
Chapter 3 outlineChapter 3 outline

3 1 T l 3 5 C i i d 3.1 Transport-layer
services
3 2 M lti l i d

3.5 Connection-oriented
transport: TCP

segment structure3.2 Multiplexing and
demultiplexing
3 3 Connectionless

segment structure
reliable data transfer
flow control3.3 Connectionless

transport: UDP
3 4 Principles of

f
connection management

3.6 Principles of 3.4 Principles of
reliable data transfer

p
congestion control
3.7 TCP congestion

lcontrol

Transport Layer 3-56

TCP: Overview TCP簡介
RFCs: 793, 1122, 1323, 2018, 2581

f ll d l d t 全雙工i t t i t: 點對點 full duplex data: 全雙工
bi-directional data flow
in same connection

point-to-point: 點對點
one sender, one receiver

reliable in order byte n same connect on
MSS: maximum segment
size

reliable, in-order byte
steam: 可信賴的傳輸

no “message boundaries”
connection-oriented:
連結導向

handshaking (exchange

no message boundar es
pipelined: 管線平行傳輸

TCP congestion and flow
handshaking (exchange
of control msgs) init’s
sender, receiver state
b f d h

g
control set window size

send & receive buffers
雙方都有b ff before data exchange

flow controlled: 流量控制

s nd r ill n t

雙方都有buffer
socket
door

TCP TCP

socket
door

application
writes data

application
reads data

Transport Layer 3-57

sender will not
overwhelm receiver

TCP
send buffer

TCP
receive buffer

segment

TCP segment structure 區段結構

 t # d t t #

32 bits
URG: urgent data 緊急用 countingsource port # dest port #

sequence number
acknowledgement number

g
(generally not used)

ACK: ACK #
lid

counting
by bytes
of data
(not segments!)acknowledgement number

Receive window
Urg data pnterchecksum

FSRPAUhead
len

not
used

valid
PSH: push data now
(generally not used) # bytes

 illin

(not segments!)

Urg data pnter

Options (variable length)RST, SYN, FIN:
connection estab
(d

rcvr willing
to accept

application
data

(setup, teardown
commands)

Internet data
(variable length)

Internet
checksum

(as in UDP)

Transport Layer 3-58

TCP seq. #’s and ACKs
TCP 序號及確認號碼TCP 序號及確認號碼

Seq. #’s: Host A Host B
byte stream
“number” of first
byte in segment’s

Host A Host B

User
types

‘C’y gm
data
第一個byte的編號

ACKs: 下一個預計收到的序號

C
host ACKs
receipt of
‘C’, echoes

b k ‘C’ACKs: 下一個預計收到的序號

seq # of next byte
expected from host ACKs

back ‘C’

other side
cumulative ACK

Q: how receiver handles

host ACKs
receipt

of echoed
‘C’

Q: how receiver handles
out-of-order segments

A: TCP spec doesn’t time
simple telnet scenario

Transport Layer 3-59

say, - up to
implementor

simple telnet scenario

TCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

Q: how to set TCP Q: how to estimate RTT?Q how to set TCP
timeout value?
如何決定TCP timeout
l h

Q
如何估計RTT?
SampleRTT: measured time from

t t i i til ACK longer than RTT
but RTT varies

too short: premature

segment transmission until ACK
receipt

ignore retransmissionstoo short: premature
timeout (timeout 太長)

unnecessary
t i i

g
SampleRTT will vary, want
estimated RTT “smoother”

 l t retransmissions
too long: slow reaction
to segment loss

average several recent
measurements, not just
current SampleRTTg

(timeout太短)

Transport Layer 3-60

TCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

EstimatedRTT = (1- α)*EstimatedRTT + α*SampleRTTEstimatedRTT (1 α) EstimatedRTT + α SampleRTT

Exponential weighted moving average
influence of past sample decreases exponentially fast
typical value: α = 0.125

Transport Layer 3-61

Example RTT estimation:Example RTT estimation:
RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350

300

350

250

on
ds

)

200RT
T

(m
ill

ise
co

150

100
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconnds)

Transport Layer 3-62

SampleRTT Estimated RTT

TCP Round Trip Time and TimeoutTCP Round Trip Time and Timeout

Setting the timeout 設定timeout值g
EstimtedRTT plus “safety margin”

large variation in EstimatedRTT -> larger safety margin
first estimate of how much SampleRTT deviates from
EstimatedRTT:

DevRTT = (1-β)*DevRTT +
β*|SampleRTT-EstimatedRTT|

(typically, β = 0.25)

Then set timeout interval:

TimeoutInterval = EstimatedRTT + 4*DevRTT

Then set timeout interval:

Transport Layer 3-63

Chapter 3 outlineChapter 3 outline

3 1 T l 3 5 C i i d 3.1 Transport-layer
services
3 2 M lti l i d

3.5 Connection-oriented
transport: TCP

segment structure3.2 Multiplexing and
demultiplexing
3 3 Connectionless

segment structure
reliable data transfer
可信賴的資料傳輸3.3 Connectionless

transport: UDP
3 4 Principles of

flow control
connection management

3 6 P i i l f 3.4 Principles of
reliable data transfer 3.6 Principles of

congestion control
3 7 TCP sti 3.7 TCP congestion
control

Transport Layer 3-64

TCP reliable data transfer
TCP可信賴的資料傳輸

TCP d R i i TCP creates rdt
service on top of IP’s
unreliable service

Retransmissions are
triggered by: 重送

timeout eventsunreliable service
Pipelined segments
管線平行傳輸

timeout events
duplicate acks

Initially consider 管線平行傳輸

Cumulative acks
累積式確認

Initially consider
simplified TCP sender:

ignore duplicate acks累積式確認

TCP uses single
retransmission timer

p
ignore flow control,
congestion control

單一重送計時器

Transport Layer 3-65

TCP sender events: 高度簡化的TCP
data rcvd from app:

Create segment with
timeout:

retransmit segment Create segment with
seq # (亂數選擇)
seq # is byte-stream

retransmit segment
that caused timeout
restart timer 重設seq # is byte-stream

number of first data
byte in segment

restart timer 重設

Ack rcvd:
If acknowledges y g

start timer if not
already running (think

If acknowledges
previously unacked
segments

of timer as for oldest
unacked segment)

i i i l

g
update what is known to
be acked 最後未被確認
的segmentexpiration interval:

TimeOutInterval

的segment
start timer if there are
outstanding segments

Transport Layer 3-66

TCP
NextSeqNum = InitialSeqNum
SendBase = InitialSeqNum

TCP
sender

loop (forever) {
switch(event)

d i d f li i b
(simplified)

event: data received from application above
create TCP segment with sequence number NextSeqNum
if (timer currently not running)

start timerstart timer
pass segment to IP
NextSeqNum = NextSeqNum + length(data)

t ti ti t

Comment:
• SendBase-1: last
cumulatively event: timer timeout

retransmit not-yet-acknowledged segment with
smallest sequence number

start timer

cumulatively
ack’ed byte
Example:
• SendBase-1 = 71;start timer

event: ACK received, with ACK field value of y
if (y > SendBase) {

S dB

SendBase 1 71;
y= 73, so the rcvr
wants 73+ ;
y > SendBase, so

SendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}

y ,
that new data is
acked

Transport Layer 3-67

}

} /* end of loop forever */

TCP: retransmission scenarios retransm ss on scenar os
Host A Host BHost A Host B

eo
ut

eq
=9

2
ti

m
e

l

ti
m

eo
ut

X 最舊未被

Seloss

ut

Sendbase
= 100

最舊未被
ACK的序號

=9
2

ti
m

eo
u

SendBase
= 120

 100

premature timeout
Se

q

SendBase
= 100 SendBase

= 120

Transport Layer 3-68

time
p
區域100並未重送

lost ACK scenario
time

TCP retransmission scenarios (more)TCP retransmission scenarios (more)
Host A Host B

l

ti
m

eo
ut

X
loss

SendBase
 = 120

Cumulative ACK scenario
time

Transport Layer 3-69

累積式確認可避免多餘的重送

Fast Retransmit 快速重送Fast Retransmit 快速重送

Ti i d f If d i 3 Time-out period often
relatively long:

long delay before

If sender receives 3
duplicated ACKs for the
same data it supposes long delay before

resending lost packet
Detect lost segments

same data, it supposes
that segment after
ACKed data was lost:gm

via duplicate ACKs.
Sender often sends

 t b k t

ACKed data was lost:
fast retransmit: resend
segment before timer

imany segments back-to-
back
If segment is lost,

expires
重覆收到三個一樣的ACK時執

行快速重送！f gm ,
there will likely be many
duplicate ACKs.

行快速重送！

Transport Layer 3-70

Fast retransmit algorithm:Fast retransmit algorithm:

event: ACK received, with ACK field value of y
if (y > SendBase) {

SendBase = ySendBase = y
if (there are currently not-yet-acknowledged segments)

start timer
}}

else {
increment count of dup ACKs received for y
if (count of dup ACKs received for y = 3) {(p y) {

resend segment with sequence number y
}

a duplicate ACK for
already ACKed segment

fast retransmit

Transport Layer 3-71

Chapter 3 outlineChapter 3 outline

3 1 T l 3 5 C i i d 3.1 Transport-layer
services
3 2 M lti l i d

3.5 Connection-oriented
transport: TCP

segment structure3.2 Multiplexing and
demultiplexing
3 3 Connectionless

segment structure
reliable data transfer
flow control3.3 Connectionless

transport: UDP
3 4 Principles of

f
流量控制

connection management
3 6 P i i l f 3.4 Principles of

reliable data transfer 3.6 Principles of
congestion control
3 7 TCP sti 3.7 TCP congestion
control

Transport Layer 3-72

TCP Flow Control 流量控制TCP Flow Control 流量控制

receive side of TCP sender won’t overflow
flow control

connection has a
receive buffer:
接收端緩衝區

sender won t overflow
receiver’s buffer by

transmitting too much,
too fast接收端緩衝區 too fast

傳送端會依接收端的緩
衝區情形決定傳送速度

speed-matching
service: matching the

d h send rate to the
receiving app’s drain
rateapp process may be rateapp process may be

slow at reading from
buffer

Transport Layer 3-73

buffer

TCP Flow control: how it worksTCP Flow control: how it works
Rcvr advertises spare Rcvr advertises spare
room by including value
of RcvWindow in

(S TCP i

segments
Sender limits unACKed

(Suppose TCP receiver
discards out-of-order
segments)

data to RcvWindow
guarantees receive
buffer doesn’t overflowsegments)

spare room in buffer
= RcvWindow

buffer doesn t overflow

 RcvWindow
= RcvBuffer-[LastByteRcvd -

LastByteRead]

Transport Layer 3-74

Chapter 3 outlineChapter 3 outline

3 1 T l 3 5 C i i d 3.1 Transport-layer
services
3 2 M lti l i d

3.5 Connection-oriented
transport: TCP

segment structure3.2 Multiplexing and
demultiplexing
3 3 Connectionless

segment structure
reliable data transfer
flow control3.3 Connectionless

transport: UDP
3 4 Principles of

f
connection management
連線管理

3 6 P i i l f 3.4 Principles of
reliable data transfer 3.6 Principles of

congestion control
3 7 TCP sti 3.7 TCP congestion
control

Transport Layer 3-75

TCP Connection Management 連線管理

Recall: TCP sender, receiver
establish “connection”
b f h i d t

Three way handshake:
三方握手

before exchanging data
segments
initialize TCP variables:

Step 1: client host sends TCP
SYN segment to server

seq. #s
buffers, flow control
i f (R Wi d)

SYN segment to server
specifies initial seq #
no data

info (e.g. RcvWindow)
client: connection initiator
Socket clientSocket = new

Step 2: server host receives
SYN, replies with SYNACK
segment

Socket("hostname","port

number");

server: contacted by client

segment
server allocates buffers
specifies server initial server: contacted by client

Socket connectionSocket =
welcomeSocket.accept();

specifies server initial
seq. #

Step 3: client receives SYNACK,
replies with ACK segment

Transport Layer 3-76

replies with ACK segment,
which may contain data

Three Way HandshakeThree Way Handshake

Transport Layer 3-77

TCP C ti M t (t)TCP Connection Management (cont.)

Cl i tiClosing a connection:

關閉連線

client server

close

client closes socket:
clientSocket.close();

l
Step 1: client end system

sends TCP FIN control

close

sends CP FIN control
segment to server

Step 2: server receives ed
 w

ai
t

Step 2: server receives
FIN, replies with ACK.
Closes connection, sends
FIN

closed
ti

m
e

Transport Layer 3-78

FIN.

TCP C ti M t (t)TCP Connection Management (cont.)

Step 3: client receives FIN,
replies with ACK.

client server

closing
Enters “timed wait” -
will respond with ACK
to received FINs l ito received FINs

Step 4: server, receives
ACK Connection closed

closing

ACK. Connection closed.

Note: with small
modification can handle ed

 w
ai

t

closedmodification, can handle
simultaneous FINs.

closed
ti

m
e

Transport Layer 3-79

TCP Connection Management (cont)TCP Connection Management (cont)

TCP server
lifecycle

TCP client
lifecyclelifecycle

Transport Layer 3-80

