Ch

NN
I|UIJ

3 3.1 Transport-layer 0 3.5 Connection-oriented

services

J 3.2 Multiplexing and
demultiplexing

0 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

transport: TCP
O segment structure
O reliable data transfer
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-56

TCP: Overview TCPi 4

RFCs: 793, 1122, 1323, 2018, 2581

O point-to-point: BL¥fEL
O ohe sender, one receiver
O reliable, in-order byfte
steam: ¥ ig if m/ﬁ?ﬁgf
O no "message boundaries”
0 pipelined: # &% {7 @ 5

O TCP congestion and flow
control set window size

O send & receive buffers
= 757 buffer

socket
door —

TCP TCP
send buffer receive buffer

() [Segment] —p ()

3 full duplex data: > g2

O bi-directional data flow
In same connection

O MSS: maximum segment
size
3 connection-oriented:
B
O handshaking (exchange
of control msgs) init's

sender, receiver state
before data exchange

O flow controlled: ;=€ 3- 41

o sender will not

overwhelm receiver
Transport Layer 3-57

~ " door

TCP segment structure % Ex

‘z‘l-j@i‘

32 bits

URG: urgent data ="]

counting

source port # | dest port #

(generally not used)

ACK: ACK#

by bytes

. sequencé humber of data

valid

(not segmentsl)

PSH: push data now
(generally not used)—

—acknowledgement number
hle“d ';‘;L APRIs|IF| Receive window

bytes

Urg data pnter

RST, SYN, FIN:— |
connection estab

 cheeksum
—
Op% (variable length)

rcvr willing
to accept

(setup, teardown
commands)

/

Internet
checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-58

TCP seq. #'s and ACKs

TCP & 5L3 Fzl

SIS

Seq. #'s.

O byte stream
“number” of first
byte in segment’s
data

ACKs: & — B IE3H e Bl hA 5L

O seq # of next byte
expected from
other side

o cumulative ACK

Q: how receiver handles
out-of-order segments

O A: TCP spec doesn't
say, - up to
implementor

host ACKs
receipt

of echoed
ICI

receipt of

3 Jaia = C 'C', echoes
mg,AO\“A ’ back 'C
seQ”

Seq=

simple telnet scenario

time

\ 4

Transport Layer 3-59

Q: how to set TCP

timeout value?
4w -2 TCP timeout
3 longer than RTT
o but RTT varies
3 too short: premature
timeout (fimeout +~ £)
O unnecessary
retransmissions

3 too long: slow reaction
to segment loss
(timeout + &)

Q: how to estimate RTT?

O

deie B HRTT?
SampleRTT: measured time from

segment transmission until ACK
receipt

O ignhore retransmissions

SampleRTT will vary, want
estimated RTT “smoother"

O average several recent

measurements, not just
current SampleRTT

Transport Layer 3-60

TCP Round Trip Time and Timeout

EstimatedRTT = (1- a)*EstimatedRTT + o*SampleRTT
O Exponential weighted moving average

O influence of past sample decreases exponentially fast
O typical value: o = 0.125

Transport Layer 3-61

1IN} ’

rm

X

0
3

le RTT estimat

nn:
Vi

o

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 -~

300

250 -

RTT (milliseconds)

200 -

150 -

100 T T T T T T T T T T

1 8 15 22 29 36 43 50 57 64 71 78

time (seconnds)

—e— SampleRTT —&— Estimated RTT

85

92 99 106

Transport Layer 3-62

TCP Round Trip Time and Timeout

Setting the timeout % Z timeout &

0 EstimtedRTT plus "safety margin”
O large variation in EstimatedRTT -> larger safety margin

O first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-B)*DevRTT +
B*|SampleRTT-EstimatedRTT]

(typically, B = 0.25)

Then set timeout interval:

Timeoutlnterval = EstimatedRTT + 4*DevRTT

Transport Layer 3-63

C!nnh'l-an ? Aantline
|UIJIOI W VUil
3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP
7 3.2 Multiplexing and O segment structure
demultiplexing o reliable data transfer

T T
o flow control
O connection management

3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

3 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

Transport Layer 3-64

TCP reliable data transfer
TCP+ 7‘ ip '—’T’ ’f’ i ﬁaﬂ

O TCP creates rdt 0 Re‘rr'ansmissions are
service on top of IP's triggered by: £ i%
unreliable service O timeout events

7 Pipelined segments O duplicate acks
¥R (T8 3 Initially consider

3 Cumulative acks simplified TCP sender:
R A O ignore duplicate acks

3 TCP uses single O ignore flow control,

. : congestion control
retransmission timer

H- R

Transport Layer 3-65

TCP sender events: 3 & fii it (1 TCP

data rcvd from app:

O Create segment with
seqH (jr#EH)

0 seq # is byte-stream
number of first data
byte in segment

3 start timer if not
already running (think
of timer as for oldest
unacked segment)

7 expiration interval:
TimeOutilnterval

timeout:

O retransmit segment
that caused timeout

3 restart timer & %
Ack rcvd:

O If acknowledges
previously unacked
segments

O update what is known to
be acked & {& A A Frid
=isegment

o start timer if there are
outstanding segments

Transport Layer 3-66

NextSeqNum = InitialSeqNum
SendBase = InitialSegNum

loop (forever) {
switch(event)

event: data received from application above
create TCP segment with sequence number NextSegNum
if (timer currently not running)
start timer
pass segment to IP
NextSegNum = NextSegNum + length(data)

event: timer timeout
retransmit not-yet-acknowledged segment with
smallest sequence number
start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer

}

} I* end of loop forever */

/7D
1O

sender

(simplified)

Comment:

- SendBase-1: last
cumulatively
ack'ed byte
Example:

- SendBase-1 =71;
y= 73, so the rcvr
wants 73+ ;

y > SendBase, so
that new data is
acked

Transport Layer 3-67

TCP: retransmission scenarios

SendBase

=100

«—timeout ——

v

time

lost ACK scenario

«

Fol 5
ACKH-5

Sendbase
= 100
SendBase
=120

SendBase
=120

92 TimeouT—>|

92 timeout —+— Seq

eq-

Yp]
3
v

time

premature timeout
%1003 A £

Transport Layer 3-68

TCP retransmission scenarios (more)
@ Host A Host B @

timeout ——
(%)
)
Q
!
Q
A
=
o

=120

?<
SendBase P\G\‘/
} Y

A

,
time
Cumulative ACK scenario
LA AT L S AenE ¥

Transport Layer 3-69

Fhct Dotranem
| Uol R Arno

mit pif € i

—

7 Time-out period often
relatively long:
O long delay before
resending lost packet
O Detect lost segments
via duplicate ACKs.

O Sender often sends

many segments back-to-
back

O If segment is lost,
there will likely be many
duplicate ACKs.

0 If sender receives 3
duplicated ACKs for the
same data, it supposes
that segment after

ACKed data was lost:

o fast retransmit: resend
segment before timer

expires

T R = B - R eaPACKFF
e

Transport Layer 3-70

n
A

event: ACK received, with ACK field value of y
if (y > SendBase) {
SendBase =y
if (there are currently not-yet-acknowledged segments)
start timer
}
else {
increment count of dup ACKSs received for y
if (count of dup ACKs received fory = 3) {
resend segment with sequence numbery

}
' \

a duplicate ACK for fast retransmit
already ACKed segment

Transport Layer 3-71

Ch

NN
I|UIJ

3 3.1 Transport-layer
services

7 3.2 Multiplexing and
demultiplexing

7 3.3 Connectionless
transport: UDP

3 3.4 Principles of
reliable data transfer

3 3.5 Connection-oriented
transport: TCP
O segment structure
O reliable data transfer
o flow control
i oA 1
O conhnection management
3 3.6 Principles of
congestion control

3 3.7 TCP congestion
control

Transport Layer 3-72

TCP Flow Control ;& & =41

' i - B
L -flow control
O receive .S'de of TCP sender won't overflow
connection has a receiver's buffer by
receive buffer: transmitting too much,
Hlo# B too fast

Bz e R

Revwindow —|+ e = . PN
— frF (7542 BX3 B

7
@ wiain 0 speed-matching

data from

IP rocess

w7 B service: matching the
7% send rate to ’rheg
b RevBuffer ————# . . ' .
receiving app's drain
3 app process may be rate
slow at reading from
buffer

Transport Layer 3-73

data from
1P

~ inbuffer
707
b RevBuffer ————#

(Suppose TCP receiver
discards out-of-order

senmon'l'c\
3' [RAS2 B N QJ}

3 spare room in buffer
= RcvWindow

application
process

= RcvBuffer-[LastByteRcvd -

LastByteRead]

O Rcvr advertises spare
room by including value
of RcvWindow in

segments
A Sender limits unACKed
data to RcvWindow

O guarantees receive
buffer doesn't overflow

Transport Layer 3-74

C!nnh'l-an RV antline
|UIJIOI W VUl iIw
3 3.1 Transport-layer 3 3.5 Connection-oriented
services transport: TCP
7 3.2 Multiplexing and O segment structure
demulfiplexing o reliable data transfer

3 3.3 Connectionless O flow CO“f“‘O'
transport: UDP O connection management
L HRpIL
3 3.4 Principles of

. 3 3.6 Principles of
reliable data transfer congestion control

3 3.7 TCP congestion
control

Transport Layer 3-75

TCP Connection Management i &t 3 12

Recall: TCP sender, receiver
establish "connection”
before exchanging data
segments

3 initialize TCP variables:
O seq. #s

O buffers, flow control
info (e.g. RevWindow)

3 client: connection initiator

Socket clientSocket = new
Socket(''"hostname","port

number'™) ;

O server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

Three way handshake:

z = #ifi

Step 1. client host sends TCP
SYN segment to server

O specifies initial seq #
O ho data
Step 2: server host receives
SYN, replies with SYNACK
segment
o server allocates buffers

O specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment,

which may contain data
Transport Layer 3-76

Transport Layer 3-77

CP Connection Management (cont.)

Closing a connection:

client closes socket:
clientSocket.close();

Step 1: client end system
sends TCP FIN control

segment to server

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN.

@ client

close

d wait

Q time

close

FIN

CK
/ close
/
K

S@"V@f‘@

Transport Layer 3-78

CP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

o Enters “timed wait" -
will respond with ACK
to received FINs

Step 4: server, receives

ACK (Connectian rlaced
7 VN [N\, WV ITITIWw W I TIVI IV NA,

Note: with small
modification, can handle
simultaneous FINs.

@ client server@

closin
g9 FIN
cX .
/ ClOSlng
/
4
.6 K
=
9 closed
£
=
closed ™

Transport Layer 3-79

TCP Connection Mana

gem

ment

Y R
CLOSED client application
initiates a TCP connection
wizit 30 seconds
send SYMN
TIME_WAIT SYN_SENT
&
receive FIM receive 3TM & ACK
send ACK send ACK
¥
FIN_WAIT_2 ESTABLISHED TCP S@I"VCI"
client application I Ifecyc I e
receive ACK initiates close connection
send nothing FIN_WAIT_1 send FIN CLOSED server application
receive ACK creates a listen socket
TCP I send nothing
leC__ .. _1_
iy ecyc le
LAST_ACK LISTEN
Fy
receive 57N
send FIN send SYM & ACK
¥
CLOSE_WAIT SYN_RCVD
receive ACK
- send nothing
receive
- ESTABLISHED

Transport Layer 3-80

