i Computer

Chapter 2
Application Layer

=% R A

Computer Networking:
A Top Down Approach,
4th edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

2: Application Layer 1

Chapter 2: Application layer

0 2.1 Principles of 7 2.6 P2P Applications
network applications 1 2.7 Socket programming
e* KR with TCP

1 2.2 Web and HTTP 7 2.8 Socket programming

7 2.3FTP with UDP

A 2.4 Electronic Mail
+ SMTP, POP3, IMAP

A 2.5 DNS

2: Application Layer 2

Chapter 2: Application Layer

Our goals: 3 learn about protocols
3 conceptual, by examining popular
implementation aspects application-level
of network application protocols
protocols & HTTP
<+ transport-layer = FTP
service models «» SMTP / POP3 / IMAP
< DNS

< client-server
paradigm i &3¢ 7 45

< peer-to-peer
paradigm B3+ 27 1

2: Application Layer

3

Some hetwork apps i & *

J e-mail # 3 #82

7 Web =t

0 instant messaging
TG

J remote login
TE

A P2P file sharing
W% A%

O multi-user network
games % A e 2R\

0 streaming stored video
clips # it 5 4518

3 voice over IP i 7 &

3 real-time video
conferencing T p* ¢ X
3 grid computing

PeteE R

2: Application Layer

4

Creating a network app
EREREY A250

write programs that

< run on (different) end
systems t.7 I cni =4 & 5L
R

» communicate over network
R R B A

- e.g., web server software
communicates with browser
software

little software written for
devices in network core

< network core devices do
not run user applications

<+ applications on end systems
allows for rapid app
development, propagation

application

L)

0

2: Application Layer 5

Chapter 2: Application layer

3 2.1 Principles of 1 2.6 P2P file sharing
network applications 7 2.7 Socket programming
e* & RIZ with TCP

0 2.2 Web and HTTP 7 2.8 Socket programming

123 FTP with UDP

3 2.4 Electronic Mail 7 2.9 Building a Web

<« SMTP, POP3, IMAP server
J 2.5 DNS

2: Application Layer

6

Application architectures
&t A2 5N 2E 1

O Client-server 2 j€5¢ 78 1
A Peer-to-peer (P2P) BLETREOE 1
0 Hybrid of client-server and P2P &

‘&
e

2: Application Layer 7

Client-server architecture

B

\ﬂb\zﬁf_

server. IR R
< always-on host

< permanent IP address
CEEE |
<« server farms for
scaling % - %k pr s
clients: * = =¥
< communicate with server

< may be intermittently
connected

» may have dynamic IP
addresses # # #_i> ¥

<+ do hot communicate
directly with each other
e g R AR

2: Application Layer

8

Pure P2P architecture

0 no always-on server
A3 H TR E - {

3 arbitrary end systems
directly communicate
PR EREL

7 peers are intfermittently “A -
connected and change IP
addresses

peer-peer

Highly scalable but
difficult fo manage < 0

LR X L SR

2: Application Layer 9

Hybrid of client-server and P2P
B 2 (2 €S +EEYEE)

Skype
< voice-over-IP P2P application
+ centralized server: finding address of remote party: %
PP PR T35 P10 54 % ehi il

» client-client connec‘rion: direct (not through server) & #
= RTE ¥ @\ W2

Instant messaging r E?_%i%% MSN - AOL - Yahoo
R cha’r‘ring between two users is P2P
WP - BHET R
2 cen‘rr'allzed service: client presence detection/location

» user registers its IP address with central server
when it comes online

- user contacts central server to find IP addresses of
buddies

2: Application Layer 10

Processes communicating {7 #23i 3t

Process {7 4%: program running
within a host.

3 within same host, two
processes communicate using
Intfer-process communication
(defined by OS). i7 #2.[F i 21

T processes in different hosts
communicate by exchanging
messages
B LT ER

* S PR B (7 ARhA b
Client process: process

that initiates
communication

Server process: process
that waits to be
contacted

3 Note: applications with
P2P architectures have
client processes &
server processes

2: Application Layer 11

Sockets {7 A7if e & R

host or
server

7 process sends/receives
messages to/from its
socket controlled by

s app developer
7 socket analogous to door

+ sending process shoves

host or
server

g
(poges>

message out door TCP with TCP with
. di I buffers, | Internet buffers,
« sending process relies on variables variables
transport infrastructure

on other side of door which
brings message to socket gg’/”gg“e‘j
at receiving process

3 APT: (1) choice of transport protocol; (2) ability to fix

a few parameters (lots more on this later)

2: Application Layer 12

Addressing processes {7 4% € at

O fo receive messages,
process must have
identifier (#— # =)

3 host device has unique 32-
bit IP address

J Q- does IP address of
host on which process runs
suffice for identifying the
process?

F 7 IP Address€ z &5 ?

2: Application Layer

13

Addressing processes

O fo receive messages,
process must have
/dentifier

3 host device has unique
32-bit IP address

J Q- does IP address of
host on which process
runs suffice for
identifying the
process?

+ A’No (%) , many
processes can be

running on same host
TR Al - BAEHES
i {742

3 /dentifrer includes both
IP address and port
numbers associated with
process on host.

J Example port numbers:
< HTTP server: 80
<+ Mail server: 25

7 to send HTTP message
to gaia.cs.umass.edu web

server.
< IP address: 128.119.245.12

% Port number: 80

2: Application Layer 14

App-layer protocol defines

Bt Rt T AT SR

O

Types of messages
exchanged,

L3 R LA

< e.g., request, response
Message syntax:
WA

<« what fields in messages &

how fields are delineated

Message semantics
A LF R
» meaning of information in
fields

Rules for when and how
processes send & respond to
messages

Public-domain protocols:

J defined in RFCs

O allows for interoperability
J eqg., HTTP, SMTP
Proprietary protocols:

J e.g., Skype

2: Application Layer

15

What transport service does an app need?
Je * A25C AT F DB g R PRAS

Dataloss &% % %7482 Bandwidth .7 3 & & | 41 %
0 some apps (e.g., audio) can o some apps (e.qg.,

tolerate some loss multimedia) require

0 other apps (e.g., file minimum amount of
transfer, telnet) require

100% reliable data b andwuc!Th"‘ro be
effective
fransfer 3 other apps ("elastic apps”)
Timing A_F & R p 3 make use of whatever
0 some apps (e.g., bandwidth they get

Internet telephony,
interactive games)
require low delay to be
"effective”

2: Application Layer 16

Transport service requirements of common apps

Application Data loss Bandwidth Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps Yes, 100's msec
video:10kbps-5Mbps

stored audio/video |oss-tolerant same as above yes, few secs
interactive games loss-tolerant few kbps up yes, 100's msec
Instant messaging no loss elastic yes and no

2: Application Layer 17

Internet transport protocols services
B R b DB P

TCP service: UDP service:

A connection-oriented :# . # . O unreliable data transfer
setup required between client between sending and
and server processes receiving process

O reliable transport v i & &g O does not provide:
between sending and connection setup,
receiving process reliability, flow control,

A flow control ;# £ #-#/: sender congestion control, Timing,

won't overwhelm receiver or bandwidth guarantee

O congestion control #% F-#/:

throttle sender when network Q: why bother? Why is
overloaded there a UDP?

O does not provide: timing,
minimum bandwidth

guarantees 2: Application Layer 18

Internet apps: application, transport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia proprietary TCP or UDP
(e.g. RealNetworks)
Internet telephony proprietary
(e.g., Vonage,Dialpad) typically UDP

2: Application Layer

19

Chapter 2: Application layer

3 2.1 Principles of 1 2.6 P2P file sharing
network applications 1 2.7 Socket programming
< app architectures with TCP
< app requirements

0 2.8 Socket programming
J 2.2 Web and HTTP with UDP

A 2.4 Electronic Mail
+ SMTP, POP3, IMAP

1 2.5 DNS

2: Application Layer 20

Web and HT TP

First some jargon i

O
O

O

Web page (% F) consists of objects (4 i)
Object can be HTML file, JPEG image, Java applet, audio

file,...

Web page consists of base HTML-file (£l 4HTML %)
which includes several referenced objects

Each object is addressable by a URL (Uniform Resource

Locator » 23k 3Tk T4k)

Example URL:
www . someschool .edu/someDept/pic.gif

~—

B

———

host name

~—

B

———

path name

2: Application Layer

21

HTTP overview 4z ~ & i@ iz 1% 2_

HTTP: hypertext
transfer protocol

J Web's application layer
protocol

3 client/server model
+ client: browser i T %
that requests, receives,
“displays” Web objects
« server: Web server

sends objects in
response to requests

HTTP 1.0: RFC 1945
HTTP 1.1: RFC 2068

a d

PC running /A

7\
Explorer T

Server
running
Apache Web
Server
(Apache or ISS)

Mac running
Navigator

2: Application Layer 22

HTTP overview (continued)

Uses TCP: & * TCPt: z_
3 client initiates TCP

connection (creates

socket) to server, port
80

O server accepts TCP
connection from client

O HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

3 TCP connection closed

HTTP is "stateless”
O server maintains ho

information about past
client requests

aside -

Protocols that maintain
"state” are complex!

O past history (state) must
be maintained
7T R TR

3 if server/client crashes,
their views of "state” may
be inconsistent, must be
reconciled

2: Application Layer 23

HTTP connections (HTTP:f s)

Nonpersistent HT TP Persistent HTTP
ol Rkt B F R
J At most one object is O Multiple objects can
sent over a TCP be sent over single
connection. TCP connection
- BTCP:z s @ﬁ;r]—- between client and
4 2 server. ¥ - i TCPi#
J HTTP/1.0 uses Mmoo =

nonpersistent HT TP J HTTP/1.1 uses
persistent connections
in default mode

2: Application Layer 24

Nonpersistent HT TP 2b3F 3 413 s

(contains text,
Suppose user enters URL references to 10
www . someSchool .edu/someDepartment/home. index jpegimages)

la. HTTP client initiates TCP

connection to HT TP server 1b. HTTP server at host

(process) af www.someSchool.edu waiting
_ hool. t ' 3
www.someSchool.edu on port 80 for TCP connection at port 80.

o] BE +b s 845 " . . .
$PRF e 2 TCPg &L accepts” connection, notifying
client

2. HTTP client sends HTTP . ooy
- 7 PR o e
request message (containing PIERSES 2R
URL) into TCP connection 3. HTTP server receives request

socket. Message indica‘res\ message, forms response

that client wants object message containing requested

someDepartment/home.index object, and sends message
F oS sbpEeak 2 AR > FiE) b into its socket
3R PIREAEw R oo FE LR

time
2: Application Layer 25

Nonpersistent HTTP (cont.)

/ 4 HTTP server closes TCP
cohnection.

5. HTTP client receives response e B2 b B _y
message containing html file, FIRE M P TCPiE s
displays html. Parsing html
file, finds 10 referenced jpeg
objects
* o Plhitmlig % o & g
7nE &10BIPGH £

. 6. Steps 1-5 repeated for each
Time of 10 jpeg objects
Hts - BIPGH £ R1-5%

2: Application Layer 26

Non-Persistent HTTP: Response time
2E PR v EEFF
Definition of RTT % w p¥ /)

time to send a small @ n

packet to travel from
client to server and initiate TCP__

connection | \
back. | RTT.
RCSPOHSC Time: v B v r'eques‘r_\/

3 one RTT to initiate TCP file | \ fime to
- RTR .
connection /}F‘Iansmﬁ
~ e

3 one RTT for HTTP file —
request and first few received
bytes of HTTP response
to return

3 file transmission time

total = 2RTT+transmit time 2: Application Layer 27

v
time time

Persistent HTTP 3 § 4@ s

Nonpersistent HTTP issues: Persistent without pipelining:

O requires 2 RTTs per object # L il ix ehiT R

3 OS overhead for each TCP 3 client issues new request
connection only when previous .

O browsers often open parallel response has been received
TCP connections to fetch O one RTT for each
referenced objects T 7 & % referenced object

Persistent HTTP N Persistent with pipelining:

O server leaves connection T {7 B iE e
open after sending response _ 3 default in HTTP/1.1

0 subsequent HTTP messages O client sends requests as
between same client/server soon as it encounters a
sent over open connection referenced object

3 as little as one RTT for all
the referenced objects

2: Application Layer 28

HTTP request message 13t &

3 two types of HT TP messages: request, response

0 HTTP request message:
+ ASCII (human-readable format)

request line

(GET, POST,\‘_GET /somedir/page.html HTTP/1.1
HEAD commands) Host: www.someschool .edu
User-agent: Mozillas4.0

header |connection: close

lines | Accept-language: fr

Carriage return . .
Iing feed /'/v(extra carriage return, line feed)

indicates end

of message
2: Application Layer 29

HTTP request message: general format

F | request
line

header
ines

Entity Body

2: Application Layer 30

Uploading form input #5 » 34+ @

Post method: % H 5 » /#
3 Web page often |

includes form input URL method: it & URL
3 Input is uploaded to J Uses GET method

server in entity body g Input is uploaded in
URL field of request
line:

www . somesite.com/animalsearch?monkeys&banana

2: Application Layer 31

Method types

HTTP/1.0
7 GET

0 POST
7 HEAD

+ asks server to leave
requested object out of
response
7»‘?"}@ g & ("ﬁ:‘%
i

)

HTTP/1.1

a3 GET, POST, HEAD
3 PUT

<+ uploads file in entity
body to path specified
in URL field

7 DELETE

+ deletes file specified in
the URL field

2: Application Layer 32

HTTP response message v J& 3

status line
rotocol
Sfﬁms code THTTP/1.1 200 OK
status phrase) ' Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
header Server: Apgche/l-S-O (Unix)
lines Last-Modified: Mon, 22 Jun 1998
Content-Length: 6821
Content-Type: text/html

data, e, — data data data data data ...
requested

HTML file

2: Application Layer 33

HTTP response status codes ;i s 5

In first line in server->client response message.
A few sample codes:

200 OK

+ request succeeded, requested object later in this message
301 Moved Permanently

+ requested object moved, new location specified later in
this message (Location:)

400 Bad Request

<+ request message not understood by server
404 Not Found

+ requested document not found on this server
505 HTTP Version Not Supported

2: Application Layer 34

Trying out HTTP (client side) for yourself
ieseg 1]

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 |Opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
Anything typed in sent

to port 80 at cis.poly.edu

2. Type ina GET HTTP request:

GET /~ross/ HTTP/1.1 By typing this in (hit carriage
this minimal (but complete)

| GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 35

User-server state: cookies

Many major Web sites Example:
use cookies 7 Susan always access
Four components: = = & Internet always from PC
1) cookie header line of J visits specific e-

HTTP response message commerce site for first
2) cookie header line in

HTTP reguest message Time o
3) cookie file kept on 3 when initial HTTP
user's host, managed by requests arrives at site,

user's browser

site creates:
4) back-end database at :
Web site + unique ID

<+ entry in backend
database for ID

2: Application Layer 36

Cookies: keeping "state” (cont.) ix 5 i i

client

server

ebay 8734 _—
- usual http request msg

cookie file

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678

one week later:

<+

usual http response msg

ebay 8734 .
amazon 1678

usual http request msg
cookie: 1678

usual http response msg

mazon server
— creates ID
1678 for user creatfe

entr
cookie- access/v
= specific ©
database
access
cookie-

— spectific

action

2: Application Layer 37

Cookies (continued)

What cookies can bring:

aside

Cookies and privacy:

3 authorization

3 shopping carts

0 recommendations

O user sessioh state
(Web e-mail)

How to keep "state":

0 cookies permit sites to
learn a lot about you

T you may supply name
and e-mail to sites

3 protocol endpoints: maintain state
at sender/receiver over multiple

transactions

0 cookies: http messages carry state

2: Application Layer 38

Web caches (proxy server) 72 & JR %

Goal: satisfy client request without involving origin server

O user sets browser: origin

server

Web accesses via
cache

7 browser sends all
HTTP requests to
cache

@6‘\ —

1 . QJ()\\) 5 %‘ i

+ object in cache: cache RS QQO(\Q = |
returns object R

else cache requests
object from origin
server, then returns
object to client

origin
server

/
0‘0

2: Application Layer 39

More about Web caching -2~

7 cache acts as both Why Web caching?
client and server O reduce response time
3 typically cache is for client request i *
installed by ISP W R PR
(university, company, 7 reduce traffic on an
residential ISP) institution's access

link.j > e B2 £

3 Internet dense with
caches: enables "poor”
content providers to

effectively deliver
content (but so does

P2P f”e Sha{;iﬂgiaﬂon Layer 40

Caching example -2~]+

: L origin

Assumptions ik servers

O average object size = 100,000
bits

O avg. request rate from
institution's browsers to origin

servers = 15/sec

O delay from institutional router
to any origin server and back
to router =2 sec

Consequences % %
3 utilization on LAN = 15%
A utilization on access link = 100%

0 total delay = Internet delay +
access delay + LAN delay

= 2 sec + minutes + milliseconds

1.5 Mbps
access link

institutional
cache

2: Application Layer 41

Caching example (cont)

origin

pOSSIble solution servers

3 increase bandwidth of access
link to, say, 10 Mbps

consequence
A utilization on LAN = 15%
3 utilization on access link = 15%

0 Total delay = Internet delay +
access delay + LAN delay

= 2 sec + msecs + msecs
O often a costly upgrade

10 Mbps
access link

institutional
cache

2: Application Layer 42

Caching example (cont)

origin
possible solution: install servers

cache
O suppose hit rate is 0.4

consequence

0 40% requests will be
satisfied almost immediately

O 60% requests satisfied by
origin server

O utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec

0 ‘Crio’{al avg delayd =| In’reLr'Rfe\“r

elay + access delay + i 4
delaz = .6*(2.01 gecs + 'nST'Tu:onal
4*milliseconds < 1.4 secs cache

1.5 Mbps
access link

2: Application Layer 43

Conditional GET % 2 ;X\ enGET

3 Goal: don't send object if
cache has up-to-date cached
version

3 cache: specify date of
cached copy in HTTP request
If-modified-since:
<date>
O server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not
Modified

cache

server

—)

HTTP request msg

If-modified-since:

<date>

HTTP response
HTTP/1.0
304 Not Modified

[object

hot

— modified

HTTP request msg

If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object

- modified

2: Application Layer 44

