
2: Application Layer 1

Chapter 2
Application Layer
第二章 應用層

Computer Networking: 
A Top Down Approach, 
4th edition. 
Jim Kurose, Keith Ross
Addison-Wesley, July 
2007. 



2: Application Layer 2

Chapter 2: Application layer

2.1 Principles of 
network applications
應用層原理

2.2 Web and HTTP
2.3 FTP 
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P Applications
2.7 Socket programming 
with TCP
2.8 Socket programming 
with UDP



2: Application Layer 3

Chapter 2: Application Layer
Our goals:

conceptual, 
implementation aspects 
of network application 
protocols

transport-layer 
service models 
client-server 
paradigm 主從式架構

peer-to-peer 
paradigm 點對點架構

learn about protocols 
by examining popular 
application-level 
protocols

HTTP
FTP
SMTP / POP3 / IMAP
DNS



2: Application Layer 4

Some network apps 網路應用

e-mail 電子郵件

Web 網站

instant messaging 
即時訊息

remote login
遠端登入

P2P file sharing
檔案分享

multi-user network 
games 多人網路遊戲

streaming stored video 
clips 串流多媒體

voice over IP 網路電話

real-time video 
conferencing 即時會議

grid computing 
網格運算



2: Application Layer 5

Creating a network app 
建立網路應用程式
write programs that

run on (different) end 
systems 在不同的終端系統
上執行

communicate over network
透過網路相互溝通

e.g., web server software 
communicates with browser 
software

little software written for 
devices in network core

network core devices do 
not run user applications 
applications on end systems  
allows for rapid app 
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical



2: Application Layer 6

Chapter 2: Application layer

2.1 Principles of 
network applications
應用層原理

2.2 Web and HTTP
2.3 FTP 
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P file sharing
2.7 Socket programming 
with TCP
2.8 Socket programming 
with UDP
2.9 Building a Web 
server



2: Application Layer 7

Application architectures
應用程式架構

Client-server 主從式架構

Peer-to-peer (P2P) 點對點架構

Hybrid of client-server and P2P 混合式架構



2: Application Layer 8

Client-server architecture
主從式架構 server: 伺服器端

always-on host
permanent IP address
固定位置

server farms for 
scaling 多台機器同時服務

clients: 用戶端
communicate with server
may be intermittently 
connected
may have dynamic IP 
addresses 不固定位置

do not communicate 
directly with each other
用戶間不會直接溝通

client/server



2: Application Layer 9

Pure P2P architecture
點對點架構

no always-on server
沒有固定的伺服器

arbitrary end systems 
directly communicate
用戶間直接溝通

peers are intermittently 
connected and change IP 
addresses

Highly scalable but 
difficult to manage

具高擴充性但難以管理

peer-peer



2: Application Layer 10

Hybrid of client-server and P2P
混和式架構（主從式+點對點）
Skype

voice-over-IP P2P application
centralized server: finding address of remote party:  先
從伺服器找到欲通話對象的位址

client-client connection: direct (not through server) 直接
與通話對象通話

Instant messaging 即時通訊 MSN、AOL、Yahoo
chatting between two users is P2P
對話時為點對點架構

centralized service: client presence detection/location
• user registers its IP address with central server 

when it comes online
• user contacts central server to find IP addresses of 

buddies



2: Application Layer 11

Processes communicating 行程通訊

Process 行程: program running 
within a host.
within same host, two 
processes communicate using  
inter-process communication
(defined by OS). 行程間通訊

processes in different hosts 
communicate by exchanging 
messages
透過交換“訊息＂通訊

用戶端及伺服器端行程的分別

Client process: process 
that initiates 
communication

Server process: process 
that waits to be 
contacted

Note: applications with 
P2P architectures have 
client processes & 
server processes



2: Application Layer 12

Sockets 行程通訊的“大門＂

process sends/receives 
messages to/from its 
socket
socket analogous to door

sending process shoves 
message out door
sending process relies on 
transport infrastructure
on other side of door which 
brings message to socket 
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

API: (1) choice of transport protocol; (2) ability to fix 
a few parameters (lots more on  this later)



2: Application Layer 13

Addressing processes 行程定址

to receive messages, 
process  must have 
identifier（獨一無二）

host device has unique 32-
bit IP address
Q: does  IP address of 
host on which process runs 
suffice for identifying the 
process?
只有IP Address是否足夠？



2: Application Layer 14

Addressing processes
to receive messages, 
process  must have 
identifier
host device has unique 
32-bit IP address
Q: does  IP address of 
host on which process 
runs suffice for 
identifying the 
process?

A: No（否）, many
processes can be 
running on same host
可同時在同一個主機上執行多
個行程

identifier includes both 
IP address and port 
numbers associated with 
process on host.
Example port numbers:

HTTP server: 80
Mail server: 25

to send HTTP message 
to gaia.cs.umass.edu web 
server:

IP address: 128.119.245.12
Port number: 80



2: Application Layer 15

App-layer protocol defines
應用層協定定義下列格式：

Types of messages 
exchanged, 
交換的訊息種類

e.g., request, response 
Message syntax:
訊息語法

what fields in messages & 
how fields are delineated

Message semantics
訊息語意

meaning of information in 
fields

Rules for when and how 
processes send & respond to 
messages

Public-domain protocols:
defined in RFCs
allows for interoperability
e.g., HTTP, SMTP

Proprietary protocols:
e.g., Skype



2: Application Layer 16

What transport service does an app need?
應用程式所需的傳輸層服務
Data loss  是否容忍資料遺失

some apps (e.g., audio) can 
tolerate some loss
other apps (e.g., file 
transfer, telnet) require 
100% reliable data 
transfer

Timing 是否要求即時到達

some apps (e.g., 
Internet telephony, 
interactive games) 
require low delay to be 
“effective”

Bandwidth 是否需要最小頻寬

some apps (e.g., 
multimedia) require 
minimum amount of 
bandwidth to be 
“effective”
other apps (“elastic apps”) 
make use of whatever 
bandwidth they get 



2: Application Layer 17

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Bandwidth

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above 
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no



2: Application Layer 18

Internet transport protocols services
網際網路上的傳輸層協定

TCP service:
connection-oriented 連結導向:
setup required between client 
and server processes
reliable transport 可信賴傳輸
between sending and 
receiving process
flow control 流量控制: sender 
won’t overwhelm receiver 
congestion control 擁塞控制:
throttle sender when network 
overloaded
does not provide: timing, 
minimum bandwidth 
guarantees

UDP service:
unreliable data transfer 
between sending and 
receiving process
does not provide: 
connection setup, 
reliability, flow control, 
congestion control, timing, 
or bandwidth guarantee 

Q: why bother?  Why is 
there a UDP?



2: Application Layer 19

Internet apps:  application, transport protocols

Application

e-mail
remote terminal access

Web 
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
proprietary
(e.g. RealNetworks)
proprietary
(e.g., Vonage,Dialpad)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP



2: Application Layer 20

Chapter 2: Application layer

2.1 Principles of 
network applications 

app architectures
app requirements

2.2 Web and HTTP
2.4 Electronic Mail

SMTP, POP3, IMAP
2.5 DNS

2.6 P2P file sharing
2.7 Socket programming 
with TCP
2.8 Socket programming 
with UDP



2: Application Layer 21

Web and HTTP

First some jargon 術語
Web page （網頁） consists of objects （物件）

Object can be HTML file, JPEG image, Java applet, audio 
file,…
Web page consists of base HTML-file （基本HTML 檔案）
which includes several referenced objects
Each object is addressable by a URL（Uniform Resource 
Locator ，全球資源定址）

Example URL:

www.someschool.edu/someDept/pic.gif

host name path name



2: Application Layer 22

HTTP overview 超文件傳輸協定

HTTP: hypertext 
transfer protocol
Web’s application layer 
protocol
client/server model

client: browser 瀏覽器
that requests, receives, 
“displays” Web objects
server: Web server 
sends objects in 
response to requests

HTTP 1.0: RFC 1945
HTTP 1.1: RFC 2068

PC running
Explorer

Server 
running

Apache Web
Server

（Apache or ISS）

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response



2: Application Layer 23

HTTP overview (continued)

Uses TCP: 使用TCP協定

client initiates TCP 
connection (creates 
socket) to server,  port 
80
server accepts TCP 
connection from client
HTTP messages 
(application-layer protocol 
messages) exchanged 
between browser (HTTP 
client) and Web server 
(HTTP server)
TCP connection closed

HTTP is “stateless”
無狀態協定

server maintains no 
information about past 
client requests

Protocols that maintain 
“state” are complex!
past history (state) must 
be maintained 
需保留歷史資料

if server/client crashes, 
their views of “state” may 
be inconsistent, must be 
reconciled

aside



2: Application Layer 24

HTTP connections （HTTP連線）

Nonpersistent HTTP
非持續性連線

At most one object is 
sent over a TCP 
connection.
一個TCP連線只傳輸一
個物件

HTTP/1.0 uses 
nonpersistent HTTP

Persistent HTTP
持續性連線

Multiple objects can 
be sent over single 
TCP connection 
between client and 
server. 可在一個TCP連
線傳輸多個物件

HTTP/1.1 uses 
persistent connections 
in default mode



2: Application Layer 25

Nonpersistent HTTP 非持續性連線

Suppose user enters URL 
www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP 
connection to HTTP server 
(process) at 
www.someSchool.edu on port 80
對伺服器端建立TCP連線

2. HTTP client sends HTTP 
request message (containing 
URL) into TCP connection 
socket. Message indicates 
that client wants object 
someDepartment/home.index
用戶端確認建立連線，並送出物
件請求

1b. HTTP server at host 
www.someSchool.edu waiting 
for TCP connection at port 80.  
“accepts” connection, notifying 
client
伺服器端接受連線

3. HTTP server receives request 
message, forms response 
message containing requested 
object, and sends message 
into its socket
伺服器端回覆，並送出物件time

(contains text, 
references to 10 

jpeg images)



2: Application Layer 26

Nonpersistent HTTP (cont.)

5. HTTP client receives response 
message containing html file, 
displays html.  Parsing html 
file, finds 10 referenced jpeg  
objects
用戶端收到html檔案，並同時發
現需要10個JPG物件

6. Steps 1-5 repeated for each 
of 10 jpeg objects
針對每一個JPG物件重覆1-5步驟

4. HTTP server closes TCP 
connection. 
伺服器端關閉TCP連線

time



2: Application Layer 27

Non-Persistent HTTP: Response time
非持續性連線：回覆時間

Definition of RTT 來回時間
time to send a small 
packet to travel from 
client to server and 
back.

Response time: 回覆時間

one RTT to initiate TCP 
connection
one RTT for HTTP 
request and first few 
bytes of HTTP response 
to return
file transmission time

total = 2RTT+transmit time

time to 
transmit 
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time



2: Application Layer 28

Persistent HTTP 持續性連線

Nonpersistent HTTP issues:
requires 2 RTTs per object
OS overhead for each TCP 
connection
browsers often open parallel
TCP connections to fetch 
referenced objects 平行傳送

Persistent  HTTP
server leaves connection 
open after sending response
subsequent HTTP messages  
between same client/server 
sent over open connection

Persistent without pipelining:
不平行傳送的作法

client issues new request 
only when previous 
response has been received
one RTT for each 
referenced object

Persistent with pipelining:
平行傳送的作法

default in HTTP/1.1
client sends requests as 
soon as it encounters a 
referenced object
as little as one RTT for all 
the referenced objects



2: Application Layer 29

HTTP request message 請求訊息

two types of HTTP messages: request, response
HTTP request message:

ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu 
User-agent: Mozilla/4.0
Connection: close 
Accept-language:fr 

(extra carriage return, line feed)

request line
(GET, POST, 

HEAD commands)

header
lines

Carriage return, 
line feed 

indicates end 
of message



2: Application Layer 30

HTTP request message: general format



2: Application Layer 31

Uploading form input 輸入資料上傳

Post method: 表單輸入法

Web page often 
includes form input
Input is uploaded to 
server in entity body

URL method: 附帶在URL
Uses GET method
Input is uploaded in 
URL field of request 
line:

www.somesite.com/animalsearch?monkeys&banana



2: Application Layer 32

Method types

HTTP/1.0
GET
POST
HEAD

asks server to leave 
requested object out of 
response
不回應請求的物件（除錯
用）

HTTP/1.1
GET, POST, HEAD
PUT

uploads file in entity 
body to path specified 
in URL field

DELETE
deletes file specified in 
the URL field



2: Application Layer 33

HTTP response message 回應訊息

HTTP/1.1 200 OK 
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT 
Server: Apache/1.3.0 (Unix) 
Last-Modified: Mon, 22 Jun 1998 …... 
Content-Length: 6821 
Content-Type: text/html

data data data data data ... 

status line
(protocol

status code
status phrase)

header
lines

data, e.g., 
requested
HTML file



2: Application Layer 34

HTTP response status codes 狀態碼

200 OK
request succeeded, requested object later in this message

301 Moved Permanently
requested object moved, new location specified later in 
this message (Location:)

400 Bad Request
request message not understood by server

404 Not Found
requested document not found on this server

505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:



2: Application Layer 35

Trying out HTTP (client side) for yourself
試試看!!!

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent 
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete) 
GET request to HTTP server

3. Look at response message sent by HTTP server!



2: Application Layer 36

User-server state: cookies 

Many major Web sites 
use cookies

Four components: 四元件
1) cookie header line of 

HTTP response message
2) cookie header line in 

HTTP request message
3) cookie file kept on 

user’s host, managed by 
user’s browser

4) back-end database at 
Web site

Example:
Susan always access 
Internet always from PC
visits specific e-
commerce site for first 
time
when initial HTTP 
requests arrives at site, 
site creates: 

unique ID
entry in backend 
database for ID



2: Application Layer 37

Cookies: keeping “state” (cont.) 保留狀態

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response 
Set-cookie: 1678 

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database



2: Application Layer 38

Cookies (continued)
What cookies can bring:

authorization
shopping carts
recommendations
user session state 
(Web e-mail)

Cookies and privacy:
cookies permit sites to 
learn a lot about you
you may supply name 
and e-mail to sites

aside

How to keep “state”:
protocol endpoints: maintain state 
at sender/receiver over multiple 
transactions
cookies: http messages carry state



2: Application Layer 39

Web caches (proxy server) 代理伺服器

user sets browser: 
Web accesses via  
cache
browser sends all 
HTTP requests to 
cache

object in cache: cache 
returns object 
else cache requests 
object from origin 
server, then returns 
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin 
server

origin 
server

HTTP response HTTP response



2: Application Layer 40

More about Web caching 快取

cache acts as both 
client and server
typically cache is 
installed by ISP 
(university, company, 
residential ISP)

Why Web caching?
reduce response time 
for client request 減少
回應時間

reduce traffic on an 
institution’s access 
link.減少網路流量

Internet dense with 
caches: enables “poor”
content providers to 
effectively deliver 
content (but so does 
P2P file sharing)



2: Application Layer 41

Caching example 快取的例子

Assumptions 假設
average object size = 100,000 
bits
avg. request rate from 
institution’s browsers to origin 
servers = 15/sec
delay from institutional router 
to any origin server and back 
to router  = 2 sec

Consequences 結果
utilization on LAN = 15%
utilization on access link = 100%
total delay   = Internet delay + 
access delay + LAN delay

=  2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps 
access link

institutional
cache



2: Application Layer 42

Caching example (cont)
possible solution

increase bandwidth of access 
link to, say, 10 Mbps

consequence
utilization on LAN = 15%
utilization on access link = 15%
Total delay   = Internet delay + 
access delay + LAN delay

=  2 sec + msecs + msecs
often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps 
access link

institutional
cache



2: Application Layer 43

Caching example (cont)

possible solution: install 
cache
suppose hit rate is 0.4

consequence
40% requests will be 
satisfied almost immediately
60% requests satisfied by 
origin server
utilization of access link 
reduced to 60%, resulting in 
negligible  delays (say 10 
msec)
total avg delay   = Internet 
delay + access delay + LAN 
delay   =  .6*(2.01) secs  + 
.4*milliseconds < 1.4 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps 
access link

institutional
cache



2: Application Layer 44

Conditional GET 條件式的GET

Goal: don’t send object if 
cache has up-to-date cached 
version
cache: specify date of 
cached copy in HTTP request
If-modified-since: 

<date>

server: response contains no 
object if cached copy is up-
to-date: 
HTTP/1.0 304 Not 

Modified

cache server
HTTP request msg
If-modified-since: 

<date>

HTTP response
HTTP/1.0 

304 Not Modified

object 
not 

modified

HTTP request msg
If-modified-since: 

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object 
modified


