for the footnote text.

B.3 TEX and LATEX commands for tracing 945

ing the “internal vertical mode”, and TEX correctly disregarded the outer value of
\prevdepth . The footnote was part of a paragraph that started on source line
3060, which in turn was embedded in a vertical list that started on line 0, indicat-
ing that it is the main vertical galley. Finally, the output shows some information
about the current page list that is being built, including its current height, its tar-
get height, and the value of \prevdepth (i.e., the depth of the last line on the page
at the moment).

Because of the default settings for \showboxbreadth and \showboxdepth ,
the contents of all lists are abbreviated to [] . To get more detail adjust them as
necessary or use \showoutput\showlists to get the full details.

Not very useful on its own, but helpful together with other tracing options, Tracing the
processingis \tracingcommands , which shows all primitives used by TEX during processing.

A related internal integer command is \tracingmacros , which shows all macro
expansions carried out by TEX. If set to 2, it will also display the expansion of
conditionals. Both parameters are automatically turned on by \tracingall .

When everything is set up correctly, it is unlikely that TEX will ever access
Tracing lost
characters

a font position in the current font that is not associated with a glyph. However,
some commands, such as \symbol , can explicitly request any font slot, so it is
not impossible. Unfortunately, TEX does not consider this event to be an error
(which it should). It merely traces such missing characters by writing unsuspicious
transcript entries, and it takes that step only if \tracinglostchars is set to a
positive value. LaTEX tries to be helpful by initializing this internal integer to 1.

Finally, you can direct TEX to step through your files line by line. When setting
Stepping through
a document

\pausing to 1, each source line is first displayed (suffixed with =>). TEX then waits
for instructions regarding what to do with it. Pressing 〈Enter〉 instructs TEX to
use the line unchanged; anything else means that TEX should use the characters
entered by the user instead of the current line. TEX then executes and typesets
whatever it was passed, displays the next line, and stops again. To continue nor-
mal processing you can reply with \pausing=0 , but remember that this is used in
place of the current source line, so you may have to repeat the material from the
current source line as well.

B.3.5 trace—Selectively tracing command execution

The LaTEX command \tracingall (inherited from plain TEX) is available to turn on
full tracing. There are, however, some problems with this command:

1. There is no corresponding command to turn off tracing. As a consequence,
you have to delimit the scope, which is not always convenient or even possible.

2. Some parts of LaTEX produce enormous amounts of tracing data that is of little
or no interest for the problem at hand.

For example, if LaTEX has to load a new font, it enters some internal routines
of NFSS that scan font definition tables and perform other activities. And 99.9% of

946 Tracing and Resolving Problems

the time you are not at all interested in that part of the processing, but just in the
two lines before and the five lines after it. Nevertheless, you have to scan through
a few hundred lines of output and try to locate the lines you need (if you can find
them).

Another example is a statement such as \setlength\linewidth{1cm}. With
standard LaTEX this gives 5 lines of tracing output. With the calc package loaded,
however, it will result in about 60 lines of tracing data—probably not what you
expected and not really helpful unless you try to debug the calc parsing routines
(which ideally should not need debugging).

To solve the first problem, the trace package [122] by Frank Mittelbach defines
a pair of commands, \traceon and \traceoff . If LaTEX is used on top of a TEX
engine, then \traceon is essentially another name for \tracingall : it turns on
the same tracing switches (albeit in a different order to avoid tracing itself). If LaTEXMore tracing info

available with eTEX is run on top of the eTEX engine, then the tracing of assignments and groups is
also turned on.1

Another difference between \traceon and \tracingall is that the latter will
always display the tracing information on the terminal, whereas \traceon can be
directed to write only to the transcript file if you specify the option logonly. This
is useful when writing to the terminal is very slow (e.g., if running in a shell buffer
inside emacs).

To solve the second problem, the trace package has a number of internal com-
mands for temporarily disabling tracing. It redefines the most verbose internal
LaTEX functions so that tracing is turned off while they are executing. For example,
the function to load new fonts is handled in this way. If a document starts with
the two formulas

$a \neq b$ \small $A = \mathcal{A}$

then LaTEX will load 22 new fonts2 at this point. Using standard \tracingall on
that line will result in roughly 7500 lines of terminal output. On the other hand, if
\traceon is used, only 350 lines will be produced (mainly from tracing \small).

The commands for which tracing is turned off are few and are unlikely to
relate to the problem at hand. However, if you need full tracing, you can either
use \tracingall or specify the full option. In the latter case, \traceon traces
everything, but you can still direct its output exclusively to the transcript file.

1The corresponding eTEX switches are \tracingassigns and \tracinggroups; see [27].
2You can verify this with the loading option of the tracefnt package.

A p p e n d i x C

LATEX Software and User
Group Information

The files and packages that are described in this book are available in most TEX
distributions, such as the TEX Live DVD or CD-ROM (provided with this book), or
on the CTAN DVD of DANTE. The newest versions can also be directly downloaded
from the web. The aim of this appendix is to provide you with the necessary
information to obtain current releases of these DVDs (CD-ROMs are available on
demand) and to give hints on how to locate and get the files you need directly
from the Internet.

C.1 Getting help

While we certainly hope that your questions have been answered in this book,
we know that this cannot be the case for all questions. For questions related to
specific packages discussed in the book, it can be helpful to read the original
documentation provided with the package. Appendix C.4 suggests ways to find
that documentation on your system.

Very valuable resources are the existing FAQ documents. The most important
ones are the UK-TUG FAQ by Robin Fairbairns available at http://www.tex.ac.
uk/faq (or http://faq.tug.org) and the DANTE FAQ by Bernd Raichle et al.
available at http://www.dante.de/faq/de-tex-faq (in German). Robin’s FAQ is
also available in HTML format on the CD-ROM in the directory /texmf/doc/html/
faq/index.html. However, as both documents are constantly being developed
further, it is best to access the on-line versions if possible.

948 LATEX Software and User Group Information

If precomposed answers are not enough, several news groups are devoted
to general TEX and LaTEX questions: news://comp.text.tex is perhaps the most
important one, with usually more than 100 messages posted each day. Many of
the authors mentioned in this book are regular contributors on the news groups
and help with answering questions and requests. Thus, there is a vast amount of
helpful material on the web that can be conveniently searched using any search
engine that indexes news entries.

If you post to any of these news groups, please adhere to basic netiquette. The
community is friendly but sometimes direct and expects you to have done some
research of your own first (e.g., read the FAQ first and searched the archived news)
and not ask questions that have been answered several hundred times before. You
should perhaps read Eric Raymond’s “How To Ask Questions The Smart Way”, avail-
able at http://www.catb.org/~esr/faqs/smart-questions.html, as a starter.
Also, if applicable, provide a minimal and usable example of your problem that
allows others to easily reproduce the symptoms you experience—this will save
others time and might get you a faster reply.

C.2 How to get those TEX files?

A useful entry point to the TEX world is the TEX Users Group home page (http://
www.tug.org; see Figure C.1). From there you can reach most information sources
about TEX and friends available worldwide.

In particular, from the TEX Users Group home page you can go to one of the
CTAN (Comprehensive TEX Archive Network) nodes. CTAN is a collaborative effort
initiated in 1992 by the TEX Users Group Technical Working Group on TEX Archive
Guidelines originally coordinated by George Greenwade, building on earlier work
of Peter Abbott (see [61] for the historical background), and currently maintained
by Jim Hefferon, Robin Fairbairns, Rainer Schöpf, and Reinhard Zierke (spring
2004). Its main aim is to provide easy access to up-to-date copies of all versions
of TEX, LaTEX, METAFONT, and ancillary programs and their associated files.

Presently, there are three backbone machines that act as FTP servers: in
the United Kingdom (cam.ctan.org), in Germany (dante.ctan.org), and in the
United States (tug.ctan.org). These these sites are mirrored worldwide and all
have a Web interface (see Figure C.2).

The material on CTAN is regularly (currently on a yearly basis) made available
on a DVD (if needed, the corresponding material is available on several CD-ROMs
that can be obtained on demand from one of the TEX User Groups, see below).
One is the TEX Live distribution ([157]; see also www.tug.org/texlive), which
provides a “runnable” version of TEX for various platforms. TEX Live CD-ROMs
have been developed since 1996 through a collaboration between the TEX Users
Group (TUG; United States) and the TEX user groups of the Czech Republic, France,
Germany, India, Netherlands, Poland, Slovakia, and the United Kingdom, amongst

C.3 Using CTAN 949

FAQ

CTAN entry pointCTAN latest updatesTEX catalogue

Figure C.1: The TEX Users Group web home page

others. These user groups distribute the TEX Live DVD to their members, so you
should contact them directly (their addresses are given in Section C.5).

Another distribution is prepared by the German-speaking TEX user group
DANTE (see Section C.5) and contains on a DVD an image of the complete CTAN
file tree (more than 4GB of data). Much like the TEX Live DVD, this DANTE CTAN
DVD is distributed by most user groups to their members. Thus, the same proce-
dure as for TEX Live should be used if you are interested in getting a copy.

C.3 Using CTAN

In the previous section we described the TEX Live and DANTE CTAN DVD (formerly
CD-ROM) sets. Obtaining the latest version of these CD-ROMs is an optimal way
for getting access to recent versions of LaTEX software.

Nevertheless, for readers with an Internet connection, it makes sense to query
one of the CTAN nodes every now and then to see whether one of the LaTEX com-
ponents you need has been updated. In particular, on the TEX Users Group home

950 LATEX Software and User Group Information

page there is an area which gives a list of the latest updates available on CTAN
(see Figure C.2, bottom oval). If you find updates, you can download the latest
version of the given package directly from a CTAN archive (see Section C.3.2 of
how this can be done).

Although network connections get faster all the time, it is often wise to con-
nect to a site that is not too distant geographically from your location (consult the
web page http://www.tug.org/tex-archive/CTAN.sites for a list of mirror
sites for the CTAN nodes).

C.3.1 Using the TEX file catalogue

A catalogue of TEX- and LaTEX-related packages maintained by Graham Williams
can be consulted at http://datamining.csiro.au/tex/catalogue.html. The
catalogue is also directly reachable from the TEX Users Group home page (see the
second oval in Figure C.1).

Moreover, the TEX catalogue is directly searchable from the CTAN interface
(e.g., http://www.tug.org/ctan.html). In Figure C.2 we show how, after typing
the string “graphicx” in the “Search Catalogue” area, we get the page shown in the
bottom part of that figure. From this second page we can choose directly which of
the proposed entries we want to investigate further (left side of the page) or we
can follow a link to the associated CTAN directory (right side of the page).

C.3.2 Finding files on the archive and transferring them

Turning back to Figure C.2 we see that an easy way to find a file on CTAN is to
use the web interface. Indeed, we merely have to type our search string in the
CTAN search area. In this case, we specified the string “graphicx” (top oval in Fig-
ure C.2). The search engine returns the list of all files in the CTAN archive match-
ing the given search criterion (see top part of Figure C.3). We can now browse the
directory, and decide to recuperate one file. We can also transfer a complete direc-
tory by clicking on the link “entire directory” (rightmost oval in Figure C.3), which
leads us to the page shown in the bottom part of Figure C.3. Here we are given
the choice between a gzipped tar or a zip archive. By right-clicking on one of the
two pointers (bottom ovals in Figure C.3) we download the archive in the desired
format to our local machine so that we can install the files.

C.3.3 Getting files from the command line

If you know the Internet address of the package that you want to transfer (for
instance from a Web search), it is perhaps more convenient to get hold of the
archive from the command line, without going through a web interface. In this
case you can use FTP or the wget program. The latter program allows you to

C.3 Using CTAN 951

Going to Figure C.3

Figure C.2: CTAN home page and TEX catalogue entry

952 LATEX Software and User Group Information

Coming from Figure C.2

Figure C.3: Using the CTAN web interface

download non-interactively files from the Web. It supports the HTTP, HTTPS, and
FTP protocols. An example follows (commands input by the user are underlined).

> wget ftp://ftp.dante.de/tex-archive/macros/latex/required/graphics.zip
--18:13:27-- ftp://ftp.dante.de/tex-archive/macros/latex/required/graphics.zip

=> ‘graphics.zip’
Resolving ftp.dante.de... 80.237.210.73
Connecting to ftp.dante.de[80.237.210.73]:21... connected.
Logging in as anonymous ... Logged in!
==> SYST ... done. ==> PWD ... done.
==> TYPE I ... done. ==> CWD /tex-archive/macros/latex/required ... done.

C.3 Using CTAN 953

==> PASV ... done. ==> RETR graphics.zip ... done.
Length: 361,065 (unauthoritative)

100%[====================================>] 361,065 378.48K/s

18:13:28 (377.84 KB/s) - ‘graphics.zip’ saved [361,065]

Alternatively, you can use the FTP protocol. In this case, we first connect
to the CTAN site (ftp.dante.de) and specify ftp as login name. The pass-
word must be your e-mail address. As we decided to transfer the graphics
package, we first position ourselves in the directory where the file resides
(cd tex-archive/macros/latex/required). We have a look at the files in that

directory (ls), transfer the zip archive, and close the FTP sesssion (quit).

> ftp ftp.dante.de
Connected to ftp.dante.de (80.237.210.73).
220 ProFTPD 1.2.10 Server (CTAN) [80.237.210.73]
Name (ftp.dante.de:goossens): ftp
331 Guest login ok, send your complete e-mail address as password.
Password: uuu.vvv@xxx.zz (use your email address here!)
230 Anonymous access granted, restrictions apply.
Remote system type is UNIX.
Using binary mode to transfer files.
ftp> cd tex-archive/macros/latex/required
250 CWD command successful
ftp> ls
227 Entering Passive Mode (80,237,210,73,145,185).
150 Opening ASCII mode data connection for file list
drwxrwxr-x 6 ftpmaint server 94 Oct 22 2004 amslatex
-rw-rw-r-- 1 ftpmaint server 2121853 May 1 17:26 amslatex.zip
drwxrwxr-x 2 ftpmaint server 4096 Apr 1 22:03 babel
-rw-rw-r-- 1 ftpmaint server 3098120 May 1 17:25 babel.zip
drwxrwsr-x 2 ftpmaint server 4096 Mar 1 2004 cyrillic
-rw-rw-r-- 1 ftpmaint server 37586 May 1 17:25 cyrillic.zip
drwxrwsr-x 2 ftpmaint server 4096 Dec 20 14:43 graphics
-rw-rw-r-- 1 ftpmaint server 361065 May 1 17:25 graphics.zip
drwxrwxr-x 2 ftpmaint server 4096 Apr 12 15:26 psnfss
-rw-rw-r-- 1 ftpmaint server 1068096 May 1 17:25 psnfss.zip
drwxrwsr-x 2 ftpmaint server 4096 Mar 1 2004 tools
-rw-rw-r-- 1 ftpmaint server 280673 May 1 17:25 tools.zip
226 Transfer complete.
ftp> get graphics.zip
local: graphics.zip remote: graphics.zip
227 Entering Passive Mode (80,237,210,73,145,193).
150 Opening BINARY mode data connection for graphics.zip (361065 bytes)
226 Transfer complete.
361065 bytes received in 0.832 secs (4.2e+02 Kbytes/sec)
ftp> quit
221 Goodbye.

954 LATEX Software and User Group Information

C.4 Finding the documentation on your TEX system

When you want to use a LaTEX package, it would be nice if you could study the
documentation without having to remember where the relevant files are located
on your TEX system. Two ways exist to help you in your search: texdoc and its
derivative texdoctk.

C.4.1 texdoc—Command-line interface for a search by name

Thomas Esser developed the program texdoc, which is part of the TEX Live distri-
bution. If you know the name of the file describing a package, you can find the
relevant documentation files as follows:

texdoc -l pspicture
/TeXlive/tl7/texmf/doc/latex/carlisle/pspicture.dvi
/TeXlive/tl7/texmf/doc/html/catalogue/entries/pspicture.html

The -l option tells texdoc to list only the path to the files that fulfill the selec-
tion criterion (in this case, files called pspicture regardless of their extension). If
you do not specify the -l option, texdoc will show you the contents of the docu-
mentation file (in this case, pspicture.dvi) with the help of the relevant display
program (for instance, xdvi or Windvi).

If you do not know the precise name of the file, you can specify the -s option
and provide a wildcard-like specification as a search pattern. For instance:

texdoc -s *picture*
/TeXlive/tl7/texmf/doc/generic/mfpic/examples/lapictures.tex
/TeXlive/tl7/texmf/doc/generic/mfpic/examples/pictures.tex
/TeXlive/tl7/texmf/doc/latex/carlisle/pspicture.dvi
/TeXlive/tl7/texmf/doc/html/catalogue/entries/pspicture.html
/TeXlive/tl7/texmf/doc/html/catalogue/entries/pspicture.xml

Here we have picked up files that have the string picture in their name—among
them the “pspicture” files we found previously.

The texdoc utility is quite useful, but it has a drawback: you must know the
name of the file describing the package that you want to use. This is not always
just the name of the package itself (as with pspicture in the above examples).

C.4.2 texdoctk—Panel interface for a search by subject

Thomas Ruedas took a somewhat different approach to provide easy access
to the documentation for files present on your TEX system. His texdoctk pro-
gram uses a graphics user interface based on perl and Tk. The program uses a
database that groups documentation files present in Thomas Esser’s tetex distri-
bution (TEX Live is based on tetex) into 17 categories, and offers an eighteenth
“user’s” category to allow users to add their (local) documentation entries into the

C.5 TEX user groups 955

Figure C.4: Finding documentation with the texdoctk program

database, if needed. As with texdoc, the display or print programs present on the
system will be used for viewing (e.g., xdvi, dvips).

Figure C.4 shows how we used the texdoctk system to display the docu-
mentation for the pspicture package. In this case we did not have to know the
name of the package. In fact, we navigated from the main panel, where we chose
the “Graphics” category (1), which opened the “Graphics” menu (lower left),
where we selected “Extended picture environment (pspicture)” (2). We then
clicked the “View” button (3), which called the .dvi viewer Windvi (4), which dis-
played the text of the documentation.

On the figure one can see all available documentation categories (note the
“Miscellaneous” button in the lower-right corner for special cases) as well as the
“Search” and “Help” buttons for more advanced use.

C.5 TEX user groups

TEX users in several countries have set up TEX user groups, mostly based on
language affinities. If you need help, you should contact your local user group

956 LATEX Software and User Group Information

first, since they might be able to come up with an answer that is most suited to
your language-dependent working environment. Below we give some information
about groups that have a formal existence (see http://www.tug.org/lugs.html
or http://www.servalys.nl/lug/ for up-to-date and more complete lists). They
can help you obtain TEX-related material on CD-ROMs or other publications.

cn: China PR
name: Chinese TeX Users Group

language: Chinese
web site: www.rons.net.cn
contact: Hong Feng
address: RON’s Datacom Co., Ltd.

79, DongWu Ave.,
Wuhan, Hubei Province
430040 China P.R.

e-mail: info@mail.rons.net.cn
phone: +862783222108

fax: +862783222108

cz: Czech Republic
language: Czech

name: CsTUG
contact: Petr Sojka
address: CsTUG, c/o FI MU

Botanická 68a
CZ-602 00 Brno
Czech Republic

e-mail: cstug@cstug.cz
web site: www.cstug.cz

phone: +420541212352

de: Germany
name: DANTE e.V.

language: German
contact: Volker Schaa
address: Postfach 101840

D-69008 Heidelberg
Germany

e-mail: dante@dante.de
web site: www.dante.de

phone: +49622129766
fax: +496221167906

dk: Denmark
name: DK-TUG

language: Danish
contact: Kaja Christiansen
address: Department of Computer Science

Ny Munkegade, Bldg. 540
DK-8000 Århus C
Denmark

e-mail: board@tug.dk
web site: www.tug.dk

phone: +4589423220

ee: Estonia
name: Estonian User Group

address: Astrophysical Observatory,
Toravere
Enn Saar, Tartu
EE 2444 Estonia

e-mail: saar@aai.ee

es: Spain (CervanTeX)
name: CervanTeX

language: Spanish
e-mail: secretario@cervantex.org

web site: www.cervantex.org

esc: Spain (Catalan)
name: Catalan TeX Users Group

language: Catalan
contact: Gabriel Valiente
address: Technical University of Catalonia

Jordi Girona Salgado, 1-3
E-08034 Barcelona
Spain

e-mail: valiente@lsi.upc.es
web site: www-lsi.upc.es/~valiente/

tug-catalan.html

fr: France
name: GUTenberg

language: French
address: c/o Irisa

Campus Universitaire de Beaulieu
F-35042 Rennes cedex
France

e-mail: gut@irisa.fr
web site: www.gutenberg.eu.org

phone: +33681665102
fax: +33492579667

fra: France (Astex)
short name: AsTEX

language: French
address: Association AsTEX

BP 6532
45066 Orleans cedex 2
France

e-mail: astex-admin@univ-orleans.fr
web site: www.univ-orleans.fr/EXT/

ASTEX/astex/doc/en/web/html/
astex000.htm

phone: +33238640994

www.univ-orleans.fr/EXT/ASTEX/astex/doc/en/web/html/astex000.htm

C.5 TEX user groups 957

gr: Greece
name: Greek TeX Friends Group

language: Greek
contact: Apostolos Syropoulos
address: 366, 28th October Str.

GR-671 00 Xanthi
Greece

e-mail: eft@ocean1.ee.duth.gr
web site: obelix.ee.duth.gr/eft/

phone: +3054128704

hu: Hungary
name: MaTeX

language: Hungarian
address: Institute of Mathematics and

Informatics
University of Debrecen
H-4010 Debrecen, P.O. Box 12
Hungary

e-mail: matex@math.klte.hu
web site: www.math.klte.hu/~matex/

in: India
name: TUGIndia

contact: K.S.S. Nambooripad
address: Kripa, TC 24/548, Sastha Gardens

Thycaud, Trivandrum 695014
India

e-mail: tugindia@river-valley.com
web site: www.river-valley.com/tug/

phone: +91471324341
fax: +91471333186

kr: Korea
name: KTUG

language: Korean
contact: Kim Kangsu
e-mail: info@mail.ktug.or.kr

web site: www.ktug.or.kr

lt: Lithuania
name: Lietuvos TeX’o Vartotojų Grupė

contact: Vytas Statulevicius
address: Akademijos 4

LT-2600 Vilnius
Lithuania

e-mail: vytass@ktl.mii.lt
phone: +3702359609

fax: +3702359804

mx: Mexico
name: TeX México

address: Rayon No. 523, Centro 58000
Morelia, Michoacan
Mexico

e-mail: tex@ciencia.dcc.umich.mx
web site: ciencia.dcc.umich.mx./tex/

phone: +52143128724
fax: +52143173945

nl: Netherlands, Belgium (Flemish
part)

name: NTG
language: Dutch

contact: Hans Hagen
address: Pragma

Ridderstraat 27
8061 GH Hasselt
The Netherlands

e-mail: info@ntg.nl
web site: www.ntg.nl

phone: +31384775369
fax: +31384775374

no: Nordic countries
name: NTUG

language: Scandinavian languages
discussion: nordictex@ifi.uio.no

contact: Dag Langmyhr
address: University of Oslo

PO Box 1080 Blindern
N-0316 Oslo
Norway

e-mail: dag@ifi.uio.no
web site: www.ifi.uio.no/~dag/ntug/

phone: +4722852450
fax: +4722852401

ph: Philippines
name: TUG-Philippines

contact: Felix P. Muga II
address: Ateneo de Manila University

Loyola Heights
Quezon City
Philippines

e-mail: fpmuga@admu.edu.ph
phone: +6324266001 ext 2515

fax: +6324266008

pl: Poland
name: GUST

language: Polish
address: UCI UMK

Gagarina 7
87-100 Toruń
Poland

e-mail: sekretariat@gust.org.pl
web site: www.GUST.org.pl

pt: Portugal
name: GUTpt

language: Portuguese
contact: Pedro Quaresma de Almeida
address: Coimbra University

Dep. Matemática, Largo D.Dinis
Apartado 3008, 3001-454
COIMBRA
Portugal

958 LATEX Software and User Group Information

e-mail: GUTpt@hilbert.mat.uc.pt
web site: http:

//hilbert.mat.uc.pt/~GUTpt/
phone: +351239791181

ru: Russia
name: CyrTUG
e-mail: cyrtug@mir.msk.su

web site: www.cemi.rssi.ru/cyrtug/
discussion: CyrTeX-en@vsu.ru

subscription: CyrTeX-en-on@vsu.ru

si: Slovenia
name: TeXCeH

contact: Vladimir Batagelj
address: Jadranska 19

SI-61111 Ljubljana
Slovenia

e-mail: Tex.Ceh@fmf.uni-lj.si
web site: vlado.fmf.uni-lj.si/texceh/

texceh.htm

uk: United Kingdom
name: UKTUG

language: British English
e-mail: uktug-enquiries@tex.ac.uk

web site: uk.tug.org
contact: Dr R.W.D. Nickalls
address: Department of Anæsthesia

Nottingham City Hospital NHS
Trust
Hucknall Road
Nottingham, NG5-1PB (UK)

e-mail: enxtw1@nottingham.ac.uk
phone: +441159691169 (ext. 45637)

fax: +441159627713

us: TeX User Group
(international)

name: TUG
address: P.O. Box 2311

Portland, OR 97208-2311
U.S.A

e-mail: office@tug.org
web site: www.tug.org

phone: +15032239994
fax: +15032233960

vn: Vietnam
name: ViêtTUG

contact: Nguyên-Ðai Quý
address: LTAS-University of Liège

Rue des Chevreuils, 1
Bât B52, Local 522B
B4000, Liège
Belgium

e-mail: viettug@eGroups.com
phone: +3243669098

fax: +3243669311

A p p e n d i x D

TLC2 TEX CD

The CD-ROM at the back of this book will enable you to set up a LaTEX system that
is as close as possible to the descriptions in this book. This appendix explains
how we created this CD and gets you started on how to use it.

Origins—The TEX Live system

TEX Live is an “open source” distribution of TEX and LaTEX that is sponsored by
an international consortium of TEX user groups. The TLC2 TEX CD-ROM is based
closely on this distribution and we therefore wish to thank all the individuals
involved in the production and maintenance of TEX Live over the years.

The 2003 release of the TEX Live distribution was distributed as three disks:
a DVD containing the full distribution and a copy of the CTAN archives, a CD
containing (in compressed form) a full TEX Live distribution, and a “demo” disk
containing a TEX distribution that may be either installed on a hard disk, or used
directly from the CD.

To fit onto one CD, some packages had to be omitted from the “demo” CD,
and only the major machine architectures are supported: Linux, Windows and
MacOSX.

The TLC2 TEX CD-ROM is a version of the TEX Live “demo” CD. All the binary
programs are unchanged, several packages described in this book have been up-
dated or added, and the LaTEX format itself is the 2003/12/01 release. In order to
keep within the size constraint, some packages had to be removed. A full list of
changed packages is contained in the file readme-tlc2.html, which can be found
in the top level directory on the CD.

960 TLC2 TEX CD

Installing LATEX from the CD-ROM

Installation and use of this CD-ROM follows exactly the procedures outlined for
the TEX Live demo distribution from the original TEX Live documentation. An
overview of these procedures is in the file readme.html, which has links to more
extensive documentation files on the CD. (Much of the TEX Live documentation is
available in several languages.)

In brief, the install script install-tl.sh in the top level directory should be run
by you on Linux or MacOSX. Under Windows the Install program should automat-
ically start (or double click on autorun.exe). This process will lead you through
some configuration options and then install a LaTEX system on your hard disk. De-
pending on the options chosen, some lesser used packages may not be installed
initially; they may be added to your local installation later, as described in the TEX
Live documentation.

If you are already using LaTEX then you may not want to install the whole
system but simply use the CD to update your base LaTEX and your chosen packages
to more recent versions.

Running LATEX directly from the CD-ROM

As an alternative to installing the whole system on your local disk, you can opt to
run all software directly from the CD-ROM. However, some local disk space will
still be required so that TEX can write output files and, if necessary, extra fonts
can be generated.

Under Windows this option is taken by choosing the Explore CD-Rom/Run
TeX off CD-Rom menu option from the TEX Live welcome program. On the other
systems you should run install-tl.sh as above, but choose the option to run directly
from the media.

In addition to giving you a running TEX system, this installation will also set
up xemacs as an environment for preparing your documents. This provides an
extensive set of menu options to help in the editing of LaTEX documents, and in
the use of LaTEX and associated programs such as BIBTEX.

The LATEX Companion example documents

Files for all the examples displayed in the book are on the CD-ROM in the directory
Books/tlc2/examples. The file name is in each case the example number, with ex-
tension .ltx or .ltx2 (for two-page examples), as in 1-3-1.ltx and 2-4-4.ltx2.

Most of these examples use the class file ttctexa.cls which is in the same
directory as the examples. This class is a small extension of the article class: it
defines some extra commands to control the display of preamble commands in
this book.

TLC2 TEX CD 961

If the TEX system is used directly from the CD then all those packages required
for the examples will be available, with the exception of some packages which
relate to commercial fonts that cannot be distributed on this CD-ROM.

If the distribution is installed on a hard disk then not all the packages are
installed by default. Extra individual packages can be installed using either install-
pkg.sh under Linux and MacOSX, or the TEX Live/maintenance option from the
Start menu under Windows.

Licenses

The file LICENSE.TL in the top level directory describes the license and copying
conditions for TEX Live itself; these also apply to the modified distribution on the
TLC2 TEX CD-ROM. All the software contained on this CD-ROM is (to the best of
our knowledge) freely distributable, although different licenses are used on the
different components, as detailed in the documentation of each package.

Many of the LaTEX packages, and all of the example files for this book, are
distributed under the LaTEX Project Public License, the text of which is on the CD
in the file texmf/doc/latex/base/lppl.txt.

The LPPL allows arbitrary use, including copying and modification, so long as
you do not distribute modified copies with the same name as the original files.

This page intentionally left blank

Bibliography

[1] Adobe Systems Incorporated. Adobe Type 1 Font Format. Addison-Wes-
ley, Reading, MA, USA, 1990. ISBN 0-201-57044-0.
The “black book” contains the specifications for Adobe’s Type 1 font format and describes
how to create a Type 1 font program. The book explains the specifics of the Type 1 syntax (a
subset of PostScript), including information on the structure of font programs, ways to specify
computer outlines, and the contents of the various font dictionaries. It also covers encryption,
subroutines, and hints.

http://partners.adobe.com/public/developer/en/font/T1_SPEC.PDF

[2] Adobe Systems Incorporated. “PostScript document structuring conven-
tions specification (version 3.0)”. Technical Note 5001, 1992.
This technical note defines a standard set of document structuring conventions (DSC), which will
help ensure that a PostScript document is device independent. DSC allows PostScript language
programs to communicate their document structure and printing requirements to document
managers in a way that does not affect the PostScript language page description.

http://partners.adobe.com/public/developer/en/ps/5001.DSC_Spec.pdf

[3] Adobe Systems Incorporated. “Encapsulated PostScript file format specifi-
cation (version 3.0)”. Technical Note 5002, 1992.
This technical note details the Encapsulated PostScript file (epsf) format, a standard format for
importing and exporting PostScript language files among applications in a variety of heteroge-
neous environments. The epsf format is based on and conforms to the document structuring
conventions (DSC) [2].

http://partners.adobe.com/public/developer/en/ps/5002.EPSF_Spec.pdf

[4] Adobe Systems Incorporated. PostScript Language Reference. Addison-
Wesley, Reading, MA, USA, 3rd edition, 1999. ISBN 0-201-37922-8.
The “red book” can be considered the definitive resource for all PostScript programmers. It
contains the complete description of the PostScript language, including the latest Level 3 oper-
ators. http://www.adobe.com/products/postscript/pdfs/PLRM.pdf

964 Bibliography

[5] Adobe Systems Incorporated. PDF Reference, version 1.4. Addison-Wesley,
Boston, MA, USA, 3rd edition, 2002. ISBN 0-201-75839-3.
The specification of Adobe’s Portable Document Format (PDF). The book introduces and ex-
plains all aspects of the PDF format, including its architecture and imaging model (allowing
transparency and opacity for text, images, and graphics), the command syntax, the graphics
operators, fonts and rendering, and the relation between PostScript and PDF. http://
partners.adobe.com/asn/acrobat/docs/File_Format_Specifications/PDFReference.pdf

[6] American Mathematical Society, Providence, Rhode Island. Instructions
for Preparation of Papers and Monographs: AMS-LaTEX, 1999.
This document contains instructions for authors preparing articles and books, using LATEX, for
publication with the American Mathematical Society (AMS) to match its publication style speci-
fications: journals (amsart), proceedings volumes (amsproc), and monographs (amsbook).

ftp://ftp.ams.org/pub/author-info/documentation/amslatex/instr-l.pdf

[7] American Mathematical Society, Providence, Rhode Island. Using the
amsthm Package (Version 2.07), 2000.
The amsthm package provides an enhanced version of LATEX’s \newtheorem command for
defining theorem-like environments, recognizing \theoremstyle specifications and providing
a proof environment. ftp://ftp.ams.org/pub/tex/doc/amscls/amsthdoc.pdf

[8] American Mathematical Society, Providence, Rhode Island. User’s Guide
for the amsmath Package (Version 2.0), 2002.
The amsmath package, developed by the American Mathematical Society, provides many addi-
tional features for mathematical typesetting. http://www.ams.org/tex/amslatex.html

[9] American Mathematical Society, Providence, Rhode Island. User’s Guide to
AMSFonts Version 2.2d, 2002.
This document describes AMSFonts, the American Mathematical Society’s collection of fonts of
symbols and several alphabets. http://www.ams.org/tex/amsfonts.html

[10] J. André and Ph. Louarn. “Notes en bas de pages : comment les faire en
LaTEX?” Cahiers GUTenberg, 12:57–70, 1991.
Several special cases of using footnotes with LATEX are discussed—for example, how to generate
a footnote referring to information inside a tabular or minipage environment, and how to
reference the same footnote more than once.

http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/12-louarn.pdf

[11] Michael Barr. “A new diagram package”, 2001.
A rewrite of Michael Barr’s original diagram package to act as a front end to Rose’s xypic (see [57,
Chapter 5]). It offers a general arrow-drawing function; various common diagram shapes, such
as squares, triangles, cubes, and 3× 3 diagrams; small 2-arrows that can be placed anywhere in
a diagram; and access to all of xypic’s features. On CTAN at: macros/generic/diagrams/barr

[12] Claudio Beccari and Apostolos Syropoulos. “New Greek fonts and the
greek option of the babel package”. TUGboat, 19(4):419–425, 1998.
Describes a new complete set of Greek fonts and their use in connection with the babel greek
extension. http://www.tug.org/TUGboat/Articles/tb19-4/tb61becc.pdf

[13] Nelson Beebe. “Bibliography prettyprinting and syntax checking”. TUG-
boat, 14(4):395–419, 1993.
This article describes three software tools for BIBTEX support: a pretty-printer, syntax checker,
and lexical analyzer for BIBTEX files; collectively called bibclean.

http://www.tug.org/TUGboat/Articles/tb14-4/tb41beebe.pdf

Bibliography 965

[14] Barbara Beeton. “Mathematical symbols and Cyrillic fonts ready for distri-
bution”. TUGboat, 6(2):59–63, 1985.
The announcement of the first general release by the American Mathematical Society of the
Euler series fonts. http://www.tug.org/TUGboat/Articles/tb06-2/tb11beet.pdf

[15] Frank G. Bennett, Jr. “Camel: kicking over the bibliographic traces in
BIBTEX”. TUGboat, 17(1):22–28, 1996.
The camel package provides a simple, logical citation interface for LATEX that allows the biblio-
graphic style of a document to be easily changed without major editing.

http://www.tug.org/TUGboat/Articles/tb17-1/tb50benn.pdf

[16] Frank G. Bennett, Jr. “User’s guide to the camel citator”, 1997.
The documentation for version 1 of the camel package.

On CTAN at: macros/latex/contrib/camel

[17] A. Berdnikov, O. Lapko, M. Kolodin, A. Janishevsky, and A. Burykin.
“Cyrillic encodings for LaTEX2ε multi-language documents”. TUGboat,
19(4):403–416, 1998.
A description of four encodings designed to support Cyrillic writing systems for the multi-
language mode of LATEX2ε . The “raw” X2 encoding is a Cyrillic glyph container that allows one
to insert into LATEX2ε documents text fragments written in any of the languages using a modern
Cyrillic writing scheme. The T2A, T2B, and T2C encodings are genuine LATEX2ε encodings that
may be used in a multi-language setting together with other language encodings.

http://www.tug.org/TUGboat/Articles/tb19-4/tb61berd.pdf

[18] Karl Berry. “Filenames for fonts”. TUGboat, 11(4):517–520, 1990.
This article describes the consistent, rational scheme for font file names that was used for at
least the next 15 years. Each name consists of up to eight characters (specifying the foundry,
typeface name, weight, variant, expansion characteristics, and design size) that identify each
font file in a unique way. http://www.tug.org/TUGboat/Articles/tb11-4/tb30berry.pdf

[19] Karl Berry. “Fontname: Filenames for TEX fonts”, 2003.
The on-line documentation of the latest version of “Fontname”, a scheme for TEX font file names;
it explains some legal issues relating to fonts in a number of countries.

http://www.tug.org/fontname/html/index.html

[20] Javier Bezos. “The accents package”, 2000.
Miscellaneous tools for mathematical accents: to create faked accents from non-accent symbols,
to group accents, and to place accents below glyphs.

On CTAN at: macros/latex/contrib/bezos

[21] The Bluebook: A Uniform System of Citation. The Harvard Law Review
Association, Cambridge, MA, 17th edition, 2000.
The Bluebook contains three major parts: part 1 details general standards of citation and style
to be used in legal writing; part 2 presents specific rules of citation for cases, statutes, books,
periodicals, foreign materials, and international materials; and part 3 consists of a series of
tables showing, among other things, which authority to cite and how to abbreviate properly.

Can be ordered at: http://www.legalbluebook.com

[22] Francis Borceux. “De la construction de diagrammes”. Cahiers GUTenberg,
5:41–48, 1990.
The diagrammacros typeset diagrams consisting of arrows of different types that join at corners
that can contain mathematical expressions. The macros calculate automatically the length and
position of each element. The user can specify a scaling factor for each diagram.

http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/5-borceux.pdf

966 Bibliography

[23] Francis Borceux. “Diagram 3”, 1993.
Commutative diagram package that uses LATEX picture mode.

On CTAN at: macros/generic/diagrams/borceux

[24] Thierry Bouche. “Diversity in math fonts”. TUGboat, 19(2):120–134, 1998.
Issues raised when modifying LATEX fonts within math environments are examined. An attempt
is made to suggest effective means of accessing a larger variety of font options, while avoiding
typographic nonsense. http://www.tug.org/TUGboat/Articles/tb19-2/tb59bouc.pdf

[25] Johannes Braams. “Babel, a multilingual style-option system for use with
LaTEX’s standard document styles”. TUGboat, 12(2):291–301, 1991.
The babel package was originally a collection of document-style options to support different
languages. An update was published in TUGboat, 14(1):60–62, April 1993.

http://www.tug.org/TUGboat/Articles/tb12-2/tb32braa.pdf
http://www.tug.org/TUGboat/Articles/tb14-1/tb38braa.pdf

[26] Neil Bradley. The XML Companion. Addison-Wesley, Boston, MA, USA, 3rd
edition, 2002. ISBN 0-201-77059-8.
This book provides a description of XML features without assuming knowledge of HTML or
SGML, covering also related standards such as Xpath, XML Schema, SAX, DOM, XSLT, Xlink, and
Xpointer.

[27] Peter Breitenlohner et al. “The eTEX manual (version 2)”, 1998.
The current manual for the eTEX system, which extends the capabilities of TEX while retaining
compatibility. On CTAN at: systems/e-tex/v2/doc/etex_man.pdf

[28] Robert Bringhurst. The elements of typographic style. Hartley & Marks
Publishers, Point Roberts, WA, USA, and Vancouver, BC, Canada, 2nd edi-
tion, 1996. ISBN 0-88179-133-4 (hardcover), 0-88179-132-6 (paperback).
A very well-written book on typography with a focus on the proper use of typefaces.

[29] Judith Butcher. Copy-editing: The Cambridge handbook for editors, au-
thors and publishers. Cambridge University Press, New York, 3rd edition,
1992. ISBN 0-521-40074-0.
A reference guide for all those involved in the process of preparing typescripts and illustrations
for printing and publication. The book covers all aspects of the editorial process, from the
basics of how to mark a typescript for the designer and the typesetter, through the ground
rules of house style and consistency, to how to read and correct proofs.

[30] David Carlisle. “A LaTEX tour, Part 1: The basic distribution”. TUGboat,
17(1):67–73, 1996.
A “guided tour” around the files in the basic LATEX distribution. File names and paths relate to
the file hierarchy of the CTAN archives.

http://www.tug.org/TUGboat/Articles/tb17-1/tb50carl.pdf

[31] David Carlisle. “A LaTEX tour, Part 2: The tools and graphics distributions”.
TUGboat, 17(3):321–326, 1996.
A “guided tour” around the “tools” and “graphics” packages. Note that The Manual [104] as-
sumes that at least the graphics distribution is available with standard LATEX.

http://www.tug.org/TUGboat/Articles/tb17-3/tb52carl.pdf

[32] David Carlisle. “A LaTEX tour, Part 3: mfnfss, psnfss and babel”. TUGboat,
18(1):48–55, 1997.
A “guided tour” through three more distributions that are part of the standard LATEX system.
The mfnfss distribution provides LATEX support for some popular METAFONT-produced fonts

Bibliography 967

that do not otherwise have any LATEX interface. The psnfss distribution consists of LATEX pack-
ages giving access to PostScript fonts. The babel distribution provides LATEX with multilingual
capabilities. http://www.tug.org/TUGboat/Articles/tb18-1/tb54carl.pdf

[33] David Carlisle. “OpenMath, MathML, and XSL”. SIGSAM Bulletin (ACM
Special Interest Group on Symbolic and Algebraic Manipulation), 34(2):6–
11, 2000.
Discussion of XML markup for mathematics—in particular, OpenMath and MathML—and the
use of XSLT to transform between these languages.
Restricted to ACM members; http://www.acm.org/sigsam/bulletin/issues/issue132.html

[34] David Carlisle. “xmltex: A non validating (and not 100% conforming)
namespace aware XML parser implemented in TEX”. TUGboat, 21(3):193–
199, 2000.
xmltex is a an XML parser and typesetter implemented in TEX, which by default uses the LATEX
kernel to provide typesetting functionality.

http://www.tug.org/TUGboat/Articles/tb21-3/tb68carl.pdf

[35] David Carlisle, Patrick Ion, Robert Miner, and Nico Poppelier, editors.
Mathematical Markup Language (MathML) Version 2.0. W3C, 2nd edition,
2003.
MathML is an XML vocabulary for mathematics, designed for use in browsers and as a commu-
nication language between computer algebra systems. http://www.w3.org/TR/MathML2

[36] David Carlisle, Chris Rowley, and Frank Mittelbach. “The LaTEX3 Program-
ming Language—a proposed system for TEX macro programming”. TUG-
boat, 18(4):303–308, 1997.
Some proposals for a radically new syntax and software tools.

http://www.tug.org/TUGboat/Articles/tb18-4/tb57rowl.pdf

[37] Pehong Chen and Michael A. Harrison. “Index preparation and process-
ing”. Software—Practice and Experience, 19(9):897–915, 1988.
A description of the makeindex system.

[38] The Chicago Manual of Style. University of Chicago Press, Chicago, IL,
USA, 15th edition, 2003. ISBN 0-226-10403-6.
The standard U.S. publishing style reference for authors and editors.

[39] Adrian F. Clark. “Practical halftoning with TEX”. TUGboat, 12(1):157–165,
1991.
Reviews practical problems encountered when using TEX for typesetting half-tone pictures and
compares other techniques to include graphics material. Advantages and disadvantages of
the various approaches are described and some attempts at producing color separations are
discussed. http://www.tug.org/TUGboat/Articles/tb12-1/tb31clark.pdf

[40] Matthias Clasen and Ulrik Vieth. “Towards a new math font encoding for
(LA)TEX”. Cahiers GUTenberg, 28–29:94–121, 1998.
A prototype implementation of 8-bit math font encodings for LATEX.

http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/28-29-clasen.pdf

[41] Carl Dair. Design with Type. University of Toronto Press, Toronto, On-
tario, Canada, 1967. ISBN 0-8020-1426-7 (hardcover), 0-8020-6519-8
(paperback).
A good survey of traditional typography with many useful rules of thumb.

968 Bibliography

[42] Michael Downes. “Breaking equations”. TUGboat, 18(3):182–194, 1997.
TEX is not very good at displaying equations that must be broken into more than one line. The
breqn package eliminates many of the most significant problems by supporting automatic line
breaking of displayed equations.

http://www.tug.org/TUGboat/Articles/tb18-3/tb56down.pdf

[43] Michael Downes. “The amsrefs LaTEX package and the amsxport BIBTEX
style”. TUGboat, 21(3):201–209, 2000.
Bibliography entries using the amsrefs format provide a rich internal structure and high-level
markup close to that traditionally found in BIBTEX database files. On top of that, using amsrefs
markup lets you specify the bibliography style completely in a LATEX document class file.

http://www.tug.org/TUGboat/Articles/tb21-3/tb68down.pdf

[44] Dudenredaktion, editor. Duden, Rechtschreibung der deutschen Sprache.
Dudenverlag, Mannheim, 21st edition, 1996. ISBN 3-411-04011-4.
The standard reference for the correct spelling of all words of contemporary German and for
hyphenation rules, with examples and explanations for difficult cases, and a comparison of the
old and new orthographic rules.

[45] Victor Eijkhout. TEX by Topic, A TEXnician’s Reference. Addison-Wesley,
Reading, MA, USA, 1991. ISBN 0-201-56882-9. Out of print. Available free
of charge from the author in PDF format.
A systematic reference manual for the experienced TEX user. The book offers a comprehensive
treatment of every aspect of TEX, with detailed explanations of the mechanisms underlying TEX’s
working, as well as numerous examples of TEX programming techniques.

http://www.eijkhout.net/tbt

[46] Robin Fairbairns. “UK list of TEX frequently asked questions on the Web”,
2003.
This list of Frequently Asked Questions on TEX was originated by the Committee of the U.K. TEX
Users’ Group; it has well over 300 entries and is regularly updated and expanded.

http://www.tex.ac.uk/faq

[47] Laurence Finston. “Spindex—Indexing with special characters”. TUGboat,
18(4):255–273, 1997.
Common Lisp indexing program and supporting TEX macros for indexes that include non-Latin
characters. http://www.tug.org/TUGboat/Articles/tb18-4/tb57fins.pdf

[48] Shinsaku Fujita and Nobuya Tanaka. “XΥMTEX (Version 2.00) as imple-
mentation of the XΥM notation and the XΥM markup language”. TUGboat,
21(1):7–14, 2000.
A description of version 2 of the XΥMTEX system, which can be regarded as a linear notation
system expressed in TEX macros that corresponds to the IUPAC (International Union of Pure and
Applied Chemistry) nomenclature. It provides a convenient method for drawing complicated
structural formulas. http://www.tug.org/TUGboat/Articles/tb21-1/tb66fuji.pdf

[49] Shinsaku Fujita and Nobuya Tanaka. “Size reduction of chemical struc-
tural formulas in XΥMTEX (Version 3.00)”. TUGboat, 22(4):285–289, 2001.
Further improvements to the XΥMTEX system, in particular in the area of size reduction of struc-
tural formulas. http://www.tug.org/TUGboat/Articles/tb22-4/tb72fuji.pdf

[50] Rei Fukui. “TIPA: A system for processing phonetic symbols in LaTEX”.
TUGboat, 17(2):102–114, 1996.
TIPA is a system for processing symbols of the International Phonetic Alphabet with LATEX. It
introduces a new encoding for phonetic symbols (T3), which includes all the symbols and dia-
critics found in the recent versions of IPA as well as some non-IPA symbols. It has full support

http://www.tex.ac.uk/faq

Bibliography 969

for LATEX2ε and offers an easy input method in the IPA environment.
http://www.tug.org/TUGboat/Articles/tb17-2/tb51rei.pdf

[51] Bernard Gaulle. “Comment peut-on personnaliser l’extension french de
LaTEX?” Cahiers GUTenberg, 28–29:143–157, 1998.
Describes how to personalize the french package.

http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/28-29-gaulle.pdf

[52] Maarten Gelderman. “A short introduction to font characteristics”. TUG-
boat, 20(2):96–104, 1999.
This paper provides a description of the main aspects used to describe a font, its basic charac-
teristics, elementary numerical dimensions to access properties of a typeface design, and the
notion of “contrast”. http://www.tug.org/TUGboat/Articles/tb20-2/tb63geld.pdf

[53] Charles F. Goldfarb. The SGML Handbook. Oxford University Press,
London, Oxford, New York, 1990. ISBN 0-19-853737-9.
The full text of the ISO SGML standard [68] copiously annotated by its author, and several
tutorials.

[54] Norbert Golluch. Kleinweich Büro auf Schlabberscheiben. Eichborn,
Frankfurt, 1999.
Tecknisches Deutsch für Angefangen.

[55] Michel Goossens, Frank Mittelbach, and Alexander Samarin. The LaTEX
Companion. Tools and Techniques for Computer Typesetting. Addison-
Wesley, Reading, MA, USA, 1994. ISBN 0-201-54199-8.
The first edition of this book.

[56] Michel Goossens and Sebastian Rahtz. The LaTEX Web Companion: Integrat-
ing TEX, HTML, and XML. Tools and Techniques for Computer Typesetting.
Addison-Wesley Longman, Reading, MA, USA, 1999. ISBN 0-201-43311-7.
With Eitan M. Gurari, Ross Moore, and Robert S. Sutor.
This book teaches (scientific) authors how to publish on the web or other hypertext presentation
systems, building on their experience with LATEX and taking into account their specific needs in
fields such as mathematics, non-European languages, and algorithmic graphics. The book ex-
plains how to make full use of the Adobe Acrobat format from LATEX, convert legacy documents
to HTML or XML, make use of math in web applications, use LATEX as a tool in preparing web
pages, read and write simple XML/SGML, and produce high-quality printed pages from web-
hosted XML or HTML pages using TEX or PDF.

[57] Michel Goossens, Sebastian Rahtz, and Frank Mittelbach. The LaTEX Graph-
ics Companion: Illustrating Documents with TEX and PostScript. Tools
and Techniques for Computer Typesetting. Addison-Wesley, Reading, MA,
USA, 1997. ISBN 0-201-85469-4.
The book shows how to incorporate graphic files into a LATEX document, program technical
diagrams using several different languages, produce color pictures, achieve special effects with
fragments of embedded PostScript, and make high-quality music scores and game diagrams. It
also contains detailed descriptions of important packages such as xypic, pstricks, and MetaPost,
the standard LATEX color and graphics packages, PostScript fonts and how to use them in LATEX,
and the dvips and ghostscript programs.

[58] Michel Goossens and Vesa Sivunen. “LaTEX, SVG, Fonts”. TUGboat,
22(4):269–279, 2001.
A short overview of SVG and its advantages for portable graphics content, conversion of
PostScript glyph outlines to SVG outlines, and the use of SVG glyphs in TEX documents.

http://www.tug.org/TUGboat/Articles/tb22-4/tb72goos.pdf

970 Bibliography

[59] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, Reading, MA, USA, 2nd edition, 1994. ISBN
0-201-55802-5.
A mathematics textbook prepared with TEX using the Concrete Roman typeface; see also [92].

[60] George Grätzer. Math into LaTEX. Birkhäuser and Springer-Verlag, Cam-
bridge, MA, USA; Berlin, Germany/Basel, Switzerland, and Berlin, Ger-
many/Heidelberg, Germany/London, UK/ etc., 3rd edition, 2000. ISBN
0-8176-4131-9, 3-7643-4131-9.
Provides a general introduction to LATEX as used to prepare mathematical books and articles.
Covers AMS document classes and packages in addition to the basic LATEX offerings.

[61] George D. Greenwade. “The Comprehensive TEX Archive Network (CTAN)”.
TUGboat, 14(3):342–351, 1993.
An outline of the conception, development, and early use of the CTAN archive, which makes all
TEX-related files available on the network.

http://www.tug.org/TUGboat/Articles/tb14-3/tb40green.pdf

[62] Yannis Haralambous. “Typesetting old German: Fraktur, Schwabacher,
Gotisch and initials”. TUGboat, 12(1):129–138, 1991.
Demonstrates the use of METAFONT to recreate faithful copies of old-style typefaces and
explains the rules for typesetting using these types, with examples.

http://www.tug.org/TUGboat/Articles/tb12-1/tb31hara.pdf

[63] Horace Hart. Hart’s Rules; For Compositors and Readers at the University
Press, Oxford. Oxford University Press, London, Oxford, New York, 39th
edition, 1991. ISBN 0-19-212983-X.
A widely used U.K. reference for authors and editors. With the Oxford Dictionary for Writers and
Editors it presents the canonical house style of the Oxford University Press. See also [143].

[64] Alan Hoenig. TEX Unbound: LaTEX and TEX Strategies for Fonts, Graphics,
& More. Oxford University Press, London, Oxford, New York, 1998. ISBN
0-19-509686-X (paperback), 0-19-509685-1 (hardcover).
The first part of this book provides a brief but comprehensive overview of TEX, LATEX, META-
FONT, and MetaPost, with particular emphasis on how everything fits together, how the pro-
duction cycle works, and what kinds of files are involved. The second part is devoted to details
of fonts and their use in TEX. Of particular interest are 30 pages of examples showing how
various combinations of well-known text typefaces might be used together with the few choices
of math fonts currently available. The final part of the book discusses graphics applications—
in particular, TEX-friendly methods such as METAFONT and MetaPost, the pstricks package,
PICTEX, and MFpic.

[65] Berthold K. P. Horn. “The European Modern fonts”. TUGboat, 19(1):62–63,
1998.
The European Modern (EM) fonts are Type 1 fonts based on Computer Modern (CM) that have
ready-made accented and composite characters, thus enabling TEX hyphenation when using
languages that use such characters.

http://www.tug.org/TUGboat/Articles/tb19-1/tb58horn.pdf

[66] Jean-Michel Hufflen. “Typographie: les conventions, la tradition, les
goûts,. . . , et LaTEX”. Cahiers GUTenberg, 35–36:169–214, 2000.
This article shows that learning typographic rules—even considering those for French and En-
glish together—is not all that difficult. It also teaches the basics of using the LATEX packages
french (for French only) and babel (allowing a homogeneous treatment of most other languages).

Bibliography 971

Finally, the author shows how to build a newmultilingual document class and bibliography style.
http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/35-hufflen.pdf

[67] “ISO/IEC 8859-1:1998 to ISO/IEC 8859-16:2001, Information technology—
8-bit single-byte coded graphic character sets, Parts 1 to 16”. Interna-
tional Standard ISO/IEC 8859, ISO Geneva, 1998–2001.
A description of various 8-bit alphabetic character sets. Parts 1–4, 9, 10, and 13–16 correspond
to 10 character sets needed to encode different groups of languages using the Latin alphabet,
while part 5 corresponds to Cyrillic, part 6 to Arabic, part 7 to Greek, part 8 to Hebrew, and part
11 to Thai.

[68] “ISO 8879:1986, Information Processing—Text and Office Systems—
Standard Generalised Markup Language (SGML)”. International Standard
ISO 8879, ISO Geneva, 1986.
The—not always easy to read—ISO standard describing the SGML language in full technical
detail. An addendum was published in 1988 and two corrigenda in 1996 and 1999. See [53] for
an annotated description.

[69] “ISO/IEC 10646-1:2000, Information technology—Universal Multiple-Octet
Coded Character Set (UCS)—Part 1: Architecture and Basic Multilingual
Plane”. International Standard ISO 10646-1 (Edition 2), ISO Geneva, 2000.
This standard specifies the architecture of the Universal Multiple-Octet Coded Character Set
(UCS). This 32-bit character encoding standard is for all practical purposes identical to the
Unicode standard; see [165]. The layout of the Basic Multilingual Plane (plane 0 or BMP) is
described in detail. An amendment in 2002 added mathematical symbols and other characters.

[70] “ISO/IEC 10646-2:2001, Information technology—Universal Multiple-Octet
Coded Character Set (UCS)—Part 2: Supplementary Planes”. International
Standard ISO 10646-2, ISO Geneva, 2001.
Complementing [69], which describes plane 0 (BMP) of the UCS, the present standard details the
layout of the supplementary planes; see also [165].

[71] “ISO/IEC 14651:2001, Information technology—International string or-
dering and comparison—Method for comparing character strings and
description of the common template tailorable ordering”. International
Standard ISO/IEC 14651:2001, ISO Geneva, 2001.

[72] Alan Jeffrey. “PostScript font support in LaTEX2ε”. TUGboat, 15(3):263–
268, 1994.
Describes the original psnfss distribution for using PostScript fonts with LATEX.

http://www.tug.org/TUGboat/Articles/tb15-3/tb44jeff.pdf

[73] Alan Jeffrey. “Tight setting with TEX”. TUGboat, 16(1):78–80, 1995.
Describes some experiments with setting text matter in TEX using Adobe Times, a very tightly
spaced text font. http://www.tug.org/TUGboat/Articles/tb16-1/tb46jeff.pdf

[74] Alan Jeffrey and Rowland McDonnell. “fontinst: Font installation software
for TEX”, 1998.
This utility package supports the creation of complex virtual fonts in any encoding for use with
LATEX, particularly from collections of PostScript fonts.

On CTAN at: fonts/utilities/fontinst/doc/manual

[75] Alan Jeffrey, Sebastian Rahtz, Ulrik Vieth, and Lars Hellström. “The
fontinst utility”, 2003.
Technical description of the fontinst utility.

On CTAN at: fonts/utilities/fontinst/source/fisource.dvi

972 Bibliography

[76] Roger Kehr. “xindy—A flexible indexing system”. Cahiers GUTenberg,
28–29:223–230, 1998.
A new index processor, xindy, is described. It allows for sorting of index entries at a fine
granularity in a multi-language environment, offers new mechanisms for processing structured
location references besides page numbers and Roman numerals, and has provisions for complex
markup schemes.

http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/28-29-kehr.pdf

[77] Brian W. Kernighan. “pic—A graphics language for typesetting”. Comput-
ing Science Technical Report 116, AT&T Bell Laboratories, 1991.
The user manual for the pic language, which is intended for drawing simple figures on a type-
setter. The basic objects of the language are boxes, circles, ellipses, lines, arrows, spline curves,
and text. These may be placed at any position, specified either in an absolute way or with re-
spect to previous objects. http://cm.bell-labs.com/cm/cs/cstr/116.ps.gz

[78] Jörg Knappen. “Release 1.2 of the dc-fonts: Improvements to the Eu-
ropean letters and first release of text companion symbols”. TUGboat,
16(4):381–387, 1995.
Description of the DC fonts, which were precursors of the EC fonts, which themselves are the
default fonts for the T1 encoding of LATEX.

http://www.tug.org/TUGboat/Articles/tb16-4/tb49knap.pdf

[79] Jörg Knappen. “The dc fonts 1.3: Move towards stability and complete-
ness”. TUGboat, 17(2):99–101, 1996.
A follow-up article to [78]. It explains the progress made in version 1.3 in the areas of stability
and completeness. http://www.tug.org/TUGboat/Articles/tb17-2/tb51knap.pdf

[80] Donald E. Knuth. TEX and METAFONT—New Directions in Typesetting.
Digital Press, 12 Crosby Drive, Bedford, MA 01730, USA, 1979. ISBN 0-
932376-02-9.
Contains an article on “Mathematical Typography”, describing the author’s motivation for start-
ing to work on TEX and the early history of computer typesetting. Describes early (now obsolete)
versions of TEX and METAFONT.

[81] Donald E. Knuth. “Literate programming”. Report STAN-CS-83-981,
Stanford University, Department of Computer Science, Stanford, CA, USA,
1983.
A collection of papers on styles of programming and documentation.

http://www.literateprogramming.com/farticles.html.

[82] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-13447-0.
The definitive user’s guide and complete reference manual for TEX.

[83] Donald E. Knuth. TEX: The Program, volume B of Computers and Typeset-
ting. Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-13437-3.
The complete source code for the TEX program, typeset with several indices.

[84] Donald E. Knuth. The METAFONTbook, volume C of Computers and
Typesetting. Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-13445-
4 (hardcover), 0-201-13444-6 (paperback).
The user’s guide and reference manual for METAFONT, the companion program to TEX for
designing fonts.

Bibliography 973

[85] Donald E. Knuth. METAFONT: The Program, volume D of Computers
and Typesetting. Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13438-1.
The complete source code listing of the METAFONT program.

[86] Donald E. Knuth. Computer Modern Typefaces, volume E of Computers
and Typesetting. Addison-Wesley, Reading, MA, USA, 1986. ISBN 0-201-
13446-2.
More than 500 Greek and Roman letterforms, together with punctuation marks, numerals, and
many mathematical symbols, are graphically depicted. The METAFONT code to generate each
glyph is given and it is explained how, by changing the parameters in the METAFONT code,
all characters in the Computer Modern family of typefaces can be obtained.

[87] Donald E. Knuth. 3:16 Bible texts illuminated. A-R Editions, Inc., Madison,
Wisconsin, 1990. ISBN 0-89579-252-4.
Analysis of Chapter 3 Verse 16 of each book of the Bible. Contains wonderful calligraphy.

[88] Donald E. Knuth. The Art of Computer Programming, vols 1–3. Addi-
son-Wesley, Reading, MA, USA, 1998. ISBN 0-201-89683-4, 0-201-03822-6,
0-201-03803-X.
A major work on algorithms and data structures for efficient programming.

[89] Donald E. Knuth. Digital Typography. CSLI Publications, Stanford, CA,
USA, 1999. ISBN 1-57586-011-2 (cloth), 1-57586-010-4 (paperback).
A collection of Knuth’s writings on TEX and typography.

[90] Donald E. Knuth. “Mathematical typography”. In Knuth [89], pp. 19–65.
Based on a lecture he gave in 1978, Knuth makes the point that mathematics books and journals
do not look as beautiful now as they did in the past. As this is mainly due to the fact that high-
quality typesetting has become too expensive, he proposes to use mathematics itself to solve
the problem. As a first step he sees the development of a method to unambiguously mark up
the math elements in a document so that they can be easily handled by machines. The second
step is to use mathematics to design the shapes of letters and symbols. The article goes into
the details of these two approaches.

[91] Donald E. Knuth. “Virtual fonts: More fun for grand wizards”. In Knuth
[89], pp. 247–262. Originally published in TUGboat 11(1):13–23, 1990.
An explanation of what virtual fonts are and why they are needed, plus technical details.

On CTAN at: info/virtual-fonts.knuth
http://www.tug.org/TUGboat/Articles/tb11-1/tb27knut.pdf

[92] Donald E. Knuth. “Typesetting concrete mathematics”. In Knuth [89], pp.
367–378. Originally published in TUGboat 10(1):31–36, 1989.
Knuth explains how he prepared the textbook Concrete Mathematics. He states that he wanted
to make that book both mathematically and typographically “interesting”, since it would be the
first major use of Herman Zapf’s new typeface, AMS Euler. The font parameters were tuned up
to make the text look as good as that produced by the best handwriting of a mathematician.
Other design decisions for the book are also described.

http://www.tug.org/TUGboat/Articles/tb10-1/tb26knut.pdf

[93] Donald E. Knuth. “Fonts for digital halftones”. In Knuth [89], pp. 415–448.
Originally published in TUGboat 8(2):135–160, 1987.
This article discusses some experiments in which METAFONT was used to create fonts to gen-
erate half-tones on laser printers. The methods also proved useful in several other applications,
while their design involved a number of interesting issues.

http://www.tug.org/TUGboat/Articles/tb08-2/tb18knut.pdf

974 Bibliography

[94] Donald E. Knuth. “Computers and typesetting”. In Knuth [89], pp. 555–
562. Originally published in TUGboat 7(2):95–98, 1986.
Remarks presented by Knuth at the Computer Museum, Boston, Massachusetts, on 21 May 1986,
at the “coming-out” party to celebrate the completion of TEX.

http://www.tug.org/TUGboat/Articles/tb07-2/tb14knut.pdf

[95] Donald E. Knuth. “The new versions of TEX and METAFONT”. In Knuth
[89], pp. 563–570. Originally published in TUGboat 10(3):325–328, 1989.
Knuth explains how he was convinced at the TUG Meeting at Stanford in 1989 to make one
further set of changes to TEX and METAFONT to extend these programs to support 8-bit
character sets. He goes on to describe the various changes he introduced to implement this
feature, as well as a few other improvements.

http://www.tug.org/TUGboat/Articles/tb10-3/tb25knut.pdf

[96] Donald E. Knuth. “The future of TEX and METAFONT”. In Knuth [89], pp.
571–572. Originally published in TUGboat 11(4):489, 1990.
In this article Knuth announces that his work on TEX, METAFONT, and Computer Modern has
“come to an end” and that he will make further changes only to correct extremely serious bugs.

http://www.tug.org/TUGboat/Articles/tb11-4/tb30knut.pdf

[97] Donald E. Knuth and Pierre MacKay. “Mixing right-to-left texts with left-to-
right texts”. In Knuth [89], pp. 157–176. Originally published in TUGboat
8(1):14–25, 1987.
TEX was initially designed to produce documents with material flowing left-to-right and top-to-
bottom. This paper clarifies the issues involved in mixed-direction document production and
discusses changes to TEX that can extend it to become a bidirectional formatting system.

http://www.tug.org/TUGboat/Articles/tb08-1/tb17knutmix.pdf

[98] Donald E. Knuth and Michael F. Plass. “Breaking paragraphs into lines”. In
Knuth [89], pp. 67–155.
This article, originally published in 1981, addresses the problem of dividing the text of a para-
graph into lines of approximately equal length. The basic algorithm considers the paragraph as
a whole and introduces the (now well-known TEX) concepts of “boxes”, “glue”, and “penalties”
to find optimal breakpoints for the lines. The paper describes the dynamic programming tech-
nique used to implement the algorithm.

[99] Donald E. Knuth and Hermann Zapf. “AMS Euler—A new typeface for
mathematics”. In Knuth [89], pp. 339–366.
The two authors explain, in this article originally published in 1989, how a collaboration between
scientists and artists is helping to bring beauty to the pages of mathematical journals and
textbooks.

[100] Markus Kohm and Jens-Uwe Morawski. KOMA-Script: eine Sammlung
von Klassen und Paketen für LaTEX2ε. dante, Heidelberg, 2003. ISBN
3-936427-45-3.
KOMA-Script is a bundle of LATEX classes and packages that can be used as replacements for
the standard LATEX classes offering extended functionalities. German and English manuals are
provided as part of the distribution.

On CTAN at: macros/latex/contrib/koma-script/scrguide.pdf

[101] Helmut Kopka and Patrick Daly. Guide to LaTEX. Tools and Techniques
for Computer Typesetting. Addison-Wesley, Boston, MA, USA, 4th edition,
2004. ISBN 0-201-17385-6.
An introductory guide to LATEX with a different pedagogical style than Lamport’s LATEX Man-
ual [104].

Bibliography 975

[102] Klaus Lagally. “ArabTEX—Typesetting Arabic with vowels and ligatures”.
In “Proceedings of the 7th European TEX Conference, Prague”, pp. 153–
172. CsTUG, Prague, 1992. ISBN 80-210-0480-0.
A macro package, compatible with plain TEX and LATEX, for typesetting Arabic with both partial
and full vocalization.

[103] Leslie Lamport. “MakeIndex, An Index Processor For LaTEX”. Technical
report, Electronic Document in MakeIndex distribution, 1987.
This document explains the syntax that can be used inside LATEX’s \index command when using
MakeIndex to generate your index. It also gives a list of the possible error messages.

On CTAN at: indexing/makeindex/doc/makeindex.dvi

[104] Leslie Lamport. LaTEX: A Document Preparation System: User’s Guide and
Reference Manual. Addison-Wesley, Reading, MA, USA, 2nd edition, 1994.
ISBN 0-201-52983-1. Reprinted with corrections in 1996.
The ultimate reference for basic user-level LATEX by the creator of LATEX 2.09. It complements the
material presented in this book.

[105] Olga Lapko and Irina Makhovaya. “The style russianb for Babel: Prob-
lems and solutions”. TUGboat, 16(4):364–372, 1995.
This paper describes the language option russianb, which includes specific commands to rus-
sify captions and alphabetic counters and to allow for Russian mathematical operators. Some
problems are mentioned that may occur when using this option (i.e., with different encodings).

http://www.tug.org/TUGboat/Articles/tb16-4/tb49olga.pdf

[106] LaTEX3 Project Team. “LaTEX bug database”.
The bug reporting and tracking service run by the LATEX3 team as part of the LATEX2ε mainte-
nance activity. http://www.latex-project.org/cgi-bin/ltxbugs2html

[107] LaTEX3 Project Team. “LaTEX news”.
An issue of LATEX News is released with each LATEX2ε release, highlighting changes since the last
release. http://www.latex-project.org/ltnews/

[108] LaTEX3 Project Team. “Default docstrip headers”. TUGboat, 19(2):137–138,
1998.
This document describes the format of the header that docstrip normally adds to generated
package files. This header is suitable for copyright information or distribution conditions.

http://www.tug.org/TUGboat/Articles/tb19-2/tb59ltdocstrip.pdf

[109] LaTEX3 Project Team. “LaTEX2ε font selection”, 2000.
A description of font selection in standard LATEX intended for package writers who are already
familiar with TEX fonts and LATEX. http://www.latex-project.org/guides/fntguide.pdf

[110] LaTEX3 Project Team. “Configuration options for LaTEX2ε”, 2001.
How to configure a LATEX installation using the set of standard configuration files.

http://www.latex-project.org/guides/cfgguide.pdf

[111] LaTEX3 Project Team. “The LaTEX project public license (version 1.3)”, 2003.
An Open Source License used by the core LATEX2ε distribution and many contributed packages.

http://www.latex-project.org/lppl/

[112] John Lavagnino and Dominik Wujastyk. “An overview of EDMAC: A plain
TEX format for critical editions”. TUGboat, 11(4):623–643, 1990.
EDMAC is for typesetting of‘ “critical editions” of texts such as the Oxford Classical Texts, Shake-
speare, and other series. It supports marginal line numbering and multiple series of footnotes
and endnotes keyed to line numbers.

http://www.tug.org/TUGboat/Articles/tb11-4/tb30lava.pdf

976 Bibliography

[113] Werner Lemberg. “The CJK package: Multilingual support beyond Babel”.
TUGboat, 18(3):214–224, 1997.
A description of the CJK (Chinese/Japanese/Korean) package for LATEX and its interface to mule
(multilingual emacs). http://www.tug.org/TUGboat/Articles/tb18-3/cjkintro600.pdf

[114] Silvio Levy. “Using Greek fonts with TEX”. TUGboat, 9(1):20–24, 1988.
The author tries to demonstrate that typesetting Greek in TEX with the gr family of fonts can be
as easy as typesetting English text and leads to equally good results. The article is meant as a
tutorial but some technical details are given for those who will have acquired greater familiarity
with the font. http://www.tug.org/TUGboat/Articles/tb09-1/tb20levy.pdf

[115] Franklin Mark Liang. Word Hy-phen-a-tion by Com-pu-ter. Ph.D. thesis,
Stanford University, Stanford, CA 94305, 1983. Also available as Stanford
University, Department of Computer Science Report No. STAN-CS-83-977.
A detailed description of the word hyphenation algorithm used by TEX.

[116] Ruari McLean. The Thames and Hudson Manual of Typography. Thames
and Hudson, London, UK, 1980. ISBN 0-500-68022-1.
A broad introduction to traditional commercial typography.

[117] Frank Mittelbach. “E-TEX: Guidelines for future TEX”. TUGboat, 11(3):337–
345, 1990.
The output of TEX is compared with that of hand-typeset documents. It is shown that many
important concepts of high-quality typesetting are not supported and that further research to
design a “successor” typesetting system to TEX should be undertaken.

http://www.tug.org/TUGboat/Articles/tb11-3/tb29mitt.pdf

[118] Frank Mittelbach. “Comments on “Filenames for Fonts” (TUGboat 11#4)”.
TUGboat, 13(1):51–53, 1992.
Some problems with K. Berry’s naming scheme are discussed, especially from the point of view
of defining certain font characteristics independently and the use of the scheme with NFSS.

http://www.tug.org/TUGboat/Articles/tb13-1/tb34mittfont.pdf

[119] Frank Mittelbach. “A regression test suite for LaTEX2ε”. TUGboat,
18(4):309–311, 1997.
Description of the concepts and implementation of the test suite used to test for unexpected
side effects after changes to the LATEX kernel. One of the most valuable maintenance tools for
keeping LATEX2ε stable. http://www.tug.org/TUGboat/Articles/tb18-4/tb57mitt.pdf

[120] Frank Mittelbach. “Language Information in Structured Documents:
Markup and rendering—Concepts and problems”. In “International Sym-
posium on Multilingual Information Processing”, pp. 93–104. Tsukuba,
Japan, 1997. Invited paper. Republished in TUGboat 18(3):199–205, 1997.
This paper discusses the structure and processing of multilingual documents, both at a general
level and in relation to a proposed extension to standard LATEX.

http://www.tug.org/TUGboat/Articles/tb18-3/tb56lang.pdf

[121] Frank Mittelbach. “Formatting documents with floats: A new algorithm
for LaTEX2ε”. TUGboat, 21(3):278–290, 2000.
Descriptions of features and concepts of a new output routine for LATEX that can handle spanning
floats in multicolumn page design.

http://www.tug.org/TUGboat/Articles/tb21-3/tb68mittel.pdf

[122] Frank Mittelbach. “The trace package”. TUGboat, 22(1/2):93–99, 2001.
A description of the trace package for controlling debugging messages from LATEX packages.

http://www.tug.org/TUGboat/Articles/tb22-1-2/tb70mitt.pdf

Bibliography 977

[123] Frank Mittelbach, David Carlisle, and Chris Rowley. “New interfaces for
LaTEX class design, Parts I and II”. TUGboat, 20(3):214–216, 1999.
Some proposals for the first-ever interface to setting up and coding LATEX classes.

http://www.tug.org/TUGboat/Articles/tb20-3/tb64carl.pdf

[124] Frank Mittelbach, David Carlisle, Chris Rowley, et al. “Experimental LaTEX
code for class design”.
At the TEX Users Group conference in Vancouver the LATEX project team gave a talk on models
for user-level interfaces and designer-level interfaces in LATEX3 [123]. Most of these ideas have
been implemented in prototype implementations (e.g., template design, front matter handling,
output routine, galley and paragraph formatting). The source code is documented and contains
further explanations and examples; see also [121].

Slides: http://www.latex-project.org/papers/tug99.pdf
Code: http://www.latex-project.org/code/experimental

[125] Frank Mittelbach, Denys Duchier, Johannes Braams, Marcin Woliński, and
Mark Wooding. “The docstrip program”, 2003. Distributed as part of the
base LaTEX distribution.
Describes the implementation of the docstrip program.

On CTAN at: macros/latex/base/docstrip.dtx

[126] Frank Mittelbach and Chris Rowley. “LaTEX 2.09 ↪→ LaTEX3”. TUGboat,
13(1):96–101, 1992.
A brief sketch of the LATEX3 Project, retracing its history and describing the structure of the
system. An update appeared in TUGboat, 13(3):390–391, October 1992. A call for volunteers to
help in the development of LATEX3 and a list of the various tasks appeared in TUGboat, 13(4):510–
515, December 1992. The article also describes how you can obtain the current task list as
well as various LATEX3 working group documents via e-mail or ftp and explains how you can
subscribe to the LATEX3 discussion list.

http://www.tug.org/TUGboat/Articles/tb13-1/tb34mittl3.pdf

[127] Frank Mittelbach and Chris Rowley. “The pursuit of quality: How can auto-
mated typesetting achieve the highest standards of craft typography?” In
C. Vanoirbeek and G. Coray, editors, “EP92—Proceedings of Electronic Pub-
lishing, ’92, International Conference on Electronic Publishing, Document
Manipulation, and Typography, Swiss Federal Institute of Technology, Lau-
sanne, Switzerland, April 7–10, 1992”, pp. 261–273. Cambridge University
Press, New York, 1992. ISBN 0-521-43277-4.

[128] Frank Mittelbach and Rainer Schöpf. “A new font selection scheme for TEX
macro packages—the basic macros”. TUGboat, 10(2):222–238, 1989.
A description of the basic macros used to implement the first version of LATEX’s New Font Selec-
tion Scheme. http://www.tug.org/TUGboat/Articles/tb10-2/tb24mitt.pdf

[129] Frank Mittelbach and Rainer Schöpf. “With LaTEX into the nineties”. TUG-
boat, 10(4):681–690, 1989.
This article proposes a reimplementation of LATEX that preserves the essential features of the
current interface while taking into account the increasing needs of the various user communi-
ties. It also formulates some ideas for further developments. It was instrumental in the move
from LATEX 2.09 to LATEX2ε . http://www.tug.org/TUGboat/Articles/tb10-4/tb26mitt.pdf

[130] Frank Mittelbach and Rainer Schöpf. “Reprint: The new font family selec-
tion—User interface to standard LaTEX”. TUGboat, 11(2):297–305, 1990.
A complete description of the user interface of the first version of LATEX’s New Font Selection
Scheme. http://www.tug.org/TUGboat/Articles/tb11-2/tb28mitt.pdf

978 Bibliography

[131] Frank Mittelbach and Rainer Schöpf. “Towards LaTEX 3.0”. TUGboat,
12(1):74–79, 1991.
The objectives of the LATEX3 project are described. The authors examine enhancements to LATEX’s
user and style file interfaces that are necessary to keep pace with modern developments, such
as SGML. They also review some internal concepts that need revision.

http://www.tug.org/TUGboat/Articles/tb12-1/tb31mitt.pdf

[132] Gerd Neugebauer. “BIBTOOL: A tool to manipulate BIBTEX files”, 2002.
Describes the bibtool program for pretty-printing, sorting and merging of BIBTEX databases,
generation of uniform reference keys, and selecting of references used in a publication.

On CTAN at: biblio/bibtex/utils/bibtool/bibtool.dvi

[133] O. Nicole, J. André, and B. Gaulle. “Notes en bas de pages : commentaires”.
Cahiers GUTenberg, 15:46–32, 1993.
Comments, clarifications, and additions to [10].

http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/15-nicole.pdf

[134] Scott Pakin. “The comprehensive LaTEX symbol list”, 2003.
This document lists more than 2800 symbols and the corresponding LATEX commands that pro-
duce them. Some of these symbols are guaranteed to be available in every LATEX2ε system;
others require fonts and packages that may not accompany a given distribution and that there-
fore need to be installed. All of the fonts and packages described in the document are freely
available from the CTAN archives. On CTAN at: info/symbols/comprehensive/

[135] Oren Patashnik. “BIBTEXing”, 1988.
Together with Appendix B of The Manual [104], this describes the user interface to BIBTEX with
useful hints for controlling its behavior.

On CTAN at: biblio/bibtex/contrib/doc/btxdoc.pdf

[136] Oren Patashnik. “Designing BIBTEX styles”, 1988.
A detailed description for BIBTEX style designers of the postfix stack language used inside BIBTEX
style files. After a general description of the language, all commands and built-in functions are
reviewed. Finally, BIBTEX name formatting is explained in detail.

On CTAN at: biblio/bibtex/contrib/doc/btxhak.pdf

[137] John Plaice and Yannis Haralambous. “The latest developments in Ω”.
TUGboat, 17(2):181–183, 1996.
The article describes ΩTimes and ΩHelvetica, public-domain virtual Times- and Helvetica-like
fonts based on real PostScript fonts, called “Glyph Containers”, which will contain all necessary
characters for typesetting with high TEX quality in all languages and systems using the Latin,
Greek, Cyrillic, Arabic, Hebrew, and Tinagh alphabets and their derivatives. Other alphabets,
such as Coptic, Armenian, and Georgian, will follow, as well as mathematical symbols, dingbats,
and other character collections. Ultimately, the Ω font set will contain glyphs for the complete
Unicode character set, plus some specific glyphs needed for high-quality typography.

http://www.tug.org/TUGboat/Articles/tb17-2/tb51omeg.pdf

[138] John Plaice, Yannis Haralambous, and Chris Rowley. “A multidimensional
approach to typesetting”. TUGboat, 24(1):105–114, 2004.
Outline of an approach to micro-typesetting that substantially improves on that of TEX and
Ω2.0. http://www.tug.org/TUGboat/Articles/tb24-1/plaice.pdf

[139] Sunil Podar. “Enhancements to the picture environment of LaTEX”. Tech-
nical Report 86-17, Department of Computer Science, S.U.N.Y, 1986. Ver-
sion 1.2: July 14, 1986.
This document describes some new commands for the picture environment of LATEX, especially
higher-level commands that enhance its graphic capabilities by providing a friendlier and more
powerful user interface. This lets you create more sophisticated pictures with less effort than
in basic LATEX.

Bibliography 979

[140] Rama Porrat. “Developments in Hebrew TEX”. In “Proceedings of the 7th
European TEX Conference, Prague”, pp. 135–147. CsTUG, Prague, 1992.
ISBN 80-210-0480-0.
Discussion of available software and macro packages that support typesetting in two directions,
and of associated Hebrew fonts.

[141] Bernd Raichle, Rolf Niepraschk, and Thomas Hafner. “DE-TeX-FAQ—
Fragen und Antworten über TEX, LaTEX und DANTE e.V.”, 2003.
Frequently Asked Questions with answers about TEX and the German TEX users’ Group DANTE
e.V. (in German language). http://www.dante.de/faq/de-tex-faq

[142] Brian Reid. Scribe Document Production System User Manual. Unilogic
Ltd, 1984.
The manual for the system that inspired certain aspects of LATEX.

[143] Robert M. Ritter, editor. The Oxford Style Manual. Oxford University
Press, London, Oxford, New York, 2003. ISBN 0-198-60564-1.
Reference work incorporating an update to Hart’s Rules [63], and the Oxford Dictionary for
Writers and Editors.

[144] Tomas G. Rokicki. “A proposed standard for specials”. TUGboat,
16(4):395–401, 1995.
A draft standard for the contents of TEX \special commands.

http://www.tug.org/TUGboat/Articles/tb16-4/tb49roki.pdf

[145] Tomas G. Rokicki. “Dvips: A DVI-to-PostScript Translator, Version 5.66a”,
1997.
The user guide for dvips and its accompanying programs and packages such as afm2tfm.

On CTAN at: dviware/dvips/dvips_man.pdf

[146] Emmanuel Donin de Rosière. From stack removing in stack-based lan-
guages to BibTEX++. Master’s thesis, ENSTBr, 2003.
A description of BibTEX++, a bibliography section creator for LATEX and a possible successor of
BIBTEX. The program can compile BIBTEX .bst style files into Java code.

http://www.lit.enstb.org/~keryell/eleves/ENSTBr/2002-2003/DEA/Donin_de_Rosiere

[147] Chris Rowley. “Models and languages for formatted documents”. TUG-
boat, 20(3):189–195, 1999.
Explores many ideas around the nature of document formatting and how these can be modeled
and implemented. http://www.tug.org/TUGboat/Articles/tb20-3/tb64rowl.pdf

[148] Chris Rowley. “The LaTEX legacy: 2.09 and all that”. In ACM, editor, “Pro-
ceedings of the Twentieth Annual ACM Symposium on Principles of Dis-
tributed Computing 2001, Newport, Rhode Island, United States”, pp.
17–25. ACM Press, New York, NY, USA, 2001. ISBN 1-58113-383-9.
Part of a celebration for Leslie Lamport’s sixtieth birthday; a very particular account of the
technical history and philosophy of TEX and LATEX.

[149] Chris A. Rowley and Frank Mittelbach. “Application-independent repre-
sentation of multilingual text”. In Unicode Consortium, editor, “Europe,
Software + the Internet: Going Global with Unicode: Tenth International

980 Bibliography

Unicode Conference, March 10–12, 1997, Mainz, Germany”, The Unicode
Consortium, San Jose, CA, 1997.
Explores the nature of text representation in computer files and the needs of a wide range of
text-processing software. http://www.latex-project.org/papers/unicode5.pdf

[150] Richard Rubinstein. Digital Typography—An Introduction to Type and
Composition for Computer System Design. Addison-Wesley, Reading, MA,
USA, 1988. ISBN 0-201-17633-5. Reprinted with corrections.
This book describes a technological approach to typography. It shows how computers can be
used to design, create, and position the graphical elements used to present documents on a
computer.

[151] Joachim Schrod. “International LaTEX is ready to use”. TUGboat, 11(1):87–
90, 1990.
Announces some of the early standards for globalization work on LATEX.

http://www.tug.org/TUGboat/Articles/tb11-1/tb27schrod.pdf

[152] Joachim Schrod. “An international version of MakeIndex”. Cahiers GUTen-
berg, 10–11:81–90, 1991.
The MakeIndex index processor is only really usable for English texts; non-English texts, espe-
cially those using non-Latin alphabets, such as Russian, Arabic, or Chinese, prove problematic.
In this case the tagging of index entries is often tedious and error prone. In particular, if markup
is used within the index key, an explicit sort key must be specified. This article presents a new
version of MakeIndex, which uses less memory so that it can be used for the creation of very
large indices. It allows the automatic creation of sort keys from index keys by user-specified
mappings, and supports documents in non-Latin alphabets.

http://www.gutenberg.eu.org/pub/GUTenberg/publicationsPDF/10-schrod.pdf

[153] Joachim Schrod. “The components of TEX”. MAPS, 8:81–86, 1992.
TEX needs a great number of supplementary components (files and programs) whose meanings
and interactions are often unknown; the structure of a complete TEX setup is explained.

http://www.ntg.nl/maps/pdf/8_18.pdf

[154] Paul Stiff. “The end of the line: A survey of unjustified typography”.
Information Design Journal, 8(2):125–152, 1996.
A good overview about the typographical problems that need to be resolved when producing
high-quality unjustified copy.

[155] Anders Svensson. “Typesetting diagrams with kuvio.tex”, 1996.
Manual for the kuvio system for typesetting diagrams; it uses PostScript code in \specials.

On CTAN at: macros/generic/diagrams/kuvio

[156] Ellen Swanson. Mathematics into Type. American Mathematical Society,
Providence, Rhode Island, updated edition, 1999. ISBN 0-8218-1961-5.
Updated by Arlene O’Sean and Antoinette Schleyer.
Originally written as a manual to standardize copyediting procedures, the second edition is also
intended for use by publishers and authors as a guide in preparing mathematics copy for the
printer.

[157] The TUGboat Team. “TEX Live CD 5 and the TEX Catalogue”. TUGboat,
21(1):16–90, 2000.
The TEX Live CD is a ready-to-run TEX system for the most popular operating systems; it works
with all major TEX-related programs and contains a complete collection of fonts, macros, and
other items with support for many languages. This article describes the TEX Live CD 5 distribu-
tion with cross-references to Graham Williams’ TEX catalogue.

http://www.tug.org/TUGboat/Articles/tb21-1/tb66cd.pdf
Current version: http://www.tug.org/texlive

Bibliography 981

[158] Hàn Thế Thành. “Improving TEX’s typeset layout”. TUGboat, 19(3):284–
288, 1998.
This attempt to improve TEX’s typeset layout is based on the adjustment of interword spac-
ing after the paragraphs have been broken into lines. Instead of changing only the interword
spacing to justify text lines, fonts on the line are also slightly expanded to minimize excessive
stretching of the interword spaces. This font expansion is implemented using horizontal scal-
ing in PDF. By using such expansion conservatively, and by employing appropriate settings for
TEX’s line-breaking and spacing parameters, this method can improve the appearance of TEX’s
typeset layout. http://www.tug.org/TUGboat/Articles/tb19-3/tb60than.pdf

[159] Hàn Thế Thành. “Micro-typographic extensions to the TEX typesetting
system”. TUGboat, 21(4):317–434, 2000.
Doctoral dissertation at the Faculty of Informatics, Masaryk University, Brno, Czech Republic,
October 2000. http://www.tug.org/TUGboat/Articles/tb21-4/tb69thanh.pdf

[160] Hán Thế Thánh. “Margin kerning and font expansion with pdfTEX”. TUG-
boat, 22(3):146–148, 2001.
“Margin kerning” adjusts the positions of the primary and final glyphs in a line of text to make
the margins “look straight”. “Font expansion” uses a slightly wider or narrower variant of a
font to make interword spacing more even. These techniques are explained with the help of
examples. For a detailed explanation of the concepts, see [159]. This feature was used in the
preparation of this book. http://www.tug.org/TUGboat/Articles/tb22-3/tb72thanh.pdf

[161] Hán Thế Thánh and Sebastian Rahtz. “The pdfTEX user manual”. TUGboat,
18(4):249–254, 1997.
User manual for the pdfTEX system, which extends TEX to generate PDF directly.

http://www.tug.org/TUGboat/Articles/tb18-4/tb57than.pdf

[162] Harold Thimbleby. “‘See also’ indexing with makeindex”. TUGboat,
12(2):290–290, 1991.
Describes how to produce “see also” entries with MakeIndex appearing after any page numbers
for that entry. Also check [163].

http://www.tug.org/TUGboat/Articles/tb12-2/tb32thim.pdf

[163] Harold Thimbleby. “Erratum: ‘See also’ indexing with makeindex, TUG-
boat 12, no. 2, p. 290”. TUGboat, 13(1):95–95, 1992.
Erratum to [162]. http://www.tug.org/TUGboat/Articles/tb13-1/tb34thim.pdf

[164] TUG Working Group on a TEX Directory Structure. “A directory structure
for TEX files (Version 0.999)”. TUGboat, 16(4):401–413, 1995.
Describes the commonly used standard TEX Directory Structure (TDS) for implementation-
independent TEX system files. http://www.tug.org/TUGboat/Articles/tb16-4/tb49tds.pdf

Current version: http://www.tug.org/tds

[165] The Unicode Consortium. The Unicode Standard, Version 4.0. Addison-
Wesley, Boston, MA, USA, 2003. ISBN 0-321-18578-1.
The reference guide of the Unicode Standard, a universal character-encoding scheme that de-
fines a consistent way of encoding multilingual text. Unicode is the default encoding of HTML
and XML. The book explains the principles of operation and contains images of the glyphs for
all characters presently defined in Unicode.

Available for restricted use from: http://www.unicode.org/versions/Unicode4.0.0

[166] Gabriel Valiente Feruglio. “Typesetting commutative diagrams”. TUGboat,
15(4):466–484, 1994.
Surveys the available support for typesetting commutative diagrams.

http://www.tug.org/TUGboat/Articles/tb15-4/tb45vali.pdf

982 Bibliography

[167] Gabriel Valiente Feruglio. “Modern Catalan typographical conventions”.
TUGboat, 16(3):329–338, 1995.
Many languages, such as German, English, and French, have a traditional typography. However,
despite the existence of a well-established tradition in scientific writing in Catalan, there are not
yet any standards encompassing typographical conventions in this area. This paper proposes
typographical rules that reflect the spirit of ancient Catalan scientific writings while conforming
to modern typographical conventions. Some of these typographical rules are incorporated in
Catalan extensions to TEX and LATEX. The proposal also hopes to contribute to the development
of standard rules for scientific writing in Catalan.

http://www.tug.org/TUGboat/Articles/tb16-3/tb48vali.pdf

[168] Michael Vulis. “VTEX enhancements to the TEX language”. TUGboat,
11(3):429–434, 1990.
Description of the commercial VTEX system, which supports a scalable font format.

http://www.tug.org/TUGboat/Articles/tb11-3/tb29vulis.pdf
More recent information available from http://www.micropress-inc.com/enfeat.htm

[169] Graham Williams. “Graham Williams’ TEX Catalogue”. TUGboat, 21(1):17–
90, 2000.
This catalogue lists more than 1500 TEX, LATEX, and related packages and tools and is linked
directly to the items on CTAN.

http://www.tug.org/TUGboat/Articles/tb21-1/tb66catal.pdf
Latest version on CTAN at: help/Catalogue/catalogue.html

[170] Hugh Williamson. Methods of Book Design. Yale University Press, New
Haven, London, 3rd edition, 1983.
A classic work that has become a basic tool for the practicing book designer. It deals with
such matters as the preparation of copy, the selection and arrangement of type, the designer’s
part in book illustration and jacket design, and the economics of book production. The book
also explains the materials and techniques of book production and their effect on the design of
books.

[171] Peter Wilson. ledmac—A presumptuous attempt to port EDMAC and
TABMAC to LaTEX, 2003.
EDMAC and TABMAC are a set of plain TEX macros for typesetting critical editions in the traditional
way. The ledmac package implements the facilities of these macros in LATEX—in particular,
marginal line numbering and multiple series of footnotes and endnotes keyed to line numbers.
As a new feature the package provides for index entries keyed to both page and line numbers.
Multiple series of the familiar numbered footnotes are also available.

On CTAN at: macros/latex/contrib/ledmac/ledmac.pdf

[172] Reinhard Wonneberger and Frank Mittelbach. “BIBTEX reconsidered”.
TUGboat, 12(1):111–124, 1991.
A discussion of BIBTEX and several proposals for its enhancement.

http://www.tug.org/TUGboat/Articles/tb12-1/tb31wonn.pdf

[173] Hermann Zapf. “My collaboration with Don Knuth and my font design
work”. TUGboat, 22(1/2):26–30, 2001.
Zapf’s story of collaboration with Don Knuth and some thoughts on typography.

http://www.tug.org/TUGboat/Articles/tb22-1-2/tb70zapf.pdf

[174] Justin Ziegler. “Technical report on math font encoding (version 2)”.
Technical report, LaTEX3 project, 1994.
The ground work for a set of 8-bit math encodings for TEX.

On CTAN at: info/ltx3pub/l3d007.*

Index of Commands
and Concepts

This title somewhat hides the fact that everything except the author names is in
this one long index. To make it easier to use, the entries are distinguished by
their “type” and this is often indicated by one of the following “type words” at the
beginning of the main entry or a sub-entry:

attribute, BIBTEX built-in function, BIBTEX command, BIBTEX entry type,
BIBTEX field, BIBTEX style, boolean, counter, document class, env., env. vari-
able, file, file extension, folio style, font, font encoding, function, key,
key/option, key value, keyword, length, option, package, page style, pro-
gram, rigid length, or syntax.

The absence of an explicit “type word” means that the “type” is either a LaTEX
“command” or simply a “concept”.

Use by, or in connection with, a particular package is indicated by adding
the package name (in parentheses) to an entry or sub-entry. There is one “virtual”
package name, tlc, which indicates commands introduced only for illustrative pur-
poses in this book.

A blue italic page number indicates that the command or concept is demon-
strated in an example on that page.

When there are several page numbers listed, bold face indicates a page con-
taining important information about an entry, such as a definition or basic usage.

When looking for the position of an entry in the index, you need to realize
that, when they come at the start of a command or file extension, both of the
characters \ and . are ignored. All symbols come before all letters and everything
that starts with the @ character will appear immediately before A.

984 (Symbols) Index of Commands and Concepts

Symbols

! syntax, 280, 528
(array), 244, 246, 247
(babel), shorthand character, 554
(docstrip), 819
(makeindex), 651, 653, 658, 659, 660

\!, 508
(tipa), 406

" syntax, 345
(BIBTEX), 761, 769
(babel), shorthand character, 551, 552, 553, 574, 657,

662
(makeindex), 652, 653, 660

\", 453, 455, 662
(yfonts), 394, 395, 396

"" syntax (babel), 553
"’ syntax (babel), 552
"- syntax (babel), 553
"< syntax (babel), 553
"= syntax (babel), 553
"> syntax (babel), 553
"〈letter〉 syntax

(babel), 548, 552, 553, 567 , 591
(yfonts), 395

"〈8-bit letter〉 syntax (babel), 567
"~ syntax (babel), 553
"‘ syntax (babel), 552
"| syntax (babel), 553
’ syntax, 345

(BIBTEX), 769
(babel), shorthand character, 556, 563, 574

\’, 241, 242, 456, 567
(inputenc), 445
(tipa), 406

’〈letter〉 syntax (babel), 555, 556
(syntax, 498, 537

(BIBTEX), 769
(delarray), 489
(makeindex), 660

\(, 502
error using, 895
(ifthen), 877
(soul), 89

) syntax, 498, 537
(BIBTEX), 769
(delarray), 489
(makeindex), 660

\), 502
error using, 895
(ifthen), 877
(soul), 89

* (asterisk) error messages, 894
* syntax, 243, 530

(array), 250
(calc), 197 , 250, 871, 872, 873, 876

* syntax (cont.)
(docstrip), 819, 820
(hhline), 266, 267

*
(doc), 822
(tipa), 406

*〈letter〉 syntax (yfonts), 395
+ syntax, 530

(calc), 131, 148–150, 197 , 201, 227 , 250, 850, 861,
866, 871

(docstrip), 820
\+, error using, 912
, syntax, 536

(BIBTEX), 761, 769
(tlc), 275

\,, 114, 126, 507, 508, 525, 691
in math, 472, 474, 486, 487 , 492, 493, 496

- (hyphen)
nonbreaking, 83, 93

- syntax, 83, 530
(calc), 250, 867 , 869, 870, 871, 872, 873
(docstrip), 820
(hhline), 266, 267

\-, 241, 247 , 249, 553, 940
error using, 912
(soul), 88
(ulem), 87

-- syntax, 83
--- syntax, 83, 345
. syntax, 498, 528

(babel), shorthand character, 558
(tlc), 275

\., 456, 567
. . . (ellipsis)

mathematical symbol, 496, 497
spacing, 81–83

.pybrc.conf file (pybliographic), 784
/ syntax, 498, 528

(calc), 250, 871, 873
(docstrip), 819, 820

\/, 340, 341, 342
(soul), 89

: syntax, 535
(arydshln), 267, 268
(babel), shorthand character, 554
(hhline), 266, 267

\:, 507, 508, 525
(tipa), 406

:: syntax
(arydshln), 268
(hhline), 267
(yfonts), 395

; syntax, 536
(arydshln), 268
(babel), shorthand character, 554, 591

Index of Commands and Concepts (Symbols) 985

\;, 507, 508, 525
(tipa), 406

< syntax, 532
(array), 244, 246, 248
(babel), shorthand character, 557 , 574
(ifthen), 873, 875, 876

\<
error using, 895, 912
(soul), 90

<< syntax (babel), 557 , 590
= syntax, 532

(BIBTEX), 761, 769
(babel), shorthand character, 557 , 581
(hhline), 266, 267
(ifthen), 873, 875

\=, 241, 456
error using, 910
(inputenc), 445
(tipa), 406

=〈letter〉 syntax (babel), 557
> syntax, 532

(array), 244, 245–250, 264
(babel), shorthand character, 557 , 574
(colortbl), 265
(ifthen), 875, 876
(tabularx), 251, 252

\>, 241
error using, 912
(soul), 89, 90

>> syntax (babel), 557 , 590
? font encoding, 453
? syntax, 528

(babel), shorthand character, 554
(QED) symbol, 143, 144

[syntax, 498, 537
\[, 469, 481, 503, 893

error using, 895
spacing problems before, 481
(amsmath), 469

syntax, 149
in TEX error message, 905, 908, 914
(BIBTEX), 769, 770, 771
(bibtool), 781
(hhline), 266, 267

\#, 501, 524, 528
syntax, 149, 833
% syntax (BIBTEX), 769
\%, 528
%<...> syntax (docstrip), 819, 820
%<<... syntax (docstrip), 833
%% syntax (docstrip), 833
& syntax, 242

error using, 898, 904, 911
(amsmath), 470, 473, 475–478, 486, 487

error using, 898

& syntax (cont.)
(docstrip), 819

\&, 528
error using, 904

$ syntax, 246, 502
\$, 456, 527
_ syntax

error using, 905
(index), 681

_, 457, 528
\\, 104, 242, 264, 489, 860

error using, 911
in tabbing, 241, 242
in headings, 23, 31
problem in tabular, 104
(amscd), 488, 489
(amsmath), 470, 471, 472–479, 480, 482–488, 492,

493
(array), 244, 246, 247
(booktabs), 271
(delarray), 489
(fancyhdr), 225
(longtable), 261
(soul), 90
(supertabular), 256, 257
(tabularx), 252

*, 261
(amsmath), 470, 479, 481
(longtable), 261

\〈language〉hyphenmins (babel), 579, 586
〈num〉headlines option (typearea), 205

\{, 463, 475, 483, 498, 501, 525, 537
{ syntax

(BIBTEX), 761, 766–768, 769
(makeindex), 660

{} syntax, 80, 473, 474, 487 , 507
(xspace), 81

\}, 463, 475, 483, 498, 501, 525, 537
} syntax

(BIBTEX), 761, 766–768, 769
(makeindex), 660

\^, 457
(tipa), 406

^ syntax
(babel), shorthand character, 556
(index), 681

^〈letter〉 syntax (babel), 556
^| syntax (babel), 556
~ (tilde)

multilingual aspects, 554
nonbreaking space, 550

\~, 463
(tipa), 406

986 (Symbols–@) Index of Commands and Concepts

~ syntax, 554, 943
(babel), shorthand character, 574
(hhline), 266, 267

~- syntax (babel), 554
~-- syntax (babel), 554
~--- syntax (babel), 554
~〈letter〉 syntax (babel), 554
€ (euro symbol), 407–412
\�, 80
\], 469, 503, 893

error using, 895
(amsmath), 469

] syntax, 498, 537
\‘, 241, 457

(inputenc), 445
(textcomp), 365
(tipa), 406

‘ syntax
(babel), shorthand character, 555, 574
(dvips), 626

‘〈letter〉 syntax (babel), 555
\|, 498, 528

(tipa), 406
| syntax, 243, 248, 498, 528

(array), 244, 245–247 , 249, 268
(babel), shorthand character, 574
(booktabs), 269
(docstrip), 819
(hhline), 266, 267
(ltxdoc), 834
(makeindex), 652, 658, 660
(tabls), 269
(tabularx), 251, 252
(tabulary), 253, 254

|(syntax (makeindex), 651, 652, 658, 659
|) syntax (makeindex), 651, 652, 658, 659
|see syntax (makeindex), 651, 653
|| syntax, 243

(booktabs), 269
(hhline), 267

10pt option, 198, 881
(amsmath), 479

11pt option, 16, 144, 198, 343
12pt option, 198
1 syntax (paralist), 133, 135, 137
8859-8 option (inputenc), 578
88591lat.csf file (bibtex8), 759
8r.enc file, 388, 420

@

@ syntax, 243, 246, 272, 528
error using, 905
in command names, 18, 843
(BIBTEX), 761, 762, 764
(makeindex), 652, 653, 658, 660

\@, 80, 696
error using, 914

@(((syntax (amscd), 488
@))) syntax (amscd), 488
@. syntax (amscd), 489
@<<< syntax (amscd), 488
@= syntax (amscd), 488, 489
@>>> syntax (amscd), 488, 489
@{} syntax, 225, 247 , 248, 270, 272
@AAA syntax (amscd), 488
\@addtoreset, 14, 25, 112, 217 , 485, 851, 852, 854
\@afterheading, 32, 33, 875
@afterindent boolean, 32, 875
\@afterindentfalse, 33
\@beginparpenalty, 146
\@biblabel, 692, 693

(natbib), 693
\@cite, 692
\@dotsep, 51
\@dottedtocline, 50, 51, 52, 54
\@endparpenalty, 146
\@evenfoot, 223
\@evenhead, 223
@firstcolumn boolean, 875
\@float, 308
\@gobble, 885
\@idxitem, 679, 680

(doc), 823
\@ifpackagelater, 888
\@ifpackageloaded, 888
\@ifpackagewith, 888
\@include, 20
@inlabel boolean, 875
\@itempenalty, 146
\@listi, 144
\@listii, 144
\@listiii, 144
\@makecaption, 307 , 308
\@makefigcaption (tlc), 308
\@makefnmark, 113
\@makefntext, 113, 114
\@makeschapterhead, 679
\@makewincaption (picinpar), 109
\@mkboth, 222
@newlist boolean, 875
@noskipsec boolean, 875
\@oddfoot, 223, 892
\@oddhead, 223
\@pnumwidth rigid length, 51, 52, 62
@preamble BIBTEX command, 771, 808, 847

(bibextract), 777
\@ptsize, 198, 199
\@removefromreset (remreset), 851, 852
\@seccntformat, 26, 27
\@secpenalty, 42, 937

Index of Commands and Concepts (@–A) 987

\@startsection, 27, 28, 29–31, 32, 287 , 859
error using, 914
with float barrier, 288

\@starttoc, 54, 55
(notoccite), 698

@string BIBTEX command, 769, 770
(BibTexMng), 789
(bibextract), 777
(bibtool), 781

\@tabacckludge, 445, 452
\@tempboxa, 307 , 308
@tempswa boolean, 692, 875
\@thefnmark, 113, 114
\@tocrmarg, 51, 52
\@topcaptionfalse (supertabular), 257
@twocolumn boolean, 680, 875
@twoside boolean, 199, 875
@VVV syntax (amscd), 488, 489
@| syntax (amscd), 488

A

A syntax (paralist), 133, 135, 137
a syntax (paralist), 132, 133, 137

problems with, 133
\a’, 241
a0 option (crop), 213
a0paper key/option (geometry), 206
a0paper option, 196

(typearea), 204
a1 option (crop), 213
a1paper key/option (geometry), 206
a2 option (crop), 213
a2paper key/option (geometry), 206
a3 option (crop), 213
a3paper key/option (geometry), 206
a4 option (crop), 213
a4 package, 199, 202
a4dutch package, 202
a4paper key/option (geometry), 206
a4paper option, 16, 195, 880

(typearea), 204
a4wide package, 202
a5 option (crop), 213, 214
a5 package, 202
a5comb package, 202
a5paper key/option (geometry), 206
a5paper option, 195

(typearea), 204, 205
a6 option (crop), 213
a6paper key/option (geometry), 206, 209, 211
a6paper option (typearea), 204
\a=, 241
\a‘, 241

abbreviations
in bibliographies, 769–771
of environments, 468

abbrv BIBTEX style, 692, 693, 767 , 791, 792, 794, 806
(bibtopic), 753, 754

abbrvnat BIBTEX style (natbib), 685, 707 , 710, 715, 791
\above, 494
above option (placeins), 289

\abovecaptionskip length, 307 , 308, 312
\abovedisplayshortskip length, 480, 481
\abovedisplayskip length, 479, 480
\aboverulesep rigid length (booktabs), 270
aboveskip key/option (caption), 311, 312, 318, 319

\abovetopsep rigid length (booktabs), 270
\abovewithdelims, 494
\abs (tlc), 500, 501
abstract BIBTEX field, 762, 791

(BibTexMng), 789
(printbib), 776

abstract BIBTEX style, 791
abstract env., 34

\abstractname, 34
(babel), 547

acadian option (babel), 543
\accent, 330, 337, 353, 430, 452, 590
accented characters

OT1 encoding, 337
in command and environment names, 842
input encoding, 357, 358, 359–361
multilingual documents, 552

\accentedsymbol (amsxtra), 467
accents

as superscripts, 467, 495
dottier, 494, 495
in bibliography database, 768, 769
in tables, 241, 242
math symbols, 529

accents package, 494, 965
\accentset (accents), 495
\Acite (babel), 564
\acite (babel), 564
acm BIBTEX style, 791

\acro (tlc), 341
Acrobat Distiller program, 643

\active@char〈char〉 (babel), 590
activeacute option (babel), 554, 556, 581
activegrave option (babel), 555, 581
actual keyword (makeindex), 660, 662

\actualchar (doc), 822
\acute, 529
acute accent (’), shorthand character, 556
Ada key value (listings), 170–172

\add (tlc), 488
add.period$ BIBTEX built-in function, 808, 810

988 (A) Index of Commands and Concepts

\addcontentsline, 33, 46, 47 , 48, 49, 52, 54, 680
problems with \include, 49
(titleref), 77

\adddialect (babel), 584, 585
\addlanguage (babel), 584
\addlinespace (booktabs), 271, 272
\addpenalty, 43, 859, 860

output produced from, 937
address BIBTEX field, 690, 717 , 763, 765, 772, 779
\AddThinSpaceBeforeFootnotes (babel), 565, 566
\AddTo (jurabib), 723, 727, 733, 734, 735
\addto (babel), 74, 589, 734
\addtocontents, 46, 48, 49, 59

problems with \include, 49
\addtocounter, 24, 852

error using, 906, 907
(calc), 871

error using, 895
\addtolength, 855, 872

error using, 907
(calc), 871, 872

error using, 895
\addvspace, 33, 48, 59, 61, 63, 64, 858, 859, 860

error using, 909, 910
output produced from, 937

adjust option (cite), 695
\ADLdrawingmode (arydshln), 268
Adobe Reader program, 78, 642
\advance, 871
\AE, 345, 457
\ae, 458

(tipa), 406
ae package, 356
affiliation BIBTEX field (BibTexMng), 789
afm2tfm program, 979
afrikaans option (babel), 543, 585
\afterpage (afterpage), 289, 295
afterpage package, 289
aftersave key (fancyvrb), 166, 167
agsm BIBTEX style

(harvard), 700, 791, 792
(natbib), 703–706, 708

agu BIBTEX style
(bibentry), 711
(natbib), 705, 706

\Ahead (tlc), 45
\aleph, 527
alg package, 168
algorithmic package, 168
\aliasshorthand (babel), 548
align env. (amsmath), 469, 470, 475, 476, 477, 483, 485

adjusting with \minalignsep, 477
error using, 895, 904
interrupted, 479

align* env. (amsmath), 469, 493, 497

aligned env. (amsmath), 469, 477, 478, 479, 486, 898
adjusting with \minalignsep, 479
error using, 895, 897

alignment
document headings, 37
equations

groups with alignment, 475
groups without alignment, 474, 475
multiple alignments, 475, 476, 477
multiple lines, no alignment, 471, 472
multiple lines, with alignment, 473, 474
on multiple lines, no alignment, 471, 472
on multiple lines, with alignment, 473, 474
tag placement, 469

margin, optical, 1089
mathematical typesetting, 505, 506, 507
tables

decimal data, 272, 274, 275, 276
horizontal, 261
vertical, 246, 273, 274

tables of contents, 60, 61, 62
all key value

(fancyvrb), 158
(jurabib), 720, 721, 722, 723, 724, 734, 735

\allcaps (tlc), 91, 92
\allinethickness

(eepicemu), 611
(eepic), 609

\allletters (tlc), 387
\allowdisplaybreaks (amsmath), 468, 481
\allowhyphens (babel), 590, 591
allowmove option (url), 94
allreversed key value (jurabib), 723, 738
alltt env. (alltt), 152
alltt package, 152
Almost European fonts, 356
almostfull option (textcomp), 364
Alph folio style, 216
\Alph, 25, 33, 129, 130, 133, 852, 853

error using, 897
(babel), 559, 560

\alph, 130, 133, 852, 853
error using, 897
(babel), 559, 560
(perpage), 121

alph folio style, 216
\alpha, 392, 490, 501, 527
alpha BIBTEX style, 791, 792, 795, 806, 807 , 810

key construction, 764, 768
(biblist), 775

alphabet identifiers, 348, 349–351
alphabetically numbered document headings, 25
\Alphfinal (babel), 560
alpine option (ifsym), 405
\AlsoImplementation (doc), 817, 820, 836

Index of Commands and Concepts (A) 989

\alsoname (babel), 547
altDescription env. (tlc), 149, 850
\AltMacroFont (doc), 823
alwaysadjust option (paralist), 135, 136
\amalg, 530

(mathptmx), unavailable with, 377
american option (babel), 543
American Mathematical Society (AMS), 467, 468
AMS (American Mathematical Society), 467, 468
amsalpha BIBTEX style, 791
amsart document class, 467, 701, 964
amsbook document class, 467, 701, 964
amscd package, 467, 488, 489
amsfonts package, 383, 385, 386, 467, 509

providing latexsym symbols, 464
AMS-LaTEX

accents as superscripts, 467
commutative diagrams, generating, 467
cross-reference numbers, 467
document classes, 467
documentation, 467
environment abbreviations, 468
fonts, 467, 468
fragile commands, 468
package options, 466
proof environment, 143, 144
sub-packages, 466, 467
text fragments, typesetting, 467
theorem-like structures, 138–144, 467

amsmath package, 83, 138, 465–488, 489, 490–508, 524,
535, 964

error using, 889
vs. standard LaTEX, 470, 471

amsmath.dtx file (amsmath), 471, 484
amsopn package, 466
amsplain BIBTEX style, 791
amsproc document class, 467, 964
amsrefs package, 968
amssymb package, 383, 385, 386, 392, 467, 509, 511,

524–537
providing latexsym symbols, 464

amssymb.sty file (amssymb), 529
AMS-TEX, 465, 466
amstext package, 467
amsthm package, 138–144, 467, 964

problems with ragged2e, 142
amsxport package, 968
amsxtra package, 467, 495
\anchor (dingbat), 401
\and (ifthen), 877
and key value (jurabib), 718
and keyword (BIBTEX), 767
and others keyword (BIBTEX), 690, 768, 793–797
\andname (jurabib), 736
\angle (amssymb), 528

angle key (graphicx), 619, 622, 623
error using, 898

angle option (natbib), 706
annotate BIBTEX field, 810, 811
annotate BIBTEX style, 791, 810, 811
annotating bibliographies, 721, 740, 741, 742
annotation BIBTEX style, 791, 810
annotatorfirstsep key/option (jurabib), 717 , 723, 724
annotatorformat key/option (jurabib), 717 , 733
annote BIBTEX field, 765, 791, 810

(custom-bib), 802
(jurabib), 740, 742

annote BIBTEX style, 765
annote key/option (jurabib), 740, 741, 742
ansinew option (inputenc), 360, 669

\answer (tlc), 828
ante key (lettrine), 101
any keyword (makeindex), 657
apa BIBTEX style, 791

\Apageref (babel), 563
\apageref (babel), 563
apalike BIBTEX style (apalike), 791, 792
apalike package, 692, 791
apalike2 BIBTEX style (apalike), 791

\Appendix (tlc), 32, 33
\appendix, 22, 32

(tlc), 33
\appendixname, 33, 34, 38

(babel), 547
applemac option (inputenc), 360

\approx, 532
\approxeq (amssymb), 532
apy key (jurabib), 718

\arabic, 25, 26, 130, 133, 417 , 849, 851, 852, 853, 854
arabic folio style, 216
Arabic language, 591
Arabic numbers, document headings, 25

\arc
(curves), 611
(eepicemu), 611
(eepic), 610

\arccos, 500
\arcctg (babel), 564
\arch (babel), 564
arcs, drawing, 610

\arcsin, 500
\arctan, 500
\arctg (babel), 564
\Aref (babel), 563
\aref (babel), 563
\arg, 500
arg_close keyword (makeindex), 660
arg_open keyword (makeindex), 660

990 (A) Index of Commands and Concepts

arguments, see also keys
optional, 845, 850
restrictions, 845, 846, 894
typed text in, 165, 166, 167 , 168
unavailable, 848

arithmetic calculations (calc), 871, 872
ark10.mf file (dingbat), 400
Armenian language, 592
array env., 104, 240, 242, 243, 247, 277, 470, 485–487,

489, 490, 863
error using, 901, 904, 905
style parameters, 243
(array), 246–248, 273, 274
(delarray), 489
(tabls), 269

array package, 243–251, 280–282, 489
combined with arydshln, 267
combined with booktabs, 270
combined with color, 264
combined with supertabular, 256
incompatible with tabls, 269

\arraybackslash
(array), 247, 249
(tabularx), 251, 252

\arraycolsep rigid length, 243, 247
(amsmath), 487

\arraylinesep rigid length (tabls), 269
\arrayrulecolor (colortbl), 265
\arrayrulewidth rigid length, 243, 250, 266, 267

(hhline), 267
arrays, delimiters surrounding, 489
\arraystretch, 243, 244, 267, 268, 269
arrow extensions, math symbols, 535
\arrowlength (pspicture), 640, 641
\Arrownot (stmaryrd), 535
\arrownot (stmaryrd), 533, 535
arrows env. (tlc), 181
arrows, math symbols

decorated, 490
extensions, 535
negated, 534
standard, 534

\Arrowvert, 498, 528
\arrowvert, 498, 528
article BIBTEX entry type, 690, 763, 770

(jurabib), 719
article document class, 6, 13, 115, 120, 147, 195, 223, 467,

679, 774
footnote numbering, 112
heading commands, 22, 23, 25, 51
replacement for, 236, 237

arydshln package, 267, 268
\Asbuk (babel), 559
\asbuk (babel), 559
ascii option (inputenc), 360, 925

\Ask (docstrip), 827, 828
\askforoverwritefalse (docstrip), 828
\askforoverwritetrue (docstrip), 828
askinclude package, 19
\askonceonly (docstrip), 828
\AskOptions (optional), 21
asparadesc env. (paralist), 136, 138
asparaenum env. (paralist), 133
asparaitem env. (paralist), 135
\ast, 495, 530
asterisk (*) error messages, 894
astron BIBTEX style, 791
asymmetric key/option (geometry), 208, 209
asymmetrical page layout, 208, 209
\asymp, 532
\AtBeginDelayedFloats (endfloat), 290
\AtBeginDocument, 422, 835, 836, 879, 883, 884
\AtBeginFigures (endfloat), 290
\AtBeginTables (endfloat), 290
\AtEndDocument, 216, 836, 879, 883
\AtEndOfClass, 879, 883, 886, 887
\AtEndOfPackage, 879, 883
\AtForty (marvosym), 401
\athnum

(athnum), 562
(babel), 562

\atop, 494
\atopwithdelims, 494
australian option (babel), 543
austrian option (babel), 543, 546, 734
\author, warning using, 925
author BIBTEX field, 690, 732, 763–765, 766–769, 772

(jurabib), 717 , 718
author index, generating, 681
author-date citations, 698–711, see also citation systems

author information missing, 708
author list only with first citation, 704, 705
author-number, switching to, 714
authors on single line, 706
customizing, bibliography, 707
customizing, citations, 705, 706
definition, 684
electronic publications, 710
forcing, 708, 709
full citations in running text, 710, 711
history of, 699–1092
indexing citations automatically, 709
multiple citations, 703, 704
number-only, switching to, 714
short-title format, combining, 732, 733
styles supported, 710
year information missing, 708

author-number citations, 712, see also citation systems
compressing citations, 714
customizing citations, 715

Index of Commands and Concepts (A–B) 991

author-number citations (cont.)
definition, 685
description, 712
sort order, 714

authordate1 BIBTEX style (authordate1-4), 700, 791
authordate1-4 package, 700, 791
authordate2 BIBTEX style (authordate1-4), 700, 791
authordate3 BIBTEX style (authordate1-4), 700, 791
authordate4 BIBTEX style (authordate1-4), 700, 791
authorformat key/option (jurabib), 718, 719, 720, 724,

729, 730, 732, 733, 735–737, 738
authors, bibliographies

gender, 734, 735, 742
information field, 743
information missing, 708
list on single line, 706
list only with first citation, 704, 705
list separator, 736, 738

authoryear option (natbib), 708, 709, 714
auto key value (fancyvrb), 159, 164
auto-completion, page layout, 206, 207, 208, 209, 210, 211
autodinglist env. (pifont), 380
automatic indexing, disabling

doc package, 817
ltxdoc class, 836

.aux file extension, 7, 8, 18, 19, 130, 687–689, 691, 745,
746, 793

(BIBTEX), 758, 793
(aux2bib), 775
(bib2html), 776
(bibtopic), 754
(chapterbib), 747
(citetags), 778
(footmisc), 116
(index), 681
(longtable), 259
(mparhack), 127
(multibib), 756
(perpage), 121

aux2bib program, 775, 787
auxiliary files, 7, 8
avant package, 371, 373
Avant Garde Gothic font, 374
awk program, 775, 778
\Az (babel), 563
\az (babel), 563

B

\b, 452, 458
b syntax

(array), 244, 245, 249
(delarray), 489
(hhline), 266, 267

b0 option (crop), 213
b0paper key/option (geometry), 206

b1 option (crop), 213
b1paper key/option (geometry), 206
b2 option (crop), 213
b2paper key/option (geometry), 206
b3 option (crop), 213
b3paper key/option (geometry), 206
b4 option (crop), 213
b4paper key/option (geometry), 206
b5 option (crop), 213
b5paper key/option (geometry), 206
b5paper option, 195

(typearea), 204
b6 option (crop), 213
b6paper key/option (geometry), 206
b6paper option (typearea), 204
ba package, 521
babel package, 539, 541, 542–591, 701, 733, 749, 915

description, 542
error using, 889, 903, 906, 911, 914, 915
hyphenation in multiple languages, 580, 581
language definition files

adding definitions to, 589
copyright information, 582
definition, 579
documentation driver, 583
documentation initialization, 583
hyphenation patterns, adjusting, 586
language identification, 582
languages and dialects, defining, 584, 585
license information, 582
punctuation, special cases, 591
release information, 583
shorthands, 589–591
structure, 582–591
translating language-dependent strings, 586

language options, 543
language-dependent strings, 547 , 549–551, 579, 586
package file, 581
user interface, 543–578
warning using, 931

babel package, language options
encoding languages and fonts, 567 , 577

OT1, 566
T1, 566
T2A, 571
T2B, 573
T2C, 573

language-specific commands, 558–564
layout considerations, 564–566
shorthands, 550–558
translations, 550, 551

babel.def file (babel), 579
babel.sty file (babel), 581
back reference information, bibliographies, 742

\backepsilon (amssymb), 535

992 (B) Index of Commands and Concepts

background fill, 157, 158
\backmatter, 22
\backprime (amssymb), 528
backref option (hyperref), 78
\backsim (amssymb), 532
\backsimeq (amssymb), 532
\backslash, 498, 528
backward compatibility, 463, 464
badness rating, line breaks, 859
bahasa option (babel), 543
balancing columns, 187
balancingshow option (multicol), 188
\balpha (tlc), 512
\bar, 529

(bar), 612, 613
bar package, 612
bar charts, 612, 613
barenv env. (bar), 612, 613
\baro (stmaryrd), 530
\barwedge (amssymb), 530
\BaseDirectory (docstrip), 831, 832, 914
baseline key (fancyvrb), 164
\baselineskip length, 106, 107, 108, 197 , 198, 234, 857 ,

866, 936, 937 , 938
adjusting the leading, 373
(ccfonts), 384
(geometry), 207
(typearea), 204
(yfonts), 395

\baselinestretch, 107, 108
(setspace), 107

baselinestretch key (fancyvrb), 159
basicstyle key (listings), 170
Baskerville font in math and text, 520
basque option (babel), 543
\batchinput (docstrip), 829
\batchmode, 944
bb key (graphicx), 618, 619, 620, 621
\Bbbk (amssymb), 527
bbding package, 403
.bbl file extension, 8, 688, 689, 745, 746, 793

(BibTexMng), 789
(BIBTEX), 746, 771, 793, 806, 808, 809
(bibentry), 711
(chapterbib), 749
(jurabib), 726

\bbl@activate (babel), 589, 590
\bbl@activate〈char〉 (babel), 590
\bbl@allowhyphens (babel), 590
\bbl@deactivate (babel), 589, 590
\bbl@declare@ttribute (babel), 585
bbllx key (graphicx), 619
bblly key (graphicx), 619
bblopts.cfg file (babel), 581
bbs BIBTEX style, 791

\bbslash (stmaryrd), 530
bburx key (graphicx), 619
bbury key (graphicx), 619
Bcenter env. (fancybox), 599, 600
\bcline (tlc), 265
BCOR〈val〉 option (typearea), 205
Bdescription env. (fancybox), 600
\because (amssymb), 535
\begin, error using, 895, 896, 899
\begingroup, 504, 896, 898, 917, 921

error using, 899, 906
below option (placeins), 58, 289
\belowbottomsep rigid length (booktabs), 270
\belowcaptionskip length, 307 , 308, 312
\belowdisplayshortskip length, 480
\belowdisplayskip length, 479, 480
\belowrulesep rigid length (booktabs), 270
belowskip key/option (caption), 312
bengali package, 592
Benumerate env. (fancybox), 600
Beqnarray env. (fancybox), 600
Beqnarray* env. (fancybox), 600
\beta, 527

(fourier), 392, 393
\beth (amssymb), 527
beton package, 384, 397
\between (amssymb), 535
Bèzier curves, see epic package; eepic package
\bf, 328, 347

used in math, 349, 464
(custom-bib), 803

bf key value
(caption), 301, 306, 310, 311, 313, 324
(subfig), 316

bf option (titlesec), 37
\bfdefault, 346, 347, 438
bfitemize env. (tlc), 345
Bflushleft env. (fancybox), 599, 600
Bflushright env. (fancybox), 599, 600
\bfseries, 340, 343, 344, 345, 346, 347, 848

used in math, 348, 350
(ulem), replaced by \uwave, 87

bfseries env., 338
\bga (tlc), 468
\bgroup, 921
\bhline (tlc), 265
.bib file extension, 8, 688, 689

(BIBTEX), 762, 764, 766, 769, 770, 773, 776, 806, 809
\cite in, 773

(aux2bib), 775
(bibextract), 778
(bibtool), 782

string expansion, 781
(bibulus), 760
(citefind), 778

Index of Commands and Concepts (B) 993

.bib file extension (cont.)
(makebib), 776
(multibib), 755

bib.html file (bib2html), 776
bib2html program, 776, 783
\bibAnnotePath (jurabib), 741
\bibansep (jurabib), 738
\bibapifont (jurabib), 737
\bibatsep (jurabib), 738
\bibauthormultiple (jurabib), 740
\bibbdsep (jurabib), 738
\bibbfsasep (jurabib), 738
\bibbfsesep (jurabib), 738
\bibbstasep (jurabib), 738
\bibbstesep (jurabib), 738
\bibbtasep (jurabib), 738
\bibbtesep (jurabib), 738
\bibbtfont (jurabib), 737
bibclean program, 777, 778, 789, 964
\bibcolumnsep (jurabib), 739
\bibdata, 689

(chapterbib), 747
\bibeansep (jurabib), 738
\bibefnfont (jurabib), 737
\bibelnfont (jurabib), 737
\bibentry (bibentry), 711
bibentry key value (jurabib), 738
bibentry package, 710, 711
bibextract program, 777, 778
\bibfnfont (jurabib), 737
\bibfont (natbib), 707 , 715
bibformat key/option (jurabib), 735, 738, 739, 740, 797
\bibhang rigid length (natbib), 707 , 715

problem using, 715
\bibidemPfname (jurabib), 735
\bibidempfname (jurabib), 735
\bibidemPmname (jurabib), 735
\bibidempmname (jurabib), 735
\bibidemPnname (jurabib), 735
\bibidempnname (jurabib), 735
\bibidemSfname (jurabib), 735
\bibidemsfname (jurabib), 735
\bibidemSmname (jurabib), 735, 740
\bibidemsmname (jurabib), 735
\bibidemSnname (jurabib), 735
\bibidemsnname (jurabib), 735
\bibindent rigid length, 693
\bibitem, 686, 687 , 691, 693, 698, 699, 745, 918

error using, 894
warning using, 928
(BIBTEX), 764, 806
(bibentry), 711
(chicago), 699
(harvard), 700
(jurabib), 699, 716, 742

\bibitem (cont.)
(natbib), 701, 702, 709, 714
(showkeys), 68

\bibjtfont (jurabib), 737
\bibjtsep (jurabib), 738
BibKeeper program, 789
bibkey program, 775
biblabel option (cite), 697

\bibleftcolumn (jurabib), 739
\bibleftcolumnadjust (jurabib), 739
biblikecite key/option (jurabib), 737
bibliographies, see also BIBTEX; citations; database format,

bibliographies; database management tools,
bibliographies

BIBTEX variants, 758–761
annotating, 721, 740, 741, 742
author-date citations, 707
authors

gender, 734, 735, 742
information field, 743
information missing, 708
list on single line, 706
list only with first citation, 704, 705
list separator, 736, 738
name, formatting, 798

back reference information, 742
citation input file, creating, 687–689
citations

author-date, 707
footnotes, 726, 727 , 728
in captions, 697
in headings, 697
indexing automatically, 709, 720, 721

citations, sort order
author-number citation system, 714
number-only citation systems, 693, 694, 695, 714
short-title citation system, 743

collections, 742
color, 695
column layout, 739
compressing citations, 714
configuration files, external, 741
cross-references, 732
customizing

author-date citation system, 707
short-title citation system, 736, 737 , 738,

739–741
Cyrillic alphabet, 573
database format, 761–773
database management tools, 774–789
description, 757, 758
dissertation year, 742
DOI, 710
edition information, 742
editor information, 742

994 (B) Index of Commands and Concepts

bibliographies (cont.)
EID, 710
electronic publications, 710
endnote citations, 726, 727, 728
fonts, 736, 737
footnote citations, 726, 727 , 728
founder information, 742
gender information, 734, 735, 742
in tables of contents, 48
indentation, 738, 739
input file, creating, 687–689
Internet resources, 773, 774
ISBN, 710
ISSN, 710
keywords, associating with database entries, 689
last update field, 743
law support, 743, 744, 745
line breaks, 694
multi-language support, 733, 734, 735
multiple

bibtopic package, 753, 754, 755
bibunits package, 749, 750–752, 753
by arbitrary unit, 749, 750–752, 753
by chapter, 747, 748, 749
by topic, separate citation commands, 755, 756
by topic, separate database files, 753, 754, 755
chapterbib package, 747, 748, 749
citation systems, 745–756
description, 745, 746
multibib package, 755, 756
package comparisons, 746
per included file, 747, 748, 749

online resources, 773, 774
page boundaries, ignoring, 729
page total field, 743
parentheses

number-only citation systems, 695
short-title citation system, 735

pre-notes, 721
programs

BIBTEX++, 760
BIBTEX8, 759
8-bit version, 759
bibulus, 760
Java version, 760
MlBIBTEX, 761
multilingual version, 761
perl version, 760
XML aware, 760

punctuation
number-only citation systems, 694, 696, 697
short-title citation system, 738

short-title citations, 736, 737 , 738, 739–741
sort order

author-number citation system, 714

bibliographies (cont.)
number-only citation systems, 693, 694, 695, 714
short-title citation system, 743

style files
citation scheme, selecting, 800, 801
creating, 798–804
description, 790
editing, 805–812
extensions supported, determining, 802, 803
fields, adding new, 810, 811
formatting, specifying, 803, 804
initializing the system, 799, 800
list of, 791–793
modifying, 805–812
multi-language support, adding, 811, 812
style language, 805–812

style language
blanks, 805
built-in functions, 805, 807, 808
case changes, disabling, 809, 810
commands, 805, 807, 808
comment character, 761
entry variables, 805
field variables, 805
fields, adding new, 810, 811
global variables, 805
multi-language support, adding, 811, 812
process flow, 806–809
sort order, 806
style files, 805–812
variables, types of, 805

titles
formats, 719, 720
information field, 743
mapping short to full, 721, 722, 723

translated works, 742, 743
URLs, 710, 742, 743
volume title, 743
year information missing, 708

\bibliography, 685, 688, 689, 692, 693, 745, 770, 778
as used in the examples, 691
(bibentry), 711
(biblist), 774, 775
(bibunits), 750, 751
(chapterbib), 747, 748, 749
(jurabib), 723, 726
(multibib), 756
(natbib), 709

bibliography database files, 8
bibliography input file, creating (BIBTEX), 687–689
bibliography keywords, associating with database entries,

689
bibliography style files, 8
\bibliography* (bibunits), 751, 752
\bibliography〈type〉 (multibib), 756

Index of Commands and Concepts (B) 995

\bibliographylatex (tlc), 756
\bibliographystyle, 688, 745, 778, 793

(biblist), 774, 775
(bibtopic), 753, 755
(bibunits), 750, 751
(chapterbib), 747, 748
(jurabib), 717–721, 723–741
(multibib), 756
(natbib), 705, 714

\bibliographystyle* (bibunits), 751, 752
\bibliographystyle〈type〉 (multibib), 756
\bibliographystylelatex (tlc), 756
\bibliographyunit (bibunits), 751, 752
biblist package, 774, 775
\biblnfont (jurabib), 737
\bibname, 34, 748, 749

(babel), 547, 585
(chapterbib), 749

\bibnotcited (jurabib), 723
\bibnumfmt (natbib), 715
\bibpreamble (natbib), 707 , 715
\bibpunct (natbib), 706, 714
\bibrightcolumn (jurabib), 739
\bibrightcolumnadjust (jurabib), 739
\bibs〈language〉 (jurabib), 733
\bibsall (jurabib), 733, 734
\bibsection (natbib), 707 , 715
\bibsenglish (jurabib), 734, 735
\bibsep length (natbib), 707 , 715
\bibsgerman (jurabib), 734
\bibstyle, 689

(chapterbib), 747
\bibstyle@〈style〉 (natbib), 706
BIBTEX program, 761–773, 790–812

Cyrillic alphabet, 573
multilingual documents, 573

BIBTEX++ program, 760
bibtex8 program, 759
BibTexMng program, 789
\bibtfont (jurabib), 737
bibtool program, xxvi, 778–783, 787, 789, 978
bibtopic package, 746, 753–755

compatibility matrix, 746
\bibtotalpagesname (jurabib), 743
bibulus program, 760
bibulus.dtd file (bibulus), 760
bibunit env. (bibunits), 750, 751, 752
bibunits package, xxvii, 746, 749–753

compatibility matrix, 746
incompatible with bibtopic, 754

\Bicycle (marvosym), 401
\Big, 489, 504

error using, 905
\big, 504

error using, 905

big option (titlesec), 37
big-g delimiters, 504

\bigbox (stmaryrd), 536
\bigcap, 536
\bigcirc, 531
\bigcup, 475, 536
\bigcurlyvee (stmaryrd), 536
\bigcurlywedge (stmaryrd), 536
bigfoot package, 117, 122

\Bigg, 504
error using, 905

\bigg, 504
error using, 905

\Biggl, 483, 504, 511
error using, 905

\biggl, 472, 474, 504, 510, 511
error using, 905

\Biggm, 504
error using, 905

\biggm, 504
error using, 905

\Biggr, 483, 504, 511
error using, 905

\biggr, 472, 474, 504, 510, 511
error using, 905

\biginterleave (stmaryrd), 536
\Bigl, 504, 511, 526

error using, 905
\bigl, 504, 511

error using, 905
\Bigm, 504

error using, 905
\bigm, 504

error using, 905
\bignplus (stmaryrd), 536
\bigodot, 536
\bigoplus, 491, 536
\bigotimes, 491, 536
\bigparallel (stmaryrd), 536
\Bigr, 504, 511, 526

error using, 905
\bigr, 504, 511

error using, 905
\bigskip, 857
\bigskipamount length, 261, 857
\bigsqcap (stmaryrd), 536
\bigsqcup, 536
\bigstar (amssymb), 528
\bigstrutjot rigid length (multirow), 273
\bigtriangledown, 530, 536

(stmaryrd), 536
\bigtriangleup, 530, 536

(stmaryrd), 536
\biguplus, 536
\bigvee, 536

996 (B) Index of Commands and Concepts

\bigwedge, 536
\binampersand (stmaryrd), 537
binary operator symbols, 529
bind option (tlc), 886, 887
binding, and the inner margin, 207
bindingoffset key/option (geometry), 207, 209
\bindnasrepma (stmaryrd), 537
\binom (amsmath), 390, 391, 493, 494
Bitemize env. (fancybox), 600
Bitstream Charter font, 374

in math and text, 520
Bjarne option (fncychap), 34
bk11.clo file, 16
Blackboard Bold alphabet, 378, 509, 519
\blacklozenge (amssymb), 528
\blacksquare (amssymb), 528
\blacktriangle (amssymb), 528
\blacktriangledown (amssymb), 528
\blacktriangleleft (amssymb), 533
\blacktriangleright (amssymb), 533
BLANK PAGE on generated pages, 236
blanks

bibliography styles, 805
displaying, 160, 161
indexes, 650, 655, 666, 669

.blg file extension, 8
(BIBTEX), 688

block key (titlesec), 38, 39, 40, 41, 43, 44
\bluefbox (tlc), 617
\bm (bm), 352, 377, 378, 504, 510, 511, 512, 513
bm package, 510–513

error using, 912
problems with fourier, 393
problems with mathptmx, 377

bmargin key/option (geometry), 208
Bmatrix env. (amsmath), 486
bmatrix env. (amsmath), 486
\bmdefine (bm), 510, 511, 512
\bmod, 492, 493
\bneg (tlc), 528
body key/option (geometry), 211
body area, 207
body font, 338, 339

this book, 1089
bold fonts

description, 334
in formulas, 510–512, 513

\boldmath, 352, 511
(bm), 513
(fourier), 393
(mathpazo), 378
(mathptmx), 377

boldsans option (ccfonts), 384, 515
\boldsymbol (amsmath), 510

book BIBTEX entry type, 690, 717 , 763, 772
(jurabib), 743

book document class, 6, 13, 22, 115, 120, 195, 216, 223,
467, 679

footnote numbering, 112
heading commands, 22, 23, 51
replacement for, 236, 237

booklet BIBTEX entry type, 763
bookman package, 205, 371
Bookman font, 374
books, see documents
booktabs package, 269–272
booktitle BIBTEX field, 690, 737, 742, 763, 765, 772
booktitleaddon BIBTEX field (jurabib), 742
\boolean (ifthen), 199, 680, 692, 875, 886
borders, see boxes; frames
\born (tlc), 367
\bot, 528
\botfigrule, 285
\bothIfFirst (caption), 313
\bothIfSecond (caption), 313, 314
\botmark, 218, 221
bottom key value

(caption), 312
(subfig), 317, 318

bottom key/option (geometry), 208
bottom option (footmisc), 120
\bottomcaption (supertabular), 257
\bottomfraction, 284, 286, 287
bottomline key value (fancyvrb), 158, 159
bottomnumber counter, 284
\bottomrule (booktabs), 270, 272
\bottomtitlespace (titlesec), 40
bounding box comments, 615
\bowtie, 535
\Box (latexsym), 464
\boxast (stmaryrd), 530
\boxbar (stmaryrd), 530
\boxbox (stmaryrd), 530
\boxbslash (stmaryrd), 530
\boxcircle (stmaryrd), 530
\boxdot (amssymb), 530
\boxed (amsmath), 491
boxed key

(float), 292, 293, 294, 309, 311
(rotfloat), 298

boxedminipage env.
(boxedminipage), 595, 869
(tlc), 870

boxedminipage package, 595
\boxempty (stmaryrd), 530
boxes, see also frames; lines (graphic)

color, troubleshooting, 870
description, 860
displaying contents, 943

Index of Commands and Concepts (B–C) 997

boxes (cont.)
double border, 597
LR boxes, 860–862
manipulating, 868–870
math symbols, 530
named, creating, 868, 869, 870
ornamental, 596–600
oval, 596
paragraph boxes, 860, 862, 863–866
rounded corners, 596, 597
rule boxes, 860, 866–868
troubleshooting, 943
types of, 860
with frames, 595
with shadows, 595–597

boxing
formulas, 491, 600
lists; paragraphs, 600
numbers in document headings, 26
small caps, 563
typed text, 164

\boxlength (picins), 305
\boxminus (amssymb), 530
\boxplus (amssymb), 530
\boxslash (stmaryrd), 530
\boxtimes (amssymb), 530
boxwidth key (fancyvrb), 164
\bpi (tlc), 512
braces, omitting, 844
braces.rsc file (bibtool), 780
\bracevert, 498, 528
brazil option (babel), 543
brazilian option (babel), 543
breakall option (truncate), 233
breakautoindent key (listings), 173
breakindent key (listings), 173
breaklines key (listings), 173
breaks

before document headings, 42
column

indexes, 680
manually produced, 188, 189

line
badness rating, 859
bibliographies, 694
code listings, 172, 173
computer code, 172, 173
document headings, 31
in citations, 694
in tables, 247
in URL, 93
number-only citations, 694
second-last line, 849, 850
tables, 247

breaks (cont.)
page, see also space parameters

badness rating, 859
equations, 479–481
indexes, 680
multipage tables, 257
page layout, 234, 235
troubleshooting, 935–939

paragraph algorithm
adjusting, 849, 850
second-last line, 849, 850
tracing, 940–943

paragraph, troubleshooting, 939–943
part

creating with ltxdoc class, 835
creating with doc package, 816
printing, 816, 835

breakwords option (truncate), 233
breqn package, 470, 968
breton option (babel), 543

\breve, 529
british option (babel), 543, 550

\bs (tlc), 654
\bsc (babel), 563
\bslash (doc), 821
.bst file extension, 8

(BIBTEX), 688, 689, 979
(custom-bib), 798, 799, 802, 804
(natbib), 708

btauxfile counter (bibtopic), 754
\btPrintAll (bibtopic), 753
\btPrintCited (bibtopic), 753, 754, 755
\btPrintNotCited (bibtopic), 753
btSect env. (bibtopic), 753, 754, 755
btUnit env. (bibtopic), 754
btxbst.doc file (BIBTEX), 806, 809
bu〈num〉.aux file (bibunits), 750
buffer size errors, 917
built-in functions, bibliographies, 805, 807, 808
bulgarian option (babel), 543, 550, 558, 568

\bullet, 531, 549
\Bumpeq (amssymb), 532
\bumpeq (amssymb), 532
bundle env. (ecltree), 612

\BUseVerbatim (fancyvrb), 167
BVerbatim env. (fancyvrb), 164

\BVerbatim* (fancyvrb), 164
\BVerbatimInput (fancyvrb), 163, 164
\BVerbatimInput* (fancyvrb), 164
bychapter folio style (chappg), 217

\bye (nfssfont.tex), 369

C

C key value (listings), 170, 171

998 (C) Index of Commands and Concepts

C syntax
(fancyhdr), 225, 226–228
(tabulary), 253, 254
(tlc), 248

\c, 452, 458
c syntax, 243, 244, 245

(array), 249, 250
(tabulary), 254

c5paper option (typearea), 204
calc package, 871, 872

combined with geometry, 210
error using, 889, 895
loaded by jurabib, 739

calculations, 871, 872
calcwidth option (titlesec), 41, 42
call.type$ BIBTEX built-in function, 806, 808, 809
\calQ (tlc), 501
cam option (crop), 212, 213
camel package, xxvi, 681, 743–745, 965
camel.ist file (makeindex), 745
canadian option (babel), 543
canadien option (babel), 543
\Cancer (marvosym), 401
\Cap (amssymb), 530
\cap, 530
capital letters

at start of paragraph, see drop caps
document headings, 25
drop caps, 99, 100, 101
small caps

description, 334
French names, 563
in headings, 341

\capitalacute (textcomp), 363, 458
\capitalbreve (textcomp), 89, 363
\capitalcaron (textcomp), 363, 458
\capitalcedilla (textcomp), 363
\capitalcircumflex (textcomp), 363
\capitaldieresis (textcomp), 363, 458
\capitaldotaccent (textcomp), 363
\capitalgrave (textcomp), 89, 363, 365, 458
\capitalhungarumlaut (textcomp), 363
capitalization rules, bibliographies, 786
\capitalmacron (textcomp), 363, 458
\capitalnewtie (textcomp), 363
\capitalogonek (textcomp), 363, 458
\capitalring (textcomp), 363, 458
\capitaltie (textcomp), 363
\capitaltilde (textcomp), 363, 458
\caps (soul), 88, 89, 91, 92
\capsdef (soul), 91, 92
capsdefault option (soul), 92
\capsreset (soul), 92
\capssave (soul), 92
\capsselect (soul), 92

captcont package, 314
\caption, 46, 47, 52, 296, 306, 307 , 312, 746

cross-reference to, 67
error using, 307, 893, 897
justification in, 104
(caption), 262, 309–311, 313, 314, 315, 321
(float), 292, 293, 294
(fltpage), 326
(longtable), 259, 262
(picins), 305
(rotating), 297
(sidecap), 324, 325
(subfig), 316, 321
(subfloat), 322
(supertabular), 262
(threeparttable), 278, 279
(wrapfig), 300, 301

caption key (listings), 174
caption package, xxvi, 295, 296, 308–315, 316, 323

combined with picins, 306
combined with sidecap, 323

\caption*
(caption), 315
(longtable), 262
(subfig), 321

caption2 package, 308, 315
CaptionAfterwards option (fltpage), 325
CaptionBefore option (fltpage), 325
\captionof (caption), 296
captionpos key (listings), 174
captions

bibliographic citations in, 697
floats, see floats, captions
multipage tables, 257, 262
typed text, 174

\captions〈language〉 (babel), 579, 587, 588
\captionsetup

(caption), 312, 314
(subfig), 316, 317, 318, 319, 321

captionskip key/option (subfig), 317, 318, 319, 321
\captionsrussian (babel), 589
caret (^), shorthand character, 556
\carriagereturn (dingbat), 401
case changes, disabling in bibliographies, 809, 810
case sensitivity

bibliographies, 762
indexes, 650

cases env. (amsmath), 484, 486, 506
error using, 904, 907

catalan option (babel), 543, 550, 552, 555
catalan.ldf file (babel), 581
\catcode, 94, 344, 548, 574, 590
\cb (tlc), 605
\cbcolor (changebar), 191
\cbdelete (changebar), 190, 191

Index of Commands and Concepts (C) 999

cbe BIBTEX style, 791
\cbend (changebar), 189, 190, 191
\cbinput (chapterbib), 747
\cbstart (changebar), 189, 190, 191
cbunit env. (chapterbib), 747
ccfonts package, 383–385, 399, 515
\ccname (babel), 547
CD env. (amscd), 467, 488, 489
\cd (tlc), 605, 606
CD-ROM, CTAN, 948, 949
\cdashline (arydshln), 267
\cdot, 275, 475, 478, 500, 531
\cdots, 487 , 496, 536, 845, 846, 932
cell BIBTEX style (jmb), 791
\cellcolor (colortbl), 265
Center env. (ragged2e), 105
center env., 104, 146, 848

(ragged2e), 105
center option

(crop), 213
(titlesec), 37

centerbody option (sidecap), 323
\centerdot (amssymb), 531
centered paragraphs, 104
centerfirst key value (caption), 311
Centering key value (caption), 311
\Centering (ragged2e), 105
\centering, 104, 371, 861

in headings, 31
(array), in tables, 247 , 249, 250
(multirow), in tables, 274
(ragged2e), 105

centering key value (caption), 311
centering key/option (geometry), 208
\CenteringLeftskip length (ragged2e), 106
\CenteringParfillskip length (ragged2e), 106
\CenteringParindent rigid length (ragged2e), 106
\CenteringRightskip length (ragged2e), 106
centerlast key value (caption), 301, 311
\centerline, 307
centertags option (amsmath), 473
\cf (tlc), 488
.cfg file extension, 8, 430, 431, 829

(babel), 581, 588, 589, 590
(caption), 314
(color), 907
(docstrip), 830, 831, 832, 914
(endfloat), 291
(euro), 97
(graphics), 614, 907
(jurabib), 741
(ltxdoc), 835
(natbib), 706, 709
(paralist), 138
(subfig), 321

.cfg file extension (cont.)
(textcomp), 367
(typearea), 203

cfgguide.tex file, 430, 431
\cfoot (fancyhdr), 221, 224, 225, 231, 232, 598
\cfrac (amsmath), 490
\ch (babel), 564
Chaikin’s curves, 610
chams package, 521
chancery package, 371
change history, creating

doc package, 817
ltxdoc class, 836

change.case$ BIBTEX built-in function, 808, 809, 810, 812
changebar env. (changebar), 189, 190, 191
changebar package, 189–191
changebargrey counter (changebar), 190
changebars, see revision bars

\changebarsep rigid length (changebar), 190, 191
\changebarwidth rigid length (changebar), 190
\changes (doc), 817, 823
\chapnumfont (quotchap), 35
chappg package, 216, 217

\chappgsep (chappg), 217
\chapter, 22, 23, 24, 25, 32, 34, 218, 223, 229

adding space in .lof and .lot, 48
cross-reference to, 66
producing unwanted page number, 222, 230
(bibunits), 751
(chappg), 217
(chapterbib), 748
(fncychap), 34, 35
(minitoc), partial contents for, 56
(quotchap), 35, 36
(titlesec), 38, 40, 44
(titletoc), partial contents for, 64

chapter BIBTEX field, 763, 765
chapter counter, 24, 25, 219, 851

numbered within parts, 25
chapter key value (jurabib), 724, 731

\chapter*, 23, 222, 680, 707, 747
listed in TOC, 47

chapterbib package, 701, 707, 746, 747–749, 771
combined with babel, 749
compatibility matrix, 746
incompatible with bibtopic, 754

\chapterheadendvskip (quotchap), 35
\chapterheadstartvskip (quotchap), 35, 36
\chaptermark, 219, 222, 748

(fancyhdr), 229
\chaptername, 34, 38, 219

(babel), 545, 547
\chapterpagestyle (KOMA), 230
\chaptertitlename (titlesec), 38
character sets, multilingual documents, 541

1000 (C) Index of Commands and Concepts

\CharacterTable (doc), 820
charter option (quotchap), 35
charter package, 371
Charter font, 374, 520
\chead (fancyhdr), 224, 225, 231, 232
\check, 529
check.rule function (bibtool), 781
\CheckCommand, 847, 883
\CheckCommand*, 847
\CheckModules (doc), 820
\CheckSum (doc), 820
chemical diagrams, 613
\chi, 527
chicago BIBTEX style

(chicago), 684, 685, 699, 700
(natbib), 705, 706, 708, 796

chicago package, 692, 699, 700
chicagoa BIBTEX style (chicago), 700
Chinese, 592
chmath package, 521
chr.to.int$ BIBTEX built-in function, 808
\chunk (ecltree), 612
\circ, 483, 531, 631
\circeq (amssymb), 532
\circle, 607, 608

warning using, 926
(eepicemu), 611
(eepic), 608, 609, 610
(epic), 608
(pspicture), 639, 640, 641
(texpicture), 640

\circle*, 607, 608
(eepicemu), 611
(eepic), 608, 609, 610
(epic), 608
(pspicture), 639, 640
(texpicture), 640

\circlearrowleft (amssymb), 534
\circlearrowright (amssymb), 534
\circledast (amssymb), 531
\circledcirc (amssymb), 531
\circleddash (amssymb), 531
\circledS (amssymb), 527
circles

drawing, 610
filling, 610, 611
math symbols, 531

Citation env. (tlc), 848, 849
\citation, 688, 689, 745, 750, 781

(notoccite), 698
citation systems

author-date, 698–711
author information missing, 708
author list only with first citation, 704, 705
author-number, switching to, 714

citation systems (cont.)
authors on single line, 706
customizing, bibliography, 707
customizing, citations, 705, 706
definition, 684
electronic publications, 710
forcing, 708, 709
full citations in running text, 710, 711
history of, 699–1092
indexing citations automatically, 709
multiple citations, 703, 704
number-only, switching to, 714
short-title format, combining, 732, 733
styles supported, 710
year information missing, 708

author-number, 712
compressing citations, 714
customizing citations, 715
definition, 685
description, 712
sort order, 714

Harvard, 684, 689
number-only, 691–698

captions, 697
color, 695
compressing citations, 714
customizing citations, 692, 693, 694, 695
definition, 686
headings, 697
line breaks, 694
natbib package, 712–715
page ranges, disabling, 695
parentheses, 695
punctuation, 694, 696, 697
sort order, 693, 694, 695, 714
spaces, processing, 695
superscripts, 696, 697
unsorted citation style, 697
verbose mode, 696

short-title, 715–745
annotations, 721, 740, 741, 742
author gender, 734, 735, 742
author information field, 743
author list separator, 736, 738
author-date format, combining, 732, 733
back reference information, 742
collections, 742
column layout, 739
configuration files, external, 741
cross-references, 732
customizing bibliography, 736, 737 , 738,

739–741
customizing citations, 735, 736
definition, 684
description, 715, 716

Index of Commands and Concepts (C) 1001

citation systems (cont.)
dissertation year, 742
edition information, 742
editor information, 742
endnote citations, 726, 727, 728
fonts, 736, 737
footnote citations, 726, 727 , 728
founder information, 742
full citations in running text, 723, 724–726
ibidem citations, 728–731, 740
indentation, 738, 739
indexing citations automatically, 720, 721
last update field, 743
law support, 743, 744, 745
multi-language support, 733, 734, 735
page boundaries, ignoring, 729
page total field, 743
parentheses, 735
pre-notes, 721
punctuation, 738
sort order, 743
style files, 742, 743
superscripts, 735, 736, 743
title format, 719, 720
title information field, 743
title, mapping short to full, 721, 722, 723
translated works, 742
translator information, 743
URLs, 742, 743
volume title, 743

\citationdata (camel), 744
citationreversed key value (jurabib), 723, 724, 732
citations, see also bibliographies

bibliography input file, creating, 687–689
bibliography keywords, associating with database

entries, 689
comparison of, 684–686
default, 691
description, 683, 684
DOI, 710
EID, 710
exporting, 776
full, in running text

author-date citation system, 710, 711
short-title citation system, 723, 724–726

Hungarian documents, 564
ISBN, 710
ISSN, 710
line breaks, 849, 850
markup structure, 686, 687
multiple authors, 685
multiple bibliographies, 745–756
naming, 842
numerical by first citation, 686
page ranges, disabling, 695

citations (cont.)
paragraph break algorithm, 849, 850
parentheses, bibliographies

number-only citation systems, 695
short-title citation system, 735

process flow, 687–689
punctuation, bibliographies

number-only citation systems, 694, 696, 697
short-title citation system, 738

sort order, bibliographies
author-number citation system, 714
number-only citation systems, 693, 694, 695, 714
short-title citation system, 743

spaces around/within, 695
style files, short-title citation system, 742, 743
styles, author-date citation system, 710
superscripts

number-only citation systems, 696, 697
short-title citation system, 735, 736, 743

system, selecting, 800, 801
URL, 710

\citationstyle (camel), 744
\citationsubject (camel), 744, 745
\cite, 687–689, 691, 692, 693, 698, 701, 745, 761, 762

inside .bib, 773
restrictions on key, 842
warning using, 920
(BIBTEX), 808
(authordate1-4), 700
(biblist), 775
(bibtopic), 753, 754, 755
(bibunits), 750, 751, 752
(chapterbib), 748, 749
(chicago), 699
(cite), 693–697

problems using, 697
(harvard), 700
(jurabib), 716, 717–720, 721, 723–736
(multibib), 755, 756
(natbib), 685, 701, 703, 707 , 712
(showkeys), 68
(textcase), 86

problems using, 85
cite package, xxvi, 693–697

compatibility matrix, 746
incompatible with natbib, 701, 714

\cite*
(bibunits), 751
(harvard), 700
(jurabib), 719, 720
(natbib), 751

cite$ BIBTEX built-in function, 808, 810
\cite〈type〉 (multibib), 755
\citeA (chicago), 699
\Citealp (natbib), 703

1002 (C) Index of Commands and Concepts

\citealp
(jurabib), 732, 733
(natbib), 702, 713

\citealp* (natbib), 702
\Citealt (natbib), 703
\citealt

(jurabib), 732
(natbib), 702, 713

\citealt* (natbib), 702, 713
\citeasnoun (harvard), 700
\Citeauthor (natbib), 703
\citeauthor

(jurabib), 732, 733
(natbib), 702–704, 713

\citeauthor* (natbib), 702, 713
\citeauthoryear (chicago), 699
\citedash (cite), 694, 696
\citefield (jurabib), 718, 719, 734
citefind program, 778
\citeform (cite), 695, 696
citefull key/option (jurabib), 724, 726–728, 729, 731,

732
\citefullfirstfortype (jurabib), 724
citehack package, 573
\citeindexfalse (natbib), 709
\citeindextrue (natbib), 709
\citeindextype (natbib), 709
\citelatex (tlc), 756
\citeleft (cite), 694, 695, 696, 697
\citemid (cite), 694, 696
\CiteMoveChars (cite), 696
\citeN (chicago), 699
\citen (cite), 695
\citename (harvard), 700
\citenotitlefortype (jurabib), 720
\citeNP (chicago), 699
\citenum (cite), 695
\citenumfont (natbib), 715
\citeonline (cite), 695
\Citep (natbib), 703
\citep

(jurabib), 732, 733
(natbib), 698, 701, 703–706, 708, 709, 712, 713, 714

problems using, 704, 708, 713
\citep* (natbib), 702, 704, 705, 712
\citepalias (natbib), 703
\citepunct (cite), 694, 696
\citeright (cite), 694, 695, 696
CiteSeer, 774
\citestyle (natbib), 705, 706, 715
\citeswithoutentry (jurabib), 725, 726
\Citet (natbib), 703
\citet

(jurabib), 732, 733

\citet (cont.)
(natbib), 698, 701, 703–706, 708, 709, 711, 712, 713

problems using, 704, 708, 709, 713
\Citet* (natbib), 703
\citet* (natbib), 702, 703, 713
citetags program, 778
\citetalias (natbib), 703
\citetext (natbib), 702, 713
\citetitle (jurabib), 719, 726, 735
\citetitlefortype (jurabib), 720
\citetitleonly (jurabib), 720
\citeyear

(chicago), 699
(jurabib), 732
(natbib), 702, 713

\citeyearNP (chicago), 699
\citeyearpar

(jurabib), 732, 733
(natbib), 702, 703, 713

cjk package, 592
class files, 6
\ClassError, 885
classes

commands, 847, 879, 883–888
file structure, 877–888
minimal requirements, 888
options, 16, see also options

classes.dtx file, 343
classes.ins file, 829
\ClassInfo, 885
\ClassWarning, 885
\ClassWarningNoLine, 885
\cleardoublepage, 235

(endfloat), 290
\clearpage, 19, 234, 235, 263, 284, 289, 295, 679, 680

(endfloat), 290
(lscape), 212

\cleartoevenpage (nextpage), 236
\cleartooddpage (nextpage), 236
\cline, 243, 272, 273, 274, 276, 282

(booktabs), 270, 271
(tabls), 269

clip key (graphicx), 618, 619, 620, 621
.clo file extension, 6, 8, 16
clock option (ifsym), 404
clocks, symbols, 403, 404, 405
\closecurve (curves), 612
closeFloats option (fltpage), 325
clouds, symbols, 403, 404, 405
.cls file extension, 6, 8, 16
\clubpenalty, 936, 939
\clubsuit, 528
CM Bright font, 385, 386

in math and text, 522
CM-Super fonts, 354–356, 570

Index of Commands and Concepts (C) 1003

cm-super-t1.enc file, 355
cmbright package, 385, 386, 523
\cmd (ltxdoc), 834
\cmidrule (booktabs), 270, 271, 272
\cmidrulekern rigid length (booktabs), 271
\cmidrulesep rigid length (booktabs), 271
\cmidrulewidth rigid length (booktabs), 271
code, see computer code
\CodelineFont (doc), 417 , 418
\CodelineIndex (doc), 817, 818, 820, 836
CodelineNo counter (doc), 417
\CodelineNumbered (doc), 820
codes key (fancyvrb), 162
\Coffeecup (marvosym), 401
Collection of Computer Science Bibliographies, 773
collections, bibliographic information, 742
collectmore counter (multicol), 186, 188, 189
\colon, 535, 536

(amsmath), 501, 536
colon key value (caption), 310
colon option (natbib), 706
colon (:), shorthand character, 554
colonsep key value (jurabib), 716, 720, 741
color

background, 158
bibliographies, 695
error messages, bibliographies, 785
frame rules, 158
number-only citations, 695
rules (graphic lines), 265
table rules, 265
tables, 264, 265
troubleshooting, 870
typed text

background, 158
frame rules, 158
text, 156, 157

\color (color), 99, 191, 264, 265
error using, 912
problems using, 870

color option
(changebar), 191
(showkeys), 68

color package, 214, 969
compatibility with other packages, 870
error using, 889, 907, 912

\colorbox (color), 158
colorlinks option (hyperref), 78
colortbl package, 265, 266
column layout, bibliographies, 739
column specifiers, defining, 248, 249
columnbadness counter (multicol), 186, 187
\columnbreak (multicol), 188, 189
\columncolor (colortbl), 265

columns, table
laying out, 240–243
modifying style, 248, 249
narrow, 246, 247
one-off, 248, 249
spacing, 247, 248

columns, text
balancing, 187
breaks

indexes, 680
manually produced, 188, 189

collecting material, 187, 188
floats, 189
footnotes, 114, 115, 183, 189
formatting, 186, 187
multiple, 184–187 , 188, 189
parallel synchronization, 181, 182, 183, 184
vertical spacing, 112

\columnsep rigid length, 194, 196, 679, 680, 871
(multicol), 185, 186, 187
(wrapfig), 300

columnsep key/option (geometry), 207
\columnseprule rigid length, 194, 196, 679, 680

(multicol), 185, 186
\columnwidth rigid length, 112, 113, 194, 624

(multicol), 186
\Com (tlc), 654
\combinemarks (tlc), 232
combining tables of contents, 52, 53, 54
comma key value (jurabib), 717
comma option (natbib), 706, 712
commabeforerest key/option (jurabib), 716, 741
command key (graphicx), 620
command line tools, bibliographies, 775–783, 786
commandchars key (fancyvrb), 152, 161, 167
commands, see also preamble

bibliography styles, 805, 807, 808
classes, 847, 879, 883–888
creating

defining new, 843, 844, 845–847
naming, 842, 843
nesting, 846
portability, 842
redefining, 844, 845, 847

definitions, displaying, 932–934
documentation, list of, 820–824
execution, tracing, 945, 946
fragile, 892–894
ltxdoc class, 834
packages, 847, 879, 883–885
spacing after, 80, 81
troubleshooting, 933, 945, 946

commasep key value (jurabib), 720
comment env. (verbatim), 153

1004 (C) Index of Commands and Concepts

comment characters
bibliographies, 761
doc package, 814
docstrip, 833

commentchar key (fancyvrb), 161
commented BIBTEX entry type (jurabib), 735, 742, 743
commented key value (jurabib), 735
comments, stripping from code

arbitrary program languages, 833
comment characters, changing, 833
configuration files, creating, 830–833
description, 824, 825
installation support, adding, 830–833
invoking, 825
master scripts, creating, 829
messages, generating, 827, 828
postamble, creating, 829, 830
preamble, creating, 829, 830
result file, specifying, 826, 827
script commands, 826–830
security considerations, 832
source file, specifying, 826, 827
syntax, 826–830
TDS conforming installation, ensuring, 830–833
user messages, generating, 827, 828
verbatim delimiters, coding, 833

commentstyle key (listings), 170, 171, 175
commutative diagrams, 467, 488, 489
compact option (titlesec), 37
compactdesc env. (paralist), 136, 138
compactenum env. (paralist), 132, 134, 135, 137
compactitem env. (paralist), 135, 136
compare key value (jurabib), 722
compile errors, see troubleshooting
\complement (amssymb), 527
composed page numbers, indexes, 665
compound math symbols, 490–495
Comprehensive TEX Archive Network (CTAN), see CTAN
compress key value (jurabib), 739, 740
compress option (cite), 695
compressing citations, 714
computer code, printing, 168, 169, 170, 175, see also

typed text
as floats, 174
captions, 174
code fragments within normal text, 171
formatting language keywords, 170, 171
fragments within normal text, 171
frames around listings, 173
indentation, 172
input encoding, 174, 175
languages supported, 169
line breaks, 172, 173
numbering lines, 172
rules around listings, 173

computer code, printing (cont.)
stripping comments, see comments, stripping from

code
computer display, page layout, 206
Computer Modern (CM) font, 513

LaTEX standard fonts, 353, 354, 355, 356, 357
Cyrillic alphabet, 570
old-style numerals, 381, 382, 383

computer program style quoting, 153, 154, 155
\ComputerMouse (marvosym), 401
Concrete font, 383, 384, 385, 514

in math and text, 514
Concurrent Versions System (CVS), 836
conditional code syntax, 819–824
conditional formatting, 872, 873–877
config key/option

(caption), 314
(jurabib), 741
(subfig), 321

config.ps file (dvips), 637
configuration files, see also .cfg

creating, 830–833, 835, 836
external, bibliographies, 741

\cong, 532
Conny option (fncychap), 34
consistency, indexes, 666, 667
contents BIBTEX field (BibTexMng), 789
\contentsfinish (titletoc), 58, 60, 61, 63, 64
\contentslabel (titletoc), 60, 61, 64
\contentsline, 49, 50, 51, 52

(titletoc), 59, 61, 63
\contentsmargin (titletoc), 60, 62, 63–65
\contentsname, 34

(babel), 547
\contentspage (titletoc), 60, 61
\contentspush (titletoc), 61
\contentsuse (titletoc), 59
continued fractions, math symbols, 490
\ContinuedFloat (caption), 314, 315, 321
continuous slope curves, 611, 612, 613
control structures

arithmetic calculations, 871, 872
conditional formatting, 872, 873–877

convert program, 643
\coprod, 491, 536

(mathptmx), unavailable with, 377
\copyright, 528

(textcomp), 458
copyright BIBTEX field (BibTexMng), 789
copyright information, language definition files, 582
Cork (T1) font encoding, 337, see also T1 font encoding
\cornersize (fancybox), 596, 597
\cornersize* (fancybox), 596
\cos, 500, 506
\cosec (babel), 564

Index of Commands and Concepts (C) 1005

\cosh, 500
\cot, 500
\coth, 500
\count, 907
counters

defining new, 851
description, 851
displaying, 852, 853, 854
document headings, 27, 33
footnotes, resetting per-page, 120, 121
incrementing, 852
list of, 851
modifying, 852
setting, 851, 852

countmax option (subfloat), 322
courier key value (fancyvrb), 155, 167, 168
courier package, 370, 371
Courier font, 374
\cov (tlc), 488
cp1250 option (inputenc), 360
cp1251 option (inputenc), 570
cp1252 option (inputenc), 358, 360
cp1255 option (inputenc), 578
cp1257 option (inputenc), 360
cp437 option (inputenc), 359
cp437de option (inputenc), 359
cp850 option (inputenc), 359
cp852 option (inputenc), 359
cp855 option (inputenc), 570
cp858 option (inputenc), 359
cp862 option (inputenc), 578
cp865 option (inputenc), 359
cp866 option (inputenc), 570
cp866av option (inputenc), 570
cp866mav option (inputenc), 570
cp866nav option (inputenc), 570
cp866tat option (inputenc), 570
\cr, 894, 898, 904
\crcr, 904
croatian option (babel), 543
crop package, 212–214
crop marks, 212, 213, 214
cropmarks option (tlc), 886, 887
cross option (crop), 212, 214
cross-references, see also varioref package

as active links, 78
bibliographies, 732, 772, 773
current page, 215
customizing, 72, 73, 74, 75, 76
definition, 66
displaying reference keys, 68
doc package, 817, 818
errors, 894
indexes

creating, 651

cross-references (cont.)
verifying, 667

label formats, 71, 72, 73–75
line numbers, 178, 179
non-numerical, 76, 77
numbers, forcing to upright Roman font, 467
page numbers, 215
restricted characters, 66
to a page number only, 69
to a range of objects, 70, 71
to current page, 69
to external documents, 78
troubleshooting, 894
wrong references on floats, 67

crossref BIBTEX field, 690, 732, 765, 772, 780, 807
(biblist), 775

crossref key/option (jurabib), 732
\cs (ltxdoc), 834
\csc, 500

(tlc), 501
.csf file extension (bibtex8), 759
\csname, 26, 933, 934
\Csub (tlc), 31
CTAN (Comprehensive TEX Archive Network)

CD-ROM, 948, 949
contents, 948
ftp commands, 950–953
ftp servers, list of, 948
web access, 949, 950

\ctg (babel), 564
\cth (babel), 564
ctt option (inputenc), 571

\Cube (ifsym), 405
culture, and typesetting, 542

\Cup (amssymb), 530
\cup, 530
curly option (natbib), 706

\curlyeqprec (amssymb), 532
\curlyeqsucc (amssymb), 532
\curlyvee (amssymb), 530
\curlyveedownarrow (stmaryrd), 534
\curlyveeuparrow (stmaryrd), 534
\curlywedge (amssymb), 530
\curlywedgedownarrow (stmaryrd), 534
\curlywedgeuparrow (stmaryrd), 534
currencies

€ (euro symbol), 407–412
symbols, 363, 412
typesetting, 96–99

\CurrentOption, 879, 881, 886, 887
\currentpage (layouts), 200, 201, 203
\currenttitle (titleref), 77
\Curve (pspicture), 641
\curve (curves), 611, 612
\curvearrowleft (amssymb), 534

1006 (C–D) Index of Commands and Concepts

\curvearrowright (amssymb), 534
curves

Bèzier, see epic package; eepic package
Chaikin’s, 610
continuous slope, 611, 612, 613

curves package, 611
custom-bib package, xxvii, 772, 789, 791, 798–804
\CustomVerbatimCommand (fancyvrb), 165, 167
\CustomVerbatimEnvironment (fancyvrb), 165
CVS (Concurrent Versions System), 836
Cyr env. (tlc), 416, 417
Cyrillic, 569–571, 572, 573, 574
\cyrillicencoding (babel), 567, 568
\cyrillictext (babel), 568, 589
czech option (babel), 543

D

D syntax (dcolumn), 274, 275, 276, 561, 563
\d, 452, 458
d syntax (tlc), 275
\dag, 530

(textcomp), 458
\dagger, 530
\daleth (amssymb), 527
danish option (babel), 543
DANTE FAQ, 947
dash (-), see hyphen
\dasharrow (amssymb), 534
\dashbox (pspicture), 640
dashed lines

arydshin package, 267, 268
\dashline command, 602, 603

dashjoin env.
(eepic), 609
(epic), 604, 605, 606

\dashleftarrow (amssymb), 534
\dashlength (picins), 305
\dashline

(eepic), 609
(epic), 602, 603, 604

\dashlinedash rigid length (arydshln), 268
\dashlinegap rigid length (arydshln), 268
\dashlinestretch (epic), 603, 604
\dashrightarrow (amssymb), 534
\dashv, 535
data flow, LaTEX, 9
database format, bibliographies

abbreviations, creating, 769, 770
abbreviations, defaults, 771
accents, 768, 769
case sensitivity, 762
comment character, 761
cross-references, 772, 773
data, defined, 761
entry types, 761–764

database format, bibliographies (cont.)
fields, 762–765
ignored fields, 762
keys

case sensitivity, 762
definition, 761

names, specifying, 766–768
optional fields, 762, 763
preamble, 771, 772
required fields, 762, 763
separator character, 761
sort order, 764
spaces, 761
special characters, 768, 769
strings, creating, 769, 770
strings, defaults, 771
titles, 768

database management tools, bibliographies
aux2bib, 775
bib2html, 776, 777
bibclean, 777
bibextract, 777, 778
bibkey, 775
biblist, 774, 775
BibTexMng, 789
bibtool, 778–783
bibtools, 775, 776
capitalization rules, 786
citations, exporting, 776
citefind, 778
citetags, 778
command line tools, 775–783, 786
duplicate keys, removing, 780, 787
entries

editing, 784
extracting, 777, 778, 781, 782
searching by strings, 775, 777, 778

error messages, color, 785
graphical front end, 784–787
HTML files, creating, 776, 777 , 789
Internet resources, 774
Java database manager, 787–789
JBibtexManager, 787–789
keys

adding to bibliography listing, 778
extracting, 778
generating, 782, 783
removing duplicates, 780, 787
searching by strings, 775

lexical analyzer, 777
looktex, 775
makebib, 776
merging, 779, 780
normalizing, 780, 781, 786
online resources, 774

Index of Commands and Concepts (D) 1007

database management tools, bibliographies (cont.)
portable files, creating, 775
pretty-printing, 777, 779, 780
printbib, 776
printing, 774, 775, 776, 777
pybliographer, 784–787
rewriting, 780, 781
searching, 775, 777, 778, 784, 785, 787
showtags, 778
sorting, 779, 780
strings

searching all entries for, 775, 777, 778
searching keys for, 775

Windows database manager, 789
\date, 838, 907
\date〈language〉 (babel), 579, 587
dates, in multilingual documents, 558, 559
\datesdmy (babel), 559
\datesymd (babel), 559
\DavidStar (bbding), 403
\DavidStarSolid (bbding), 403
\dbinom (amsmath), 493
.dbj file extension (custom-bib), 799, 803, 804
dbk option (inputenc), 571
\dblfigrule, 285
\dblfloatpagefraction, 285
\dblfloatsep length, 285
\dbltextfloatsep length, 285
\dbltopfraction, 285
dbltopnumber counter, 285
DC fonts, 353
dcolumn package, 274–276
dcu BIBTEX style (harvard), 700
\ddag, 530

(textcomp), 458
\ddagger, 530
\ddddot (amsmath), 494, 529
\dddot (amsmath), 494, 529
\ddot, 494, 529, 591
\ddots, 487 , 536
debugging messages, indexes, 675
debugshow option (tracefnt), 368
\decaheterov (hetarom), 613
decimal data, aligning in tables, 272, 274, 275, 276
\decimalcomma (babel), 558
\decimalpoint (babel), 558
\decimalsep (babel), 561, 563
declarations vs. high-level font commands, 344, 345
\declare@shorthand (babel), 591
\DeclareCaptionFormat (caption), 314
\DeclareCaptionJustification (caption), 311, 314
\DeclareCaptionLabelFormat (caption), 310, 313, 314
\DeclareCaptionLabelSeparator (caption), 310, 311, 314
\DeclareCaptionListOfFormat (subfig), 320
\DeclareCaptionStyle (caption), 312, 313, 314

\DeclareDir (docstrip), 831, 832
\DeclareDir* (docstrip), 832
\DeclareDirectory (docstrip), 914
\DeclareEncodingSubset (textcomp), 368
\DeclareErrorFont, 911
\DeclareFixedFont, 417 , 418
\DeclareFontEncoding, 416, 430, 431, 439, 450

error using, 898, 920
warning using, 927

\DeclareFontEncodingDefaults
warning using, 926

\DeclareFontFamily, 403, 421, 426, 427 , 429, 431, 432,
433, 437, 438, 439

\DeclareFontShape, 403, 420, 421–423, 424, 425, 426,
427, 428, 429, 431, 432, 433, 437, 438, 439

error using, 900, 901, 906, 912
whitespace in, 422

\DeclareFontSubstitution, 431, 450
error using, 911

\DeclareGraphicsExtensions
(graphics), 624, 625
(graphicx), 624

\DeclareGraphicsRule
(graphics), 620, 625, 626, 627

error using, 896
(graphicx), 627

error using, 896
\DeclareInputMath (inputenc), 443, 444, 447
\DeclareInputText (inputenc), 443, 444, 445, 447
\DeclareMathAccent, 399, 435

error using, 927
warning using, 927

\DeclareMathAlphabet, 350, 351, 352, 353, 436, 439, 509
warning using, 926, 927
when not to use, 435

\DeclareMathDelimiter, 435
\DeclareMathOperator

(amsmath), 488, 489, 500, 501
(amsopn), 466

\DeclareMathOperator* (amsmath), 501
\DeclareMathRadical, 435
\DeclareMathSizes, 415, 432
\DeclareMathSymbol, 350, 434, 435, 436, 439, 528

error using, 910
warning using, 921

\DeclareMathVersion, 436, 439
warning using, 927

\DeclareNewFootnote (manyfoot), 122, 123–125
\DeclareOption, 879, 880, 881, 882, 886, 887
\DeclareOption*, 879, 881, 882, 886, 887

ignores global options, 882
\declarepostamble (docstrip), 830
\declarepreamble (docstrip), 830
\DeclareRobustCommand, 847
\DeclareRobustCommand*, 847

1008 (D) Index of Commands and Concepts

\DeclareSymbolFont, 433, 434, 435, 436, 439
warning using, 927

\DeclareSymbolFontAlphabet, 351, 435, 439
warning using, 927

\DeclareTextAccent, 450, 451
\DeclareTextAccentDefault, 453, 454
\DeclareTextCommand, 452
\DeclareTextCommandDefault, 366, 453, 454
\DeclareTextComposite, 451
\DeclareTextCompositeCommand, 451, 452
\DeclareTextSymbol, 450, 451, 453
\DeclareTextSymbolDefault, 365, 453, 454
\DeclareUnicodeCharacter (inputenc), 444, 447, 913
\DeclareUrlCommand (url), 95, 96
decmulti option (inputenc), 360
decorative

arrows, 490
initials, 395, 396
letters, at start of paragraph, see drop caps
math symbols, 495

\def, 140, 846, 909, 913
in TEX error message, 891

.def file extension, 7, 8, 448
(graphics), 614
(inputenc), 446

default key value (caption), 309, 310, 313
default.type BIBTEX entry type, 806
\defaultaddspace rigid length (booktabs), 271
\defaultbibliography (bibunits), 750
\defaultbibliographystyle (bibunits), 750
\DefaultFindent (lettrine), 101
\defaulthyphenchar, 427
\DefaultLhang (lettrine), 101
\DefaultLines (lettrine), 100
\DefaultLoversize (lettrine), 101
\DefaultLraise (lettrine), 101
\DefaultNindent (lettrine), 101
\DefaultSlope (lettrine), 101
\defcitealias (natbib), 703
define-alphabet function (xindy), 678
define-attributes function (xindy), 678, 679
define-letter-group function (xindy), 677
define-location-class function (xindy), 677, 678
defineactive key (fancyvrb), 162
\DefineFNsymbols (footmisc), 116, 117
\defineshorthand (babel), 548
\DefineShortVerb (fancyvrb), 167, 168
\DEFlvec (tlc), 846, 847
defn env. (tlc), 140
\deg, 500
delarray package, 489, 490
\deletebarwidth rigid length (changebar), 190
\DeleteShortVerb

(doc), 816, 821, 834
(shortvrb), 152

delim_0 keyword (makeindex), 661, 664
delim_1 keyword (makeindex), 661, 664
delim_2 keyword (makeindex), 661, 664
delim_n keyword (makeindex), 661
delim_r keyword (makeindex), 661
delimiters, math symbols, 489, 490, 498, 499, 504
\delimitershortfall, 392
\Delta, 392, 490, 499, 527
\delta, 497 , 527
\Denarius (marvosym), 412
depth, see space parameters
\depth, 861, 862

(graphics), 630
depth key (graphicx), 619
depth syntax, 867, 868
depth level, document headings, 27, 28
\DescribeEnv (doc), 815, 817, 821
\DescribeMacro (doc), 815, 817, 821
Description env. (tlc), 148, 149, 150, 151
description env., 131, 136, 138, 147 , 148, 167 , 600, 849
description lists

extensions, 136
standard, 131
user-defined, 147, 148–151

\Descriptionlabel (tlc), 148, 149, 150, 151
\descriptionlabel, 131, 138, 147, 148

(paralist), 138
\det, 491, 500
device drivers, 614
device independent files, 7
devnag package, 592
\dfrac (amsmath), 493
.dfu file extension (inputenc), 447
\DH, 457
\dh, 458
\diagdown (amssymb), 528
diagram package, 488, 965
\diagup (amssymb), 528
dialects, defining, 584, 585
\Diamond (latexsym), 464
\diamond, 495, 530
\diamondsuit, 528
dictionary type headers, 231, 232
\digamma (amssymb), 527
Digital Object Identifier (DOI), 710
\dim, 500
\dimen, 907, 934
\dimen73 rigid length, 934
\ding (pifont), 128, 130, 131, 378, 380
dingautolist env. (pifont), 131, 380
dingbat package, 400, 401
dingbat.mf file (dingbat), 400
\dingfill (pifont), 380, 381
\dingline (pifont), 380, 381
dinglist env. (pifont), 379

Index of Commands and Concepts (D) 1009

directivestyle key (listings), 170
directory names, typesetting, 93–95, 96
\DisableCrossrefs (doc), 817, 818, 821
\discretionary, 173, 902, 942
display key (titlesec), 38, 39–41, 42
display languages, 634, see also PDF; PostScript; SVG
display-type document headings, 27, 28
\displaybreak (amsmath), 480, 481

error using, 897
\displaycaps (tlc), 92
displaying formatted pages, see display languages
\displaylimits, 492
displaymath option (lineno), 178
\displaystyle, 85, 432, 494, 502, 503

(relsize), 84
dissertation year in bibliographies, 742
dissyear BIBTEX field (jurabib), 742
\div, 530
DIVn option (typearea), 204
DIV7 option (typearea), 204
DIVcalc option (typearea), 203, 204, 205
DIVclassic option (typearea), 204
\divide, 872
\divideontimes (amssymb), 530
\DJ, 457
\dj, 458
doc package, 152, 583, 813–824, 834
doc.dtx file (doc), 814, 827
doc.sty file (doc), 827
\docdate (doc), 823
\DocInclude (ltxdoc), 835
\DocInput (doc), 818, 820, 821, 835
docstrip package, 22, 824–834, 975, 977

error using, 889, 914
docstrip.cfg file (docstrip), 830, 831, 914
\DocstyleParms (doc), 823
document env., 13, 16, 18, 879, 883

checking the font set-up, 439
error using, 896, 914
problems using, 919

document option (ragged2e), 105, 106, 394
document class

AMS-LaTEX, 467
definition, 15
modifying, 18
name, 16
standard, see article; book; report

document headings, see also titlesec package
alignment, 37
alphabetically numbered, 25
and layout definitions, 32
at page bottom, 40
bibliographic citations in, 697
breaking before, 42
conditional layouts, 43, 44

document headings (cont.)
counter, advancing, 33
formatting, 27–33

box around number, 26
complex headings, 32
depth level, 27, 28
display format, 27, 28
fancy headings, 34, 35
formatting numbers, 37
heading counter, 27
hyphenation, 31
indentation, after heading, 32, 40
indentation, of the heading, 28, 39
indentation, suppressing, 32, 39
justification, 31
label format, 38
leaders, 41, 42
line breaks, 31
predefined layouts, 34, 35
predefined text, 34
redefinition, 32, 33
rules, 41, 42
run-in format, 27 , 29, 30
shape, 38
space after, 28
space before, 28
text style, 28, 30, 31, 37
unusual layouts, 41

hierarchy, changing, 44, 45
line breaks, 31
mottos (quotations), on chapters, 35, 36
nesting, 24
numbering, 24, 25–27

Arabic numbers, 25
capital letters, 25
formatting numbers, 37
referencing subsections, 25, 26
suppressing numbers, 22, 23, 24

spacing
above/below, 39, 43
after, 28
before, 28
consecutive headings, 40
font size and, 40
in front of, 28
label and title text, 38
left margin, 39
right margin, 40
tools for, 40
vertical, 37

splitting, 23
suppressing, 201
title width, measuring, 41

document preamble, see preamble

1010 (D) Index of Commands and Concepts

documentation class (ltxdoc)
commands, 834
configuration files, creating, 835, 836
description, 834
extensions, 834
formatting options, 835, 836

documentation commands, list of, 820–824
documentation driver, 583, 814, 818
documentation tools

automatic indexing, disabling, 817, 836
change history, creating, 817, 836
commands, list of, 820–824
comment characters, 814
comments, stripping from source file, 824–834
conditional code syntax, 819–824
cross-references, 817, 818
CVS, 836
description, 814
documentation class (ltxdoc), 834–836
documentation commands, list of, 820–824
driver files

creating, 818
including in conditional code, 820

environment descriptions, creating, 815, 816
formatting commands, list of, 820–824
history commands, list of, 820–824
including files, 835
index commands, list of, 820–824
index entries, creating automatically, 817, 836
input commands, list of, 820–824
keys

extracting RCS information, 837 , 838
parsing Id keyword, 838, 839

layout parameters, list of, 820–824
macro descriptions, creating, 815, 816
parts, creating, 816, 835
preamble commands, list of, 820–824
RCS, 836
rcs package, 837 , 838
rcsinfo package, 838, 839
software release control, 836
source control, 836, 837 , 838, 839
spaces, 815
syntax, 814, 815
syntax diagrams, creating, 834
typesetting parameters, list of, 820–824
verbatim text delimiters

defining, 816
syntax, 815

version control, 836, 837 , 838, 839
documentation, finding, 954
\documentclass, 13, 15, 16, 18, 19, 20, 877, 878, 882

error using, 912
global options, 17, 543, 544
release information, 878

\documentclass (cont.)
warning using, 930, 931

documents
backward compatibility, 463, 464
displaying, see display languages
last page, referencing, 216, 226
reformatting, piecewise, 18–20
sections, 22, 23
source files, see source files
too large for single run, see source files, splitting
version control, 21, 22
versions, selecting for printing, 21, 22

\documentstyle, 463
error using, 912

doi BIBTEX field
(custom-bib), 802
(natbib), 710

DOI (Digital Object Identifier), 710
\dominilof (minitoc), 56
\dominilot (minitoc), 56
\dominitoc (minitoc), 56
\DoNotIndex (doc), 817, 822
\DontCheckModules (doc), 821
\doparttoc (minitoc), 57
\dosecttoc (minitoc), 57, 58
\dot, 494, 529
dotafter key/option (jurabib), 728, 738
\Doteq (amssymb), 532
\doteq, 532
\doteqdot (amssymb), 532
\dotfill, 380, 664, 856, 857
dotinlabels option (titletoc), 60, 61
\dotplus (amssymb), 530
\dots, 81, 458, 496

(amsmath), 492, 496, 497
(ellipsis), 82

dots option (euro), 97
\dotsb (amsmath), 490, 496, 497
\dotsc (amsmath), 496, 497
\dotsi (amsmath), 496, 497
\dotsm (amsmath), 496, 497
\dotso (amsmath), 496
dotted option (minitoc), 56
dotted lines, 602
dottedjoin env.

(eepic), 609
(epic), 604, 605

\dottedline
(eepic), 609
(epic), 602, 604

dottier accents, 494, 495
double boxes, 597
double quote ("), shorthand character, 551–553
double rules (graphic lines), 269
\doublebox (fancybox), 597

Index of Commands and Concepts (D–E) 1011

\doublecap (amssymb), 530
\doublecup (amssymb), 530
\DoubleperCent (docstrip), 833
\doublerulesep rigid length, 243, 271
\doublerulesepcolor (colortbl), 265
doublespace env. (setspace), 107
\doublespacing (setspace), 107
\Downarrow, 498, 534
\downarrow, 489, 498, 534
\downdownarrows (amssymb), 534
\downharpoonright (amssymb), 534
draft key (graphicx), 620
draft option, 939

(graphics), 614, 615
(graphicx), 614
(showkeys), 68
(varioref), 73

draft mode, 68, 73, 614, 615
\drawdimensionsfalse (layouts), 201
\drawdimensionstrue (layouts), 202
drawing

arcs, 610
circles, 610
ellipses, 610
lines, 603, 604, 610, see also epic package; eepic

package
paths, 610
vectors, see epic package; eepic package

drawjoin env.
(eepic), 609
(epic), 604, 605

\drawline
(eepic), 609, 610, 611
(epic), 603, 604, 611

\drawlinestretch (epic), 604
\drawwith (ecltree), 612
driver files

creating, 818
including in conditional code, 820

drop key (titlesec), 38, 39, 41
drop caps, 99, 100, 101
.dtx file extension, 8

(doc), 6
(ltxdoc), 835

duplicate option (chapterbib), 748
duplicate$ BIBTEX built-in function, 808
dutch option (babel), 543, 552, 553, 585
.dvi file extension, 7, 8, 9, 327, 593, 660
dvi2ps option (graphics), 615
dvi2ps program, 615
dvi2svg program, 645, 646
dvialw option (graphics), 615
dvialw program, 615
dvilaser option (graphics), 615
dvilaser/PS program, 615

dvipdf option (graphics), 615
dvipdf program, 615
dvipdfm key/option (geometry), 210
dvipdfm program, 643
dvips key/option (geometry), 210
dvips option

(changebar), 189
(crop), 213
(graphics), 614, 615, 913

dvips program, 189, 420, 614, 615, 637–639, 646, 969
dvips.def file (graphics), 614
dvipsnames package, 191
dvipsone option (graphics), 615
dvipsone program, 614, 615
dvitoln03 option (changebar), 189, 190
dvitops option

(changebar), 189
(graphics), 615

dvitops program, 615
dviwin option (graphics), 615
dviwin program, 615
dviwindo option (graphics), 615
dviwindo program, 615
dynamic key value (jurabib), 718, 732

E

E syntax (fancyhdr), 225, 226–230
e-mail addresses, typesetting, 93–95, 96
E.. font encoding, 430
EC (European Computer Modern) fonts, 353, 354, 355, 356

\ecaption (tlc), 54, 55
ecltree package, 612
eco option (euro), 97
eco package, 63, 64, 383

\edef, 131
problems using, 892

edition BIBTEX field, 717 , 763, 765
edition information, bibliographies, 742
editor BIBTEX field, 690, 732, 742, 763, 764, 765, 766, 767
editor information, bibliographies, 742

\editorname (jurabib), 734
editortype BIBTEX field (jurabib), 742
eepic package, 603, 607–611, 637, 638, see also epic

package
eepicemu package, 611

\efloatseparator (endfloat), 290
efxmpl.cfg file (endfloat), 291

\eg (tlc), 80
\ega (tlc), 468
egrep program, 775
eid BIBTEX field

(custom-bib), 802
(natbib), 710

EID, bibliographies, 710
electronic publications, bibliographies, 710

1012 (E) Index of Commands and Concepts

\ell, 527
\ellipse

(eepicemu), 611
(eepic), 610

\ellipse*
(eepicemu), 611
(eepic), 610

ellipses
drawing, 610
filling, 610, 611

ellipsis package, xxvii, 82, see also lips package
ellipsis (. . .)

mathematical symbol, 496, 497
spacing, 81–83

\ellipsisgap (ellipsis), 82
\ellipsispunctuation (ellipsis), 82
\ELSE (algorithmic), 168
\em, 341, 342, 344

using small caps, 342
(ulem), 87

emacs program, 787, 946, 976
\email (tlc), 95, 96
\emdash, 448
emdash option (euro), 97
\emergencystretch rigid length, 102, 103, 929, 941
\eminnershape (fixltx2e), 342
\emph, 167, 341, 342, 344, 345, 849

error using, 908
(ulem), 87
(yfonts), 394

emph key (listings), 171
emphasizing fonts, 341
emphstyle key (listings), 171
empty key value

(caption), 310
(subfig), 320

empty page style, 222
producing unwanted page number, 222

empty lines, equations, 481
empty size function, 423
empty$ BIBTEX built-in function, 808, 809–812
\emptyset, 528
emTeX program, 614, 615
emtex option

(changebar), 189, 190
(graphics), 615

\EnableCrossrefs (doc), 817, 821, 836
encap keyword (makeindex), 660
encap_infix keyword (makeindex), 661
encap_prefix keyword (makeindex), 661
encap_suffix keyword (makeindex), 661
\encapchar (doc), 822
encapsulating page numbers, indexes, 652, 671, 672
encapsulation, image files, 627, 628
\enclname (babel), 547

encoding
accented characters, 357, 358, 359–361
definition files, 7
font commands, low level, 415, 417
input, 329, 330, 357, 358, 359–361, 443–447
languages and fonts, 567 , 577

Cyrillic alphabet, 569–573
description, 336, 337
Greek alphabet, 574, 576
Hebrew alphabet, 576–578
language options, 566–568
OT1 extensions, 566
T1 extensions, 566
T2A encoding, 571
T2B encoding, 573
T2C encoding, 573

LaTEX, 329, 330, 336, 440–442
LICR objects, 442, 443

list of, 455–463
math input, 445–447
OT1, 337
output, 330, 361, 362, 447–463
Pi fonts, 378, 379–381
PostScript, 388, 389, 390
schemes, declaring, 430
selecting, 361, 362
single-byte characters, 359, 360
T1 (Cork), 337, 353
TEX, 353
text input, 445–447
text symbols

Pi fonts, 378, 379–381
PostScript, 388, 389, 390
TS1, 362, 363–368
Zapf Dingbats, 378–380

TS1, 362, 363–368
UTF-8 support, 360, 361, 441, 447
Zapf Dingbats, 378–380

\encodingdefault, 346, 347, 417 , 418
\End (tlc), 489
\end, in TEX error message, 908, 914, 921
endash option (euro), 97
\endbatchfile (docstrip), 826
\endcsname, 26, 905, 933, 934
\endfirsthead (longtable), 260, 262
endfloat package, xxvii, 289–291

combined with rotating, 291
endfloat.cfg file (endfloat), 291
\endfoot (longtable), 260, 262
\endgraf, 897
\endgroup, 504, 896, 906

error using, 898, 899
\endhead (longtable), 260, 262
\ENDIF (algorithmic), 168
\endinput, 827, 900

Index of Commands and Concepts (E) 1013

\endlastfoot (longtable), 260, 262
\endnote (endnotes), 125, 126
endnote counter (endnotes), 125, 126
endnote key value (jurabib), 728
endnote citations, bibliographies, 726, 727, 728
\endnotemark (endnotes), 125, 126
endnotes, 125, 126, see also footnotes; marginal notes
endnotes package, xxvii, 125, 126
\endnotetext (endnotes), 125
\endpostamble (docstrip), 829, 830
\endpreamble (docstrip), 829, 830
\eng (babel), 562
english option (babel), 543, 545, 546, 548–550, 552, 734
enjbbib.ldf file (jurabib), 733
\enlargethispage, 234, 930

error using, 908, 910
\enlargethispage*, 234, 235
\enoteformat (endnotes), 126
\enoteheading (endnotes), 126
\enotesize (endnotes), 126
\enskip, 508
\enspace, 37 , 856
\ensuremath, 446, 844, 845, 846, 932
.ent file extension (endnotes), 125
ENTRY BIBTEX command, 805, 806, 807 , 810
entry types, bibliography database, 761–764
entry variables, bibliographies, 805
enumerate env., 129, 130, 131, 132, 134, 135, 600

cross-reference to, 66
error using, 911
style parameters, 130
(enumerate), 134
(paralist), 134

enumerate package, 134
enumerated lists

default settings, 136, 137 , 138
extensions, 132–135
indentation, 137
standard, 129–131
user-defined, 151

enumi counter, 129, 130, 131, 851
enumii counter, 129, 130, 851
enumiii counter, 130, 851
enumiv counter, 130, 851
environment env. (doc), 815, 816, 821, 824
environments

abbreviations, 468
defining new, 847, 848–850
descriptions, creating, 815, 816
displaying as mini-pages, 477, 478, 479
documenting, see documentation tools
naming, 842, 843
redefining existing, 847–850

epic package, 600–607, 609, 611, 612, see also eepic
package

\EPS (tlc), 843, 844
.eps file extension, 8, 625, 626, 896
.eps.gz file extension, 626
eps2pdf program, 643

\epsilon, 527
\eqcirc (amssymb), 532
eqnarray env., 470, 600

error using, 898, 911
wrong spacing, 470

eqnarray* env., 470, 600
\eqref (amsmath), 70, 482, 485
\eqsim (amssymb), 532
\eqslantgtr (amssymb), 532
\eqslantless (amssymb), 532
\equal (ifthen), 72, 73, 232, 873, 874, 877
equality and order, math symbols, 532
equality and order—negated, math symbols, 532
equals sign (=), shorthand character, 557
equation counter, 851, 854

(amsmath), 482, 484
equation env., 14

cross-reference to, 66
spacing problems around, 481
(amsmath), 469–471, 473, 484

error using, 895
equation* env. (amsmath), 469, 471, 473, 478
equations, see also math fonts; math symbols

aligning, 469
amsmath package vs. standard LaTEX, 470, 471
as mini-pages, 477, 478, 479
empty lines, 481
groups with alignment, 475
groups without alignment, 474, 475
interrupting displays, 479
labels, see numbering, equations; tags
multiple alignments, 475, 476, 477
numbering, see also tags

resetting the counter, 485
subordinate sequences, 484, 485

on multiple lines, no alignment, 471, 472
on multiple lines, with alignment, 473, 474
on one line, 471
page breaks, 479–481
tags, 469, see also numbering, equations

definition, 468
numbering equations, 482
placement, 483, 484

vertical space, 479, 480, 481
\equiv, 475, 493, 532
\eqvref (tlc), 70
errata, this book, xxvii
error messages, see messages, error; troubleshooting
errorcontextlines counter, 892

1014 (E) Index of Commands and Concepts

errorshow option
(multicol), 188
(tracefnt), 368

escape keyword (makeindex), 660
escape characters, 161
\Esper (babel), 559
\esper (babel), 559
esperanto option (babel), 543, 556, 558
\esssup (tlc), 466, 501
estonian option (babel), 543
\eta, 527
\etc

(tlc), 80
(yfonts), 395, 396

eTEX, TEX extension, 220, 446, 498, 504, 540, 566, 907, 917,
921

etex package, 907
\eth (amssymb), 527
ethiop package, 592
Ethiopian, 592
eucal option (mathscr), 397
eucal package, 396, 467
\EuFrak (eufrak), 396
eufrak package, 396, 397, 398, 467
euler package, 397, 398

wrong digits, 398
Euler font, 396, 397–399, 467, 514
Euler Fraktur font, 467, 509
euler-digits option (eulervm), 398, 399, 515
euler-hat-accent option (eulervm), 399
eulervm package, 397–399, 435, 515
\EUR

(europs), 411
(eurosym), 409
(marvosym), 412

\EURcf (marvosym), 412
\EURcr (europs), 411
\EURdig (marvosym), 412
\EURhv

(europs), 411
(marvosym), 412

\EURO (euro), 96, 97–99
\euro

(eurosans), 98, 99, 410
(eurosym), 408, 409
(tlc), 410

euro option (textcomp), 362, 387 , 388
euro package, xxvi, 96–99

combined with color, 99
euro currency, typesetting, 96–99
euro symbol (€), 407–412
euro.cfg file (euro), 97
\EUROADD (euro), 97, 98
\EURofc (europs), 411
\EUROFORMAT (euro), 98, 99

European Computer Modern (EC) fonts, 353, 354, 355, 356
European Modern fonts, 339, 354
europs package, 411
eurosans package, 98, 99, 410, 411
\EUROSYM (euro), 97 , 98, 99
eurosym package, 408, 409
\EURtm

(europs), 411
(marvosym), 412

\EuScript (eucal), 396
even key value (titlesec), 43
even keyword (makeindex), 657
\evensidemargin rigid length, 194, 196, 199, 887
\everypar, 255
EX env. (tlc), 852
exa env. (tlc), 139, 142
example env. (tlc), 163
examples, this book, 14, 162, 960, 1089, 1090, see also

specific examples
exception dictionary errors, 917
exclamation mark (!), shorthand character, 554
\excludeonly (excludeonly), 20
excludeonly package, 19, 20
excluding files, 20, see also including files
EXECUTE BIBTEX command, 806, 807
\ExecuteOptions, 614, 879, 881
executive option (crop), 213
executivepaper key/option (geometry), 206
executivepaper option, 195

(typearea), 204
\exists, 528
\exp, 500
expand.macros function (bibtool), 781
\expandafter, 933
expert option (fourier), 393
\ExplainOptions (optional), 21
exporting citations, 776
exscale option (ccfonts), 385
exscale package, 85, 368

combined with relsize, 84
provided by amsmath, 504
provided by ccfonts, 385
provided by eulervm, 398
provided by mathpazo, 378
provided by mathptmx, 377

ext key (graphicx), 620
\ext@figure, 52, 54
\ext@table, 52, 53, 54
extendedchars key (listings), 174, 175
extensions supported, bibliographies, 802, 803
external documents, cross-references to, 78
\externaldocument (xr), 78
extra option (tipa), 405

Index of Commands and Concepts (E–F) 1015

\extracolsep, 242, 246, 273, 279, 280
(array), 246
(longtable), 261

\extrafootnoterule (manyfoot), 124
\extramarks (extramarks), 220, 221
extramarks package, xxvii, 218, 220, 221
\extrarowheight rigid length (array), 244, 245, 246, 268,

269
\extrarulesep rigid length (tabls), 269
\extras〈language〉 (babel), 579, 588
\extrasrussian (babel), 589
\extratabsurround rigid length (array), 280, 281
\eye (dingbat), 401
\EyesDollar (marvosym), 412
EZ fonts, 356

F

F syntax (fancyhdr), 226, 227
\FAIL (tlc), 918
\FAILa (tlc), 915, 916
\FAILb (tlc), 915, 916
\FAILc (tlc), 915, 916
\FAILd (tlc), 915, 916
\fakelistoffigures (minitoc), 56
\fakelistoftables (minitoc), 56
\faketableofcontents (minitoc), 56, 58
\fallingdotseq (amssymb), 532
false key value

(caption), 309, 311
(fancyvrb), 160
(geometry), 207
(jurabib), 724
(listings), 171, 172, 173
(subfig), 318
(titlesec), 43

false syntax, 875
families, font, see fonts, families
\familydefault, 346, 347, 373, 417

(yfonts), 394
fancy page style (fancyhdr), 221, 224, 225–233, 598, 839
fancybox package, 596–600
\fancyfoot (fancyhdr), 225, 226–230, 233
\fancyfootoffset (fancyhdr), 227
fancyhdr option (rcsinfo), 839
fancyhdr package, xxvii, 220, 224–232

loaded by rcsinfo, 839
\fancyhead (fancyhdr), 225, 226–230, 233, 297
fancyheadings package, 224
\fancyheadoffset (fancyhdr), 227
\fancyhf (fancyhdr), 226, 227 , 230–233
\fancyhfoffset (fancyhdr), 226, 227, 598
\fancyoval (fancybox), 596, 597
\fancypage (fancybox), 597, 598, 599
\fancypagestyle (fancyhdr), 230
\fancyput (fancybox), 599

\fancyput* (fancybox), 599
fancyref package, 76

\FancyVerbFormatLine (fancyvrb), 156, 157 , 158
FancyVerbLine counter (fancyvrb), 157 , 160

\FancyVerbStartString (fancyvrb), 162
\FancyVerbStopString (fancyvrb), 162
\FancyVerbTab (fancyvrb), 160, 161
fancyvrb package, 152, 153, 155–168, 169, 172–174

combined with color, 158, 163
fancyvrb.cfg file (fancyvrb), 168
FAQ (Frequently Asked Questions), 947
farskip key/option (subfig), 317, 318

\fatbslash (stmaryrd), 530
\fatsemi (stmaryrd), 530
\fatslash (stmaryrd), 530
\Faxmachine (marvosym), 401
\fbox, 307 , 491, 860, 861, 866, 869, 870
\fboxrule rigid length, 861, 869, 870, 872

(boxedminipage), 595
(fancybox), 597

\fboxsep rigid length, 158, 326, 861, 869, 870, 872
(boxedminipage), 595
(fancybox), 596–598

\fcolorbox (color), 265
fcolumn env. (tlc), 869

\fcolwidth rigid length (tlc), 872
.fd file extension, 7, 8, 355, 429, 431, 432, 433, 509, 923,

928, 1063
defining, 437–439

.fdd file extension (ltxdoc), 835
\FEMALE (marvosym), 401
\Female (marvosym), 401
.fff file extension (endfloat), 291
\fg (babel), 545, 552, 554
\fi, 902
field variables, bibliographies, 805
fields, bibliographies, 762–765, 810, 811
fighead option (endfloat), 290
figlist option (endfloat), 290
figure counter, 851
figure env., 47, 109, 291, 306, 307 , 308, 309–311

cross-reference to, 66, 67
error using, 899, 902, 907
floats to end of document, 289
labels in, 67
style parameters, 284–286
warning using, 925
(caption), 312, 313
(float), 294, 295
(multicol), not supported, 189
(rotfloat), 298
(subfig), 320

figure lists
in tables of contents, 48
options, 290

1016 (F) Index of Commands and Concepts

figure lists (cont.)
placing at end of document, 289–291

figure* env. (multicol), 189
\figurename (babel), 547
\figureplace (endfloat), 290
\figuresection (endfloat), 290
figuresfirst option (endfloat), 290
figuresleft option (rotating), 297
figuresright option (rotating), 297
figwindow env. (picinpar), 108, 109
\filcenter

(titlesec), 40, 44, 65
(titletoc), 59

\file (docstrip), 826, 827 , 830, 831
file extension, image files

search order, 624, 625
specifying, 625

file structure (classes and packages)
commands, 879, 883–885, 888
description, 877
identification part, 877–880
initial code part, 880
main code part, 883
minimal requirements (classes), 888
options

declaring, 880, 881
executing, 881, 882

package loading part, 882
filecontents env., 20, 403, 606

error using, 904
warning using, 922, 923, 928, 931

filecontents* env., 21, 171
warning using, 923, 931

\filedate (doc), 823
\filename (doc), 823
files

LaTEX format, 7
TEX and LaTEX, summary list, 8
TEX font metric, 7
auxiliary, 7, 8
bibliography style, 8
class, 6
document source, see source files
encoding definition, 7
font definition, 7
index, 7
input source, 6
internal, 7
language definition, 6
package, 6
plain text, 6
transcript, 7

\fileversion (doc), 823
\filinner (titlesec), 40, 43
\fill length, 261, 849, 856, 857, 858

\fillast
(titlesec), 40
(titletoc), 59, 65

fillcolor key (fancyvrb), 158
\filleft

(titlesec), 40, 41, 43
(titletoc), 59

filling circles, 610, 611
filling material, see leaders
\filltype (eepic), 610
\filouter (titlesec), 40, 43
\filright

(titlesec), 40, 42–44
(titletoc), 59, 60, 61, 63

final option
(graphics), 615
(graphicx), 615
(showkeys), 68
(varioref), 73

final mode, 68, 73, 615
finalcolumnbadness counter (multicol), 186, 187
\Finale (doc), 816, 817, 821
\finalhyphendemerits, 849, 850
\finallinebreak (tlc), 102
findent key (lettrine), 101
finnish option (babel), 543
\Finv (amssymb), 527
\Fire (ifsym), 405
first key value (jurabib), 724, 726–728, 729, 731
\firsthdashline (arydshln), 267
\firsthline (array), 268, 280, 281
\firstleftmark (extramarks), 220, 229
\firstleftxmark (extramarks), 220, 221
firstline key

(fancyvrb), 162, 163
(listings), 172

\firstmark, 218
firstnotreversed key value (jurabib), 724
firstnumber key

(fancyvrb), 159, 160, 163
(listings), 172

\firstrightmark (extramarks), 220, 231, 232
\firstrightxmark (extramarks), 220
fit option (truncate), 233
\FiveFlowerPetal (bbding), 403
fix-cm package, xxvii, 355, 356
fixed size function, 426
\Fixedbearing (marvosym), 401
fixltx2e package, 232, 342
fixltx2e.dtx file (fixltx2e), 835
flafter package, 70, 286
\Flag (ifsym), 405
flalign env. (amsmath), 469, 476, 477

adjusting with \minalignsep, 477
error using, 895

Index of Commands and Concepts (F) 1017

flalign* env. (amsmath), 469
flanguage BIBTEX field (jurabib), 742
\flat, 528
fleqn option, 68

(amsmath), 466, 469, 471, 500
float key (listings), 174
float package, 291–295, 923
float class

captions, listing, 293
naming, 293, 294

float pages, page styles (headers and footers), 231
\FloatBarrier (placeins), 288, 289, 295
\floatdesign (layouts), 202
\floatdiagram (layouts), 202
floatfig package, 299
floatflt package, 299
\floatname

(float), 293
(rotfloat), 298

\floatpagedesign (layouts), 202
\floatpagediagram (layouts), 202
\floatpagefraction, 284, 285, 286
\floatplacement (float), 294
floats

captions
continuing across floats, 314, 315
customizing, 305, 308–315
fonts, 309, 310
for specific float types, 305, 312, 313
justifying, 311
labels, 310, 311, 313, 314
multipage tables, 257, 262
on separate page, 325, 326
paragraph separation, 311
placement, 323, 324, 325, 326
shape, 308, 309
sideways, 306, 323, 324, 325
spacing, 312, 317
standard LaTEX, 306, 307 , 308
sub-captions, 315, 316–319, 320, 321
sub-numbering, 321, 322, 323

columns, 189
custom styles, 291, 292, 293–295, 296
definition, 283, 284
figures, 315–321
half-empty pages, 285, 286
inline, 298–306
maximum allowed, setting, 284, 285
multipage tables, 262–264, 289
nonfloating tables and figures, 295, 296
page fraction, setting, 284, 285
parameters, 284–286
pictures inside text, 302, 303–306
placement control, 286–291

after their callouts, 286

floats (cont.)
at end of document, 289–291
at exact spot, 287, 295, 296
bunched at end of chapter, 286
captions, 323, 324–326
confined by barriers, 288, 289
floating backwards, 287

premature output, 291
rotating, 296, 297 , 298
rules (graphic lines), 285
separators, 285
sub-figures, 315, 316, 317, 318, 319, 320, 321
sub-tables, 315, 316, 317, 318, 319–321
tables, 315–321
text markers, 290, 291
typed text as, 174
unprocessed, flushing, 289
vertical spacing, 285
wrapping text around, 108, 109, 298, 299, 300, 301,

302
wrong references, 67

\floatsep length, 285
\floatstyle

(float), 292, 293, 294, 309–311
(rotfloat), 298

fltpage package, 325, 326
flush left paragraphs, 103–105, 106
flush right paragraphs, 104

\flushbottom, 120, 234
\flushcolumns (multicol), 186, 188
FlushLeft env. (ragged2e), 105
flushleft env., 103, 104, 146

(ragged2e), 105
flushleft option

(paralist), 138
(threeparttable), 278, 279

flushmargin option (footmisc), 118, 119, 123, 731
FlushRight env. (ragged2e), 105
flushright env., 104, 146, 858

(ragged2e), 105
FML font encoding (fourier), 392
FMS font encoding (fourier), 392

.fmt file extension, 8
fncychap package, 34, 35, 36
fncylab package, 71
fnpara package, 118

\fnref (tlc), 111
\fnsymbol, 110, 852, 853

error using, 897
(perpage), 121

fntguide.tex file, 423
folio-by-chapter page numbers, indexes, 665

\font, 30, 82, 387 , 427, 428, 429

1018 (F) Index of Commands and Concepts

font key/option
(caption), 310, 316
(subfig), 317, 318, 319

font commands
high level

combining, 343
definition, 338
emphasizing fonts, 341
LaTEX 2.09, 347
main document text, changing, 346, 347
main document text, description, 338, 339
monospaced font, 339
overall document appearance, 346, 347
sans serif fonts, 339
selected words or phrases, 338
serifed fonts, 339
sizing fonts, 342, 343
special characters, 345
standard families, 339
standard series, 340
standard shapes, 340, 341, 342
typewriter font, 339
underlining text, 342
vs. declarations, 344, 345

in math, 351
low level

automatic font substitution, 418
definition, 412, 413
encoding, 415, 417
family, 413
series, 414
setting font attributes, individual, 413–417
setting font attributes, multiple, 417
shape, 414
size, 415
within a document, 418

font definition files, 7, see also .fd
font encoding, see output encoding
font memory errors, 917
font-loading options, 426–429
fontdef.cfg file, 431
\fontdimen, 30, 82, 428, 429, 437
\fontdimen1, 428
\fontdimen2, 30, 51, 428, 429
\fontdimen3, 30, 82, 428
\fontdimen4, 30, 428
\fontdimen5, 387 , 428
\fontdimen6, 428
\fontdimen7, 428
fontenc package, 7, 155, 156, 361, 362, 888

changing \encodingdefault, 347
error using, 889, 898

\fontencoding, 156, 345, 355, 367 , 412, 413, 415, 417 ,
419, 430, 454, 571

error using, 898

\fontencoding (cont.)
(array), producing wrong output, 245

\fontfamily, 95, 355, 410, 412, 413, 417 , 419
fontfamily key (fancyvrb), 155, 156, 167
fontinst package, 88, 376, 419, 420, 437, 438, 971
fontmath.ltx file, 529
fonts, see also math fonts; math symbols; text

accented characters, 337, 357, 358, 359–361
Almost European fonts, 356
automatic substitution, 418
backward compatibility, 463, 464
bibliographies, 736, 737
body, 338
changing, see font commands
classification, 372
CM Bright, 385, 386
CM-Super fonts, 354–356, 570
Computer Modern (CM)

LaTEX standard fonts, 353, 354, 355, 356, 357
old-style numerals, 381, 382, 383

Concrete, 383, 384, 385
DC fonts, 353
declaring, 421
decorative initials, 395, 396
defining for a document, see font commands, high

level
defining in a package, see font commands, low level
defining in the preamble, see font commands, low

level
displaying font tables, 369, 370
EC fonts, 353, 354, 355, 356
emphasizing, 341
encoding, see encoding, languages and fonts
European Modern fonts, 339, 354
EZ fonts, 356
families

classification, 372
declaring, 421
encodings, 336, 337
low-level commands, 413
modifying, 429
shapes, 333–335
sizes, 335, 336

float captions, 309, 310
for line numbers, 179, 180
Fourier-GUTenberg, 391–393
Fraktur, 394–396
Gothic, 394–396
headed lists, 141
in typed text, 155, 156
italic, 333
italic correction, 340, 341, 342
LaTEX 2.09, 347
Latin Modern fonts, 356, 357
loading unnecessary .tfms, 343

Index of Commands and Concepts (F) 1019

fonts (cont.)
low-level commands, 413
low-level interface, see font commands, low level
main document text

changing, 346, 347
description, 338, 339

math
alphabet identifiers, 348, 349–351
automatic changes, 347, 348
Baskerville Math, 520
Bitstream Charter Math, 520
CM Bright, 522
Computer Modern (CM), 513
Concrete, 514
Euler, 396, 397–399, 514
font commands, 351
formula versions, 352, 353
Fourier-GUTenberg, 391–393, 515
Helvetica Math, 522
Info Math, 523
Lucida Math, 521
Palatino, 377, 378, 390, 391, 518
Palatino Math, 519
Pazo, 518
Pi, 378–381, 382
PXfonts, 518
scaling large operators, 368
Times Roman, 376, 377 , 388, 389, 390, 516
TM Math, 517
TXfonts, 516

METAFONT, 334
modifying, 429
monospaced, 331, 332, 339, see also typed text
NFSS, 327–329, see also PSNFSS
normal, 338
oblique, 333–1092
old German, 394, 395, 396
outline, 334
Pi, 382
PostScript fonts, 354, 355, see also PSNFSS
printer points, 335
proportional, 331, 332
resizing, relative to original, 83, 84, 85
sans serif, 332, 339
scaling large operators, 368
Schwabacher, 394–396
searching PDF documents, 356
series, 340, 414
serifed, 332, 339
setting attributes, individual, 413–417
setting attributes, multiple, 417
setting up

declaration order, 439
defining .fd files, 437–439
dimensions, 428, 429

fonts (cont.)
empty size function, 423
encoding schemes, declaring, 430
example, 437–439
families, declaring, 421
families, modifying, 429
fixed size function, 426
font-loading options, 426–429
for math use, 432–437
gen size function, 424
genb size function, 425
hyphenation character, 427
internal file organization, 431, 432
naming scheme, 420
overview, 419
s size function, 424
sfixed size function, 426
sgen size function, 425
sgenb size function, 425
shape groups, 421–429
size, 422, 432
size functions, 423–426
size ranges, 422
ssub size function, 426
ssubf size function, 426
sub size function, 425
subf size function, 426
symbol fonts, 433–437

shaded, 334
shape groups, 421–429
shapes, 333, 334, 340, 341, 342, 414
size, 342

description, 335, 336
footnotes, 112
low-level commands, 415
measuring, 335, 336
setting up, 422, 432
standard sizes, 342, 343

size functions, 423–426
size ranges, 422
slanted, 333, 340
sloped, 333
small caps, 334, 341, 563
special characters, 345, see also text symbols
specifying in tables, 244, 245
symbols, see text symbols; math symbols
tables, displaying, 369, 370
text symbols, see text symbols
this book, 1089
tracing font selection, 368
typewriter, 339, 386, 387 , 388, 834
underlining text, 342
upright, 333, 340
URW Antiqua, 393, 394
URW Grotesk, 393, 394

1020 (F) Index of Commands and Concepts

fonts (cont.)
weight, 334, 335
whitespace, 340, 341, 342
width, 334, 335

\fontseries, 156, 340, 412, 413, 414, 419
fontseries key (fancyvrb), 156
\fontshape, 156, 410, 412, 413, 414, 419
fontshape key (fancyvrb), 156
\fontsize, 41, 84, 343, 355, 371, 373, 408, 412, 413, 415,

417 , 419, 464, 920
fontsize key (fancyvrb), 156, 166, 167
fonttext.cfg file, 829
fonttext.ltx file, 431, 432
\Football (marvosym), 401
\footcite (jurabib), 726, 728
\footcitet (jurabib), 733
\footcitetitle (jurabib), 726
footer height, 201
footers, see headers and footers
footexclude option (typearea), 204
\footfullcite (jurabib), 726, 732
footinclude option (typearea), 204
footmisc package, xxvii, 114–120, 122, 123
\footnote, 110, 111, 113, 122, 123, 277

cross-reference to, 67
justification in, 104
style parameters, 112–114
(babel), 566
(fancyvrb), 167
(footmisc), 111, 118, 119

numbered using stars, 117
problems with consecutives, 120
typeset as marginal, 118, 119, 121
typeset run-in, 118–120

(longtable), 263
(manyfoot), 123, 124
(multicol), 189
(perpage), numbered per page, 121
(supertabular), 256

footnote counter, 110, 121, 851, 934
(longtable), 263

footnote citations, bibliographies, 726, 727 , 728
\Footnote〈suffix〉 (manyfoot), 122, 123, 124
\footnote〈suffix〉 (manyfoot), 122
footnote〈suffix〉 counter (manyfoot), 122
\footnotedesign (layouts), 202
\footnotediagram (layouts), 202
\footnotemargin rigid length (footmisc), 118, 119
\footnotemark, 110, 111, 122, 277
\Footnotemark〈suffix〉 (manyfoot), 122
\footnotemark〈suffix〉 (manyfoot), 122
\footnoterule, 112, 113, 119, 124, 285

(manyfoot), 124

footnotes, see also endnotes; marginal notes
columns, 114, 183, 189
counters, resetting per-page, 120, 121
customizing, 112–114
font size, 112
in tables, 263, 277, 278, 279
in the margin, 118, 119
independent, 122, 123–125
main text vs. minipage env., 110, 111, 112–114
multilingual documents, 565, 566
multipage tables, 263
multiple at same point, 120
numbering, 112, 115, 116, 122, 123–125
page layout, 207
paragraph format, 117, 118
rules (graphic lines), 112, 119, 120
schematic layout, 113
spacing from text, 112
standard, 110, 111, 112–114
styles, 114, 115, 116–120
superscript marks, 113, 114
symbols for, 116, 117
troubleshooting, 944, 945
two-column environment, 114, 115
typed text in, 167
vertical spacing, 112

\footnotesep rigid length, 112, 113
footnotesep key/option (geometry), 207
\footnotesize, 112, 126, 144, 146, 342, 343, 373
footnotesize key value

(caption), 310
(subfig), 317

\footnotetext, 110, 111, 122
\Footnotetext〈suffix〉 (manyfoot), 122, 123
\footnotetext〈suffix〉 (manyfoot), 122
footnpag package, 116
\footrule (fancyhdr), 224
\footrulewidth (fancyhdr), 224, 226, 228
\footskip length, 194, 196
footskip key/option (geometry), 209
\forall, 501, 509, 528
force option (textcomp), 364
\forcefootnotes (camel), 744
\foreignlanguage (babel), 545, 546, 561, 563
\form (euro), 98, 99
formal rules (graphic lines), 269, 270, 271, 272
format key/option

(caption), 309
(subfig), 316, 318

format.ins file, 829, 830
format.name$ BIBTEX built-in function, 808
formatcom key (fancyvrb), 156, 163
formulas, typesetting, see math fonts; math symbols
\ForwardToIndex (marvosym), 401
founder BIBTEX field (jurabib), 742

Index of Commands and Concepts (F–G) 1021

founder information, bibliographies, 742
\foundername (jurabib), 742
fourier package, xxvii, 371, 391–393, 515
Fourier-GUTenberg font, 391–393, 515
\FourStar (bbding), 403
fp package, 96
FPfigure env. (fltpage), 325, 326
FPtable env. (fltpage), 325
\frac, 474, 493, 494, 504, 506
fractions, math symbols, 493, 494
\fracwithdelims (amsxtra), 467
fragile commands, 468, 892–894
\frail (tlc), 893
\frakdefault (yfonts), 396
\frakfamily (yfonts), 394, 395, 396
\fraklines (yfonts), 395, 396
Fraktur font, 394–396
\frame, 412
frame key

(fancyvrb), 157 , 158, 159, 165
(listings), 173, 174, 175
(titlesec), 38, 39, 40, 65

frame option (crop), 212, 214
\framebox, 326, 860, 861, 866

(pspicture), 640
frameround key (listings), 174
framerule key

(fancyvrb), 158, 165
(listings), 173–175

frames, see also boxes; lines (graphic)
boxes, 595
code listings, 173
pages, 597, 598, 599
typed text, 157, 158

framesep key
(fancyvrb), 158, 159
(listings), 173–175

francais option (babel), 543
French, 554, 561, 564, 590

layout style, 565
names, 563
words, index sort order, 670

french option (babel), 16, 100, 101, 543, 545, 549, 552,
554, 561, 563, 565, 566

french package, 591, 970
frenchb option (babel), 543
frenchb.cfg file (babel), 589, 590
frenchb.ldf file (babel), 548, 549, 591
\FrenchFootnotes (babel), 565, 566
\FrenchLayout (babel), 565
\frenchspacing, 564
Frequently Asked Questions (FAQ), 947
\from (docstrip), 826, 827 , 830, 831, 834
\frontmatter, 22, 216
\frown, 535

\Frowny (marvosym), 401
ftnright package, 114, 176
ftp servers

download commands, 950–953
list of, 948

full option
(textcomp), 362, 364, 384, 389, 390
(trace), 946

full citations in running text
author-date citation system, 710, 711
short-title citation system, 723, 724–726

\fullcite (jurabib), 723, 724, 729, 732
fulloldstyle option (fourier), 393

\fullref
(tlc), 69
(varioref), 75

FUNCTION BIBTEX command, 805, 807 , 809–812
function names, see operators; operator names

\fussy, 103
fvrb-ex package, 163

\fvset (fancyvrb), 164, 165, 168, 169

G

galician option (babel), 543, 556
\Game (amssymb), 527
\Gamma, 496, 527
\gamma, 527
gather env. (amsmath), 469, 473, 474, 475, 484, 488, 499

error using, 895
gather option (chapterbib), 747, 748, 749
gather* env. (amsmath), 469, 473, 475, 486, 492, 493, 501
gathered env. (amsmath), 469, 477, 478

error using, 895, 897
\GBP (tlc), 98
\gcd, 500
\ge, 501, 532
gen option (eurosym), 409
gen size function, 424
genb size function, 425
gender BIBTEX field (jurabib), 690, 734, 735, 742
gender information, bibliographies, 734, 735, 742
generalizations, math symbols, 493, 494

\generalname length (doc), 824
\generate (docstrip), 826, 827 , 830, 831
\geneuro (eurosym), 409
\geneuronarrow (eurosym), 409
\geneurowide (eurosym), 409
\genfrac (amsmath), 493, 494
gennarrow option (eurosym), 409
genwide option (eurosym), 409

\geometry (geometry), 211
geometry option (ifsym), 405
geometry package, xxvii, 200, 206–211

combined with calc, 210

1022 (G) Index of Commands and Concepts

\geq, 501, 532
(eulervm), 399

\geqq (amssymb), 532
\geqslant (amssymb), 532
German

hyphenation, 553
index sort order, 657, 668, 670
quotation marks, 552
shorthands, 551
spacing after punctuations, 564

german option
(babel), 16, 18, 395, 396, 543, 545, 546, 553, 657, 672
(biblist), 774
(varioref), 18

german.ldf file (babel), 548, 585
germanb option (babel), 543
\germanhyphenmins (babel), 586
\gets, 534
\gg, 532
\ggg (amssymb), 532
\gggtr (amssymb), 532
gglo.ist file (doc), 827
ghostscript program, 370, 635, 642, 643, 969
ghostview program, 213, 628, 635
.gif file extension, 8, 644, 896
\gimel (amssymb), 527
gind.ist file (doc), 827
Glenn option (fncychap), 34
.glo file extension, 653

(doc), 836
\global, 266
global options, 17, 880–883, 886
global variables, bibliographies, 805
global.max$ BIBTEX built-in function, 812
globalcitecopy option (bibunits), 751
\glossary, 653

(doc), 817
glossary entries, MakeIndex processing, 653
\glossaryentry, 653
\GlossaryMin rigid length (doc), 823
\glossaryname (babel), 547
\GlossaryParms (doc), 823
\GlossaryPrologue (doc), 823
\glue, 935, 936, 937
glyphs, see special characters; text symbols
\gnapprox (amssymb), 532
.gnd file extension, 8
\gneq (amssymb), 532
\gneqq (amssymb), 532
\gnsim (amssymb), 532
gobble key

(fancyvrb), 157 , 164
(listings), 172, 175

\gothfamily (yfonts), 394, 395
Gothic font, 394–396

gpic program, 608
graphic objects, see also specific types of graphics

resizing, 629, 630
rotating, 630–634
scaling, 628, 629

graphical front end, bibliographies, 784–787
graphics package, 296, 613–618, 620, 624–631, 953, 969

error using, 889, 896, 897, 907–909, 913
loaded by lscape, 212

graphics, device-dependent support
bounding box comments, 615
device drivers, 614
draft mode, 614, 615
final mode, 615
including image files

default key values, 623, 624
encapsulation, 627, 628
file extension, search order, 624, 625
file extension, specifying, 625
file location, 624
file name parsing, 620
full type, 625
\includegraphics (graphics), 616, 617, 618
\includegraphics (graphicx), 618, 619,

620–623
require full file name, 625
rotation, 620
scaling, 620
size of image, 620, 626

rotated material, hiding, 615
scaled material, hiding, 615

graphics.cfg file (graphics), 614
\graphicspath

(graphics), 624, 919
(graphicx), 624, 919

graphicx package, 613–615, 618–624, 631–633
error using, 889, 896, 897, 907–909, 913

graphpap package, 640
\graphpaper (graphpap), 640, 641
graphs

bar charts, 612, 613
combining curve and line types, 604, 605
creating, 604–606
labeled axes, 606, 607
loading external data, 605, 606

\grave, 529
grave accent (‘), shorthand character, 555
greater than sign (>), shorthand character, 557
Greek, 527 , 554, 558, 561, 574, 575, 576
greek option (babel), 543, 549, 550, 558, 562, 568, 574
greek.ldf file (babel), 585
\greekencoding (babel), 567
\Greeknumeral (babel), 562
\greeknumeral (babel), 562
\greektext (babel), 568

Index of Commands and Concepts (G–H) 1023

grey option (changebar), 190
\grid (epic), 606, 607
grmath package, 564
group_skip keyword (makeindex), 661
grouping levels errors, 917, 918
\Grtoday (babel), 558
\gtrapprox (amssymb), 532
\gtrdot (amssymb), 530
\gtreqless (amssymb), 532
\gtreqqless (amssymb), 532
\gtrless (amssymb), 532
\gtrsim (amssymb), 532
guillemets, 552, 557
\guillemotleft, 458
\guillemotright, 458
\guilsinglleft, 458
\guilsinglright, 458
gunzip program, 626
\gvertneqq (amssymb), 532

H

H syntax
(fancyhdr), 226, 227
(float), 293, 294, 295

\H, 457
hands, symbols, 400, 401
hang key (titlesec), 38, 39–41
hang key value

(caption), 309
(subfig), 316, 318

\hangindent, 679, 680
hanging punctuation, 1089
harvard BIBTEX style (harvard), 811
harvard package, 68, 700, 704, 792, 801
Harvard citation system, 684, 689, see also author-date

citations
\harvarditem (harvard), 700, 701
hash size errors, 918
\hat, 495, 512, 529

(eulervm), 399
\hbadness, 924, 928, 929
\hbar

(amssymb), 527
(eulervm), 398
(euler), 398

\hbox, 843, 860, 870, 936
in TEX warning message, 924, 926, 928
problems using, 870

Hcaption font, 577
Hclassic font, 577
\hdashline (arydshln), 267, 268
\hdots (amsmath), 536
\hdotsfor (amsmath), 487

headed lists, 138, 139, 140, 143, 144
customizing, 141, 142, 143
font, 141
indentation, 141
proofs, 143, 144
punctuation, 141
QED () symbol, 143, 144
spacing, 141
style name, 141
style, defining, 140

headers and footers
float pages, page styles, 231
footer height, 201
multipage tables, 256, 257, 261
running

formatting, see page styles
page layout, 207, 209

running headers/footers, 207, 209
headers and footers, page styles, 221, 222

customizing
by floating objects, 231
by page style, 225–227, 228–230
globally, 224, 225
saving a customization, 230

dictionary type headers, 231, 232
float pages, 231
for two-sided printing, 223, 226
mark commands, 217, 218, 219, 220, 221, 229, 230
multiple text lines, 225
named, 230
rules (graphic lines), 224
truncating text, 232, 233

headexclude option (typearea), 204
\headheight rigid length, 194, 196, 197, 198, 872

(fancyhdr), 225
headheight key/option (geometry), 206, 209
headinclude option (typearea), 204, 205, 207
heading_prefix keyword (makeindex), 661, 662
heading_suffix keyword (makeindex), 661, 662

\headingdesign (layouts), 202
\headingdiagram (layouts), 202
headings, see document headings
headings page style, 222, 235, 236, 598
headings_flag keyword (makeindex), 661, 662

\headrule (fancyhdr), 224, 225, 227
\headrulewidth (fancyhdr), 224, 226, 228, 230, 231
heads option (endfloat), 290

\headsep rigid length, 194, 196, 198, 200, 872, 935
headsep key/option (geometry), 209

\headtoname (babel), 547
\headwidth rigid length (fancyhdr), 227 , 233
\heartsuit, 528
heavycircles option, 529

(stmaryrd), 531
\heavyrulewidth rigid length (booktabs), 270

1024 (H) Index of Commands and Concepts

hebcal package, 558
\hebdate (babel), 558, 559
\hebday (babel), 558, 559
hebfont package, 578
Hebrew, 576, 577, 578, 579, 591
\hebrew (babel), 559
hebrew option (babel), 543, 568
\hebrewencoding (babel), 567
\Hebrewtoday (hebcal), 559
height, see space parameters
\height, 861, 862, 866

(graphics), 630
height key (graphicx), 109, 619, 621–623

error using, 898
height key/option (geometry), 207, 208, 211
height option (crop), 213
height syntax, 227 , 867, 868
heightrounded key/option (geometry), 207, 208
\help (nfssfont.tex), 369
help resources

CTAN
CD-ROM, 948, 949
contents, 948
ftp commands, 950–953
ftp servers, list of, 948
web access, 949, 950

DANTE FAQ, 947
FAQs, 947
ftp servers

download commands, 950–953
list of, 948

news groups, 948
packages

descriptions, on-line catalogue, 950
documentation, finding, 954, 955

program files, obtaining
CD-ROM, 948, 949
ftp, 948, 950–953
web access, 949, 950

texdoc program, 954
texdoctk program, 954, 955
TUG home page, 948
UK-TUG FAQ, 947
user groups, 955–958

helvet package, 370, 371, 373, 424
helvetica key value (fancyvrb), 155, 156
Helvetica font, 370, 375, 522

in math and text, 522
here package, 294
hetarom package, 613
\hfil, 148, 223, 850
\hfill, 150, 856, 857 , 861, 863
\hfuzz rigid length, 939
hfuzz key (fancyvrb), 157
\hhline (hhline), 266, 267

hhline package, 266, 267
hiderotate option

(graphics), 615
(graphicx), 615

hidescale option
(graphics), 615
(graphicx), 615

highlighting text, see italic; underlining
hiresbb key (graphicx), 619
hiresbb option

(graphics), 615
(graphicx), 615

history commands, list of, 820–824
\hl (soul), 88, 92
\hline, 243, 266, 267, 268, 272–274, 276, 282

alignment problems with, 280
colored, 265
error using, 904
(array), 244–247 , 249, 250, 280
(booktabs), 269
(hhline), 266, 267
(supertabular), 257
(tabls), 269

hmargin key/option (geometry), 211
hmarginratio key/option (geometry), 208, 209, 211
\Hmjd (tlc), 506
hmode boolean, 875
\hodiau (babel), 558
\hodiaun (babel), 558
\hoffset rigid length, 196, 203, 210
hoffset key/option (geometry), 210
holes, in paragraphs, 108, 109
\hom, 500
\hookleftarrow, 533, 534
\hookrightarrow, 534
horizontal extensions, math symbols, 497 , 499
howcited BIBTEX field (jurabib), 723, 742
howcited key/option (jurabib), 722, 723, 742
\howcitedprefix (jurabib), 723
\howcitedsuffix (jurabib), 723
howpublished BIBTEX field, 690, 763, 765
\hphantom, 505
\HR (tlc), 600, 616, 617 , 863–865
\HRule (tlc), 858
\hrule, 112, 227 , 267, 867, 868

in headings, 31
\hrulefill, 242, 856, 857
hscale key/option (geometry), 208, 211
\hsize rigid length (tabularx), 252
\hslash

(amssymb), 527
(eulervm), 398
(euler), 398

Index of Commands and Concepts (H–I) 1025

\hspace, 131, 148, 151, 507, 508, 513, 694, 856, 857 , 861
allowing hyphenation, 83, 127 , 246, 247 , 249, 250
error using, 903

\hspace*, 849, 856
\Hsub (tlc), 31
HTML files, of bibliographies, 776, 777 , 789
\Huge, 342, 343
\huge, 146, 342, 343
humanbio BIBTEX style, 792
humannat BIBTEX style, 792
hungarian option (babel), 543, 555
\Hut (ifsym), 405
hvams package, 523
hvmath package, 523
hyperlinking cross-references, 78
hyperref package, 78, 175, 643, 701, 706

incompatible with notoccite, 698
hyphen (-), nonbreaking, 83, 93
hyphen.tex file (babel), 581
hyphenate option (truncate), 233
hyphenation

character, defining, 427
cultural aspects, 542
defining dynamically, 542
document headings, 31
in multiple languages, 546, 580, 581
in tables, 246
Italian, 563
language aspects, 541
patterns, adjusting, 586
patterns, applying, 545
preventing, 545
special rules, 553
troubleshooting, 940

\hyphenation, 940
error using, 902, 907, 917

\hyphenchar, 427
\hyphenpenalty, 942
hyphenrules env. (babel), 545
hyphens option (url), 95

I

I syntax (paralist), 133
\i, 458

(tipa), 406
i syntax (paralist), 132, 133, 134, 135, 137
ibidem key value (jurabib), 735, 740, 797
ibidem key/option (jurabib), 727 , 728, 729–731, 734
ibidem citations, 728–731, 740
ibidemalt key value (jurabib), 740
\ibidemmidname (jurabib), 734
\ibidemname (jurabib), 734
icelandic option (babel), 543, 563, 567
idem key/option (jurabib), 730, 731, 735
\idemPfname (jurabib), 735

\idempfname (jurabib), 735
\idemPmname (jurabib), 735
\idempmname (jurabib), 735
\idemPnname (jurabib), 735
\idempnname (jurabib), 735
\idemSfname (jurabib), 735
\idemsfname (jurabib), 735
\idemSmname (jurabib), 735
\idemsmname (jurabib), 735
\idemSnname (jurabib), 735
\idemsnname (jurabib), 735
identification part, 877–880
identifierstyle key (listings), 170

\idotsint (amsmath), 492
.idx file extension, 7, 8, 648, 650, 655, 874

errors when reading, 658, 659
(doc), 836
(index), 681, 682
(xindy), 673

\idxitem (tlc), 232
\ie (tlc), 80
\IeC (inputenc), 445
ieeetr BIBTEX style, 792

\IF (algorithmic), 168
if$ BIBTEX built-in function, 808, 809–812

\ifbottomfloat (fancyhdr), 231
\ifcase, 899
\ifdim, 905
\iffalse, 814
\IfFileExists, 879, 884
\iffloatpage (fancyhdr), 231
\iffootnote (fancyhdr), 231
\iflanguage (babel), 546
\ifmmode, 446
\ifnum, 905
ifsym package, 403–405
ifsym.ps file (ifsym), 403
ifthen package, 872–877

\ifthenelse (ifthen), 72, 73, 150, 157 , 198, 199, 232, 307 ,
680, 692, 873, 874–877 , 886, 893, 899

comparing numbers, 852, 873
error using, 905

\iftopfloat (fancyhdr), 231
\ifToplevel (docstrip), 828
\ifx, 828
ignored fields, bibliography database, 762
ignorehead key/option (geometry), 209
ignoremp key/option (geometry), 211

\ignorespaces, 146, 147
\iiiint (amsmath), 492
\iiint (amsmath), 492
\iint (amsmath), 492
\ij, 591
.ilg file extension, 8

(makeindex), 648, 655, 658

1026 (I) Index of Commands and Concepts

\Im, 527
image files, including, 616, 617–623

encapsulation, 627, 628
file extension, search order, 624, 625
file extension, specifying, 625
file location, 624
file name parsing, 620
full type, 625
require full file name, 625
rotation, 620
scaling, 620
size of image, 620, 626

images, in paragraphs, 108, 109
\imath, 527, 529
\in, 475, 501, 533

(euro), 98
in key value (jurabib), 717 , 723, 724
inbook BIBTEX entry type, 763, 765, 772

(jurabib), 743
\include, 18, 19, 49, 835, 919, 921

error using, 902
problems with TOC entries, 49
warning using, 925
(chapterbib), 747, 748
(excludeonly), 20
(index), 681

includeall key/option (geometry), 207, 211
includefoot key/option (geometry), 207
\includegraphics

(graphics), 616, 617, 618, 624–626, 628
error using, 896
graphics not found, 899

(graphicx), 109, 213, 214, 303, 614, 615, 618,
620–623, 624–627

error using, 896, 898
\includegraphics*

(graphics), 616, 617
(graphicx), 618

includehead key/option (geometry), 206, 207
includeheadfoot key/option (geometry), 207
includemp key/option (geometry), 206, 207, 210
\includeonly, 18, 19, 681

(excludeonly), 20
including files, see also excluding files

candidates for, 19
image files, see image files, including
partial document reformatting, 19
reasons for, 19
source documentation, 835

inclusion and sets, math symbols, 533
inclusion and sets—negated, math symbols, 533
incollection BIBTEX entry type, 763, 765

(jurabib), 743
incrementing counters, 852

.ind file extension, 8, 648
(index), 682
(makeindex), 648, 655, 658, 669

errors when writing, 658
(xindy), 648, 673

\indent (picinpar), 108
indent_length keyword (makeindex), 661
indent_space keyword (makeindex), 661
indentafter option (titlesec), 40
indentation

after headings, 32, 40, 565
bibliographies, 738, 739
code listings, 172
enumerated lists, 137
headed lists, 141
of headings, 28, 39
of headings, suppressing, 32, 39
tables of contents, 50, 51, 59
typed text, removing, 157

indentfirst package, 32, 565
indention key/option (caption), 309, 313
independent footnotes, 122, 123–125
\Index (tlc), 653
\index, 339, 648, 649, 650, 651–654, 655, 664–666, 874

(index), 681, 682
index package, 665, 681, 682, 701
index commands, list of, 820–824
index files, 7
index generation

LaTEX commands, indexing, 654, 669
author indexes, 681
automatic indexing, disabling, 817
bibliographic citations, indexing automatically, 709,

720, 721
blanks, 650, 655, 666, 669
case sensitivity, 650
citations, indexing automatically, 709, 720, 721
column breaks, 680
commands, indexing automatically, 817, 836
consistency, 666, 667
cross-references

creating, 651
verifying, 667

Cyrillic alphabet, 573
debugging messages, 675
entries, creating automatically, 817, 836
entries, printing in margin, 680
error messages

list of (MakeIndex), 658, 659
suppressing, 657, 668, 675

formatting
page numbers, 651, 652
with MakeIndex, 654–666
with LaTEX, 679, 680, 682
with xindy, 666–679

Index of Commands and Concepts (I) 1027

index generation (cont.)
French words, sort order, 670
generating formatted index

MakeIndex, 655
xindy, 668, 669

generating raw index, 649
German words, sort order, 657, 668, 670
glossary entries, processing, 653
in tables of contents, 48
index level separator, 651
indxcite, 680
input files, specifying, 655, 668
input style parameters, 660
leader dots, 664
leading blanks, 650, 655, 666, 669
letter groups, 662, 677
letter-by-letter sort order, 657, 668
location classes, 677, 678
location formatting, 678
macros, indexing automatically, 817, 836
merge rules, 673, 676
messages, suppressing, 657, 668, 675
multiple indices, 681, 682
non-English words, 666, 669–671
output files, specifying, 655, 657, 668, 674
output style parameters, 661
page breaks, 680
page numbers

composed (folio-by-chapter), 665
duplicates, 650
encapsulating, 652, 671, 672
formatting, 651, 652
MakeIndex, 664, 665
roman numerals, 666, 677
sort order, 657, 664, 678, 679
xindy, 678, 679

page ranges
disabling, 657, 668, 672, 677
limiting length, 677

process flow, 648, 673
progress messages, suppressing, 657, 668, 675
quiet mode, 657, 668, 675
repeatindex, 680
roman numerals

sort order, 666
suppressing page ranges, 677

showidx, 680
sort order

French words, 670
German words, 657, 668, 670
letter-by-letter, 657, 668
page numbers, 657, 664, 678, 679
roman numerals, 666
spaces, 666
Spanish words, 670

index generation (cont.)
special cases, 667
symbols, 666, 667
troubleshooting, 665, 666
xindy rules, 673, 677

spaces
compressing, 650, 655, 666, 669
sort order, 666

Spanish words, sort order, 670
special characters, 652, 653, 654, 662
stand-alone indices, 659–662
standard input/output files, 655, 668
starting page number, setting, 657, 662
style files

MakeIndex, 658–665
specifying, 658
xindy, 673–679

subentries, 650, 651
symbols, sort order, 666, 667
table of contents support, 681
technical indices, 667
tocbibind, 680
trailing blanks, 650, 655, 666, 669
transcript file, specifying, 658, 668
troubleshooting, 665, 666
unifying index entries, 676
user commands, defining, 653, 654
verbose mode, 675

index level separator, 651
\index* (index), 681
indexed key value (jurabib), 720

\indexentry, 649, 653, 660, 874
(natbib), 709

\IndexInput (doc), 818, 821
\IndexMin rigid length (doc), 822
\indexname, 34, 679, 680

(babel), 547, 549, 550
\IndexParms (doc), 822
\IndexPrologue (doc), 822
\indexproofstyle (index), 681
\Indextt (tlc), 653
Indian, 592
indxcite package, 681

\inf, 491, 500
Info Math font in math and text, 523
infomath package, 523
informational messages, 920–931, see also troubleshooting
infoshow option

(multicol), 188
(tlc), 880
(tracefnt), 368

\infty, 491, 492, 500, 501, 528
\init (nfssfont.tex), 369, 370
\initfamily (yfonts), 396
initial code part, 880

1028 (I) Index of Commands and Concepts

\initiate@active@char (babel), 589, 590
\injlim (amsmath), 500
inner key/option (geometry), 208
innerbars option (changebar), 190
innerbody option (sidecap), 323
innercaption option (sidecap), 323
inparadesc env. (paralist), 136, 138
inparaenum env. (paralist), 132
inparaitem env. (paralist), 135
\inplus (stmaryrd), 533
inproceedings BIBTEX entry type, 690, 763
\input, 20, 432, 835, 884, 919

error using, 899
(docstrip), 826, 829

input encoding, 329, 330, 357, 358, 359–361, 443–447
input files

indexes, 655, 668
source files, 6
specifying, 826, 827

input style parameters, indexes, 660
inputenc package, 7, 175, 329, 357–361, 443–447, 571, 578

combined with listings, 175
error using, 889, 903
required for icelandic, 566
restrictions with keys, 66

\inputencoding (inputenc), 360, 361, 417 , 571
inputencoding key (listings), 175
\InputIfFileExists, 879, 881, 884
.ins file extension, 825

(docstrip), 825
(doc), 814

\insert, 917
install-pkg.sh program, 961
install-tl.sh program, 960
installation support, adding, 830–833
institution BIBTEX field, 763, 765
\int, 536

sub/superscript placement on, 491, 492
(relsize), using larger symbol, 85

int.to.chr$ BIBTEX built-in function, 808
int.to.str$ BIBTEX built-in function, 808
INTEGERS BIBTEX command, 805, 807
integral signs, multiple, 492
\intercal (amssymb), 530
\interleave (stmaryrd), 530
interlingua option (babel), 543
internal files, 7
internal tables, overflowing, 917–919
\internallinenumbers (lineno), 177
\internallinenumbers* (lineno), 177
international documents, see multilingual documents
International Phonetic Alphabet (IPA), 405, 406, 407
International Standard Book Number (ISBN), 710
International Standard Serial Number (ISSN), 710
Internet resources, bibliographies, 773, 774

interrupting displays, 479
\intertext (amsmath), 479
\Interval (ifsym), 404
\intextsep length, 285

(wrapfig), 300
intlimits option (amsmath), 491
invert option (crop), 214
\iota, 527
IPA env. (tipa), 406
IPA (International Phonetic Alphabet), 405, 406, 407
irish option (babel), 543
\IroningII (marvosym), 401
is-abbrv BIBTEX style, 792
is-alpha BIBTEX style, 778, 792
is-plain BIBTEX style, 792
is-unsrt BIBTEX style, 792
isbn BIBTEX field, 690, 764, 772, 779

(BibTexMng), 789
(custom-bib), 802
(natbib), 710

ISBN (International Standard Book Number), 710
\iscurrentchapter (tlc), 72
\iso (euro), 98
iso88595 option (inputenc), 571
\isodd (ifthen), 157 , 876
issn BIBTEX field, 690

(BibTexMng), 789
(custom-bib), 802
(natbib), 710

ISSN (International Standard Serial Number), 710
.ist file extension, 8

(makeindex), 648, 659
\it, 347, 464

used in math, 349, 464
it key value

(caption), 310, 311, 313, 324
(subfig), 316, 318

it option (titlesec), 37
italian option (babel), 543, 544, 839
italic key value (jurabib), 718, 720, 733, 737
italic correction, 340, 341, 342
italic font shape, 333
ItalicNums option (parallel), 183
ITC Bookman font, 374
\itdefault, 346
\item, 128–131, 144–146, 147–151, 167, 849, 858, 875

error using, 903, 910
in theindex, 679, 680
(fancybox), 600
(threeparttable), 278

item_0 keyword (makeindex), 661
item_01 keyword (makeindex), 661
item_1 keyword (makeindex), 661
item_12 keyword (makeindex), 661
item_2 keyword (makeindex), 661

Index of Commands and Concepts (I–K) 1029

item_x1 keyword (makeindex), 661
item_x2 keyword (makeindex), 661
\itemindent rigid length, 145, 147 , 148, 151
itemize env., 128, 135, 364, 600

error using, 911
style parameters, 128
(babel), 565
(paralist), 136

itemized lists
default settings, 136, 137, 138
extensions, 135, 136
standard, 128

\itemsep length, 145, 707
ITERATE BIBTEX command, 806, 807
\itshape, 340, 341, 344, 346, 408, 464

used in math, 348, 350

J

J syntax (tabulary), 254
\j, 451, 458

problems in T1, 417
JabRef program, 789
\JackStar (bbding), 403
\JackStarBold (bbding), 403
Japanese, 592
jas99 BIBTEX style (chicago), 700
Java database manager, 787–789
\jbactualauthorfont (jurabib), 718, 736
\jbactualauthorfontifannotator (jurabib), 718
\jbannotatorfont (jurabib), 736
\jbannoteformat (jurabib), 740, 741
\jbauthorfont (jurabib), 736
\jbauthorfontifannotator (jurabib), 736
\jbauthorindexfont (jurabib), 721
\jbbfsasep (jurabib), 736
\jbbibhang rigid length (jurabib), 739
\jbbstasep (jurabib), 736
\jbbtasep (jurabib), 736
\jbcitationyearformat (jurabib), 733
JBibtexManager program, 787, 788
\jbignorevarioref (jurabib), 727
\jbindexbib (jurabib), 721
\jbindextype (jurabib), 721
\jbtitlefont (jurabib), 736
\jbuseidemhrule (jurabib), 740, 797
\jbyearaftertitle (jurabib), 733
\jmath, 527, 529

(mathptmx), unavailable with, 377
jmb BIBTEX style (jmb), 791, 792
jmb package, 792
\jobname, 754
\Joch (ifsym), 405
\Join

(amssymb), 535
(latexsym), 464

\joinrel, 535
\jot rigid length (multirow), 273
journal BIBTEX field, 763, 765, 770
jox BIBTEX style (jurabib), 742, 792

.jpeg file extension, 642, 643

.jpg file extension, 8, 896
\jput (epic), 604, 605, 606
jtb BIBTEX style, 792
jura.bib file (tlc), 717, 776
jurabib BIBTEX style

(bibtopic), 755
(jurabib), 717–721, 723–741, 742, 764, 785, 792, 797

jurabib package, xxvi, 715–743, 745, 792
compatibility matrix, 746
installation possibilities, 831

jurabib.cfg file (jurabib), 741
used for this book, 716

\jurabibsetup (jurabib), 716, 717–724, 726–735, 740, 741
jureco BIBTEX style (jurabib), 742, 792
jurunsrt BIBTEX style (jurabib), 739, 742, 792
justification

document headings, 31
float captions, 311
paragraphs, 102, 103, 104, 105, 106

justification key/option
(caption), 301, 311, 313, 323
(subfig), 316, 318

justified key value (caption), 311
justify env. (ragged2e), 106

\justifying (ragged2e), 106
\JustifyingParfillskip length (ragged2e), 106
\JustifyingParindent rigid length (ragged2e), 106

K

\k, 452, 458, 567
\kappa, 527
keepaspectratio key (graphicx), 619, 622, 623
keeping material on same page, 234, see also floats
KeepShorthandsActive option (babel), 581

\keepsilent (docstrip), 828
\Ker (tlc), 466
\ker, 500
kernel errors, see troubleshooting
key BIBTEX field, 764, 765, 779, 795

\Keyboard (marvosym), 401
keys, see also arguments

bibliographies
adding to bibliography listing, 778
case sensitivity, 762
definition, 761
extracting, 778
generating, 782, 783
removing duplicates, 780, 787
searching by strings, 775

displaying, 68

1030 (K–L) Index of Commands and Concepts

keys (cont.)
extracting RCS information, 837 , 838
naming, 842
parsing Id keyword, 838, 839

keyval package, 206, 308, 623
keyword BIBTEX field (printbib), 776
keyword keyword (makeindex), 653, 660
keywords BIBTEX field (BibTexMng), 789
keywordstyle key (listings), 170, 171, 172
\kill, 241, 242

(longtable), 261
kluwer BIBTEX style (harvard), 700, 792
koi8-r option (inputenc), 358, 417 , 570, 571
KOMA-Script classes, 236, 237
Korean, 592
kuvio package, 488, 980

L

L syntax
(fancyhdr), 225, 226–230
(tabulary), 254
(tlc), 248

\L, 457
(babel), 568

producing geminated L, 552
(pxfonts), problems with, 390
(txfonts), problems with, 389

\l, 458, 567
(babel), producing geminated l, 552
(pxfonts), problems with, 390
(txfonts), problems with, 389

l syntax, 243, 244, 245
(array), 249

L.. font encoding, 416, 430
\l@〈language〉 (babel), 546, 579, 580
\l@chapter, 50
\l@english (babel), 580
\l@example (tlc), 55
\l@figure, 50, 53, 54
\l@paragraph, 50
\l@part, 50
\l@section, 50
\l@subfigure (subfig), 320
\l@subparagraph, 50
\l@subsection, 50, 52
\l@subsubsection, 50, 52
\l@subtable (subfig), 320
\l@table, 50, 53, 54
\label, 26, 66, 67, 69, 71–73, 111, 121, 130, 178, 215, 307 ,

853, 876, 918, 927
causing extra space, 859
error using, 894, 906
problems using, 26, 67 , 85, 852
restrictions on key, 66, 842
strange results with, 26

\label (cont.)
warning using, 924, 928
(amsmath), 473, 482, 485
(babel), 66
(fancyvrb), 161
(longtable), 262
(paralist), 132, 133
(prettyref), 75, 76
(showkeys), 68
(subfig), 316, 318, 319
(subfloat), 322, 323
(textcase), 86

problems using, 85
(titleref), 77
(varioref), 71
(wrapfig), 300
(xr), 78

label key
(fancyvrb), 158, 159
(listings), 174

\labelenumi, 129, 130, 131, 854
\labelenumii, 129, 130, 854
\labelenumiii, 130, 854
\labelenumiv, 130, 854
labelfont key/option

(caption), 301, 306, 310, 311, 313, 324
(subfig), 316

\labelformat (varioref), 69, 71, 72, 75, 130, 727
labelformat key/option

(caption), 310, 311, 313, 314
(subfig), 316, 317

\labelitemi, 128, 365
\labelitemii, 128
\labelitemiii, 128
\labelitemiv, 128
labelposition key (fancyvrb), 158, 159
labels

chart axes, 606, 607
equations, see tags
float captions, 310, 311, 313, 314
format, cross-references, 71, 72, 73–75
format, document headings, 38

\labelsep rigid length, 131, 138, 145, 148, 151, 241, 850
labelsep key/option

(caption), 310, 311, 313, 314, 324
(subfig), 316

labelstoglobalaux option (bibunits), 753
\labelwidth rigid length, 145, 147–151, 850
\Lambda, 527
\lambda, 479, 500, 527
\land, 530
landscape env. (lscape), 212
landscape key/option (geometry), 206, 207, 211

Index of Commands and Concepts (L) 1031

landscape option, 887, 888
(crop), 213
(typearea), 204, 205

landscape mode, 211, 212
\langle, 498, 537
language

and typesetting, 541
current, setting/getting, 544, 545, 546
defining, 584, 585
identifying, 582

\language, 544
language BIBTEX field

(BibTexMng), 789
(custom-bib), 802
(jurabib), 717 , 734

language key (listings), 170, 171–175
language attributes, 549, 550
language definition files

adding definitions to, 589
copyright information, 582
definition, 579
documentation driver, 583
documentation initialization, 583
hyphenation patterns, adjusting, 586
language identification, 582
languages and dialects, defining, 584, 585
license information, 582
punctuation, special cases, 591
release information, 583
shorthands, 589–591
structure, 582–591
translating language-dependent strings, 586

language options, babel package
language-specific commands, 558–564
layout considerations, 564–566
shorthands, 550–558
translations, 550

language-dependent strings
babel package, 542, 547 , 579
customizing, 549–551, 579
hyphenation patterns, 586
translations, 550

language.dat file (babel), 7, 545, 580, 581, 584, 919
language.skeleton file (babel), 579, 582
\language0 (babel), 584
\languageattribute (babel), 549

warning using, 931
\languagename (babel), 545, 546
\languageshorthands (babel), 548, 589
\LARGE, 342
Large key value (caption), 310
\Large, 342
\large, 342, 343, 856
large key value (caption), 310
\largepencil (dingbat), 401

\larger (relsize), 84
largestsep option (titlesec), 40
last key value

(fancyvrb), 159, 160
(listings), 172

last update field, bibliographies, 743
\LastDeclaredEncoding, 431
\lasthdashline (arydshln), 267, 268
\lasthline (array), 268, 280, 281
\lastleftmark (extramarks), 220
\lastleftxmark (extramarks), 220
lastline key

(fancyvrb), 162, 163
(listings), 172

LastPage counter (lastpage), 216, 226
lastpage package, xxvii, 216

\lastrightmark (extramarks), 220, 229, 231, 232
\lastrightxmark (extramarks), 220, 221
LaTEX

current system, overview, 6–9
files used in, 6–9
history of, 1–6
process flow, 9

LaTEX 2.09
fonts, 347
high-level font commands, 347
symbols, 464

LaTEX files, obtaining
CD-ROM, 948, 949
ftp, 948, 950–953
web access, 949, 950

LaTEX format file, 7
LaTEX Project Public License (LPPL), 4, 961
latex.fmt file, 7
latex.ltx file, 365, 829, 854
latex2html program, 839
latexsym package, 464
latin option (babel), 543, 556, 557
Latin Modern fonts, 356, 357
latin1 option (inputenc), 90, 100, 101, 359, 361, 417 , 567
latin2 option (inputenc), 359, 361
latin3 option (inputenc), 359
latin4 option (inputenc), 359
latin5 option (inputenc), 359
latin9 option (inputenc), 359

\latinencoding (babel), 567
\latintext (babel), 568, 589
law support, bibliographies, 743, 744, 745

\layout (layout), 199
layout package, 199
layout of a page, see page layout
layout parameters, list of, 820–824
layouts package, xxvii, 195, 199–202

\LB (tlc), 845
\Lbag (stmaryrd), 537

1032 (L) Index of Commands and Concepts

\lbag (stmaryrd), 530
\lbrace, 472, 498, 509, 511, 537
\lbrack, 498, 537
lccn BIBTEX field (BibTexMng), 789
\lceil, 498, 537
\Lcs (tlc), 339
.ldf file extension, 8

(babel), 7, 542, 579, 582–588
(jurabib), 733

\ldf@finish (babel), 588
\LdfInit (babel), 584
\ldots, 496, 536, 844, 874, 932
\le, 500, 532
leaders

document headings, 41, 42
in tables of contents, 59
indexes, 664
tables of contents, 59

leading
blanks, indexes, 650, 655, 666, 669
spaces, removing from typed text, 157
vertical spacing, 106, 107 , 108, 343, 373

\leadsto (latexsym), 464
ledmac package, 117, 982
\left, 478, 483, 487 , 498, 504, 525, 526, 537, 899

error using, 905, 906
left key value

(fancyvrb), 159, 160, 163, 165
(listings), 172

left key/option (geometry), 208, 209
left option

(eurosym), 409
(lineno), 181

\Leftarrow, 534
\leftarrow, 534
\leftarrowtail (amssymb), 534
\leftarrowtriangle (stmaryrd), 534
leftbars option (changebar), 190
leftbody option (sidecap), 323
leftcaption option (sidecap), 323
leftFloats option (fltpage), 325
\leftharpoondown, 534
\leftharpoonup, 534
\lefthyphenmin, 586
leftlabels option (titletoc), 60
\leftleftarrows (amssymb), 534
leftline key value (fancyvrb), 158
\leftmargin rigid length, 145, 147–149, 151, 850
leftmargin key (titlesec), 38, 43
\leftmark, 218, 226–228, 229, 232, 233

(extramarks), 220
\leftpointright (dingbat), 401
\Leftrightarrow, 534
\leftrightarrow, 534
\leftrightarroweq (stmaryrd), 532

\leftrightarrows (amssymb), 534
\leftrightarrowtriangle (stmaryrd), 534
\leftrightharpoons (amssymb), 534
\leftrightsquigarrow (amssymb), 534
\leftroot (amsmath), 504, 505
\leftskip length, 182, 183
\leftslice (stmaryrd), 530
\leftthreetimes (amssymb), 530
\leftthumbsdown (dingbat), 401
\leftthumbsup (dingbat), 401
legal option (crop), 213
legalpaper key/option (geometry), 206
legalpaper option, 195

(typearea), 204
lem env. (tlc), 139
length, see space parameters
\lengthtest (ifthen), 150, 307 , 875, 876
Lenny option (fncychap), 34, 35
\leq, 532

(eulervm), 399
leqno option (amsmath), 466, 469, 471, 472, 484
\leqq (amssymb), 532
\leqslant (amssymb), 532
less than sign (<), shorthand character, 557
\lessapprox (amssymb), 532
\lessdot (amssymb), 530
\lesseqgtr (amssymb), 532
\lesseqqgtr (amssymb), 532
\lessgtr (amssymb), 532
\lesssim (amssymb), 532
\let, 162, 249, 308, 501, 587, 680
\Letter (ifsym), 405
letter option (crop), 213
letter document class, 6, 22, 547
letter groups, indexes, 662, 677
letter-by-letter sort order, indexes, 657, 668
letter-shaped math symbols, 527
letterpaper key/option (geometry), 206
letterpaper option, 195, 196, 881

(typearea), 204
letters, math symbols, 526–529
letterspacing, 88–92
\lettrine (lettrine), 99, 100, 101
lettrine package, 99–101
lettrine.cfg file (lettrine), 101
\LettrineFontHook (lettrine), 100
\LettrineTextFont (lettrine), 100
level keyword (makeindex), 659, 660, 662
\levelchar (doc), 822
lexical analyzer, bibliographies, 777
\lfloor, 498, 537
\lfoot (fancyhdr), 224, 225
\lg, 500
\Lgem (babel), 552
\lgem (babel), 552

Index of Commands and Concepts (L) 1033

LGR font encoding, 567, 574, 575, 576
\lgroup, 489, 498, 537
lhang key (lettrine), 101
\lhd (latexsym), 464
LHE font encoding, 577, 578
\lhead (fancyhdr), 221, 224, 225, 598
\lhook, 535
license information

language definition files, 582
LaTEX Project Public License (LPPL), 4, 961
multicol package, 184

LICENSE.TL file, 961
LICR (LaTEX internal character representation), 442, 443

list of objects, 455–463
\Lightning (ifsym), 405
\lightning (stmaryrd), 528
\lightrulewidth rigid length (booktabs), 270
\lim, 491, 500

sub/superscript placement on, 491, 492
\liminf, 500
limiting positions (subscripts/superscripts), 491, 492
\limits, 492

error using, 903
\limsup, 500
\Line (pspicture), 641
\line, 601, 607, 608

error using, 895
warning using, 926
(eepic), 608, 609, 610
(epic), 608
(pspicture), 639, 641

line breaks, see also space parameters
badness rating, 859
bibliographies, 694
code listings, 172, 173
computer code, 172, 173
document headings, 31
in citations, 694
in tables, 247
number-only citations, 694
second-last line, 849, 850

line_max keyword (makeindex), 661
\linebreak, 102, 845, 943

(soul), 90
\linelabel (lineno), 178, 179
\Lineload (marvosym), 401
lineno package, xxvii, 176–181, 182
linenomath env. (lineno), 178
linenomath* env. (lineno), 178
\LineNumber (lineno), 180, 181
\linenumberfont (lineno), 179, 180
\linenumbers (lineno), 176, 177 , 178–182
linenumbers env. (lineno), 177
\linenumbersep rigid length (lineno), 179, 180, 182
\linenumberwidth rigid length (lineno), 179

lineonmath env. (lineno), 178
\lineref (lineno), 179
lines key (lettrine), 100, 101
lines key value

(fancyvrb), 158, 159
(listings), 173

lines key/option (geometry), 207
lines (graphic), see also boxes; frames

drawing, 603, 604, 610, see also epic package; eepic
package

thickness, 604
lines (of text)

fonts for line numbers, 179, 180
numbering, 175, 176, 177, 178, 179, 180, 181
per page, 198
referencing line numbers, 178, 179

\lineskip length, 936
\linespread, 107, 204, 373
\linethickness, 611, 612

(epic), 602
(picins), 304, 305
(pspicture), 639, 640, 641

\linewidth rigid length, 158, 194, 242, 250–252, 326, 624,
858, 867 , 869–871

(multicol), 186
\lining (fourier), 393
linking cross-references, 78

\lips
(lips), 82, 83
(tlc), 81

lips package, 82, 83, see also ellipsis package
list env., 144, 146, 147 , 151, 850, 858

error using, 911
style parameters, 145

list stack, displaying, 944
\listdesign (layouts), 202
\listdiagram (layouts), 202
\listfigurename, 34, 53

(babel), 547
\listfiles, 21, 884
listing env. (moreverb), 153
listing* env. (moreverb), 153
listingcont env. (moreverb), 153
listingcont* env. (moreverb), 153
listings package, xxvi, 154, 168–175

combined with color, 171
combined with inputenc, 175

\listof (float), 55, 293, 294
\listofexamples (tlc), 54, 55
\listoffigures, 22, 46, 52, 54, 222, 293, 307

listed in TOC, 48
(caption), 315
(subfig), 321

listofformat key/option (subfig), 319, 320
listofindent key/option (subfig), 320, 321

1034 (L) Index of Commands and Concepts

listofnumwidth key/option (subfig), 320
\listoftables, 22, 46, 52, 54, 222, 259, 293

listed in TOC, 48
\listparindent rigid length, 145
lists

boxed, 600
bulleted, see itemized lists
description

extensions, 136
standard, 131
user-defined, 147, 148–151

enumerated
default settings, 136, 137 , 138
extensions, 132–135
indentation, 137
standard, 129–131
user-defined, 151

headed, 138, 139, 140
customizing, 141, 142, 143
font, 141
indentation, 141
proofs, 143, 144
punctuation, 141
QED () symbol, 143, 144
spacing, 141
style name, 141
style, defining, 140

itemized
default settings, 136, 137, 138
extensions, 135, 136
standard, 128

multilingual documents, 565
numbered, see enumerated lists; headed lists
of figures/tables, in tables of contents, 48
schematic layout, 145
types of, 128
unnumbered, see itemized lists
user-defined, 144–146

description lists, 147, 148–150, 151
enumerated lists, 151
quotations, 146, 147

lists option (endfloat), 290
\listtablename, 34

(babel), 547
\ll, 532
\llap, 180, 181
\llbracket

(fourier), 392
(stmaryrd), 498, 537

\llceil (stmaryrd), 537
\Lleftarrow (amssymb), 534
\llfloor (stmaryrd), 537
\lll (amssymb), 532
\llless (amssymb), 532
\llparenthesis (stmaryrd), 537

lmargin key/option (geometry), 206, 208
lmodern package, 357
\lmoustache, 498, 537
\ln, 500
ln option (graphics), 615
\lnapprox (amssymb), 532
\lneq (amssymb), 532
\lneqq (amssymb), 532
\lnot, 528
\lnsim (amssymb), 532
\LoadClass, 879, 886, 887

error using, 903, 908, 912
warning using, 931

\LoadClassWithOptions, 883, 887
loading option (tracefnt), 369, 946
loadonly option (titlesec), 44, 45
location BIBTEX field (BibTexMng), 789
location classes, 677, 678
location formatting, 678
.lof file extension, 7, 8, 46, 48, 53

(chapterbib), 749
(subfig), 320
(titletoc), 58

lofdepth counter (subfig), 320
\log, 493, 500
.log file extension, 7, 8, 657
logonly option (trace), 946
\long, 846, 932, 933
long key value (jurabib), 732
long option (rcsinfo), 839
\Longarrownot (stmaryrd), 533, 535
\longarrownot (stmaryrd), 535
longgather env. (tlc), 468
\Longleftarrow, 534
\longleftarrow, 534
\Longleftrightarrow, 534, 862
\longleftrightarrow, 533, 534
\Longmapsfrom (stmaryrd), 534
\longmapsfrom (stmaryrd), 534
\Longmapsto (stmaryrd), 534
\longmapsto, 534
longnamesfirst option (natbib), 704, 705

problems using, 705
\longpage (tlc), 234
\Longrightarrow, 534
\longrightarrow, 489, 534
longtable env. (longtable), 259, 260, 261–264, 270, 277

“floating”, 289
longtable package, 259–263

combined with booktabs, 270
combined with caption, 262

lookat key/option (jurabib), 727 , 728, 729, 741
\lookatprefix (jurabib), 727
\lookatsuffix (jurabib), 727
lookforgender key/option (jurabib), 735

Index of Commands and Concepts (L–M) 1035

looktex program, 775
\looparrowleft (amssymb), 534
\looparrowright (amssymb), 534
loose option

(minitoc), 56
(shorttoc), 55

\looseness, 943
output produced from, 943

\lor, 530
lost characters, tracing, 945
.lot file extension, 7, 8, 46, 48

(chapterbib), 749
(subfig), 320
(titletoc), 58

lotdepth counter (subfig), 320
loversize key (lettrine), 101
\lowercase, 341

problems with, 571
lowersorbian option (babel), 543
\lozenge (amssymb), 528
\LPNobreakList (lips), 82
LPPL (LaTEX Project Public License), 4, 961
\lproject (tlc), 94, 95
\LR (tlc), 182
LR boxes, 860–862
lraise key (lettrine), 101
lrbox env., 869, 870
lscape package, 211, 212
\Lsh (amssymb), 534
lsorbian option (babel), 559
\lstinline (listings), 171
\lstinputlisting (listings), 171, 172–175
lstlisting counter (listings), 174
lstlisting env. (listings), 170, 172, 173, 175
\lstlistingname (listings), 174
\lstlistlistingname (listings), 174
\lstlistoflistings (listings), 174
\lstloadlanguages (listings), 170, 171
\lstset (listings), 169, 170, 171–175
\Lsub (tlc), 31
\LTcapwidth rigid length (longtable), 262
LTchunksize counter (longtable), 263
\ltimes (amssymb), 530
\LTleft length (longtable), 261
ltoutenc.dtx file, 368
\LTpost length (longtable), 261
\LTpre length (longtable), 261
\LTright length (longtable), 261
.ltx file extension, 8

(tlc), 14, 960
.ltx2 file extension (tlc), 14, 960
ltxdoc document class, 818, 834, 835
ltxdoc.cfg file (ltxdoc), 835
Lucida Bright font, in math and text, 521
lucidabr package, 339, 521

luximono package, 386–388
LV1 font encoding, 416

\lvec (tlc), 845, 846, 932, 933, 934
\lVert (amsmath), 498, 501, 537
\lvert (amsmath), 498, 500, 501, 537
\lvertneqq (amssymb), 532
LY1 font encoding, 416

list of LICR objects, 455–463
(pxfonts), 391
(txfonts), 388

M

m syntax
(array), 244, 245, 249
(tabularx), 252

M-xcompile function (emacs), 787
\m@ne, 843
macce option (inputenc), 360
maccyr option (inputenc), 571
MACRO BIBTEX command, 805, 807 , 812
macro env. (doc), 815, 816, 817, 821, 824
macro stack, displaying, 892
macrocode env. (doc), 815, 816, 817, 821, 824
macrocode* env. (doc), 815, 817, 821

\MacrocodeTopsep length (doc), 824
\MacroFont (doc), 824
\MacroIndent rigid length (doc), 824
macros

cross-references, 817, 818
descriptions, creating, 815, 816
documenting, see documentation tools
naming, 842
spacing after macro names, 80, 81

\MacroTopsep length (doc), 816, 824
mag key/option (geometry), 210
magnification, 210
magyar option (babel), 543

\main (doc), 822
main code part, 883
main font, 338, 339

\mainmatter, 22, 216
make-rules program, 671

\makeatletter, 14, 18, 25, 26, 114, 129, 692, 693, 843, 852
\makeatother, 14, 18, 25, 26, 114, 129, 692, 693, 843, 852
makebib program, 776

\makebox, 113, 158, 242, 835, 860, 861, 862
zero-width, 126, 147 , 183, 629
(fancybox), 597
(ltxdoc), 835
(pspicture), 640

makebst program, 685, 705, 708, 711
makebst.tex file (custom-bib), 798, 799, 801–804

\makeenmark (endnotes), 126
\makeglossary, 653
makeidx package, 649, 652, 656

1036 (M) Index of Commands and Concepts

\makeindex, 649, 655
MakeIndex program, 8, 573, 574, 648, 650, 652, 654–666,

827, see also index generation; xindy program
Cyrillic alphabet, 573
multilingual documents, 573

makeindex program, 7
\makelabel, 145, 147 , 148, 149, 150, 850
\makeLineNumber (lineno), 180, 181
\makeLineNumberRight (lineno), 179
\MakeLowercase, 37 , 63, 64, 85, 341, 571

(fontenc), 361
\MakePercentComment (doc), 824
\MakePercentIgnore (doc), 824
\MakePerPage (perpage), 120, 121, 125
\MakePrivateLetters (doc), 824
\MakeShortVerb

(doc), 816, 821
(shortvrb), 152, 885

\MakeShortVerb*
(doc), 816, 822
(shortvrb), 152, 153

\MakeTextLowercase (textcase), 86
\MakeTextUppercase (textcase), 86
\maketitle, 22

error using, 907
producing unwanted page number, 222, 230
warning using, 925

\MakeUppercase, 85, 86, 229, 571, 767
in headings, 31, 91, 92, 679, 680
(fontenc), 361
(textcase), 86

Manju (Mongolian), 592
manjutex package, 592
manual BIBTEX entry type, 690, 763, 765, 779
manyfoot package, xxvi, 122–125
.map file extension, 420
\Mapsfrom (stmaryrd), 534
\mapsfrom (stmaryrd), 534
\Mapsfromchar (stmaryrd), 535
\mapsfromchar (stmaryrd), 535
\Mapsto (stmaryrd), 534
\mapsto, 534
\Mapstochar (stmaryrd), 535
\mapstochar, 535
\marg (ltxdoc), 834
margin key/option

(caption), 309, 318
(geometry), 211, 213, 214
(subfig), 316, 317

marginal option (footmisc), 118, 124, 728, 730
marginal notes, 126, 127 , 209, see also endnotes; footnotes
margincaption option (sidecap), 323, 325
\marginlabel (tlc), 127

\marginpar, 103, 126, 127, 177, 178, 221, 863
error using, 899, 907, 912
justification in, 106
numbered per page, 121
problems with hyphenation, 127
style parameters, 127
warning using, 924
(lineno), 177
(mparhack), 127
(multicol), not supported, 189
(perpage), numbered per page, 121
(titlesec), problems using, 38

\marginparpush rigid length, 127, 194, 196
\marginparsep rigid length, 127, 194, 196, 302

(fancyhdr), 227
(sidecap), 324

marginparsep key/option (geometry), 210
\marginparswitchfalse (layouts), 200
\marginparwidth rigid length, 127, 194, 196, 199, 203, 302

(fancyhdr), 227
marginparwidth key/option (geometry), 206, 209
marginratio key/option (geometry), 206, 211
margins

driver margins, 196
footnotes in, 118, 119
inner margins, 195
optical alignment, 1089
outer margins, 195
page layout, 195, 208, 211

\mark, 217, 218
mark commands, 217, 218, 219, 220, 221, 229, 230
\markboth, 218, 219, 221–223, 228, 229, 230

error using, 893
markers option (endfloat), 290
marking omitted text, see ellipsis
\markright, 218, 219, 220, 222, 223, 228, 229, 230, 232

error using, 893
(extramarks), 221

markshow option (multicol), 188
markup-location function (xindy), 678, 679
markup-location-list function (xindy), 675
marvodoc.pdf file (marvosym), 401
marvosym package, xxvii, 401–403, 411, 412
MarVoSym font, 401, 403
master scripts, creating, 829
mastersthesis BIBTEX entry type, 763
math option (inputenc), 446
math alphabet identifier, see alphabet identifier
math fonts, see also fonts

alphabet identifiers, 348, 349–351
AMS, 467, 468
automatic changes, 347, 348
Baskerville Math, 520
Bitstream Charter Math, 520
Blackboard Bold, 378, 509, 519

Index of Commands and Concepts (M) 1037

math fonts (cont.)
bold letters, 510–512, 513
CM Bright, 522
Computer Modern (CM), 513
Concrete, 514
Euler, 396, 397–399, 467, 514
Euler Fraktur, 467, 509
font commands, 351
formula versions, 352, 353
Fourier-GUTenberg, 391–393, 515
Helvetica Math, 522
Info Math, 523
input, encoding, 445–447
Lucida Math, 521
Palatino, 377, 378, 390, 391, 518
Palatino Math, 519
Pazo, 377, 378, 509, 518
Pi, 378–381, 382
PXfonts, 518
scaling large operators, 368
setting up, 432–437
this book, 1089
Times Roman, 376, 377 , 389, 390, 516
TM Math, 517
TXfonts, 516

math symbol type, 524
math symbols, see also special characters; text symbols

accents, 529
as superscripts, 495

binary operator symbols, 529
compound, 490–495
continued fractions, 490
decorated arrows, 490
decorative, 495
delimiters, 489, 490, 498, 499, 504
dottier accents, 494, 495
ellipsis (. . .), 496, 497
formulas, boxed, 491, 600
fractions, 493, 494
generalizations, 493, 494
horizontal extensions, 497 , 499
integral signs, multiple, 492
LaTEX 2.09, 464
letters, 526–529
math symbol type, 524
\mathbin (boxes), 530
\mathbin (circles), 531
\mathbin (miscellaneous), 530
\mathclose (open/close), 498, 537
mathematical type, 524
\mathinner (punctuation), 536
\mathop, 536
\mathopen (open/close), 498, 537
\mathord (Greek), 527
\mathord (letter-shaped), 527

math symbols (cont.)
\mathord (miscellaneous), 528
\mathord (punctuation), 536
\mathpunct (punctuation), 536
\mathrel (arrows), 534
\mathrel (arrows—negated), 534
\mathrel (equality and order), 532
\mathrel (equality and order—negated), 532
\mathrel (miscellaneous), 535
\mathrel (negation and arrow extensions), 535
\mathrel (sets and inclusion), 533
\mathrel (sets and inclusion—negated), 533
modular relations, 492, 493
numerals, 526–529
opening/closing symbols, 537
operator symbols, 536
operators, 490–493, 494, 495
operators, multilingual documents, 564
ordinary symbols, 526, 527, 528, 529
positioning subscripts/superscripts, 491, 492
punctuation, 535
radicals, 504, 505
relation symbols, 531, 532, 533
setting up, 433–437
spacing between, 525, 526, 528, 529
subscripts, limiting positions, 491, 492
superscripts, above Relation symbols, 495
superscripts, limiting positions, 491, 492
symbol classes, 524–526, 528, 529
variable form, 495, 496–499
vertical extensions, 498, 499

\mathalpha, 399, 434, 435, 524
\mathbb

(amsfonts), 467, 509
(amssymb), 509
(fourier), 391
(mathpazo), 378
(tlc), 435, 509

\mathbf, 349, 352, 472, 475, 492, 495, 504, 508, 510, 511
(bm), 510
(mathptmx), 377

\mathbin, 85, 435, 524, 528, 530, 531
(bm), 512
(relsize), 85

\mathcal, 349, 351, 397 , 484, 489, 495, 501, 506, 508, 509
(ccfonts), 384
(eucal), 396, 467
(eulervm), 397, 398
(fourier), 391
(mathpazo), 377
(mathptmx), 376
(pxfonts), 390
(txfonts), 389

\mathclose, 435, 498, 524, 537
\mathdollar, 527

1038 (M) Index of Commands and Concepts

\mathellipsis, 536
mathematical typesetting, see also AMS-LaTEX; specific

mathematical elements
fine-tuning layout

alignment, 505, 506, 507
big-g delimiters, 504
horizontal space, 507, 508
radicals, 504, 505
sizing, 502, 503
smashing, 506, 507
spacing, 502, 503, 505, 506, 507
sub-formulas, 503, 504

operator names, 499, 500, 501
text, 499–501

\mathfrak
(amsfonts), 467, 509
(amssymb), 509
(eufrak), 396, 397 , 399, 467
(eulervm), 398

\mathindent length (amsmath), 469, 471, 500
\mathindent rigid length, 471
\mathinner, 498, 525, 536
\mathit, 349, 464
\mathlarger (relsize), 84, 85
mathlines option (lineno), 178
\mathnormal, 349, 350

(eulervm), 397
\mathop, 85, 435, 524, 536

(amsmath), 492
(bm), 512

\mathopen, 435, 498, 524, 537
\mathord, 435, 474, 498, 524, 527–529, 536
\mathparagraph, 527
mathpazo package, 371, 373, 377, 378, 519
mathpple package, 371, 373, 377
mathptm package, 371, 373, 376, 377
mathptmx package, 370, 371, 373, 376, 377, 388–390, 517

combined with tipa, 406
\mathpunct, 435, 524, 536
\mathrel, 85, 435, 474, 498, 524, 528, 529, 532–535

(amsmath), 504
(bm), 512

\mathring, 529
\mathrm, 349, 350, 489, 499
\mathscr

(eucal), 396, 397
(eulervm), not existing, 398
(tlc), 509

mathscr option (eucal), 396
\mathsection, 527
\mathsf, 349, 351, 352, 353, 464

(eulervm), 399
\mathsmaller (relsize), 84, 85
\mathsterling, 527
\mathstrut, 505

mathtime package, 352
\mathtt, 349
\mathversion, 352

error using, 904
matrix env. (amsmath), 486

error using, 904, 907
matrix-like environments

cases env., 486
matrix environments, 486, 487
single equations, few variants, 486
subscripts, stacking, 487, 488
superscripts, stacking, 487, 488

\matrixput (epic), 607
\max, 491, 500, 525
\maxdimen rigid length, 88

(tabulary), 253
\maxfiles (docstrip), 833
MaxMatrixCols counter (amsmath), 487
\maxoutfiles (docstrip), 833
\maxovaldiam rigid length (eepic), 609
\mbox, 148, 499, 512, 844, 860, 870

hiding material in a \discretionary, 173
to suppress hyphenation, 694
(bm), 512
(soul), 90
(ulem), 87

md key value (caption), 310
md option (titlesec), 37
\mddefault, 346
\mdqoff (babel), 548
\mdqon (babel), 548
\mdseries, 340, 344, 346
\meaning, 935
\meas (tlc), 501
\measuredangle (amssymb), 528
medieval attribute (babel), 549
medium option (titlesec), 37
\medmuskip length, 507, 525, 526
\medskip, 857

in headings, 31
\medskipamount length, 857
\medspace (amsmath), 507, 508
memo page style (tlc), 230
memoir document class, 202, 237, 701
memory exceeded message, 915–919
\merge (stmaryrd), 530
merge rules, 673, 676
merge-rule function (xindy), 676
merge-to function (xindy), 678
merging, bibliographies, 779, 780
merlin.mbs file (custom-bib), 799, 803
\MessageBreak, 884, 885
messages, see also troubleshooting

generating, 827, 828
informational, 920–931

Index of Commands and Concepts (M) 1039

messages (cont.)
memory exceeded, 915–919
user, generating, 827, 828
warning, 920–931

messages, error
* (asterisk) only, 894
colored, in bibliography front end, 785
indexes

list of (MakeIndex), 658, 659
suppressing, 657, 668, 675

list of, 894–915
source line, finding, 890–894
syntax, 890

messages, index generation
debugging, 675
error messages

list of (MakeIndex), 658, 659
suppressing, 657, 668, 675

\meta (doc), 815, 822
METAFONT, 334
\MetaPrefix (docstrip), 829, 833
MFpic program, 970
\mho

(amssymb), 527
(latexsym), 464

\mid, 509, 535
\middle, available with eTEX, 498, 504, 537
\midrule (booktabs), 270, 271, 272
\midrulesep rigid length (booktabs), 271
\midwordellipsis (ellipsis), 82
\min, 500
\minalignsep (amsmath), 476, 477 , 479
\minilof (minitoc), 56
\minilot (minitoc), 56
minipage env., 862, 863, 864, 865, 866, 869, 870

footnotes in, 110, 111, 113, 277
justification in, 104, 106
nested, 864
(supertabular), 256

\minitoc (minitoc), 56, 58
minitoc package, xxvii, 56–58, see also titletoc package
minitocdepth counter (minitoc), 56, 57
\minus (euro), 99
minus syntax, 63, 91, 415, 695, 854, 855, 935
\minuso (stmaryrd), 530
mirror option (crop), 214
misc BIBTEX entry type, 763
misc option (ifsym), 405
missing$ BIBTEX built-in function, 808, 810
mktexlsr program, 899
ML env. (tlc), 139
mla option

(ellipsis), 82
(lips), 83

MlBIBTEX program, 761

.mlf〈n〉 file extension (minitoc), 56
mlt env. (tlc), 468

.mlt〈n〉 file extension (minitoc), 56
mmode boolean, 875
mnk option (inputenc), 571
mnote counter (tlc), 121

\Mobilefone (marvosym), 401
\mod (amsmath), 492, 493
\models, 535
modular relations, math symbols, 492, 493

\Module (doc), 824
modulo option (lineno), 179

\modulolinenumbers (lineno), 179, 182
monetary symbols, see currencies, typesetting
Mongolian (Manju), 592
monospaced fonts, 331, 332, 339, see also typed text;

typewriter font
courier, 374

monotoniko attribute (babel), 549, 574
month BIBTEX field, 690, 763, 765, 770

\moo (stmaryrd), 530
\morecmidrules (booktabs), 271, 272
moredefs package, 82, 83
morefloats package, 912
moreverb package, 153
mos option (inputenc), 571
mottos (quotations), on chapter headings, 35, 36

\Mountain (ifsym), 405
mountains, symbols, 403, 404, 405

\movetoevenpage (nextpage), 236
\movetooddpage (nextpage), 236
\mp, 530
mparhack package, 127
mpexclude option (typearea), 205
mpfootnote counter, 110, 851

(footmisc), 111
\mpfootnotemark (footmisc), 111
\mpfootnoterule (footmisc), 119
mpinclude option (typearea), 205
mpsupertabular env. (supertabular), 256, 277
mpsupertabular* env. (supertabular), 256, 277

\mrm (tlc), 350
mrnumber BIBTEX field (BibTexMng), 789

\msfsl (tlc), 350, 351, 352
\Msg (docstrip), 827
.msp file extension, 626
\mspace (amsmath), 507
.mtc〈n〉 file extension (minitoc), 56
\mtcfont (minitoc), 57
\mtcindent rigid length (minitoc), 57
mtcoff package, 58

\mtcpagenumbers (minitoc), 57
\mtcPfont (minitoc), 57
\mtcrule (minitoc), 57
\mtcSfont (minitoc), 57

1040 (M) Index of Commands and Concepts

\mtcSPfont (minitoc), 57
\mtcSSfont (minitoc), 57
\mtcSSSfont (minitoc), 57
\mtctitle (minitoc), 57
\mu, 492, 527
\multfootsep (footmisc), 120
multibib package, xxvii, 746, 754, 755, 756

compatibility matrix, 746
multicol package, 176, 184–189, 232, 299

license information, 184
\multicolpretolerance (multicol), 186
multicols env. (multicol), 184, 185–189, 680, 863, 875

style parameters, 185–187
multicols* env. (multicol), 185, 884
\multicolsep length (multicol), 185, 186
\multicoltolerance (multicol), 186, 187
\multicolumn, 272, 273, 274, 276, 277 , 279, 280

error using, 901, 904, 905
(longtable), 260
(supertabular), 257, 258
(tabularx), 282

restrictions using, 252
multilingual documents, see also babel package

! (exclamation mark), shorthand character, 554
" (double quote), shorthand character, 551–553
’ (acute accent), shorthand character, 556
. (period), shorthand character, 558
: (colon), shorthand character, 554
; (semicolon), shorthand character, 554
< (less than sign), shorthand character, 557
= (equals sign), shorthand character, 557
> (greater than sign), shorthand character, 557
? (question mark), shorthand character, 554
^ (caret), shorthand character, 556
‘ (grave accent), shorthand character, 555
~ (tilde)

multilingual aspects, 554
nonbreaking space, 550

accented letters, 552
bibliographies, language support, 733, 734, 735, 811,

812
BIBTEX, 573
character sets, 541
citations, Hungarian, 564
culture, and typesetting, 542
current language, setting/getting, 544, 545, 546
dates, formatting, 558, 559
definite articles, Hungarian, 563
encoding languages and fonts

Cyrillic alphabet, 569–573
Greek alphabet, 574, 576
Hebrew alphabet, 576–578
language options, 566–568

eTEX, TEX extension, 540, 566
footnotes, 565, 566

multilingual documents (cont.)
French names, 563
Hcaption font, 577
Hclassic font, 577
hyphenation

cultural aspects, 542
defining dynamically, 542
in multiple languages, 546, 580, 581
Italian, 563
language aspects, 541
patterns, adjusting, 586
patterns, applying, 545
preventing, 545
special rules, 553

indentation after heading, 565
indexes, 666, 669–671
language attributes, 549, 550
language, and typesetting, 541
language-dependent strings, 542, 547 , 549–551, 586
lists, 565
MakeIndex, 573
mathematical operators, 564
non-Latin alphabets

Arabic, 591
Armenian, 592
Chinese, 592
Cyrillic, 569–571, 572, 573, 574
Ethiopian, 592
Greek, 574, 575, 576
Hebrew, 576, 577, 578, 579, 591
Indian, 592
Japanese, 592
Korean, 592
Manju (Mongolian), 592

numbering, 559, 560–563, 564
Omega, TEX extension, 540, 570, 592, 637
OT1 extensions, 566, 567
overview, 539–541
Polish, 567
punctuation, special cases, 591
quoting characters, inserting, 545, 552, 553
right-to-left typesetting, 566, 577
shalom fonts, 577
shorthands, 547, 548, 549
spacing after punctuation, 564
special characters, 552
summary table, 542
T1 extensions, 566, 567

\multimap (amssymb), 534
multipage tables

and floats, 262–264
captions, 257, 262
creating with longtable, 259, 260, 261, 262–264
creating with supertabular, 256, 257, 258, 259
footnotes, 263

Index of Commands and Concepts (M–N) 1041

multipage tables (cont.)
headers and footers, 256, 257, 261
horizontal alignment, 261
page breaks, 257
problems with, 263, 264
reducing run numbers, 263
row commands, 261
spacing around, 261
width, 258, 259, 260, 261, 262, 263, 264

multiple key value (jurabib), 722, 735
multiple option (footmisc), 120, 123–125, 728–731
multiple bibliographies, 745–756
multiple citations, 703, 704
multiple indexes, 681, 682
multiple tables of contents, 54, 55, 56–58
\multiply, 871
\multiput, 601, 606, 607

(pspicture), 640
\multiputlist (epic), 606, 607
\multirow (multirow), 273, 274, 282
multirow package, 273, 274
\multirowsetup (multirow), 273, 274
multline env. (amsmath), 469, 471, 472

error using, 895
multline* env. (amsmath), 469, 472
\multlinegap rigid length (amsmath), 471, 472
\myclearpage (tlc), 236
myheadings page style, 222
MYitemize env. (tlc), 128
\MyRot (tlc), 631
myverbatim env. (tlc), 165

N

\n (tlc), 83
\nabla, 528
\name (tlc), 341
name key

(listings), 172
(titlesec), 43, 44

name key value (jurabib), 729, 730, 731, 734
name&title key value (jurabib), 729
name&title&auto key value (jurabib), 730
named BIBTEX style

(chicago), 700
(named), 791, 792

named package, 792
named boxes, 868, 869, 870, see also boxes
named page styles, 230
namelimits option (amsmath), 491
names, bibliography database, 766–768
naming conventions, 842, 843
naming fonts, 420
namunsrt BIBTEX style, 792
nar BIBTEX style, 792
nar package, 792

\NAT@close (natbib), 709
\NAT@date (natbib), 709
\NAT@idxtxt (natbib), 709
\NAT@name (natbib), 709
\NAT@open (natbib), 709
natbib package, xxvii, 68, 700–710, 712–715, 801

compatibility matrix, 746
incompatible with cite, 714

natbib.cfg file (natbib), 706, 709
natheight key (graphicx), 619

\natural, 528
nature BIBTEX style (nature), 792
nature package, 792
natwidth key (graphicx), 619
naustrian option (babel), 543
ncc option (inputenc), 571

\ncong (amssymb), 532
\Ndash (tlc), 83
ndkeywordstyle key (listings), 170

\ne, 532
\nearrow, 534
nearskip key/option (subfig), 317, 318, 319, 321
nederlands BIBTEX style (harvard), 700, 811

\NeedsTeXFormat, 878, 879, 886, 888
release information, 878
warning using, 931

\neg, 528, 529
negated math symbols

arrow extensions, 535
arrows, 534
equality and order, 532
sets and inclusions, 533

\negmedspace (amsmath), 507, 508
\negthickspace (amsmath), 507, 508
\negthinspace, 507, 508
\neq, 506, 532
nesting

commands, 846
document headings, 24
levels, tables of contents, 50

neveradjust option (paralist), 135, 136
neverdecrease option (paralist), 134, 135, 136
New Century Schoolbook font, 375
New Font Selection scheme (NFSS), 327–329
newapa BIBTEX style

(chicago), 700
(newapa), 792

newapa package, 792
\newblock, 686, 687 , 693, 698

(BIBTEX), 806
\newboolean (ifthen), 875, 886
newcent package, 371

\newcites (multibib), 755, 756

1042 (N) Index of Commands and Concepts

\newcolumntype
(array), 248, 249, 266, 561, 563
(colortbl), 265
(dcolumn), 275, 276
(tabularx), 251
(tabulary), 253

\newcommand, 843–845, 846, 847, 883
error using, 897, 901, 904, 909, 914, 932
used in .bbl file, 749, 771

\newcommand*, 846, 908, 932
newcommands option (ragged2e), 105, 739
\newcounter, 151, 198, 849, 851, 852, 853, 871

error using, 897, 906
\newdatelsorbian (babel), 559
\newdateusorbian (babel), 559
\newenvironment, 847, 848, 849, 850

error using, 844, 897, 901, 905, 909, 914
\newfloat

(float), 292, 293, 294, 312, 320
(rotfloat), 298

\newfont, 328
\newif, 875
\newindex (index), 682, 709, 721
\newlength, 854, 875, 876, 883

error using, 897
newlfont package, 464
\newline, 860

error using, 911
(amsthm), 141, 142

newline key value (caption), 310
newline$ BIBTEX built-in function, 808, 810
\newpage, 30, 234, 289

(longtable), 261
(multicol), 186
(nfssfont.tex), 369

\newrefformat (prettyref), 76
news groups, 948
\newsavebox, 90, 849, 868, 869, 870, 944

error using, 897
\newstylenums (eco), 383
\newsubfloat (subfig), 320
\newtheorem, 851

error using, 906
(amsthm), 138, 139, 140, 142

\newtheorem* (amsthm), 139, 140, 143
\newtheoremstyle (amsthm), 141, 142, 143
\newtie (textcomp), 363, 366
newzealand option (babel), 543
\nexists (amssymb), 528
next option (inputenc), 360
\nextcitefull (jurabib), 725
\nextcitenotitle (jurabib), 725
\nextcitereset (jurabib), 725
\nextciteshort (jurabib), 725
nextpage package, 235, 236

NFSS (New Font Selection scheme), 327–329
nfssfont.tex package, 345, 369, 370, 434, 435, 509
\NG, 457

problems in T1, 417
\ng, 458

problems in T1, 417
\ngeq (amssymb), 532
\ngeqq (amssymb), 532
\ngeqslant (amssymb), 532
ngerman option (babel), 543, 544, 552, 657, 672, 734
\ngtr (amssymb), 532
\ni, 533
nindent key (lettrine), 101
\nintt (tlc), 464
nintt option (rawfonts), 464
\niplus (stmaryrd), 533
\nLeftarrow (amssymb), 534
\nleftarrow (amssymb), 534
\nLeftrightarrow (amssymb), 534
\nleftrightarrow (amssymb), 534
\nleq (amssymb), 532
\nleqq (amssymb), 532
\nleqslant (amssymb), 532
\nless (amssymb), 532
\nmid (amssymb), 535
\nn (tlc), 652
\nnearrow (stmaryrd), 534
\nnwarrow (stmaryrd), 534
\No (babel), 563
\no (babel), 563
noadjust option (cite), 695
\noalign, 266

error using, 904
noBBppl option (mathpazo), 378
\nobibliography

(bibentry), 711
(jurabib), 726, 727

\nobibliography* (bibentry), 711
nobottomtitles option (titlesec), 40
nobottomtitles* option (titlesec), 40
\nobreak, 234
\nobreakdash (amsmath), 83
\nobreakspace, 313, 314
\NoCaseChange (textcase), 86
nocfg option (paralist), 138
\nochangebars (changebar), 190
\nocite, 691, 692, 693, 726, 772, 778, 793

error using, 896
problem using, 691
warning using, 920
(biblist), 774, 775
(bibtopic), 753
(bibunits), 751
(jurabib), 723, 726, 737–741

\nocite* (bibunits), 751

Index of Commands and Concepts (N) 1043

\nocite〈type〉 (multibib), 755
nocompress option (cite), 694, 695
\nocorr, 345
\nocorrlist, 344
\noextras〈language〉 (babel), 579, 588
\noextrasrussian (babel), 589
nofancy option (rcsinfo), 839
nofighead option (endfloat), 290
nofiglist option (endfloat), 290
\nofiles

warning using, 925
(longtable), 259

nofoot key/option (geometry), 209
nographics option (crop), 214
nogrey option (quotchap), 35
nohang key value (jurabib), 738
nohead key/option (geometry), 209
noheadfoot key/option (geometry), 209
noheads option (endfloat), 290
nohyphenation option (babel), 545
\noibidem (jurabib), 729
\noindent, 113, 114, 126, 250, 858, 862, 867 , 869

(picins), 303
noindentafter option (titlesec), 40, 42
noinfo option (crop), 213
\nointerlineskip, 867
nointlimits option (amsmath), 491
\nolimits, 492

error using, 903
\nolinebreak, 692, 849, 943

(cite), 694
\nolinenumbers (lineno), 176
nolists option (endfloat), 290
nolol key (listings), 174
nomarkers option (endfloat), 290
\nombre (babel), 561, 562
nomove option (cite), 697
\nomtcpagenumbers (minitoc), 57
\nomtcrule (minitoc), 57
\non (tlc), 488
non-ASCII symbols, 842
non-English documents, see multilingual documents
non-Latin alphabets

Arabic, 591
Armenian, 592
Chinese, 592
Cyrillic, 569–571, 572, 573, 574
Ethiopian, 592
Greek, 574, 575, 576
Hebrew, 576, 577, 578, 579, 591
Indian, 592
Japanese, 592
Korean, 592
Manju (Mongolian), 592

non-numerical cross-references, 76, 77

\nonaheterov (hetarom), 613
nonamebreak option (natbib), 706
nonamelimits option (amsmath), 491
nonbreaking hyphen (-), 83, 93
none key value

(fancyvrb), 158, 159, 161, 165
(listings), 172

\nonfrenchspacing, 428
\nonstopmode, 893
\nonumber (amsmath), 482
\nopagebreak, 234
\nopostamble (docstrip), 830
\nopreamble (docstrip), 829, 830
\noptcrules (minitoc), 57
\norm (tlc), 501
normal key value (jurabib), 717 , 722, 732, 742
normal option (threeparttable), 279
normal font, 338

\normal@char〈char〉 (babel), 589, 590
\normalcolor, 870
\normalem (ulem), 87
normalem option (ulem), 87

\normalfont, 29, 30, 113, 141, 148, 223, 339, 341, 344,
345, 464, 848, 870

normalizing, bibliographies, 780, 781, 786
\normalmarginpar, 127
\normalsize, 29, 30, 144, 146, 197, 342, 343, 373, 479,

480, 888, 911
normalsize key value (caption), 310
norsk option (babel), 543, 585
norsk.ldf file (babel), 585
norule option (footmisc), 119
noSeparatorLine option (fltpage), 325
nosort option (cite), 694, 695
nospace option (cite), 695
nostar option (titleref), 77
nostrict key value (jurabib), 729, 730
nosumlimits option (amsmath), 491

\not, 531, 533, 535
(ifthen), 877

notabhead option (endfloat), 290
notablist option (endfloat), 290

\notag (amsmath), 472, 473, 475, 482, 483, 499
notbib option (tocbibind), 48
notcite option (showkeys), 68
note BIBTEX field, 690, 763, 764, 765, 773
Notes env. (tlc), 151
notes counter (tlc), 151

\notesname (endnotes), 126
notext option (crop), 214

\notin, 533
notindex option (tocbibind), 48
notlof option (tocbibind), 48
notlot option (tocbibind), 48

1044 (N–O) Index of Commands and Concepts

notoccite package, 697, 698
incompatible with hyperref, 698

notoday option (rcsinfo), 839
notref option (showkeys), 68
nottoc option (tocbibind), 48
\nparallel (amssymb), 535
\nparallelslant (fourier), 392
\nplus (stmaryrd), 530
\nprec (amssymb), 532
\npreceq (amssymb), 532
\nRightarrow (amssymb), 534
\nrightarrow (amssymb), 534
\nshortmid (amssymb), 535
\nshortparallel (amssymb), 535
\nsim (amssymb), 531, 532
\nsubseteq (amssymb), 533
\nsubseteqq (amssymb), 533
\nsucc (amssymb), 532
\nsucceq (amssymb), 531, 532
\nsupseteq (amssymb), 533
\nsupseteqq (amssymb), 533
\ntriangleleft (amssymb), 533
\ntrianglelefteq (amssymb), 533
\ntrianglelefteqslant (stmaryrd), 533
\ntriangleright (amssymb), 533
\ntrianglerighteq (amssymb), 533
\ntrianglerighteqslant (stmaryrd), 533
\nu, 527
null.tex file, 901
num.names$ BIBTEX built-in function, 808, 811
numarrows env. (tlc), 181
number BIBTEX field, 763, 765
number of strings errors, 918
number width, tables of contents, 51
number-only citations, 691–698, see also citation systems

captions, 697
color, 695
compressing citations, 714
customizing citations, 692, 693, 694, 695
definition, 686
headings, 697
line breaks, 694
natbib package, 712–715
page ranges, disabling, 695
parentheses, 695
punctuation, 694, 696, 697
sort order, 693, 694, 695, 714
spaces, processing, 695
superscripts, 696, 697
unsorted citation style, 697
verbose mode, 696

numberblanklines key
(fancyvrb), 160
(listings), 172

numbered key value (jurabib), 739

numbering
code lines, 172
equations

resetting the counter, 485
subordinate sequences, 484, 485

footnotes, 112, 115, 116, 122, 123–125
headings, see document headings, numbering
lines, 175, 176, 177, 178, 179, 180, 181
lines, typed text, 159, 160
multilingual documents, 559, 560–563, 564
pages, see page numbers
sub-numbering float captions, 321, 322, 323

numberless key (titlesec), 43, 44
numberless tables of contents, 59
\numberline, 33, 47 , 48, 49, 50–52, 53

(titletoc), 61, 63
numbers key

(fancyvrb), 159, 160, 163, 165
(listings), 172

numbers option (natbib), 712, 713, 714, 715
numbersep key

(fancyvrb), 159, 160
(listings), 172

numberstyle key (listings), 172
\numberwithin (amsmath), 485, 851
numbib option (tocbibind), 48
numerals, math symbols, 526–529
numindex option (tocbibind), 48
numquotation env. (lineno), 177, 180
numquotation* env. (lineno), 180
numquote env. (lineno), 177, 180
numquote* env. (lineno), 180
\nVDash (amssymb), 535
\nVdash (amssymb), 535
\nvDash (amssymb), 535
\nvdash (amssymb), 535
\nwarrow, 534
nynorsk option (babel), 543, 585

O

O syntax (fancyhdr), 225, 226–230
\O, 457
\o, 459
oaddress BIBTEX field (jurabib), 742
\oarg (ltxdoc), 834
\oast (stmaryrd), 531
\obar (stmaryrd), 531
obeyspaces option (url), 95
obeytabs key (fancyvrb), 160, 161
oblique font, 333
\oblong (stmaryrd), 530
\obslash (stmaryrd), 531
\ocircle (stmaryrd), 531
\oday (babel), 559
odd key value (titlesec), 43

Index of Commands and Concepts (O) 1045

odd keyword (makeindex), 657
\oddpagelayoutfalse (layouts), 200, 201
\oddsidemargin rigid length, 194, 196, 199, 887
\odot, 531

(stmaryrd), 529
\OE, 457
\oe, 451, 459
\officialeuro (eurosym), 409
\og (babel), 545, 552, 554
\ogreaterthan (stmaryrd), 531
\oiiint (fourier), 392
\oiint (fourier), 392
\oint, 536
old German font, 394, 395, 396
\olddatelsorbian (babel), 559
\olddateusorbian (babel), 559
oldlfont package, 349, 464
oldstyle option (fourier), 393
OldStyleNums option (parallel), 183
\oldstylenums, 14, 383, 733

(textcomp), 39, 367
warning using, 926

\olessthan (stmaryrd), 531
\olips (lips), 83
\Omega, 479, 527

(fourier), 392, 393
\omega, 527
Omega, TEX extension, 540, 570, 592, 637
\ominus, 531
\omit, error using, 904
omitted text, marking, see ellipsis
OML font encoding, 416, 436, 453

(ccfonts), 384
(cmbright), 385
(eulervm), 397

OMS font encoding, 365, 416, 436
(ccfonts), 384
(cmbright), 385
(eulervm), 397

OMX font encoding, 416, 436
(eulervm), 397

on-line access to CTAN, 949, 950
\onecolumn, 184, 679, 680
onehalfspace env. (setspace), 107
\onehalfspacing (setspace), 107
online option (threeparttable), 278, 279
online resources, bibliographies, 773, 774
online tracing, 943
only option

(excludeonly), 20
(rawfonts), 464

\OnlyDescription (doc), 817, 818, 821, 835
\ontoday (babel), 559
\opcit (jurabib), 731, 741
opcit key/option (jurabib), 731, 741

open/close, math symbols, 498, 537
openbib option, 693

\openin, 432
openout_any env. variable (latex (web2c)), 832, 901
operator names, mathematical typesetting, 499, 500, 501

\operatorname (amsmath), 475, 500, 501
\operatorname* (amsmath), 500, 501
operators, math symbols, 490–493, 494, 495, 536

multilingual documents, 564
\oplus, 531
\opt (optional), 21
optional package, 21, 22
optional arguments, 845, 850
optional code execution, tables of contents, 59, 60
optional fields, bibliography database, 762, 763

\OptionNotUsed, 879, 887
options

class, 16
declaring, 880, 881
executing, 881, 882
global, 17
processing, 17, 18
unused, 18

opublisher BIBTEX field (jurabib), 742
\or

in TEX error message, 899
(ifthen), 877 , 899

ordinary math symbols, 526, 527, 528, 529
organization BIBTEX field, 690, 763, 764, 765, 779
origin key (graphicx), 619, 624, 632, 633
originalparameters option (ragged2e), 106
ornamental boxes, 596–600

\OrnamentDiamondSolid (bbding), 403
ornaments, see specific types of ornaments
osf option (mathpazo), 378

\oslash, 531
OT1 font encoding, 337, 346, 354, 416, 420, 430, 441, 442

comparison with T1, 346, 355
extensions, 566, 567
for math fonts, 436, 437
hyphenation in, 427 , 902
list of LICR objects, 455–463
(avant), 372
(babel), 566, 567, 590
(bookman), 372
(ccfonts), 384
(chancery), 372
(charter), 372
(cmbright), 385
(courier), 372
(fourier), not supported, 391
(helvet), 372
(infomath), 523
(newcent), 372
(palatino), 372

1046 (O–P) Index of Commands and Concepts

OT1 font encoding (cont.)
(pxfonts), 390, 391
(times), 372
(txfonts), 388, 389
(utopia), 372

OT2 font encoding, 416
(babel), 570

OT3 font encoding, 416
OT4 font encoding, 416
OT6 font encoding, 416
\otherbeta (fourier), 392, 393
otherlanguage env. (babel), 544, 545, 546
otherlanguage* env. (babel), 545
\otherOmega (fourier), 392, 393
\otimes, 489, 531
\out (euro), 98, 99
\outer, 834
outer key/option (geometry), 208
outerbars option (changebar), 190
outerbody option (sidecap), 323
outercaption option (sidecap), 323
\outlfamily (babel), 568
outline font, 334
\output, warning involving, 929, 930
output encoding, 330, 361, 362, 447–463
output files, indexes, 655, 657, 668, 674
output files, specifying, 826, 827
output style parameters, indexes, 661
\oval, 596, 597 , 608, 611

warning using, 926
(eepic), 608, 609
(epic), 608
(pspicture), 639, 640, 641
(texpicture), 640

oval boxes, 596, 597
\Ovalbox (fancybox), 596
\ovalbox (fancybox), 596, 597, 598
\ovee (stmaryrd), 531
\over, 494
overcite package, 696
overflow errors, 917–919, see also troubleshooting
\overfullrule rigid length, 939

output produced from, 939
\overleftarrow (amsmath), 497
\overleftrightarrow (amsmath), 497
overload option (textcase), 87
\overrightarrow (amsmath), 497
\overset (amsmath), 483, 495
\overwithdelims, 494
\owedge (stmaryrd), 531
\owns, 533
oyear BIBTEX field (jurabib), 742
OzTeX program, 615

oztex option (graphics), 615

P

\P, 63, 527
(textcomp), 457

\p (tlc), 83
p syntax, 243, 244, 245–247 , 249, 252, 263, 264

error using, 905
(tabulary), 253, 254

\p@enumi, 129, 130
\p@enumii, 129, 130
\p@enumiii, 130
\p@enumiv, 130
package errors, see specific package names;

troubleshooting
package files, 6
package loading part, 882
package options, 16
\PackageError, 885

output produced from, 885
\PackageInfo, 884, 885

output produced from, 885
\PackageInfoNoLine, 885
packages, see also specific packages

combining in one file, 20, 21
commands, 847, 879, 883–885
definition, 16
descriptions, on-line catalogue, 950
documentation, finding, 954, 955
documenting, see documentation tools
file structure, 877–885
local, distributing, 20, 21
modifying, 18
multiple, with same options, 18
processing, 17, 18
a4, 199, 202
a4dutch, 202
a4wide, 202
a5, 202
a5comb, 202
accents, 494, 965
ae, 356
afterpage, 289
alg, 168
algorithmic, 168
alltt, 152
amscd, 467, 488, 489
amsfonts, 383, 385, 386, 467, 509
amsmath, 83, 138, 465–488, 489, 490–508, 524, 535,

964
amsopn, 466
amsrefs, 968
amssymb, 383, 385, 386, 392, 467, 509, 511,

524–537
amstext, 467

Index of Commands and Concepts (P) 1047

packages (cont.)
amsthm, 138–144, 467, 964
amsxport, 968
amsxtra, 467, 495
apalike, 692, 791
array, 243–251, 280–282, 489
arydshln, 267, 268
askinclude, 19
authordate1-4, 700, 791
avant, 371, 373
ba, 521
babel, 539, 541, 542–591, 701, 733, 749, 915
bar, 612
bbding, 403
bengali, 592
beton, 384, 397
bibentry, 710, 711
biblist, 774, 775
bibtopic, 746, 753–755
bibunits, xxvii, 746, 749–753
bigfoot, 117, 122
bm, 510–513
bookman, 205, 371
booktabs, 269–272
boxedminipage, 595
breqn, 470, 968
calc, 871, 872
camel, xxvi, 681, 743–745, 965
captcont, 314
caption, xxvi, 295, 296, 308–315, 316, 323
caption2, 308, 315
ccfonts, 383–385, 399, 515
chams, 521
chancery, 371
changebar, 189–191
chappg, 216, 217
chapterbib, 701, 707, 746, 747–749, 771
charter, 371
chicago, 692, 699, 700
chmath, 521
cite, xxvi, 693–697
citehack, 573
cjk, 592
cmbright, 385, 386, 523
color, 214, 969
colortbl, 265, 266
courier, 370, 371
crop, 212–214
curves, 611
custom-bib, xxvii, 772, 789, 791, 798–804
dcolumn, 274–276
delarray, 489, 490
devnag, 592
diagram, 488, 965
dingbat, 400, 401

packages (cont.)
doc, 152, 583, 813–824, 834
docstrip, 22, 824–834, 975, 977
dvipsnames, 191
ecltree, 612
eco, 63, 64, 383
eepic, 603, 607–611, 637, 638
eepicemu, 611
ellipsis, xxvii, 82
endfloat, xxvii, 289–291
endnotes, xxvii, 125, 126
enumerate, 134
epic, 600–607, 609, 611, 612
etex, 907
ethiop, 592
eucal, 396, 467
eufrak, 396, 397, 398, 467
euler, 397, 398
eulervm, 397–399, 435, 515
euro, xxvi, 96–99
europs, 411
eurosans, 98, 99, 410, 411
eurosym, 408, 409
excludeonly, 19, 20
exscale, 85, 368
extramarks, xxvii, 218, 220, 221
fancybox, 596–600
fancyhdr, xxvii, 220, 224–232
fancyheadings, 224
fancyref, 76
fancyvrb, 152, 153, 155–168, 169, 172–174
fix-cm, xxvii, 355, 356
fixltx2e, 232, 342
flafter, 70, 286
float, 291–295, 923
floatfig, 299
floatflt, 299
fltpage, 325, 326
fncychap, 34, 35, 36
fncylab, 71
fnpara, 118
fontenc, 7, 155, 156, 361, 362, 888
fontinst, 88, 376, 419, 420, 437, 438, 971
footmisc, xxvii, 114–120, 122, 123
footnpag, 116
fourier, xxvii, 371, 391–393, 515
fp, 96
french, 591, 970
ftnright, 114, 176
fvrb-ex, 163
geometry, xxvii, 200, 206–211
graphics, 296, 613–618, 620, 624–631, 953, 969
graphicx, 613–615, 618–624, 631–633
graphpap, 640
grmath, 564

1048 (P) Index of Commands and Concepts

packages (cont.)
harvard, 68, 700, 704, 792, 801
hebcal, 558
hebfont, 578
helvet, 370, 371, 373, 424
here, 294
hetarom, 613
hhline, 266, 267
hvams, 523
hvmath, 523
hyperref, 78, 175, 643, 701, 706
ifsym, 403–405
ifthen, 872–877
indentfirst, 32, 565
index, 665, 681, 682, 701
indxcite, 681
infomath, 523
inputenc, 7, 175, 329, 357–361, 443–447, 571, 578
jmb, 792
jurabib, xxvi, 715–743, 745, 792
keyval, 206, 308, 623
kuvio, 488, 980
lastpage, xxvii, 216
latexsym, 464
layout, 199
layouts, xxvii, 195, 199–202
ledmac, 117, 982
lettrine, 99–101
lineno, xxvii, 176–181, 182
lips, 82, 83
listings, xxvi, 154, 168–175
lmodern, 357
longtable, 259–263
lscape, 211, 212
lucidabr, 339, 521
luximono, 386–388
makeidx, 649, 652, 656
manjutex, 592
manyfoot, xxvi, 122–125
marvosym, xxvii, 401–403, 411, 412
mathpazo, 371, 373, 377, 378, 519
mathpple, 371, 373, 377
mathptm, 371, 373, 376, 377
mathptmx, 370, 371, 373, 376, 377, 388–390, 517
mathtime, 352
minitoc, xxvii, 56–58
moredefs, 82, 83
morefloats, 912
moreverb, 153
mparhack, 127
mtcoff, 58
multibib, xxvii, 746, 754, 755, 756
multicol, 176, 184–189, 232, 299
multirow, 273, 274
named, 792

packages (cont.)
nar, 792
natbib, xxvii, 68, 700–710, 712–715, 801
nature, 792
newapa, 792
newcent, 371
newlfont, 464
nextpage, 235, 236
nfssfont.tex, 345, 369, 370, 434, 435, 509
notoccite, 697, 698
oldlfont, 349, 464
optional, 21, 22
overcite, 696
palatino, 101, 371, 398, 399
pamath, 519
paralist, xxvi, 132–138
parallel, xxvii, 181–184
pdfcprot, 1089
perpage, xxvi, 120, 121
picinpar, 108, 109
picins, 299, 302–306
pict2e, xxvii, 638
pifont, 378–381, 401, 403
placeins, 288, 289
prettyref, 75, 76
pspicture, 638–641, 954, 955
pstricks, 594, 643, 969, 970
pxfonts, 390, 391, 511, 519
quotchap, 35, 36
ragged2e, xxvii, 105, 106
rawfonts, 464
rcs, 837, 838
rcsinfo, 838, 839
relsize, xxvi, 83–85, 156
remreset, 851
repeatindex, 680
rotating, 212, 296–298, 633, 634
rotfloat, 298
rplain, 224
scrpage2, 237
seminar, 596
setspace, 106–108, 204
shadow, 595
shorttoc, 55
shortvrb, 152, 153, 816, 885
showidx, 656, 680, 681
showkeys, 68, 701
showtags, 778
sidecap, xxvii, 323–325
soul, xxvi, 88–92
stmaryrd, 498, 524–537
subfig, xxvi, 309, 315–321
subfigure, 315
subfloat, xxvi, 321–323
supertabular, 256–259, 261

Index of Commands and Concepts (P) 1049

packages (cont.)
Tabbing, 242
tabls, 269
tabularx, 250, 251–253
tabulary, 251, 253–255
texpicture, 639, 640
textcase, 85–87
textcomp, 89, 362–368, 388, 453–455
theorem, 140
threeparttable, xxvi, 278, 279
times, 370, 371
tipa, xxvii, 405–407, 416
titleref, 76, 77
titlesec, xxvii, 36–45, 65, 224
titletoc, xxvii, 56, 58–66
tlc, 983
tocbibind, 48, 681
trace, 945, 946, 976
tracefnt, 368, 369
truncate, 232, 233
txfonts, 388–390, 510, 511, 517
typearea, xxvii, 203–206, 207, 237
ucs, 361
ulem, 87, 88
upquote, xxvii, 153–155
upref, 467
url, xxvi, 93–96, 802
utopia, 371
varioref, 68–75, 544
verbatim, 153, 155
vmargin, 202, 203
wasysym, 401
wrapfig, 176, 299–302
xdoc, 814
xdoc2, 814
xr, 78
xr-hyper, 78
xspace, 80, 81
xypic, 593, 969
yfonts, 394–396

\PackageWarning, 881, 884
output produced from, 884

\PackageWarningNoLine, 884
page counter, 215, 216, 851
page key (titlesec), 43, 44
page boundaries, ignoring in bibliographies, 729
page breaks, see also space parameters

badness rating, 859
equations, 479–481
indexes, 680
multipage tables, 257
page layout, 234, 235
troubleshooting, 935–939

page contents, symbolic display, 935–937

page layout
asymmetrical, 208, 209
auto-completion, 206, 207, 208, 209, 210, 211
binding, and the inner margin, 207
BLANK PAGE on generated pages, 236
body area, 207
changing, 197, 198, 199
crop marks, 212, 213, 214
displaying, 199, 200, 201, 202
driver margins, 196
footer height, 201
footnotes, 207
for computer display, 206
geometrical dimensions, 193–197
headings, suppressing, 201
in relation to paper size, 203, 204, 205, 206
inner margins, 195
KOMA-Script classes, 236, 237
landscape mode, 211, 212
lines per page, 198
magnification, 210
marginal notes, 209
margins, 195, 208, 211
outer margins, 195
packages for, 202, 203
page breaks, 234, 235
paper size options, 195
paper size, specifying, 206
parameter defaults, 196
recto–verso layout, 43, 195, 199, 208, 209
running headers/footers, 207, 209
schematic page diagram, 194
symmetrical, 208, 209
text area, 207
trimming marks, 212, 213, 214
two-sided printing, 199, see also recto–verso layout
visual formatting, 234–236
white space, 198

page numbers, 215, 216
by chapters, 216, 217
cross-references, 69
current page, referencing, 215
indexes

composed (folio-by-chapter), 665
duplicates, 650
encapsulating, 652, 671, 672
formatting, 651, 652
MakeIndex options, 664, 665
roman numerals, 666, 677
sort order, 657, 664, 678, 679
xindy options, 678, 679

last page, referencing, 216, 226
odd, forcing, 235
referencing, 215
resetting the counter, 216

1050 (P) Index of Commands and Concepts

page numbers (cont.)
suppressing, 222

page ranges
disabling in bibliographies, 695
indexes

disabling, 657, 668, 672, 677
limiting length, 677

page styles (headers and footers), 221, 222
customizing

by floating objects, 231
by page style, 225–227, 228–230
globally, 224, 225
saving a customization, 230

dictionary type headers, 231, 232
float pages, 231
for two-sided printing, 223, 226
mark commands, 217, 218, 219, 220, 221, 229, 230
multiple text lines, 225
named, 230
rules (graphic lines), 224
truncating text, 232, 233

page total field, bibliographies, 743
page_compositor keyword (makeindex), 660, 665
page_precedence keyword (makeindex), 661, 665
\pagebreak, 102, 127, 234, 235, 480, 599, 930

(multicol), 188, 189
\pagedesign (layouts), 200, 201, 202, 203
\pagediagram (layouts), 199, 200, 202
\pagefootnoterule (footmisc), 119
\PageIndex (doc), 817, 821
\pagename (babel), 547
\pagenumbering, 215, 216, 217 , 888

(chappg), 216, 217
(varioref), 69

\pageref, 66, 68, 69, 73, 74, 111, 215, 216, 876
combining with \ref, see varioref package
warning using, 927
(lineno), 178
(prettyref), 75
(showkeys), 68
(xr), 78

pages BIBTEX field, 690, 763, 765, 772
\pagestyle, 221, 222, 224–233, 598, 599, 680, 887

forcing empty, 222, 235
(fancyhdr), 230
(nextpage), forcing empty, 236
(rcs), 838

\pagevalues (layouts), 202
pagewise option (lineno), 181
palatino package, 101, 371, 398, 399
Palatino font

alternative support, 390, 391
description, 375
in math and text, 377, 378, 390, 391, 518, 519

Palatino Math font, 519

pamath package, 519
paper key/option (geometry), 206, 210
paper document class, 20
paper size

and page layout, 203, 204, 205, 206
options, 195
specifying, 206

\paperheight rigid length, 194, 196, 880
(crop), 212

paperheight key/option (geometry), 206, 208, 213, 214
papersize key/option (geometry), 211
\paperwidth rigid length, 194, 196, 880

(crop), 212
paperwidth key/option (geometry), 206, 208, 213, 214
\par, 178, 250, 846, 848, 908

not allowed in argument, 846
(lineno), 177, 178

para option
(footmisc), 117, 118–120, 122, 729
(manyfoot), 122, 123, 124
(threeparttable), 278, 279

para* option (manyfoot), 122, 123
\paradescriptionlabel (paralist), 138
\paragraph, 23, 27

(minitoc), 57
paragraph counter, 24, 851
paragraph boxes, 860, 862, 863–866
paragraph break algorithm

adjusting, 849, 850
second-last line, 849, 850
tracing, 940–943

paragraph breaks, troubleshooting, 939–943
paragraph format, tables of contents, 62, 63, 64
paragraph options, in tables, 245, 246
paragraph separation, float captions, 311
\paragraph*, 23
\paragraphdesign (layouts), 202
\paragraphdiagram (layouts), 202
paragraphs

boxed, 600
centered, 104
flush left, 103–105, 106
flush right, 104
images in, 108, 109
indentation after heading, multilingual documents,

565
interline spacing, see leading
interword spacing, 102, 103
justifying, 102, 103, 104, 105, 106
leading, 106, 107 , 108, 343, 373
lengthening, 943
ragged right, 103–105, 106
rectangular holes in, 108, 109
shortening, 943
troubleshooting, 939–943

Index of Commands and Concepts (P) 1051

paragraphs (cont.)
unjustified, 103–106

paralist package, xxvi, 132–138
paralist.cfg file (paralist), 138
Parallel env. (parallel), 181, 182, 183, 184

problems with large objects, 183
\parallel, 535
parallel package, xxvii, 181–184
\ParallelAtEnd (parallel), 183
\ParallelDot (parallel), 183
\ParallelLText (parallel), 182, 183
\ParallelPar (parallel), 182
\ParallelRText (parallel), 182, 183
\ParallelUserMidSkip rigid length (parallel), 181
parameter stack size errors, 918, 919
\parbox, 104, 629, 631, 862, 863, 865, 866, 870

justification in, 104, 106
problems with optional s argument, 930

parens key value
(caption), 310, 311
(subfig), 317, 320
(tlc), 313

parensfirst key value (tlc), 314
parentequation counter (amsmath), 484
parentheses, bibliographies

number-only citation systems, 695
short-title citation system, 735

\parfillskip length, 264, 311
\parg (ltxdoc), 834
\parindent rigid length, 133, 182, 245, 246, 679, 680, 867
\parpic (picins), 302, 303–306
\parsep length, 145
\parskip length, 28, 30, 679, 680, 934, 935, 937
parskip key/option (caption), 311
\part, 22, 23, 25, 28, 32, 49

producing unwanted page number, 222
(minitoc), partial contents for, 57
(titlesec), 37
(titletoc), partial contents for, 64

part counter, 24, 25, 851, 853
\part*, 23, 32
\partial, 392, 490, 527
partial tables of contents, 64, 65, 66
partial.toc file (tlc), 60
\partname, 34

(babel), 547
\partopsep length, 145
\parttoc (minitoc), 57
Pascal key value (listings), 171–174
pass key/option (geometry), 211
\PassOptionsToClass, 835, 879, 886, 887
\PassOptionsToPackage, 879, 880, 881, 882, 883
\path

(eepicemu), 611
(eepic), 609, 610

\path (cont.)
(url), 93, 94, 95, 96

paths, drawing, 610
paths, typesetting, 93–95, 96
pattern memory errors, 919

\pausing, 945
pausing option (tracefnt), 369
Pazo font, 377, 378, 509, 518

\pcharpath (pst-char), 414
\pcheck (tlc), 876
pctex32 option (graphics), 615
pctex32 program, 615
pctexhp option (graphics), 615
pctexhp program, 615
pctexps option (graphics), 615
pctexps program, 615
pctexwin option (graphics), 615
pctexwin program, 615

.pcx file extension, 626

.pdf file extension, 7, 8, 9, 356
PDF (Portable Document Format), see also PostScript; SVG

definition, 642
generating from TEX, 643
links, 643
navigation, 643
searching, 356
test files, 643, 644
vs. PostScript, 642

PDF documents, searching, 356
pdfcprot package, 1089
pdflatex option (crop), 213
pdftex key/option (geometry), 210
pdftex option (graphics), 615
pdftex program, 7, 210, 615, 639, 643, 1089

\Peace (bbding), 403
\penalty, 936, 937 , 938
period key value

(caption), 310, 311, 313, 324
(subfig), 316

period (.), shorthand character, 558
periodical BIBTEX entry type (jurabib), 719, 742
periods, three consecutive (. . .), see ellipsis
perl program, 760, 775, 776, 954

\perp, 535
perpage option

(footmisc), 116, 124, 729
(manyfoot), 125

perpage package, xxvi, 120, 121
persistent errors, 892

\Pfund (marvosym), 412
phaip BIBTEX style, 792, 796

\phantom, 473, 474, 505
phapalik BIBTEX style (apalike), 792
phcpc BIBTEX style, 792
phdthesis BIBTEX entry type, 763, 765

1052 (P) Index of Commands and Concepts

\Phi, 527
\phi, 479, 527
phiaea BIBTEX style, 792
phjcp BIBTEX style, 792
phnf BIBTEX style, 792
phnflet BIBTEX style, 792
\phone (wasysym), 401
\PhoneHandset (bbding), 403
phpf BIBTEX style, 792
phppcf BIBTEX style (apalike), 792
phreport BIBTEX style, 792
phrmp BIBTEX style, 792
\Pi, 527
\pi, 512, 527
Pi font, 378, 379–382
Piautolist env. (pifont), 381
pic program, 637
\piccaption (picins), 305, 306
\piccaptioninside (picins), 305
\piccaptionoutside (picins), 305, 306
\piccaptionside (picins), 305
\piccaptiontopside (picins), 305
\pichskip (picins), 303, 304, 305
picinpar package, 108, 109
picins package, 299, 302–306

combined with caption, 306
\picskip (picins), 303, 304
\picsquare (epic), 602, 605
.pict file extension, 626
pict2e package, xxvii, 638
picture env., 488, 600, 634

(pspicture), 638, 639–641
(texpicture), 639, 640

\Pifill (pifont), 381
\Pifont (pifont), 380
pifont package, 378–381, 401, 403
\Piline (pifont), 381
Pilist env. (pifont), 381
\Pisymbol (pifont), 380, 401, 403
\pitchfork (amssymb), 535
.pk file extension, 327, 594
placeins option (minitoc), 58
placeins package, 288, 289
plain BIBTEX style, 691–693, 709, 791, 792, 793, 806, 807

(bibtopic), 753, 754, 755
(bibunits), 750
(cite), 693–697
(natbib), 709, 714

plain key (float), 292
plain page style, 33, 222, 223, 230, 679, 680

(fancyhdr), 230
(rplain), 224

plain text files, 6
plainnat BIBTEX style (natbib), 709, 710, 736, 793
plaintop key (float), 292

plainyr BIBTEX style, 793
\plitemsep length (paralist), 132
plotting scientific data, see graphs
\plparsep length (paralist), 132
\plpartopsep length (paralist), 132
\pltopsep length (paralist), 132
\Plus (bbding), 403
\plus (euro), 99
plus syntax, 63, 91, 415, 695, 854, 855, 929, 935
\PlusOutline (bbding), 403
\pm, 530
pmatrix env. (amsmath), 486

error using, 907
\pmb (bm), 510
\pmod, 492, 493
.png file extension, 8, 642–644, 896
.pntg file extension, 626
\pod (amsmath), 492, 493
\pointedenum (paralist), 134
pointedenum option (paralist), 134
\pointlessenum (paralist), 134
pointlessenum option (paralist), 134
points, font size, 335
Polish, 567
polish option (babel), 543, 567
\polishrz (babel), 567
\polishzx (babel), 567
polutoniko attribute (babel), 549, 550, 574, 585
polutonikogreek option (babel), 543, 585
pool size errors, 919
pop$ BIBTEX built-in function, 808
\poptabs, error using, 908
portability, commands, 842
Portable Document Format (PDF), see PDF
portable files, bibliographies, 775
portrait key/option (geometry), 207
portuges option (babel), 543
portuguese option (babel), 543
position key/option

(caption), 312, 318
(subfig), 317, 318

\possessivecite
(harvard), 700, 703
(tlc), 703

\postamble (docstrip), 829
postamble keyword (makeindex), 653, 660, 661
postambles, creating, 829, 830
postbreak key (listings), 173
\postdisplaypenalty, 480
\postmulticols rigid length (multicol), 185, 186
PostScript, 635, see also PDF; SVG

arrowhead length, 641
circles, 639
curves, 641
definition, 635

Index of Commands and Concepts (P) 1053

PostScript (cont.)
dvips driver, 637
encoding, 388, 389, 390
extended picture env., 638, 639, 640
extended or changed commands, 639–641
generating missing fonts, 637
line thickness, 640, 641
lines, 639–641
OpenType fonts, 636, 637
ovals, 639
test files, 643, 644
Type 1 fonts, 636, 637
vectors, 639–641
vs. PDF, 642

PostScript fonts, 354, 355
PostScript New Font Selection scheme (PSNFSS), see PSNFSS
\pounds, 459, 527
\Pr, 500
pre-notes, bibliographies, 721
preamble, see also commands

bibliography database, 771, 772
creating, 829, 830
database format, bibliographies, 771, 772
defining fonts, see font commands, low level
document, 16, 17
documentation commands, list of, 820–824
of tables, 244–248
options, in tables, 243, 244, 254

\preamble (docstrip), 829, 830
preamble keyword (makeindex), 653, 660, 661
preamble$ BIBTEX built-in function, 808
prebreak key (listings), 173
\prec, 532
\precapprox (amssymb), 532
\preccurlyeq (amssymb), 532
\preceq, 532
\precnapprox (amssymb), 532
\precneqq (amssymb), 532
\precnsim (amssymb), 532
\precsim (amssymb), 532
predefined layouts, document headings, 34, 35
predefined text, document headings, 34
\predisplaypenalty, 480
\prefacename (babel), 547, 589
preload.cfg file, 429
\premulticols rigid length (multicol), 185
\pretolerance, 941

(multicol), 186
pretty-printing, bibliographies, 777, 779, 780
\prettyref (prettyref), 75, 76
prettyref package, 75, 76
\prevdepth rigid length, 865, 945

error using, 865, 902, 914
price BIBTEX field (BibTexMng), 789
\prime, 528

primitives
displaying, 934
tracing, 945
troubleshooting, 934, 945

\primo (babel), 563
printbib program, 776

\printbibliography (camel), 744
\PrintChanges (doc), 817, 818, 821
\printcontents (titletoc), 64, 65
\PrintDescribeEnv (doc), 824
\PrintDescribeMacro (doc), 824
\PrintEnvName (doc), 824
printer points, 335
printheadings option (bibtopic), 753

\printheadingsfalse (layouts), 201, 203
\PrintIndex (doc), 817, 818, 821
\printindex

(index), 682, 710, 721
(makeidx), 649, 669

printing
bibliographies, 774, 775, 776, 777
code documentation parts, 816, 835
computer code, see computer code, printing
doc package, 813, 814
selected document versions, 21, 22
two-sided, see also recto–verso layout

page styles, 223, 226
turning on, 199

\PrintMacroName (doc), 824
\printparametersfalse (layouts), 201, 203
\printtime (tlc), 871
problem resolution, see troubleshooting
proc document class, 467
proceedings BIBTEX entry type, 690, 763
process flow

bibliographies, 806–809
citations, 687–689
index generation, 648, 673
LaTEX, 9

\processdelayedfloats (endfloat), 291
processing errors, see troubleshooting

\ProcessOptions, 879, 882, 886, 887
\ProcessOptions*, 879, 882
\prod, 491, 495, 496, 536
\Prog (tlc), 654
program code, printing, see computer code, printing
program files, obtaining

CD-ROM, 948, 949
ftp, 948, 950–953
web access, 949, 950

programs, bibliographies
BIBTEX++, 760
BIBTEX8, 759
8-bit version, 759
bibulus, 760

1054 (P) Index of Commands and Concepts

programs, bibliographies (cont.)
Java version, 760
MlBIBTEX, 761
multilingual version, 761
perl version, 760
XML aware, 760

progress messages, suppressing during index generation,
657, 668, 675

\projlim (amsmath), 500
proof env. (amsthm), 143, 144
\proofmodetrue (index), 681, 682
\proofname (babel), 547
proofs, see headed lists
properties, see options
proportional fonts, 331, 332
\propto, 535
\protect, 33, 46, 47, 48, 72, 130, 166, 468, 892, 893, 894,

895, 913
in \index, 654, 666
no help with \url, 94
(ifthen), 873
(textcase), 86

\protected@edef, 892
\providecommand, 749, 847

(BIBTEX), 771
\providecommand*, 847
\providehyphenmins (babel), 586
\ProvidesClass, 877, 878, 879, 886, 888

warning using, 920
\ProvidesFile, 432, 437, 438, 446, 450, 878, 879

warning using, 922
(inputenc), 446, 447

\ProvidesLanguage (babel), 583
\ProvidesPackage, 878, 879, 883

warning using, 926
(babel), 583

\ProvideTextCommandDefault, 446, 454
(inputenc), 446

\PS (tlc), 843, 844
.ps file extension, 8, 9, 625
.ps.bb file extension (graphics), 626
.ps.gz file extension, 625, 626

(graphics), 626
\ps@〈style〉, 223
\ps@plain, 223, 886
\ps@titlepage (doc), 824
psamsfonts option

(amsfonts), 468
(amssymb), 468
(eucal), 468
(eufrak), 468

psfrag program, 594
\Psi, 527
\psi, 497 , 527

PSNFSS (PostScript New Font Selection scheme), 370, 371,
372, 373, see also NFSS

Avant Garde Gothic, 374
Bitstream Charter, 374
classification of font families, 372
Courier, 374
fonts used, 371
Helvetica, 370, 375
ITC Bookman, 374
leading, 373
New Century Schoolbook, 375
Palatino

alternative support, 390, 391
description, 375
in math and text, 377, 378, 390, 391, 518

Pi, 378–381
sans serif fonts, 373
Times Roman

alternative support, 388–390
description, 375
in math and text, 376, 377 , 516
text symbol alternatives, 388, 389, 390

Utopia, 375
Zapf Chancery, 376

pspicture package, 638–641, 954, 955
pspicture.ps file (dvips), 639
psprint option (graphics), 615
psprint program, 615
pstoedit program, 646
pstricks package, 594, 643, 969, 970
.ptc file extension (titletoc), 64
\ptcCfont (minitoc), 57
publisher BIBTEX field, 690, 717 , 763, 765, 772
pubps option (graphics), 615
punctuation

bibliographies
number-only citation systems, 694, 696, 697
short-title citation system, 738

headed lists, 141
math symbols, 535, 536
multilingual documents

spacing after, 564
special cases, 591

number-only citations, 694, 696, 697
short-title citations, 738

purify$ BIBTEX built-in function, 808
\pushtabs, error using, 908
\put, 605, 606

(epic), 604, 605, 606, 607
(pspicture), 641

\putbib (bibunits), 750, 751, 752
\putfile (epic), 605
PXfonts, 518
pxfonts package, 390, 391, 511, 519

tight letters with, 391

Index of Commands and Concepts (P–R) 1055

pybcheck program, 787
pybconvert program, 787
pybliographer program, 784–787
pybliographic program, 784–786
pycompact program, 787
.pz file extension, 626

Q

\qauthor (quotchap), 35, 36
\qed (amsthm), 144
QED () symbol, 143, 144
\qedhere (amsthm), 144
\qedsymbol (amsthm), 143
\qquad, 508, 856
\QU (tlc), 877
\quad, 508, 849, 850, 856
quad key value (caption), 311
quarter-circles, see epic package; eepic package
\quarto (babel), 563
question mark (?), shorthand character, 554
quiet mode, index generation, 657, 668, 675
quotation env., 146, 810

(lineno), 180
quotations, 146, 147
quotations (mottos), on chapter headings, 35, 36
quotchap package, 35, 36
Quote env. (tlc), 146, 147
quote env., 146, 848

(lineno), 180
quote keyword (makeindex), 660, 662
quote$ BIBTEX built-in function, 808
\quotechar (doc), 822
\quotedblbase, 459
\quotesinglbase, 459
quoting characters, inserting in multilingual documents,

545, 552, 553

R

R syntax
(fancyhdr), 225, 226–230
(tabulary), 254
(tlc), 248

\R (babel), 568
\r, 459

(pxfonts), problems with, 390
(tipa), 406
(txfonts), problems with, 389

r syntax, 243
(array), 249

\Radiation (ifsym), 405
radicals, math symbols, 504, 505
ragged option

(footmisc), 119, 123, 726, 730
(sidecap), 323, 324, 325

ragged right paragraphs, 103–105, 106
ragged2e package, xxvii, 105, 106

problems with amsthm, 142
\raggedbottom, 120
\raggedcolumns (multicol), 186
RaggedLeft key value (caption), 311

\RaggedLeft (ragged2e), 105
\raggedleft, 104, 121

in headings, 31
(array), in tables, 247 , 249
(ragged2e), 105
(titlesec), discouraged inside \titleformat, 40

raggedleft key value (caption), 311
raggedleft option

(sidecap), 323
(titlesec), 37

\RaggedLeftLeftskip length (ragged2e), 106
\RaggedLeftParfillskip length (ragged2e), 106
\RaggedLeftParindent rigid length (ragged2e), 106
\RaggedLeftRightskip length (ragged2e), 106
RaggedRight key value (caption), 311

\RaggedRight (ragged2e), 105, 106, 142, 186, 187 , 739
\raggedright, 104, 121, 127 , 142, 182, 183, 341, 345, 739,

935
in headings, 31
in tables, 246, 247, 251, 261, 276
(array), in tables, 247 , 249
(multirow), in tables, 273
(natbib), 707
(ragged2e), 105
(titlesec), discouraged inside \titleformat, 40

raggedright key value
(caption), 311, 313
(jurabib), 739
(subfig), 316, 318

raggedright option
(sidecap), 323
(titlesec), 37

raggedrightboxes option (ragged2e), 106
\RaggedRightLeftskip length (ragged2e), 105, 106
\RaggedRightParfillskip length (ragged2e), 105, 106
\RaggedRightParindent rigid length (ragged2e), 105, 106
\RaggedRightRightskip length (ragged2e), 105, 106
\Rain (ifsym), 405
\raisebox, 150, 272, 273, 862
RaiseNums option (parallel), 183

\raisetag (amsmath), 484
range_close keyword (makeindex), 660
range_open keyword (makeindex), 660

\rangle, 498, 511, 537
\ratio (calc), 872, 876
raw index, generating, 649
rawfonts package, 464

\Rbag (stmaryrd), 537
\rbag (stmaryrd), 530

1056 (R) Index of Commands and Concepts

\rbrace, 472, 498, 509, 537
\rbrack, 498, 537
\rceil, 498, 537
\RCS (rcs), 837 , 838
rcs package, 837, 838
RCS (Revision Control System), 836
rcs-user.tex file (rcs), 838
\RCSAuthor (rcs), 837
\RCSDate (rcs), 837 , 838
\RCSdate (rcs), 838
\RCSdef (rcs), 837
\RCSID (rcs), 838
\rcsInfo (rcsinfo), 838, 839
rcsinfo package, 838, 839
rcsinfo.perl file (rcsinfo), 839
\rcsInfoDate (rcsinfo), 839
\rcsInfoDay (rcsinfo), 839
\rcsInfoFile (rcsinfo), 839
\rcsInfoLocker (rcsinfo), 839
\rcsInfoLongDate (rcsinfo), 838, 839
\rcsInfoMonth (rcsinfo), 839
\rcsInfoOwner (rcsinfo), 839
\rcsInfoRevision (rcsinfo), 839
\rcsInfoStatus (rcsinfo), 839
\rcsInfoTime (rcsinfo), 839
\rcsInfoYear (rcsinfo), 839
\RCSRawDate (rcs), 838
\RCSRCSfile (rcs), 837
\RCSRevision (rcs), 837
\RCSTime (rcs), 837
\Re, 527
READ BIBTEX command, 805–807, 809
read key (graphicx), 620, 625
reading data verbatim, 163
readme-tlc2.html file, 959
\real (calc), 872
\RecordChanges (doc), 817, 818, 821
recto–verso layout, 43, 195, 199, 208, 209, see also

two-sided printing
\RecustomVerbatimCommand (fancyvrb), 165
\RecustomVerbatimEnvironment (fancyvrb), 165
redefining

commands, 844, 845, 847
environments, 847–850

reducedifibidem key value (jurabib), 729, 730
\Ref (varioref), 72
\ref, 26, 66, 68, 69, 71–73, 75, 111, 130, 307

combining with \pageref, see varioref package
problems using, 26, 67 , 852
strange results with, 26
warning using, 927
(amsmath), 482, 485
(fltpage), 326
(lineno), 178, 179
(paralist), 132, 133

\ref (cont.)
(prettyref), 75, 76
(showkeys), 68
(subfig), 316, 318, 319
(subfloat), 322, 323
(textcase), 86

problems using, 85
(titleref), 77
(upref), 467
(varioref), 71, 72
(wrapfig), 300
(xr), 78

ref option (cite), 697
reference keys, see keys
referencing subsections, document headings, 25, 26
\reflectbox

(graphics), 629
(graphicx), 629

\refname, 34, 726, 749
(babel), 545, 547
(bibunits), 751
(multibib), 756

\refstepcounter, 33, 121, 851, 852, 853
problems using, 852

\reftextafter (varioref), 73, 74, 357
\reftextbefore (varioref), 73, 74
\reftextcurrent (varioref), 69, 71, 74
\reftextfaceafter (varioref), 73, 74
\reftextfacebefore (varioref), 73, 74
\reftextfaraway (varioref), 73, 74
\reftextlabelrange (varioref), 74
\reftextpagerange (varioref), 74
\reftextvario (varioref), 74, 75
register values, displaying, 934, 935
Rejne option (fncychap), 34
relation symbols, math symbols, 531, 532, 533
\relax, 162, 446, 501, 867, 868
release information, language definition files, 583
\relphantom (tlc), 474
\relscale (relsize), 84
\relsize (relsize), 84, 156
relsize package, xxvi, 83–85, 156
rem env. (tlc), 140
remreset package, 851
\renewcommand, 844, 846

error using, 895, 897, 904
\renewcommand*, 908
\renewenvironment, 847, 848

error using, 898, 901
\renewindex (index), 682
repeat data across pages, 599
repeatindex package, 680
report document class, 6, 13, 115, 120, 147, 195, 223, 679

footnote numbering, 112
heading commands, 22–25, 51

Index of Commands and Concepts (R) 1057

report document class (cont.)
release information, 878
replacement for, 236
TOC entries, 50, 52

reqno option (amsmath), 466, 469, 472
require function (xindy), 675
required fields, bibliography database, 762, 763
\RequirePackage, 14, 356, 438, 682, 852, 879, 880, 881,

882, 883, 886, 913
error using, 908
premature loading, 908
warning using, 931

\RequirePackageWithOptions, 883
reset key/option (geometry), 211
reseteqn.sty file (tlc), 14
resetlabels option (multibib), 756
resetmargin key (listings), 172
resetmargins key (fancyvrb), 157
\resetul (soul), 92
\resizebox

(graphics), 617, 618, 629, 630
error using, 909

(graphicx), 629, 630
error using, 909

\resizebox*
(graphics), 629, 630
(graphicx), 630

resizing
fonts, relative to original, 83, 84, 85
graphic objects, 629, 630

resolving problems, see troubleshooting
restore values, displaying, 944
\restriction (amssymb), 534
\restylefloat

(float), 294, 309–311
(rotfloat), 298

result file, specifying, 826, 827
\resumecontents (titletoc), 65, 66
REVERSE BIBTEX command, 807
\reversemarginpar, 127, 200
\reversemarginpartrue (layouts), 200
reversemp key/option (geometry), 209, 210
revision bars, 189, 190, 191
Revision Control System (RCS), 836
\RewindToStart (marvosym), 401
rewrite.rule function (bibtool), 780, 781
rewriting, bibliographies, 780, 781
\rfloor, 498, 537
\rfoot (fancyhdr), 221, 224, 225
\rgroup, 489, 498, 537
\rhd (latexsym), 464
\rhead (fancyhdr), 224, 225, 598
\rho, 527
\rhook, 535

\right, 478, 483, 487 , 498, 504, 525, 526, 537, 906
error using, 899, 905

right key value
(fancyvrb), 159
(listings), 172

right key/option (geometry), 208, 211
right option

(eurosym), 409
(lineno), 180, 181

right-to-left typesetting, multilingual documents, 566, 577
\Rightarrow, 534
\rightarrow, 173, 500, 534
\rightarrowtail (amssymb), 534
\rightarrowtriangle (stmaryrd), 534
rightbars option (changebar), 190
rightbody option (sidecap), 323
rightcaption option (sidecap), 323

\RightDiamond (ifsym), 405
rightFloats option (fltpage), 325

\rightharpoondown, 534
\rightharpoonup, 534
\righthyphenmin, 586
rightlabels option (titletoc), 60

\rightleftarrows (amssymb), 534
\rightleftharpoons (amssymb), 534
\rightmargin rigid length, 145, 147
rightmargin key (titlesec), 38, 43

\rightmark, 218, 227, 228, 229
(extramarks), 220

\rightpointleft (dingbat), 401
\rightrightarrows (amssymb), 534
\rightskip length, 103, 104, 105, 936, 937

(ragged2e), 105
\rightslice (stmaryrd), 530
\rightsquigarrow (amssymb), 534
\rightthreetimes (amssymb), 530
\rightthumbsdown (dingbat), 401
\rightthumbsup (dingbat), 401
rigid lengths, 854

\risingdotseq (amssymb), 532
\rlap, 180, 181, 183, 489
\rm, 347, 349

used in math, 349, 464
(custom-bib), 803

rm key value
(caption), 310, 311, 313
(subfig), 316

rm option (titlesec), 37
rmargin key/option (geometry), 208

\rmdefault, 346, 347, 438
\rmfamily, 339, 344, 346, 351, 409, 464

used in math, 348, 350
\rmoustache, 498, 537
Roman folio style, 216

\Roman, 129, 133, 852, 853

1058 (R–S) Index of Commands and Concepts

\roman, 130, 133, 852, 853
roman folio style, 216
Roman font shape, 333
roman numerals, indexes

sort order, 666
suppressing page ranges, 677

romanian option (babel), 543
rootbib option (chapterbib), 747
rotate env. (rotating), 297, 634
rotate option (crop), 214
\rotatebox

(graphics), 618, 628, 630, 631
error using, 908

(graphicx), 614, 624, 631, 632, 633
error using, 908

rotated material, hiding, 615
rotating

floats, 296, 297 , 298
graphic objects, 630–634
image files, 620

rotating package, 212, 296–298, 633, 634
combined with endfloat, 291

\rotcaption (rotating), 298, 308
rotfloat package, 298
\round (euro), 98, 99
round key/option (jurabib), 721, 735
round option (natbib), 706, 712, 715
rounded corner, boxes, 596, 597
\rowcolor (colortbl), 265
rows, table

commands, 261
laying out, 242, 243
spacing, 244, 245, 269, 271
spanning, 272, 273, 274, 282

rplain package, 224
\rrbracket

(fourier), 392
(stmaryrd), 498, 537

\rrceil (stmaryrd), 537
\rrfloor (stmaryrd), 537
\Rrightarrow (amssymb), 534
\rrparenthesis (stmaryrd), 537
.rsc file extension (bibtool), 780
\Rsh (amssymb), 534
\RSpercentTolerance (relsize), 84
\rsquare (tlc), 528
\Rsub (tlc), 31
\rtimes (amssymb), 530
rubber lengths, 854
rubibtex program, 573, 574
rubibtex.bat program, 574
\rule, 41, 112, 242, 266, 326, 858, 863–865, 866, 867
rule boxes, 860, 866–868
rulecolor key (fancyvrb), 158
ruled key (float), 292, 293, 294

ruled key value (float), 310
ruled option (manyfoot), 124
rules (graphic lines)

around code listings, 173
color, 265
document headings, 41, 42
double, 269
floats, 285
footnotes, 112, 119, 120
formal, 269, 270, 271, 272
frame, color, 158
in tables

colored, 265
combining horizontal and vertical, 266, 267
dashed, 267, 268
double, 269
formal, 269, 270, 271, 272
variable width, 266
vertical, 266, 267, 269

page styles, 224
rulesep key (listings), 173–175
rumakeindex program, 573
rumkidxd.bat program, 573
rumkidxw.bat program, 573
run-in style document headings, 27 , 29, 30
runin key (titlesec), 38, 39
running headers and footers, see headers and footers,

running
russian option (babel), 358, 543, 568, 570, 571
russianb option (babel), 975
russianb.ldf file (babel), 589
\rVert (amsmath), 498, 501, 537
\rvert (amsmath), 498, 500, 501, 537

S

\S, 39, 64, 130, 527
(textcomp), 457

s size function, 424
s: syntax (yfonts), 395, 396
safe option

(textcomp), 362, 364, 365, 367, 388
has no effect, 367

(tipa), 406
\samepage, 234
samepage key (fancyvrb), 159
samin option (babel), 543
\sample (tlc), 13, 221, 224, 293, 303, 598
sans serif fonts, 332, 339

as default, 373
\sAppendix (tlc), 32, 33
save size errors, 919
\savebox, 868, 869, 904, 944

error using, 895
savequote env. (quotchap), 35, 36
\SaveVerb (fancyvrb), 165, 166, 167

Index of Commands and Concepts (S) 1059

SaveVerbatim env. (fancyvrb), 167
\sbox, 307 , 849, 868, 869, 870, 904, 944

error using, 895
\sboxrule rigid length (shadow), 595
\sboxsep rigid length (shadow), 595
\sc, 347

used in math, 464
sc key value (caption), 310
sc option

(mathpazo), 378
(titlesec), 37

Scalable Vector Graphics (SVG), see SVG
scale key (graphicx), 619, 621
scale key/option (geometry), 211
\scalebox

(graphics), 617 , 628, 629
(graphicx), 628, 629

scaled option
(eurosans), 410
(helvet), 370
(luximono), 154, 387

scaled material, hiding, 615
scaling

graphic objects, 628, 629
image files, 620
large operators, 368

\scdefault, 346
SCfigure env. (sidecap), 323, 324
school BIBTEX field, 763, 765
Schwabacher font, 394–396
Scientific Word program, 615
scottish option (babel), 543
scrartcl document class, 236
screen key/option (geometry), 206
script commands, docstrip, 826–830
\scriptscriptstyle, 432, 494, 502
\scriptsize, 342
scriptsize key value

(caption), 310
(subfig), 319

\scriptstyle, 432, 489, 494, 502
\scrollmode, 944
scrpage2 package, 237
\scshape, 30, 63, 340, 341, 342, 344, 346, 853

used in math, 348, 350
(lettrine), 100
(soul), 91

SCtable env. (sidecap), 323, 324, 325
\sdim rigid length (shadow), 595
searching, bibliographies, 775, 777, 778, 784, 785, 787
searching, PDF documents, 356
\searrow, 173, 534
\sec, 500
\secdef, 27, 32
\secformat (tlc), 41

secnumdepth counter, 23, 24, 27, 30, 33
\sectfont (quotchap), 35, 36
\section, 22, 23, 24, 25, 26, 30–33, 39, 47 , 49, 217, 218,

223, 937
cross-reference to, 66
error using, 893
suppressing floats, 287
with float barrier, 288
(bibunits), 751, 752
(minitoc), 57, 58

partial contents for, 57
(soul), with letter spacing, 91
(titleref), textual reference to, 77
(titlesec), 37 , 39–42, 44
(titletoc), partial contents for, 65

section counter, 24, 25, 32, 33, 219, 851, 853
section key value (jurabib), 724, 731
section option (placeins), 58, 288
section commands, 22, 23

default behavior, 31
redefining, 29, 30

\section*, 23, 47 , 707, 747
listed in TOC, 47
(titlesec), 44

section-level tables of contents, 57, 58
sectionbib option

(bibunits), 752
(chapterbib), 747, 748, 749
(natbib), 707, 747

\sectionbreak (titlesec), 42, 43
\sectionmark, 33, 219, 230

(fancyhdr), 229
\sectlof (minitoc), 58
\sectlot (minitoc), 58
\secttoc (minitoc), 58
secttocdepth counter (minitoc), 58

\secundo (babel), 563
security, docstrip, 832
sed program, 573, 574, 775, 778

\see (makeidx), 652
see key/option (jurabib), 721

\seename (babel), 547
select function (bibtool), 782
select.non function (bibtool), 782

\selectfont, 345, 355, 410, 412, 413, 415, 417 , 419, 454
\selectlanguage (babel), 544, 545, 546, 571
semantic nest size errors, 919
semicolon (;), shorthand character, 554
seminar package, 596
SeparatedFootnotes option (parallel), 183
separator character, bibliography database, 761
serbian option (babel), 543
Series env. (tlc), 293
series BIBTEX field, 690, 763, 765
series, fonts, see fonts, series

1060 (S) Index of Commands and Concepts

\seriesdefault, 346, 417
serifed fonts, 332, 339
\setboolean (ifthen), 680, 875, 886
\setbox, 870

problems using, 870
\setcounter, 130, 131, 852, 853, 876

error using, 844, 906, 907
(calc), 871, 873

error using, 895
\setdefaultenum (paralist), 137
\setdefaultitem (paralist), 136, 137
\setdefaultleftmargin (paralist), 137
\setdepth (bar), 613
\setfnsymbol (footmisc), 116, 117
\setfootbox (layouts), 201
\sethebrew (babel), 568
\sethlcolor (soul), 92
\setkeys

(graphicx), 623, 624
(keyval), 623

\setlabelfont (layouts), 201, 203
\setlayoutscale (layouts), 200, 201, 203
\setlength, 855, 872

error using, 907
problems with, 507
(calc), 871, 872, 876

error using, 895
\setmarginsrb (vmargin), 203
\SetMathAlphabet, 352, 353, 436, 439, 903

error using, 897
\setminus, 530
\setnumberpos (bar), 613
setpage_prefix keyword (makeindex), 661
setpage_suffix keyword (makeindex), 661
\setpapersize (vmargin), 203
\setparametertextfont (layouts), 200, 201
sets and inclusion, math symbols, 533
sets and inclusion—negated, math symbols, 533
setspace package, 106–108, 204
\setstcolor (soul), 92
\setstretch

(bar), 613
(setspace), 107

\SetSymbolFont, 433, 435, 436, 437 , 439
warning using, 926

\settodepth, 855, 856
\settoheight, 855, 856
\settowidth, 280, 282, 850, 855, 856
\setul (soul), 92
\setulcolor (soul), 92
\setuldepth (soul), 92
\setxaxis (bar), 613
\setxname (bar), 613
\setxvaluetyp (bar), 613
\setyaxis (bar), 613

\setyname (bar), 613
\sf, 328, 347, 464

used in math, 349, 464
sf key value

(caption), 301, 306, 310, 311, 313, 316, 324
(subfig), 317

sf option (titlesec), 37
\sfdefault, 346, 373
\sffamily, 339, 341, 343, 344, 346, 351, 409, 464

problem with EC fonts, 355
used in math, 348, 350
(lucidabr), 410

sfixed size function, 426
sgen size function, 425
sgenb size function, 425
\sh (babel), 564
\shabox (shadow), 595, 596
shaded fonts, 334
shadow package, 595
shadow boxes, 595–597
\shadowbox (fancybox), 596, 597, 598
\shadowsize rigid length (fancybox), 596, 598
\shadowthickness (picins), 305
shalom fonts, 577
shape, document headings, 38
\shapedefault, 346, 417
shapes, fonts, see fonts, shapes
\sharp, 528
\Shilling (marvosym), 412
short key value (jurabib), 732
short option (rcsinfo), 839
short-title citations, 684, 715–745, see also citation

systems
annotations, 721, 740, 741, 742
author gender, 734, 735, 742
author information field, 743
author list separator, 736, 738
author-date format, combining, 732, 733
back reference information, 742
collections, 742
column layout, 739
configuration files, external, 741
cross-references, 732
customizing bibliography, 736, 737 , 738, 739–741
customizing citations, 735, 736
definition, 684
description, 715, 716
dissertation year, 742
edition information, 742
editor information, 742
endnote citations, 726, 727, 728
fonts, 736, 737
footnote citations, 726, 727 , 728
founder information, 742
full citations in running text, 723, 724–726

Index of Commands and Concepts (S) 1061

short-title citations (cont.)
ibidem citations, 728–731, 740
indentation, 738, 739
indexing citations automatically, 720, 721
last update field, 743
law support, 743, 744, 745
multi-language support, 733, 734, 735
page boundaries, ignoring, 729
page total field, 743
parentheses, 735
pre-notes, 721
punctuation, 738
sort order, 743
style files, 742, 743
superscripts, 735, 736, 743
title format, 719, 720
title information field, 743
title, mapping short to full, 721, 722, 723
translated works, 742
translator information, 743
URLs, 742, 743
volume title, 743

shortauthor BIBTEX field (jurabib), 717 , 718, 732, 743
\shortcite

(authordate1-4), 700
(chicago), 684, 699

\shortciteA (chicago), 699
\shortciteN (chicago), 699
\shortcites (natbib), 705
\shortdownarrow (stmaryrd), 534
shortext option (minitoc), 56
\shorthandoff (babel), 548, 549, 554, 557
\shorthandon (babel), 548

error using, 911
shorthands

language definition files, 589–591
language options, babel package, 550–558
multilingual documents, 547, 548, 549

\shortindexingoff (index), 681
\shortindexingon (index), 681
\shortleftarrow (stmaryrd), 534
\shortmid (amssymb), 535
\shortpage (tlc), 234
\shortparallel (amssymb), 535
\shortrightarrow (stmaryrd), 534
\shortstack, 108, 596, 601

(pspicture), 640
\shorttableofcontents (shorttoc), 55
shorttitle BIBTEX field (jurabib), 690, 717 , 718, 719, 722,

732, 743
\shorttoc (shorttoc), 55
shorttoc package, 55
\shortuparrow (stmaryrd), 534
shortvrb package, 152, 153, 816, 885
shortvrb.sty file (shortvrb), 827

\shoveleft (amsmath), 471, 472
\shoveright (amsmath), 471, 472
\show, 907, 932, 933, 934, 935

output produced from, 932–934
\showbox, 907, 944

output produced from, 944
\showboxbreadth, 943–945
\showboxdepth, 943–945
\showclock (ifsym), 404
\showcols (array), 249
showframe key/option (geometry), 210

\showgroups, available with eTEX, 906, 917
output produced from, 917

\showhyphens, 940
output produced from, 940

showidx package, 656, 680, 681
showkeys package, 68, 701

\showlists, 907, 919, 944, 945
output produced from, 944

\showoutput, 935, 937, 943, 944, 945
output produced from, 936, 937

\showpage (tlc), 203
\showprogress (docstrip), 828
showspaces key

(fancyvrb), 160, 164, 165
(listings), 171, 173

showstringspaces key (listings), 171
showtabs key

(fancyvrb), 160, 161
(listings), 171

showtags package, 778
\showthe, 907, 934, 935

error using, 902
output produced from, 934

\shrinkheight (supertabular), 257
si960 option (inputenc), 578
siam BIBTEX style, 793
side option (footmisc), 118, 119, 123
sidecap package, xxvii, 323–325

combined with caption, 323
\sidecaptionrelwidth (sidecap), 324
\sidecaptionsep (sidecap), 324
\sidecaptionvpos (sidecap), 324
\sideset (amsmath), 495
sideways env. (rotating), 297
sidewaysfigure env. (rotating), 291, 297 , 298, 308
sidewaysfigure* env. (rotating), 297
sidewaystable env.

(rotating), 291, 297 , 298, 308
(rotfloat), 298

sidewaystable* env.
(rotating), 297
(rotfloat), 298

sidewaysXMLexa env. (tlc), 298
sidewaysXMLexa* env. (tlc), 298

1062 (S) Index of Commands and Concepts

\Sigma, 527
\sigma, 527
\sim, 531, 532
\simeq, 532
simple key value

(caption), 310
(subfig), 320

\sin, 500, 506
single key value

(fancyvrb), 157–159
(listings), 173, 174

single-byte characters, encoding, 359, 360
singlelinecheck key/option

(caption), 309, 311
(subfig), 318

singlespace env. (setspace), 107
\singlespacing (setspace), 107
\sinh, 500
\SixFlowerOpenCenter (bbding), 403
size BIBTEX field (BibTexMng), 789
size of image, 620, 626
size11.clo file, 16, 144
sizing fonts, 342, 343
sizing, mathematical typesetting, 502, 503
\skip, 934
\skip23 length, 934
skip$ BIBTEX built-in function, 808, 810
\skip\footins length, 112, 113

(footmisc), 119, 120
(manyfoot), 124

\skip\footins〈suffix〉 length (manyfoot), 124
\sl, 347

used in math, 464
sl key value

(caption), 310
(fancyvrb), 156
(subfig), 319

sl option (titlesec), 37
slanted font, 333, 340
slantedGreek option

(ccfonts), 385
(cmbright), 386
(mathpazo), 378
(mathptmx), 376

\slash (soul), 90
\slashint (fourier), 392
\sldefault, 346
slides document class, 6
slope key (lettrine), 101
sloped option (fourier), 392, 393
sloped font, 333
\sloppy, 103
slovak option (babel), 543
slovene option (babel), 543

\slshape, 340, 341, 344, 346
used in math, 348, 350

\small, 144, 146, 342, 343, 480
small key value

(caption), 310, 311
(subfig), 318

small option
(eulervm), 398
(titlesec), 37

small caps
description, 334
French names, 563
in headings, 341

smallcaps key value (jurabib), 718, 719
\smaller (relsize), 84
\smallfrown (amssymb), 535
\smallint, 536
smallmatrix env. (amsmath), 487
\smallpencil (dingbat), 401
\smallsetminus (amssymb), 530
\smallskip, 857
\smallskipamount length, 857
\smallsmile (amssymb), 535
\smash (amsmath), 505, 506, 507
smashing, mathematical typesetting, 506, 507
\smile, 535
\Smiley (marvosym), 401
\Snow (ifsym), 405
\so (soul), 88, 89, 90, 91
\sobf (tlc), 91
\sodef (soul), 90, 91
software information, see help resources
software release control, 836
Sonny option (fncychap), 34
SORT BIBTEX command, 807
sort option

(cite), 695
(natbib), 704, 714

sort order
bibliographies, 764, 806
citations in bibliographies

author-number citation system, 714
number-only citation systems, 693, 694, 695, 714
short-title citation system, 743

indexes
French words, 670
German words, 657, 668, 670
letter-by-letter, 657, 668
non-English words, 670
page numbers, 657, 664, 678, 679
roman numerals, 666
spaces, 666
Spanish words, 670
special cases, 667
symbols, 666, 667

Index of Commands and Concepts (S) 1063

sort order (cont.)
troubleshooting, 665, 666
xindy rules, 673, 677

sort-rule function (xindy), 675
sort.format function (bibtool), 779
sort.key$ BIBTEX built-in function, 807
sort&compress option (natbib), 714
\SortIndex (doc), 822
sorting, bibliographies, 779, 780
sortkey BIBTEX field, 772

(jurabib), 743, 764
\SortNoop, 769, 772

(tlc), 771, 772
soul package, xxvi, 88–92

combined with color, 88, 92
error using, 902
nesting commands, 90

\soulaccent (soul), 89
\soulomit (soul), 90
\soulregister (soul), 89
\source (camel), 744
source control, 836, 837 , 838, 839
source files, see also documents

specifying, 826, 827
splitting, 18, 19, 20

source line, finding, 890–894
source2e.tex file, 834–836
\sout (ulem), 87
\space

use in .fd file, 432
use in \DeclareFontShape, 422
use in \DeclareFontEncoding, 430

space key value (caption), 310
space option (cite), 695, 696
space compression, indexes, 650, 655, 666, 669
space parameters

defining new, 854
description, 854
horizontal space commands, 856, 857
setting, 855, 856
vertical space commands, 857, 858, 859, 860

\spacefactor, 944
error using, 902, 914

spaces
around/within citations, 695
doc package, 815
in bibliography databases, 761
in indexes, 666

spaces option (url), 95
\spaceskip length, 105, 429

(ragged2e), 105
spacing

after macro names, 80, 81
after punctuation, multilingual documents, 564
columns, 247, 248

spacing (cont.)
document headings, see document headings, spacing
equations, 479, 480, 481
float captions, 312, 317
floats, 285
footnotes from text, 112
headed lists, 141
horizontal, mathematical typesetting, 507, 508
interword, 102, 103
leading, 106, 107 , 108, 343, 373
letterspacing, 88–92
math symbols, 525, 526, 528, 529
mathematical typesetting, 502, 503, 505, 506, 507
multipage tables, 261
table rows, 244, 245, 269, 271
tables of contents, 48
typed text, 159

spacing env. (setspace), 107
\spadesuit, 528
spanish option (babel), 543, 554, 557, 558
Spanish words, index sort order, 670
spanning, table rows, 272, 273, 274, 282

\spbreve (amsxtra), 495
\spcheck (amsxtra), 495
\spdddot (amsxtra), 495
\spddot (amsxtra), 495
\spdot (amsxtra), 495
\special, 8, 9, 593, 594, 608, 626, 638, 639, 979, 980

(hyperref), 78
special characters, 345, see also entries for specific

characters; math symbols; text symbols
cross-reference restrictions, 66
in bibliography database, 768, 769
in URLs, e-mail addresses, etc., 93
index sort order, 666, 667
indexes, 652, 653, 654, 662
multilingual documents, 552
typed text, 152, 153

\SpecialEnvIndex (doc), 823
\SpecialEscapechar (doc), 822
\SpecialIndex (doc), 823
\SpecialMainEnvIndex (doc), 823
\SpecialMainIndex (doc), 823
\specialrule (booktabs), 271, 272
\SpecialUsageIndex (doc), 823
\sphat (amsxtra), 495
\sphericalangle (amssymb), 528
\SpinDown (ifsym), 405
\SpinUp (ifsym), 405
\spline

(eepicemu), 611
(eepic), 610

split env. (amsmath), 469, 473, 474, 478
error using, 895–898

\splitfootnoterule (footmisc), 119

1064 (S) Index of Commands and Concepts

\SplitNote (manyfoot), 123, 124
splitrule option (footmisc), 119
splitting material across pages, see floats
splitting, document headings, 23
\sptilde (amsxtra), 495
\sqcap, 530
\sqcup, 530
\sqrt, 493, 499, 505, 506

(amsmath), 476, 477 , 504
\sqrtsign, 498, 499

(bm), 512
\sqsubset

(amssymb), 533
(latexsym), 464

\sqsubseteq, 533
\sqsupset

(amssymb), 533
(latexsym), 464

\sqsupseteq, 533
\square (amssymb), 528, 529
square key/option (jurabib), 735
square option (natbib), 706, 712
\SquareShadowC (ifsym), 405
squiggle program, 646
\SS, 457
\ss, 345, 459

shape in EC fonts, 355
(yfonts), 395

\ssearrow (stmaryrd), 534
ssedition BIBTEX field (jurabib), 736, 743
\sslash (stmaryrd), 530
ssub size function, 426
ssubf size function, 426
\sswarrow (stmaryrd), 534
\st (soul), 88, 89, 92
stable option (footmisc), 120
stack$ BIBTEX built-in function, 808
\stackrel, 489, 495
stacks

list stack, displaying, 944
macro stack, displaying, 892
parameter stack size errors, 918, 919

stand-alone indexes, 659–662
standard input/output files, indexes, 655, 668
standard-baselineskips option

(ccfonts), 385
(cmbright), 386

\StandardLayout (babel), 565
StandardModuleDepth counter (doc), 824
\star, 136, 495, 530
\startcontents (titletoc), 64, 65, 66
\StartFinalBibs (chapterbib), 748, 749
starting page number, setting for index, 657, 662
\StartShownPreambleCommands (tlc), 163
\STATE (algorithmic), 168

\stcfont (minitoc), 58
\stcindent (minitoc), 58
\stctitle (minitoc), 58
stealing sheep, see letterspacing
\stepcounter, 748, 849, 851, 852, 876
stepnumber key

(fancyvrb), 160
(listings), 172

stepping through documents, 945, see also troubleshooting
stmaryrd package, 498, 524–537
\stockdesign (layouts), 202
\stockdiagram (layouts), 202
\stop, 894, 914, 921

(nfssfont.tex), 369
\stopcontents (titletoc), 65
\StopEventually (doc), 816, 817, 822, 835
\StopShownPreambleCommands (tlc), 163
\StopWatchEnd (ifsym), 404
\StopWatchStart (ifsym), 404
straight key (titlesec), 44, 45
\stretch, 856, 857, 858
strict key value (jurabib), 728, 730, 731, 735
strictdoublepage key value (jurabib), 729, 730
\string, 591, 833, 933

(docstrip), 829
STRINGS BIBTEX command, 805, 807
strings, bibliographies

creating, 769, 770
defaults, 771
searching all entries for, 775, 777, 778
searching keys for, 775

stringstyle key (listings), 170
stripping comments from source file, see comments,

stripping
\StrokeFive (ifsym), 405
\strut, 273, 506, 507

(sidecap), 325
.sty file extension, 6, 8, 16
style key/option (caption), 312, 313
style files, see also configuration files

indexes
MakeIndex, 658–665
specifying, 658
xindy, 673–679

short-title citation system, 742, 743
style files, bibliographies

citation scheme, selecting, 800, 801
creating, 798–804
description, 790
editing, 805–812
extensions supported, determining, 802, 803
fields, adding new, 810, 811
formatting, specifying, 803, 804
initializing the system, 799, 800
list of, 791–793

Index of Commands and Concepts (S) 1065

style files, bibliographies (cont.)
modifying, 805–812
multi-language support, adding, 811, 812
style language, 805–812

style language, bibliographies
blanks, 805
built-in functions, 805, 807, 808
case changes, disabling, 809, 810
commands, 805, 807, 808
entry variables, 805
field variables, 805
fields, adding new, 810, 811
global variables, 805
multi-language support, adding, 811, 812
process flow, 806–809
sort order, 806
variables, types of, 805

styles, author-date citation system, 710
sub size function, 425
sub-captions, 315, 316–319, 320, 321
sub-figures, 316, 319, 321
sub-formulas, mathematical typesetting, 503, 504
sub-numbering float captions, 321, 322, 323
sub-tables, 316, 318
sub〈type〉 counter (subfig), 318
subarray env. (amsmath), 487, 488
\subchapter (tlc), 44, 45
subequations env. (amsmath), 484, 485
subf size function, 426
subfig package, xxvi, 309, 315–321
subfigure counter (subfig), 318
subfigure package, 315
subfigures env. (subfloat), 321, 322
\subfiguresbegin (subfloat), 321
\subfiguresend (subfloat), 321
\subfloat (subfig), 315, 316, 318, 319, 320
subfloat package, xxvi, 321–323
subfloatfigure counter (subfloat), 322
subfloatfiguremax counter (subfloat), 322
subfloattable counter (subfloat), 322
subfloattablemax counter (subfloat), 322
\subitem, 679, 680
\subparagraph, 23, 24, 25

(minitoc), 57
subparagraph counter, 24, 851
\subparagraph*, 23
subparens key value (subfig), 320
\subref (subfig), 318, 319, 320
\subref* (subfig), 319
subscripts, limiting positions, 491, 492
\subsection, 22, 23, 24, 25, 26, 29, 47 , 223

(minitoc), 57, 58
(titleref), textual reference to, 77
(titlesec), 37

subsection counter, 24–26, 851, 853

\subsection*, 23
subsectionbib option (bibunits), 752

\subsectionmark, 230
(fancyhdr), 229

subsections, referencing, 25, 26
\Subset (amssymb), 533
\subset, 533
subset BIBTEX style (aux2bib), 775
subset.bib file (makebib), 776

\subseteq, 491, 533
\subseteqq (amssymb), 533
\subsetneq (amssymb), 533
\subsetneqq (amssymb), 533
\subsetplus (stmaryrd), 533
\subsetpluseq (stmaryrd), 533
subsimple key value (subfig), 320

\substack (amsmath), 487, 488
substring$ BIBTEX built-in function, 808, 812

\subsubitem, 679
\subsubsection, 23

(minitoc), 57, 58
(titlesec), 37

subsubsection counter, 24, 851, 853
\subsubsection*, 23
subtables env. (subfloat), 321, 322

\subtablesbegin (subfloat), 321
\subtablesend (subfloat), 321
\succ, 532
\succapprox (amssymb), 532
\succcurlyeq (amssymb), 532
\succeq, 531, 532
\succnapprox (amssymb), 532
\succneqq (amssymb), 532
\succnsim (amssymb), 532
\succsim (amssymb), 532
\sum, 398, 496, 536

sub/superscript placement on, 491, 492
(relsize), using larger symbol, 85

sumlimits option (amsmath), 491
summary tables of contents, 55

\Summit (ifsym), 405
\Sun (ifsym), 405
\SunCloud (ifsym), 405
\sup, 500
super key/option (jurabib), 726, 727–731, 734, 735
super option

(cite), 696, 697, 756
problems using, 697

(natbib), 713, 714
superscript option (cite), 696, 697
superscript footnote marks, 113, 114
superscriptedition key/option (jurabib), 735, 736, 743
superscripts

above Relation symbols, 495
limiting positions, 491, 492

1066 (S–T) Index of Commands and Concepts

superscripts (cont.)
number-only citation systems, 696, 697
short-title citation system, 735, 736, 743

supertabular env. (supertabular), 256, 257 , 258–261, 263
supertabular package, 256–259, 261

combined with caption, 257, 262
supertabular* env. (supertabular), 256, 258, 261
\supminus (tlc), 501
\suppressfloats, 33, 287
suppressing numbers, document headings, 22, 23, 24
\Supset (amssymb), 533
\supset, 533
\supseteq, 533
\supseteqq (amssymb), 533
\supsetneq (amssymb), 533
\supsetneqq (amssymb), 533
\supsetplus (stmaryrd), 533
\supsetpluseq (stmaryrd), 533
\surd, 528
SVG (Scalable Vector Graphics), 646, see also PDF;

PostScript
portable Web graphics, 644, 645
transforming LaTEX documents to, 645

svgview program, 646
\swabfamily (yfonts), 394, 395
swap$ BIBTEX built-in function, 808
\swapnumbers (amsthm), 140
\swarrow, 534
swedish option (babel), 543, 559
switch key value (jurabib), 736, 743
switch option (lineno), 181
switch* option (lineno), 181
\sym (euro), 98
\symbol, 345, 408, 654

warning using, 925, 945
symbol option (footmisc), 116, 117 , 726
symbol classes, 524–526, 528, 529
symbol* option (footmisc), 116, 121
symbols, see math symbols; special characters; text

symbols
symmetrical page layout, 208, 209
syntax diagrams, creating, 834
syntax, error messages, 890
sz syntax (yfonts), 395

T

\t, 362, 459
problem with textcomp, 364
(textcomp), 363

t syntax
(delarray), 489
(hhline), 266, 267

T1 font encoding, 337, 345, 353–357, 366, 416, 417 , 420,
421, 430, 442, 449, 450–452, 902

comparison with OT1, 346
extensions, 566, 567
hyphenation in, 427 , 902
list of LICR objects, 455–463
problem with EC fonts, 355
shape of ß, 355
(avant), 372
(babel), 552, 557, 566, 567, 590
(bookman), 372
(ccfonts), 383, 384
(chancery), 372
(charter), 372
(cmbright), 385, 386
(courier), 372
(fontenc), 361
(fourier), 391, 392
(helvet), 372
(luximono), 387 , 388
(newcent), 372
(nfssfont.tex), 369
(palatino), 372
(pxfonts), 391
(textcomp), 362, 365
(times), 372
(txfonts), 388, 389
(url), 95
(utopia), 372

T1 option (fontenc), 361, 365, 386, 387 , 417 , 438, 567 , 902
\T1/cmr/m/it/10, 900
\T1/cmr/m/n/10, 936
t1enc.def file, 450–452
t1put.fd file, 420
T2A font encoding, 355, 366, 416, 417 , 569, 571, 572, 906

(fontenc), 361
T2A option (fontenc), 361, 417 , 570
T2B font encoding, 355, 416, 569, 573, 906
T2C font encoding, 355, 416, 569, 573
T3 font encoding, 416

(tipa), 405, 406
T4 font encoding, 416
T5 font encoding, 416
T7 font encoding, 416, 574
\TAB’ (Tabbing), 242
\TAB= (Tabbing), 242
\TAB> (Tabbing), 242
Tabbing env. (Tabbing), 242
Tabbing package, 242
tabbing env., 240, 241, 242, 445

error using, 895, 908, 910, 912
\tabbingsep rigid length, 241
\tabcolsep rigid length, 243, 247, 248, 250, 280, 282
tabhead option (endfloat), 290
\table (nfssfont.tex), 369

Index of Commands and Concepts (T) 1067

table counter, 851
(longtable), 259

table env., 109, 262, 291, 306, 308
cross-reference to, 66, 67
error using, 899, 902, 907
floats to end of document, 289
labels in, 67
style parameters, 284–286
warning using, 925
(float), 294, 295
(multicol), not supported, 189
(rotfloat), 298
(subfig), 318, 320

table option (euro), 97
table lists

in tables of contents, 48
options, 290
placing at end of document, 289–291

table* env. (multicol), 189
\tablecaption (supertabular), 257 , 258
\tablefirsthead (supertabular), 256, 257, 258
\tablehead (supertabular), 256, 257 , 258
\tablelasttail (supertabular), 257 , 258
\tablename (babel), 547
tablenotes env. (threeparttable), 278, 279
\tableofcontents, 22, 46, 47 , 52, 54, 55, 166, 222

(minitoc), 56
(shorttoc), 55
(titletoc), 60

\tableplace (endfloat), 290
tables

accents, 241, 242
across page boundaries, 255, 256, 257, 258, 259,

260, 261, 262, 263, 264
alignment, horizontal, 261
alignment, vertical, 246, 273, 274
balancing white space, 279, 280
coloring, 264, 265
column specifiers, defining, 248, 249
columns

global changes, 245, 248, 249
laying out, 240–243
modifying style, 248, 249
narrow, 246, 247
one-off, 248, 249
spacing, 247, 248
width, calculating automatically, 251–254, 255,

282
width, calculating explicitly, 249, 250, 251

decimal data, aligning, 272, 274, 275, 276
floats, 315–321
fonts, specifying, 244, 245
footnotes, 263, 277, 278, 279
hyphenation, 246
inside tables, 280, 281

tables (cont.)
line breaks, 247
multipage

and floats, 262–264
captions, 257, 262
creating with longtable, 259, 260, 261, 262–264
creating with supertabular, 256, 257, 258, 259
footnotes, 263
headers and footers, 256, 257, 261
horizontal alignment, 261
page breaks, 257
problems with, 263, 264
reducing run numbers, 263
row commands, 261
spacing around, 261
width, 258, 259, 260, 261, 262, 263, 264

paragraph options, 245, 246
preamble commands/options, 243–248, 254
rows

laying out, 242, 243
spacing, 244, 245, 269, 271
spanning, 272, 273, 274, 282

rules (graphic lines)
colored, 265
combining horizontal and vertical, 266, 267
dashed, 267, 268
double, 269
formal, 269, 270, 271, 272
variable width, 266
vertical, 266, 267, 269

standard environments, 240–243
style parameters, 243
\verb support, 255
visual appearance, 243
width

balancing white space, 279, 280
calculating automatically, 251–254, 255, 282
calculating explicitly, 249, 250, 251
multipage, 258, 259, 260, 261, 262, 263, 264
stretching, 246

tables of contents, see also minitoc package; titlesec
package

adding bibliography to, 48
adding index to, 48, 681
adding lists of figures/tables to, 48
at part or section level, 57, 58
combining, 52, 53, 54
description, 45
entering information into, 46, 47 , 48, 49
formatting, 59–64
generating, 46
indentation, 50, 51, 59
leaders, 59
multiple, 54, 55, 56–58
nesting levels, 50

1068 (T) Index of Commands and Concepts

tables of contents (cont.)
number width, 51
numberless, 59
optional code execution, 59, 60
paragraph format, 62, 63, 64
partial, 64, 65, 66
spacing, 48
summary, 55
text alignment, 60, 61, 62
typesetting, 49, 50, 51, 52
unusual number formats, 52

\tablesection (endfloat), 290
tablesfirst option (endfloat), 290
\tabletail (supertabular), 257 , 258
\tablinesep rigid length (tabls), 269
tablist option (endfloat), 290
tabls package, 269

incompatible with array, 269
tabs, displaying, 160, 161
tabsize key (fancyvrb), 160, 161
tabular env., 103, 104, 106, 240, 242, 243–251, 264–282,

630, 863, 929
error using, 893, 898, 901, 904–906
footnotes in, 277
style parameters, 243
(array), 244–249, 266, 274, 280, 281

with color, 264
(arydshln), 268
(booktabs), 270, 272
(colortbl), 265
(dcolumn), 275, 276
(hhline), 267
(multirow), 273, 274
(sidecap), 325
(tabls), 269
(threeparttable), 278

tabular key value (jurabib), 739
tabular* env., 242, 255, 273, 279

(array), 246, 250, 280
tabularc env. (tlc), 250
\tabularnewline, 104, 246, 247 , 249, 250, 252, 261
tabularx env. (tabularx), 251, 252, 253, 255, 277, 279, 282
tabularx package, 250, 251–253
\tabularxcolumn (tabularx), 252
tabulary env. (tabulary), 253, 254, 255
tabulary package, 251, 253–255
tabwindow env. (picinpar), 108
\tag (amsmath), 472, 482

error using, 906, 910
\tag* (amsmath), 482
\tagcurve (curves), 612
tags (equation), 469

definition, 468
numbering equations, 482
placement, 483, 484

\tala (babel), 562, 563
\talloblong (stmaryrd), 530
\tan, 500
\tanh, 500
\Taschenuhr (ifsym), 404
\tau, 527
\tbinom (amsmath), 493
tbtags option (amsmath), 473, 474
tcidvi option (graphics), 615
TDS conforming installation, ensuring, 830–833
technical indexes, 667
techreport BIBTEX entry type, 763
\Telephone (ifsym), 405
\Tent (ifsym), 405
terminal trace display, 943
\tertio (babel), 563
testpage.tex file, 197
.tex file extension, 6, 8
TEX and LaTEX, summary list files, 8
TeX capacity exceeded errors, 915–919
TEX files, obtaining

CD-ROM, 948, 949
ftp, 948, 950–953
web access, 949, 950

TEX font metric files, 7
TEX, encoding, 353
tex.bib file (tlc), 690, 691, 777
tex.define function (bibtool), 783
tex_def.rsc file (bibtool), 783
texdoc program, 954, 955
texdoctk program, 954, 955
texindy program, 668–672, 673
texmf.cnf file, 915
texpicture package, 639, 640
text, see also fonts

alignment, tables of contents, 60, 61, 62
case, changing, 85, 86, 87
emphasizing, see italic; underlining
mathematical typesetting, 499–501
style, document headings, 28, 30, 31, 37
typed, see typed text
wrapping around images, 108, 109

\text
(amsmath), 467, 472, 476–478, 484, 486, 499, 508
(amstext), 351, 529
(nfssfont.tex), 369

text area, 207
text fragments, typesetting, 467
text input levels errors, 919
text input, encoding, 445–447
text length, see space parameters
text markers, floats, 290, 291
text symbols, see also math symbols; special characters

€ (euro symbol), 407–412
backward compatibility, 463, 464

Index of Commands and Concepts (T) 1069

text symbols (cont.)
clocks, 403, 404, 405
clouds, 403, 404, 405
encoding

Pi fonts, 378, 379–381
PostScript, 388, 389, 390
TS1, 362, 363–368

hands, 400, 401
IPA, 406, 407
MarVoSym font, 401, 403
mountains, 403, 404, 405
TIPA, 405–407
Waldi’s font, 401
Zapf Dingbats, 378–380

an alternative, 403, 404
text.length$ BIBTEX built-in function, 808
text.prefix$ BIBTEX built-in function, 808
\textacutedbl (textcomp), 364, 459
\textascendercompwordmark (textcomp), 365, 459
\textasciiacute (textcomp), 364, 459
\textasciibreve (textcomp), 364, 459
\textasciicaron (textcomp), 364, 459
\textasciicircum, 459
\textasciidieresis (textcomp), 364, 459
\textasciigrave (textcomp), 154, 364, 459
\textasciimacron (textcomp), 364, 459
\textasciitilde, 459
\textasteriskcentered, 128

(textcomp), 363, 459
\textbackslash, 339, 459, 654
\textbaht (textcomp), 363, 459
\textbar, 459
\textbardbl (textcomp), 363, 459
\textbf, 340, 344, 346, 407, 408, 438, 874

used in math, 351
(cmbright), 408
(lucidabr), 410
(soul), 89
(ulem), replaced by \uwave, 87
(yfonts), 394

\textbigcircle (textcomp), 364, 459
\textblack (fourier), 393
\textblank (textcomp), 364, 459
\textborn (textcomp), 364, 366, 367 , 384, 389, 390, 459
\textbraceleft, 459
\textbraceright, 459
\textbrokenbar (textcomp), 363, 459
\textbullet, 63, 128, 136, 364, 365

(textcomp), 363, 364, 365, 459
\textcapitalcompwordmark (textcomp), 365, 459
textcase package, 85–87
\textcelsius (textcomp), 363, 459
\textcent, 446

(textcomp), 363, 459
\textcentoldstyle (textcomp), 363, 459

\textcircled, 362, 453
problem with textcomp, 364
(textcomp), 363, 459

\textcircledP (textcomp), 363, 459
\textcolonmonetary (textcomp), 363, 460
\textcolor (color), 157 , 264, 599, 695, 696
textcomp package, 89, 362–368, 388, 453–455

error using, 889, 895, 910
unusable with ae, 356

textcomp.cfg file (textcomp), 367
\textcompsubstdefault (textcomp), 366, 367 , 910
\textcompwordmark, 365, 460

(textcomp), 365
\textcopyleft (textcomp), 363, 367 , 460
\textcopyright (textcomp), 363, 460
\textcurrency (textcomp), 362, 363, 460
\textcyrillic (babel), 568
\textdagger (textcomp), 363, 364, 460
\textdaggerdbl (textcomp), 363, 460
\textdblhyphen (textcomp), 364, 460
\textdblhyphenchar (textcomp), 364, 460
\textdegree (textcomp), 363, 460
\textdied (textcomp), 364, 384, 389, 390, 460
\textdiscount (textcomp), 363, 460
\textdiv (textcomp), 363, 460
\textdivorced (textcomp), 364, 460
\textdollar, 366, 454, 460

(pxfonts), problems with, 390
(textcomp), 363
(txfonts), problems with, 389

\textdollaroldstyle (textcomp), 363, 366, 384, 389, 390,
460

\textdong (textcomp), 363, 460
\textdownarrow (textcomp), 363, 460
\texteightoldstyle (textcomp), 363, 460
\textellipsis, 81, 460
\textemdash, 460
\textendash, 128, 443, 460
\textepsilon (tipa), 406
\textestimated (textcomp), 363, 460
\texteuro, 408, 453

faked, 922
(luximono), 387
(textcomp), 97 , 362, 363, 368, 384, 389, 390, 407 ,

408, 460
\textexclamdown, 443, 460
\textfiveoldstyle (textcomp), 363, 460
\textfloatsep length, 285, 286
\textflorin (textcomp), 363, 460
textfont key/option

(caption), 310, 311, 313, 324
(subfig), 316

\textfouroldstyle (textcomp), 363, 460
\textfraction, 284, 287
\textfractionsolidus (textcomp), 364, 460

1070 (T) Index of Commands and Concepts

\textfrak (yfonts), 90, 394
\textgoth (yfonts), 394
\textgravedbl (textcomp), 364, 460
\textgreater, 460
\textgreek (babel), 568
\textguarani (textcomp), 363, 460
\textheight rigid length, 16, 194–196, 197 , 198, 208, 234,

287, 326, 373, 872, 888, 930
(fancybox), 597
(geometry), 207
(lscape), 212
(supertabular), 256

textheight key/option (geometry), 207, 211
\textifsym (ifsym), 405
\textifsymbol (ifsym), 405
\textinit (yfonts), 396
\textinterrobang (textcomp), 364, 460
\textinterrobangdown (textcomp), 364, 460
\textipa (tipa), 406
\textit, 340, 344, 346, 407

used in math, 351
(lucidabr), 410
(yfonts), 394

\textlangle (textcomp), 363, 460
\textlarger (relsize), 84
\textlatin (babel), 568
\textlbrackdbl (textcomp), 363, 460
\textleaf (textcomp), 364, 460
\textleftarrow (textcomp), 363, 460
\textless, 460
\textlira (textcomp), 97 , 363, 460
\textlnot (textcomp), 363, 461
\textlquill (textcomp), 363, 461
\textmarried (textcomp), 364, 384, 389, 390, 461
\textmd, 340, 344, 346
\textmho (textcomp), 363, 461
\textminus (textcomp), 363, 461
\textmu (textcomp), 363, 461
\textmusicalnote (textcomp), 364, 461
\textnaira (textcomp), 363, 461
\textnineoldstyle (textcomp), 363, 461
\textnormal, 166, 167 , 339, 344
\textnumero (textcomp), 364, 367 , 461
\textogonekcentered, 461
\textohm (textcomp), 363, 367, 368, 461
\textol (babel), 568
\textonehalf, 446

(textcomp), 363, 461
\textoneoldstyle (textcomp), 363, 461
\textonequarter (textcomp), 363, 461
\textonesuperior (textcomp), 363, 461
\textopenbullet (textcomp), 363, 461
\textordfeminine (textcomp), 363, 461
\textordmasculine (textcomp), 363, 461
\textormath (babel), 446, 590, 591

\textparagraph (textcomp), 363, 364, 461
\textperiodcentered, 99, 128, 183

(textcomp), 363, 461
\textpertenthousand

problems in T1, 417
(textcomp), 363, 461

\textperthousand
problems in T1, 417
(textcomp), 363, 461

\textpeso (textcomp), 363, 461
\textpilcrow (textcomp), 363, 367 , 461
\textpm (textcomp), 363, 461
\textprimstress (tipa), 406
\textquestiondown, 461
\textquotedbl, 461
\textquotedblleft, 461
\textquotedblright, 461
\textquoteleft, 461
\textquoteright, 461
\textquotesingle (textcomp), 154, 364, 461
\textquotestraightbase (textcomp), 364, 461
\textquotestraightdblbase (textcomp), 364, 461
\textrangle (textcomp), 363, 461
\textrbrackdbl (textcomp), 363, 461
\textrecipe (textcomp), 364, 461
\textreferencemark (textcomp), 363, 461
\textregistered, 453

(textcomp), 363, 461
\textrightarrow (textcomp), 363, 462
\textrm, 339, 344, 346, 351

used in math, 351
\textroundcap (tipa), 406
\textrquill (textcomp), 363, 462
\textsb (fourier), 393
\textsc, 340, 341, 344, 346, 858

used in math, 351
(fourier), 393
(relsize), 84

\textscale (relsize), 84
\textschwa (tipa), 406
\textsection (textcomp), 363, 462
\textservicemark (textcomp), 363, 462
\textsevenoldstyle (textcomp), 363, 462
\textsf, 339, 344, 346, 370, 407 , 418, 850

used in math, 351
\textsfbf (tlc), 89
\textsixoldstyle (textcomp), 363, 462
\textsl, 340, 344, 346, 408

used in math, 351
(cmbright), 408

\textsmaller (relsize), 84
\textsterling, 98, 454, 462

(pxfonts), problems with, 390
(textcomp), 363
(txfonts), problems with, 389

Index of Commands and Concepts (T) 1071

\textstyle, 432, 494, 502
(relsize), 84

\textsuperscript, 113, 126, 693, 861, 873
\textsurd (textcomp), 363, 462
\textswab (yfonts), 394
\TextSymbolUnavailable, 446
\textthreeoldstyle (textcomp), 363, 462
\textthreequarters (textcomp), 363, 462
\textthreequartersemdash (textcomp), 364, 462
\textthreesuperior (textcomp), 363, 462
\texttildelow (textcomp), 364, 462
\texttimes (textcomp), 363, 462
\texttrademark (textcomp), 363, 462
\texttt, 339, 344, 346, 387 , 407 , 874

used in math, 351
(cmbright), 408

\texttwelveudash (textcomp), 364, 462
\texttwooldstyle (textcomp), 363, 462
\texttwosuperior (textcomp), 363, 462
\textunderscore, 462
\textup, 142, 143, 340, 344, 346
\textuparrow (textcomp), 363, 462
\textupsilon (tipa), 406
Textures program, 614, 615
textures option

(changebar), 189
(graphics), 614, 615

\textvisiblespace, 96, 462
\textwidth rigid length, 181, 194, 196, 197, 199, 226, 871,

872, 888
(fancybox), 597
(fancyhdr), 224
(longtable), 261
(lscape), 212

textwidth key/option (geometry), 207, 211
\textwon (textcomp), 363, 462
\textyen (textcomp), 363, 462
\textzerooldstyle (textcomp), 363, 462
.tfm file extension, 7, 8, 327, 340, 343, 413, 428, 429, 900
\tfrac (amsmath), 493, 494
\tg (babel), 564
\TH, 457
\th, 462

(babel), 564
\the, 131, 387 , 855, 856, 935

error using, 902
\the〈ctr〉, 853
thebibliography env., 22, 222, 686, 687 , 689, 691, 692,

699, 745, 809
listed in TOC, 47
warning using, 921
(bibunits), 752
(chapterbib), 747
(natbib), 707, 709

\thebtauxfile (bibtopic), 754

\thechapter, 25, 219, 854
(chappg), 216
(chapterbib), 748, 749

\theCodelineNo (doc), 824
\thecontentslabel (titletoc), 59, 60, 61, 64
\thecontentspage (titletoc), 59, 60, 63, 64
\theendnote (endnotes), 126
\theendnotes (endnotes), 125, 126, 728
\theenmark (endnotes), 126
\theenumi, 129, 130, 854
\theenumii, 129, 130, 854
\theenumiii, 130, 854
\theenumiv, 130, 854
\theequation, 14, 71, 482, 854

(amsmath), 485
\theFancyVerbLine (fancyvrb), 160
\thefigure, 47

(subfloat), 322
\thefootnote, 110, 277
theglossary env., 653
theindex env., 22, 222, 649, 679, 680

listed in TOC, 48
\thelstlisting (listings), 174
\themainfigure (subfloat), 322
\themaintable (subfloat), 322
\themnote (tlc), 121
\thempfootnote, 110, 277
theorem package, 140
theorem-like structures, 138–144, 467, see also headed

lists
\theoremstyle (amsthm), 140, 142, 143
\thepage, 215, 216, 217, 223, 228, 231–233, 876

(chappg), 216
\theparentequation (amsmath), 485
\thepart, 853
\thepostfig (endfloat), 290
\theposttbl (endfloat), 290
\therefore (amssymb), 535
\Thermo (ifsym), 404, 405
\thesection, 25, 26, 217, 219, 853
thesis document class, 20

\thesub〈type〉 (subfig), 318
\thesubfloatfigure (subfloat), 322
\thesubfloattable (subfloat), 322
\thesubsection, 25, 26, 853
\thesubsubsection, 853
\thesubtable (subfig), 318, 319
\Theta, 496, 527
\theta, 475, 527
\thetable (subfig), 319
\thetitle (titlesec), 37
\theTitleReference (titleref), 77
\thevpagerefnum (varioref), 74, 75
\thickapprox (amssymb), 532

1072 (T) Index of Commands and Concepts

\Thicklines
(eepicemu), 611
(eepic), 609, 610

\thicklines, 596, 607 , 611
(eepic), 609, 610
(epic), 602–604
(pspicture), 640, 641

\thickmuskip length, 507, 525, 526
\thicksim (amssymb), 532
\thickspace (amsmath), 507, 508
\thinlines, 596

(epic), 602, 604
(pspicture), 640, 641

\thinmuskip length, 507, 525, 526
\thinspace, 507, 508
\thisfancypage (fancybox), 599
\thisfancyput (fancybox), 599
\thisfancyput* (fancybox), 599
\thispagestyle, 33, 222, 230, 679, 680

(fancyhdr), 230
(nextpage), 236

thm env. (tlc), 139, 140
\thmname (amsthm), 142, 143
\thmnote (amsthm), 142, 143
\thmnumber (amsthm), 142, 143
threeparttable env. (threeparttable), 278, 279
threeparttable package, xxvi, 278, 279
.tif file extension, 8, 626
tight option

(minitoc), 56
(shorttoc), 55

\tilde, 529
tilde (~)

multilingual aspects, 554
nonbreaking space, 550

\time, 871, 873
\times, 392, 490, 496, 530

dots with, 496
times option (quotchap), 35
times package, 370, 371
Times Roman font

alternative support, 388, 389, 390, 516
description, 375
in math and text, 376, 377 , 389, 390, 516, 517

\tiny, 172, 342, 343
tiny option (titlesec), 37
tipa package, xxvii, 405–407, 416
tipaman file (tipa), 407
\title, 907
title BIBTEX field, 690, 732, 743, 763, 765, 768, 772, 779

(jurabib), 717 , 718, 719, 722
title width, measuring in document headings, 41
titleaddon BIBTEX field (jurabib), 743
\titleclass (titlesec), 44, 45
\titlecontents (titletoc), 59, 60, 61, 62, 63, 64

\titlecontents* (titletoc), 62, 63–65
\titleformat (titlesec), 38, 40–45, 65, 91, 92
titleformat key/option (jurabib), 716, 720, 721, 734,

735, 741
\titleformat* (titlesec), 37
\titlelabel (titlesec), 37
\titleline (titlesec), 42
\titleline* (titlesec), 42
titlepage env., 858
\titleref (titleref), 76, 77
titleref package, 76, 77
\titlerule

(titlesec), 41, 42
(titletoc), 59, 61

\titlerule*
(titlesec), 41, 42
(titletoc), 61

titles, bibliographies
format, 719, 720
information field, 743
mapping short to full, 721, 722, 723

titles, bibliography database, 768
titlesec package, xxvii, 36–45, 65, 224, see also document

headings; titletoc package
\titlespacing (titlesec), 38, 39, 40, 41, 42, 43, 44, 45
\titlespacing* (titlesec), 40, 65, 91, 92
titletoc package, xxvii, 56, 58–66, see also minitoc package;

titlesec package
\titlewidth rigid length (titlesec), 41, 42
Tk program, 954
tlc package, 983
tlc2.err file (tlc2), xxvii
TM Math font, 517
tmargin key/option (geometry), 206, 208
\tnote (threeparttable), 278
\to, 491, 492, 501, 534
TOC, see tables of contents
.toc file extension, 7, 8, 23, 32, 33, 46, 47, 49, 54, 445

(chapterbib), 749
(titletoc), 58, 60

tocbibind package, 48, 681
tocdepth counter, 27, 49, 50, 52, 55, 61, 63, 64, 65
\tocdesign (layouts), 202
\tocdiagram (layouts), 202
\today, 85, 837, 838

(babel), 550, 558, 559, 585, 587
(rcsinfo), 839

today option (rcsinfo), 839
\todayRoman (babel), 558
\toEng (tlc), 873
\tolerance, 102, 103, 187, 941–943

(multicol), 186
\tone (tipa), 406, 407
tone option (tipa), 406, 407
\top, 524, 528

Index of Commands and Concepts (T) 1073

top key (titlesec), 44, 45
top key value

(caption), 312, 318
(subfig), 318

top key/option (geometry), 208, 209
top$ BIBTEX built-in function, 808
topadjust key/option (subfig), 317, 318
\topcaption (supertabular), 257
\topfigrule, 285
\topfraction, 284, 285, 286
\topleftxmark (extramarks), 221
topline key value (fancyvrb), 158
\topmargin rigid length, 194, 196, 198, 872, 934, 935
\topmark, 218, 221
topnumber counter, 284, 285
\toprightxmark (extramarks), 221
\toprule (booktabs), 270, 272
\topsep length, 141, 145, 934, 935
\topskip length, 197 , 198, 936, 938

(geometry), 207
total key/option (geometry), 211
\totalheight, 861, 862, 866

(graphics), 630
totalheight key (graphicx), 619, 623, 898
totalnumber counter, 284
totalpages BIBTEX field (jurabib), 743
trace package, 945, 946, 976
tracefnt package, 368, 369
\traceoff (trace), 946
traceoff option (changebar), 191
\traceon (trace), 946
traceon option (changebar), 191
tracestacks option (changebar), 191
tracing font selection, 368
tracing problems, see troubleshooting
tracing, paragraph break algorithm, 940–943
\tracingall, 940, 943, 944, 945, 946
\tracingassigns (trace), available with eTEX, 946
\tracingcommands, 945
\tracinggroups, available with eTEX, 906, 918

(trace), 946
\tracingifs, 921
\tracinglostchars, 945
\tracingmacros, 945
tracingmulticols counter (multicol), 186, 188
\tracingonline, 907, 918, 924, 938, 940, 943
\tracingoutput, 943
\tracingpages, 938

output produced from, 938
\tracingparagraphs, 940

output produced from, 941, 942
\tracingrestores, 944
\tracingstats, 916

output produced from, 916
\tracingtabularx (tabularx), 252, 253

trailing blanks, indexes, 650, 655, 666, 669
transcript files

extension, 7
index generation, 658, 668
writing to, 943

translated works, bibliographies, 742, 743
translating documents, see multilingual documents
translating language-dependent strings, 586
translations, language options, 550, 551
translator BIBTEX field (jurabib), 743
tree structures, 612

\triangle, 528
\triangledown (amssymb), 528
\triangleleft, 530
\trianglelefteq (amssymb), 533
\trianglelefteqslant (stmaryrd), 533
\triangleq (amssymb), 532
\triangleright, 161, 530
\trianglerighteq (amssymb), 533
\trianglerighteqslant (stmaryrd), 533
\TriangleUp (ifsym), 405
trim key (graphicx), 619, 620, 621
trimming marks, 212, 213, 214
troff program, 608
troubleshooting

boxes, displaying contents, 943
buffer size errors, 917
color, 870
command definitions, displaying, 932–934
command execution, tracing, 945, 946
command names, strange, 933
cross-reference errors, 894
debugging messages, indexes, 675
description, 889, 890
error messages

asterisk only, 894
list of, 894–915
source line, finding, 890–894
syntax, 890

exception dictionary errors, 917
font glyphs, 369, 370
font memory errors, 917
font selection, 368
footnotes, 944, 945
fragile commands, 892–894
grouping levels errors, 917, 918
hash size errors, 918
hyphenation, 940
index generation, 665, 666
informational messages, 920–931
internal tables, overflowing, 917–919
list stack, displaying, 944
lost characters, tracing, 945
macro stack, displaying, 892
MakeIndex, 665, 666

1074 (T) Index of Commands and Concepts

troubleshooting (cont.)
memory exceeded message, 915–919
number of strings errors, 918
online tracing, 943
page breaks, 935–939
page contents, symbolic display, 935–937
paragraph breaks, 939–943
parameter stack size errors, 918, 919
pattern memory errors, 919
persistent errors, 892
pool size errors, 919
primitives

displaying, 934
tracing, 945

register values, displaying, 934, 935
restore values, displaying, 944
save size errors, 919
semantic nest size errors, 919
stepping through documents, 945
terminal display, 943
TeX capacity exceeded errors, 915–919
text input levels errors, 919
trace package, 945, 946
transcript file, writing to, 943
vertical space, 935–939
warning messages, 920–931

true key value
(caption), 309
(fancyvrb), 157 , 159, 160, 161, 164, 165
(geometry), 206
(jurabib), 716, 735
(listings), 171, 173, 174, 175
(titlesec), 43, 44

true syntax, 875
truedimen key/option (geometry), 210
TrueTeX program, 615
truetex option (graphics), 615
\truncate (truncate), 232, 233
truncate package, 232, 233
\TruncateMarker (truncate), 232
truncating text, page styles, 232, 233
\try〈param〉 (layouts), 200, 202
\trycolumnsep (layouts), 201
\trycolumnseprule (layouts), 201
\tryevensidemargin (layouts), 201
\tryfootskip (layouts), 201
\tryheadheight (layouts), 201
\tryheadsep (layouts), 200, 201
\trypaperheight (layouts), 201
\trypaperwidth (layouts), 201
\trytextheight (layouts), 201
\trytextwidth (layouts), 201
TS1 font encoding, 117, 354, 355, 382, 416, 417, 420,

453–455
list of LICR objects, 455–463

TS1 font encoding (cont.)
(avant), 372
(bookman), 372
(ccfonts), 383, 384
(chancery), 372
(charter), 372
(cmbright), 385, 386
(courier), 372
(fourier), 392
(helvet), 372
(luximono), 387
(newcent), 372
(palatino), 372
(pxfonts), 391
(textcomp), 362, 366, 367
(times), 372
(txfonts), 388, 389
(utopia), 372

TS3 font encoding, 416
\tt, 347

used in math, 349, 464
tt key value

(caption), 310
(fancyvrb), 155, 156

tt option (titlesec), 37
ttctexa document class, 960
\ttdefault, 154, 339, 346, 387
\ttfamily, 93, 339, 344, 346, 409, 464, 935

used in math, 348, 350
.ttt file extension (endfloat), 291
TUG (TEX Users Group) home page, 948
turkish option (babel), 543, 557
turn env. (rotating), 297, 634
\twlrm (tlc), 464
twlrm option (rawfonts), 464
two-sided printing

page styles, 223, 226
turning on, 199

\twocolumn, 184, 679, 680
warning using, 926

twocolumn key/option (geometry), 207
twocolumn option, 16, 114, 176, 184, 232
\twocolumnlayouttrue (layouts), 200, 201
\twoheadleftarrow (amssymb), 534
\twoheadrightarrow (amssymb), 534
twoside key/option (geometry), 207, 208, 209
twoside option, 199, 208, 729, 881

(biblist), 774
(layout), 199

txfonts package, 388–390, 510, 511, 517
touching letters with, 390

\tyformat (tabulary), 254
\tymax rigid length (tabulary), 253, 254
\tymin rigid length (tabulary), 253, 254
type BIBTEX field, 763, 765

Index of Commands and Concepts (T–U) 1075

type key (graphicx), 620, 627
error using, 896

type$ BIBTEX built-in function, 808
\typearea (typearea), 205
typearea package, xxvii, 203–206, 207, 237
typearea.cfg file (typearea), 203
typed text, see also typewriter font; verbatim env.

background fill, 157, 158
blanks, displaying, 160, 161
boxing, 164
coloring

background, 158
frame rules, 158
text, 156, 157

computer code, printing, 168, 169, 170, 175
as floats, 174
captions, 174
code fragments within normal text, 171
formatting language keywords, 170, 171
frames around listings, 173
indentation, 172
input encoding, 174, 175
languages supported, 169
line breaks, 172, 173
numbering lines, 172
rules around listings, 173

computer program style quoting, 153, 154, 155
customized variants, 164, 165
displaying a subset of data, 162, 163
emphasizing, see italic; underlining
escape characters, 161
executing commands in, 161
fonts, specifying, 155, 156
framing, 157, 158
indentation, removing, 157
inside arguments, 165, 166, 167 , 168
inside footnotes, 167
leading spaces, removing, 157
monospaced typeface, 153, 154, 155
numbering lines, 159, 160
reading data verbatim, 163
spacing, vertical, 159
special characters, 152, 153
start/stop delimiters, 152, 153, 167, 168
tabs, displaying, 160, 161
top/bottom delimiters, 159
writing data verbatim, 163

typefaces, see fonts
\typein, 827
\typeout, 432, 827, 893
typesetting

currencies, 96–99
directory names, 93–95, 96
e-mail addresses, 93–95, 96
euro currency, 96–99

typesetting (cont.)
paths, 93–95, 96
tables of contents, 49, 50, 51, 52
URLs, 93–95, 96

typesetting parameters, list of, 820–824
typewriter font, 339, 386, 387 , 388, see also verbatim

env.; typed text
typographic conventions, this book, 11–13
typographical fonts, see proportional fonts

U

U font encoding, 397, 416, 430, 435, 454
(eurosans), 411
(eurosym), 409

\u, 365, 462
ucs package, 361
UK-TUG FAQ, 947
UKenglish option (babel), 543
ukrainian option (babel), 543, 568

\ul (soul), 88, 90, 92
\ULdepth rigid length (ulem), 87
ulem package, 87, 88

\ULforem (ulem), 87
\uline (ulem), 87
\ULthickness (ulem), 88
umvs.fd file (marvosym), 403
unbalance counter (multicol), 186, 187 , 188

\unboldmath, 352
(bm), 512

\UndeclareTextCommand, 366, 454
\UndefineShortVerb (fancyvrb), 168
\underaccent (accents), 495
\underleftarrow (amsmath), 497
\underleftrightarrow (amsmath), 497
underlining text, 87 , 88, 92, 342

\underrightarrow (amsmath), 497
\underset (amsmath), 495
\undertilde (accents), 495
undotted option (minitoc), 56
Uniform Resource Locators (URLs), see URLs
unifying index entries, 676
unitcntnoreset option (bibtopic), 754

\unitlength rigid length, see a LaTEX manual [101,104]
(eepic), 609, 610
(epic), 602–605, 607
(pspicture), 641

units key (graphicx), 632, 633
unjustified paragraphs, 103–106

\unkern, 81
\unlhd (latexsym), 464
unpack.ins file, 828, 829
unpublished BIBTEX entry type, 690, 763

\unrhd (latexsym), 464
\unsethebrew (babel), 568
\unskip, 111, 146, 325

1076 (U) Index of Commands and Concepts

unsorted citation style, 697
unsrt BIBTEX style, 687, 792, 793, 795, 806

(bibtopic), 754
(notoccite), 697

unsrtnat BIBTEX style (natbib), 708, 710, 793
unzip program, 410
up key value (caption), 310
up option (titlesec), 37
\Uparrow, 498, 534
\uparrow, 498, 534
updated BIBTEX field (jurabib), 743
\updatename (jurabib), 743
\updatesep (jurabib), 743
\updefault, 346
\upDelta

(ccfonts), 385
(cmbright), 386
(mathpazo), 378
(mathptmx), 377

\Updownarrow, 498, 534
\updownarrow, 498, 534
\upharpoonleft (amssymb), 534
\upharpoonright (amssymb), 534
\uplus, 530
\upOmega

(ccfonts), 385
(cmbright), 386
(mathpazo), 378
(mathptmx), 377

\uppercase, problems with, 571, 845
uppersorbian option (babel), 543
upquote key (listings), 154
upquote package, xxvii, 153–155
upref package, 467
upright option (fourier), 392
upright font shape, 333, 340
\uproot (amsmath), 504, 505
\upshape, 340, 341, 344, 346
\Upsilon, 527
\upsilon, 527
\upuparrows (amssymb), 534
\url

(custom-bib), 802
(natbib), 710
(url), 93, 94, 95, 96, 771

error in moving argument, 94
problems using, 93

url BIBTEX field
(BibTexMng), 789
(custom-bib), 800, 802
(jurabib), 718, 743
(natbib), 710

url package, xxvi, 93–96, 802
\UrlBigBreaks (url), 96
\UrlBreaks (url), 96

urldate BIBTEX field (jurabib), 743
\urldatecomment (jurabib), 743
\urldef (url), 94, 95
\UrlLeft (url), 95, 96

spaces ignored in, 95
\UrlNoBreaks (url), 96
\urlprefix (custom-bib), 802
\UrlRight (url), 95, 96

spaces ignored in, 95
URLs (Uniform Resource Locators)

bibliographies, 710, 742, 743
line breaks, 93
typesetting, 93–95, 96

\urlstyle (url), 94, 95, 96
URW Antiqua font, 393, 394
URW Grotesk font, 393, 394
\usage (doc), 823
\usebox, 307 , 849, 868, 869, 870

error using, 905
(soul), 90

\usecounter, 151
\usedir (docstrip), 830, 831, 832
\usefont, 371, 373, 408, 417
USenglish option (babel), 543
\UseOption (optional), 21
\usepackage, 14, 16, 17, 18, 878, 881–883, 919

error using, 899, 913
release information, 878
warning using, 931

\usepostamble (docstrip), 827 , 830
\usepreamble (docstrip), 830
user commands, defining for index generation, 653, 654
user groups, 955–958, see also help resources
user messages, generating, 827, 828
\useshorthands (babel), 547, 548
\UseTDS (docstrip), 832, 914
\UseTextAccent, 454

(textcomp), 366
\UseTextSymbol, 365, 366, 454
usetoc option (titleref), 77
\UseVerb (fancyvrb), 165, 166, 167
\UseVerb* (fancyvrb), 166
\UseVerbatim (fancyvrb), 167
usorbian option (babel), 559
UTF-8 support, encoding, 360, 361, 441, 447
utf8 option (inputenc), 360, 361, 444, 541, 669
utf8enc.dfu file (inputenc), 447
utopia package, 371
Utopia font, 375

in math and text, 515
\uuline (ulem), 87
\uwave (ulem), 87
UWforbf option (ulem), 87

Index of Commands and Concepts (V) 1077

V

\v, 462
\val (euro), 98
\value, 130, 131, 198, 277 , 852, 871, 873, 876, 893, 934

error using, 905
\varbigcirc (stmaryrd), 531
\varbigtriangledown (stmaryrd), 530
\varbigtriangleup (stmaryrd), 530
\varcopyright (stmaryrd), 528
\varcurlyvee (stmaryrd), 530
\varcurlywedge (stmaryrd), 530
\varepsilon, 474, 504, 527
\varhat (tlc), 399
variables, bibliographies, 805
\varinjlim (amsmath), 500
varioref option (fltpage), 326
varioref package, 68–75, 544, see also cross-references
\varkappa (amssymb), 527
\varliminf (amsmath), 500
\varlimsup (amsmath), 500, 501
\varnothing (amssymb), 528
\varoast (stmaryrd), 531
\varobar (stmaryrd), 531
\varobslash (stmaryrd), 531
\varocircle (stmaryrd), 531
\varodot (stmaryrd), 529, 531
\varogreaterthan (stmaryrd), 531
\varolessthan (stmaryrd), 531
\varominus (stmaryrd), 531
\varoplus (stmaryrd), 531
\varoslash (stmaryrd), 531
\varotimes (stmaryrd), 531
\varovee (stmaryrd), 531
\varowedge (stmaryrd), 531
\varphi, 474, 504, 527
\varpi, 527
\varprojlim (amsmath), 500
\varpropto (amssymb), 535
\varrho, 527
\varsigma, 527
\varsubsetneq (amssymb), 533
\varsubsetneqq (amssymb), 533
\varsupsetneq (amssymb), 533
\varsupsetneqq (amssymb), 533
\vartheta, 527
varthm env. (tlc), 143
\vartimes (stmaryrd), 530
\vartriangle (amssymb), 533
\vartriangleleft (amssymb), 533
\vartriangleright (amssymb), 533
varumlaut option (yfonts), 394, 395, 396
\vbadness, 924, 928, 930
\vbox, 373, 870, 928, 936

in TEX warning message, 924, 926, 930
\vcenter, 489

\Vdash (amssymb), 535
\vDash (amssymb), 535
\vdash, 535
\vdots, 536
\vec, 529
\Vector (pspicture), 641
\vector

error using, 895
(pspicture), 639, 640, 641
(texpicture), 640

vector drawings, see epic package; eepic package
\vee, 530
\veebar (amssymb), 530
\veqns (tlc), 73
\Verb (fancyvrb), 167
\verb, 93, 152, 165, 167, 168, 171, 845, 857

error using, 913
rotating output, 634
(boxedminipage), 595
(doc), 816
(ltxdoc), 834
(parallel), 182
(shortvrb), 152
(tabularx), restricted usage, 255
(tabulary), restricted usage, 255
(upquote), 154

\verb*
(shortvrb), 152, 153
(tabularx), restricted usage, 255
(tabulary), restricted usage, 255

Verbatim env. (fancyvrb), 155, 156–162, 163, 164
verbatim env., 151, 152, 155, 845, 894, see also typed text;

typewriter font
error using, 913
(doc), 816, 822
(parallel), 182
(upquote), 154
(verbatim), 153

verbatim package, 153, 155
verbatim delimiters

doc package, 815, 816
docstrip, 833

verbatim text, see typed text
Verbatim* env. (fancyvrb), 160

\Verbatim* (fancyvrb), 164
verbatim* env.

(doc), 822
(verbatim), 153

\verbatimchar (doc), 823
\VerbatimEnvironment (fancyvrb), 163
\VerbatimFootnotes (fancyvrb), 167
\VerbatimInput (fancyvrb), 163
\VerbatimInput* (fancyvrb), 164
VerbatimOut env. (fancyvrb), 163
verbose key/option (geometry), 210

1078 (V–W) Index of Commands and Concepts

verbose option
(cite), 696
(placeins), 289
(wrapfig), 301

verbose mode, index generation, 675
\verbx (tlc), 167
version control, 21, 22, 836, 837 , 838, 839
versions, selecting for printing, 21, 22
\VERT (fourier), 392
\Vert, 498, 528
\vert, 498, 528
vertical extensions, math symbols, 498, 499
vertical rules (graphic lines), 266, 267, 269
\vfill, 188, 189, 857, 858, 866
viewport key (graphicx), 619, 621
\Village (ifsym), 405
\Virgo (marvosym), 401
visual formatting, 234–236
\vitem (tlc), 167
\vline, 243, 265, 266, 267
vmargin key/option (geometry), 211
vmargin package, 202, 203
vmarginratio key/option (geometry), 208, 209, 211
Vmatrix env. (amsmath), 486, 487
vmatrix env. (amsmath), 486
vmode boolean, 875
\voffset rigid length, 196, 210

(vmargin), 203
voffset key/option (geometry), 210
volume BIBTEX field, 690, 763, 765, 772
volume title, bibliographies, 743
volumetitle BIBTEX field (jurabib), 743
\vpageref (varioref), 69, 70, 71, 73, 74, 75
\vpageref* (varioref), 69, 70
\vpagerefrange (varioref), 69, 71
\vpagerefrange* (varioref), 71
\vphantom, 505, 506
\Vref (varioref), 72
\vref

(prettyref), 76
(varioref), 69, 70, 72, 74, 75, 916

producing error, 75
\vref* (varioref), 69
\vrefpagenum (varioref), 72, 73
\vrefrange (varioref), 69, 70, 71
\vrule, 266, 867, 868
vscale key/option (geometry), 208, 211
\vspace, 600, 857, 858, 859, 864, 865, 867, 868, 911

error using, 903
problems using, 857 , 859

\vspace*, 43, 112, 857, 858, 864, 865
VTeX program, 416, 643
vtex key/option (geometry), 210

vtex option
(changebar), 189
(crop), 213

\Vvdash (amssymb), 535

W

w.eps file (tlc), 616
Waldi’s font, 401
warn option (textcomp), 366, 367 , 910
warning messages, 920–931, see also messages;

troubleshooting
warning$ BIBTEX built-in function, 808
warningshow option (tracefnt), 368
wasysym package, 401
\wd, 307
weather option (ifsym), 404, 405
\wedge, 530
weight, fonts, 334, 335
welsh option (babel), 543
welsh.ldf file (babel), 583
wget program, 950
while$ BIBTEX built-in function, 808
\whiledo (ifthen), 876
white space

around text, 198
in tables, 279, 280
italic correction, 340, 341, 342

\whline (tlc), 266
wide option (sidecap), 323, 324
\widehat, 497, 512, 529

(bm), 512
\WideMargins (a4), 199
widespace key value (tlc), 314
\widetilde, 483, 497, 506, 529

(fourier), 392
\widowpenalty, 936, 939
width, see space parameters
\width, 861, 862

(graphics), 630
(wrapfig), 301

width key (graphicx), 619, 621–624
width key/option

(caption), 309
(geometry), 207, 208, 211

width option (crop), 213
width syntax, 227 , 867, 868
width$ BIBTEX built-in function, 808
window env. (picinpar), 108
Windows database manager, bibliographies, 789
Windvi program, 954, 955
withprosodicmarks attribute (babel), 549, 556, 557
\wlog, 432
\wordsep (titlesec), 40
\wp, 527
\wr, 530

Index of Commands and Concepts (W–Z) 1079

wrap key (titlesec), 38, 39, 41
wrapfig package, 176, 299–302
wrapfigure env. (wrapfig), 299, 300, 301, 302
wrapfloat env. (wrapfig), 302
\wrapoverhang rigid length (wrapfig), 301, 302
wrapping text around images, 108, 109, 298, 299, 300,

301, 302
wraptable env. (wrapfig), 299, 300–302
\write, 131
write$ BIBTEX built-in function, 808, 810
writing data verbatim, 163
www BIBTEX entry type (jurabib), 742, 743

X

X syntax (tabularx), 251, 252, 255
x key (graphicx), 632, 633
X2 font encoding, 355, 416, 569
xdoc package, 814
xdoc2 package, 814
xdvi program, 614, 954
\Xi, 527
\xi, 527
xindy program, 7, 540, 573, 648, 650, 652, 666–679, 972,

see also index generation; MakeIndex program
\xleftarrow

(amsmath), 490
(fourier), 392

xleftmargin key
(fancyvrb), 157
(listings), 172

\xmlcode (tlc), 293
XMLexa env. (tlc), 293, 298
XMLexa* env. (tlc), 298
.xmp file extension (tlc), 55
\xout (ulem), 87
Xpdf program, 642
\xquad (tlc), 63
xr package, 78
xr-hyper package, 78

\xrightarrow (amsmath), 490
xrightmargin key (fancyvrb), 157

\XSolid (bbding), 403
\XSolidBold (bbding), 403
\XSolidBrush (bbding), 403
\xspace (xspace), 80, 81
xspace package, 80, 81

\xspaceskip length, 428
\xswordsdown (fourier), 392
\xswordsup (fourier), 392
\xvec (tlc), 844, 932, 935
xy env. (xy), 549
xypic package, 593, 969

Y

\y (docstrip), 828
y key (graphicx), 632, 633

\Ydown (stmaryrd), 530
year BIBTEX field, 690, 763, 765, 768, 772, 779

(jurabib), 717 , 718
year key value (jurabib), 718, 733
year information missing, bibliographies, 708
yfonts package, 394–396

\Yingyang (marvosym), 401
\yinipar (yfonts), 395, 396
\Yleft (stmaryrd), 530
\Yright (stmaryrd), 530
\Yup (stmaryrd), 530

Z

Zapf Chancery font, 376
Zapf Dingbats

an alternative, 403, 404
encoding, 378–380

\zero (euro), 99
zerohyph.tex file (babel), 545
zeros option (euro), 97

\zeta, 392, 490, 527

People

Abbott, Peter, 948
Achilles, Alf-Christian, 773
Aguilar-Sierra, Alejandro, 759
André, Jacques, 964, 978
Arseneau, Donald, xxvi, 20, 21, 76,

84, 87, 93, 119, 232,
269, 278, 288, 299, 693,
696, 698, 747

Ashton, James, 681

Böttcher, Stephan, xxvii, 176
Barr, Michael, 488, 964
Barroca, Leonor, 296
Basso, Pierre, 753
Batada, Nizar, 787
Beccari, Claudio, 574, 964
Beebe, Nelson, 615, 773, 774, 777,

778, 791, 964
Beeton, Barbara, xxvi, 965
Benguiat, Ed, 374
Bennett, Jr., Frank, xxvi, 743, 965
Benton, Morris, 375
Berdnikov, Alexander, 569, 965
Berger, Jens, xxvi, 715
Berry, Karl, 371, 410, 420, 965

Beyene, Berhanu, 592
Bezos, Javier, xxvii, 36, 58, 494,

965
Bigelow, Charles, 387, 521
Bleser, Joachim, 302, 612
Borceux, Francis, 488, 965, 966
Bouche, Thierry, 966
Bovani, Michel, xxvii, 391, 515
Braams, Johannes, 3, 4, 189, 199,

202, 256, 542, 814, 825,
966, 977, 1085

Bradley, Neil, 966
Breitenlohner, Peter, 966
Bringhurst, Robert, 966
Burykin, Alexei, 965
Butcher, Judith, 966

Carlisle, David, 4, 32, 68, 78, 80,
86, 134, 212, 244, 251,
253, 259, 265, 266, 274,
289, 294, 489, 638, 825,
872, 966, 967, 977,
1085

Carlisle, Matthew, 1085
Carnase, Tom, 374

Carter, Matthew, 374

Chen, Pehong, 967

Clark, Adrian, 967

Clark, James, 615

Clasen, Matthias, 357, 967

Clausen, Jörn, 411

Cochran, Steven, xxvi, 314, 315

Cohen, Tzafrir, 576

Corff, Oliver, 592

Cosell, Bernie, 84

Covington, Michael, xxvii, 154

Dachian, Serguei, 592

Dahlgren, Mats, 299

Dair, Carl, 967

Dalalyan, Arnak, 592

Daly, Patrick, xxvii, 700, 701, 710,
798, 974

Detig, Christine, xxvi, 1087

Donin de Rosière, Emmanuel, 760,
979

Dorj, Dorjpalam, 592

Downes, Michael, xxvi, xxvii, 4,
138, 466, 470, 968

People 1081

Drucbert, Jean-Pierre, xxvii, 55,
56, 78, 242

Duchier, Denys, 4, 814, 825, 977
Duggan, Angus, 153

Eckermann, Matthias, xxvii, 181
Eijkhout, Victor, 968
Engebretsen, Lars, 356
Esser, Thomas, xxvii, 954
Evans, Richard, 682

Fairbairns, Robin, xxvii, 71, 114,
217, 947, 948, 968

Fear, Simon, 269
Fernández, José Alberto, 749
Fine, Michael, 189
Finston, Laurence, 968
Flipo, Daniel, 5, 99, 589
Franz, Melchior, xxvi, 88, 96, 212
Frischauf, Adrian, 645
Frutiger, Adrian, 374
Fujita, Shinsaku, 613, 968
Fukui, Rei, xxvii, 405, 968
Fuster, Robert, 356

Gäßlein, Hubert, xxvii, 323, 638
Gaulle, Bernard, 591, 969, 978
Gelderman, Maarten, 969
Gibbons, Jeremy, 524
Gildea, Stephen, 197
Girou, Denis, 155, 163
Glunz, Wolfgang, 646
Gobry, Frédéric, 784
Goldberg, Jeffrey, xxvii, 216, 289
Goldfarb, Charles, 969
Goossens, Michel, 969, 1084
Gordon, Peter, xxvi
Goudy, Frederic, 88
Grätzer, George, 465, 970
Graham, Ronald, 970
Greenwade, George, 948, 970
Gross, Sebastian, 325

Hafner, Thomas, 979
Hailperin, Max, 217
Hakobian, Vardan, 592
Hamilton Kelly, Brian, 615
Hansen, Thorsten, xxvii, 749, 755

Haralambous, Yannis, 394, 541,
592, 637, 970, 978

Harders, Harald, xxvi, 321, 386,
680

Harrison, Michael, 967
Hart, Horace, 970
Hefferon, Jim, 948
Heinz, Carsten, xxvi, 169
Hellström, Lars, xxvi, 419, 814,

971
Helminck, Aloysius, 377
Henderson, Doug, 400
Henlich, Thomas, xxvii, 401
Heslin, Peter, xxvii, 82
Hoenig, Alan, 108, 970
Holmes, Kris, 387, 521
Horak, Karel, 403
Horn, Berthold, 970
Horn, Blenda, xxvii
Hufflen, Jean-Michel, 761, 970

Ion, Patrick, 967
Isozaki, Hideki, 612

Jackowski, Bogusław, 356
Janishevsky, Andrew, 569, 965
Jeffrey, Alan, 4, 5, 376, 419, 517,

524, 971
Jensen, Frank, 384, 397, 871
Jones, David, 466, 681, 709
Jurafsky, Dan, 56
Jurriens, Theo, 256

Kastrup, David, xxvi, 117, 120,
122, 259

Kehr, Roger, 666, 972
Keller, Arthur, 400
Kempson, Niel, 747, 759
Kernighan, Brian, 972
Keryell, Ronan, 760
Kettler, Howard, 374
Khodulev, Andrey, 570
Kielhorn, Axel, 401
Kinch, Richard, 615
Kirsch, Sebastian, 383
Klöckl, Ingo, 403
Knappen, Jörg, 354, 362, 407, 972
Kneser, Thomas, 299

Knuth, Donald, 1, 2, 102, 118,
175, 327, 333, 350, 353,
369, 381, 383, 399, 406,
416, 465, 515, 539, 813,
970, 972–974, 982

Kohm, Markus, xxvii, 203, 236,
974

Kolodin, Mikhail, 569, 965
Kopka, Helmut, 974
Kotz, David, 775
Kudlek, Manfred, 592
Kuhlmann, Volker, 202
Kummer, Olaf, 592
Kwok, Conrad, 608

Lagally, Klaus, 592, 975
Lamport, Leslie, xxvi, 2, 116, 152,

197, 218, 255, 638, 680,
684, 872, 975, 979

Lamy, Jean-François, 202
Lang, Edmund, 302, 612
Lapko, Olga, 570, 965, 975
Lavagnino, John, xxvii, 125, 975
Lavva, Boris, 576, 591
Lawrence, Steve, 774
Leichter, Jerry, 273
Lemberg, Werner, 569, 592, 976
Lesenko, Sergey, 615
Levy, Silvio, 574, 976
Liang, Franklin, 976
Lindgren, Ulf, 34
Lingnau, Anselm, 291
Louarn, Philippe, 964
Lubalin, Herb, 374
Luecking, Dan, 20

MacKay, Pierre, 974
Maclaine-cross, I. L., 611
Makhovaya, Irina, 975
Matiaske, Wenzel, 20
Mattes, Eberhard, 615
McCauley, James Darrell, 289
McDonnell, Rowland, 971
McLean, Ruari, 976
McPherson, Kent, 199
Mehlich, Michael, 96
Metzinger, Jochen, 592
Miedinger, Max, 375, 523

1082 People

Miner, Robert, 967
Mittelbach, Frank, 3, 4, 69, 114,

140, 184, 243, 286, 328,
329, 383, 466, 814, 825,
946, 967, 969, 976–979,
982, 1083

Morawski, Jens-Uwe, 974
Morison, Stanley, 375

Nakashima, Hiroshi, 267
Neergaard, Peter Møller, 403
Neugebauer, Gerd, xxvi, 778, 978
Neukam, Frank, 203, 236
Nicole, Olivier, 978
Niepraschk, Rolf, xxvii, 323, 638,

979
Nowacki, Janusz, 356

Oberdiek, Heiko, 78, 643
Orlandini, Mauro, 595

Pakin, Scott, 399, 400, 524, 814,
978

Pandey, Anshuman, 592
Patashnik, Oren, 758, 771, 805,

806, 970, 978
Phemister, Alexander, 374
Plaice, John, 592, 637, 978
Plass, Michael, 102, 974
Podar, Sunil, 601, 978
Popineau, Fabrice, xxvi
Poppelier, Nico, 202, 967
Porrat, Rama, 576, 979
Puga, Diego, 377, 519
Purtill, Mark, 4, 329

Rahtz, Sebastian, 78, 155, 296,
329, 362, 370, 376, 378,
633, 643, 969, 971, 981

Raichle, Bernd, 947, 979
Raymond, Eric, 948
Reichert, Axel, 76
Reid, Brian, 2, 979
Rhead, David, xxvi, 700
Rokicki, Tom, 614, 615, 637, 979
Rose, Kristoffer, 488, 593

Rowley, Chris, xxvii, 4, 118, 967,
977–979, 1086

Rozhenko, Alexander, xxvi, 122
Rubinstein, Richard, 980
Ruedas, Thomas, 954
Ruland, Kevin, 75
Ryan, Elizabeth, xxvi
Ryu, Young, 388, 390, 517, 519

Samarin, Alexander, 969
Schöpf, Rainer, 3–5, 153, 197, 328,

466, 948, 977, 978
Schandl, Bernd, xxvi, 132
Schmidt, Walter, xxvi, xxvii, 356,

370, 377, 383–387, 394,
397, 399, 410, 438, 523

Schnier, Thorsten, 700
Schröder, Martin, xxvii, 105, 323
Schrod, Joachim, xxvi, 6, 116, 666,

774, 837, 980, 1087
Schwarz, Norbert, 354
Sendoukas, Hippocrates, 615
Sgouros, Tom, 127
Shell, Michael, 643
Sivunen, Vesa, 969
Slimbach, Robert, 375
Smith, Ralph, 376
Sommerfeldt, Axel, xxvi, 298, 308,

315
Sowa, Friedhelm, 108
Spit, Werenfried, 811
Spivak, Michael, 377, 466, 517
Stiff, Paul, 103, 980
Straub, Pablo, 19
Svensson, Anders, 488, 980
Swanson, Ellen, 465, 980
Swift, Matt, 82, 84
Syropoulos, Apostolos, 574, 964

Tanaka, Nobuya, 968
Thánh, Hán Thế, 615, 643, 981
Theiling, Henrik, 408, 409
Thimbleby, Harold, 981
Thorup, Kresten, 871
Tinnefeld, Karsten, 35
Tobin, Geoffrey, 107

Trevorrow, Andrew, 615

Ulrich, Stefan, 127, 753
Umeki, Hideo, xxvi, 206
Unruh, Dominique, 361

Vabishchevich, Nikolay, 789
Vabishchevich, Petr, 789
Valiente Feruglio, Gabriel, 981,

982
van Oostrum, Piet, xxvii, 220, 224
Van Zandt, Timothy, 152, 155,

596
Velthuis, Frans, 592
Vieth, Ulrik, 357, 376, 383, 515,

967, 971
Vogel, Martin, 401
Vollmer, Jürgen, 838
Volovich, Vladimir, 355, 569
Vulis, Michael, xxvii, 982

Waldi, Roland, 401
Ward, Nigel, 56
Wetmore, Alan, xxvii
Wicks, Mark, 643
Widmann, Thomas, 760
Williams, Graham, 299, 950, 982
Williams, Peter, 700
Williamson, Hugh, 982
Wilson, Peter, xxvii, 48, 117, 199,

236, 237, 681, 982
Winton, Neil, 189
Wolczko, Mario, 202, 595
Woliński, Marcin, 814, 825, 977
Wong, Wai, xxvii
Wonneberger, Reinhard, 982
Wooding, Mark, 814, 825, 977
Wujastyk, Dominik, 118, 975

Zapf, Hermann, 375, 376, 383,
396, 403, 438, 515, 519,
974, 982

Ziegler, Justin, 357, 382, 982
Zierke, Reinhard, 948
Ziv, Alon, 576

Biographies

Frank Mittelbach

Frank Mittelbach studied mathematics and computer science at the Johannes-
Gutenberg University, Mainz. In 1989 he joined EDS, Electronic Data Systems,
working in a newly formed group for document processing using TEX and other
tools. In his current position he is responsible for concepts and implementation
for remote monitoring and management of distributed systems and networks.

before TLC2. . .

His interest in the automated formatting of complex
documents in general, and in LaTEX in particular, goes back
to his university days and has become a major interest,
perhaps a vocation, and certainly it is now his “second
job”. He is author or co-author of many and varied LaTEX
extension packages, such asAMS-LaTEX, doc, multicol, and
NFSS : the New Font Selection Scheme.

At the TUG conference at Stanford University in 1989, he gave a talk about
the problems with LaTEX 2.09, which led to his taking on the responsibility for
the maintenance and further development of LaTEX. This effort is generally known
as the LaTEX3 Project and in the capacity of technical director of this project, he
has overseen the original major release of LaTEX2ε in 1994 and the, by now, 15
subsequent maintenance releases of this software.

His publication of many technical papers on LaTEX and on general research re-
sults in automated formatting brought him in contact with Peter Gordon from
Addison-Wesley. Peter and Frank inaugurated the book series Tools and Tech-
niques for Computer Typesetting (TTCT), with Frank as series editor. The LATEX
Companion (1994) was the first book of this series whose titles by now cover LaTEX

1084 Biographies

in all its facets. Forthcoming works will expand that core to cover other typeset-
ting and information processing tools and concepts.

. . . and after

In 1990 Frank presented the paper E-TEX: Guidelines
for further TEX extensions, which explained the most criti-
cal shortcomings of TEX and argued the need for its further
development and for research into the many open questions
of automated typesetting. This was the first time the topic
of change or extension had been openly discussed within
the TEX community and, after getting some early opposi-
tion, it helped to spawn several important projects, such as
eTEX, Omega, and NTS. He is now interested in bringing to-
gether the fruits of these TEX extension developments, e.g.,
the Omega and eTEX projects, to get a stable, well-maintained, and widely available
successor of TEX on which a future LaTEX3 can be based.

Frank lives with his wife, Christel, and their three sons, Arno (age 19) and the
twins Burkhard and Holger (age 6), in Mainz, Germany.

Michel Goossens

After finishing his Ph.D. in high energy physics Michel Goossens
joined CERN, the European Laboratory for Particle Physics in
Geneva (Switzerland) at the beginning of 1979, where he worked
for a few years as a research physicist, and then moved on to
software support in the Informatics Technologies Division.

Over the years he has worked with several typesetting sys-
tems: LaTEX, of course, but also, more recently, HTML/SGML/XML.
As a large international scientific laboratory, a large fraction of

the thousands of physicists and engineers working at CERN use LaTEX for publish-
ing their papers or for writing their documentation. Therefore, since the late 80s
Michel has been involved in developing and supporting tools related to TEX and,
especially, LaTEX.

A milestone in his LaTEX life was a meeting with Frank and Chris at CERN
at the end of 1992, where they gave a talk on LaTEX3. After their seminar Michel
showed them the “Local TEX Guide” that he and Alexander Samarin had written
and proposed to extend the material and turn it into a book. This was the birth of
the first edition of The LATEX Companion, which was published at the beginning of
1994. Using his experience in graphics and web presentation, he also co-authored
The LATEX Graphics Companion (1997) and The LATEX Web Companion (1999), both
of which appeared in the TTCT series.

Michel has occupied various positions in the TEX world. He was president of
GUTenberg, the French-speaking TEX users Group (1995–2000), as well as presi-
dent of TUG, the TEX Users Group (1995–1997).

Biographies 1085

For the past three years he has acted as the CERN Focal Point for the EU-
funded TIPS (Tools for Innovative Publishing in Science) project. Within the frame-
work of that project he was responsible for studying how XML tools can be opti-
mally integrated into a framework for efficiently handling electronic information,
especially for scientific documents. In particular, he looked at the complementary
roles played by LaTEX and MathML for mathematics, SVG for graphics, PDF for ty-
pographic quality output, and XHTML or DocBook for structural integration in the
Web environment.

He lives in the Geneva area and enjoys reading, watching a good film, walking
along the lake or in the beautiful countryside, and visiting museums.

Johannes Braams

Johannes Braams studied electronic engineering at the Techni-
cal University in Enschede, the Netherlands. His master’s the-
sis was on video encoding, based on a model of the human
visual system. He first met LaTEX at the dr. Neher Laboratories
of the Dutch PTT in 1984. He was a founding board member of
the Dutch speaking TEX User Group (NTG) in 1988 and partici-
pated in developing support for typesetting Dutch documents.

He started work on the babel system following the Karls-
ruhe EuroTEX conference in 1989 and has been a member of the LaTEX3 project
since the EuroTEX conference at Cork in 1990. In addition to babel, Johannes is the
current maintainer of a number of LaTEX extension packages, such as the ntgclass
family of document classes, the supertabular package, and the changebar package.

Johannes is still working for the Dutch PTT, nowadays known as KPN, primar-
ily as a project manager for IT related projects. He lives with his wife, Marion, and
two sons, Tycho (age 11) and Stephan (age 9), in Zoetermeer.

David Carlisle

David Carlisle studied mathematics at the University
of Manchester and then worked as a researcher in the
Mathematics and Computer Science departments at
Cambridge and Manchester, where he started using
LaTEX in 1987. He joined the LaTEX3 team in 1992, just
prior to the start of development work on LaTEX2ε .

For the last six years he has worked at NAG Ltd.
in Oxford, UK, primarily on projects connected to the development of XML-based
languages for the representation of mathematical expressions and documents. He
is an editor of the OpenMath specification and was an invited expert on the W3C

1086 Biographies

Math Working Group responsible for MathML, becoming an editor of the MathML 2
Recommendation. Currently he is an editor of a proposed update to ISO/IEC TR
9573, the “ISO character entities”. This allows a wide range of characters to be
entered into XML and SGML documents using only ASCII characters, with syntax
such as γ to denote γ.

David has also taken an interest in the XSLT language and is a major contrib-
utor to the xsl-list discussion group for that language. He has reviewed or acted
as technical editor on several XSLT-related books. He lives in Oxfordshire with his
wife, Joanna, and their son, Matthew (4 months).

Chris Rowley

When not indulging his addiction to travel, Chris lives in London with his wine
cellar, his ceramic collection, and his memories. These last include some now
rather hazy ones of the 60s, when he was addicted to mathematics but also dipped
his mind into computing, both the theory of programming (pretty wild stuff back
then) and number crunching (nice streamers from the paper tape).

at his favourite task

It was not until the early 80s that he discovered,
on a newly occupied desk, a TV-like object that was
connected to a computer and could help him do cre-
ative and useful things, such as producing a single
page of beautiful typeset mathematics. That was not
done using TEX—so it took two days to complete that
single page; but it made him realize what was possi-
ble and set him thinking about a better way to achieve
it. He is very grateful that he then very soon stumbled

across TEX and, not long after, LaTEX; the latter being especially providential, as his
colleagues included six mathematical typists who needed something that would
work for them too. A few years on he heard about a guy called Mittlebach-and-
Schöpf (sic) in Mainz and the rest is . . . to be continued.

Fifteen years later and Chris Rowley is now a senior member of the Faculty
of Mathematics and Computing at the Open University, UK. He has been a man-
ager and active member of the LaTEX3 Project Team since its beginning, when he
foolishly believed that it would all be done in two years or so. He has been on too
many boards and committees, one of the most pleasant being the editorial board
for Tools and Techniques for Computer Typesetting, and he has graced various
offices in the TEX world, including Chair of UKTUG and a vice-presidency of TUG.

As the largest international player in industrialized mass education for home-
and workplace-based university-level customers, the Open University has become
amajor multi-media publishing corporation with, despite commercial competition,
an under-resourced, LaTEX-based production system for its mathematical output.
As a mathematician who already understood a fair bit about the production of

Biographies 1087

mathematical texts, Chris was well placed to play a vital rôle in the political, ad-
ministrative, and technical aspects of establishing this system in the mid-80s.

He is now actively engaged on research into the automation of all aspects
of document processing, especially multi-lingual typography for multi-use docu-
ments. By contrast, over the decades he has also done his share of practical work
on LaTEX-based systems in production environments and acted as consultant on
the digitization of mathematical texts to a number of standards bodies, compa-
nies, and organizations.

These activities have led Chris to the conviction that TEX has but two impor-
tant long-term future uses: one is as a vernacular within less formal electronic
communications between mathematicians, whilst the other is as a treasure trove
of wonderful algorithms, especially for mathematical typesetting. He believes,
moreover, that extending the monolithic design and intricate models of the TEX
software system will not lead to powerful and flexible typesetting software for the
21st Century, . . . but it’s more fun than doing crosswords.

Christine Detig & Joachim Schrod

In 1982, Christine Detig met TEX on reel-tape dur-
ing her computer science studies, resulting in her
becoming a founding member of DANTE, the Ger-
man TEX Users Group. Her early software expe-
riences were gained around the TEX workbench,
resulting in the formation of a small business in
the provision of TEX distributions. Spreading TEX
knowledge as part of her job as a research assis-
tant at TU Darmstadt resulted in a book for TEX beginners: Der LATEX Wegweiser.
Meanwhile, visiting lots of international conferences has led to many friendships
with the eclectic crowd of TEXies. Meet her there for a nice chat about the Future
of TEX!

Joachim Schrod also started to use TEX in 1982 and he is another founding
member of DANTE. He wrote and supported the international version of LaTEX until
LaTEX2ε came along. He has been involved in lots of TEX activities, most of them
too long ago to be remembered, but among the more enduring are the creation
of CTAN and the TEX Directory Structure. Today he is the CEO of a consulting
company, where he strives to translate between business and technical people.

Christine & Joachim live in Rödermark, Germany.

This page intentionally left blank

Production Notes

This book was typeset using the LaTEX document processing system, which it de-
scribes, together with substantial help from some of the extension packages it
covers, and considerable extra ad hoc LaTEX programming effort.

The text body font used is Lucida Bright (Bigelow/Holmes) at 8.8pt/12pt.
Body fontsThe other major font is the mono-spaced European Modern Typewriter (Y&Y)

10.06pt/12pt. This particular combination was chosen to get a reasonable amount
of material on each page and to optically balance the appearance of the “type-
writer font” so that it was distinguishable but without too big a contrast.

The text in the examples mostly uses Adobe’s Times Roman with Helvetica
Example fontsfor sans serif. For the mathematical material in the examples we have used the by

now classic Computer Modern math fonts, so the symbols will appear familiar to
the majority of mathematics users. Of course, examples intended to demonstrate
the use of other fonts are exceptions.

The book was typeset with the base LaTEX release dated 2003/12/01. The
Hanging
punctuation

pdfTEX program was used as the underlying engine, but it was not set to pro-
duce PDF output: we were more interested in its ability to produce “hanging punc-
tuation”, and this typographical icing (package pdfcprot) was used for the main
galley text (see [159,160] for a description of how this is implemented). For com-
parison look at pages 941–943, as these are set without hanging punctuation (and
in smaller type).

The production of this book required custom class and package files. It also
The production
cycle

needed a complex “make” process using a collection of “shell scripts” controlled
by a “Makefile”. One of the major tasks these accomplished was to ensure that the
typeset output of each and every example really is produced by the accompanying
example input.

1090 Production Notes

This “make” process worked as follows:

• When first processing a chapter, LaTEX generated a source document file forGenerating
examples each example. These are the “example files” you will find on the CD-ROM.

• The make process then ran each of these “example files” through LaTEX (also
calling BIBTEX or whatever else was needed) as often as was necessary to pro-
duce the final form of the typeset output.

Finally it used dvips to produce either one or two EPS files containing the
“typeset example”.

• The next time LaTEX was run on that chapter, each of these EPS output files was
automatically placed in its position in the book, next to (or near) the example
input. The process was not complete even then because the horizontal po-
sitioning of some elements, in particular the examples, depends on whether
they are on a verso or recto (the technique from Example A-3-9 on page 876
was used in this case). Thus, at least one or two additional runs were needed
before all the cross-references were correctly resolved and LaTEX finally found
the right way to place the examples correctly into the margins.

That was about as far as automation of the process could take us. Because
Manual labor of the many large examples that could neither be broken nor treated as floating

material, getting good page breaks turned out to be a major challenge. For this and
other reasons, getting to the final layout of the book was fairly labor intensive and
even required minor rewriting (on maybe 10% of the pages) in order to avoid bad
line breaks or page breaks (e.g., paragraphs ending with a single word line or a
distracting hyphenation at a page break). Spreads were allowed to run one line
long or one line short if necessary and in several cases the layout and contents of
the examples were manually adjusted to allow decent page breaks.

Here are a few approximate statistics from this page layout process: 45 long
Some statistics spreads, 25 short spreads, 230 forced page breaks, 400 adjustments to the vertical

spacing, 100 other manual adjustments (other than rewriting).
The “Commands and Concepts” index was produced by printing a version of

The index the book with line numbers and giving that to the indexer, who produced “concep-
tual index entries” that were then added to the source files for the book. This was
a major testament to the quality of the lineno package, as it worked “straight out
of the box”. For the index processing MakeIndex was used as xindy was not then
available. However, due to the complexity of the index (the colored page numbers,
etc.) it was necessary to use pre- and post-processing by scripts to produce the
final form of the index file. This was then typeset using an enhanced version of
the multicol package to add the continuation lines—something that perhaps one
day can be turned into a proper package.

Frank Mittelbach, Series Editor

http://www.awprofessional.com

ALSO AVAILABLE AS A BOXED SET

Tools and Techniques for Computer Typesetting

CD-ROM Warranty

Addison-Wesley warrants the enclosed CD-ROM to be free of defects in materials
and faulty workmanship under normal use for a period of ninety days after pur-
chase (when purchased new). If a defect is discovered in the CD-ROM during this
warranty period, a replacement CD-ROM can be obtained at no charge by sending
the defective CD-ROM, postage prepaid, with proof of purchase to:

Disc Exchange
Addison-Wesley Professional
Pearson Technology Group
75 Arlington Street, Suite 300
Boston, MA 02116
Email: AWPro@aw.com

Addison-Wesley makes no warranty or representation, either expressed or implied,
with respect to this software, its quality, performance, merchantability, or fitness
for a particular purpose. In no event will Addison-Wesley, its distributors, or deal-
ers be liable for direct, indirect, special, incidental, or consequential damages aris-
ing out of the use or inability to use the software. The exclusion of implied war-
ranties is not permitted in some states. Therefore, the above exclusion may not
apply to you. This warranty provides you with specific legal rights. There may be
other rights that you may have that vary from state to state.

More information and updates are available at:
http://www.awprofessional.com/

	Contents
	List of Figures
	List of Tables
	Preface
	1 Introduction
	1.1 A brief history
	1.2 Today’s system
	1.3 Working with this book
	1.3.1 What’s here
	1.3.2 Typographic conventions
	1.3.3 Using the examples

	2 The Structure of a LaTeX Document
	2.1 The structure of a source file
	2.1.1 Processing of options and packages
	2.1.2 Splitting the source file into parts
	2.1.3 Combining several files
	2.1.4 optional—Providing variants in the document source

	2.2 Sectioning commands
	2.2.1 Numbering headings
	2.2.2 Formatting headings
	2.2.3 Changing fixed heading texts
	2.2.4 fncychap—Predefined chapter heading layouts
	2.2.5 quotchap—Mottos on chapters
	2.2.6 titlesec—A different approach to headings

	2.3 Table of contents structures
	2.3.1 Entering information into the contents files
	2.3.2 Typesetting a contents list
	2.3.3 Combining contents lists
	2.3.4 Providing additional contents files
	2.3.5 shorttoc—Summary table of contents
	2.3.6 minitoc—Multiple tables of contents
	2.3.7 titletoc—A different approach to contents lists

	2.4 Managing references
	2.4.1 showkeys—Displaying the reference keys
	2.4.2 varioref—More flexible cross-references
	2.4.3 prettyref—Adding frills to references
	2.4.4 titleref—Non-numerical references
	2.4.5 hyperref—Active references
	2.4.6 xr—References to external documents

	3 Basic Formatting Tools
	3.1 Phrases and paragraphs
	3.1.1 xspace—Gentle spacing after a macro
	3.1.2 ellipsis, lips—Marks of omission
	3.1.3 amsmath—Nonbreaking dashes
	3.1.4 relsize—Relative changes to the font size
	3.1.5 textcase—Change case of text intelligently
	3.1.6 ulem—Emphasize via underline
	3.1.7 soul—Letterspacing or stealing sheep
	3.1.8 url—Typesetting URLs, path names, and the like
	3.1.9 euro—Converting and typesetting currencies
	3.1.10 lettrine—Dropping your capital
	3.1.11 Paragraph justification in LaTeX
	3.1.12 ragged2e—Enhancing justification
	3.1.13 setspace—Changing interline spacing
	3.1.14 picinpar—Making rectangular holes

	3.2 Footnotes, endnotes, and marginals
	3.2.1 Using standard footnotes
	3.2.2 Customizing standard footnotes
	3.2.3 ftnright—Right footnotes in a two-column environment
	3.2.4 footmisc—Various footnotes styles
	3.2.5 perpage—Resetting counters on a “per-page” basis
	3.2.6 manyfoot—Independent footnotes
	3.2.7 endnotes—An alternative to footnotes
	3.2.8 Marginal notes

	3.3 List structures
	3.3.1 Modifying the standard lists
	3.3.2 paralist—Extended list environments
	3.3.3 amsthm—Providing headed lists
	3.3.4 Making your own lists

	3.4 Simulating typed text
	3.4.1 Simple verbatim extensions
	3.4.2 upquote—Computer program style quoting
	3.4.3 fancyvrb—Highly customizable verbatim environments
	3.4.4 listings—Pretty-printing program code

	3.5 Lines and columns
	3.5.1 lineno—Numbering lines of text
	3.5.2 parallel—Two text streams aligned
	3.5.3 multicol—A flexible way to handle multiple columns
	3.5.4 changebar—Adding revision bars to documents

	4 The Layout of the Page
	4.1 Geometrical dimensions of the layout
	4.2 Changing the layout
	4.2.1 layouts—Displaying your layout
	4.2.2 A collection of page layout packages
	4.2.3 typearea—A traditional approach
	4.2.4 geometry—Layout specification with auto-completion
	4.2.5 lscape—Typesetting individual pages in landscape mode
	4.2.6 crop—Producing trimming marks

	4.3 Dynamic page data: page numbers and marks
	4.3.1 LaTeX page numbers
	4.3.2 lastpage—A way to reference it
	4.3.3 chappg—Page numbers by chapters
	4.3.4 LaTeX mark commands
	4.3.5 extramarks—Providing new marks

	4.4 Page styles
	4.4.1 The low-level page style interface
	4.4.2 fancyhdr—Customizing page styles
	4.4.3 truncate—Truncate text to a given length

	4.5 Visual formatting
	4.5.1 nextpage—Extensions to \clearpage

	4.6 Doing layout with class
	4.6.1 KOMA-Script—A drop-in replacement for article et al
	4.6.2 memoir—Producing complex publications

	5 Tabular Material
	5.1 Standard LaTeX environments
	5.1.1 Using the tabbing environment
	5.1.2 Using the tabular environment

	5.2 Array—Extending the tabular environments
	5.2.1 Examples of preamble commands
	5.2.2 Defining new column specifiers

	5.3 Calculating column widths
	5.3.1 Explicit calculation of column widths
	5.3.2 tabularx—Automatic calculation of column widths
	5.3.3 tabulary—Column widths based on content
	5.3.4 Differences between tabular*, tabularx, and tabulary

	5.4 Multipage tabular material
	5.4.1 supertabular—Making multipage tabulars
	5.4.2 longtable—Alternative multipage tabulars

	5.5 Color in tables
	5.6 Customizing table rules and spacing
	5.6.1 Colored table rules
	5.6.2 Variable-width rules
	5.6.3 hhline—Combining horizontal and vertical lines
	5.6.4 arydshln—Dashed rules
	5.6.5 tabls—Controlling row spacing
	5.6.6 booktabs—Formal ruled tables

	5.7 Further extensions
	5.7.1 multirow—Vertical alignment in tables
	5.7.2 dcolumn—Decimal column alignments

	5.8 Footnotes in tabular material
	5.8.1 Using minipage footnotes with tables
	5.8.2 threeparttable—Setting table and notes together

	5.9 Applications
	5.9.1 Managing tables with wide entries
	5.9.2 Tables inside tables

	6 Mastering Floats
	6.1 Understanding float parameters
	6.2 Float placement control
	6.2.1 placeins—Preventing floats from crossing a barrier
	6.2.2 afterpage—Taking control at the page boundary
	6.2.3 endfloat—Placing figures and tables at the end

	6.3 Extensions to LaTeX’s float concept
	6.3.1 float—Creating new float types
	6.3.2 caption—For nonfloating figures and tables
	6.3.3 rotating—Rotating floats
	6.3.4 rotfloat—Combining float and rotating

	6.4 Inline floats
	6.4.1 wrapfig—Wrapping text around a figure
	6.4.2 picins—Placing pictures inside the text

	6.5 Controlling the float caption
	6.5.1 caption—Customizing your captions
	6.5.2 subfig—Substructuring floats
	6.5.3 subfloat—Sub-numbering floats
	6.5.4 sidecap—Place captions sideways
	6.5.5 fltpage—Captions on a separate page

	7 Fonts and Encodings
	7.1 Introduction
	7.1.1 The history of LaTeX’s font selection scheme (NFSS)
	7.1.2 Input and output encodings

	7.2 Understanding font characteristics
	7.2.1 Monospaced and proportional fonts
	7.2.2 Serifed and sans serif fonts
	7.2.3 Font families and their attributes
	7.2.4 Font encodings

	7.3 Using fonts in text
	7.3.1 Standard LaTeX font commands
	7.3.2 Combining standard font commands
	7.3.3 Font commands versus declarations
	7.3.4 Accessing all characters of a font
	7.3.5 Changing the default text fonts
	7.3.6 LaTeX 2.09 font commands

	7.4 Using fonts in math
	7.4.1 Special math alphabet identifiers
	7.4.2 Text font commands in math
	7.4.3 Mathematical formula versions

	7.5 Standard LaTeX font support
	7.5.1 Computer Modern—The LaTeX standard fonts
	7.5.2 inputenc—Selecting the input encoding
	7.5.3 fontenc—Selecting font encodings
	7.5.4 textcomp—Providing additional text symbols
	7.5.5 exscale—Scaling large operators
	7.5.6 tracefnt—Tracing the font selection
	7.5.7 nfssfont.tex—Displaying font tables and samples

	7.6 PSNFSS—PostScript fonts with LaTeX
	7.6.1 Font samples for fonts supported by PSNFSS
	7.6.2 mathptmx—Times Roman in math and text
	7.6.3 mathpazo—Palatino in math and text
	7.6.4 pifont—Accessing Pi and Symbol fonts

	7.7 A collection of font packages
	7.7.1 eco—Old-style numerals with Computer Modern
	7.7.2 ccfonts, concmath—The Concrete fonts
	7.7.3 cmbright—The Computer Modern Bright fonts
	7.7.4 luximono—A general-purpose typewriter font
	7.7.5 txfonts—Alternative support for Times Roman
	7.7.6 pxfonts—Alternative support for Palatino
	7.7.7 The Fourier-GUTenberg fonts
	7.7.8 The URW Antiqua and Grotesk fonts
	7.7.9 yfonts—Typesetting with Old German fonts
	7.7.10 euler, eulervm—Accessing the Euler fonts

	7.8 The LaTeX world of symbols
	7.8.1 dingbat—A selection of hands
	7.8.2 wasysym—Waldi’s symbol font
	7.8.3 marvosym—Interface to the MarVoSym font
	7.8.4 bbding—A METAFONT alternative to Zapf Dingbats
	7.8.5 ifsym—Clocks, clouds, mountains, and other symbols
	7.8.6 tipa—International Phonetic Alphabet symbols
	7.8.7 Typesetting the euro symbol (€)

	7.9 The low-level interface
	7.9.1 Setting individual font attributes
	7.9.2 Setting several font attributes
	7.9.3 Automatic substitution of fonts
	7.9.4 Using low-level commands in the document

	7.10 Setting up new fonts
	7.10.1 Overview
	7.10.2 Naming those thousands of fonts
	7.10.3 Declaring new font families and font shape groups
	7.10.4 Modifying font families and font shape groups
	7.10.5 Declaring new font encoding schemes
	7.10.6 Internal file organization
	7.10.7 Declaring new fonts for use in math
	7.10.8 Example: Defining your own .fd files
	7.10.9 The order of declaration

	7.11 LaTeX’s encoding models
	7.11.1 Character data within the LaTeX system
	7.11.2 LaTeX’s internal character representation (LICR)
	7.11.3 Input encodings
	7.11.4 Output encodings

	7.12 Compatibility packages for very old documents
	7.12.1 oldlfont, rawfonts, newlfont—Processing old documents
	7.12.2 LaTeXsym—Providing symbols from LaTeX 2.09 lasy fonts

	8 Higher Mathematics
	8.1 Introduction to AmS-LaTeX
	8.2 Display and alignment structures for equations
	8.2.1 Comparison with standard LaTeX
	8.2.2 A single equation on one line
	8.2.3 A single equation on several lines: no alignment
	8.2.4 A single equation on several lines: with alignment
	8.2.5 Equation groups without alignment
	8.2.6 Equation groups with simple alignment
	8.2.7 Multiple alignments: align and flalign
	8.2.8 Display environments as mini-pages
	8.2.9 Interrupting displays: \intertext
	8.2.10 Vertical space and page breaks in and around displays
	8.2.11 Equation numbering and tags
	8.2.12 Fine-tuning tag placement
	8.2.13 Subordinate numbering sequences
	8.2.14 Resetting the equation counter

	8.3 Matrix-like environments
	8.3.1 The cases environment
	8.3.2 The matrix environments
	8.3.3 Stacking in subscripts and superscripts
	8.3.4 Commutative diagrams
	8.3.5 delarray—Delimiters surrounding an array

	8.4 Compound structures and decorations
	8.4.1 Decorated arrows
	8.4.2 Continued fractions
	8.4.3 Boxed formulas
	8.4.4 Limiting positions
	8.4.5 Multiple integral signs
	8.4.6 Modular relations
	8.4.7 Fractions and generalizations
	8.4.8 Dottier accents
	8.4.9 amsxtra—Accents as superscripts
	8.4.10 Extra decorations

	8.5 Variable symbol commands
	8.5.1 Ellipsis
	8.5.2 Horizontal extensions
	8.5.3 Vertical extensions

	8.6 Words in mathematics
	8.6.1 The \text command
	8.6.2 Operator and function names

	8.7 Fine-tuning themathematical layout
	8.7.1 Controlling the automatic sizing and spacing
	8.7.2 Sub-formulas
	8.7.3 Big-g delimiters
	8.7.4 Radical movements
	8.7.5 Ghostbusters™
	8.7.6 Horizontal spaces

	8.8 Fonts in formulas
	8.8.1 Additional math font commands
	8.8.2 bm—Making bold
	8.8.3 A collection of math font set-ups

	8.9 Symbols in formulas
	8.9.1 Mathematical symbol classes
	8.9.2 Letters, numerals, and other Ordinary symbols
	8.9.3 Mathematical accents
	8.9.4 Binary operator symbols
	8.9.5 Relation symbols
	8.9.6 Punctuation
	8.9.7 Operator symbols
	8.9.8 Opening and Closing symbols

	9 LaTeX in a Multilingual Environment
	9.1 TeX and non-English languages
	9.1.1 Language-related aspects of typesetting
	9.1.2 Culture-related aspects of typesetting
	9.1.3 Babel—LaTeX speaks multiple languages

	9.2 The babel user interface
	9.2.1 Setting or getting the current language
	9.2.2 Handling shorthands
	9.2.3 Language attributes

	9.3 User commands provided by language options
	9.3.1 Translations
	9.3.2 Available shorthands
	9.3.3 Language-specific commands
	9.3.4 Layout considerations
	9.3.5 Languages and font encoding

	9.4 Support for non-Latin alphabets
	9.4.1 The Cyrillic alphabet
	9.4.2 The Greek alphabet
	9.4.3 The Hebrew alphabet

	9.5 Tailoring babel
	9.5.1 Hyphenating in several languages
	9.5.2 The package file
	9.5.3 The structure of the babel language definition file

	9.6 Other approaches
	9.6.1 More complex languages
	9.6.2 Omega

	10 Graphics Generation and Manipulation
	10.1 Producing portable graphics and ornaments
	10.1.1 boxedminipage—Boxeswith frames
	10.1.2 shadow—Boxes with shadows
	10.1.3 fancybox—Ornamental boxes
	10.1.4 epic—An enhanced picture environment
	10.1.5 eepic—Extending the epic package
	10.1.6 Special-purpose languages

	10.2 LaTeX’s device-dependent graphics support
	10.2.1 Options for graphics and graphicx
	10.2.2 The \includegraphics syntax in the graphics package
	10.2.3 The \includegraphics syntax in the graphicx package
	10.2.4 Setting default key values for the graphicx package
	10.2.5 Declarations guiding the inclusion of images
	10.2.6 A caveat: Encapsulation is important

	10.3 Manipulating graphical objects in LaTeX
	10.3.1 Scaling a LaTeX box
	10.3.2 Resizing to a given size
	10.3.3 Rotating a LaTeX box
	10.3.4 rotating—Revisited

	10.4 Display languages: PostScript, PDF, and SVG
	10.4.1 The PostScript language
	10.4.2 The dvips PostScript driver
	10.4.3 pspicture—An enhanced picture environment for dvips
	10.4.4 The Portable Document Format
	10.4.5 Scalable Vector Graphics

	11 Index Generation
	11.1 Syntax of the index entries
	11.1.1 Simple index entries
	11.1.2 Generating subentries
	11.1.3 Page ranges and cross-references
	11.1.4 Controlling the presentation form
	11.1.5 Printing special characters
	11.1.6 Creating a glossary
	11.1.7 Defining your own index commands
	11.1.8 Special considerations

	11.2 makeindex—A program to format and sort indexes
	11.2.1 Generating the formatted index
	11.2.2 Detailed options of the MakeIndex program
	11.2.3 Error messages
	11.2.4 Customizing the index with MakeIndex
	11.2.5 MakeIndex pitfalls

	11.3 xindy—An alternative to MakeIndex
	11.3.1 Generating the formatted index with xindy
	11.3.2 International indexing with xindy
	11.3.3 Modules for common tasks
	11.3.4 Style files for individual solutions

	11.4 Enhancing the index with LaTeX features
	11.4.1 Modifying the layout
	11.4.2 showidx, repeatindex, tocbibind, indxcite—Little helpers
	11.4.3 index—Producing multiple indexes

	12 Managing Citations
	12.1 Introduction
	12.1.1 Bibliographical reference schemes
	12.1.2 Markup structure for citations and bibliography
	12.1.3 Using BIBTeX to produce the bibliography input

	12.2 The number-only system
	12.2.1 Standard LaTeX—Reference by number
	12.2.2 cite—Enhanced references by number
	12.2.3 notoccite—Solving a problem with unsorted citations

	12.3 The author-date system
	12.3.1 Early attempts
	12.3.2 natbib—Customizable author-date references
	12.3.3 bibentry—Full bibliographic entries in running text

	12.4 The author-number system
	12.4.1 natbib—Revisited

	12.5 The short-title system
	12.5.1 jurabib—Customizable short-title references
	12.5.2 camel—Dedicated law support

	12.6 Multiple bibliographies in one document
	12.6.1 chapterbib—Bibliographies per included file
	12.6.2 bibunits—Bibliographies for arbitrary units
	12.6.3 bibtopic—Combining references by topic
	12.6.4 multibib—Separate global bibliographies

	13 Bibliography Generation
	13.1 The BIBTeX program and some variants
	13.1.1 bibtex8—An 8-bit reimplementation of BIBTeX
	13.1.2 Recent developments

	13.2 The BIBTeX database format
	13.2.1 Entry types and fields
	13.2.2 The text part of a field explained
	13.2.3 Abbreviations in BIBTeX
	13.2.4 The BIBTeX preamble
	13.2.5 Cross-referencing entries

	13.3 On-line bibliographies
	13.4 Bibliography database management tools
	13.4.1 biblist—Printing BIBTeX database files
	13.4.2 bibtools—A collection of command-line tools
	13.4.3 bibclean, etc.—A second set of command-line tools
	13.4.4 bibtool—A multipurpose command-line tool
	13.4.5 pybliographer—An extensible bibliography manager
	13.4.6 JBibtexManager—A BIBTeX database manager in Java
	13.4.7 BibTexMng—A BIBTeX database manager for Windows

	13.5 Formatting the bibliography with BIBTeX styles
	13.5.1 A collection of BIBTeX style files
	13.5.2 custom-bib—Generate BIBTeX styles with ease

	13.6 The BIBTeX style language
	13.6.1 The BIBTeX style file commands and built-in functions
	13.6.2 The documentation style btxbst.doc
	13.6.3 Introducing small changes in a style file

	14 LaTeX Package Documentation Tools
	14.1 doc—Documenting LaTeX and other code
	14.1.1 General conventions for the source file
	14.1.2 Describing new macros and environments
	14.1.3 Cross-referencing all macros used
	14.1.4 The documentation driver
	14.1.5 Conditional code in the source

	14.2 docstrip.tex—Producing ready-to-run code
	14.2.1 Invocation of the DOCSTRIP utility
	14.2.2 DOCSTRIP script commands
	14.2.3 Installation support and configuration
	14.2.4 Using DOCSTRIP with other languages

	14.3 ltxdoc—A simple LaTeX documentation class
	14.3.1 Extensions provided by ltxdoc
	14.3.2 Customizing the output of documents that use ltxdoc

	14.4 Making use of version control tools
	14.4.1 rcs—Accessing individual keywords
	14.4.2 rcsinfo—Parsing the Id keyword

	A: A LaTeX Overview for Preamble, Package, and Class Writers
	A.1 Linking markup and formatting
	A.1.1 Command and environment names
	A.1.2 Defining new commands
	A.1.3 Defining new environments
	A.1.4 Defining and changing counters
	A.1.5 Defining and changing space parameters

	A.2 Page markup—Boxes and rules
	A.2.1 LR boxes
	A.2.2 Paragraph boxes
	A.2.3 Rule boxes
	A.2.4 Manipulating boxed material
	A.2.5 Box commands and color

	A.3 Control structure extensions
	A.3.1 calc—Arithmetic calculations
	A.3.2 ifthen—Advanced control structures

	A.4 Package and class file structure
	A.4.1 The identification part
	A.4.2 The initial code part
	A.4.3 The declaration of options
	A.4.4 The execution of options
	A.4.5 The package loading part
	A.4.6 The main code part
	A.4.7 Special commands for package and class files
	A.4.8 Special commands for class files
	A.4.9 A minimal class file

	B: Tracing and Resolving Problems
	B.1 Error messages
	B.1.1 Dying with memory exceeded

	B.2 Warnings and informational messages
	B.3 TeX and LaTeX commands for tracing
	B.3.1 Displaying command definitions and register values
	B.3.2 Diagnosing page-breaking problems
	B.3.3 Diagnosing and solving paragraph-breaking problems
	B.3.4 Other low-level tracing tools
	B.3.5 trace—Selectively tracing command execution

	C: LaTeX Software and User Group Information
	C.1 Getting help
	C.2 How to get those TeX files?
	C.3 Using CTAN
	C.3.1 Finding files on the archive
	C.3.2 Using the TeX file catalogue
	C.3.3 Getting multiple files

	C.4 Finding the documentation on your TeX system
	C.4.1 texdoc—Command-line interface for a search by name
	C.4.2 texdoctk—Panel interface for a search by subject

	C.5 TeX user groups

	D: TLC2 TeX CD
	Bibliography
	Index of Commands and Concepts
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	People
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	Z

	Biographies
	Production Notes

