
2: Application Layer 1

Chapter 2: Application layer

2.1 Principles of
network applications
應用層原理

2.2 Web and HTTP
2.3 FTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS
網域名稱系統

2.6 P2P Applications
點對點應用

2.7 Socket programming
with TCP
2.8 Socket programming
with UDP

2: Application Layer 2

DNS: Domain Name System

People: many identifiers:
SSN, name, passport #
多個識別碼

Internet hosts, routers:
IP address (32 bit) - used
for addressing datagrams
用IP位址識別

“name”, e.g., ww.yahoo.com
- used by humans

Q: map between IP addresses
and name ?
IP與名稱的對應

Domain Name System:
distributed database
分散式資料庫
implemented in hierarchy of
many name servers
application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)

note: core Internet
function, implemented as
application-layer protocol
complexity at network’s
“edge”

2: Application Layer 3

DNS: Domain Name System
Why not centralize DNS?

single point of failure
一個壞全部壞

traffic volume
大網路流量

distant centralized database
遠距離集中式資料庫（delay）
maintenance
維護問題

doesn’t scale! 無法擴充

DNS services
hostname to IP address
translation
名稱轉譯

host aliasing主機別名

Canonical, alias names
mail server aliasing
郵件伺服器別名

load distribution
負載分配

replicated Web servers:
set of IP addresses for
one canonical name

2: Application Layer 4

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database
分散式、階層式資料庫

Client wants IP for www.amazon.com; 1st approx:
client queries a root server to find com DNS server
client queries com DNS server to get amazon.com
DNS server
client queries amazon.com DNS server to get IP
address for www.amazon.com

根伺服器

高階伺服器

各機構伺服器

2: Application Layer 5

DNS: Root name servers 根伺服器

contacted by local name server that can not resolve name
root name server:

contacts authoritative name server if name mapping not known
gets mapping
returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

2: Application Layer 6

TLD and Authoritative Servers

Top-level domain (TLD) servers: 高階網域伺服器
responsible for com, org, net, edu, etc, and all top-level

country domains uk, fr, ca, jp.
Network Solutions maintains servers for com TLD
Educause for edu TLD

Authoritative DNS servers: 各機構之官方伺服器
organization’s DNS servers, providing authoritative
hostname to IP mappings for organization’s servers (e.g.,
Web, mail).
can be maintained by organization or service provider

2: Application Layer 7

Local Name Server 區域伺服器

does not strictly belong to hierarchy
不一定是階層式架構

each ISP (residential ISP, company,
university) has one.

also called “default name server”
when host makes DNS query, query is sent
to its local DNS server

acts as proxy, forwards query into hierarchy
和proxy作用相同，將查詢傳至上層

2: Application Layer 8

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
循環式查詢
contacted server
replies with name of
server to contact
“I don’t know this
name, but ask this
server”

2: Application Layer 9

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
遞迴式查詢
puts burden of name
resolution on
contacted name
server
heavy load?

DNS name
resolution example

2: Application Layer 10

DNS: caching and updating records
DNS快取及更新

once (any) name server learns mapping, it caches
mapping

cache entries timeout (disappear) after some
time 每隔一段時間就丟掉快取的資訊

TLD servers typically cached in local name
servers 快取TLD伺服器的位址

• Thus root name servers not often visited
update/notify mechanisms under design by IETF

RFC 2136
http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 11

DNS records DNS記錄

DNS: distributed db storing resource records (RR)

Type=NS
name is domain (e.g.
foo.com)
value is hostname of
authoritative name
server for this domain

RR format: (name, value, type, ttl)記錄格式

Type=A
name is hostname
value is IP address

Type=CNAME
name is alias name for some
“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

value is canonical name

Type=MX
value is name of mailserver
associated with name

2: Application Layer 12

DNS protocol, messages 協定與訊息

DNS protocol : query 查詢and reply 回應messages,
both with same message format

msg header
identification: 16 bit #
for query, reply to query
uses same #
在查詢及回應的訊息中，用
相同的id
flags:

query or reply
recursion desired
recursion available
reply is authoritative

2: Application Layer 13

DNS protocol, messages

Name, type fields
for a query

RRs in response
to query

可以有多個回覆

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 14

Inserting records into DNS
如何增加一筆資料進DNS

example: new startup “Network Utopia”
register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)

provide names, IP addresses of authoritative name server
(primary and secondary)
registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com
How do people get IP address of your Web site?

2: Application Layer 15

Chapter 2: Application layer

2.1 Principles of
network applications

app architectures
app requirements

2.2 Web and HTTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P file sharing
點對點應用

2.7 Socket programming
with TCP
2.8 Socket programming
with UDP
2.9 Building a Web
server

2: Application Layer 16

P2P file sharing

Example
Alice runs P2P client
application on her
notebook computer
intermittently
connects to Internet;
gets new IP address
for each connection
asks for “Hey Jude”
application displays
other peers that have
copy of Hey Jude.

Alice chooses one of
the peers, Bob.
file is copied from
Bob’s PC to Alice’s
notebook: HTTP
while Alice downloads,
other users uploading
from Alice.
Alice’s peer is both a
Web client and a
transient Web server.

All peers are servers =
highly scalable!
所有電腦都是server

2: Application Layer 17

P2P: centralized directory
集中式目錄

original “Napster” design
1) when peer connects, it

informs central server:
IP address
Content
向主機註冊

2) Alice queries for “Hey
Jude”
向主機查詢，主機回覆有
檔案的電腦

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

2: Application Layer 18

P2P: problems with centralized directory

single point of failure
單點失效

performance bottleneck
效能瓶頸

copyright infringement:
“target” of lawsuit is
obvious
版權問題

file transfer is
decentralized, but
locating content is
highly centralized

2: Application Layer 19

Query flooding: Gnutella
查詢漫出：以Gnutella為例

fully distributed
no central server
完全分散式運作

public domain protocol
公開的協定

many Gnutella clients
implementing protocol

overlay network: graph
edge between peer X
and Y if there’s a TCP
connection
all active peers and
edges form overlay net
edge: virtual (not
physical) link
given peer typically
connected with < 10
overlay neighbors

2: Application Layer 20

Gnutella: protocol

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTPQuery message

sent over existing TCP
connections
透過已存在的TCP連線

peers forward
Query message
各點幫忙

QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding
有限範圍查詢

2: Application Layer 21

Gnutella: Peer joining 對等點加入

1. joining peer Alice must find another peer in
Gnutella network: use list of candidate peers

2. Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob

3. Flooding: Alice sends Ping message to Bob; Bob
forwards Ping message to his overlay neighbors
(who then forward to their neighbors….)

peers receiving Ping message respond to Alice
with Pong message

4. Alice receives many Pong messages, and can then
setup additional TCP connections

Peer leaving: see homework problem!

2: Application Layer 22

Hierarchical Overlay 階層式重疊

between centralized index,
query flooding approaches
each peer is either a group
leader or assigned to a group
leader.

TCP connection between
peer and its group leader.
TCP connections between
some pairs of group
leaders.

group leader tracks content
in its children
group leader知道他下游對
等點的內容

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2: Application Layer 23

Comparing Client-server, P2P architectures
Question : How much time distribute file initially at one

server to N other computers?
要花多少時間將檔案傳送至N台電腦?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: client/peer i
upload bandwidth

di: client/peer i
download bandwidth

2: Application Layer 24

Client-server: file distribution time

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver sequentially
sends N copies:

NF/us time
client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

2: Application Layer 25

P2P: file distribution time

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

Fserver must send one
copy: F/us time
client i takes F/di time
to download
NF bits must be
downloaded (aggregate)

fastest possible upload rate (assuming
all nodes sending file chunks to same
peer): us + Σuii=1,N

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }i i=1,N

2: Application Layer 26

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Comparing Client-server, P2P architectures

2: Application Layer 27

P2P Case Study: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

P2P file distribution

2: Application Layer 28

BitTorrent (1)
file divided into 256KB chunks.
peer joining torrent:

has no chunks, but will accumulate them over time
registers with tracker to get list of peers,
connects to subset of peers (“neighbors”)

while downloading, peer uploads chunks to other
peers.
peers may come and go
once peer has entire file, it may (selfishly) leave or
(altruistically) remain

2: Application Layer 29

BitTorrent (2)
Pulling Chunks

at any given time,
different peers have
different subsets of
file chunks
periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.
Alice issues requests
for her missing chunks

rarest first

Sending Chunks: tit-for-tat
Alice sends chunks to
four neighbors currently
sending her chunks at the
highest rate

re-evaluate top 4
every 10 secs

every 30 secs: randomly
select another peer,
starts sending chunks

newly chosen peer may
join top 4

2: Application Layer 30

P2P Case study: Skype

P2P (pc-to-pc, pc-to-
phone, phone-to-pc)
Voice-Over-IP (VoIP)
application

also IM
proprietary
application-layer
protocol (inferred via
reverse engineering)
hierarchical overlay

Skype clients (SC)

Supernode
(SN)

Skype
login server

2: Application Layer 31

Skype: making a call
Skype打電話

User starts Skype

Skype
login server

SC registers with SN
list of bootstrap SNs

SC logs in
(authenticate)
Call: SC contacts SN will
callee ID

SN contacts other SNs
(unknown protocol, maybe
flooding) to find addr of
callee; returns addr to SC

SC directly contacts callee, overTCP

