Chapter 2: Application layer

7 2.1 Principles of 3 2.6 P2P Applications
network applications L R T
&* KR 7 2.7 Socket programming
J 2.2 Web and HTTP with TCP
023 FTP 7 2.8 Socket programming
1 2.4 Electronic Mail with UDP
<« SMTP, POP3, IMAP
d 2.5 DNS

T e £
w\‘]%- iﬁq t" *P_ /Jé\ \\Vb

2: Application Layer

1

DNS: Domain Name System

People: many identifiers:
« SSN, name, passport #
NI e N o
Internet hosts, routers:

« IP address (32 bit) - used
for addressing datagrams
* IP i nt 3w
< "name", e.g., ww.yahoo.com
- used by humans
Q: map between IP addresses

- and name ?
TP 7 4t i

Domain Name System:

O distributed database
AAT TR
implemented in hierarchy of
many rame servers

O application-layer protocol
host, routers, name servers to
communicate to reso/ve names
(address/name translation)

% hote: core Internet
function, implemented as
application-layer protocol

+ complexity at network’s
“edge”

2: Application Layer

2

DNS: Domain Name System

DNS services

7 hosthame to IP address
translation

L AL
O host aliasingi # %] %
+ Canonical, alias names

O mail server aliasing
(2 PIRE] ¢

4

7 load distribution
B i\l /o fie

<+ replicated Web servers:

set of IP addresses for
one canonical nhame

Why not centralize DNS?

3 single point of failure
— B3 >IN
A traffic volume
S e
[distant centralized database
BIEHE Y TR L (delay)
7 maintenance
BEN AR

doesn't scale! # ,# # ¢

2: Application Layer

Distributed, Hierarchical Database
A LA R A a2

Root DNS Servers «—— {1 #RE

/ \ B FE PR E
e

com DNS servers org DNS servers edu DNS servers
/ \ poly.edu umass.edu
yahoo.com amazon.com pbs.org
DNS servers DNS servers DNS servers DNS serversDNS servers
v\

' % M4 (PR BB
Client wants IP for www.amazon.com; 15t approx: ~ BRI

3 client queries a root server to find com DNS server

3 client queries com DNS server to get amazon.com
DNS server

J client queries amazon.com DNS server to get IP
address for www.amazon.com

2: Application Layer 4

DNS: Root name servers 2 7 PR &

O contacted by local name server that can not resolve name

O root name server:
<+ contacts authoritative name server if nhame mapping nhot known
< gets mapping
<+ returns mapping to local name server

a Verisign, Dulles, VA
¢ Cogent, Herndon, VA (also LA)

d U Maryland College Park, MD k RIPE London (also 16 other locations)
g US DoD Vienna, VA

h ARL Aberdeen, MD i Autonomica, Stockholm (plus
j Verisign, (21 locations) / 28 other locations)

m WIDE Tokyo (also Seoul,

e NASA Mt View, CA .
Paris, SF)

f Internet Software C. Palo Alto,
CA (and 36 other locations)

; 13 root name
\ O servers worldwide

b USC-ISI Marina del Rey, CA -
| ICANN Los Angeles, CA ‘
. y
r

2: Application Layer 5

TLD and Authoritative Servers

O Top-level domain (TLD) servers: & F# 43 PR &
» responsible for com, org, net, edu, etc, and all top-level
country domains uk, fr, ca, jp.
+ Network Solutions maintains servers for com TLD
« Educause for edu TLD

O Authoritative DNS servers: & #ir2 ¢ = IR E
<+ organization's DNS servers, providing authoritative

hostname to IP mappings for organization's servers (e.g.,
Web, mail).

<+ can be maintained by organization or service provider

2: Application Layer

Local Name Server % & &R &

O does not strictly belong to hierarchy
- AR

O each ISP (residential ISP, company,
university) has one.
< also called "default name server”

3 when host makes DNS query, query is sent
to its local DNS server

+ acts as proxy, forwards query into hierarchy
frproxyit®* jafe > #3983 + &

2: Application Layer

DNS name

resolution example .

root DNS server

J Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
%3 43
[contacted server

replies with name of
server to contact

A3 "I don't know this
name, but ask this
server"”

2
3
/ TLD DNS server
4 >
0 ——8
local DNS serve

dns.poly.edu

1 8 n

authoritative DNS server
dns.cs.umass.edu

2

2

requesting host
cis.poly.edu

gaia.cs.umass.edu

2: Application Layer 8

DNS name
I"ZSO'UTIOH eXamp|e root DNS server

recursive query:. / \
\;é > ‘\: ?\/
YR 3 4 39 ’)

J puts burden of name
resolution on

contacted name
server local DNS server
dns.poly.edu

TLD DNS server

3 heavy load?

1118

@ authoritative DNS server
dns.cs.umass.edu

requesting host

cis.poly.edu @

gaia.cs.umass.edu

2: Application Layer 9

DNS: caching and updating records

DNSE-B~2 { 37

3 once (any) hame server learns mapping, it caches
mapping
<+ cache entries timeout (disappear) after some
time & g — P& Fé“ih-? HE- B
<+ TLD servers typically cached in local name
servers P-BTLD P IR T erviz b
» Thus root name servers not often visited

3 update/notify mechanisms under design by IETF

« RFC 2136
% http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer

10

DNS records DN

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)iz4r#;h

O Type=A m Type CNAME
+ name is hostname name is alias name for some
« value is IP address “canonical” (the real) name
_ibm.com is really
J Type=NS -
YP servereast.backup2.1bm.com
name is domain (e.g. » value is canonical name
foo.com) ’

+ value is hosthame of 4 Type=MX
authoritative name

. . < value is name of mailserver
server for this domain me of m

associated with name

2: Application Layer 11

DNS protocol, messages # %2231 4

DNS protocol : guery % :igand reply ¥ jizmessages,
both with same message format

Identification flags T
msg header
. L . . number of guestions number of answer RRs 12 bytes
3 identification: 16 bit #
for- query, r‘eply to query nurnber of authority RRs | number of additional RRs l
uses same # .
S N osn 6 " | questions |
;j_fy_ ‘-zE] & W f,l:% Eﬂ‘-ﬂl o ’ (variable number of questions)
A0 e erid
. Ansners
O ﬂags- {variable number of resource records)
<« query or repl
q y . py authority
< recursion dCSll"ed (wariable number of resource records)
% recursion available - _
additional information
& r.ep|y iS GUThOf‘iTGTiVZ (variable number of resource recaords)

2: Application Layer 12

DNS protocol, messages

identification flags T
Name, Type flelds number of guestions number of answer RRs 12 bytes
for a query
number of authority EREs [number of additional RRs l
RRS |n response N guestions

(variable number of gquestions)

‘ro quer'y\
Ol 1]}; ¢ 7 ~ answers

(variable number of resource records)

r‘ecords for -
. . — authari
GUThOI"ITGTIV@ servers > (variable number of regource records)

additional information

C(ddl'honal “helpful" /» {variable number of resource records)
info that may be used

2: Application Layer 13

Inserting records info DNS
4o i B 4 — =) ?‘ﬁi@DNS

7 example: new startup "Network Utopia”

O register name networkuptopia.com at ONS registrar
(e.g., Network Solu’rlonsg

<+ provide names, IP addresses of authoritative name server
(primary and secondary)

+ registrar inserts two RRs into com TLD server:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl._.networkutopra.com, 212.212.212.1, A)

0 create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

J How do people get IP address of your Web site?

2: Application Layer 14

Chapter 2: Application layer

3 2.1 Principles of 0 2.6 P2P file sharing
network applications L R T
“ app architectures 1 2.7 Socket programming
< app requirements with TCP
0 2.2 Web and HTTP 7 2.8 Socket programming
3 2.4 Electronic Mail with UDP
+ SMTP, POP3, IMAP A 2.9 Building a Web
0 2.5 DNS server

2: Application Layer

15

P2P file sharing

Example

3 Alice runs P2P client
application on her
notebook computer

J intfermittently
connects to Internet;
gets new IP address
for each connection

3 asks for "Hey Jude”

3 application displays
other peers that have
copy of Hey Jude.

7 Alice chooses one of
the peers, Bob.

3 file is copied from
Bob's PC to Alice's
notebook: HTTP

3 while Alice downloads,
other users uploading
from Alice.

3 Alice's peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalablel

T3 T et aserver
2: Application Layer 16

P2P: centralized directory
B¢ 3' P&

or'iginal “NGPSTer" dZSign centralized

1) when peer connects, it~ drectory server
informs central server:
< IP address n
<+ Content
R
2) Alice queries for "Hey
Jude”
wAthE o AT R
Fh 3 DT P
3) Alice requests file from
Bob

2: Application Layer 17

P2P: problems with centralized directory

3 single point of failure file transfer is
¥ g4 % decentralized, but
7 performance bottleneck locating content is
i FLER highly centralized

3 copyright infringement:
“target” of lawsuit is
obvious

RS

2: Application Layer 18

Query flooding: Gnutella

4 D SIRIBE Gnutella |

3 fully distributed
<+ ho central server
% 2 A AT E
3 public domain protocol
AN i o
3 many Gnutella clients
implementing protocol

overlay network: graph

7 edge between peer X
and Y if there's a TCP
connection

3 all active peers and
edges form overlay net

3 edge: virtual (not
physical) link

7 given peer typically
connected with < 10
overlay neighbors

2: Application Layer 19

Gnutella: protocol

File transfer:
0 Query message HTTP

sent over existing TCP
connections

i 3 e TCPi &
0 peers forward
Query message
S8

0 QueryHit
sent over

reverse
path

Query
QueryHit

Y%,

Scalability:
limited scope

flooding @
2: Application Layer 20

-+ Kq?‘?ﬂ%‘z@

Gnutella: Peer joining ¥ 8k4r >

1. joining peer Alice must find another peer in
Gnutella network: use list of candidate peers

2. Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob

3. Flooding: Alice sends Ping message to Bob; Bob
forwards Ping message to his overlay neighbors
(who then forward to their neighbors....)

7 peers receiving Ping message respond to Alice
with Pong message

4. Alice receives many Pong messages, and can then
setup additional TCP connections

Peer leaving: see homework problem!

2: Application Layer 21

Hierarchical Overlay F* & ;% & #p

O between centralized index,
query flooding approaches

O each peer is either a group
leader or assigned to a group
leader.

< TCP connection between
peer and its group leader.

+ TCP connections between
some pairs of group

leaders. o ou
ordinary peer
3 group leader tracks content @ oouvcacerpee:
|n |TS Chlldr‘en neighoring relationships

in overlay network

group leader'ﬁrrig o T pEed
A gL e ? 2: Application Layer 22

Comparing Client-server, P2P architectures

Question: How much time distribute file initially at one
server to Nother computers?

LSO ERAEE E NG T D

Server

. u

File, size F

B
Lo

Network (with

abundant bandwidth)

u.: server upload
bandwidth

u;: client/peer i
upload bandwidth

d.: client/peer i
download bandwidth

2: Application Layer 23

Client-server: file distribution time

7 server sequentially
sends N copies:

= NF/u time

J client i takes F/d.
time to download

Server

Uy

g
L

Ne’rwor'k (with

@.—’L abundant bandwidth) *

Time to distribute F

to Nclients using = d_ = max { NF/u,, F/mm{o’)}

/

client/server approach

./ . .
increases linearly in N
(for Iar'ge N) 2: Application Layer 24

P2P: file distribution time

Server @
7 server must send one
. . F n ul dl U2
copy: F/u,time u, d o

A client i takes F/d; time 4

Network (with
to download @.d—L abundant bandwidth) *
7 NF bits must be U .
downloaded (aggregate) o .

1 fastest possible upload rate (assuming® *
all nodes sending file chunks to same

peer): u, +/§_;t/J\}

dpzp = max { F/US, F/m/ﬂ{a',)/, NF/(US + Zui)}

=IN

2: Application Layer 25

Comparing Client-server, P2P architectures

3.5

w

Minimum Distribution Time

o
&

o

= P2P

| | -e— Client-Server

N
o1
|

N
|

=
ol
|

[HEN
|

2: Application Layer

26

P2P Case Study: BitTorrent

3 P2P file distribution

fracker: tracks peers
participating in forrent

AN

obtain list
of peers

trading
chunks

forrent: group of
peers exchanging
chunks of a file

@ 2: Application Layer 27

BitTorrent (1)

A file divided into 256KB chunks,
0 peer joining torrent:
= has no chunks, but will accumulate them over time

<+ registers with tracker to get list of peers,
connects to subset of peers ("neighbors")

3 while downloading, peer uploads chunks to other
peers.

7 peers may come and go

7 once peer has entire file, it may (selfishly) leave or
(altruistically) remain

2: Application Layer 28

BitTorrent (2)

Pulling Chunks Sending Chunks: tit-for-tat

3 at any given time, 3 Alice sends chunks to
different peers have four neighbors currently
different subsets of sending her chunks at the
file chunks highest rate

0 periodically, a peer %+ re-evaluate top 4
(Alice) asks each every 10 secs
neighbor for list of J every 30 secs: randomly
chunks that they have. select another peer,

O Alice issues requests starts sending chunks
for her missing chunks o newly chosen peer may

+ rarest first join top 4

2: Application Layer 29

P2P Case study: Skype

Skype clients (SC)

3 P2P (pc-to-pc, pc-to- ®
phone, phone—’ro-pc) n @ SKVpe @

Voice-Over-IP (VoIP) o ype S
application login server _, Supernode
+ also IM ‘
O proprietary @b%
application-layer Skype AN SKyPe,
protocol (inferred via IB-—¢3 2 ®
reverse engineering) ‘W@ @ -
3 hierarchical overlay S Skype;

2: Application Layer 30

Skype: making a call B

h 2L
Skyp€3}~r =
0 User starts Skype < B8
3 SC registers with SN n @“W
<+ list of bootstrap SNs I Skype RN
3 SC logs in ogin server
(authenticate))
3 Call: SC contacts SN will @W’d
callee ID el
+» SN contacts other SNs S RSKYPC skvDe R “kype
(unknown protocol, maybe @ @) @
flooding) to find addr of Y Spe, ey S

callee; returns addr to SC
3 SC directly contacts callee, over TCP

2: Application Layer 31

