CLOUD ébMPUTlNG

FOUNDATIONS AND APPLICATIONS PROGRAMMING

Rajkumar Buyya, Christian Vecchiola, S. Thamarai Selvi

Mastering Cloud
Computing

This page intentionally left blank

Mastering Cloud
Computing

Foundations and Applications
Programming

Rajkumar Buyya
The University of Melbourne and Manjrasoft Pty Ltd, Australia

Christian Vecchiola
The University of Melbourne and IBM Research, Australia

S. Thamarai Selvi
Madras Institute of Technology, Anna University, Chennai, India

AMSTERDAM ¢ BOSTON « HEIDELBERG * LONDON
NEW YORK ¢ OXFORD ¢ PARIS ¢« SAN DIEGO
eSS SAN FRANCISCO ¢ SINGAPORE * SYDNEY *« TOKYO
ELSEVIER Morgan Kaufmann is an imprint of Elsevier

Acquiring Editor: Todd Green

Editorial Project Manager: Lindsay Lawrence
Project Manager: Punithavathy Govindaradjane
Designer: Matthew Limbert

Morgan Kaufmann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

Copyright © 2013 Elsevier Inc. All rights reserved

No part of this publication may be reproduced or transmitted in any form or by any means, electronic

or mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about

the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance
Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher
(other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden
our understanding, changes in research methods or professional practices, may become necessary. Practitioners
and researchers must always rely on their own experience and knowledge in evaluating and using any
information or methods described herein. In using such information or methods they should be mindful of
their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any
liability for any injury and/or damage to persons or property as a matter of products liability, negligence or
otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the
material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-411454-8

Printed and bound in the United States of America
1314151617 10987654321

a Working together
| | 48 o grow libraries in
sk | Book Ald - Jeveloping countries

www.elsevier.com ¢ www.bookaid.org

For information on all MK publications visit our website at www.mkp.com

http://www.elsevier.com/permissions
http://www.mkp.com

Contents

ACKNOWIEAZIMENLSeouviiiiiieiieiiiteieeiteette sttt et e ste et e bt e ebeebeestteebeesasessbeesssessseeseesssesnseesssesssesnseenes Xi

Preface

FOUNDATIONS

PART 1

CHAPTER 1 INtroducCtion............cccccoiniiiiiiiiiiiicccc e 3
1.1 Cloud computing at @ LanCe........ccereeruirieiieiieieeee ettt 3
1.1.1 The vision of cloud COMPULINGc..eerueriieiirieiieiere e 5
1.1.2 Defining @ CloUd......coueiiiiiiiiieeieeeetete ettt 7
1.1.3 A CLOSET 10OK ittt et st 9
1.1.4 The cloud computing reference model..........ccccevvuiiviieniiriiinieniieniienieeeeeane 11
1.1.5 Characteristics and Benefitsc..coceeverieeviniininiencninneeececc e 13
1.1.6 Challenges ahead..........cccccueerierieeiiienieeieeieeeee ettt ettt e e esaee e 14

1.2 Historical develOpPmEentscc.coeevuiririireriienienieieeit ettt 15
1.2.1 DiStributed SYSLEIMS ..c..eeuvetiriieniiriienieriterteetteteste et ettete st et sbeetesbeeeresbesieeneeene 15
1.2.2 VATtUAHZATION .c..veeiiieiteeiieeit ettt sttt sttt st e e sane e 18
1.2.3 WED 2.0 ittt ettt 19
1.2.4 Service-oriented COMPULINGcecveeruierriieriierieeitenteerreesiee e sieestesbeesreereeaee 20
1.2.5 Utility-oriented COMPULING......cccverveerieeieiiierieenee st esieesitesreesieesieeebeesseenanes 21

1.3 Building cloud computing enVironmentscecueerveerueeruerireerreeseessseereesseesseeneeens 22
1.3.1 Application deVelOPMENtcccceveriereniieieniinientete et 22
1.3.2 Infrastructure and system developmentcccceeeerereenineenenenienenieniene 23
1.3.3 Computing platforms and technolOgiesccecereeriereenenienieneeieseeeeee 24
SUITIMATY ..ttt ettt ettt e sttt e s b e e s te s bt eaeenaees e et e eseenseeaeesesneensenneas 26
REVIEW QUESTIONSuviiiieiiieiieeiieeeerite ettt ettt ettt st e bt e it s e sbeesaeeeaee 27
CHAPTER 2 Principles of Parallel and Distributed Computing......................... 29
2.1 Eras of COMPULNG......ccertiriiriiriiiieterieetest ettt sttt st s 29
2.2 Parallel vs. distributed COMPULING........ceoveriieiiriiiiirieiereeteneeeereeee e 29
2.3 Elements of parallel COMPULINGc.cocerviruirierieieininieieeneneet et 31
2.3.1 What is parallel proCessing?ccocerereerieneenieieeneeneeieneesneseereseenenene 31
2.3.2 Hardware architectures for parallel processingc..cceceeevveereeneeenieeneennne. 32
2.3.3 Approaches to parallel programmingccoceeveeercieereenienrieeneeneeeseeneenanes 36
2.3.4 Levels of paralleliSmcc.eevuieriierienieerierieeie ettt st saee e 36
2.3.5 Laws Of CAULION c..couviuiinieriieieieritei ettt ettt ettt 37

vi Contents
2.4 Elements of distributed COMPULING ...c...eevveeriieriieriienie ettt eiee e eiee e ere e 39
2.4.1 General concepts and definitions.........cceceeveerieeiiienieenieniecie e 39
2.4.2 Components of a distributed SYStEM.......c.cecveeriueriiienieerieenie et eee e 39
2.4.3 Architectural styles for distributed cOmMputingc.cceeceeeeverernenernenennenn 41
2.4.4 Models for interprocess COMMmMUNICAtION.ceuerueeruerreeruereerieriereenieeeeenieeeeene 51
2.5 Technologies for distributed COMPULINGc.eecveruieieriirierie et enes 54
2.5.1 Remote procedure Calloccceoviiiiiniiniiiniienienieeee ettt 54
2.5.2 Distributed object frameworks...........ccccoivieiiniiiiniini e 56
2.5.3 Service-oriented COMPULINGco.eevverierieriinieiieieiene et 61
SUIMIMATY .ttt ettt et et e st e e bt esaee s et e ebeesbtesabeessbesabeenbeesabesabeessaesssesaseas 69
REVIEW QUESTIONS ..ccuviiiiiieiieiiie ettt ettt ettt ettt e sate st e e btesabeebeesabesnbaesbaesnsesnseesans 70
CHAPTER 3 Virtualization..............c.ccoviiiiiiniccccc e 71
3.1 INErOAUCTION ...ttt ettt ettt ettt et ettt esa e et e s ae e st e te e s eteeneeeeeneeneas 71
3.2 Characteristics of virtualized environmMEents............cceeeereereerererieneeeeneeeeneeeeeenees 73
3.2.1 INCTEASEA SECUTILY ..cuvvieeieriiiiiieiiesie ettt ettt sttt et sb et e b e saaesabees 74
3.2.2 Managed XECULIONcc.eevueirieeriieriieieenieesieesieesitesbeesitesateenbeesaneenbeessaesanesnseas 75
3.2.3 POTLADIIILY c.uvveiiiieiie ettt ettt st ettt ebeas 77
3.3 Taxonomy of virtualization teChNIQUES........c.cccueerierieriiieie ettt 77
3.3.1 Execution VIrtualiZationc.cceceeveerienerieninienieneeie ettt 77
3.3.2 Other types of VIrtualiZationc.ceceeererienierienienieieieeee e 89
3.4 Virtualization and cloud COMPULING.....c..cccecererirrinienieieieieieeeenese e 91
3.5 Pros and cons of VIrtualiZation............ceeeerueruieiieriieiiene e 93
3.5.1 Advantages of VIrtualiZationccccoeevieriirieniieiienii e 93
3.5.2 The other side of the coin: disadvantagesccoceevveervieenieneensieeneeneennenn 94
3.6 TechnOlogy EXAMPIEScovvieriiriieiieeie ettt ettt ettt ettt sate et e s esabeebeesae 95
3.6.1 Xen: paravirtualiZation.........ceeveeeeiieriieniesiienitenteeieeste et sre et esneenneas 96
3.6.2 VMware: full virtualizationc..cecceoeeieninieneniine e 97
3.6.3 MICroSOft HYPET-V ..c.uiimiiiiiiiiiciiiiteeee ettt 104
SUIMIMATY ..o e s s s e 109
REVIEW QUESHIONS ...ttt sttt ettt ettt st 109
CHAPTER 4 Cloud Computing Architectureccooooeieviiiicieceeeee 111
4.1 INErOAUCTIONetieiiiiietinicetc ettt ettt ettt ettt et et sae et e e eanenees 111
4.2 The cloud reference mMOdel.........c.ccecuirieiiiniriiiniiiieniiieeteteeeete e 112
4.2.1 ATCRITECTUIEevieiiiiieiieeteieetee ettt ettt st ettt 112

4.2.2 Infrastructure- and hardware-as-a-SE€IVICEcccvuvreeieevureeeeeiiiereeeeeeiireeeeeenns 114

Contents vii

4.2.3 Platform as @ SEIVICEcc.eeeeruirierieriieieiietenteeeeceieete et ene s e e 117
4.2.4 SOFtWATE @S @ SEIVICE....couirueeiiriieienieeteitetenteeieeeteetesaeenre st eaesbeeenebeeeeenaeeaee 121
4.3 TYPES OF ClOUAS...ccuieeiiiiiieiieetieste ettt ettt et esabeebeebeesebeeseenene s 124
4.3.1 PUDIIC ClOUASveiieniiiieiieiieic ettt 125
4.3.2 Private CLOUAScccevuiiuieiiiieiiiteie sttt sttt 126
4.3.3 Hybrid ClOudScoouieuieiieieie ettt et 128
4.3.4 Community CLOUASooouiiiiiiiiiiiieiieeeeeteee e 131
4.4 Economics Of the CloUd........ccooieiiiiiiiieieeeeee e 133
4.5 Open Challenges.......cccevuiruirieieieieiieene sttt ettt ettt ebe e 135
4.5.1 Cloud definition.....c..cocveriirieniirieieneeicreeeeee et ettt 135
4.5.2 Cloud interoperability and standardscceeeeereeeenieeneeniieeneeneenieeeeneens 136
4.5.3 Scalability and fault tOlETancCeccceeveerieeriienieeieenee et 137
4.5.4 Security, trust, and PriVACYccovereererieiienieieeitente ettt 138
4.5.5 Organizational aSPECES.ccoeriererrierieriierieneeteettente sttt sttt e e 138
SUIMIMATY ..o s st a e s s saeae 139
REVIEW QUESTIONSooiiiiiiiiiiii e e e 139

PART 2 CLOUD APPLICATION PROGRAMMING AND THE
ANEKA PLATFORM

CHAPTER 5 ANEKA...........ccooiiiie e 143
5.1 FramewWork OVEIVIEWc.ccuieieruieieiieeiieteeeteteetce e eee st eesteeste e eseesaeeneeeeeneensesneas 143
5.2 Anatomy of the Aneka CONtAINETc..coevvirierierieirinieienreceeeecee e 146

5.2.1 From the ground up: the platform abstraction layercccceeeeervieeneennnen. 147
5.2.2 FabIIC SEIVICES ...ccuveuiiruietieiieiiriteie sttt sttt eieet e enae st ene st eene bt eaeenaeeaee 147
5.2.3 FOUNAAtION SEIVICES ..c..eiouirieiiiriieienieeitenieetenteeiteeteete et st ete st eeseseeaeenaeeaee 150
5.2.4 APPLICALION SEIVICESeeuviiieniiriieieniieieniteteste ettt st sttt sae e 153
5.3 Building Aneka Cloudsccccovierieniiieniiniiiieeee et 155
5.3.1 Infrastructure OrganizZationc.cecereeruerieenieneenieneeeesieeee st eeeenieeaeenee e 155
5.3.2 Logical OrganiZation...........ceceeteruerueeiieniieienieeeeesce e seeeee e eaesbeesee e eneeseeenee 155
5.3.3 Private cloud deployment modec..ccceeiiiiiiiiiiniinciieecceeeee e 158
5.3.4 Public cloud deployment mode............coeecverieiinieniinienieneeeneeeeeeeee e 158
5.3.5 Hybrid cloud deployment modecoceevierieieniiniiienienieeieeeesieeceeenn 160
5.4 Cloud programming and Managementcecueerveerueereeerieereesieenseeseesreesseeneess 162
5.4.1 Aneka SDK . ..ouiiiiiiiiiiiiei ettt et 162
5.4.2 Management tOOLScceveeririenienienieniietenieeit ettt sttt 167
SUIMIMATY .ttt ettt ea et e e e te s a e et e es e et e eseaneeestebesseeneesaeensenaeens 168

REVIEW QUESTIONSiiiiiiiiiiiiii ettt e 168

viii Contents

CHAPTER 6 Concurrent Computingoooevieiiiieiceeeeeeeeeeeeeeee 171
6.1 Introducing parallelism for single-machine computation...........cccceceveeruerernennen. 171
6.2 Programming applications with threads.........ccccovvieriiiniiienieciieieeieeeeee e 173

6.2.1 What is @ thread?..........coeoveiiiiiiiiiiccicte e 174
6.2.2 Thread APIS......cooiiieieieeeeee ettt st 174
6.2.3 Techniques for parallel computation with threadscceceierieiinicnnne. 177
6.3 Multithreading with Anekaccooeiinirieiiiiiniiiicceceee e 189
6.3.1 Introducing the thread programming model..............c.coceeeriiiiniinninncenenne. 190
6.3.2 Aneka thread vs. common threads.............ccoceeveeviririinienenieieneeeneeeee 191
6.4 Programming applications with Aneka threadscccccoevveeiviiniiniienienienieeene 195
6.4.1 Aneka threads application Model..........ccceevieriiriiieniieiiieriierieeeeee e 195
6.4.2 Domain decomposition: matrix multiplication...........cecceeveercieeceeneessienneens 196
6.4.3 Functional decomposition: Sine, Cosine, and Tangentc..ccccoceeeen.e. 203
SUIMIMATY .ttt ettt ettt sttt et e st e be e bt e st e e st e sab e e beesaeesaneenbeesaeenane 203
REVIEW UESTIONS ...c.teeuieiieiieeteete ettt ettt ettt eb ettt et e bt et e sbeeaeeneas 210

CHAPTER 7 High-Throughput Computing................c..ooooeiiiiiieeeeeeeee 211

7.1 Task COMPULINIZ ..eouveeiieiiiiiierie ettt ettt ettt e st esbtesbe e bt e satessbeesbeesaseenseens 211
7.1.1 Characterizing @ taSK.........cceereeeiiieriienieeiienee e eteesireereenteesneeseeseeesaveeneens 212
7.1.2 COMPULING CALEZOTICS . .c..venvermienreriteieniieieeitentesteetesiteteestestesbeetesbeeneesaeeneenaes 213
7.1.3 Frameworks for task cOmputingcccoeceevereenenienenienenieescee e 214

7.2 Task-based application MOAELScceeieruieiiirieieiceeee e 216
7.2.1 Embarrassingly parallel applicationscceceevueeniieieeneenienseeneceieeeeene 216
7.2.2 Parameter SWeep apPliCAtIONS ..c...cevveeruieriieriienienieeite ettt 217
7.2.3 MPI appliCationsc..cecueriieieniirieieniieieeeete ettt ettt 218
7.2.4 Workflow applications with task dependenciescceceevvueeveenierienneen. 222

7.3 Aneka task-based programmingccceceeveeeriveerieeniiersieenieeieeneesreeieeseesseeeeens 225
7.3.1 Task programming MOdelceecuieriiriiiiniinieeiierie e 226
7.3.2 Developing applications with the task model..........ccc.coceveniiiiniininnnene. 227
7.3.3 Developing a parameter sweep appliCationc.cceveeeeniereenieneenieneeneenne 243
7.3.4 Managing WOTKEIOWS.......cc.eoiiiiiiiieiieiiee et 248

SUIMIMATY + ettt ettt ettt et et e sat e et e bt e sat e e bt e sbeesabe e st e sate e bt esatesaseenbeesaeenane 250

REVIEW QUESTIONS ...ttt sttt 251

CHAPTER 8 Data-Intensive COmMpPUting................ccoovevieiieiiieeeeeeeeeeeeee. 253
8.1 What is data-intensive COMPULNG?cccuevuieiirerieriieiienteete ettt eeas 253

8.1.1 Characterizing data-intensive COMPULAIONScc.ceeveereerueerieereersieenieeneenane 254

Contents ix

8.1.2 Challenges ahead..........ccoecueerieriiriiieiieeie ettt ettt 254
8.1.3 HiStOriCal PEISPECTIVEvivuvieiieeiiietieniieeieeitte e ette e ete et e saeeaeebeesbeeseenne 255
8.2 Technologies for data-intensive COMPULINGcccveerveerierieeiieeiierieesieeieeeveesieenne 260
8.2.1 StOrAZE SYSLEINIS c..eeuvevienieriieteniieitenttete st ette st estesaeetesbeette bt ebtenteeseeaesneenaesaeas 260
8.2.2 Programming platforms.........cc.cecuerieviininiiiniiie e 268
8.3 Aneka MapReduce programmingcc.ccecceveeieriereenienieniesiceieecenieseeeieseeeieseeene 276
8.3.1 Introducing the MapReduce programming modelccocceeveeneiniennenne 276
8.3.2 Example appliCation..........ccceoieiiiniieiiiniieienteie et 293
SUIMIMATY ..ottt et ettt ettt st s et ea e esn e eaeesnesaeennesaeennenaeens 309
REVIEW QUESTIONS ...c.uviiiieiiieiiesie ettt ettt ettt ettt e sttt e b sateebe e bt e sebeenseesaee s 310

PART 3 INDUSTRIAL PLATFORMS AND NEW DEVELOPMENTS

CHAPTER 9 Cloud Platforms in Industry.................ccoooveoiiieeeeeeeee, 315
9.1 AMAZON WED SEIVICES ..cueetiriientieiieiieiieie ettt sttt ettt e b b eae bt e e neeene 315
9.1.1 COMPULE SETVICES ...euververrenrenieneeneetinienientetententetestenteresressesaessensenneneeneesessesaens 316
9.1.2 SEOTAZE SEIVICESeouviiuieiiiiiieiiiiieie ettt st s e 321
9.1.3 COMMUNICALION SEIVICES .euvveurerureeriterierieeniteeteesiteereesteesateesaeesseesareesseesseens 329
9.1.4 Additional SEIVICESccuirieriirieiiniieienieeteit ettt 332

9.2 GOOZle APPENGZINEoouviiiiiiieiiieiieeieette ettt ettt sttt e e 332
9.2.1 Architecture and COTE CONCEPLS.....cvurrruirrrieriierierieeieerieesreerieenieesreeseeenaeens 333
9.2.2 Application 1ife CYCI@coviiriieiiiiieeieee ettt 338
9.2.3 COSt MOAEL.....couiiiiiiiiiiieiiiie ettt ettt 340
9.2.4 ODSEIVALIONS ..uteeieniietieniietiete ettt sttt e et eateebeetesbeestesbe e benbeentenbeeaeenaeeeie 341

0.3 MICTOSOTE AZUICc.eeeeieieeieeiiete ettt ettt sttt et et et et e et ebeseeentesaeeneenaeens 341
9.3.1 AZUIE COTE CONMCEPLScuviviniiiuieieriieiie sttt st st 342
0.3.2 SQL AZUTIEC.......iieeiiieeieeeiteestte et eesteeesreeesaaeeesaeeessseesssaeessaeesseessssesensses 347
9.3.3 Windows Azure platform applianceccoceeevveevieiiieeneenieeneeneenieeeeeenn 349
9.3.4 ODSEIVALIONSeveurenririieniiniiete ettt ettt ees e ereetesaeesnesaeenesbeeenenbeeanenneeaee 349
SUMIMATY .ttt ettt e st e et e e bt e st e s abeesbeesabeenbeesabessbesnbeesaseenseenseesnsesseenne 350
REVIEW QUESTIONS ...euvieiieiiieiieeieeteesiteete et e ste et ebeestaeeteeseaeesbeeseesaseesseenseessseenseenseens 351
CHAPTER 10 Cloud Applications.................c.coooviiiiieieeeeeeeeeeeeeeeeeeeeee 353
10.1 Scientific apPlICAIONScc.eoverieieieirinierertetetet ettt sttt ee 353
10.1.1 Healthcare: ECG analysis in the cloud......c..ccocceeviiniiiiniiniieniiennieneenne, 353
10.1.2 Biology: protein structure prediCtioncoccveeveereereeenieenieeniieenieseennnes 355
10.1.3 Biology: gene expression data analysis for cancer diagnosis 357

10.1.4 Geoscience: satellite image ProCesSINg.......ccccevvererreererreerereererieeruenenns 358

X Contents

10.2 Business and consumer appliCations.........coceeveerueerieeniieerieenienieenieeseesreesieeneees 358
10.2.1 CRM and ERP.......cociiiiiiiiiiiiiiiieiccctctc et 359
10.2.2 PrOAUCEIVILY ..ottt 362
10.2.3 Social NetWOTrKING......cc.eeoteriiriiriiiieieniieeneetee ettt 365
10.2.4 Media appliCatiOnscccevuerierierienientieienieeteneeeteseete st eete e ee e sieeeeeae 366
10.2.5 Multiplayer onling gaming........c..ccccceeeeeververuiererenienienienrereeineneseseensennens 369

SUIMIMATY +veetteeiieeieeitte ettt ettt et e st b e e bt e sat e e bt e sbee st e e st esateenbeesatesabeenbeesaeenane 370

REVIEW QUESTIONS ...ttt 371

CHAPTER 11 Advanced Topics in Cloud Computingc..ccooovievieiinnnnn. 373

11.1 Energy efficiency in cloudsccoceeoieririeiinieniecee e 373
11.1.1 Energy-efficient and green cloud computing architecture 375

11.2 Market-based management of ClOUdSc..ccceceeerierirenieninenieienceenesee e 377
11.2.1 Market-oriented cloud COMPULING......ccceeriirriiinieriieniienieeieeeee e 378
11.2.2 A reference model for MOCCcccooiviriininiiineeneneeienecreseeeeeene 379
11.2.3 Technologies and initiatives supporting MOCCccccceeveerierrrienueennne. 384
11.2.4 ODSEIVALIONSouiiiiiiiiiiiestttetetete ettt s 389

11.3 Federated clouds/InterCloudcooovivieieiiiiinininiciesieeeeeee e 390
11.3.1 Characterization and definition............cccceeeevieniriienienenieeneeeseeceene 391
11.3.2 Cloud federation StaCKcceceeieririenieiieiescee e 392
11.3.3 ASPECES Of INLETESE....ueuiruiriitireieieteiieitee ettt ettt et et s e saesaenene 399
11.3.4 Technologies for cloud federations..............cccceceevenieiinieieninicneneeene 417
11.3.5 ODBSEIVALIONS «..c.eeeuvieiiirieiieieeienieeiteteste ettt et nesne s neene 422

11.4 Third-party cloud SETVICEScooviriiiriiiriiiiienie ettt sttt s 422
11.4.1 MetaCDNocoiiiiiiiiiiiiiiceceeeeee e 423
11.4.2 SPOtCIOUd.......oviiiiiiiiiiiiciiireeeece e e 425

SUITIMATY .ttt ettt et s b et b e bbb e bt et ebte bt eaeesbesbtenbeestenbesbeeneeene 425

REVIEW QUESTIONS ...cuvtiientieiieetieite sttt ettt ettt sb ettt e et esbeseeeaeas 427

RETEICICESttt ettt ettt et e e e sttt b et e b e e eat et e ebe et e saeenaesbeeneantean 429

Acknowledgments

First and foremost, we are grateful to all researchers and industrial developers worldwide for their con-
tributions to various concepts and technologies discussed in this book. Our special thanks to all the
members and consultants of Manjrasoft, the Cloud Computing and Distributed Systems (CLOUDS)
Lab of the University of Melbourne, and Melbourne Ventures, who contributed to the development of
the Aneka Cloud Application Platform, the preparation of associated application demonstrators and
documents, and/or the commercialization of the Aneka technology. They include Chu Xingchen,
Srikumar Venugopal, Krishna Nadiminti, Christian Vecchiola, Dileban Karunamoorthy, Chao Jin,
Rodrigo Calheiros, Michael Mattess, Jessie Wei, Enayat Masoumi, Ivan Mellado, Richard Day,
Wolfgang Gentzsch, Laurence Liew, David Sinclair, Suraj Pandey, Abhi Shekar, Dexter Duncan,
Murali Sathya, Karthik Sukumar, Ravi Kumar Challa, and Sita Venkatraman.

We thank the Australian Research Council (ARC) and the Department of Innovation, Industry,
Science, and Research (DIISR) for supporting our research and commercialization endeavors.

We thank all of our colleagues at the University of Melbourne, especially Professors Rao Kotagiri,
Iven Mareels, and Glyn Davis, for their mentorship and positive support for our research and our
efforts to impart the knowledge we have gained.

We thank all colleagues and users of the Aneka technology for their direct and indirect contri-
butions to application case studies reported in the book. Our special thanks to Raghavendra Kune
from ADRIN/ISRO for his enthusiastic efforts in creating a satellite image-processing application
using Aneka and publishing articles in this area. We thank Srinivasa Iyengar from MSRIT for cre-
ating data-mining applications using Aneka and demonstrating the power of Aneka to academics
from the early days of cloud computing.

We thank the members of the CLOUDS Lab for proofreading one or more chapters. They include
Rodrigo Calheiros, Nikolay Grozev, Amir Vahid, Anton Beloglazov, Adel Toosi, Deepak Poola,
Mohammed AlRokayan, Atefeh Khosravi, Sareh Piraghaj, and Yaser Mansouri.

We thank our family members, including Smrithi Buyya, Soumya Buyya, and Radha Buyya, for
their love and understanding during the preparation of the book.

We sincerely thank external reviewers commissioned by the publisher for their critical com-
ments and suggestions on enhancing the presentation and organization of many chapters at a finer
level. This has greatly helped us improve the quality of the book.

Finally, we would like to thank the staff at Elsevier Inc for their enthusiastic support and
guidance during the preparation of the book. In particular, we thank Todd Green for inspiring us to
take up this project and for setting the process of publication in motion. The Elsevier staff were
wonderful to work with!

Professor Rajkumar Buyya

The University of Melbourne and Manjrasoft Pty Ltd, Australia
Dr. Christian Vecchiola

The University of Melbourne and IBM Research, Australia
Professor S. Thamarai Selvi

Madras Institute of Technology, Anna University, Chennai, India

Xi

This page intentionally left blank

Preface

The growing popularity of the Internet and the Web, along with the availability of powerful
handheld computing, mobile, and sensing devices, are changing the way we interact, manage our
lives, conduct business, and access or deliver services. The lowering costs of computation and com-
munication are driving the focus from personal to datacenter-centric computing. Although parallel
and distributed computing has been around for several years, its new forms, multicore and cloud
computing, have brought about a sweeping change in the industry. These trends are pushing the
industry focus from developing applications for PCs to cloud datacenters that enable millions of
users to use software simultaneously.

Computing is being transformed to a model consisting of commoditized services delivered in a
manner similar to utilities such as water, electricity, gas, and telephony. As a result, information
technology (IT) services are billed and delivered as “computing utilities” over shared delivery net-
works, akin to water, electricity, gas, and telephony services delivery. In such a model, users access
services based on their requirements, regardless of where those services are hosted. Several com-
puting paradigms have promised to deliver this utility computing vision. Cloud computing is the
most recent emerging paradigm promising to turn the vision of “computing utilities” into a reality.

Cloud computing has become one of the buzzwords in the IT industry. Several IT vendors are
promising to offer storage, computation, and application hosting services and to provide coverage
on several continents, offering service-level agreements-backed performance and uptime promises
for their services. They offer subscription-based access to infrastructure, platforms, and applications
that are popularly termed Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS), and
Software-as-a-Service (SaaS). These emerging services have reduced the cost of computation and
application hosting by several orders of magnitude, but there is significant complexity involved in
the development and delivery of applications and their services in a seamless, scalable, and reliable
manner.

There are several cloud technologies and platforms on the market—to mention a few: Google
AppEngine, Microsoft Azure, and Manjrasoft Aneka. Google AppEngine provides an extensible
runtime environment for Web-based applications that leverage the huge Google IT infrastructure.
Microsoft Azure provides a wide array of Windows-based services for developing and deploying
Windows applications on the cloud. Manjrasoft Aneka provides a flexible model for creating cloud
applications and deploying them on a wide variety of infrastructures, including public clouds such
as Amazon EC2.

With this sweeping shift from developing applications on PCs to datacenters, there is a huge
demand for manpower with new skill sets in cloud computing. Universities play an important role
in this regard by training the next generation of IT professionals and equipping them with the nec-
essary tools and knowledge to tackle these challenges. These institutions need to be able to set up a
cloud computing environment for teaching and learning with minimal investment. One of the
attractive cloud application platforms that meet this need is Manjrasoft’s Aneka, which (1) enables
the construction of a private/enterprise cloud by harnessing the existing network of computers

xiii

Xiv Preface

(LAN-connected PCs), (2) provides a software development kit (SDK) that supports application
programming interfaces (APIs) for multiple programming models such as Thread, Task, and
MapReduce, and (3) supports, in a seamless manner, the deployment and execution of applications
on diverse infrastructures such as multicore servers, private clouds, and public clouds.

Currently, expert developers are required to create cloud applications and services. Cloud
researchers, practitioners, and vendors alike are working to ensure that potential users are educated
about the benefits of cloud computing and the best way to harness its full potential. However,
because it’s a new and popular paradigm, the very definition of cloud computing depends on which
computing expert is asked. So, although the realization of true utility computing appears closer
than ever, its acceptance is currently restricted to cloud experts due to the perceived complexities
of interacting with cloud computing providers. This book aims to change the game by simplifying
and imparting cloud computing foundations, technologies, and programming skills to readers so
that even average programmers and software engineers are able to develop cloud applications
easily.

The book at a glance

This book introduces the fundamental principles of cloud computing and its related paradigms.
It discusses the concepts of virtualization technologies along with the architectural models of
cloud computing. It presents prominent cloud computing technologies that are available in the
marketplace, including the Aneka Cloud Application Platform. The book contains chapters dedi-
cated to discussion of concurrent, high-throughput, and data-intensive computing paradigms and
their use in programming cloud applications. Various application case studies from domains
such as science, engineering, gaming, and social networking are introduced, along with their
architecture and how they leverage various cloud technologies. These case studies allow the
reader to understand the mechanisms needed to harness cloud computing in their own respective
endeavors. Finally, the book details many open research problems and opportunities that have
arisen from the rapid uptake of cloud computing. We hope that this motivates the reader to
address these in their own future research and development. The book also comes with an asso-
ciated Website (hosted at www.buyya.com/MasteringClouds) that contains pointers to advanced
online resources.
The book contains 11 chapters, which are organized into three major parts:

Part 1: Foundations
Chapter 1—Introduction
Chapter 2—Principles of Parallel and Distributed Computing
Chapter 3—Virtualization
Chapter 4—Cloud Computing Architecture

Part 2: Cloud Application Programming and the Aneka Platform
Chapter 5—Aneka: Cloud Application Platform
Chapter 6—Concurrent Computing: Thread Programming
Chapter 7—High-Throughput Computing: Task Programming
Chapter 8—Data-Intensive Computing: MapReduce Programming

http://www.buyya.com/MasteringClouds

Preface XV

Part 3: Industrial Platforms and New Developments
Chapter 9—Cloud Platforms in Industry
Chapter 10—Cloud Applications
Chapter 11—Advanced Topics in Cloud Computing

The book serves as a perfect guide to the world of cloud computing. Starting with the funda-
mentals, the book drives students and professionals through the practical use of these concepts via
hands-on sessions on how to develop cloud applications, using Aneka as a reference platform. Part 3
goes beyond the reference platform and introduces other industrial technologies and solutions
(Amazon Web Services, Google AppEngine, and Microsoft Azure) and real applications, identi-
fies emerging trends, and offers future directions for cloud computing.

Benefits and readership

Given the rapid emergence of cloud computing as a mainstream computing paradigm, it is essential
to have both a solid understanding of the core concepts characterizing the phenomenon and a prac-
tical grasp of how to design and implement cloud computing applications and systems. This set of
skills is already fundamental today for software architects, engineers, and developers because many
applications are being moved to the cloud. It will become even more important in the future, when
this technology matures further. This book provides an ideal blend of background information, the-
ory, and practical cloud computing development techniques, expressed in a language that is accessi-
ble to a wide range of readers: from graduate-level students to practitioners, developers, and
engineers who want to, or need to, design and implement cloud computing solutions. Moreover,
more advanced topics presented at the end of the manuscript make the book an interesting read for
researchers in the field of cloud computing who want an overview of the next challenges in cloud
computing that will arise in coming years.

This book is a timely contribution to the cloud computing field, which is gaining considerable
commercial interest and momentum. The book is targeted at graduate students and IT professionals
such as system architects, practitioners, software engineers, and application programmers. As cloud
computing is recognized as one of the top five emerging technologies that will have a major impact
on the quality of science and society over the next 20 years, the knowledge conveyed through this
book will help position our readers at the forefront of the field.

Directions for adoption: theory, labs, and projects

Given the importance of the cloud computing paradigm and its rapid uptake in industry, universities
and educational institutions need to upgrade their curriculum by introducing one or more subjects
in the area of cloud computing and related topics, such as parallel computing and distributed sys-
tems. We recommend that they offer at least one subject on cloud computing as part of their under-
graduate and postgraduate degree programs, such as B.E./B.Tech./BSc in computer science and
related areas and Masters, including the Master of Computer Applications (MCA). We believe that

Xvi Preface

this book will serve as an excellent textbook for such subjects. If the students have already had
exposure to the concepts of parallel and distributed computing, Chapter 2 can be skipped.

For those aiming to make their curriculum rich with cloud computing, we recommend offering
two courses: “Introduction to Cloud Computing” and “Advanced Cloud Computing,” in two differ-
ent semesters. This book has sufficient content to cater to both of them. The first subject can be
based on Chapters 1—6 and the second one based on Chapters 7—11.

In addition to theory, we strongly recommend the introduction of a laboratory subject that offers
hands-on experience. The lab exercises and assignments can focus on creating high-performance
cloud applications and assignments on a range of topics, including parallel execution of mathemati-
cal functions, sorting of large data in parallel, image processing, and data mining. Using cloud soft-
ware systems such as Aneka, institutions can easily set up a private/enterprise cloud computing
facility by utilizing existing LAN-connected PCs running Windows. Students can use this facility
to learn about various cloud application programming models and interfaces discussed in Chapter 6
(Thread Programming), Chapter 7 (Task Programming), and Chapter 8 (MapReduce Programming).
Students need to learn various programming examples discussed in these chapters and execute
them on an Aneka-based cloud facility. We encourage students to take up some of the program-
ming exercises noted in the “Review Questions” sections of these chapters as lab assignments and
develop their own solutions.

Students can also carry out their final-year projects focused on developing cloud applications to
solve real-world problems. For example, students can work with academics, researchers, and
experts from other science and engineering disciplines, such as life and medical sciences or civil
and mechanical engineering, and develop suitable applications that can harness the power of cloud
computing. For inspiration, please read various application case studies presented in Chapter 10.

Supplemental materials

Supplemental materials for instructors or students can be downloaded from Elsevier:
http://store.elsevier.com/product.jsp?isbn=9780124114548

http://store.elsevier.com/product.jsp?isbn=9780124114548

PART

Foundations 1

This page intentionally left blank

CHAPTER

Introduction

Computing is being transformed into a model consisting of services that are commoditized and
delivered in a manner similar to utilities such as water, electricity, gas, and telephony. In such a
model, users access services based on their requirements, regardless of where the services are
hosted. Several computing paradigms, such as grid computing, have promised to deliver this utility
computing vision. Cloud computing is the most recent emerging paradigm promising to turn the
vision of “computing utilities” into a reality.

Cloud computing is a technological advancement that focuses on the way we design computing
systems, develop applications, and leverage existing services for building software. It is based on
the concept of dynamic provisioning, which is applied not only to services but also to compute
capability, storage, networking, and information technology (IT) infrastructure in general.
Resources are made available through the Internet and offered on a pay-per-use basis from cloud
computing vendors. Today, anyone with a credit card can subscribe to cloud services and deploy
and configure servers for an application in hours, growing and shrinking the infrastructure serving
its application according to the demand, and paying only for the time these resources have been
used.

This chapter provides a brief overview of the cloud computing phenomenon by presenting its
vision, discussing its core features, and tracking the technological developments that have made it
possible. The chapter also introduces some key cloud computing technologies as well as some
insights into development of cloud computing environments.

Cloud computing at a glance

In 1969, Leonard Kleinrock, one of the chief scientists of the original Advanced Research Projects
Agency Network (ARPANET), which seeded the Internet, said:

As of now, computer networks are still in their infancy, but as they grow up and become sophisti-
cated, we will probably see the spread of ‘computer utilities’ which, like present electric and tele-
phone utilities, will service individual homes and offices across the country.

This vision of computing utilities based on a service-provisioning model anticipated the massive
transformation of the entire computing industry in the 21% century, whereby computing services
will be readily available on demand, just as other utility services such as water, electricity, tele-
phone, and gas are available in today’s society. Similarly, users (consumers) need to pay providers

4 CHAPTER 1 Introduction

only when they access the computing services. In addition, consumers no longer need to invest
heavily or encounter difficulties in building and maintaining complex IT infrastructure.

In such a model, users access services based on their requirements without regard to where the
services are hosted. This model has been referred to as utility computing or, recently (since 2007),
as cloud computing. The latter term often denotes the infrastructure as a “cloud” from which busi-
nesses and users can access applications as services from anywhere in the world and on demand.
Hence, cloud computing can be classified as a new paradigm for the dynamic provisioning of com-
puting services supported by state-of-the-art data centers employing virtualization technologies for
consolidation and effective utilization of resources.

Cloud computing allows renting infrastructure, runtime environments, and services on a pay-
per-use basis. This principle finds several practical applications and then gives different images of
cloud computing to different people. Chief information and technology officers of large enterprises
see opportunities for scaling their infrastructure on demand and sizing it according to their business
needs. End users leveraging cloud computing services can access their documents and data anytime,
anywhere, and from any device connected to the Internet. Many other points of view exist.' One of
the most diffuse views of cloud computing can be summarized as follows:

I don’t care where my servers are, who manages them, where my documents are stored, or where
my applications are hosted. I just want them always available and access them from any device
connected through Internet. And I am willing to pay for this service for as a long as I need it.

The concept expressed above has strong similarities to the way we use other services, such as
water and electricity. In other words, cloud computing turns IT services into utilities. Such a deliv-
ery model is made possible by the effective composition of several technologies, which have
reached the appropriate maturity level. Web 2.0 technologies play a central role in making cloud
computing an attractive opportunity for building computing systems. They have transformed the
Internet into a rich application and service delivery platform, mature enough to serve complex
needs. Service orientation allows cloud computing to deliver its capabilities with familiar abstrac-
tions, while virtualization confers on cloud computing the necessary degree of customization, con-
trol, and flexibility for building production and enterprise systems.

Besides being an extremely flexible environment for building new systems and applications,
cloud computing also provides an opportunity for integrating additional capacity or new features
into existing systems. The use of dynamically provisioned IT resources constitutes a more attractive
opportunity than buying additional infrastructure and software, the sizing of which can be difficult
to estimate and the needs of which are limited in time. This is one of the most important advan-
tages of cloud computing, which has made it a popular phenomenon. With the wide deployment of
cloud computing systems, the foundation technologies and systems enabling them are becoming
consolidated and standardized. This is a fundamental step in the realization of the long-term vision

'An interesting perspective on the way cloud computing evokes different things to different people can be found in a
series of interviews made by Rob Boothby, vice president and platform evangelist of Joyent, at the Web 2.0 Expo in
May 2007. Chief executive officers (CEOs), chief technology officers (CTOs), founders of IT companies, and IT ana-
lysts were interviewed, and all of them gave their personal perception of the phenomenon, which at that time was start-
ing to spread. The video of the interview can be found on YouTube at the following link: www.youtube.com/watch?
v=6PNuQHUiV3Q.

http://www.youtube.com/watch?v=6PNuQHUiV3Q
http://www.youtube.com/watch?v=6PNuQHUiV3Q
http://www.youtube.com/watch?v=6PNuQHUiV3Q
http://www.youtube.com/watch?v=6PNuQHUiV3Q
http://www.youtube.com/watch?v=6PNuQHUiV3Q

1.1 Cloud computing at a glance 5

for cloud computing, which provides an open environment where computing, storage, and other ser-
vices are traded as computing utilities.

The vision of cloud computing

Cloud computing allows anyone with a credit card to provision virtual hardware, runtime environ-
ments, and services. These are used for as long as needed, with no up-front commitments required.
The entire stack of a computing system is transformed into a collection of utilities, which can be
provisioned and composed together to deploy systems in hours rather than days and with virtually
no maintenance costs. This opportunity, initially met with skepticism, has now become a practice
across several application domains and business sectors (see Figure 1.1). The demand has fast-
tracked technical development and enriched the set of services offered, which have also become
more sophisticated and cheaper.

Despite its evolution, the use of cloud computing is often limited to a single service at a time
or, more commonly, a set of related services offered by the same vendor. Previously, the lack of
effective standardization efforts made it difficult to move hosted services from one vendor to
another. The long-term vision of cloud computing is that IT services are traded as utilities in an
open market, without technological and legal barriers. In this cloud marketplace, cloud service pro-
viders and consumers, trading cloud services as utilities, play a central role.

Many of the technological elements contributing to this vision already exist. Different stake-
holders leverage clouds for a variety of services. The need for ubiquitous storage and compute
power on demand is the most common reason to consider cloud computing. A scalable runtime for
applications is an attractive option for application and system developers that do not have infra-
structure or cannot afford any further expansion of existing infrastructure. The capability for Web-
based access to documents and their processing using sophisticated applications is one of the
appealing factors for end users.

In all these cases, the discovery of such services is mostly done by human intervention: a person
(or a team of people) looks over the Internet to identify offerings that meet his or her needs. We
imagine that in the near future it will be possible to find the solution that matches our needs by
simply entering our request in a global digital market that trades cloud computing services. The
existence of such a market will enable the automation of the discovery process and its integration
into existing software systems, thus allowing users to transparently leverage cloud resources in their
applications and systems. The existence of a global platform for trading cloud services will also
help service providers become more visible and therefore potentially increase their revenue. A
global cloud market also reduces the barriers between service consumers and providers: it is no lon-
ger necessary to belong to only one of these two categories. For example, a cloud provider might
become a consumer of a competitor service in order to fulfill its own promises to customers.

These are all possibilities that are introduced with the establishment of a global cloud comput-
ing marketplace and by defining effective standards for the unified representation of cloud services
as well as the interaction among different cloud technologies. A considerable shift toward cloud
computing has already been registered, and its rapid adoption facilitates its consolidation.
Moreover, by concentrating the core capabilities of cloud computing into large datacenters, it is
possible to reduce or remove the need for any technical infrastructure on the service consumer side.
This approach provides opportunities for optimizing datacenter facilities and fully utilizing their

| have a lot of
infrastructure that |
want to rent ...

| need to grow my
infrastructure, but
| do not know for
how long...

g have a surplus of
infrastructure that |
want to make use of

| cannot invest in
infrastructure, |
just started my
business....

I have infrastructure
and middleware and |
can host applications

| want to focus on
application logic and
not maintenance and
scalability issues

| have infrastructure
and provide
application services

| want to access and
edit my documents
and photos from
everywhere..

FIGURE 1.1

Cloud computing vision.

1.1 Cloud computing at a glance 7

capabilities to serve multiple users. This consolidation model will reduce the waste of energy and
carbon emissions, thus contributing to a greener IT on one end and increasing revenue on the other
end.

1.1.2 Defining a cloud

Cloud computing has become a popular buzzword; it has been widely used to refer to different
technologies, services, and concepts. It is often associated with virtualized infrastructure or hard-
ware on demand, utility computing, IT outsourcing, platform and software as a service, and many
other things that now are the focus of the IT industry. Figure 1.2 depicts the plethora of different
notions included in current definitions of cloud computing.

The term cloud has historically been used in the telecommunications industry as an abstraction of
the network in system diagrams. It then became the symbol of the most popular computer network:
the Internet. This meaning also applies to cloud computing, which refers to an Internet-centric way of

No capita
investments
Q I Quality of Service /

 Computing?

FIGURE 1.2
Cloud computing technologies, concepts, and ideas.

8 CHAPTER 1 Introduction

computing. The Internet plays a fundamental role in cloud computing, since it represents either the
medium or the platform through which many cloud computing services are delivered and made
accessible. This aspect is also reflected in the definition given by Armbrust et al. [28]:

Cloud computing refers to both the applications delivered as services over the Internet and the
hardware and system software in the datacenters that provide those services.

This definition describes cloud computing as a phenomenon touching on the entire stack: from
the underlying hardware to the high-level software services and applications. It introduces the con-
cept of everything as a service, mostly referred as XaaS,> where the different components of a sys-
tem—IT infrastructure, development platforms, databases, and so on—can be delivered, measured,
and consequently priced as a service. This new approach significantly influences not only the way
that we build software but also the way we deploy it, make it accessible, and design our IT infra-
structure, and even the way companies allocate the costs for IT needs. The approach fostered by
cloud computing is global: it covers both the needs of a single user hosting documents in the cloud
and the ones of a CIO deciding to deploy part of or the entire corporate IT infrastructure in the pub-
lic cloud. This notion of multiple parties using a shared cloud computing environment is
highlighted in a definition proposed by the U.S. National Institute of Standards and Technology
(NIST):

Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a
shared pool of configurable computing resources (e.g., networks, servers, storage, applications,
and services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction.

Another important aspect of cloud computing is its utility-oriented approach. More than any
other trend in distributed computing, cloud computing focuses on delivering services with a given
pricing model, in most cases a “pay-per-use” strategy. It makes it possible to access online storage,
rent virtual hardware, or use development platforms and pay only for their effective usage, with no
or minimal up-front costs. All these operations can be performed and billed simply by entering the
credit card details and accessing the exposed services through a Web browser. This helps us pro-
vide a different and more practical characterization of cloud computing. According to Reese [29],
we can define three criteria to discriminate whether a service is delivered in the cloud computing
style:

e The service is accessible via a Web browser (nonproprietary) or a Web services application
programming interface (API).

» Zero capital expenditure is necessary to get started.

* You pay only for what you use as you use it.

Even though many cloud computing services are freely available for single users, enterprise-
class services are delivered according a specific pricing scheme. In this case users subscribe to the
service and establish with the service provider a service-level agreement (SLA) defining the

2Xaas$ is an acronym standing for X-as-a-Service, where the X letter can be replaced by one of a number of things: S for
software, P for platform, I for infrastructure, H for hardware, D for database, and so on.

1.1 Cloud computing at a glance 9

quality-of-service parameters under which the service is delivered. The utility-oriented nature of
cloud computing is clearly expressed by Buyya et al. [30]:

A cloud is a type of parallel and distributed system consisting of a collection of interconnected
and virtualized computers that are dynamically provisioned and presented as one or more unified
computing resources based on service-level agreements established through negotiation between
the service provider and consumers.

A closer look

Cloud computing is helping enterprises, governments, public and private institutions, and research
organizations shape more effective and demand-driven computing systems. Access to, as well as
integration of, cloud computing resources and systems is now as easy as performing a credit card
transaction over the Internet. Practical examples of such systems exist across all market segments:

e Large enterprises can offload some of their activities to cloud-based systems. Recently, the New
York Times has converted its digital library of past editions into a Web-friendly format. This
required a considerable amount of computing power for a short period of time. By renting
Amazon EC2 and S3 Cloud resources, the Times performed this task in 36 hours and
relinquished these resources, with no additional costs.

e Small enterprises and start-ups can afford to translate their ideas into business results more
quickly, without excessive up-front costs. Animoto is a company that creates videos out of
images, music, and video fragments submitted by users. The process involves a considerable
amount of storage and backend processing required for producing the video, which is finally
made available to the user. Animoto does not own a single server and bases its computing
infrastructure entirely on Amazon Web Services, which are sized on demand according to
the overall workload to be processed. Such workload can vary a lot and require instant
scalability.” Up-front investment is clearly not an effective solution for many companies, and
cloud computing systems become an appropriate alternative.

e System developers can concentrate on the business logic rather than dealing with the
complexity of infrastructure management and scalability. Little Fluffy Toys is a company in
London that has developed a widget providing users with information about nearby bicycle
rental services. The company has managed to back the widget’s computing needs on Google
AppEngine and be on the market in only one week.

* End users can have their documents accessible from everywhere and any device. Apple iCloud
is a service that allows users to have their documents stored in the Cloud and access them from
any device users connect to it. This makes it possible to take a picture while traveling with a
smartphone, go back home and edit the same picture on your laptop, and have it show as
updated on your tablet computer. This process is completely transparent to the user, who does
not have to set up cables and connect these devices with each other.

How is all of this made possible? The same concept of IT services on demand—whether com-
puting power, storage, or runtime environments for applications—on a pay-as-you-go basis

3Tt has been reported that Animoto, in one single week, scaled from 70 to 8,500 servers because of user demand.

10 CHAPTER 1 Introduction

accommodates these four different scenarios. Cloud computing does not only contribute with the
opportunity of easily accessing IT services on demand, it also introduces a new way of thinking
about IT services and resources: as utilities. A bird’s-eye view of a cloud computing environment
is shown in Figure 1.3.

The three major models for deploying and accessing cloud computing environments are public
clouds, private/enterprise clouds, and hybrid clouds (see Figure 1.4). Public clouds are the most
common deployment models in which necessary IT infrastructure (e.g., virtualized datacenters) is
established by a third-party service provider that makes it available to any consumer on a subscrip-
tion basis. Such clouds are appealing to users because they allow users to quickly leverage com-
pute, storage, and application services. In this environment, users’ data and applications are
deployed on cloud datacenters on the vendor’s premises.

Large organizations that own massive computing infrastructures can still benefit from cloud
computing by replicating the cloud IT service delivery model in-house. This idea has given birth to
the concept of private clouds as opposed to public clouds. In 2010, for example, the U.S. federal
government, one of the world’s largest consumers of IT spending (around $76 billion on more than

Subscription - Oriented Cloud Services:

X{compute, apps, data, ..}
Manjrasoft aS a SerV|Ce (aaS)

: Public Clouds l—\
~ Applications I

Cloud Services

FIGURE 1.3
A bird’s-eye view of cloud computing.

1.1 Cloud computing at a glance 11

Cloud Deployment Models

Public/Internet Private/Enterprise Hybrid/Inter
Clouds Clouds Clouds

~—=_ 2 ~—_

*A public cloud model * Mixed use of
within a private and public
company’s own clouds; leasing public
datacenter/infrastructure cloud services
for internal when private cloud
and/or partners’ use capacity is insufficient

*Third-party,
multitenant cloud
infrastructure
and services

*Available on a
subscription basis to all

FIGURE 1.4
Major deployment models for cloud computing.

10,000 systems) started a cloud computing initiative aimed at providing government agencies with
a more efficient use of their computing facilities. The use of cloud-based in-house solutions is also
driven by the need to keep confidential information within an organization’s premises. Institutions
such as governments and banks that have high security, privacy, and regulatory concerns prefer to
build and use their own private or enterprise clouds.

Whenever private cloud resources are unable to meet users’ quality-of-service requirements,
hybrid computing systems, partially composed of public cloud resources and privately owned infra-
structures, are created to serve the organization’s needs. These are often referred as hybrid clouds,
which are becoming a common way for many stakeholders to start exploring the possibilities
offered by cloud computing.

1.1.4 The cloud computing reference model

A fundamental characteristic of cloud computing is the capability to deliver, on demand, a variety
of IT services that are quite diverse from each other. This variety creates different perceptions of
what cloud computing is among users. Despite this lack of uniformity, it is possible to classify
cloud computing services offerings into three major categories: Infrastructure-as-a-Service (laaS),
Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS). These categories are related to
each other as described in Figure 1.5, which provides an organic view of cloud computing. We
refer to this diagram as the Cloud Computing Reference Model, and we will use it throughout the

12 CHAPTER 1 Introduction

Web 2.0 Software as a Service } \

Interfaces End-user applications

- Scientific applications

‘_F Office automation, photo editing,

GO' *S\C docs CRM, and social networking

L Examples : Google Documents, Facebook, Flickr, Salesforce

v,

& "| Platform as a Service i N

Runtime environment for applications
4 R @\ J Development and data processing platforms
l 4 \:.““—_ﬁf Examples : Windows Azure, Hadoop, Google AppEngine, Aneka

f-I Infrastructure as a Service i

Virtualized servers

™ L Storage and networking
qm

¥ A ~ ! - Examples : Amazon EC2, S3, Rightscale, vCloud

o W N)

FIGURE 1.5
The Cloud Computing Reference Model.

book to explain the technologies and introduce the relevant research on this phenomenon. The
model organizes the wide range of cloud computing services into a layered view that walks the
computing stack from bottom to top.

At the base of the stack, Infrastructure-as-a-Service solutions deliver infrastructure on demand
in the form of virtual hardware, storage, and networking. Virtual hardware is utilized to provide
compute on demand in the form of virtual machine instances. These are created at users’ request on
the provider’s infrastructure, and users are given tools and interfaces to configure the software stack
installed in the virtual machine. The pricing model is usually defined in terms of dollars per hour,
where the hourly cost is influenced by the characteristics of the virtual hardware. Virtual storage is
delivered in the form of raw disk space or object store. The former complements a virtual hardware
offering that requires persistent storage. The latter is a more high-level abstraction for storing enti-
ties rather than files. Virtual networking identifies the collection of services that manage the net-
working among virtual instances and their connectivity to the Internet or private networks.

Platform-as-a-Service solutions are the next step in the stack. They deliver scalable and elastic
runtime environments on demand and host the execution of applications. These services are backed
by a core middleware platform that is responsible for creating the abstract environment where
applications are deployed and executed. It is the responsibility of the service provider to provide
scalability and to manage fault tolerance, while users are requested to focus on the logic of
the application developed by leveraging the provider’s APIs and libraries. This approach increases
the level of abstraction at which cloud computing is leveraged but also constrains the user in a
more controlled environment.

At the top of the stack, Software-as-a-Service solutions provide applications and services
on demand. Most of the common functionalities of desktop applications—such as office

1.1 Cloud computing at a glance 13

automation, document management, photo editing, and customer relationship management (CRM)
software—are replicated on the provider’s infrastructure and made more scalable and accessible
through a browser on demand. These applications are shared across multiple users whose interac-
tion is isolated from the other users. The SaaS layer is also the area of social networking Websites,
which leverage cloud-based infrastructures to sustain the load generated by their popularity.

Each layer provides a different service to users. [aaS solutions are sought by users who want to
leverage cloud computing from building dynamically scalable computing systems requiring a spe-
cific software stack. IaaS services are therefore used to develop scalable Websites or for back-
ground processing. PaaS solutions provide scalable programming platforms for developing
applications and are more appropriate when new systems have to be developed. SaaS solutions tar-
get mostly end users who want to benefit from the elastic scalability of the cloud without doing
any software development, installation, configuration, and maintenance. This solution is appropriate
when there are existing SaaS services that fit users needs (such as email, document management,
CRM, etc.) and a minimum level of customization is needed.

Characteristics and benefits

Cloud computing has some interesting characteristics that bring benefits to both cloud service con-
sumers (CSCs) and cloud service providers (CSPs). These characteristics are:

* No up-front commitments

* On-demand access

* Nice pricing

* Simplified application acceleration and scalability
» Efficient resource allocation

* Energy efficiency

e Seamless creation and use of third-party services

The most evident benefit from the use of cloud computing systems and technologies is the
increased economical return due to the reduced maintenance costs and operational costs related to
IT software and infrastructure. This is mainly because IT assets, namely software and infrastructure,
are turned into wutility costs, which are paid for as long as they are used, not paid for up front.
Capital costs are costs associated with assets that need to be paid in advance to start a business
activity. Before cloud computing, IT infrastructure and software generated capital costs, since they
were paid up front so that business start-ups could afford a computing infrastructure, enabling the
business activities of the organization. The revenue of the business is then utilized to compensate
over time for these costs. Organizations always minimize capital costs, since they are often associ-
ated with depreciable values. This is the case of hardware: a server bought today for $1,000 will
have a market value less than its original price when it is eventually replaced by new hardware. To
make profit, organizations have to compensate for this depreciation created by time, thus reducing
the net gain obtained from revenue. Minimizing capital costs, then, is fundamental. Cloud comput-
ing transforms IT infrastructure and software into utilities, thus significantly contributing to increas-
ing a company’s net gain. Moreover, cloud computing also provides an opportunity for small
organizations and start-ups: these do not need large investments to start their business, but they can
comfortably grow with it. Finally, maintenance costs are significantly reduced: by renting the

14 CHAPTER 1 Introduction

infrastructure and the application services, organizations are no longer responsible for their mainte-
nance. This task is the responsibility of the cloud service provider, who, thanks to economies of
scale, can bear the maintenance costs.

Increased agility in defining and structuring software systems is another significant benefit of
cloud computing. Since organizations rent IT services, they can more dynamically and flexibly com-
pose their software systems, without being constrained by capital costs for IT assets. There is a
reduced need for capacity planning, since cloud computing allows organizations to react to
unplanned surges in demand quite rapidly. For example, organizations can add more servers to pro-
cess workload spikes and dismiss them when they are no longer needed. Ease of scalability is another
advantage. By leveraging the potentially huge capacity of cloud computing, organizations can extend
their IT capability more easily. Scalability can be leveraged across the entire computing stack.
Infrastructure providers offer simple methods to provision customized hardware and integrate it into
existing systems. Platform-as-a-Service providers offer runtime environment and programming mod-
els that are designed to scale applications. Software-as-a-Service offerings can be elastically sized on
demand without requiring users to provision hardware or to program application for scalability.

End users can benefit from cloud computing by having their data and the capability of operating
on it always available, from anywhere, at any time, and through multiple devices. Information and
services stored in the cloud are exposed to users by Web-based interfaces that make them accessi-
ble from portable devices as well as desktops at home. Since the processing capabilities (that is,
office automation features, photo editing, information management, and so on) also reside in the
cloud, end users can perform the same tasks that previously were carried out through considerable
software investments. The cost for such opportunities is generally very limited, since the cloud ser-
vice provider shares its costs across all the tenants that he is servicing. Multitenancy allows for bet-
ter utilization of the shared infrastructure that is kept operational and fully active. The
concentration of IT infrastructure and services into large datacenters also provides opportunity for
considerable optimization in terms of resource allocation and energy efficiency, which eventually
can lead to a less impacting approach on the environment.

Finally, service orientation and on-demand access create new opportunities for composing sys-
tems and applications with a flexibility not possible before cloud computing. New service offerings
can be created by aggregating together existing services and concentrating on added value. Since it is
possible to provision on demand any component of the computing stack, it is easier to turn ideas into
products with limited costs and by concentrating technical efforts on what matters: the added value.

Challenges ahead

As any new technology develops and becomes popular, new issues have to be faced. Cloud com-
puting is not an exception. New, interesting problems and challenges are regularly being posed to
the cloud community, including IT practitioners, managers, governments, and regulators.

Besides the practical aspects, which are related to configuration, networking, and sizing of cloud
computing systems, a new set of challenges concerning the dynamic provisioning of cloud comput-
ing services and resources arises. For example, in the Infrastructure-as-a-Service domain, how
many resources need to be provisioned, and for how long should they be used, in order to maxi-
mize the benefit? Technical challenges also arise for cloud service providers for the management
of large computing infrastructures and the use of virtualization technologies on top of them. In

1.2 Historical developments 15

addition, issues and challenges concerning the integration of real and virtual infrastructure need to
be taken into account from different perspectives, such as security and legislation.

Security in terms of confidentiality, secrecy, and protection of data in a cloud environment is
another important challenge. Organizations do not own the infrastructure they use to process data
and store information. This condition poses challenges for confidential data, which organizations
cannot afford to reveal. Therefore, assurance on the confidentiality of data and compliance to secu-
rity standards, which give a minimum guarantee on the treatment of information on cloud comput-
ing systems, are sought. The problem is not as evident as it seems: even though cryptography can
help secure the transit of data from the private premises to the cloud infrastructure, in order to be
processed the information needs to be decrypted in memory. This is the weak point of the chain:
since virtualization allows capturing almost transparently the memory pages of an instance, these
data could easily be obtained by a malicious provider.

Legal issues may also arise. These are specifically tied to the ubiquitous nature of cloud com-
puting, which spreads computing infrastructure across diverse geographical locations. Different leg-
islation about privacy in different countries may potentially create disputes as to the rights that
third parties (including government agencies) have to your data. U.S. legislation is known to give
extreme powers to government agencies to acquire confidential data when there is the suspicion of
operations leading to a threat to national security. European countries are more restrictive and pro-
tect the right of privacy. An interesting scenario comes up when a U.S. organization uses cloud ser-
vices that store their data in Europe. In this case, should this organization be suspected by the
government, it would become difficult or even impossible for the U.S. government to take control
of the data stored in a cloud datacenter located in Europe.

Historical developments

The idea of renting computing services by leveraging large distributed computing facilities has
been around for long time. It dates back to the days of the mainframes in the early 1950s. From
there on, technology has evolved and been refined. This process has created a series of favorable
conditions for the realization of cloud computing.

Figure 1.6 provides an overview of the evolution of the distributed computing technologies that
have influenced cloud computing. In tracking the historical evolution, we briefly review five core
technologies that played an important role in the realization of cloud computing. These technolo-
gies are distributed systems, virtualization, Web 2.0, service orientation, and utility computing.

Distributed systems

Clouds are essentially large distributed computing facilities that make available their services to
third parties on demand. As a reference, we consider the characterization of a distributed system
proposed by Tanenbaum et al. [1]:

A distributed system is a collection of independent computers that appears to its users as a single
coherent system.

16 CHAPTER 1 Introduction

2010: Microsoft

1970: DARPA's TCP/IP 1999: Grid Computing Azure
| ' i
1 1984: IEEE 802.3
1997: IEEE .
| Ethernet&LAN 80211 (WiF) 008 Google
1

AppEngine
1 Ll 4
1

1
1989: TCP/IP ! .
IETE RFC 1122 j 2007: Manjrasoft Aneka

1966: Flynn’s Taxonomy
SISD, SIMD, MISD, MIMD

I I |
1 1 I

1
1
2005: Amazon :
AWS (EC2,S3) |
1

I

I

' 1
1969: ARPANET
1984: DEC’s
VMScluster

1

1

]

1

1

| |

1 1

i LB I |

1951: UNIVAC |, i :; : :
First Mainframe : |
1975: Xerox PARC [!
Invented Ethernet | |
|

1

1

1

1

T

1

|

i ! 2004: Web 2.0
Clouds| 1 —— . 1990: Lee-Calliau | | || | =
1 I 1 |
! 1960: Cray’s First : : | 1 WWW, HTITP, HTML - :
Grids | Supercomputer I : ; . ; e
! ol ! 1 1 1 1 o 1
| | i i i i i = i
Clusters | ; —
: I | Kl |] 1] (I (N [
I : i L 4 I
Mainframes " 1‘ e |‘
I] | il I I I I [(N 1
! I | P I] I I [(N [
I | ! ; ’ i ' i 1 i [11l |
1950 1960 1970 1980 1990 2000 2010
FIGURE 1.6

The evolution of distributed computing technologies, 1950s—2010s.

This is a general definition that includes a variety of computer systems, but it evidences two
very important elements characterizing a distributed system: the fact that it is composed of multiple
independent components and that these components are perceived as a single entity by users. This
is particularly true in the case of cloud computing, in which clouds hide the complex architecture
they rely on and provide a single interface to users. The primary purpose of distributed systems is
to share resources and utilize them better. This is true in the case of cloud computing, where this
concept is taken to the extreme and resources (infrastructure, runtime environments, and services)
are rented to users. In fact, one of the driving factors of cloud computing has been the availability
of the large computing facilities of IT giants (Amazon, Google) that found that offering their com-
puting capabilities as a service provided opportunities to better utilize their infrastructure.
Distributed systems often exhibit other properties such as heterogeneity, openness, scalability,
transparency, concurrency, continuous availability, and independent failures. To some extent these
also characterize clouds, especially in the context of scalability, concurrency, and continuous
availability.

Three major milestones have led to cloud computing: mainframe computing, cluster computing,
and grid computing.

* Mainframes. These were the first examples of large computational facilities leveraging multiple
processing units. Mainframes were powerful, highly reliable computers specialized for large

1.2 Historical developments 17

data movement and massive input/output (I/O) operations. They were mostly used by large
organizations for bulk data processing tasks such as online transactions, enterprise resource
planning, and other operations involving the processing of significant amounts of data. Even
though mainframes cannot be considered distributed systems, they offered large computational
power by using multiple processors, which were presented as a single entity to users. One of the
most attractive features of mainframes was the ability to be highly reliable computers that were
“always on” and capable of tolerating failures transparently. No system shutdown was required
to replace failed components, and the system could work without interruption. Batch processing
was the main application of mainframes. Now their popularity and deployments have reduced,
but evolved versions of such systems are still in use for transaction processing (such as online
banking, airline ticket booking, supermarket and telcos, and government services).

e Clusters. Cluster computing [3][4] started as a low-cost alternative to the use of mainframes and
supercomputers. The technology advancement that created faster and more powerful
mainframes and supercomputers eventually generated an increased availability of cheap
commodity machines as a side effect. These machines could then be connected by a
high-bandwidth network and controlled by specific software tools that manage them as a
single system. Starting in the 1980s, clusters become the standard technology for parallel
and high-performance computing. Built by commodity machines, they were cheaper than
mainframes and made high-performance computing available to a large number of groups,
including universities and small research labs. Cluster technology contributed considerably to
the evolution of tools and frameworks for distributed computing, including Condor [5], Parallel
Virtual Machine (PVM) [6], and Message Passing Interface (MPI) [7].* One of the attractive
features of clusters was that the computational power of commodity machines could be
leveraged to solve problems that were previously manageable only on expensive
supercomputers. Moreover, clusters could be easily extended if more computational power
was required.

* Grids. Grid computing [8] appeared in the early 1990s as an evolution of cluster computing. In
an analogy to the power grid, grid computing proposed a new approach to access large
computational power, huge storage facilities, and a variety of services. Users can “consume”
resources in the same way as they use other utilities such as power, gas, and water. Grids
initially developed as aggregations of geographically dispersed clusters by means of Internet
connections. These clusters belonged to different organizations, and arrangements were made
among them to share the computational power. Different from a “large cluster,” a computing
grid was a dynamic aggregation of heterogeneous computing nodes, and its scale was
nationwide or even worldwide. Several developments made possible the diffusion of computing
grids: (a) clusters became quite common resources; (b) they were often underutilized; (c) new
problems were requiring computational power that went beyond the capability of single
clusters; and (d) the improvements in networking and the diffusion of the Internet made
possible long-distance, high-bandwidth connectivity. All these elements led to the development
of grids, which now serve a multitude of users across the world.

‘“MPI is a specification for an API that allows many computers to communicate with one another. It defines a language-
independent protocol that supports point-to-point and collective communication. MPI has been designed for high perfor-
mance, scalability, and portability. At present, it is one of the dominant paradigms for developing parallel applications.

18 CHAPTER 1 Introduction

Cloud computing is often considered the successor of grid computing. In reality, it embodies
aspects of all these three major technologies. Computing clouds are deployed in large datacenters
hosted by a single organization that provides services to others. Clouds are characterized by the
fact of having virtually infinite capacity, being tolerant to failures, and being always on, as in the
case of mainframes. In many cases, the computing nodes that form the infrastructure of computing
clouds are commodity machines, as in the case of clusters. The services made available by a cloud
vendor are consumed on a pay-per-use basis, and clouds fully implement the utility vision intro-
duced by grid computing.

Virtualization

Virtualization is another core technology for cloud computing. It encompasses a collection of solu-
tions allowing the abstraction of some of the fundamental elements for computing, such as hard-
ware, runtime environments, storage, and networking. Virtualization has been around for more than
40 years, but its application has always been limited by technologies that did not allow an efficient
use of virtualization solutions. Today these limitations have been substantially overcome, and vir-
tualization has become a fundamental element of cloud computing. This is particularly true for
solutions that provide IT infrastructure on demand. Virtualization confers that degree of customiza-
tion and control that makes cloud computing appealing for users and, at the same time, sustainable
for cloud services providers.

Virtualization is essentially a technology that allows creation of different computing environ-
ments. These environments are called virfual because they simulate the interface that is expected
by a guest. The most common example of virtualization is hardware virtualization. This technology
allows simulating the hardware interface expected by an operating system. Hardware virtualization
allows the coexistence of different software stacks on top of the same hardware. These stacks are
contained inside virtual machine instances, which operate in complete isolation from each other.
High-performance servers can host several virtual machine instances, thus creating the opportunity
to have a customized software stack on demand. This is the base technology that enables cloud
computing solutions to deliver virtual servers on demand, such as Amazon EC2, RightScale,
VMware vCloud, and others. Together with hardware virtualization, sforage and network virtualiza-
tion complete the range of technologies for the emulation of IT infrastructure.

Virtualization technologies are also used to replicate runtime environments for programs.
Applications in the case of process virtual machines (which include the foundation of technologies
such as Java or .NET), instead of being executed by the operating system, are run by a specific pro-
gram called a virtual machine. This technique allows isolating the execution of applications and pro-
viding a finer control on the resource they access. Process virtual machines offer a higher level of
abstraction with respect to hardware virtualization, since the guest is only constituted by an applica-
tion rather than a complete software stack. This approach is used in cloud computing to provide a
platform for scaling applications on demand, such as Google AppEngine and Windows Azure.

Having isolated and customizable environments with minor impact on performance is what
makes virtualization a attractive technology. Cloud computing is realized through platforms that
leverage the basic concepts described above and provides on demand virtualization services to a
multitude of users across the globe.

1.2 Historical developments 19

Web 2.0

The Web is the primary interface through which cloud computing delivers its services. At present,
the Web encompasses a set of technologies and services that facilitate interactive information shar-
ing, collaboration, user-centered design, and application composition. This evolution has trans-
formed the Web into a rich platform for application development and is known as Web 2.0. This
term captures a new way in which developers architect applications and deliver services through
the Internet and provides new experience for users of these applications and services.

Web 2.0 brings interactivity and flexibility into Web pages, providing enhanced user experience
by gaining Web-based access to all the functions that are normally found in desktop applications.
These capabilities are obtained by integrating a collection of standards and technologies such as
XML, Asynchronous JavaScript and XML (AJAX), Web Services, and others. These technologies
allow us to build applications leveraging the contribution of users, who now become providers of
content. Furthermore, the capillary diffusion of the Internet opens new opportunities and markets
for the Web, the services of which can now be accessed from a variety of devices: mobile phones,
car dashboards, TV sets, and others. These new scenarios require an increased dynamism for appli-
cations, which is another key element of this technology. Web 2.0 applications are extremely
dynamic: they improve continuously, and new updates and features are integrated at a constant rate
by following the usage trend of the community. There is no need to deploy new software releases
on the installed base at the client side. Users can take advantage of the new software features sim-
ply by interacting with cloud applications. Lightweight deployment and programming models are
very important for effective support of such dynamism. Loose coupling is another fundamental
property. New applications can be “synthesized” simply by composing existing services and inte-
grating them, thus providing added value. This way it becomes easier to follow the interests of
users. Finally, Web 2.0 applications aim to leverage the “long tail” of Internet users by making
themselves available to everyone in terms of either media accessibility or affordability.

Examples of Web 2.0 applications are Google Documents, Google Maps, Flickr, Facebook,
Twitter, YouTube, de.li.cious, Blogger, and Wikipedia. In particular, social networking Websites
take the biggest advantage of Web 2.0. The level of interaction in Websites such as Facebook or
Flickr would not have been possible without the support of AJAX, Really Simple Syndication
(RSS), and other tools that make the user experience incredibly interactive. Moreover, community
Websites harness the collective intelligence of the community, which provides content to the appli-
cations themselves: Flickr provides advanced services for storing digital pictures and videos,
Facebook is a social networking site that leverages user activity to provide content, and Blogger,
like any other blogging site, provides an online diary that is fed by users.

This idea of the Web as a transport that enables and enhances interaction was introduced in
1999 by Darcy DiNucci® and started to become fully realized in 2004. Today it is a mature plat-
form for supporting the needs of cloud computing, which strongly leverages Web 2.0. Applications

°In a column for Design & New Media magazine, Darci DiNucci describes the Web as follows: “The Web we know
now, which loads into a browser window in essentially static screenfulls, is only an embryo of the Web to come. The
first glimmerings of Web 2.0 are beginning to appear, and we are just starting to see how that embryo might develop.
The Web will be understood not as screenfulls of text and graphics but as a transport mechanism, the ether through
which interactivity happens. It will [...] appear on your computer screen, [...] on your TV set [...], your car dashboard
[...], your cell phone [...], hand-held game machines [...], maybe even your microwave oven.”

20 CHAPTER 1 Introduction

and frameworks for delivering rich Internet applications (RIAs) are fundamental for making cloud
services accessible to the wider public. From a social perspective, Web 2.0 applications definitely
contributed to making people more accustomed to the use of the Internet in their everyday lives
and opened the path to the acceptance of cloud computing as a paradigm, whereby even the
IT infrastructure is offered through a Web interface.

Service-oriented computing

Service orientation is the core reference model for cloud computing systems. This approach adopts
the concept of services as the main building blocks of application and system development.
Service-oriented computing (SOC) supports the development of rapid, low-cost, flexible, interopera-
ble, and evolvable applications and systems [19].

A service is an abstraction representing a self-describing and platform-agnostic component that
can perform any function—anything from a simple function to a complex business process.
Virtually any piece of code that performs a task can be turned into a service and expose its func-
tionalities through a network-accessible protocol. A service is supposed to be loosely coupled, reus-
able, programming language independent, and location transparent. Loose coupling allows
services to serve different scenarios more easily and makes them reusable. Independence from a
specific platform increases services accessibility. Thus, a wider range of clients, which can look up
services in global registries and consume them in a location-transparent manner, can be served.
Services are composed and aggregated into a service-oriented architecture (SOA) [27], which is a
logical way of organizing software systems to provide end users or other entities distributed over
the network with services through published and discoverable interfaces.

Service-oriented computing introduces and diffuses two important concepts, which are also fun-
damental to cloud computing: qguality of service (QoS) and Software-as-a-Service (SaaS).

* Quality of service (QoS) identifies a set of functional and nonfunctional attributes that can be
used to evaluate the behavior of a service from different perspectives. These could be
performance metrics such as response time, or security attributes, transactional integrity,
reliability, scalability, and availability. QoS requirements are established between the client and
the provider via an SLA that identifies the minimum values (or an acceptable range) for the
QoS attributes that need to be satisfied upon the service call.

* The concept of Software-as-a-Service introduces a new delivery model for applications. The
term has been inherited from the world of application service providers (ASPs), which deliver
software services-based solutions across the wide area network from a central datacenter and
make them available on a subscription or rental basis. The ASP is responsible for maintaining
the infrastructure and making available the application, and the client is freed from
maintenance costs and difficult upgrades. This software delivery model is possible because
economies of scale are reached by means of multitenancy. The SaaS approach reaches its full
development with service-oriented computing (SOC), where loosely coupled software
components can be exposed and priced singularly, rather than entire applications. This allows
the delivery of complex business processes and transactions as a service while allowing
applications to be composed on the fly and services to be reused from everywhere and by
anybody.

1.2 Historical developments 21

One of the most popular expressions of service orientation is represented by Web Services
(WS) [21]. These introduce the concepts of SOC into the World Wide Web, by making it con-
sumable by applications and not only humans. Web services are software components that expose
functionalities accessible using a method invocation pattern that goes over the HyperText
Transfer Protocol (HTTP). The interface of a Web service can be programmatically inferred by
metadata expressed through the Web Service Description Language (WSDL) [22]; this is an XML
language that defines the characteristics of the service and all the methods, together with para-
meters, descriptions, and return type, exposed by the service. The interaction with Web services
happens through Simple Object Access Protocol (SOAP) [23]. This is an XML language that
defines how to invoke a Web service method and collect the result. Using SOAP and WSDL
over HTTP, Web services become platform independent and accessible to the World Wide Web.
The standards and specifications concerning Web services are controlled by the World Wide
Web Consortium (W3C). Among the most popular architectures for developing Web services we
can note ASP.NET [24] and Axis [25].

The development of systems in terms of distributed services that can be composed together is
the major contribution given by SOC to the realization of cloud computing. Web services technolo-
gies have provided the right tools to make such composition straightforward and easily integrated
with the mainstream World Wide Web (WWW) environment.

Utility-oriented computing

Utility computing is a vision of computing that defines a service-provisioning model for compute
services in which resources such as storage, compute power, applications, and infrastructure are
packaged and offered on a pay-per-use basis. The idea of providing computing as a utility like natu-
ral gas, water, power, and telephone connection has a long history but has become a reality today
with the advent of cloud computing. Among the earliest forerunners of this vision we can include
the American scientist John McCarthy, who, in a speech for the Massachusetts Institute of
Technology (MIT) centennial in 1961, observed:

If computers of the kind I have advocated become the computers of the future, then computing
may someday be organized as a public utility, just as the telephone system is a public utility . ..
The computer utility could become the basis of a new and important industry.

The first traces of this service-provisioning model can be found in the mainframe era. IBM and
other mainframe providers offered mainframe power to organizations such as banks and govern-
ment agencies throughout their datacenters. The business model introduced with utility computing
brought new requirements and led to improvements in mainframe technology: additional features
such as operating systems, process control, and user-metering facilities. The idea of computing as
utility remained and extended from the business domain to academia with the advent of cluster
computing. Not only businesses but also research institutes became acquainted with the idea of
leveraging an external IT infrastructure on demand. Computational science, which was one of the
major driving factors for building computing clusters, still required huge compute power for addres-
sing “Grand Challenge” problems, and not all the institutions were able to satisfy their computing
needs internally. Access to external clusters still remained a common practice. The capillary diffu-
sion of the Internet and the Web provided the technological means to realize utility computing on a

22 CHAPTER 1 Introduction

worldwide scale and through simple interfaces. As already discussed, computing grids provided a
planet-scale distributed computing infrastructure that was accessible on demand. Computing grids
brought the concept of utility computing to a new level: market orientation [15]. With utility
computing accessible on a wider scale, it is easier to provide a trading infrastructure where grid
products—storage, computation, and services—are bid for or sold. Moreover, e-commerce technol-
ogies [25] provided the infrastructure support for utility computing. In the late 1990s a significant
interest in buying any kind of good online spread to the wider public: food, clothes, multimedia
products, and online services such as storage space and Web hosting. After the dot-com bubble®
burst, this interest reduced in size, but the phenomenon made the public keener to buy online ser-
vices. As a result, infrastructures for online payment using credit cards become easily accessible
and well proven.

From an application and system development perspective, service-oriented computing and
service-oriented architectures (SOAs) introduced the idea of leveraging external services for per-
forming a specific task within a software system. Applications were not only distributed, they
started to be composed as a mesh of services provided by different entities. These services, accessi-
ble through the Internet, were made available by charging according to usage. SOC broadened the
concept of what could have been accessed as a utility in a computer system: not only compute
power and storage but also services and application components could be utilized and integrated on
demand. Together with this trend, QoS became an important topic to investigate.

All these factors contributed to the development of the concept of utility computing and offered
important steps in the realization of cloud computing, in which the vision of computing utilities
comes to its full expression.

Building cloud computing environments

The creation of cloud computing environments encompasses both the development of applications
and systems that leverage cloud computing solutions and the creation of frameworks, platforms,
and infrastructures delivering cloud computing services.

Application development

Applications that leverage cloud computing benefit from its capability to dynamically scale on
demand. One class of applications that takes the biggest advantage of this feature is that of Web
applications. Their performance is mostly influenced by the workload generated by varying user
demands. With the diffusion of Web 2.0 technologies, the Web has become a platform for develop-
ing rich and complex applications, including enterprise applications that now leverage the Internet
as the preferred channel for service delivery and user interaction. These applications are

5The dot-com bubble was a phenomenon that started in the second half of the 1990s and reached its apex in 2000.
During this period a large number of companies that based their business on online services and e-commerce started
and quickly expanded without later being able to sustain their growth. As a result they suddenly went bankrupt, partly
because their revenues were not enough to cover their expenses and partly because they never reached the required num-
ber of customers to sustain their enlarged business.

1.3 Building cloud computing environments 23

characterized by complex processes that are triggered by the interaction with users and develop
through the interaction between several tiers behind the Web front end. These are the applications
that are mostly sensible to inappropriate sizing of infrastructure and service deployment or variabil-
ity in workload.

Another class of applications that can potentially gain considerable advantage by leveraging
cloud computing is represented by resource-intensive applications. These can be either data-
intensive or compute-intensive applications. In both cases, considerable amounts of resources are
required to complete execution in a reasonable timeframe. It is worth noticing that these large
amounts of resources are not needed constantly or for a long duration. For example, scientific
applications can require huge computing capacity to perform large-scale experiments once in a
while, so it is not feasible to buy the infrastructure supporting them. In this case, cloud computing
can be the solution. Resource-intensive applications are not interactive and they are mostly charac-
terized by batch processing.

Cloud computing provides a solution for on-demand and dynamic scaling across the entire stack
of computing. This is achieved by (a) providing methods for renting compute power, storage, and
networking; (b) offering runtime environments designed for scalability and dynamic sizing; and
(c) providing application services that mimic the behavior of desktop applications but that are
completely hosted and managed on the provider side. All these capabilities leverage service orienta-
tion, which allows a simple and seamless integration into existing systems. Developers access such
services via simple Web interfaces, often implemented through representational state transfer
(REST) Web services. These have become well-known abstractions, making the development and
management of cloud applications and systems practical and straightforward.

Infrastructure and system development

Distributed computing, virtualization, service orientation, and Web 2.0 form the core technologies
enabling the provisioning of cloud services from anywhere on the globe. Developing applications
and systems that leverage the cloud requires knowledge across all these technologies. Moreover,
new challenges need to be addressed from design and development standpoints.

Distributed computing is a foundational model for cloud computing because cloud systems are
distributed systems. Besides administrative tasks mostly connected to the accessibility of
resources in the cloud, the extreme dynamism of cloud systems—where new nodes and services
are provisioned on demand—constitutes the major challenge for engineers and developers. This
characteristic is pretty peculiar to cloud computing solutions and is mostly addressed at the mid-
dleware layer of computing system. Infrastructure-as-a-Service solutions provide the capabilities
to add and remove resources, but it is up to those who deploy systems on this scalable infrastruc-
ture to make use of such opportunities with wisdom and effectiveness. Platform-as-a-Service solu-
tions embed into their core offering algorithms and rules that control the provisioning process
and the lease of resources. These can be either completely transparent to developers or subject to
fine control. Integration between cloud resources and existing system deployment is another
element of concern.

Web 2.0 technologies constitute the interface through which cloud computing services are deliv-
ered, managed, and provisioned. Besides the interaction with rich interfaces through the Web
browser, Web services have become the primary access point to cloud computing systems from a

24 CHAPTER 1 Introduction

programmatic standpoint. Therefore, service orientation is the underlying paradigm that defines the
architecture of a cloud computing system. Cloud computing is often summarized with the acronym
XaaS—Everything-as-a-Service—that clearly underlines the central role of service orientation.
Despite the absence of a unique standard for accessing the resources serviced by different cloud
providers, the commonality of technology smoothes the learning curve and simplifies the integra-
tion of cloud computing into existing systems.

Virtualization is another element that plays a fundamental role in cloud computing. This
technology is a core feature of the infrastructure used by cloud providers. As discussed before, the
virtualization concept is more than 40 years old, but cloud computing introduces new challenges,
especially in the management of virtual environments, whether they are abstractions of virtual hard-
ware or a runtime environment. Developers of cloud applications need to be aware of the limita-
tions of the selected virtualization technology and the implications on the volatility of some
components of their systems.

These are all considerations that influence the way we program applications and systems based
on cloud computing technologies. Cloud computing essentially provides mechanisms to address
surges in demand by replicating the required components of computing systems under stress (i.e.,
heavily loaded). Dynamism, scale, and volatility of such components are the main elements that
should guide the design of such systems.

Computing platforms and technologies

Development of a cloud computing application happens by leveraging platforms and frameworks
that provide different types of services, from the bare-metal infrastructure to customizable applica-
tions serving specific purposes.

1.3.3.1 Amazon web services (AWS)
AWS offers comprehensive cloud IaaS services ranging from virtual compute, storage, and
networking to complete computing stacks. AWS is mostly known for its compute and storage-on-
demand services, namely Elastic Compute Cloud (EC2) and Simple Storage Service (S3). EC2
provides users with customizable virtual hardware that can be used as the base infrastructure for
deploying computing systems on the cloud. It is possible to choose from a large variety of virtual
hardware configurations, including GPU and cluster instances. EC2 instances are deployed either
by using the AWS console, which is a comprehensive Web portal for accessing AWS services, or
by using the Web services API available for several programming languages. EC2 also provides
the capability to save a specific running instance as an image, thus allowing users to create their
own templates for deploying systems. These templates are stored into S3 that delivers persistent
storage on demand. S3 is organized into buckets; these are containers of objects that are stored in
binary form and can be enriched with attributes. Users can store objects of any size, from simple
files to entire disk images, and have them accessible from everywhere.

Besides EC2 and S3, a wide range of services can be leveraged to build virtual computing sys-
tems. including networking support, caching systems, DNS, database (relational and not) support,
and others.

1.3 Building cloud computing environments 25

1.3.3.2 Google AppEngine

Google AppEngine is a scalable runtime environment mostly devoted to executing Web applica-
tions. These take advantage of the large computing infrastructure of Google to dynamically scale as
the demand varies over time. AppEngine provides both a secure execution environment and a col-
lection of services that simplify the development of scalable and high-performance Web applica-
tions. These services include in-memory caching, scalable data store, job queues, messaging, and
cron tasks. Developers can build and test applications on their own machines using the AppEngine
software development kit (SDK), which replicates the production runtime environment and helps
test and profile applications. Once development is complete, developers can easily migrate their
application to AppEngine, set quotas to contain the costs generated, and make the application avail-
able to the world. The languages currently supported are Python, Java, and Go.

1.3.3.3 Microsoft Azure

Microsoft Azure is a cloud operating system and a platform for developing applications in the
cloud. It provides a scalable runtime environment for Web applications and distributed applications
in general. Applications in Azure are organized around the concept of roles, which identify a distri-
bution unit for applications and embody the application’s logic. Currently, there are three types of
role: Web role, worker role, and virtual machine role. The Web role is designed to host a Web
application, the worker role is a more generic container of applications and can be used to perform
workload processing, and the virtual machine role provides a virtual environment in which the
computing stack can be fully customized, including the operating systems. Besides roles, Azure
provides a set of additional services that complement application execution, such as support for
storage (relational data and blobs), networking, caching, content delivery, and others.

1.3.3.4 Hadoop

Apache Hadoop is an open-source framework that is suited for processing large data sets on com-
modity hardware. Hadoop is an implementation of MapReduce, an application programming model
developed by Google, which provides two fundamental operations for data processing: map and
reduce. The former transforms and synthesizes the input data provided by the user; the latter aggre-
gates the output obtained by the map operations. Hadoop provides the runtime environment, and
developers need only provide the input data and specify the map and reduce functions that need to
be executed. Yahoo!, the sponsor of the Apache Hadoop project, has put considerable effort into
transforming the project into an enterprise-ready cloud computing platform for data processing.
Hadoop is an integral part of the Yahoo! cloud infrastructure and supports several business pro-
cesses of the company. Currently, Yahoo! manages the largest Hadoop cluster in the world, which
is also available to academic institutions.

1.3.3.5 Force.com and Salesforce.com

Force.com is a cloud computing platform for developing social enterprise applications. The plat-
form is the basis for SalesForce.com, a Software-as-a-Service solution for customer relationship
management. Force.com allows developers to create applications by composing ready-to-use
blocks; a complete set of components supporting all the activities of an enterprise are available. It
is also possible to develop your own components or integrate those available in AppExchange into
your applications. The platform provides complete support for developing applications, from the

http://www.Force.com
http://www.SalesForce.com
http://www.Force.com

26 CHAPTER 1 Introduction

design of the data layout to the definition of business rules and workflows and the definition of the
user interface. The Force.com platform is completely hosted on the cloud and provides complete
access to its functionalities and those implemented in the hosted applications through Web services
technologies.

1.3.3.6 Manjrasoft Aneka

Manjrasoft Aneka [165] is a cloud application platform for rapid creation of scalable applications
and their deployment on various types of clouds in a seamless and elastic manner. It supports a col-
lection of programming abstractions for developing applications and a distributed runtime environ-
ment that can be deployed on heterogeneous hardware (clusters, networked desktop computers, and
cloud resources). Developers can choose different abstractions to design their application: fasks,
distributed threads, and map-reduce. These applications are then executed on the distributed
service-oriented runtime environment, which can dynamically integrate additional resource on
demand. The service-oriented architecture of the runtime has a great degree of flexibility and sim-
plifies the integration of new features, such as abstraction of a new programming model and associ-
ated execution management environment. Services manage most of the activities happening at
runtime: scheduling, execution, accounting, billing, storage, and quality of service.

These platforms are key examples of technologies available for cloud computing. They mostly fall
into the three major market segments identified in the reference model: Infrastructure-as-a-Service,
Platform-as-a-Service, and Software-as-a-Service. In this book, we use Aneka as a reference plat-
form for discussing practical implementations of distributed applications. We present different
ways in which clouds can be leveraged by applications built using the various programming models
and abstractions provided by Aneka.

SUMMARY

In this chapter, we discussed the vision and opportunities of cloud computing along with its charac-
teristics and challenges. The cloud computing paradigm emerged as a result of the maturity and
convergence of several of its supporting models and technologies, namely distributed computing,
virtualization, Web 2.0, service orientation, and utility computing.

There is no single view on the cloud phenomenon. Throughout the book, we explore different
definitions, interpretations, and implementations of this idea. The only element that is shared
among all the different views of cloud computing is that cloud systems support dynamic provi-
sioning of IT services (whether they are virtual infrastructure, runtime environments, or applica-
tion services) and adopts a utility-based cost model to price these services. This concept is
applied across the entire computing stack and enables the dynamic provisioning of IT infrastruc-
ture and runtime environments in the form of cloud-hosted platforms for the development of scal-
able applications and their services. This vision is what inspires the Cloud Computing Reference
Model. This model identifies three major market segments (and service offerings) for cloud
computing: Infrastructure-as-a-Service (laaS), Platform-as-a-Service (PaaS), and Software-as-a-
Service (SaaS). These segments directly map the broad classifications of the different type of
services offered by cloud computing.

http://www.Force.com

Review questions 27

The long-term vision of cloud computing is to fully realize the utility model that drives its ser-
vice offering. It is envisioned that new technological developments and the increased familiarity
with cloud computing delivery models will lead to the establishment of a global market for trading
computing utilities. This area of study is called market-oriented cloud computing, where the term
market-oriented further stresses the fact that cloud computing services are traded as utilities. The
realization of this vision is still far from reality, but cloud computing has already brought eco-
nomic, environmental, and technological benefits. By turning IT assets into utilities, it allows orga-
nizations to reduce operational costs and increase revenues. This and other advantages also have
downsides that are diverse in nature. Security and legislation are two of the challenging aspects of
cloud computing that are beyond the technical sphere.

From the perspective of software design and development, new challenges arise in engineering
computing systems. Cloud computing offers a rich mixture of different technologies, and harnes-
sing them is a challenging engineering task. Cloud computing introduces both new opportunities
and new techniques and strategies for architecting software applications and systems. Some of the
key elements that have to be taken into account are virtualization, scalability, dynamic provision-
ing, big datasets, and cost models. To provide a practical grasp of such concepts, we will use
Aneka as a reference platform for illustrating cloud systems and application programming
environments.

Review questions

1. What is the innovative characteristic of cloud computing?
2. Which are the technologies on which cloud computing relies?
3. Provide a brief characterization of a distributed system.
4. Define cloud computing and identify its core features.
5. What are the major distributed computing technologies that led to cloud computing?
6. What is virtualization?
7. What is the major revolution introduced by Web 2.0?
8. Give some examples of Web 2.0 applications.
9. Describe the main characteristics of a service orientation.
10. What is utility computing?
11. Describe the vision introduced by cloud computing.
12. Briefly summarize the Cloud Computing Reference Model.
13. What is the major advantage of cloud computing?
14. Briefly summarize the challenges still open in cloud computing.
15. How is cloud development different from traditional software development?

This page intentionally left blank

CHAPTER

Principles of Parallel and Distributed
Computing

Cloud computing is a new technological trend that supports better utilization of IT infrastructures,
services, and applications. It adopts a service delivery model based on a pay-per-use approach, in
which users do not own infrastructure, platform, or applications but use them for the time they
need them. These IT assets are owned and maintained by service providers who make them accessi-
ble through the Internet.

This chapter presents the fundamental principles of parallel and distributed computing and dis-
cusses models and conceptual frameworks that serve as foundations for building cloud computing
systems and applications.

Eras of computing

The two fundamental and dominant models of computing are sequential and parallel. The sequen-
tial computing era began in the 1940s; the parallel (and distributed) computing era followed it
within a decade (see Figure 2.1). The four key elements of computing developed during these eras
are architectures, compilers, applications, and problem-solving environments.

The computing era started with a development in hardware architectures, which actually enabled
the creation of system software—particularly in the area of compilers and operating systems—which
support the management of such systems and the development of applications. The development of
applications and systems are the major element of interest to us, and it comes to consolidation when
problem-solving environments were designed and introduced to facilitate and empower engineers.
This is when the paradigm characterizing the computing achieved maturity and became mainstream.
Moreover, every aspect of this era underwent a three-phase process: research and development
(R&D), commercialization, and commoditization.

Parallel vs. distributed computing

The terms parallel computing and distributed computing are often used interchangeably, even
though they mean slightly different things. The term parallel implies a tightly coupled system,
whereas distributed refers to a wider class of system, including those that are tightly coupled.

29

30 CHAPTER 2 Principles of Parallel and Distributed Computing

= ————— -
(¥
! 1
: | — Architectures :
|
Sequential Era |1 — Compilers :
! 1
: — Applications :
|
1 Problem-Solving Environments o :
! 1
Y o e e e e e s _
o ———
i 3
1 Architectures — 1
1
. _ I
1 COmp"ers - TSN |
! 1
Parallel Era : Applications — :
! 1
: Problem-Solving Environments T |
1
! 1
‘. 7
1940 1950 1960 1970 1980 1990 2000 2010 2020 2030
FIGURE 2.1

Eras of computing, 1940s—2030s.

More precisely, the term parallel computing refers to a model in which the computation is
divided among several processors sharing the same memory. The architecture of a parallel comput-
ing system is often characterized by the homogeneity of components: each processor is of the same
type and it has the same capability as the others. The shared memory has a single address space,
which is accessible to all the processors. Parallel programs are then broken down into several units
of execution that can be allocated to different processors and can communicate with each other by
means of the shared memory. Originally we considered parallel systems only those architectures
that featured multiple processors sharing the same physical memory and that were considered a sin-
gle computer. Over time, these restrictions have been relaxed, and parallel systems now include all
architectures that are based on the concept of shared memory, whether this is physically present or
created with the support of libraries, specific hardware, and a highly efficient networking infrastruc-
ture. For example, a cluster of which the nodes are connected through an InfiniBand network and
configured with a distributed shared memory system can be considered a parallel system.

The term distributed computing encompasses any architecture or system that allows the compu-
tation to be broken down into units and executed concurrently on different computing elements,
whether these are processors on different nodes, processors on the same computer, or cores within
the same processor. Therefore, distributed computing includes a wider range of systems and appli-
cations than parallel computing and is often considered a more general term. Even though it is not

2.3 Elements of parallel computing 31

a rule, the term distributed often implies that the locations of the computing elements are not the
same and such elements might be heterogeneous in terms of hardware and software features.
Classic examples of distributed computing systems are computing grids or Internet computing sys-
tems, which combine together the biggest variety of architectures, systems, and applications in the
world.

Elements of parallel computing

It is now clear that silicon-based processor chips are reaching their physical limits. Processing
speed is constrained by the speed of light, and the density of transistors packaged in a processor is
constrained by thermodynamic limitations. A viable solution to overcome this limitation is to
connect multiple processors working in coordination with each other to solve “Grand Challenge”
problems. The first steps in this direction led to the development of parallel computing, which
encompasses techniques, architectures, and systems for performing multiple activities in parallel.
As we already discussed, the term parallel computing has blurred its edges with the term distrib-
uted computing and is often used in place of the latter term. In this section, we refer to its proper
characterization, which involves the introduction of parallelism within a single computer by coordi-
nating the activity of multiple processors together.

What is parallel processing?

Processing of multiple tasks simultaneously on multiple processors is called parallel processing.
The parallel program consists of multiple active processes (tasks) simultaneously solving a given
problem. A given task is divided into multiple subtasks using a divide-and-conquer technique, and
each subtask is processed on a different central processing unit (CPU). Programming on a multipro-
cessor system using the divide-and-conquer technique is called parallel programming.

Many applications today require more computing power than a traditional sequential computer
can offer. Parallel processing provides a cost-effective solution to this problem by increasing the
number of CPUs in a computer and by adding an efficient communication system between them.
The workload can then be shared between different processors. This setup results in higher comput-
ing power and performance than a single-processor system offers.

The development of parallel processing is being influenced by many factors. The prominent
among them include the following:

e Computational requirements are ever increasing in the areas of both scientific and business
computing. The technical computing problems, which require high-speed computational power,
are related to life sciences, aerospace, geographical information systems, mechanical design and
analysis, and the like.

* Sequential architectures are reaching physical limitations as they are constrained by the speed
of light and thermodynamics laws. The speed at which sequential CPUs can operate is reaching
saturation point (no more vertical growth), and hence an alternative way to get high computational
speed is to connect multiple CPUs (opportunity for horizontal growth).

32

CHAPTER 2 Principles of Parallel and Distributed Computing

Hardware improvements in pipelining, superscalar, and the like are nonscalable and require
sophisticated compiler technology. Developing such compiler technology is a difficult task.
Vector processing works well for certain kinds of problems. It is suitable mostly for scientific
problems (involving lots of matrix operations) and graphical processing. It is not useful for
other areas, such as databases.

The technology of parallel processing is mature and can be exploited commercially; there is
already significant R&D work on development tools and environments.

Significant development in networking technology is paving the way for heterogeneous
computing.

Hardware architectures for parallel processing

The core elements of parallel processing are CPUs. Based on the number of instruction and data
streams that can be processed simultaneously, computing systems are classified into the following
four categories:

Single-instruction, single-data (SISD) systems
Single-instruction, multiple-data (SIMD) systems
Multiple-instruction, single-data (MISD) systems
Multiple-instruction, multiple-data (MIMD) systems

2.3.2.1 Single-instruction, single-data (SISD) systems

An

SISD computing system is a uniprocessor machine capable of executing a single instruction,

which operates on a single data stream (see Figure 2.2). In SISD, machine instructions are pro-
cessed sequentially; hence computers adopting this model are popularly called sequential compu-
ters. Most conventional computers are built using the SISD model. All the instructions and data to

be

processed have to be stored in primary memory. The speed of the processing element in the

SISD model is limited by the rate at which the computer can transfer information internally.
Dominant representative SISD systems are IBM PC, Macintosh, and workstations.

Instruction
Stream
Data Input = s Data Output
woill
Processor

FIGURE 2.2

Single-instruction, single-data (SISD) architecture.

2.3 Elements of parallel computing 33

2.3.2.2 Single-instruction, multiple-data (SIMD) systems

An SIMD computing system is a multiprocessor machine capable of executing the same instruction
on all the CPUs but operating on different data streams (see Figure 2.3). Machines based on an
SIMD model are well suited to scientific computing since they involve lots of vector and matrix
operations. For instance, statements such as

Ci=Ai*Bi

can be passed to all the processing elements (PEs); organized data elements of vectors A and B can
be divided into multiple sets (N-sets for N PE systems); and each PE can process one data set.
Dominant representative SIMD systems are Cray’s vector processing machine and Thinking
Machines’” cm*.

2.3.2.3 Multiple-instruction, single-data (MISD) systems

An MISD computing system is a multiprocessor machine capable of executing different instructions
on different PEs but all of them operating on the same data set (see Figure 2.4). For instance, state-
ments such as

y = sin(x) + cos(x) + tan(x)

Single Instruction Stream

Data Input Data Output 1

- -

Processor 1

Data Output 2

Data Input 2 <3 7
. ,),’;’
i Processor 2 1
1 |

Data Input N Data Output N
1]
: Processor N i
\ 1
e e e e e P o e e o B el e e e e B e e e e P W e ¥ G el e o e DU W e Pl -

FIGURE 2.3

Single-instruction, multiple-data (SIMD) architecture.

34 CHAPTER 2 Principles of Parallel and Distributed Computing

Instruction Instruction Instruction
- Stream 1 Stream2 =~ Stream N =«

—— -

Processor 1

Processor 2

=

[TgF

Single Data Input Stream
Single Data Output Stream

—

! Processor N |

FIGURE 2.4
Multiple-instruction, single-data (MISD) architecture.

perform different operations on the same data set. Machines built using the MISD model are not
useful in most of the applications; a few machines are built, but none of them are available com-
mercially. They became more of an intellectual exercise than a practical configuration.

2.3.2.4 Multiple-instruction, multiple-data (MIMD) systems
An MIMD computing system is a multiprocessor machine capable of executing multiple instruc-
tions on multiple data sets (see Figure 2.5). Each PE in the MIMD model has separate instruction
and data streams; hence machines built using this model are well suited to any kind of application.
Unlike SIMD and MISD machines, PEs in MIMD machines work asynchronously.

MIMD machines are broadly categorized into shared-memory MIMD and distributed-memory
MIMD based on the way PEs are coupled to the main memory.

Shared memory MIMD machines

In the shared memory MIMD model, all the PEs are connected to a single global memory and they
all have access to it (see Figure 2.6). Systems based on this model are also called tightly coupled
multiprocessor systems. The communication between PEs in this model takes place through the
shared memory; modification of the data stored in the global memory by one PE is visible to all
other PEs. Dominant representative shared memory MIMD systems are Silicon Graphics machines
and Sun/IBM’s SMP (Symmetric Multi-Processing).

2.3 Elements of parallel computing 35
Instruction . Instruction Instruction
1 - Stream 1 | Stream2 =~ Stream N =

Data Input 1 Data Output 1
1 Ll
: Processor 1 | 1
|
. |
Data Input 2 ‘I s o Data Output 2
1 W L 3
=
: Processor 2 ¢ 1
i 1
Data Input N Data Output 3
- T
: i
1
p—————— = 1+ —— i = ’

FIGURE 2.5
Multiple-instructions, multiple-data (MIMD) architecture.

IPC Channel IPC Channel

& | &7 |- | &

I ! r r r

I o y ; | ‘
I o 3 ' I ‘
I - — I I N Pyl N ! | ‘
| _Processor 1 /| Processor 2 ProcessorNJ | | - Iy - ! | I
I | | Processor 1) | I Processor2 J | | |
| Memory |) v ¥ - Femmm |
| Bus_) | | emory | | emory | | Memory
| | \ Bus | Bus | | Bus |
g | (@ Local]l (@ Local) ' Local)
I _» Global System Memory 1| e Local}i | e Local ji 1| G Local}|
| A | I Memory : | Memory : | Memory | |
I o I I ‘
_______________________________ 4 N = J

FIGURE 2.6
Shared (left) and distributed (right) memory MIMD architecture.

Distributed memory MIMD machines

In the distributed memory MIMD model, all PEs have a local memory. Systems based on this model
are also called loosely coupled multiprocessor systems. The communication between PEs in this
model takes place through the interconnection network (the interprocess communication channel,
or IPC). The network connecting PEs can be configured to tree, mesh, cube, and so on. Each PE
operates asynchronously, and if communication/synchronization among tasks is necessary, they can
do so by exchanging messages between them.

36 CHAPTER 2 Principles of Parallel and Distributed Computing

The shared-memory MIMD architecture is easier to program but is less tolerant to failures
and harder to extend with respect to the distributed memory MIMD model. Failures in a
shared-memory MIMD affect the entire system, whereas this is not the case of the distributed
model, in which each of the PEs can be easily isolated. Moreover, shared memory MIMD
architectures are less likely to scale because the addition of more PEs leads to memory conten-
tion. This is a situation that does not happen in the case of distributed memory, in which each
PE has its own memory. As a result, distributed memory MIMD architectures are most popular
today.

Approaches to parallel programming

A sequential program is one that runs on a single processor and has a single line of control. To
make many processors collectively work on a single program, the program must be divided into
smaller independent chunks so that each processor can work on separate chunks of the problem.
The program decomposed in this way is a parallel program.

A wide variety of parallel programming approaches are available. The most prominent among
them are the following:

e Data parallelism
e Process parallelism
e Farmer-and-worker model

These three models are all suitable for task-level parallelism. In the case of data parallelism, the
divide-and-conquer technique is used to split data into multiple sets, and each data set is processed
on different PEs using the same instruction. This approach is highly suitable to processing on
machines based on the SIMD model. In the case of process parallelism, a given operation has mul-
tiple (but distinct) activities that can be processed on multiple processors. In the case of the farmer-
and-worker model, a job distribution approach is used: one processor is configured as master and
all other remaining PEs are designated as slaves; the master assigns jobs to slave PEs and, on com-
pletion, they inform the master, which in turn collects results. These approaches can be utilized in
different levels of parallelism.

Levels of parallelism

Levels of parallelism are decided based on the lumps of code (grain size) that can be a potential
candidate for parallelism. Table 2.1 lists categories of code granularity for parallelism. All these
approaches have a common goal: to boost processor efficiency by hiding latency. To conceal
latency, there must be another thread ready to run whenever a lengthy operation occurs. The idea is
to execute concurrently two or more single-threaded applications, such as compiling, text format-
ting, database searching, and device simulation.

As shown in the table and depicted in Figure 2.7, parallelism within an application can be
detected at several levels:

e Large grain (or task level)
e Medium grain (or control level)

2.3 Elements of parallel computing 37
Table 2.1 Levels of Parallelism
Grain Size Code Iltem Parallelized By
Large Separate and heavyweight process Programmer
Medium Function or procedure Programmer
Fine Loop or instruction block Parallelizing compiler
Very fine Instruction Processor

Large Level
(Processes, Tasks)

Shared Shared)
?J.n.;:tion 0 | Memory meion f2() Memory ?_‘_”_)°"°” o Medium Level
Function 1 Function 2 Function J (Qhrsads unclons)
al0]= ... a[l]=... ak]=... Fine Level
b[0] = ... b1]=... bkl =... (Processor,
Statements Statements Statements Instructions)

Very Fine Level
(Cores, Pipeline,
Instructions)
FIGURE 2.7

Levels of parallelism in an application.

* Fine grain (data level)
e Very fine grain (multiple-instruction issue)

In this book, we consider parallelism and distribution at the top two levels, which involve the
distribution of the computation among multiple threads or processes.

Laws of caution

Now that we have introduced some general aspects of parallel computing in terms of architectures
and models, we can make some considerations that have been drawn from experience designing
and implementing such systems. These considerations are guidelines that can help us understand

38 CHAPTER 2 Principles of Parallel and Distributed Computing

how much benefit an application or a software system can gain from parallelism. In particular,
what we need to keep in mind is that parallelism is used to perform multiple activities together so
that the system can increase its throughput or its speed. But the relations that control the increment
of speed are not linear. For example, for a given n processors, the user expects speed to be
increased by n times. This is an ideal situation, but it rarely happens because of the communication
overhead.

Here are two important guidelines to take into account:

e Speed of computation is proportional to the square root of system cost; they never increase
linearly. Therefore, the faster a system becomes, the more expensive it is to increase its speed
(Figure 2.8).

e Speed by a parallel computer increases as the logarithm of the number of processors (i.e.,

y = k*log(N)). This concept is shown in Figure 2.9.

* Speed (GHz)

Cost ($)

FIGURE 2.8

Cost versus speed.

* Speed

Processors
0 T T T T T T 1

0 10 20 30 40 50 60 70

FIGURE 2.9

Number processors versus speed.

2.4 Elements of distributed computing 39

The very fast development in parallel processing and related areas has blurred conceptual bound-
aries, causing a lot of terminological confusion. Even well-defined distinctions such as shared
memory and distributed memory are merging due to new advances in technology. There are no
strict delimiters for contributors to the area of parallel processing. Hence, computer architects, OS
designers, language designers, and computer network designers all have a role to play.

Elements of distributed computing

In the previous section, we discussed techniques and architectures that allow introduction of paral-
lelism within a single machine or system and how parallelism operates at different levels of the
computing stack. In this section, we extend these concepts and explore how multiple activities can
be performed by leveraging systems composed of multiple heterogeneous machines and systems.
We discuss what is generally referred to as distributed computing and more precisely introduce the
most common guidelines and patterns for implementing distributed computing systems from the
perspective of the software designer.

General concepts and definitions

Distributed computing studies the models, architectures, and algorithms used for building and man-
aging distributed systems. As a general definition of the term distributed system, we use the one
proposed by Tanenbaum et. al [1]:

A distributed system is a collection of independent computers that appears to its users as a single
coherent system.

This definition is general enough to include various types of distributed computing systems that
are especially focused on unified usage and aggregation of distributed resources. In this chapter, we
focus on the architectural models that are used to harness independent computers and present them
as a whole coherent system. Communication is another fundamental aspect of distributed comput-
ing. Since distributed systems are composed of more than one computer that collaborate together, it
is necessary to provide some sort of data and information exchange between them, which generally
occurs through the network (Coulouris et al. [2]):

A distributed system is one in which components located at networked computers communicate
and coordinate their actions only by passing messages.

As specified in this definition, the components of a distributed system communicate with some
sort of message passing. This is a term that encompasses several communication models.

Components of a distributed system

A distributed system is the result of the interaction of several components that traverse the entire
computing stack from hardware to software. It emerges from the collaboration of several elements
that—by working together—give users the illusion of a single coherent system. Figure 2.10 provides
an overview of the different layers that are involved in providing the services of a distributed system.

40 CHAPTER 2 Principles of Parallel and Distributed Computing

Frameworks for
Distributed
Programming

IPC Primitives for
Control and Data

Networking and
Parallel Hardware

FIGURE 2.10
A layered view of a distributed system.

At the very bottom layer, computer and network hardware constitute the physical infrastructure;
these components are directly managed by the operating system, which provides the basic services
for interprocess communication (IPC), process scheduling and management, and resource manage-
ment in terms of file system and local devices. Taken together these two layers become the plat-
form on top of which specialized software is deployed to turn a set of networked computers into a
distributed system.

The use of well-known standards at the operating system level and even more at the hardware
and network levels allows easy harnessing of heterogeneous components and their organization into
a coherent and uniform system. For example, network connectivity between different devices is
controlled by standards, which allow them to interact seamlessly. At the operating system level,
IPC services are implemented on top of standardized communication protocols such Transmission
Control Protocol/Internet Protocol (TCP/IP), User Datagram Protocol (UDP) or others.

The middleware layer leverages such services to build a uniform environment for the develop-
ment and deployment of distributed applications. This layer supports the programming paradigms
for distributed systems, which we will discuss in Chapters 5—7 of this book. By relying on the ser-
vices offered by the operating system, the middleware develops its own protocols, data formats,
and programming language or frameworks for the development of distributed applications. All of
them constitute a uniform interface to distributed application developers that is completely indepen-
dent from the underlying operating system and hides all the heterogeneities of the bottom layers.

The top of the distributed system stack is represented by the applications and services designed
and developed to use the middleware. These can serve several purposes and often expose their

2.4 Elements of distributed computing 41

i 'r =
—
Social Networks,
Scientific Computing, | -

Enterprise Applications| “>.__

Cloud Application
Development

Virtual Hardware,
Networking, OS Images,
and Storage

FIGURE 2.11
A cloud computing distributed system.

features in the form of graphical user interfaces (GUIs) accessible locally or through the Internet
via a Web browser. For example, in the case of a cloud computing system, the use of Web technol-
ogies is strongly preferred, not only to interface distributed applications with the end user but also
to provide platform services aimed at building distributed systems. A very good example is consti-
tuted by Infrastructure-as-a-Service (IaaS) providers such as Amazon Web Services (AWS), which
provide facilities for creating virtual machines, organizing them together into a cluster, and deploy-
ing applications and systems on top. Figure 2.11 shows an example of how the general reference
architecture of a distributed system is contextualized in the case of a cloud computing system.

Note that hardware and operating system layers make up the bare-bone infrastructure of one or
more datacenters, where racks of servers are deployed and connected together through high-speed
connectivity. This infrastructure is managed by the operating system, which provides the basic
capability of machine and network management. The core logic is then implemented in the middle-
ware that manages the virtualization layer, which is deployed on the physical infrastructure in order
to maximize its utilization and provide a customizable runtime environment for applications. The
middleware provides different facilities to application developers according to the type of services
sold to customers. These facilities, offered through Web 2.0-compliant interfaces, range from vir-
tual infrastructure building and deployment to application development and runtime environments.

2.4.3 Architectural styles for distributed computing

Although a distributed system comprises the interaction of several layers, the middleware layer is
the one that enables distributed computing, because it provides a coherent and uniform runtime
environment for applications. There are many different ways to organize the components that, taken
together, constitute such an environment. The interactions among these components and their

42 CHAPTER 2 Principles of Parallel and Distributed Computing

responsibilities give structure to the middleware and characterize its type or, in other words, define
its architecture. Architectural styles [104] aid in understanding and classifying the organization of
software systems in general and distributed computing in particular.

Architectural styles are mainly used to determine the vocabulary of components and connectors
that are used as instances of the style together with a set of constraints on how they can be com-

bined [105].

Design patterns [106] help in creating a common knowledge within the community of software
engineers and developers as to how to structure the relations of components within an application
and understand the internal organization of software applications. Architectural styles do the same
for the overall architecture of software systems. In this section, we introduce the most relevant
architectural styles for distributed computing and focus on the components and connectors that
make each style peculiar. Architectural styles for distributed systems are helpful in understanding
the different roles of components in the system and how they are distributed across multiple
machines. We organize the architectural styles into two major classes:

¢ Software architectural styles
e System architectural styles

The first class relates to the logical organization of the software; the second class includes all
those styles that describe the physical organization of distributed software systems in terms of their
major components.

2.4.3.1 Component and connectors

Before we discuss the architectural styles in detail, it is important to build an appropriate vocabu-
lary on the subject. Therefore, we clarify what we intend for components and connectors, since
these are the basic building blocks with which architectural styles are defined. A component repre-
sents a unit of software that encapsulates a function or a feature of the system. Examples of compo-
nents can be programs, objects, processes, pipes, and filters. A connector is a communication
mechanism that allows cooperation and coordination among components. Differently from compo-
nents, connectors are not encapsulated in a single entity, but they are implemented in a distributed
manner over many system components.

2.4.3.2 Software architectural styles
Software architectural styles are based on the logical arrangement of software components. They
are helpful because they provide an intuitive view of the whole system, despite its physical deploy-
ment. They also identify the main abstractions that are used to shape the components of the system
and the expected interaction patterns between them. According to Garlan and Shaw [105], architec-
tural styles are classified as shown in Table 2.2.

These models constitute the foundations on top of which distributed systems are designed from
a logical point of view, and they are discussed in the following sections.

Data centered architectures
These architectures identify the data as the fundamental element of the software system, and access
to shared data is the core characteristic of the data-centered architectures. Therefore, especially

2.4 Elements of distributed computing 43

Table 2.2 Software Architectural Styles

Category Most Common Architectural Styles
Data-centered Repository
Blackboard
Data flow Pipe and filter
Batch sequential
Virtual machine Rule-based system
Interpreter
Call and return Main program and subroutine call/top-down systems

Object-oriented systems
Layered systems

Independent components Communicating processes
Event systems

within the context of distributed and parallel computing systems, integrity of data is the overall
goal for such systems.

The repository architectural style is the most relevant reference model in this category. It is
characterized by two main components: the central data structure, which represents the current state
of the system, and a collection of independent components, which operate on the central data. The
ways in which the independent components interact with the central data structure can be very het-
erogeneous. In particular, repository-based architectures differentiate and specialize further into
subcategories according to the choice of control discipline to apply for the shared data structure. Of
particular interest are databases and blackboard systems. In the former group the dynamic of the
system is controlled by the independent components, which, by issuing an operation on the central
repository, trigger the selection of specific processes that operate on data. In blackboard systems,
the central data structure is the main trigger for selecting the processes to execute.

The blackboard architectural style is characterized by three main components:

e Knowledge sources. These are the entities that update the knowledge base that is maintained in
the blackboard.

* Blackboard. This represents the data structure that is shared among the knowledge sources and
stores the knowledge base of the application.

e Control. The control is the collection of triggers and procedures that govern the interaction with
the blackboard and update the status of the knowledge base.

Within this reference scenario, knowledge sources, which represent the intelligent agents shar-
ing the blackboard, react opportunistically to changes in the knowledge base, almost in the same
way that a group of specialists brainstorm in a room in front of a blackboard. Blackboard models
have become popular and widely used for artificial intelligent applications in which the blackboard
maintains the knowledge about a domain in the form of assertions and rules, which are entered by
domain experts. These operate through a control shell that controls the problem-solving activity of
the system. Particular and successful applications of this model can be found in the domains of
speech recognition and signal processing.

44 CHAPTER 2 Principles of Parallel and Distributed Computing

Data-flow architectures

In the case of data-flow architectures, it is the availability of data that controls the computation.
With respect to the data-centered styles, in which the access to data is the core feature, data-flow
styles explicitly incorporate the pattern of data flow, since their design is determined by an orderly
motion of data from component to component, which is the form of communication between them.
Styles within this category differ in one of the following ways: how the control is exerted, the
degree of concurrency among components, and the topology that describes the flow of data.

Batch Sequential Style. The batch sequential style is characterized by an ordered sequence of
separate programs executing one after the other. These programs are chained together by providing
as input for the next program the output generated by the last program after its completion, which
is most likely in the form of a file. This design was very popular in the mainframe era of comput-
ing and still finds applications today. For example, many distributed applications for scientific
computing are defined by jobs expressed as sequences of programs that, for example, pre-filter,
analyze, and post-process data. It is very common to compose these phases using the batch-
sequential style.

Pipe-and-Filter Style. The pipe-and-filter style is a variation of the previous style for expres-
sing the activity of a software system as sequence of data transformations. Each component of the
processing chain is called a filter, and the connection between one filter and the next is represented
by a data stream. With respect to the batch sequential style, data is processed incrementally and
each filter processes the data as soon as it is available on the input stream. As soon as one filter
produces a consumable amount of data, the next filter can start its processing. Filters generally do
not have state, know the identity of neither the previous nor the next filter, and they are connected
with in-memory data structures such as first-in/first-out (FIFO) buffers or other structures. This par-
ticular sequencing is called pipelining and introduces concurrency in the execution of the filters. A
classic example of this architecture is the microprocessor pipeline, whereby multiple instructions
are executed at the same time by completing a different phase of each of them. We can identify the
phases of the instructions as the filters, whereas the data streams are represented by the registries
that are shared within the processors. Another example are the Unix shell pipes (i.e., cat <file-
name>>| grep<pattern>| wc —I), where the filters are the single shell programs composed together
and the connections are their input and output streams that are chained together. Applications of
this architecture can also be found in the compiler design (e.g., the lex/yacc model is based on a
pipe of the following phases: scanning | parsing | semantic analysis | code generation), image and
signal processing, and voice and video streaming.

Data-flow architectures are optimal when the system to be designed embodies a multistage pro-
cess, which can be clearly identified into a collection of separate components that need to be
orchestrated together. Within this reference scenario, components have well-defined interfaces
exposing input and output ports, and the connectors are represented by the datastreams between
these ports. The main differences between the two subcategories are reported in Table 2.3.

Virtual machine architectures

The virtual machine class of architectural styles is characterized by the presence of an abstract exe-
cution environment (generally referred as a virtual machine) that simulates features that are not
available in the hardware or software. Applications and systems are implemented on top of this
layer and become portable over different hardware and software environments as long as there is

2.4 Elements of distributed computing 45

Table 2.3 Comparison Between Batch Sequential and Pipe-and-Filter Styles

Batch Sequential Pipe-and-Filter

Coarse grained Fine grained

High latency Reduced latency due to the incremental processing of input
External access to input Localized input

No concurrency Concurrency possible

Noninteractive Interactivity awkward but possible

an implementation of the virtual machine they interface with. The general interaction flow for sys-
tems implementing this pattern is the following: the program (or the application) defines its opera-
tions and state in an abstract format, which is interpreted by the virtual machine engine. The
interpretation of a program constitutes its execution. It is quite common in this scenario that the
engine maintains an internal representation of the program state. Very popular examples within this
category are rule-based systems, interpreters, and command-language processors.

Rule-Based Style. This architecture is characterized by representing the abstract execution envi-
ronment as an inference engine. Programs are expressed in the form of rules or predicates that hold
true. The input data for applications is generally represented by a set of assertions or facts that the
inference engine uses to activate rules or to apply predicates, thus transforming data. The output
can either be the product of the rule activation or a set of assertions that holds true for the given
input data. The set of rules or predicates identifies the knowledge base that can be queried to infer
properties about the system. This approach is quite peculiar, since it allows expressing a system or
a domain in terms of its behavior rather than in terms of the components. Rule-based systems are
very popular in the field of artificial intelligence. Practical applications can be found in the field of
process control, where rule-based systems are used to monitor the status of physical devices by
being fed from the sensory data collected and processed by PLCs' and by activating alarms when
specific conditions on the sensory data apply. Another interesting use of rule-based systems can be
found in the networking domain: network intrusion detection systems (NIDS) often rely on a set of
rules to identify abnormal behaviors connected to possible intrusions in computing systems.

Interpreter Style. The core feature of the interpreter style is the presence of an engine that is
used to interpret a pseudo-program expressed in a format acceptable for the interpreter. The inter-
pretation of the pseudo-program constitutes the execution of the program itself. Systems modeled
according to this style exhibit four main components: the interpretation engine that executes the
core activity of this style, an internal memory that contains the pseudo-code to be interpreted, a
representation of the current state of the engine, and a representation of the current state of the pro-
gram being executed. This model is quite useful in designing virtual machines for high-level pro-
gramming (Java, C#) and scripting languages (Awk, PERL, and so on). Within this scenario, the

'A programmable logic controller (PLC) is a digital computer that is used for automation or electromechanical pro-
cesses. Differently from general-purpose computers, PLCs are designed to manage multiple input lines and produce sev-
eral outputs. In particular, their physical design makes them robust to more extreme environmental conditions or shocks,
thus making them fit for use in factory environments. PLCs are an example of a hard real-time system because they are
expected to produce the output within a given time interval since the reception of the input.

46 CHAPTER 2 Principles of Parallel and Distributed Computing

virtual machine closes the gap between the end-user abstractions and the software/hardware envi-
ronment in which such abstractions are executed.

Virtual machine architectural styles are characterized by an indirection layer between applica-
tions and the hosting environment. This design has the major advantage of decoupling applications
from the underlying hardware and software environment, but at the same time it introduces some
disadvantages, such as a slowdown in performance. Other issues might be related to the fact that,
by providing a virtual execution environment, specific features of the underlying system might not
be accessible.

Call & return architectures

This category identifies all systems that are organised into components mostly connected together
by method calls. The activity of systems modeled in this way is characterized by a chain of method
calls whose overall execution and composition identify the execution of one or more operations.
The internal organization of components and their connections may vary. Nonetheless, it is possible
to identify three major subcategories, which differentiate by the way the system is structured and
how methods are invoked: top-down style, object-oriented style, and layered style.

Top-Down Style. This architectural style is quite representative of systems developed with
imperative programming, which leads to a divide-and-conquer approach to problem resolution.
Systems developed according to this style are composed of one large main program that accom-
plishes its tasks by invoking subprograms or procedures. The components in this style are proce-
dures and subprograms, and connections are method calls or invocation. The calling program
passes information with parameters and receives data from return values or parameters. Method
calls can also extend beyond the boundary of a single process by leveraging techniques for remote
method invocation, such as remote procedure call (RPC) and all its descendants. The overall struc-
ture of the program execution at any point in time is characterized by a tree, the root of which con-
stitutes the main function of the principal program. This architectural style is quite intuitive from a
design point of view but hard to maintain and manage in large systems.

Object-Oriented Style. This architectural style encompasses a wide range of systems that have
been designed and implemented by leveraging the abstractions of object-oriented programming
(OOP). Systems are specified in terms of classes and implemented in terms of objects. Classes
define the type of components by specifying the data that represent their state and the operations
that can be done over these data. One of the main advantages over the top-down style is that there
is a coupling between data and operations used to manipulate them. Object instances become
responsible for hiding their internal state representation and for protecting its integrity while provid-
ing operations to other components. This leads to a better decomposition process and more manage-
able systems. Disadvantages of this style are mainly two: each object needs to know the identity of
an object if it wants to invoke operations on it, and shared objects need to be carefully designed in
order to ensure the consistency of their state.

Layered Style. The layered system style allows the design and implementation of software sys-
tems in terms of layers, which provide a different level of abstraction of the system. Each layer
generally operates with at most two layers: the one that provides a lower abstraction level and the
one that provides a higher abstraction layer. Specific protocols and interfaces define how adjacent
layers interact. It is possible to model such systems as a stack of layers, one for each level of
abstraction. Therefore, the components are the layers and the connectors are the interfaces and

2.4 Elements of distributed computing 47

protocols used between adjacent layers. A user or client generally interacts with the layer at the
highest abstraction, which, in order to carry its activity, interacts and uses the services of the lower
layer. This process is repeated (if necessary) until the lowest layer is reached. It is also possible to
have the opposite behavior: events and callbacks from the lower layers can trigger the activity of
the higher layer and propagate information up through the stack. The advantages of the layered
style are that, as happens for the object-oriented style, it supports a modular design of systems and
allows us to decompose the system according to different levels of abstractions by encapsulating
together all the operations that belong to a specific level. Layers can be replaced as long as they
are compliant with the expected protocols and interfaces, thus making the system flexible. The
main disadvantage is constituted by the lack of extensibility, since it is not possible to add layers
without changing the protocols and the interfaces between layers.” This also makes it complex to
add operations. Examples of layered architectures are the modern operating system kernels and the
International Standards Organization/Open Systems Interconnection (ISO/OSI) or the TCP/IP stack.

Architectural styles based on independent components

This class of architectural style models systems in terms of independent components that have their
own life cycles, which interact with each other to perform their activities. There are two major cat-
egories within this class—communicating processes and event systems—which differentiate in the
way the interaction among components is managed.

Communicating Processes. In this architectural style, components are represented by indepen-
dent processes that leverage IPC facilities for coordination management. This is an abstraction that
is quite suitable to modeling distributed systems that, being distributed over a network of comput-
ing nodes, are necessarily composed of several concurrent processes. Each of the processes pro-
vides other processes with services and can leverage the services exposed by the other processes.
The conceptual organization of these processes and the way in which the communication happens
vary according to the specific model used, either peer-to-peer or client/server.> Connectors are iden-
tified by IPC facilities used by these processes to communicate.

Event Systems. In this architectural style, the components of the system are loosely coupled
and connected. In addition to exposing operations for data and state manipulation, each component
also publishes (or announces) a collection of events with which other components can register. In
general, other components provide a callback that will be executed when the event is activated.
During the activity of a component, a specific runtime condition can activate one of the exposed
events, thus triggering the execution of the callbacks registered with it. Event activation may be
accompanied by contextual information that can be used in the callback to handle the event. This
information can be passed as an argument to the callback or by using some shared repository
between components. Event-based systems have become quite popular, and support for their imple-
mentation is provided either at the API level or the programming language level.* The main

The only option given is to partition a layer into sublayers so that the external interfaces remain the same, but the inter-
nal architecture can be reorganized into different layers that can define different abstraction levels. From the point of
view of the adjacent layer, the new reorganized layer still appears as a single block.

3The terms client/server and peer-to-peer will be further discussed in the next section.

“The Observer pattern [106] is a fundamental element of software designs, whereas programming languages such as C#,
VB.NET, and other languages implemented for the Common Language Infrastructure [53] expose the event language
constructs to model implicit invocation patterns.

48 CHAPTER 2 Principles of Parallel and Distributed Computing

advantage of such an architectural style is that it fosters the development of open systems: new
modules can be added and easily integrated into the system as long as they have compliant inter-
faces for registering to the events. This architectural style solves some of the limitations observed
for the top-down and object-oriented styles. First, the invocation pattern is implicit, and the connec-
tion between the caller and the callee is not hard-coded; this gives a lot of flexibility since addition
or removal of a handler to events can be done without changes in the source code of applications.
Second, the event source does not need to know the identity of the event handler in order to invoke
the callback. The disadvantage of such a style is that it relinquishes control over system computa-
tion. When a component triggers an event, it does not know how many event handlers will be
invoked and whether there are any registered handlers. This information is available only at runtime
and, from a static design point of view, becomes more complex to identify the connections among
components and to reason about the correctness of the interactions.

In this section, we reviewed the most popular software architectural styles that can be utilized as a
reference for modeling the logical arrangement of components in a system. They are a subset of all
the architectural styles; other styles can be found in [105].

2.4.3.3 System architectural styles

System architectural styles cover the physical organization of components and processes over a dis-
tributed infrastructure. They provide a set of reference models for the deployment of such systems
and help engineers not only have a common vocabulary in describing the physical layout of sys-
tems but also quickly identify the major advantages and drawbacks of a given deployment and
whether it is applicable for a specific class of applications. In this section, we introduce two funda-
mental reference styles: client/server and peer-to-peer.

Client/server

This architecture is very popular in distributed computing and is suitable for a wide variety of
applications. As depicted in Figure 2.12, the client/server model features two major components: a
server and a client. These two components interact with each other through a network connection
using a given protocol. The communication is unidirectional: The client issues a request to the
server, and after processing the request the server returns a response. There could be multiple client
components issuing requests to a server that is passively waiting for them. Hence, the important
operations in the client-server paradigm are request, accept (client side), and listen and response
(server side).

The client/server model is suitable in many-to-one scenarios, where the information and the
services of interest can be centralized and accessed through a single access point: the server. In
general, multiple clients are interested in such services and the server must be appropriately
designed to efficiently serve requests coming from different clients. This consideration has impli-
cations on both client design and server design. For the client design, we identify two major
models:

e Thin-client model. In this model, the load of data processing and transformation is put on the
server side, and the client has a light implementation that is mostly concerned with retrieving
and returning the data it is being asked for, with no considerable further processing.

2.4 Elements of distributed computing 49

Two Tier
(Classic Model)

rI‘/)
-%! - /
(o) ™ Trmmpse e

-

server/client

server

FIGURE 2.12
Client/server architectural styles.

e Fat-client model. In this model, the client component is also responsible for processing and
transforming the data before returning it to the user, whereas the server features a relatively
light implementation that is mostly concerned with the management of access to the data.

The three major components in the client-server model: presentation, application logic, and data
storage. In the thin-client model, the client embodies only the presentation component, while the
server absorbs the other two. In the fat-client model, the client encapsulates presentation and most
of the application logic, and the server is principally responsible for the data storage and
maintenance.

Presentation, application logic, and data maintenance can be seen as conceptual layers, which
are more appropriately called tiers. The mapping between the conceptual layers and their physical
implementation in modules and components allows differentiating among several types of architec-
tures, which go under the name of multitiered architectures. Two major classes exist:

e Two-tier architecture. This architecture partitions the systems into two tiers, which are located
one in the client component and the other on the server. The client is responsible for the
presentation tier by providing a user interface; the server concentrates the application logic and
the data store into a single tier. The server component is generally deployed on a powerful
machine that is capable of processing user requests, accessing data, and executing the
application logic to provide a client with a response. This architecture is suitable for systems of
limited size and suffers from scalability issues. In particular, as the number of users increases
the performance of the server might dramatically decrease. Another limitation is caused by the

50 CHAPTER 2 Principles of Parallel and Distributed Computing

dimension of the data to maintain, manage, and access, which might be prohibitive for a single
computation node or too large for serving the clients with satisfactory performance.

» Three-tier architecture/N-tier architecture. The three-tier architecture separates the presentation
of data, the application logic, and the data storage into three tiers. This architecture is
generalized into an N-tier model in case it is necessary to further divide the stages composing
the application logic and storage tiers. This model is generally more scalable than the two-tier
one because it is possible to distribute the tiers into several computing nodes, thus isolating the
performance bottlenecks. At the same time, these systems are also more complex to understand
and manage. A classic example of three-tier architecture is constituted by a medium-size Web
application that relies on a relational database management system for storing its data. In this
scenario, the client component is represented by a Web browser that embodies the presentation
tier, whereas the application server encapsulates the business logic tier, and a database server
machine (possibly replicated for high availability) maintains the data storage. Application
servers that rely on third-party (or external) services to satisfy client requests are examples of
N-tiered architectures.

The client/server architecture has been the dominant reference model for designing and
deploying distributed systems, and several applications to this model can be found. The most rel-
evant is perhaps the Web in its original conception. Nowadays, the client/server model is an
important building block of more complex systems, which implement some of their features by
identifying a server and a client process interacting through the network. This model is generally
suitable in the case of a many-to-one scenario, where the interaction is unidirectional and started
by the clients and suffers from scalability issues, and therefore it is not appropriate in very large
systems.

Peer-to-peer

The peer-to-peer model, depicted in Figure 2.13, introduces a symmetric architecture in which all
the components, called peers, play the same role and incorporate both client and server capabilities
of the client/server model. More precisely, each peer acts as a server when it processes requests
from other peers and as a client when it issues requests to other peers. With respect to the client/
server model that partitions the responsibilities of the IPC between server and clients, the peer-to-
peer model attributes the same responsibilities to each component. Therefore, this model is quite
suitable for highly decentralized architecture, which can scale better along the dimension of the
number of peers. The disadvantage of this approach is that the management of the implementation
of algorithms is more complex than in the client/server model.

The most relevant example of peer-to-peer systems [87] is constituted by file-sharing applica-
tions such as Gnutella, BitTorrent, and Kazaa. Despite the differences among these networks in
coordinating nodes and sharing information on the files and their locations, all of them provide a
user client that is at the same time a server providing files to other peers and a client downloading
files from other peers. To address an incredibly large number of peers, different architectures have
been designed that divert slightly from the peer-to-peer model. For example, in Kazaa not all the
peers have the same role, and some of them are used to group the accessibility information of a
group of peers. Another interesting example of peer-to-peer architecture is represented by the
Skype network.

2.4 Elements of distributed computing 51

FIGURE 2.13
Peer-to-peer architectural style.

The system architectural styles presented in this section constitute a reference model that is further
enhanced or diversified according to the specific needs of the application to be designed and imple-
mented. For example, the client/server architecture, which originally included only two types of
components, has been further extended and enriched by developing multitier architectures as the
complexity of systems increased. Currently, this model is still the predominant reference architec-
ture for distributed systems and applications. The server and client abstraction can be used in some
cases to model the macro scale or the micro scale of the systems. For peer-to-peer systems, pure
implementations are very hard to find and, as discussed for the case of Kazaa, evolutions of the
model, which introduced some kind of hierarchy among the nodes, are common.

2.4.4 Models for interprocess communication

Distributed systems are composed of a collection of concurrent processes interacting with each
other by means of a network connection. Therefore, IPC is a fundamental aspect of distributed sys-
tems design and implementation. IPC is used to either exchange data and information or coordinate
the activity of processes. IPC is what ties together the different components of a distributed system,
thus making them act as a single system. There are several different models in which processes can
interact with each other; these map to different abstractions for IPC. Among the most relevant that
we can mention are shared memory, remote procedure call (RPC), and message passing. At a lower
level, IPC is realized through the fundamental tools of network programming. Sockets are the most
popular IPC primitive for implementing communication channels between distributed processes.

52 CHAPTER 2 Principles of Parallel and Distributed Computing

They facilitate interaction patterns that, at the lower level, mimic the client/server abstraction and
are based on a request-reply communication model. Sockets provide the basic capability of transfer-
ring a sequence of bytes, which is converted at higher levels into a more meaningful representation
(such as procedure parameters or return values or messages). Such a powerful abstraction allows
system engineers to concentrate on the logic-coordinating distributed components and the informa-
tion they exchange rather than the networking details. These two elements identify the model for
IPC. In this section, we introduce the most important reference model for architecting the commu-
nication among processes.

2.4.4.1 Message-based communication
The abstraction of message has played an important role in the evolution of the models and tech-
nologies enabling distributed computing. Couloris et al. [2] define a distributed system as “one in
which components located at networked computers communicate and coordinate their actions only
by passing messages.” The term message, in this case, identifies any discrete amount of information
that is passed from one entity to another. It encompasses any form of data representation that is
limited in size and time, whereas this is an invocation to a remote procedure or a serialized object
instance or a generic message. Therefore, the term message-based communication model can be
used to refer to any model for IPC discussed in this section, which does not necessarily rely on the
abstraction of data streaming.

Several distributed programming paradigms eventually use message-based communication
despite the abstractions that are presented to developers for programming the interaction of distrib-
uted components. Here are some of the most popular and important:

* Message passing. This paradigm introduces the concept of a message as the main abstraction of
the model. The entities exchanging information explicitly encode in the form of a message the
data to be exchanged. The structure and the content of a message vary according to the model.
Examples of this model are the Message-Passing Interface (MPI) and OpenMP.

* Remote procedure call (RPC). This paradigm extends the concept of procedure call beyond the
boundaries of a single process, thus triggering the execution of code in remote processes. In this
case, underlying client/server architecture is implied. A remote process hosts a server component,
thus allowing client processes to request the invocation of methods, and returns the result of the
execution. Messages, automatically created by the RPC implementation, convey the information
about the procedure to execute along with the required parameters and the return values. The use
of messages within this context is also referred as marshaling of parameters and return values.

* Distributed objects. This is an implementation of the RPC model for the object-oriented paradigm
and contextualizes this feature for the remote invocation of methods exposed by objects. Each
process registers a set of interfaces that are accessible remotely. Client processes can request a
pointer to these interfaces and invoke the methods available through them. The underlying
runtime infrastructure is in charge of transforming the local method invocation into a request to a
remote process and collecting the result of the execution. The communication between the caller
and the remote process is made through messages. With respect to the RPC model that is stateless
by design, distributed object models introduce the complexity of object state management and
lifetime. The methods that are remotely executed operate within the context of an instance, which
may be created for the sole execution of the method, exist for a limited interval of time, or are

2.4 Elements of distributed computing 53

independent from the existence of requests. Examples of distributed object infrastructures are
Common Object Request Broker Architecture (CORBA), Component Object Model (COM,
DCOM, and COM+), Java Remote Method Invocation (RMI), and .NET Remoting.

* Distributed agents and active objects. Programming paradigms based on agents and active
objects involve by definition the presence of instances, whether they are agents of objects,
despite the existence of requests. This means that objects have their own control thread, which
allows them to carry out their activity. These models often make explicit use of messages to
trigger the execution of methods, and a more complex semantics is attached to the messages.

e Web services. Web service technology provides an implementation of the RPC concept
over HTTP, thus allowing the interaction of components that are developed with different
technologies. A Web service is exposed as a remote object hosted on a Web server, and method
invocations are transformed in HTTP requests, opportunely packaged using specific protocols
such as Simple Object Access Protocol (SOAP) or Representational State Transfer (REST).

It is important to observe that the concept of a message is a fundamental abstraction of IPC,
and it is used either explicitly or implicitly. Messages’ principal use—in any of the cases dis-
cussed—is to define interaction protocols among distributed components for coordinating their
activity and exchanging data.

2.4.4.2 Models for message-based communication

We have seen how message-based communication constitutes a fundamental block for several dis-
tributed programming paradigms. Another important aspect characterizing the interaction among
distributed components is the way these messages are exchanged and among how many compo-
nents. In several cases, we identified the client/server model as the underlying reference model for
the interaction. This, in its strictest form, represents a point-to-point communication model allowing
a many-to-one interaction pattern. Variations of the client/server model allow for different interac-
tion patterns. In this section, we briefly discuss the most important and recurring ones.

Point-to-point message model

This model organizes the communication among single components. Each message is sent from
one component to another, and there is a direct addressing to identify the message receiver. In a
point-to-point communication model it is necessary to know the location of or how to address
another component in the system. There is no central infrastructure that dispatches the messages,
and the communication is initiated by the message sender. It is possible to identify two major sub-
categories: direct communication and queue-based communication. In the former, the message is
sent directly to the receiver and processed at the time of reception. In the latter, the receiver main-
tains a message queue in which the messages received are placed for later processing. The point-to-
point message model is useful for implementing systems that are mostly based on one-to-one or
many-to-one communication.

Publish-and-subscribe message model

This model introduces a different strategy, one that is based on notification among components.
There are two major roles: the publisher and the subscriber. The former provides facilities for the
latter to register its interest in a specific topic or event. Specific conditions holding true on the pub-
lisher side can trigger the creation of messages that are attached to a specific event. A message will

54 CHAPTER 2 Principles of Parallel and Distributed Computing

be available to all the subscribers that registered for the corresponding event. There are two major
strategies for dispatching the event to the subscribers:

e Push strategy. In this case it is the responsibility of the publisher to notify all the subscribers—
for example, with a method invocation.

e Pull strategy. In this case the publisher simply makes available the message for a specific event,
and it is responsibility of the subscribers to check whether there are messages on the events that
are registered.

The publish-and-subscribe model is very suitable for implementing systems based on the one-
to-many communication model and simplifies the implementation of indirect communication pat-
terns. It is, in fact, not necessary for the publisher to know the identity of the subscribers to make
the communication happen.

Request-reply message model

The request-reply message model identifies all communication models in which, for each message
sent by a process, there is a reply. This model is quite popular and provides a different classifica-
tion that does not focus on the number of the components involved in the communication but rather
on how the dynamic of the interaction evolves. Point-to-point message models are more likely to
be based on a request-reply interaction, especially in the case of direct communication. Publish-
and-subscribe models are less likely to be based on request-reply since they rely on notifications.

The models presented here constitute a reference for structuring the communication among compo-
nents in a distributed system. It is very uncommon that one single mode satisfies all the communi-
cation needs within a system. More likely, a composition of modes or their conjunct use in order to
design and implement different aspects is the common case.

Technologies for distributed computing

In this section, we introduce relevant technologies that provide concrete implementations of interac-
tion models, which mostly rely on message-based communication. They are remote procedure call
(RPC), distributed object frameworks, and service-oriented computing.

Remote procedure call

RPC is the fundamental abstraction enabling the execution of procedures on client’s request. RPC
allows extending the concept of a procedure call beyond the boundaries of a process and a single
memory address space. The called procedure and calling procedure may be on the same system or
they may be on different systems in a network. The concept of RPC has been discussed since 1976
and completely formalized by Nelson [111] and Birrell [112] in the early 1980s. From there on, it
has not changed in its major components. Even though it is a quite old technology, RPC is still
used today as a fundamental component for IPC in more complex systems.

Figure 2.14 illustrates the major components that enable an RPC system. The system is based
on a client/server model. The server process maintains a registry of all the available procedures that

2.5 Technologies for distributed computing 55

Main Procedure Procedure Registry

T

*——

13

1
| Procedure C:Node B |
h

--------------- , gy

—

RPC Library RPC Service
‘I Program A (RPC Client) I. ________________ L et T PP l Program C (RPC Server) |.:
Parameters Marshaling Return Value Parameters Unmarshaling Return Value

and Procedure Name Unmarshaling and Procedure Name Marshaling

Network

FIGURE 2.14
The RPC reference model.

can be remotely invoked and listens for requests from clients that specify which procedure to
invoke, together with the values of the parameters required by the procedure. RPC maintains the
synchronous pattern that is natural in IPC and function calls. Therefore, the calling process thread
remains blocked until the procedure on the server process has completed its execution and the
result (if any) is returned to the client.

An important aspect of RPC is marshaling, which identifies the process of converting parameter
and return values into a form that is more suitable to be transported over a network through a
sequence of bytes. The term unmarshaling refers to the opposite procedure. Marshaling and unmar-
shaling are performed by the RPC runtime infrastructure, and the client and server user code does
not necessarily have to perform these tasks. The RPC runtime, on the other hand, is not only
responsible for parameter packing and unpacking but also for handling the request-reply interaction
that happens between the client and the server process in a completely transparent manner.
Therefore, developing a system leveraging RPC for IPC consists of the following steps:

* Design and implementation of the server procedures that will be exposed for remote invocation.

* Registration of remote procedures with the RPC server on the node where they will be made
available.

* Design and implementation of the client code that invokes the remote procedure(s).

Each RPC implementation generally provides client and server application programming inter-
faces (APIs) that facilitate the use of this simple and powerful abstraction. An important observa-
tion has to be made concerning the passing of parameters and return values. Since the server and
the client processes are in two separate address spaces, the use of parameters passed by references

56 CHAPTER 2 Principles of Parallel and Distributed Computing

or pointers is not suitable in this scenario, because once unmarshaled these will refer to a memory
location that is not accessible from within the server process. Second, in user-defined parameters
and return value types, it is necessary to ensure that the RPC runtime is able to marshal them. This
is generally possible, especially when user-defined types are composed of simple types, for which
marshaling is naturally provided.

RPC has been a dominant technology for IPC for quite a long time, and several programming
languages and environments support this interaction pattern in the form of libraries and additional
packages. For instance, RPyC is an RPC implementation for Python. There also exist platform-
independent solutions such as XML-RPC and JSON-RPC, which provide RPC facilities over XML
and JSON, respectively. Thrift [113] is the framework developed at Facebook for enabling a trans-
parent cross-language RPC model. Currently, the term RPC implementations encompass a variety
of solutions including frameworks such distributed object programming (CORBA, DCOM, Java
RMI, and .NET Remoting) and Web services that evolved from the original RPC concept. We dis-
cuss the peculiarity of these approaches in the following sections.

Distributed object frameworks

Distributed object frameworks extend object-oriented programming systems by allowing objects to
be distributed across a heterogeneous network and provide facilities so that they can coherently act
as though they were in the same address space. Distributed object frameworks leverage the basic
mechanism introduced with RPC and extend it to enable the remote invocation of object methods
and to keep track of references to objects made available through a network connection.

With respect to the RPC model, the infrastructure manages instances that are exposed through well-
known interfaces instead of procedures. Therefore, the common interaction pattern is the following:

1. The server process maintains a registry of active objects that are made available to other
processes. According to the specific implementation, active objects can be published using
interface definitions or class definitions.

2. The client process, by using a given addressing scheme, obtains a reference to the active remote
object. This reference is represented by a pointer to an instance that is of a shared type of
interface and class definition.

3. The client process invokes the methods on the active object by calling them through the
reference previously obtained. Parameters and return values are marshaled as happens in the
case of RPC.

Distributed object frameworks give the illusion of interaction with a local instance while invoking
remote methods. This is done by a mechanism called a proxy skeleton. Figure 2.15 gives an overview
of how this infrastructure works. Proxy and skeleton always constitute a pair: the server process
maintains the skeleton component, which is in charge of executing the methods that are remotely
invoked, while the client maintains the proxy component, allowing its hosting environment to
remotely invoke methods through the proxy interface. The transparency of remote method invocation
is achieved using one of the fundamental properties of object-oriented programming: inheritance and
subclassing. Both the proxy and the active remote object expose the same interface, defining the set
of methods that can be remotely called. On the client side, a runtime object subclassing the type pub-
lished by the server is generated. This object translates the local method invocation into an RPC call

2.5 Technologies for distributed computing 57

'
Instance :
— / Remote !
Instance]
- 1 P T F L AR T e o] 5: Object
1: Ask for | Object Skeleton Activation
Reference L

!

Network

FIGURE 2.15
The distributed object programming model.

for the corresponding method on the remote active object. On the server side, whenever an RPC
request is received, it is unpacked and the method call is dispatched to the skeleton that is paired with
the client that issued the request. Once the method execution on the server is completed, the return
values are packed and sent back to the client, and the local method call on the proxy returns.

Distributed object frameworks introduce objects as first-class entities for IPC. They are the prin-
cipal gateway for invoking remote methods but can also be passed as parameters and return values.
This poses an interesting problem, since object instances are complex instances that encapsulate a
state and might be referenced by other components. Passing an object as a parameter or return
value involves the duplication of the instance on the other execution context. This operation leads
to two separate objects whose state evolves independently. The duplication becomes necessary
since the instance needs to trespass the boundaries of the process. This is an important aspect to
take into account in designing distributed object systems, because it might lead to inconsistencies.
An alternative to this standard process, which is called marshaling by value, is marshaling by refer-
ence. In this second case the object instance is not duplicated and a proxy of it is created on the
server side (for parameters) or the client side (for return values). Marshaling by reference is a more
complex technique and generally puts more burden on the runtime infrastructure since remote refer-
ences have to be tracked. Being more complex and resource demanding, marshaling by reference
should be used only when duplication of parameters and return values lead to unexpected and
inconsistent behavior of the system.

2.5.2.1 Object activation and lifetime
The management of distributed objects poses additional challenges with respect to the simple invo-
cation of a procedure on a remote node. Methods live within the context of an object instance, and

58 CHAPTER 2 Principles of Parallel and Distributed Computing

they can alter the internal state of the object as a side effect of their execution. In particular, the
lifetime of an object instance is a crucial element in distributed object-oriented systems. Within a
single memory address space scenario, objects are explicitly created by the programmer, and their
references are made available by passing them from one object instance to another. The memory
allocated for them can be explicitly reclaimed by the programmer or automatically by the runtime
system when there are no more references to that instance. A distributed scenario introduces addi-
tional issues that require a different management of the lifetime of objects exposed through remote
interfaces.

The first element to be considered is the object’s activation, which is the creation of a remote
object. Various strategies can be used to manage object activation, from which we can distinguish
two major classes: server-based activation and client-based activation. In server-based activation,
the active object is created in the server process and registered as an instance that can be exposed
beyond process boundaries. In this case, the active object has a life of its own and occasionally exe-
cutes methods as a consequence of a remote method invocation. In client-based activation the
active object does not originally exist on the server side; it is created when a request for method
invocation comes from a client. This scenario is generally more appropriate when the active object
is meant to be stateless and should exist for the sole purpose of invoking methods from remote cli-
ents. For example, if the remote object is simply a gateway to access and modify other components
hosted within the server process, client-based activation is a more efficient pattern.

The second element to be considered is the lifetime of remote objects. In the case of server-
based activation, the lifetime of an object is generally user-controlled, since the activation of the
remote object is explicit and controlled by the user. In the case of client-based activation, the crea-
tion of the remote object is implicit, and therefore its lifetime is controlled by some policy of the
runtime infrastructure. Different policies can be considered; the simplest one implies the creation
of a new instance for each method invocation. This solution is quite demanding in terms of object
instances and is generally integrated with some lease management strategy that allows objects to be
reused for subsequent method invocations if they occur within a specified time interval (lease).
Another policy might consider having only a single instance at a time, and the lifetime of the object
is then controlled by the number and frequency of method calls. Different frameworks provide dif-
ferent levels of control of this aspect.

Object activation and lifetime management are features that are now supported to some extent in
almost all the frameworks for distributed object programming, since they are essential to understand-
ing the behavior of a distributed system. In particular, these two aspects are becoming fundamental in
designing components that are accessible from other processes and that maintain states.
Understanding how many objects representing the same component are created and for how long
they last is essential in tracking inconsistencies due to erroneous updates to the instance internal data.

2.5.2.2 Examples of distributed object frameworks

The support for distributed object programming has evolved over time, and today it is a common
feature of mainstream programming languages such as C# and Java, which provide these capabili-
ties as part of the base class libraries. This level of integration is a sign of the maturity of this tech-
nology, which originally was designed as a separate component that could be used in several
programming languages. In this section, we briefly review the most relevant approaches to and
technologies for distributed object programming.

2.5 Technologies for distributed computing 59

Common object request broker architecture (CORBA)

CORBA s a specification introduced by the Object Management Group (OMG) for providing cross-
platform and cross-language interoperability among distributed components. The specification was
originally designed to provide an interoperation standard that could be effectively used at the indus-
trial level. The current release of the CORBA specification is version 3.0 and currently the technology
is not very popular, mostly because the development phase is a considerably complex task and the
interoperability among components developed in different languages has never reached the proposed
level of transparency. A fundamental component in the CORBA architecture is the Object Request
Broker (ORB), which acts as a central object bus. A CORBA object registers with the ORB the inter-
face it is exposing, and clients can obtain a reference to that interface and invoke methods on it. The
ORB is responsible for returning the reference to the client and managing all the low-level operations
required to perform the remote method invocation. To simplify cross-platform interoperability, inter-
faces are defined in Interface Definition Language (IDL), which provides a platform-independent
specification of a component. An IDL specification is then translated into a stub-skeleton pair by spe-
cific CORBA compilers that generate the required client (stub) and server (skeleton) components in a
specific programming language. These templates are completed with an appropriate implementation
in the selected programming language. This allows CORBA components to be used across different
runtime environment by simply using the stub and the skeleton that match the development language
used. A specification meant to be used at the industry level, CORBA provides interoperability among
different implementations of its runtime. In particular, at the lowest-level ORB implementations com-
municate with each other using the Internet Inter-ORB Protocol (IIOP), which standardizes the inter-
actions of different ORB implementations. Moreover, CORBA provides an additional level of
abstraction and separates the ORB, which mostly deals with the networking among nodes, from the
Portable Object Adapter (POA), which is the runtime environment in which the skeletons are hosted
and managed. Again, the interface of these two layers is clearly defined, thus giving more freedom
and allowing different implementations to work together seamlessly.

Distributed component object model (DCOM/COM+)

DCOM, later integrated and evolved into COM+, is the solution provided by Microsoft for distrib-
uted object programming before the introduction of .NET technology. DCOM introduces a set of
features allowing the use of COM components beyond the process boundaries. A COM object iden-
tifies a component that encapsulates a set of coherent and related operations; it was designed to be
easily plugged into another application to leverage the features exposed through its interface. To
support interoperability, COM standardizes a binary format, thus allowing the use of COM objects
across different programming languages. DCOM enables such capabilities in a distributed environ-
ment by adding the required IPC support. The architecture of DCOM is quite similar to CORBA
but simpler, since it does not aim to foster the same level of interoperability; its implementation is
monopolized by Microsoft, which provides a single runtime environment. A DCOM server object
can expose several interfaces, each representing a different behavior of the object. To invoke the
methods exposed by the interface, clients obtain a pointer to that interface and use it as though it
were a pointer to an object in the client’s address space. The DCOM runtime is responsible for per-
forming all the operations required to create this illusion. This technology provides a reasonable
level of interoperability among Microsoft-based environments, and there are third-party implemen-
tations that allow the use of DCOM, even in Unix-based environments. Currently, even if still used

60 CHAPTER 2 Principles of Parallel and Distributed Computing

in industry, this technology is no longer popular and has been replaced by other approaches, such
as .NET Remoting and Web Services.

Java remote method invocation (RMI)

Java RMI is a standard technology provided by Java for enabling RPC among distributed Java
objects. RMI defines an infrastructure allowing the invocation of methods on objects that are
located on different Java Virtual Machines (JVMs) residing either on the local node or on a remote
one. As with CORBA, RMI is based on the stub-skeleton concept. Developers define an interface
extending java.rmi.Remote that defines the contract for IPC. Java allows only publishing interfaces
while it relies on actual types for the server and client part implementation. A class implementing
the previous interface represents the skeleton component that will be made accessible beyond the
JVM boundaries. The stub is generated from the skeleton class definition using the rmic command-
line tool. Once the stub-skeleton pair is prepared, an instance of the skeleton is registered with the
RMI registry that maps URIs, through which instances can be reached, to the corresponding
objects. The RMI registry is a separate component that keeps track of all the instances that can be
reached on a node. Clients contact the RMI registry and specify a URI, in the form rmi://host:port/
serviceName, to obtain a reference to the corresponding object. The RMI runtime will automati-
cally retrieve the class information for the stub component paired with the skeleton mapped with
the given URI and return an instance of it properly configured to interact with the remote object. In
the client code, all the services provided by the skeleton are accessed by invoking the methods
defined in the remote interface. RMI provides a quite transparent interaction pattern. Once the
development and deployment phases are completed and a reference to a remote object is obtained,
the client code interacts with it as though it were a local instance, and RMI performs all the
required operations to enable the IPC. Moreover, RMI also allows customizing the security that has
to be applied for remote objects. This is done by leveraging the standard Java security infrastruc-
ture, which allows specifying policies defining the permissions attributed to the JVM hosting the
remote object.

.NET remoting

Remoting is the technology allowing for IPC among .NET applications. It provides developers
with a uniform platform for accessing remote objects from within any application developed in
any of the languages supported by .NET. With respect to other distributed object technologies,
Remoting is a fully customizable architecture that allows developers to control the transport pro-
tocols used to exchange information between the proxy and the remote object, the serialization
format used to encode data, the lifetime of remote objects, and the server management of
remote objects. Despite its modular and fully customizable architecture, Remoting allows a
transparent interaction pattern with objects residing on different application domains. An applica-
tion domain represents an isolated execution environment that can be accessible only through
Remoting channels. A single process can host multiple application domains and must have at
least one.

Remoting allows objects located in different application domains to interact in a completely
transparent manner, whether the two domains are in the same process, in the same machine, or on
different nodes. The reference architecture is based on the classic client/server model whereby the
application domain hosting the remote object is the server and the application domain accessing it

2.5 Technologies for distributed computing 61

is the client. Developers define a class that inherits by MarshalByRefObject, the base class that pro-
vides the built-in facilities to obtain a reference of an instance from another application domain.
Instances of types that do not inherit from MarshalByRefObject are copied across application
domain boundaries. There is no need to manually generate a stub for a type that needs to be
exposed remotely. The Remoting infrastructure will automatically provide all the required informa-
tion to generate a proxy on a client application domain. To make a component accessible through
Remoting requires the component to be registered with the Remoting runtime and mapping it to a
specific URI in the form scheme://host:port/ServiceName, where scheme is generally TCP or
HTTP. It is possible to use different strategies to publish the remote component: Developers can
provide an instance of the type developed or simply the type information. When only the type
information is provided, the activation of the object is automatic and client-based, and developers
can control the lifetime of the objects by overriding the default behavior of MarshalByRefObject.
To interact with a remote object, client application domains have to query the remote infrastructure
by providing a URI identifying the remote object and they will obtain a proxy to the remote object.
From there on, the interaction with the remote object is completely transparent. As happens for
Java RMI, Remoting allows customizing the security measures applied for the execution of code
triggered by Remoting calls.

These are the most popular technologies for enabling distributed object programming. CORBA is an
industrial-standard technology for developing distributed systems spanning different platforms and
vendors. The technology has been designed to be interoperable among a variety of implementations
and languages. Java RMI and .NET Remoting are built-in infrastructures for IPC, serving the purpose
of creating distributed applications based on a single technology: Java and .NET, respectively. With
respect to CORBA, they are less complex to use and deploy but are not natively interoperable. By
relying on a unified platform, both Java and .NET Remoting are very straightforward and intuitive
and provide a transparent interaction pattern that naturally fits in the structure of the supported lan-
guages. Although the two architectures are similar, they have some minor differences: Java relies on
an external component called RMI registry to locate remote objects and allows only the publication
of interfaces, whereas .NET Remoting does not use a registry and allows developers to expose class
types as well. Both technologies have been extensively used to develop distributed applications.

Service-oriented computing

Service-oriented computing organizes distributed systems in terms of services, which represent the
major abstraction for building systems. Service orientation expresses applications and software sys-
tems as aggregations of services that are coordinated within a service-oriented architecture (SOA).
Even though there is no designed technology for the development of service-oriented software sys-
tems, Web services are the de facto approach for developing SOA. Web services, the fundamental
component enabling cloud computing systems, leverage the Internet as the main interaction channel
between users and the system.

2.5.3.1 What is a service?
A service encapsulates a software component that provides a set of coherent and related function-
alities that can be reused and integrated into bigger and more complex applications. The term

62

CHAPTER 2 Principles of Parallel and Distributed Computing

service is a general abstraction that encompasses several different implementations using different
technologies and protocols. Don Box [107] identifies four major characteristics that identify a
service:

Boundaries are explicit. A service-oriented application is generally composed of services that
are spread across different domains, trust authorities, and execution environments. Generally,
crossing such boundaries is costly; therefore, service invocation is explicit by design and often
leverages message passing. With respect to distributed object programming, whereby remote
method invocation is transparent, in a service-oriented computing environment the interaction
with a service is explicit and the interface of a service is kept minimal to foster its reuse and
simplify the interaction.

Services are autonomous. Services are components that exist to offer functionality and are
aggregated and coordinated to build more complex system. They are not designed to be part of
a specific system, but they can be integrated in several software systems, even at the same time.
With respect to object orientation, which assumes that the deployment of applications is atomic,
service orientation considers this case an exception rather than the rule and puts the focus on
the design of the service as an autonomous component. The notion of autonomy also affects the
way services handle failures. Services operate in an unknown environment and interact with
third-party applications. Therefore, minimal assumptions can be made concerning such
environments: applications may fail without notice, messages can be malformed, and clients can
be unauthorized. Service-oriented design addresses these issues by using transactions, durable
queues, redundant deployment and failover, and administratively managed trust relationships
among different domains.

Services share schema and contracts, not class or interface definitions. Services are not
expressed in terms of classes or interfaces, as happens in object-oriented systems, but they
define themselves in terms of schemas and contracts. A service advertises a contract describing
the structure of messages it can send and/or receive and additional constraint—if any—on their
ordering. Because they are not expressed in terms of types and classes, services are more easily
consumable in wider and heterogeneous environments. At the same time, a service orientation
requires that contracts and schema remain stable over time, since it would be possible to
propagate changes to all its possible clients. To address this issue, contracts and schema are
defined in a way that allows services to evolve without breaking already deployed code.
Technologies such as XML and SOAP provide the appropriate tools to support such features
rather than class definition or an interface declaration.

Services compatibility is determined based on policy. Service orientation separates structural
compatibility from semantic compatibility. Structural compatibility is based on contracts and
schema and can be validated or enforced by machine-based techniques. Semantic compatibility
is expressed in the form of policies that define the capabilities and requirements for a service.
Policies are organized in terms of expressions that must hold true to enable the normal
operation of a service.

Today services constitute the most popular abstraction for designing complex and interoperable

systems. Distributed systems are meant to be heterogeneous, extensible, and dynamic. By abstract-
ing away from a specific implementation technology and platform, they provide a more efficient
way to achieve integration. Furthermore, being designed as autonomous components, they can be

2.5 Technologies for distributed computing 63

more easily reused and aggregated. These features are not carved from a smart system design and
implementation—as happens in the case of distributed object programming—but instead are part of
the service characterization.

2.5.3.2 Service-oriented architecture (SOA)

SOA [20] is an architectural style supporting service orientation.” It organizes a software system
into a collection of interacting services. SOA encompasses a set of design principles that structure
system development and provide means for integrating components into a coherent and decentra-
lized system. SOA-based computing packages functionalities into a set of interoperable services,
which can be integrated into different software systems belonging to separate business domains.

There are two major roles within SOA: the service provider and the service consumer. The ser-
vice provider is the maintainer of the service and the organization that makes available one or more
services for others to use. To advertise services, the provider can publish them in a registry,
together with a service contract that specifies the nature of the service, how to use it, the require-
ments for the service, and the fees charged. The service consumer can locate the service metadata
in the registry and develop the required client components to bind and use the service. Service pro-
viders and consumers can belong to different organization bodies or business domains. It is very
common in SOA-based computing systems that components play the roles of both service provider
and service consumer. Services might aggregate information and data retrieved from other services
or create workflows of services to satisfy the request of a given service consumer. This practice is
known as service orchestration, which more generally describes the automated arrangement, coor-
dination, and management of complex computer systems, middleware, and services. Another
important interaction pattern is service choreography, which is the coordinated interaction of ser-
vices without a single point of control.

SOA provides a reference model for architecting several software systems, especially enterprise
business applications and systems. In this context, interoperability, standards, and service contracts
play a fundamental role. In particular, the following guiding principles [108], which characterize
SOA platforms, are winning features within an enterprise context:

» Standardized service contract. Services adhere to a given communication agreement, which is
specified through one or more service description documents.

e Loose coupling. Services are designed as self-contained components, maintain relationships that
minimize dependencies on other services, and only require being aware of each other. Service
contracts will enforce the required interaction among services. This simplifies the flexible
aggregation of services and enables a more agile design strategy that supports the evolution of
the enterprise business.

e Abstraction. A service is completely defined by service contracts and description documents.
They hide their logic, which is encapsulated within their implementation. The use of service
description documents and contracts removes the need to consider the technical implementation

SThis definition is given by the Open Group (www.opengroup.org), which is a vendor- and technology-neutral consor-
tium that includes over 300 member organizations. Its activities include management, innovation, research, standards,
certification, and test development. The Open Group is most popular as a certifying body for the UNIX trademark, since
it is also the creator of the official definition of a UNIX system. The documentation and the standards related to SOA
can be found at the following address: www.opengroup.org/soa/soa/def.htm.

http://www.soa-manifesto.org
http://www.opengroup.org/soa/soa/def.htm

64 CHAPTER 2 Principles of Parallel and Distributed Computing

details and provides a more intuitive framework to define software systems within a business
context.

* Reusability. Designed as components, services can be reused more effectively, thus reducing
development time and the associated costs. Reusability allows for a more agile design and
cost-effective system implementation and deployment. Therefore, it is possible to leverage
third-party services to deliver required functionality by paying an appropriate fee rather
developing the same capability in-house.

e Autonomy. Services have control over the logic they encapsulate and, from a service consumer
point of view, there is no need to know about their implementation.

e Lack of state. By providing a stateless interaction pattern (at least in principle), services
increase the chance of being reused and aggregated, especially in a scenario in which a single
service is used by multiple consumers that belong to different administrative and business
domains.

* Discoverability. Services are defined by description documents that constitute supplemental
metadata through which they can be effectively discovered. Service discovery provides an
effective means for utilizing third-party resources.

* Composability. Using services as building blocks, sophisticated and complex operations can be
implemented. Service orchestration and choreography provide a solid support for composing
services and achieving business goals.

Together with these principles, other resources guide the use of SOA for enterprise application
integration (EAI). The SOA manifesto® integrates the previously described principles with general
considerations about the overall goals of a service-oriented approach to enterprise application soft-
ware design and what is valued in SOA. Furthermore, modeling frameworks and methodologies,
such as the Service-Oriented Modeling Framework (SOMF) [110] and reference architectures intro-
duced by the Organization for Advancement of Structured Information Standards (OASIS) [110],
provide means for effectively realizing service-oriented architectures.

SOA can be realized through several technologies. The first implementations of SOA have lev-
eraged distributed object programming technologies such as CORBA and DCOM. In particular,
CORBA has been a suitable platform for realizing SOA systems because it fosters interoperability
among different implementations and has been designed as a specification supporting the develop-
ment of industrial applications. Nowadays, SOA is mostly realized through Web services technol-
ogy, which provides an interoperable platform for connecting systems and applications.

2.5.3.3 Web services

Web services [21] are the prominent technology for implementing SOA systems and applications.
They leverage Internet technologies and standards for building distributed systems. Several aspects
make Web services the technology of choice for SOA. First, they allow for interoperability across
different platforms and programming languages. Second, they are based on well-known and
vendor-independent standards such as HTTP, SOAP [23], XML, and WSDL [22]. Third, they pro-
vide an intuitive and simple way to connect heterogeneous software systems, enabling the quick

5The SOA manifesto is a document authored by 17 practitioners of SOA that defines guidelines and principles for
designing and architecting software systems using a service orientation. The document is available online at: www.soa-
manifesto.org.

http://www.soa-manifesto.org
http://www.soa-manifesto.org

2.5 Technologies for distributed computing 65

composition of services in a distributed environment. Finally, they provide the features required by
enterprise business applications to be used in an industrial environment. They define facilities for
enabling service discovery, which allows system architects to more efficiently compose SOA appli-
cations, and service metering to assess whether a specific service complies with the contract
between the service provider and the service consumer.

The concept behind a Web service is very simple. Using as a basis the object-oriented abstrac-
tion, a Web service exposes a set of operations that can be invoked by leveraging Internet-based
protocols. Method operations support parameters and return values in the form of complex and sim-
ple types. The semantics for invoking Web service methods is expressed through interoperable stan-
dards such as XML and WSDL, which also provide a complete framework for expressing simple
and complex types in a platform-independent manner. Web services are made accessible by being
hosted in a Web server; therefore, HTTP is the most popular transport protocol used for interacting
with Web services. Figure 2.16 describes the common-use case scenarios for Web services.

System architects develop a Web service with their technology of choice and deploy it in com-
patible Web or application servers. The service description document, expressed by means of Web
Service Definition Language (WSDL), can be either uploaded to a global registry or attached as a
metadata to the service itself. Service consumers can look up and discover services in global cata-
logs using Universal Description Discovery and Integration (UDDI) or, most likely, directly
retrieve the service metadata by interrogating the Web service first. The Web service description
document allows service consumers to automatically generate clients for the given service and
embed them in their existing application. Web services are now extremely popular, so bindings

\t a\ ‘F
WebL WSDL(s) Web Service
Server | TR

’

UDDI Registry

7 - S _
A '\:" O G
Application™~] = = ’
.. ’ —~..,\,.

WS Client

Application

FIGURE 2.16
A Web services interaction reference scenario.

66 CHAPTER 2 Principles of Parallel and Distributed Computing

exist for any mainstream programming language in the form of libraries or development support
tools. This makes the use of Web services seamless and straightforward with respect to technolo-
gies such as CORBA that require much more integration effort. Moreover, being interoperable,
Web services constitute a better solution for SOA with respect to several distributed object frame-
works, such as .NET Remoting, Java RMI, and DCOM/COM+ , which limit their applicability to a
single platform or environment.

Besides the main function of enabling remote method invocation by using Web-based and inter-
operable standards, Web services encompass several technologies that put together and facilitate
the integration of heterogeneous applications and enable service-oriented computing. Figure 2.17
shows the Web service technologies stack that lists all the components of the conceptual framework
describing and enabling the Web services abstraction. These technologies cover all the aspects that
allow Web services to operate in a distributed environment, from the specific requirements for the
networking to the discovery of services. The backbone of all these technologies is XML, which is
also one of the causes of Web services’ popularity and ease of use. XML-based languages are used
to manage the low-level interaction for Web service method calls (SOAP), for providing metadata
about the services (WSDL), for discovery services (UDDI), and other core operations. In practice,
the core components that enable Web services are SOAP and WSDL.

Simple Object Access Protocol (SOAP) [23], an XML-based language for exchanging structured
information in a platform-independent manner, constitutes the protocol used for Web service
method invocation. Within a distributed context leveraging the Internet, SOAP is considered an
application layer protocol that leverages the transport level, most commonly HTTP, for IPC. SOAP
structures the interaction in terms of messages that are XML documents mimicking the structure of
a letter, with an envelope, a header, and a body. The envelope defines the boundaries of the SOAP
message. The header is optional and contains relevant information on how to process the message.
In addition, it contains information such as routing and delivery settings, authentication and authori-
zation assertions, and transaction contexts. The body contains the actual message to be processed.

The main uses of SOAP messages are method invocation and result retrieval. Figure 2.18 shows
an example of a SOAP message used to invoke a Web service method that retrieves the price of a

. r ~
WSFL ft Web Service Flow L

Static — UDDI [Service Discovery] @

Q

Direct — UDDI (Service Publication = £

l cl| ©

ol n

WSDL rf Service Descripti 2 g |3

| ervice Description 2| 5l >

S [0 =

(mIFHE

SOAP |l XML-based Messaging] slsla

HTTPFTP,e-mail, MQ, lIOP, l[Network]

A\ J

FIGURE 2.17
A Web services technologies stack.

2.5 Technologies for distributed computing 67

POST /InStock HTTP/1.1

Host: www.stocks.com

Content-Type: application/soap+xml; charset=utf-g8
Content-Length: <Size>

<?xml version="1.0">

<soap:Envelope xmlns:soap="http//www.w3.0rg/2001/12/soap-envelope”
soap:encondingStyle="http//www.w3.0rg/2001/12/socap-encoding”>
R G Header: Metadata & Assertions |-

f‘<soap:Body xmlns:mehttp://www.stocks.org/stock> i
| <m:GetStockPrice> :
é <m: StockName>IBM<m:StockName> :
i </m:GetStockPrice> :
i </soap:Body> ;

@
o
=
=
=
e
=
o
a
o
5
—
X
\

A
~
§
o
]
5
o
)
(¢]
o]
(]
v

POST /InStock HTTP/1.1

Host: www.stocks.com

Content-Type: application/soap+xml; charset=utf-8
Content-Length: <Size>

<?xml version="1.0">

<soap:Envelope xmlns:soap="http//www.w3.0rg/2001/12/socap-envelope”

soap:encondingStyle="http//www.w3.0rg/2001/12/scap-encoding”>

Header: Metadata & Assertions l‘

{ <soap:Body xmlns:m=http://www.stocks.org/stock>

<m:GetStockPriceResponse> :
<m:Price>34.5<m:Price> :
</m:GetStockPriceResponse> :

</soap:Body>
N eeeeeseeseecsseescseseeessssesesessssssssesssesessssssesessssssesessesssasenns Body: Execution Result l-"

A
~
©

£
o

5]
El

&

bl
8

o

v

FIGURE 2.18

SOAP messages for Web service method invocation.

given stock and the corresponding reply. Despite the fact that XML documents are easy to produce
and process in any platform or programming language, SOAP has often been considered quite inef-
ficient because of the excessive use of markup that XML imposes for organizing the information
into a well-formed document. Therefore, lightweight alternatives to the SOAP/XML pair have been
proposed to support Web services. The most relevant alternative is Representational State Transfer

68 CHAPTER 2 Principles of Parallel and Distributed Computing

(REST), which provides a model for designing network-based software systems utilizing the client/
server model and leverages the facilities provided by HTTP for IPC without additional burden.

In a RESTful system, a client sends a request over HTTP using the standard HTTP methods
(PUT, GET, POST, and DELETE), and the server issues a response that includes the representation
of the resource. By relying on this minimal support, it is possible to provide whatever it needed to
replace the basic and most important functionality provided by SOAP, which is method invocation.
The GET, PUT, POST, and DELETE methods constitute a minimal set of operations for retrieving,
adding, modifying, and deleting data. Together with an appropriate URI organization to identify
resources, all the atomic operations required by a Web service are implemented. The content of
data is still transmitted using XML as part of the HTTP content, but the additional markup required
by SOAP is removed. For this reason, REST represents a lightweight alternative to SOAP, which
works effectively in contexts where additional aspects beyond those manageable through HTTP are
absent. One of them is security; RESTful Web services operate in an environment where no addi-
tional security beyond the one supported by HTTP is required. This is not a great limitation, and
RESTful Web services are quite popular and used to deliver functionalities at enterprise scale:
Twitter, Yahoo! (search APIs, maps, photos, etc), Flickr, and Amazon.com all leverage REST.

Web Service Description Language (WSDL) [22] is an XML-based language for the description
of Web services. It is used to define the interface of a Web service in terms of methods to be called
and types and structures of the required parameters and return values. In Figure 2.18 we notice that
the SOAP messages for invoking the GetStockPrice method and receiving the result do not have
any information about the type and structure of the parameters and the return values. This informa-
tion is stored within the WSDL document attached to the Web service. Therefore, Web service con-
sumer applications already know which types of parameters are required and how to interpret
results. As an XML-based language, WSDL allows for the automatic generation of Web service cli-
ents that can be easily embedded into existing applications. Moreover, XML is a platform- and
language-independent specification, so clients for web services can be generated for any language
that is capable of interpreting XML data. This is a fundamental feature that enables Web service
interoperability and one of the reasons that make such technology a solution of choice for SOA.

Besides those directly supporting Web services, other technologies that characterize Web 2.0
[27] provide and contribute to enrich and empower Web applications and then SOA-based systems.
These fall under the names of Asynchronous JavaScript and XML (AJAX), JavaScript Standard
Object Notation (JSON), and others. AJAX is a conceptual framework based on JavaScript and
XML that enables asynchronous behavior in Web applications by leveraging the computing capa-
bilities of modern Web browsers. This transforms simple Web pages in full-fledged applications,
thus enriching the user experience. AJAX uses XML to exchange data with Web services and
applications; an alternative to XML is JSON, which allows representing objects and collections of
objects in a platform-independent manner. Often it is preferred to transmit data in a AJAX context
because, compared to XML, it is a lighter notation and therefore allows transmitting the same
amount of information in a more concise form.

2.5.3.4 Service orientation and cloud computing

Web services and Web 2.0-related technologies constitute a fundamental building block for cloud
computing systems and applications. Web 2.0 applications are the front end of cloud computing
systems, which deliver services either via Web service or provide a profitable interaction with

Summary 69

AJAX-based clients. Essentially, cloud computing fosters the vision of Everything as a Service
(XaaS$): infrastructure, platform, services, and applications. The entire IT computing stack—from
infrastructure to applications—can be composed by relying on cloud computing services. Within
this context, SOA is a winning approach because it encompasses design principles to structure,
compose, and deploy software systems in terms of services. Therefore, a service orientation consti-
tutes a natural approach to shaping cloud computing systems because it provides a means to flexi-
bly compose and integrate additional capabilities into existing software systems. Cloud computing
is also used to elastically scale and empower existing software applications on demand. Service ori-
entation fosters interoperability and leverages platform-independent technologies by definition.
Within this context, it constitutes a natural solution for solving integration issues and favoring
cloud computing adoption.

SUMMARY

In this chapter, we provided an introduction to parallel and distributed computing as a foundation
for better understanding cloud computing. Parallel and distributed computing emerged as a solution
for solving complex/’grand challenge” problems by first using multiple processing elements and
then multiple computing nodes in a network. The transition from sequential to parallel and distrib-
uted processing offers high performance and reliability for applications. But it also introduces new
challenges in terms of hardware architectures, technologies for interprocess communication, and
algorithms and system design. We discussed the evolution of technologies supporting parallel pro-
cessing and introduced the major reference models for designing and implementing distributed
systems.

Parallel computing introduces models and architectures for performing multiple tasks within a
single computing node or a set of tightly coupled nodes with homogeneous hardware. Parallelism is
achieved by leveraging hardware capable of processing multiple instructions in parallel. Different
architectures exploit parallelism to increase the performance of a computing system, depending on
whether parallelism is realized on data, instructions, or both. The development of parallel applica-
tions often requires specific environments and compilers that provide transparent access to the
advanced capabilities of the underlying architectures.

Unification of parallel and distributed computing allows one to harness a set of networked and
heterogeneous computers and present them as a unified resource. Distributed systems constitute a
large umbrella under which several different software systems are classified. Architectural styles
help categorize and provide reference models for distributed systems. More precisely, software
architectural styles define logical organizations of components and their roles, whereas system
architectural styles are more concerned with the physical deployment of such systems. We have
briefly reviewed the major reference software architectural styles and discussed the most important
system architectural styles: the client/server and peer-to-peer models. These two styles are the fun-
damental deployment blocks of any distributed system. In particular, the client/server model is the
foundation of the most popular interaction patterns among components within a distributed system.

Interprocess communication (IPC) is a fundamental element in distributed systems; it is the ele-
ment that ties together separate processes and allows them to be seen as a whole. Message-based
communication is the most relevant abstraction for IPC and forms the basis for several different

|
70

CHAPTER 2 Principles of Parallel and Distributed Computing

techniques for IPC: remote procedure calls, distributed objects, and services. We reviewed the ref-
erence models that are used to organize the communication within the components of a distributed
system and presented the major features of each of the abstractions.

Cloud computing leverages these models, abstractions, and technologies and provides a more

efficient way to design and use distributed systems by making entire systems or components avail-
able on demand.

Review questions

—
COONOUTAWN=

11.
12.
13.
14.

15.
16.
17.
18.
19.
20.

What is the difference between parallel and distributed computing?

Identify the reasons that parallel processing constitutes an interesting option for computing.
What is an SIMD architecture?

List the major categories of parallel computing systems.

Describe the different levels of parallelism that can be obtained in a computing system.
What is a distributed system? What are the components that characterize it?

What is an architectural style, and what is its role in the context of a distributed system?
List the most important software architectural styles.

What are the fundamental system architectural styles?

What is the most relevant abstraction for interprocess communication in a distributed system?
Discuss the most important model for message-based communication.

Discuss RPC and how it enables interprocess communication.

What is the difference between distributed objects and RPC?

What are object activation and lifetime? How do they affect the consistency of state within a
distributed system?

What are the most relevant technologies for distributed objects programming?

Discuss CORBA.

What is service-oriented computing?

What is market-oriented cloud computing?

What is SOA?

Discuss the most relevant technologies supporting service computing.

CHAPTER

Virtualization

Virtualization technology is one of the fundamental components of cloud computing, especially in
regard to infrastructure-based services. Virtualization allows the creation of a secure, customizable,
and isolated execution environment for running applications, even if they are untrusted, without
affecting other users’ applications. The basis of this technology is the ability of a computer pro-
gram—or a combination of software and hardware—to emulate an executing environment separate
from the one that hosts such programs. For example, we can run Windows OS on top of a virtual
machine, which itself is running on Linux OS. Virtualization provides a great opportunity to build
elastically scalable systems that can provision additional capability with minimum costs. Therefore,
virtualization is widely used to deliver customizable computing environments on demand.

This chapter discusses the fundamental concepts of virtualization, its evolution, and various
models and technologies used in cloud computing environments.

Introduction

Virtualization is a large umbrella of technologies and concepts that are meant to provide an abstract
environment—whether virtual hardware or an operating system—to run applications. The term
virtualization is often synonymous with hardware virtualization, which plays a fundamental role in
efficiently delivering Infrastructure-as-a-Service (laaS) solutions for cloud computing. In fact,
virtualization technologies have a long trail in the history of computer science and have been available
in many flavors by providing virtual environments at the operating system level, the programming lan-
guage level, and the application level. Moreover, virtualization technologies provide a virtual environ-
ment for not only executing applications but also for storage, memory, and networking.

Since its inception, virtualization has been sporadically explored and adopted, but in the last
few years there has been a consistent and growing trend to leverage this technology. Virtualization
technologies have gained renewed interested recently due to the confluence of several phenomena:

e Increased performance and computing capacity. Nowadays, the average end-user desktop PC
is powerful enough to meet almost all the needs of everyday computing, with extra capacity that
is rarely used. Almost all these PCs have resources enough to host a virtual machine manager and
execute a virtual machine with by far acceptable performance. The same consideration applies to
the high-end side of the PC market, where supercomputers can provide immense compute power
that can accommodate the execution of hundreds or thousands of virtual machines.

* Underutilized hardware and software resources. Hardware and software underutilization is
occurring due to (1) increased performance and computing capacity, and (2) the effect of

71

72

CHAPTER 3 Virtualization

limited or sporadic use of resources. Computers today are so powerful that in most cases only a
fraction of their capacity is used by an application or the system. Moreover, if we consider the
IT infrastructure of an enterprise, many computers are only partially utilized whereas they could
be used without interruption on a 24/7/365 basis. For example, desktop PCs mostly devoted to
office automation tasks and used by administrative staff are only used during work hours,
remaining completely unused overnight. Using these resources for other purposes after hours
could improve the efficiency of the IT infrastructure. To transparently provide such a service, it
would be necessary to deploy a completely separate environment, which can be achieved
through virtualization.

Lack of space. The continuous need for additional capacity, whether storage or compute power,
makes data centers grow quickly. Companies such as Google and Microsoft expand their
infrastructures by building data centers as large as football fields that are able to host thousands
of nodes. Although this is viable for IT giants, in most cases enterprises cannot afford to build
another data center to accommodate additional resource capacity. This condition, along with
hardware underutilization, has led to the diffusion of a technique called server comolidation,l
for which virtualization technologies are fundamental.

Greening initiatives. Recently, companies are increasingly looking for ways to reduce the amount
of energy they consume and to reduce their carbon footprint. Data centers are one of the major
power consumers; they contribute consistently to the impact that a company has on the
environment. Maintaining a data center operation not only involves keeping servers on, but a
great deal of energy is also consumed in keeping them cool. Infrastructures for cooling have a
significant impact on the carbon footprint of a data center. Hence, reducing the number of servers
through server consolidation will definitely reduce the impact of cooling and power consumption
of a data center. Virtualization technologies can provide an efficient way of consolidating servers.
Rise of administrative costs. Power consumption and cooling costs have now become higher
than the cost of IT equipment. Moreover, the increased demand for additional capacity, which
translates into more servers in a data center, is also responsible for a significant increment in
administrative costs. Computers—in particular, servers—do not operate all on their own, but
they require care and feeding from system administrators. Common system administration tasks
include hardware monitoring, defective hardware replacement, server setup and updates, server
resources monitoring, and backups. These are labor-intensive operations, and the higher the
number of servers that have to be managed, the higher the administrative costs. Virtualization
can help reduce the number of required servers for a given workload, thus reducing the cost of
the administrative personnel.

These can be considered the major causes for the diffusion of hardware virtualization solutions

as well as the other kinds of virtualization. The first step toward consistent adoption of virtualiza-
tion technologies was made with the wide spread of virtual machine-based programming languages:
In 1995 Sun released Java, which soon became popular among developers. The ability to integrate
small Java applications, called applets, made Java a very successful platform, and with the

IServer consolidation is a technique for aggregating multiple services and applications originally deployed on different
servers on one physical server. Server consolidation allows us to reduce the power consumption of a data center and
resolve hardware underutilization.

3.2 Characteristics of virtualized environments 73

beginning of the new millennium Java played a significant role in the application server market
segment, thus demonstrating that the existing technology was ready to support the execution of
managed code for enterprise-class applications. In 2002 Microsoft released the first version of .NET
Framework, which was Microsoft’s alternative to the Java technology. Based on the same
principles as Java, able to support multiple programming languages, and featuring complete integra-
tion with other Microsoft technologies, .NET Framework soon became the principal development
platform for the Microsoft world and quickly became popular among developers. In 2006, two of the
three “official languages” used for development at Google, Java and Python, were based on the
virtual machine model. This trend of shifting toward virtualization from a programming language
perspective demonstrated an important fact: The technology was ready to support virtualized solu-
tions without a significant performance overhead. This paved the way to another and more radical
form of virtualization that now has become a fundamental requisite for any data center management
infrastructure.

Characteristics of virtualized environments

Virtualization is a broad concept that refers to the creation of a virtual version of something,
whether hardware, a software environment, storage, or a network. In a virtualized environment
there are three major components: guest, host, and virtualization layer. The guest represents the
system component that interacts with the virtualization layer rather than with the host, as would
normally happen. The host represents the original environment where the guest is supposed to be
managed. The virtualization layer is responsible for recreating the same or a different environment
where the guest will operate (see Figure 3.1).

Such a general abstraction finds different applications and then implementations of the virtuali-
zation technology. The most intuitive and popular is represented by hardware virtualization, which
also constitutes the original realization of the virtualization concept.” In the case of hardware vir-
tualization, the guest is represented by a system image comprising an operating system and
installed applications. These are installed on top of virtual hardware that is controlled and managed
by the virtualization layer, also called the virtual machine manager. The host is instead represented
by the physical hardware, and in some cases the operating system, that defines the environment
where the virtual machine manager is running. In the case of virtual storage, the guest might be cli-
ent applications or users that interact with the virtual storage management software deployed
on top of the real storage system. The case of virtual networking is also similar: The guest—
applications and users—interacts with a virtual network, such as a virtual private network (VPN),
which is managed by specific software (VPN client) using the physical network available on the
node. VPNs are useful for creating the illusion of being within a different physical network and
thus accessing the resources in it, which would otherwise not be available.

Virtualization is a technology that was initially developed during the mainframe era. The IBM CP/CMS mainframes
were the first systems to introduce the concept of hardware virtualization and hypervisors. These systems, able to run
multiple operating systems at the same time, provided a backward-compatible environment that allowed customers to
run previous versions of their applications.

74 CHAPTER 3 Virtualization

|

Guest Virtual Image | |

Virtual Storage ------eemeeeeo- [Virtual Networking

Software Emulation

I
i
'
'
i
i
I
'

<
=
[
o
T
o
]
|
g
o
=
®

Virtualization Layer

Host

FIGURE 3.1

The virtualization reference model.

The main common characteristic of all these different implementations is the fact that the vir-
tual environment is created by means of a software program. The ability to use software to emulate
such a wide variety of environments creates a lot of opportunities, previously less attractive because
of excessive overhead introduced by the virtualization layer. The technologies of today allow
profitable use of virtualization and make it possible to fully exploit the advantages that come with
it. Such advantages have always been characteristics of virtualized solutions.

3.2.1 Increased security

The ability to control the execution of a guest in a completely transparent manner opens new pos-
sibilities for delivering a secure, controlled execution environment. The virtual machine repre-
sents an emulated environment in which the guest is executed. All the operations of the guest are
generally performed against the virtual machine, which then translates and applies them to the
host. This level of indirection allows the virtual machine manager to control and filter the activity
of the guest, thus preventing some harmful operations from being performed. Resources exposed
by the host can then be hidden or simply protected from the guest. Moreover, sensitive

3.2 Characteristics of virtualized environments 75

___ et S
\. Sharing / /Aggregatio\ Emulation Isolation
Physical
Resources

FIGURE 3.2
Functions enabled by managed execution.

information that is contained in the host can be naturally hidden without the need to install com-
plex security policies. Increased security is a requirement when dealing with untrusted code. For
example, applets downloaded from the Internet run in a sandboxed® version of the Java Virtual
Machine (JVM), which provides them with limited access to the hosting operating system
resources. Both the JVM and the .NET runtime provide extensive security policies for customiz-
ing the execution environment of applications. Hardware virtualization solutions such as VMware
Desktop, VirtualBox, and Parallels provide the ability to create a virtual computer with custom-
ized virtual hardware on top of which a new operating system can be installed. By default, the
file system exposed by the virtual computer is completely separated from the one of the host
machine. This becomes the perfect environment for running applications without affecting other
users in the environment.

Managed execution

Virtualization of the execution environment not only allows increased security, but a wider range
of features also can be implemented. In particular, sharing, aggregation, emulation, and isolation
are the most relevant features (see Figure 3.2).

e Sharing. Virtualization allows the creation of a separate computing environments within the
same host. In this way it is possible to fully exploit the capabilities of a powerful guest, which
would otherwise be underutilized. As we will see in later chapters, sharing is a particularly
important feature in virtualized data centers, where this basic feature is used to reduce the
number of active servers and limit power consumption.

The term sandbox identifies an isolated execution environment where instructions can be filtered and blocked before
being translated and executed in the real execution environment. The expression sandboxed version of the Java Virtual
Machine (JVM) refers to a particular configuration of the JVM where, by means of security policy, instructions that are
considered potential harmful can be blocked.

76 CHAPTER 3 Virtualization

e Aggregation. Not only is it possible to share physical resource among several guests, but
virtualization also allows aggregation, which is the opposite process. A group of separate hosts
can be tied together and represented to guests as a single virtual host. This function is naturally
implemented in middleware for distributed computing, with a classical example represented by
cluster management software, which harnesses the physical resources of a homogeneous group
of machines and represents them as a single resource.

e Emulation. Guest programs are executed within an environment that is controlled by the
virtualization layer, which ultimately is a program. This allows for controlling and tuning the
environment that is exposed to guests. For instance, a completely different environment with
respect to the host can be emulated, thus allowing the execution of guest programs requiring
specific characteristics that are not present in the physical host. This feature becomes very
useful for testing purposes, where a specific guest has to be validated against different platforms
or architectures and the wide range of options is not easily accessible during development.
Again, hardware virtualization solutions are able to provide virtual hardware and emulate a
particular kind of device such as Small Computer System Interface (SCSI) devices for file 1/0,
without the hosting machine having such hardware installed. Old and legacy software that does
not meet the requirements of current systems can be run on emulated hardware without any
need to change the code. This is possible either by emulating the required hardware architecture
or within a specific operating system sandbox, such as the MS-DOS mode in Windows 95/98.
Another example of emulation is an arcade-game emulator that allows us to play arcade games
on a normal personal computer.

e Isolation. Virtualization allows providing guests—whether they are operating systems,
applications, or other entities—with a completely separate environment, in which they are
executed. The guest program performs its activity by interacting with an abstraction layer,
which provides access to the underlying resources. Isolation brings several benefits; for
example, it allows multiple guests to run on the same host without interfering with each other.
Second, it provides a separation between the host and the guest. The virtual machine can filter
the activity of the guest and prevent harmful operations against the host.

Besides these characteristics, another important capability enabled by virtualization is perfor-
mance tuning. This feature is a reality at present, given the considerable advances in hardware
and software supporting virtualization. It becomes easier to control the performance of the guest
by finely tuning the properties of the resources exposed through the virtual environment. This
capability provides a means to effectively implement a quality-of-service (QoS) infrastructure
that more easily fulfills the service-level agreement (SLA) established for the guest. For instance,
software-implementing hardware virtualization solutions can expose to a guest operating system
only a fraction of the memory of the host machine or set the maximum frequency of the proces-
sor of the virtual machine. Another advantage of managed execution is that sometimes it allows
easy capturing of the state of the guest program, persisting it, and resuming its execution. This,
for example, allows virtual machine managers such as Xen Hypervisor to stop the execution of a
guest operating system, move its virtual image into another machine, and resume its execution in
a completely transparent manner. This technique is called virtual machine migration and constitu-
tes an important feature in virtualized data centers for optimizing their efficiency in serving
application demands.

3.3 Taxonomy of virtualization techniques 77

Portability

The concept of portability applies in different ways according to the specific type of virtualization con-
sidered. In the case of a hardware virtualization solution, the guest is packaged into a virtual image
that, in most cases, can be safely moved and executed on top of different virtual machines. Except for
the file size, this happens with the same simplicity with which we can display a picture image in differ-
ent computers. Virtual images are generally proprietary formats that require a specific virtual machine
manager to be executed. In the case of programming-level virtualization, as implemented by the JVM
or the .NET runtime, the binary code representing application components (jars or assemblies) can be
run without any recompilation on any implementation of the corresponding virtual machine. This
makes the application development cycle more flexible and application deployment very straightfor-
ward: One version of the application, in most cases, is able to run on different platforms with no
changes. Finally, portability allows having your own system always with you and ready to use as long
as the required virtual machine manager is available. This requirement is, in general, less stringent than
having all the applications and services you need available to you anywhere you go.

Taxonomy of virtualization techniques

Virtualization covers a wide range of emulation techniques that are applied to different areas of
computing. A classification of these techniques helps us better understand their characteristics and
use (see Figure 3.3).

The first classification discriminates against the service or entity that is being emulated.
Virtualization is mainly used to emulate execution environments, storage, and networks. Among
these categories, execution virtualization constitutes the oldest, most popular, and most developed
area. Therefore, it deserves major investigation and a further categorization. In particular we can
divide these execution virtualization techniques into two major categories by considering the type
of host they require. Process-level techniques are implemented on top of an existing operating sys-
tem, which has full control of the hardware. System-level techniques are implemented directly on
hardware and do not require—or require a minimum of support from—an existing operating
system. Within these two categories we can list various techniques that offer the guest a different
type of virtual computation environment: bare hardware, operating system resources, low-level
programming language, and application libraries.

Execution virtualization

Execution virtualization includes all techniques that aim to emulate an execution environment that
is separate from the one hosting the virtualization layer. All these techniques concentrate their inter-
est on providing support for the execution of programs, whether these are the operating system, a binary
specification of a program compiled against an abstract machine model, or an application. Therefore,
execution virtualization can be implemented directly on top of the hardware by the operating system,
an application, or libraries dynamically or statically linked to an application image.

78 CHAPTER 3 Virtualization

[How it is done?] [Technique] [Virtualization Model]
[| | | | |
—1 Emulation Application
Execution P Level High-Level VM Programming
* Environment rocess Level igh-Leve Language
L~ Storage] Operating
=z — Multiprogramming
Virtualization — System
.\..Ia Network Hardware-Assisted
Virtualization
1 Full Virtualization
— System Level [— Hardware
— | Paravirtualization
— Partial Virtualization
FIGURE 3.3

A taxonomy of virtualization techniques.

3.3.1.1 Machine reference model
Virtualizing an execution environment at different levels of the computing stack requires a refer-
ence model that defines the interfaces between the levels of abstractions, which hide implementa-
tion details. From this perspective, virtualization techniques actually replace one of the layers and
intercept the calls that are directed toward it. Therefore, a clear separation between layers simplifies
their implementation, which only requires the emulation of the interfaces and a proper interaction
with the underlying layer.

Modern computing systems can be expressed in terms of the reference model described in Figure 3.4.
At the bottom layer, the model for the hardware is expressed in terms of the Instruction Set Architecture
(ISA), which defines the instruction set for the processor, registers, memory, and interrupt management.
ISA is the interface between hardware and software, and it is important to the operating system (OS)
developer (System ISA) and developers of applications that directly manage the underlying hardware
(User ISA). The application binary interface (ABI) separates the operating system layer from the applica-
tions and libraries, which are managed by the OS. ABI covers details such as low-level data types, align-
ment, and call conventions and defines a format for executable programs. System calls are defined at this
level. This interface allows portability of applications and libraries across operating systems that

3.3 Taxonomy of virtualization techniques 79
Applications Applications
API - - - T — : API calls
Libraries E Libraries
| — . ___
AB|l [pr==mressscssrezssssesssenem e System calls User
User | ISA
Operative System Operative System ISA
D e ISA
Hardware Hardware
FIGURE 3.4

A machine reference model.

implement the same ABI. The highest level of abstraction is represented by the application programming
interface (API), which interfaces applications to libraries and/or the underlying operating system.

For any operation to be performed in the application level API, ABI and ISA are responsible
for making it happen. The high-level abstraction is converted into machine-level instructions to per-
form the actual operations supported by the processor. The machine-level resources, such as proces-
sor registers and main memory capacities, are used to perform the operation at the hardware level
of the central processing unit (CPU). This layered approach simplifies the development and imple-
mentation of computing systems and simplifies the implementation of multitasking and the coexis-
tence of multiple executing environments. In fact, such a model not only requires limited
knowledge of the entire computing stack, but it also provides ways to implement a minimal security
model for managing and accessing shared resources.

For this purpose, the instruction set exposed by the hardware has been divided into different
security classes that define who can operate with them. The first distinction can be made between
privileged and nonprivileged instructions. Nonprivileged instructions are those instructions that can
be used without interfering with other tasks because they do not access shared resources. This cate-
gory contains, for example, all the floating, fixed-point, and arithmetic instructions. Privileged
instructions are those that are executed under specific restrictions and are mostly used for sensitive
operations, which expose (behavior-sensitive) or modify (control-sensitive) the privileged state. For
instance, behavior-sensitive instructions are those that operate on the I/O, whereas control-sensitive
instructions alter the state of the CPU registers. Some types of architecture feature more than one
class of privileged instructions and implement a finer control of how these instructions can be
accessed. For instance, a possible implementation features a hierarchy of privileges (see Figure 3.5)
in the form of ring-based security: Ring 0, Ring 1, Ring 2, and Ring 3; Ring 0 is in the most privi-
leged level and Ring 3 in the least privileged level. Ring O is used by the kernel of the OS, rings 1
and 2 are used by the OS-level services, and Ring 3 is used by the user. Recent systems support
only two levels, with Ring O for supervisor mode and Ring 3 for user mode.

80 CHAPTER 3 Virtualization

Least Privileged Mode
(User Mode)

Privileged Modes

Most Privileged Mode
(Supervisor Mode)

FIGURE 3.5
Security rings and privilege modes.

All the current systems support at least two different execution modes: supervisor mode and user
mode. The first mode denotes an execution mode in which all the instructions (privileged and nonprivi-
leged) can be executed without any restriction. This mode, also called master mode or kernel mode, is
generally used by the operating system (or the hypervisor) to perform sensitive operations on hardware-
level resources. In user mode, there are restrictions to control the machine-level resources. If code run-
ning in user mode invokes the privileged instructions, hardware interrupts occur and trap the potentially
harmful execution of the instruction. Despite this, there might be some instructions that can be invoked
as privileged instructions under some conditions and as nonprivileged instructions under other conditions.

The distinction between user and supervisor mode allows us to understand the role of the hypervisor
and why it is called that. Conceptually, the hypervisor runs above the supervisor mode, and from here
the prefix hyper- is used. In reality, hypervisors are run in supervisor mode, and the division between
privileged and nonprivileged instructions has posed challenges in designing virtual machine managers.
It is expected that all the sensitive instructions will be executed in privileged mode, which requires
supervisor mode in order to avoid traps. Without this assumption it is impossible to fully emulate and
manage the status of the CPU for guest operating systems. Unfortunately, this is not true for the original
ISA, which allows 17 sensitive instructions to be called in user mode. This prevents multiple operating
systems managed by a single hypervisor to be isolated from each other, since they are able to access the
privileged state of the processor and change it.* More recent implementations of ISA (Intel VT and
AMD Pacifica) have solved this problem by redesigning such instructions as privileged ones.

By keeping in mind this reference model, it is possible to explore and better understand the var-
ious techniques utilized to virtualize execution environments and their relationships to the other
components of the system.

“t is expected that in a hypervisor-managed environment, all the guest operating system code will be run in user mode in
order to prevent it from directly accessing the status of the CPU. If there are sensitive instructions that can be called in
user mode (that is, implemented as nonprivileged instructions), it is no longer possible to completely isolate the guest OS.

3.3 Taxonomy of virtualization techniques 81

In-memory
|l | 1 representation

Virtual Image
Storage .

VMM Host emulation

[| Virtual Machine }—J

Binary translation

w Instruction mapping
Interpretation

FIGURE 3.6
A hardware virtualization reference model.

3.3.1.2 Hardware-level virtualization
Hardware-level virtualization is a virtualization technique that provides an abstract execution envi-
ronment in terms of computer hardware on top of which a guest operating system can be run. In
this model, the guest is represented by the operating system, the host by the physical computer
hardware, the virtual machine by its emulation, and the virtual machine manager by the hypervisor
(see Figure 3.6). The hypervisor is generally a program or a combination of software and hardware
that allows the abstraction of the underlying physical hardware.

Hardware-level virtualization is also called system virtualization, since it provides ISA to virtual
machines, which is the representation of the hardware interface of a system. This is to differentiate
it from process virtual machines, which expose ABI to virtual machines.

Hypervisors

A fundamental element of hardware virtualization is the hypervisor, or virtual machine manager
(VMM). It recreates a hardware environment in which guest operating systems are installed. There
are two major types of hypervisor: Type I and Type II (see Figure 3.7).

e Type I hypervisors run directly on top of the hardware. Therefore, they take the place of the
operating systems and interact directly with the ISA interface exposed by the underlying
hardware, and they emulate this interface in order to allow the management of guest operating
systems. This type of hypervisor is also called a native virtual machine since it runs natively on
hardware.

82 CHAPTER 3 Virtualization

e Type II hypervisors require the support of an operating system to provide virtualization
services. This means that they are programs managed by the operating system, which interact
with it through the ABI and emulate the ISA of virtual hardware for guest operating systems.
This type of hypervisor is also called a hosted virtual machine since it is hosted within an
operating system.

Hardware Hardware

FIGURE 3.7

Hosted (left) and native (right) virtual machines. This figure provides a graphical representation of the two
types of hypervisors.

Conceptually, a virtual machine manager is internally organized as described in Figure 3.8.
Three main modules, dispatcher, allocator, and interpreter, coordinate their activity in order to
emulate the underlying hardware. The dispatcher constitutes the entry point of the monitor and
reroutes the instructions issued by the virtual machine instance to one of the two other modules.
The allocator is responsible for deciding the system resources to be provided to the VM: whenever
a virtual machine tries to execute an instruction that results in changing the machine resources asso-
ciated with that VM, the allocator is invoked by the dispatcher. The interpreter module consists of
interpreter routines. These are executed whenever a virtual machine executes a privileged instruc-
tion: a trap is triggered and the corresponding routine is executed.

The design and architecture of a virtual machine manager, together with the underlying hardware
design of the host machine, determine the full realization of hardware virtualization, where a guest
operating system can be transparently executed on top of a VMM as though it were run on the underly-
ing hardware. The criteria that need to be met by a virtual machine manager to efficiently support vir-
tualization were established by Goldberg and Popek in 1974 [23]. Three properties have to be satisfied:

* Equivalence. A guest running under the control of a virtual machine manager should exhibit the
same behavior as when it is executed directly on the physical host.

e Resource control. The virtual machine manager should be in complete control of virtualized
resources.

3.3 Taxonomy of virtualization techniques 83

Virtual Machine Instance

Interpreter
Routines

Dispatcher

Allocator

Virtual Machine Manager

FIGURE 3.8

A hypervisor reference architecture.

e Efficiency. A statistically dominant fraction of the machine instructions should be executed
without intervention from the virtual machine manager.

The major factor that determines whether these properties are satisfied is represented by the lay-
out of the ISA of the host running a virtual machine manager. Popek and Goldberg provided a clas-
sification of the instruction set and proposed three theorems that define the properties that hardware
instructions need to satisfy in order to efficiently support virtualization.

[
THEOREM 3.1

For any conventional third-generation computer, a VMM may be constructed if the set of sensi-
tive instructions for that computer is a subset of the set of privileged instructions. -

This theorem establishes that all the instructions that change the configuration of the system
resources should generate a trap in user mode and be executed under the control of the virtual
machine manager. This allows hypervisors to efficiently control only those instructions that would
reveal the presence of an abstraction layer while executing all the rest of the instructions without
considerable performance loss. The theorem always guarantees the resource control property when
the hypervisor is in the most privileged mode (Ring 0). The nonprivileged instructions must be exe-
cuted without the intervention of the hypervisor. The equivalence property also holds good since
the output of the code is the same in both cases because the code is not changed.

84 CHAPTER 3 Virtualization

Privileged Instructions

User Instructions

FIGURE 3.9

A virtualizable computer (left) and a nonvirtualizable computer (right).

[
THEOREM 3.2

A conventional third-generation computer is recursively virtualizable if:

» [t is virtualizable and
* A VMM without any timing dependencies can be constructed for it.

Recursive virtualization is the ability to run a virtual machine manager on top of another
virtual machine manager. This allows nesting hypervisors as long as the capacity of the underly-
ing resources can accommodate that. Virtualizable hardware is a prerequisite to recursive
virtualization.

[
THEOREM 3.3

A hybrid VMM may be constructed for any conventional third-generation machine in which the
set of user-sensitive instructions is a subset of the set of privileged instructions.
|

There is another term, hybrid virtual machine (HVM), which is less efficient than the virtual
machine system. In the case of an HVM, more instructions are interpreted rather than being executed
directly. All instructions in virtual supervisor mode are interpreted. Whenever there is an attempt to
execute a behavior-sensitive or control-sensitive instruction, HVM controls the execution directly or
gains the control via a trap. Here all sensitive instructions are caught by HVM that are simulated.

3.3 Taxonomy of virtualization techniques 85

This reference model represents what we generally consider classic virtualization—that is, the
ability to execute a guest operating system in complete isolation. To a greater extent, hardware-
level virtualization includes several strategies that differentiate from each other in terms of which
kind of support is expected from the underlying hardware, what is actually abstracted from the
host, and whether the guest should be modified or not.

Hardware virtualization techniques

Hardware-assisted virtualization. This term refers to a scenario in which the hardware provides
architectural support for building a virtual machine manager able to run a guest operating system
in complete isolation. This technique was originally introduced in the IBM System/370. At present,
examples of hardware-assisted virtualization are the extensions to the x86-64 bit architecture introduced
with Intel VT (formerly known as Vanderpool) and AMD V (formerly known as Pacifica). These exten-
sions, which differ between the two vendors, are meant to reduce the performance penalties experienced
by emulating x86 hardware with hypervisors. Before the introduction of hardware-assisted virtualiza-
tion, software emulation of x86 hardware was significantly costly from the performance point of view.
The reason for this is that by design the x86 architecture did not meet the formal requirements
introduced by Popek and Goldberg, and early products were using binary translation to trap some
sensitive instructions and provide an emulated version. Products such as VMware Virtual Platform,
introduced in 1999 by VMware, which pioneered the field of x86 virtualization, were based on this
technique. After 2006, Intel and AMD introduced processor extensions, and a wide range of virtualiza-
tion solutions took advantage of them: Kernel-based Virtual Machine (KVM), VirtualBox, Xen,
VMware, Hyper-V, Sun xVM, Parallels, and others.

Full virtualization. Full virtualization refers to the ability to run a program, most likely an
operating system, directly on top of a virtual machine and without any modification, as though it
were run on the raw hardware. To make this possible, virtual machine managers are required to
provide a complete emulation of the entire underlying hardware. The principal advantage of full
virtualization is complete isolation, which leads to enhanced security, ease of emulation of different
architectures, and coexistence of different systems on the same platform. Whereas it is a desired
goal for many virtualization solutions, full virtualization poses important concerns related to perfor-
mance and technical implementation. A key challenge is the interception of privileged instructions
such as I/O instructions: Since they change the state of the resources exposed by the host, they
have to be contained within the virtual machine manager. A simple solution to achieve full virtuali-
zation is to provide a virtual environment for all the instructions, thus posing some limits on perfor-
mance. A successful and efficient implementation of full virtualization is obtained with a
combination of hardware and software, not allowing potentially harmful instructions to be executed
directly on the host. This is what is accomplished through hardware-assisted virtualization.

Paravirtualization. This is a not-transparent virtualization solution that allows implementing
thin virtual machine managers. Paravirtualization techniques expose a software interface to the vir-
tual machine that is slightly modified from the host and, as a consequence, guests need to be modi-
fied. The aim of paravirtualization is to provide the capability to demand the execution of
performance-critical operations directly on the host, thus preventing performance losses that would
otherwise be experienced in managed execution. This allows a simpler implementation of virtual
machine managers that have to simply transfer the execution of these operations, which were hard
to virtualize, directly to the host. To take advantage of such an opportunity, guest operating systems

86 CHAPTER 3 Virtualization

need to be modified and explicitly ported by remapping the performance-critical operations through
the virtual machine software interface. This is possible when the source code of the operating sys-
tem is available, and this is the reason that paravirtualization was mostly explored in the open-
source and academic environment. Whereas this technique was initially applied in the IBM VM
operating system families, the term paravirtualization was introduced in literature in the Denali
project [24] at the University of Washington. This technique has been successfully used by Xen for
providing virtualization solutions for Linux-based operating systems specifically ported to run on
Xen hypervisors. Operating systems that cannot be ported can still take advantage of paravirtualiza-
tion by using ad hoc device drivers that remap the execution of critical instructions to the paravir-
tualization APIs exposed by the hypervisor. Xen provides this solution for running Windows-based
operating systems on x86 architectures. Other solutions using paravirtualization include VMWare,
Parallels, and some solutions for embedded and real-time environments such as TRANGO, Wind
River, and XtratuM.

Partial virtualization. Partial virtualization provides a partial emulation of the underlying hard-
ware, thus not allowing the complete execution of the guest operating system in complete isolation.
Partial virtualization allows many applications to run transparently, but not all the features of the
operating system can be supported, as happens with full virtualization. An example of partial vir-
tualization is address space virtualization used in time-sharing systems; this allows multiple appli-
cations and users to run concurrently in a separate memory space, but they still share the same
hardware resources (disk, processor, and network). Historically, partial virtualization has been an
important milestone for achieving full virtualization, and it was implemented on the experimental
IBM M44/44X. Address space virtualization is a common feature of contemporary operating
systems.

Operating system-level virtualization
Operating system-level virtualization offers the opportunity to create different and separated execu-
tion environments for applications that are managed concurrently. Differently from hardware virtua-
lization, there is no virtual machine manager or hypervisor, and the virtualization is done within a
single operating system, where the OS kernel allows for multiple isolated user space instances. The
kernel is also responsible for sharing the system resources among instances and for limiting
the impact of instances on each other. A user space instance in general contains a proper view of the
file system, which is completely isolated, and separate IP addresses, software configurations, and
access to devices. Operating systems supporting this type of virtualization are general-purpose, time-
shared operating systems with the capability to provide stronger namespace and resource isolation.
This virtualization technique can be considered an evolution of the chroot mechanism in Unix
systems. The chroot operation changes the file system root directory for a process and its children
to a specific directory. As a result, the process and its children cannot have access to other por-
tions of the file system than those accessible under the new root directory. Because Unix systems
also expose devices as parts of the file system, by using this method it is possible to completely
isolate a set of processes. Following the same principle, operating system-level virtualization
aims to provide separated and multiple execution containers for running applications. Compared
to hardware virtualization, this strategy imposes little or no overhead because applications
directly use OS system calls and there is no need for emulation. There is no need to modify appli-
cations to run them, nor to modify any specific hardware, as in the case of hardware-assisted

3.3 Taxonomy of virtualization techniques 87

virtualization. On the other hand, operating system-level virtualization does not expose the same
flexibility of hardware virtualization, since all the user space instances must share the same oper-
ating system.

This technique is an efficient solution for server consolidation scenarios in which multiple
application servers share the same technology: operating system, application server framework, and
other components. When different servers are aggregated into one physical server, each server is
run in a different user space, completely isolated from the others.

Examples of operating system-level virtualizations are FreeBSD Jails, IBM Logical Partition
(LPAR), SolarisZones and Containers, Parallels Virtuozzo Containers, OpenVZ, iCore Virtual
Accounts, Free Virtual Private Server (FreeVPS), and others. The services offered by these technol-
ogies differ, and most of them are available on Unix-based systems. Some of them, such as Solaris
and OpenVZ, allow for different versions of the same operating system to operate concurrently.

3.3.1.3 Programming language-level virtualization

Programming language-level virtualization is mostly used to achieve ease of deployment of
applications, managed execution, and portability across different platforms and operating sys-
tems. It consists of a virtual machine executing the byte code of a program, which is the result
of the compilation process. Compilers implemented and used this technology to produce a binary
format representing the machine code for an abstract architecture. The characteristics of this
architecture vary from implementation to implementation. Generally these virtual machines con-
stitute a simplification of the underlying hardware instruction set and provide some high-level
instructions that map some of the features of the languages compiled for them. At runtime, the
byte code can be either interpreted or compiled on the fly—or jitted®—against the underlying
hardware instruction set.

Programming language-level virtualization has a long trail in computer science history and orig-
inally was used in 1966 for the implementation of Basic Combined Programming Language
(BCPL), a language for writing compilers and one of the ancestors of the C programming language.
Other important examples of the use of this technology have been the UCSD Pascal and Smalltalk.
Virtual machine programming languages become popular again with Sun’s introduction of the Java
platform in 1996. Originally created as a platform for developing Internet applications, Java
became one of the technologies of choice for enterprise applications, and a large community of
developers formed around it. The Java virtual machine was originally designed for the execution of
programs written in the Java language, but other languages such as Python, Pascal, Groovy, and
Ruby were made available. The ability to support multiple programming languages has been one of
the key elements of the Common Language Infrastructure (CLI), which is the specification behind

The term Jjitted is an improper use of the just-in-time (JIT) acronym as a verb, which has now become common. It refers
to a specific execution strategy in which the byte code of a method is compiled against the underlying machine code
upon method call—that is, just in time. Initial implementations of programming-level virtualization were based on inter-
pretation, which led to considerable slowdowns during execution. The advantage of just-in-time compilation is that the
machine code that has been compiled can be reused for executing future calls to the same methods. Virtual machines
that implement JIT compilation generally have a method cache that stores the code generated for each method and sim-
ply look up this cache before triggering the compilation upon each method call.

88 CHAPTER 3 Virtualization

NET Framework. Currently, the Java platform and .NET Framework represent the most popular
technologies for enterprise application development.

Both Java and the CLI are stack-based virtual machines: The reference model of the abstract
architecture is based on an execution stack that is used to perform operations. The byte code gen-
erated by compilers for these architectures contains a set of instructions that load operands on the
stack, perform some operations with them, and put the result on the stack. Additionally, specific
instructions for invoking methods and managing objects and classes are included. Stack-based vir-
tual machines possess the property of being easily interpreted and executed simply by lexical
analysis and hence are easily portable over different architectures. An alternative solution is
offered by register-based virtual machines, in which the reference model is based on registers.
This kind of virtual machine is closer to the underlying architecture we use today. An example of
a register-based virtual machine is Parrot, a programming-level virtual machine that was origi-
nally designed to support the execution of PERL and then generalized to host the execution of
dynamic languages.

The main advantage of programming-level virtual machines, also called process virtual
machines, is the ability to provide a uniform execution environment across different platforms.
Programs compiled into byte code can be executed on any operating system and platform for
which a virtual machine able to execute that code has been provided. From a development life-
cycle point of view, this simplifies the development and deployment efforts since it is not neces-
sary to provide different versions of the same code. The implementation of the virtual machine
for different platforms is still a costly task, but it is done once and not for any application.
Moreover, process virtual machines allow for more control over the execution of programs since
they do not provide direct access to the memory. Security is another advantage of managed
programming languages; by filtering the I/O operations, the process virtual machine can easily
support sandboxing of applications. As an example, both Java and .NET provide an infrastructure
for pluggable security policies and code access security frameworks. All these advantages come
with a price: performance. Virtual machine programming languages generally expose an inferior
performance compared to languages compiled against the real architecture. This performance dif-
ference is getting smaller, and the high compute power available on average processors makes it
even less important.

Implementations of this model are also called high-level virtual machines, since high-level pro-
gramming languages are compiled to a conceptual ISA, which is further interpreted or dynamically
translated against the specific instruction of the hosting platform.

3.3.1.4 Application-level virtualization

Application-level virtualization is a technique allowing applications to be run in runtime environ-
ments that do not natively support all the features required by such applications. In this scenario,
applications are not installed in the expected runtime environment but are run as though they
were. In general, these techniques are mostly concerned with partial file systems, libraries, and
operating system component emulation. Such emulation is performed by a thin layer—a program
or an operating system component—that is in charge of executing the application. Emulation can

3.3 Taxonomy of virtualization techniques 89

also be used to execute program binaries compiled for different hardware architectures. In this
case, one of the following strategies can be implemented:

e [Interpretation. In this technique every source instruction is interpreted by an emulator for
executing native ISA instructions, leading to poor performance. Interpretation has a minimal
startup cost but a huge overhead, since each instruction is emulated.

e Binary translation. In this technique every source instruction is converted to native instructions
with equivalent functions. After a block of instructions is translated, it is cached and reused.
Binary translation has a large initial overhead cost, but over time it is subject to better
performance, since previously translated instruction blocks are directly executed.

Emulation, as described, is different from hardware-level virtualization. The former simply
allows the execution of a program compiled against a different hardware, whereas the latter emu-
lates a complete hardware environment where an entire operating system can be installed.

Application virtualization is a good solution in the case of missing libraries in the host oper-
ating system; in this case a replacement library can be linked with the application, or library
calls can be remapped to existing functions available in the host system. Another advantage is
that in this case the virtual machine manager is much lighter since it provides a partial emula-
tion of the runtime environment compared to hardware virtualization. Moreover, this technique
allows incompatible applications to run together. Compared to programming-level virtualization,
which works across all the applications developed for that virtual machine, application-level
virtualization works for a specific environment: It supports all the applications that run on top
of a specific environment.

One of the most popular solutions implementing application virtualization is Wine, which is a
software application allowing Unix-like operating systems to execute programs written for the
Microsoft Windows platform. Wine features a software application acting as a container for the
guest application and a set of libraries, called Winelib, that developers can use to compile applica-
tions to be ported on Unix systems. Wine takes its inspiration from a similar product from Sun,
Windows Application Binary Interface (WABI), which implements the Win 16 API specifications
on Solaris. A similar solution for the Mac OS X environment is CrossOver, which allows running
Windows applications directly on the Mac OS X operating system. VMware ThinApp, another
product in this area, allows capturing the setup of an installed application and packaging it into an
executable image isolated from the hosting operating system.

Other types of virtualization

Other than execution virtualization, other types of virtualization provide an abstract environment to
interact with. These mainly cover storage, networking, and client/server interaction.

3.3.2.1 Storage virtualization

Storage virtualization is a system administration practice that allows decoupling the physical orga-
nization of the hardware from its logical representation. Using this technique, users do not have to
be worried about the specific location of their data, which can be identified using a logical path.

a0 CHAPTER 3 Virtualization

Storage virtualization allows us to harness a wide range of storage facilities and represent them
under a single logical file system. There are different techniques for storage virtualization, one of
the most popular being network-based virtualization by means of storage area networks (SANs).
SANs use a network-accessible device through a large bandwidth connection to provide storage
facilities.

3.3.2.2 Network virtualization

Network virtualization combines hardware appliances and specific software for the creation and
management of a virtual network. Network virtualization can aggregate different physical networks
into a single logical network (external network virtualization) or provide network-like functionality
to an operating system partition (internal network virtualization). The result of external network
virtualization is generally a virfual LAN (VLAN). A VLAN is an aggregation of hosts that commu-
nicate with each other as though they were located under the same broadcasting domain. Internal
network virtualization is generally applied together with hardware and operating system-level vir-
tualization, in which the guests obtain a virtual network interface to communicate with. There are
several options for implementing internal network virtualization: The guest can share the same net-
work interface of the host and use Network Address Translation (NAT) to access the network; the
virtual machine manager can emulate, and install on the host, an additional network device,
together with the driver; or the guest can have a private network only with the guest.

3.3.2.3 Desktop virtualization

Desktop virtualization abstracts the desktop environment available on a personal computer in order
to provide access to it using a client/server approach. Desktop virtualization provides the same out-
come of hardware virtualization but serves a different purpose. Similarly to hardware virtualization,
desktop virtualization makes accessible a different system as though it were natively installed on
the host, but this system is remotely stored on a different host and accessed through a network con-
nection. Moreover, desktop virtualization addresses the problem of making the same desktop envi-
ronment accessible from everywhere. Although the term desktop virtualization strictly refers to the
ability to remotely access a desktop environment, generally the desktop environment is stored in a
remote server or a data center that provides a high-availability infrastructure and ensures the acces-
sibility and persistence of the data.

In this scenario, an infrastructure supporting hardware virtualization is fundamental to provide
access to multiple desktop environments hosted on the same server; a specific desktop environment
is stored in a virtual machine image that is loaded and started on demand when a client connects to
the desktop environment. This is a typical cloud computing scenario in which the user leverages
the virtual infrastructure for performing the daily tasks on his computer. The advantages of desktop
virtualization are high availability, persistence, accessibility, and ease of management. As we will
discuss in Section 4.5.4 of the next chapter, security issues can prevent the use of this technology.
The basic services for remotely accessing a desktop environment are implemented in software com-
ponents such as Windows Remote Services, VNC, and X Server. Infrastructures for desktop virtua-
lization based on cloud computing solutions include Sun Virtual Desktop Infrastructure (VDI),
Parallels Virtual Desktop Infrastructure (VDI), Citrix XenDesktop, and others.

3.4 Virtualization and cloud computing 91

3.3.2.4 Application server virtualization

Application server virtualization abstracts a collection of application servers that provide the same
services as a single virtual application server by using load-balancing strategies and providing a
high-availability infrastructure for the services hosted in the application server. This is a particular
form of virtualization and serves the same purpose of storage virtualization: providing a better qual-
ity of service rather than emulating a different environment.

Virtualization and cloud computing

Virtualization plays an important role in cloud computing since it allows for the appropriate degree
of customization, security, isolation, and manageability that are fundamental for delivering IT ser-
vices on demand. Virtualization technologies are primarily used to offer configurable computing
environments and storage. Network virtualization is less popular and, in most cases, is a comple-
mentary feature, which is naturally needed in build virtual computing systems.

Particularly important is the role of virtual computing environment and execution virtualization
techniques. Among these, hardware and programming language virtualization are the techniques
adopted in cloud computing systems. Hardware virtualization is an enabling factor for solutions in
the Infrastructure-as-a-Service (IaaS) market segment, while programming language virtualization
is a technology leveraged in Platform-as-a-Service (PaaS) offerings. In both cases, the capability of
offering a customizable and sandboxed environment constituted an attractive business opportunity
for companies featuring a large computing infrastructure that was able to sustain and process huge
workloads. Moreover, virtualization also allows isolation and a finer control, thus simplifying the
leasing of services and their accountability on the vendor side.

Besides being an enabler for computation on demand, virtualization also gives the opportunity
to design more efficient computing systems by means of consolidation, which is performed trans-
parently to cloud computing service users. Since virtualization allows us to create isolated and con-
trollable environments, it is possible to serve these environments with the same resource without
them interfering with each other. If the underlying resources are capable enough, there will be no
evidence of such sharing. This opportunity is particularly attractive when resources are underuti-
lized, because it allows reducing the number of active resources by aggregating virtual machines
over a smaller number of resources that become fully utilized. This practice is also known as server
consolidation, while the movement of virtual machine instances is called virtual machine migration
(see Figure 3.10). Because virtual machine instances are controllable environments, consolidation
can be applied with a minimum impact, either by temporarily stopping its execution and moving its
data to the new resources or by performing a finer control and moving the instance while it is run-
ning. This second techniques is known as live migration and in general is more complex to imple-
ment but more efficient since there is no disruption of the activity of the virtual machine instance.’

°It is important to notice that cloud computing is strongly leveraged for the development of applications that need to
scale on demand. In most cases, this is because applications have to process increased workloads or serve more requests,
which makes them server applications. In this scenario, it is evident that live migration offers a better solution because it
does not create any service interruption during consolidation.

92 CHAPTER 3 Virtualization

[w] [r] [w] [Lo Eﬁ
P l
[Virtual Machine Manager/’, J :\ _________ ,‘I

Server A ,’I Server B
! (running) 3 @ (running)

{ Before Migratim’n]r

(] [{4~

s

‘VMI|VM| [vm |

[Virtual Machine Manager]

Server A Server B
. (running) @ (inactive)

lr After Migration ll-

FIGURE 3.10
Live migration and server consolidation.

Server consolidation and virtual machine migration are principally used in the case of hardware
virtualization, even though they are also technically possible in the case of programming language
virtualization (see Figure 3.9).

Storage virtualization constitutes an interesting opportunity given by virtualization technologies,
often complementary to the execution of virtualization. Even in this case, vendors backed by large
computing infrastructures featuring huge storage facilities can harness these facilities into a virtual
storage service, easily partitionable into slices. These slices can be dynamic and offered as a ser-
vice. Again, opportunities to secure and protect the hosting infrastructure are available, as are meth-
ods for easy accountability of such services.

Finally, cloud computing revamps the concept of desktop virtualization, initially introduced in
the mainframe era. The ability to recreate the entire computing stack—from infrastructure to appli-
cation services—on demand opens the path to having a complete virtual computer hosted on the
infrastructure of the provider and accessed by a thin client over a capable Internet connection.

3.5 Pros and cons of virtualization 93

Pros and cons of virtualization

Virtualization has now become extremely popular and widely used, especially in cloud computing.
The primary reason for its wide success is the elimination of technology barriers that prevented vir-
tualization from being an effective and viable solution in the past. The most relevant barrier has
been performance. Today, the capillary diffusion of the Internet connection and the advancements
in computing technology have made virtualization an interesting opportunity to deliver on-demand
IT infrastructure and services. Despite its renewed popularity, this technology has benefits and also
drawbacks.

Advantages of virtualization

Managed execution and isolation are perhaps the most important advantages of virtualization. In
the case of techniques supporting the creation of virtualized execution environments, these two
characteristics allow building secure and controllable computing environments. A virtual execution
environment can be configured as a sandbox, thus preventing any harmful operation to cross the
borders of the virtual host. Moreover, allocation of resources and their partitioning among different
guests is simplified, being the virtual host controlled by a program. This enables fine-tuning of
resources, which is very important in a server consolidation scenario and is also a requirement for
effective quality of service.

Portability is another advantage of virtualization, especially for execution virtualization techni-
ques. Virtual machine instances are normally represented by one or more files that can be easily
transported with respect to physical systems. Moreover, they also tend to be self-contained since they
do not have other dependencies besides the virtual machine manager for their use. Portability and
self-containment simplify their administration. Java programs are “compiled once and run every-
where”’; they only require that the Java virtual machine be installed on the host. The same applies to
hardware-level virtualization. It is in fact possible to build our own operating environment within a
virtual machine instance and bring it with us wherever we go, as though we had our own laptop. This
concept is also an enabler for migration techniques in a server consolidation scenario.

Portability and self-containment also contribute to reducing the costs of maintenance, since the
number of hosts is expected to be lower than the number of virtual machine instances. Since the
guest program is executed in a virtual environment, there is very limited opportunity for the guest
program to damage the underlying hardware. Moreover, it is expected that there will be fewer vir-
tual machine managers with respect to the number of virtual machine instances managed.

Finally, by means of virtualization it is possible to achieve a more efficient use of resources.
Multiple systems can securely coexist and share the resources of the underlying host, without inter-
fering with each other. This is a prerequisite for server consolidation, which allows adjusting the
number of active physical resources dynamically according to the current load of the system, thus
creating the opportunity to save in terms of energy consumption and to be less impacting on the
environment.

94 CHAPTER 3 Virtualization

The other side of the coin: disadvantages

Virtualization also has downsides. The most evident is represented by a performance decrease of guest
systems as a result of the intermediation performed by the virtualization layer. In addition, suboptimal
use of the host because of the abstraction layer introduced by virtualization management software can
lead to a very inefficient utilization of the host or a degraded user experience. Less evident, but perhaps
more dangerous, are the implications for security, which are mostly due to the ability to emulate a dif-
ferent execution environment.

3.5.2.1 Performance degradation
Performance is definitely one of the major concerns in using virtualization technology. Since vir-
tualization interposes an abstraction layer between the guest and the host, the guest can experience
increased latencies.

For instance, in the case of hardware virtualization, where the intermediate emulates a bare
machine on top of which an entire system can be installed, the causes of performance degradation
can be traced back to the overhead introduced by the following activities:

¢ Maintaining the status of virtual processors

* Support of privileged instructions (trap and simulate privileged instructions)
* Support of paging within VM

* Console functions

Furthermore, when hardware virtualization is realized through a program that is installed or exe-
cuted on top of the host operating systems, a major source of performance degradation is repre-
sented by the fact that the virtual machine manager is executed and scheduled together with other
applications, thus sharing with them the resources of the host.

Similar consideration can be made in the case of virtualization technologies at higher levels,
such as in the case of programming language virtual machines (Java, .NET, and others). Binary
translation and interpretation can slow down the execution of managed applications. Moreover,
because their execution is filtered by the runtime environment, access to memory and other physi-
cal resources can represent sources of performance degradation.

These concerns are becoming less and less important thanks to technology advancements and
the ever-increasing computational power available today. For example, specific techniques for hard-
ware virtualization such as paravirtualization can increase the performance of the guest program
by offloading most of its execution to the host without any change. In programming-level virtual
machines such as the JVM or .NET, compilation to native code is offered as an option when perfor-
mance is a serious concern.

3.5.2.2 Inefficiency and degraded user experience

Virtualization can sometime lead to an inefficient use of the host. In particular, some of the specific
features of the host cannot be exposed by the abstraction layer and then become inaccessible. In the
case of hardware virtualization, this could happen for device drivers: The virtual machine can
sometime simply provide a default graphic card that maps only a subset of the features available in
the host. In the case of programming-level virtual machines, some of the features of the underlying
operating systems may become inaccessible unless specific libraries are used. For example, in the

3.6 Technology examples 95

first version of Java the support for graphic programming was very limited and the look and feel of
applications was very poor compared to native applications. These issues have been resolved by
providing a new framework called Swing for designing the user interface, and further improvements
have been done by integrating support for the OpenGL libraries in the software development kit.

3.5.2.3 Security holes and new threats

Virtualization opens the door to a new and unexpected form of phishing.” The capability of emu-
lating a host in a completely transparent manner led the way to malicious programs that are
designed to extract sensitive information from the guest.

In the case of hardware virtualization, malicious programs can preload themselves before the
operating system and act as a thin virtual machine manager toward it. The operating system is then
controlled and can be manipulated to extract sensitive information of interest to third parties.
Examples of these kinds of malware are BluePill and SubVirt. BluePill, malware targeting the
AMD processor family, moves the execution of the installed OS within a virtual machine. The orig-
inal version of SubVirt was developed as a prototype by Microsoft through collaboration with
Michigan University. SubVirt infects the guest OS, and when the virtual machine is rebooted, it
gains control of the host. The diffusion of such kinds of malware is facilitated by the fact that origi-
nally, hardware and CPUs were not manufactured with virtualization in mind. In particular, the
existing instruction sets cannot be simply changed or updated to suit the needs of virtualization.
Recently, both Intel and AMD have introduced hardware support for virtualization with Intel VT
and AMD Pacifica, respectively.

The same considerations can be made for programming-level virtual machines: Modified ver-
sions of the runtime environment can access sensitive information or monitor the memory locations
utilized by guest applications while these are executed. To make this possible, the original version
of the runtime environment needs to be replaced by the modified one, which can generally happen
if the malware is run within an administrative context or a security hole of the host operating sys-
tem is exploited.

Technology examples

A wide range of virtualization technology is available especially for virtualizing computing envir-
onments. In this section, we discuss the most relevant technologies and approaches utilized in the
field. Cloud-specific solutions are discussed in the next chapter.

"Phishing is a term that identifies a malicious practice aimed at capturing sensitive user information, such as usernames
and passwords, by recreating an environment identical in functionalities and appearance to the one that manages this
information. Phishing most commonly occurs on the Web, where the user is redirected to a malicious website that is a
replica of the original and the purpose of which is to collect the information to impersonate the user on the original
Website (e.g., a bank site) and access the user’s confidential data.

96 CHAPTER 3 Virtualization

Xen: paravirtualization

Xen is an open-source initiative implementing a virtualization platform based on paravirtualization.
Initially developed by a group of researchers at the University of Cambridge in the United
Kingdom, Xen now has a large open-source community backing it. Citrix also offers it as a com-
mercial solution, XenSource. Xen-based technology is used for either desktop virtualization or
server virtualization, and recently it has also been used to provide cloud computing solutions by
means of Xen Cloud Platform (XCP). At the basis of all these solutions is the Xen Hypervisor,
which constitutes the core technology of Xen. Recently Xen has been advanced to support full vir-
tualization using hardware-assisted virtualization.

Xen is the most popular implementation of paravirtualization, which, in contrast with full vir-
tualization, allows high-performance execution of guest operating systems. This is made possible
by eliminating the performance loss while executing instructions that require special management.
This is done by modifying portions of the guest operating systems run by Xen with reference to the
execution of such instructions. Therefore it is not a transparent solution for implementing virtuali-
zation. This is particularly true for x86, which is the most popular architecture on commodity
machines and servers.

Figure 3.11 describes the architecture of Xen and its mapping onto a classic x86 privilege
model. A Xen-based system is managed by the Xen hypervisor, which runs in the highest privileged
mode and controls the access of guest operating system to the underlying hardware. Guest

User Application
(Unmodified ABI)
Management Domain (Domain 0) ~
* VM Management
* HTTP interface ~
* Access to the Xen Hypervisor User Domains (Domain U)
» Guest OS
* Modified codebase
* Hypercalls into Xen VMM
v
Privileged
instructions

Xen Hypervisor (VMM)
* Memory management
» CPU state registers

* Devices I/O

Hardware
trap

Hardware (x86)

FIGURE 3.11

Xen architecture and guest OS management.

3.6 Technology examples 97

operating systems are executed within domains, which represent virtual machine instances.
Moreover, specific control software, which has privileged access to the host and controls all the
other guest operating systems, is executed in a special domain called Domain 0. This is the first
one that is loaded once the virtual machine manager has completely booted, and it hosts a
HyperText Transfer Protocol (HTTP) server that serves requests for virtual machine creation, con-
figuration, and termination. This component constitutes the embryonic version of a distributed vir-
tual machine manager, which is an essential component of cloud computing systems providing
Infrastructure-as-a-Service (IaaS) solutions.

Many of the x86 implementations support four different security levels, called rings, where
Ring O represent the level with the highest privileges and Ring 3 the level with the lowest ones.
Almost all the most popular operating systems, except OS/2, utilize only two levels: Ring O for the
kernel code, and Ring 3 for user application and nonprivileged OS code. This provides the opportu-
nity for Xen to implement virtualization by executing the hypervisor in Ring 0, Domain 0, and all
the other domains running guest operating systems—generally referred to as Domain U—in Ring 1,
while the user applications are run in Ring 3. This allows Xen to maintain the ABI unchanged, thus
allowing an easy switch to Xen-virtualized solutions from an application point of view. Because of
the structure of the x86 instruction set, some instructions allow code executing in Ring 3 to jump
into Ring O (kernel mode). Such operation is performed at the hardware level and therefore within
a virtualized environment will result in a trap or silent fault, thus preventing the normal operations
of the guest operating system, since this is now running in Ring 1. This condition is generally trig-
gered by a subset of the system calls. To avoid this situation, operating systems need to be changed
in their implementation, and the sensitive system calls need to be reimplemented with hypercalls,
which are specific calls exposed by the virtual machine interface of Xen. With the use of hyper-
calls, the Xen hypervisor is able to catch the execution of all the sensitive instructions, manage
them, and return the control to the guest operating system by means of a supplied handler.

Paravirtualization needs the operating system codebase to be modified, and hence not all operat-
ing systems can be used as guests in a Xen-based environment. More precisely, this condition holds
in a scenario where it is not possible to leverage hardware-assisted virtualization, which allows run-
ning the hypervisor in Ring -1 and the guest operating system in Ring 0. Therefore, Xen exhibits
some limitations in the case of legacy hardware and legacy operating systems. In fact, these cannot
be modified to be run in Ring 1 safely since their codebase is not accessible and, at the same time,
the underlying hardware does not provide any support to run the hypervisor in a more privileged
mode than Ring 0. Open-source operating systems such as Linux can be easily modified, since their
code is publicly available and Xen provides full support for their virtualization, whereas compo-
nents of the Windows family are generally not supported by Xen unless hardware-assisted virtuali-
zation is available. It can be observed that the problem is now becoming less and less crucial since
both new releases of operating systems are designed to be virtualization aware and the new
hardware supports x86 virtualization.

VMware: full virtualization

VMware’s technology is based on the concept of full virtualization, where the underlying hardware
is replicated and made available to the guest operating system, which runs unaware of such abstrac-
tion layers and does not need to be modified. VMware implements full virtualization either in the

98 CHAPTER 3 Virtualization

desktop environment, by means of Type II hypervisors, or in the server environment, by means of
Type I hypervisors. In both cases, full virtualization is made possible by means of direct execution
(for nonsensitive instructions) and binary translation (for sensitive instructions), thus allowing the
virtualization of architecture such as x86.

Besides these two core solutions, VMware provides additional tools and software that simplify
the use of virtualization technology either in a desktop environment, with tools enhancing the inte-
gration of virtual guests with the host, or in a server environment, with solutions for building and
managing virtual computing infrastructures.

3.6.2.1 Full virtualization and binary translation

VMware is well known for the capability to virtualize x86 architectures, which runs unmodified on
top of their hypervisors. With the new generation of hardware architectures and the introduction of
hardware-assisted virtualization (Intel VT-x and AMD V) in 2006, full virtualization is made pos-
sible with hardware support, but before that date, the use of dynamic binary translation was the
only solution that allowed running x86 guest operating systems unmodified in a virtualized
environment.

As discussed before, x86 architecture design does not satisfy the first theorem of virtualization,
since the set of sensitive instructions is not a subset of the privileged instructions. This causes a dif-
ferent behavior when such instructions are not executed in Ring 0, which is the normal case in a
virtualization scenario where the guest OS is run in Ring 1. Generally, a trap is generated and the
way it is managed differentiates the solutions in which virtualization is implemented for x86 hard-
ware. In the case of dynamic binary translation, the trap triggers the translation of the offending
instructions into an equivalent set of instructions that achieves the same goal without generating
exceptions. Moreover, to improve performance, the equivalent set of instruction is cached so that
translation is no longer necessary for further occurrences of the same instructions. Figure 3.12 gives
an idea of the process.

This approach has both advantages and disadvantages. The major advantage is that guests can
run unmodified in a virtualized environment, which is a crucial feature for operating systems for
which source code is not available. This is the case, for example, of operating systems in the
Windows family. Binary translation is a more portable solution for full virtualization. On the other
hand, translating instructions at runtime introduces an additional overhead that is not present in
other approaches (paravirtualization or hardware-assisted virtualization). Even though such disad-
vantage exists, binary translation is applied to only a subset of the instruction set, whereas the
others are managed through direct execution on the underlying hardware. This somehow reduces
the impact on performance of binary translation.

CPU virtualization is only a component of a fully virtualized hardware environment. VMware
achieves full virtualization by providing virtual representation of memory and I/O devices. Memory
virtualization constitutes another challenge of virtualized environments and can deeply impact per-
formance without the appropriate hardware support. The main reason is the presence of a memory
management unit (MMU), which needs to be emulated as part of the virtual hardware. Especially in
the case of hosted hypervisors (Type 1I), where the virtual MMU and the host-OS MMU are tra-
versed sequentially before getting to the physical memory page, the impact on performance can be
significant. To avoid nested translation, the translation look-aside buffer (TLB) in the virtual MMU
directly maps physical pages, and the performance slowdown only occurs in case of a TLB miss.

3.6 Technology examples 99

User Applications
(Unmodified ABI)

—* Guest Operating System
» Unmodified codebase
* VMM unaware

~s Hypervisor
« Binary translation
« Instruction caching

Hardware Trap
Dynamic / Cached Translation (Sensitive
(Sensitive Instructions) Instructions)

Hardware (x86)

FIGURE 3.12
A full virtualization reference model.

Finally, VMware also provides full virtualization of I/O devices such as network controllers and
other peripherals such as keyboard, mouse, disks, and universal serial bus (USB) controllers.

3.6.2.2 Virtualization solutions

VMware is a pioneer in virtualization technology and offers a collection of virtualization solutions
covering the entire range of the market, from desktop computing to enterprise computing and infra-
structure virtualization.

End-user (desktop) virtualization
VMware supports virtualization of operating system environments and single applications on end-
user computers. The first option is the most popular and allows installing a different operating
systems and applications in a completely isolated environment from the hosting operating system.
Specific VMware software—VMware Workstation, for Windows operating systems, and VMware
Fusion, for Mac OS X environments—is installed in the host operating system to create virtual
machines and manage their execution. Besides the creation of an isolated computing environment,
the two products allow a guest operating system to leverage the resources of the host machine
(USB devices, folder sharing, and integration with the graphical user interface (GUI) of the host
operating system). Figure 3.13 provides an overview of the architecture of these systems.

The virtualization environment is created by an application installed in guest operating systems,
which provides those operating systems with full hardware virtualization of the underlying

100 CHAPTER 3 Virtualization

' R
\ i User Applications
s :
N, 1
\l‘. :
S
2 * Guest Operating System
VMware Y | A P 9>y
User Applications Workstation | | | v/
———— : y Virtual Machine Instance
\ ’r ‘V—) ! q : D
: — J
Host Operating System : i : VMware Hypervisor (VMM)
']
|—] ' - Direct access to hardware
clatine b L il , +1/0, memory, networking for guests
Driver 1 L + Save/Restore CPU state for host OS
\ i)
Hardware (x86)
FIGURE 3.13

VMware workstation architecture.

hardware. This is done by installing a specific driver in the host operating system that provides two
main services:

e It deploys a virtual machine manager that can run in privileged mode.
e It provides hooks for the VMware application to process specific I/O requests eventually by
relaying such requests to the host operating system via system calls.

Using this architecture—also called Hosted Virtual Machine Architecture—it is possible to both iso-
late virtual machine instances within the memory space of a single application and provide reasonable
performance, since the intervention of the VMware application is required only for instructions, such as
device I/0, that require binary translation. Instructions that can be directly executed are managed by the
virtual machine manager, which takes control of the CPU and the MMU and alternates its activity with
the host OS. Virtual machine images are saved in a collection of files on the host file system, and both
VMware Workstation and VMware Fusion allow creation of new images, pause their execution, create
snapshots, and undo operations by rolling back to a previous state of the virtual machine.

Other solutions related to the virtualization of end-user computing environments include VMware
Player, VMware ACE, and VMware ThinApp. VMware Player is a reduced version of VMware
Workstation that allows creating and playing virtual machines in a Windows or Linux operating envi-
ronment. VMware ACE, a similar product to VMware Workstation, creates policy-wrapped virtual
machines for deploying secure corporate virtual environments on end-user computers. VMware
ThinApp is a solution for application virtualization. It provides an isolated environment for applica-
tions in order to avoid conflicts due to versioning and incompatible applications. It detects all the
changes to the operating environment made by the installation of a specific application and stores
them together with the application binary into a package that can be run with VMware ThinApp.

3.6 Technology examples 101

serverd
(daemon)
A

VMware

VMware l
VM Instance VM Instance

\ J

|

VM Instance

Web
Server

8

~
Host Operating System

4 N
VMware Hypervisor (VMM)

« Direct access to hardware
« I/0, memory, networking for guests
L » Save/Restore CPU state for host OS

VMware —]
Driver

Hardware (x86)

FIGURE 3.14
VMware GSX server architecture.

Server virtualization

VMware provided solutions for server virtualization with different approaches over time. Initial
support for server virtualization was provided by VMware GSX server, which replicates the
approach used for end-user computers and introduces remote management and scripting capabili-
ties. The architecture of VMware GSX Server is depicted in Figure 3.14.

The architecture is mostly designed to serve the virtualization of Web servers. A daemon pro-
cess, called serverd, controls and manages VMware application processes. These applications are
then connected to the virtual machine instances by means of the VMware driver installed on the
host operating system. Virtual machine instances are managed by the VMM as described previ-
ously. User requests for virtual machine management and provisioning are routed from the Web
server through the VMM by means of serverd.

VMware ESX Server and its enhanced version, VMWare ESXi Server, are examples of the
hypervisor-based approach. Both can be installed on bare metal servers and provide services for
virtual machine management. The two solutions provide the same services but differ in the internal
architecture, more specifically in the organization of the hypervisor kernel. VMware ESX embeds a
modified version of a Linux operating system, which provides access through a service console to
hypervisor. VMware ESXi implements a very thin OS layer and replaces the service console with
interfaces and services for remote management, thus considerably reducing the hypervisor code
size and memory footprint.

The architecture of VMware ESXi is displayed in Figure 3.15. The base of the infrastructure is the
VMkernel, which is a thin Portable Operating System Interface (POSIX) compliant operating system
that provides the minimal functionality for processes and thread management, file system, I/O stacks,
and resource scheduling. The kernel is accessible through specific APIs called User world APIL. These

B

o Voo)) Y|

Broker

S ostc][pcul][syslog][VMX][VMX } [VMX } v V™ VM

CIM Plug-ins

User world API

Distributed VM Virtual Ethernet
File System Adapter and Switch

Scheduling
N ’
FIGURE 3.15

VMware ESXi server architecture.

3.6 Technology examples 103

APIs are utilized by all the agents that provide supporting activities for the management of virtual
machines. Remote management of an ESXi server is provided by the CIM Broker, a system agent that
acts as a gateway to the VMKkernel for clients by using the Common Information Model (CIM)® proto-
col. The ESXi installation can also be managed locally by a Direct Client User Interface (DCUI),
which provides a BIOS-like interface for the management of local users.

Infrastructure virtualization and cloud computing solutions

VMware provides a set of products covering the entire stack of cloud computing, from infrastruc-
ture management to Software-as-a-Service solutions hosted in the cloud. Figure 3.16 gives an
overview of the different solutions offered and how they relate to each other.

ESX and ESXi constitute the building blocks of the solution for virtual infrastructure manage-
ment: A pool of virtualized servers is tied together and remotely managed as a whole by VMware
vSphere. As a virtualization platform it provides a set of basic services besides virtual compute ser-
vices: Virtual file system, virtual storage, and virtual network constitute the core of the infrastruc-
ture; application services, such as virtual machine migration, storage migration, data recovery, and

) Application
[Zimbra J Virtualization
. Platform
[vFabric } Virtualization
_{ vCloud
‘[vCenter]_ 3 vCenter

Infrastructure

— Virtualization

FIGURE 3.16
VMware Cloud Solution stack.

8Common Information Model (CIM) is a Distributed Management Task Force standard for defining management infor-
mation for systems, applications, and services. See http://dmtf.org/standards/cim.

http://dmtf.org/standards/cim

104 CHAPTER 3 Virtualization

security zones, complete the services offered by vSphere. The management of the infrastructure is
operated by VMware vCenter, which provides centralized administration and management of
vSphere installations in a data center environment. A collection of virtualized data centers are
turned into a Infrastructure-as-a-Service cloud by VMware vCloud, which allows service providers
to make available to end users virtual computing environments on demand on a pay-per-use basis.
A Web portal provides access to the provisioning services of vCloud, and end users can self-
provision virtual machines by choosing from available templates and setting up virtual networks
among virtual instances.

VMware also provides a solution for application development in the cloud with VMware
vFabric, which is a set of components that facilitate the development of scalable Web applications
on top of a virtualized infrastructure. vFabric is a collection of components for application monitor-
ing, scalable data management, and scalable execution and provisioning of Java Web applications.

Finally, at the top of the cloud computing stack, VMware provides Zimbra, a solution for office
automation, messaging, and collaboration that is completely hosted in the cloud and accessible
from anywhere. This is an SaaS solution that integrates various features into a single software
platform providing email and collaboration management.

3.6.2.3 Observations

Initially starting with a solution for fully virtualized x86 hardware, VMware has grown over time
and now provides a complete offering for virtualizing hardware, infrastructure, applications, and
services, thus covering every segment of the cloud computing market. Even though full x86 virtua-
lization is the core technology of VMware, over time paravirtualization features have been inte-
grated into some of the solutions offered by the vendor, especially after the introduction of
hardware-assisted virtualization. For instance, the implementation of some device emulations and
the VMware Tools suite that allows enhanced integration with the guest and the host operating
environment. Also, VMware has strongly contributed to the development and standardization of a
vendor-independent Virtual Machine Interface (VMI), which allows for a general and host-agnostic
approach to paravirtualization.

Microsoft Hyper-V

Hyper-V is an infrastructure virtualization solution developed by Microsoft for server virtualization.
As the name recalls, it uses a hypervisor-based approach to hardware virtualization, which
leverages several techniques to support a variety of guest operating systems. Hyper-V is currently
shipped as a component of Windows Server 2008 R2 that installs the hypervisor as a role within
the server.

3.6.3.1 Architecture
Hyper-V supports multiple and concurrent execution of guest operating systems by means of parti-
tions. A partition is a completely isolated environment in which an operating system is installed
and run.

Figure 3.17 provides an overview of the architecture of Hyper-V. Despite its straightforward
installation as a component of the host operating system, Hyper-V takes control of the hardware,
and the host operating system becomes a virtual machine instance with special privileges, called

i) N N\
B { ' {
[VMWPs J
User Applications User Applications User Applications
Ring 3 Ring 3 Ring 3
[VMMS] (Ring 3) (Ring 3) (Ring 3)
> A A o
(i B e ~N r N s
Hypervisor-aware Hypervisor-aware] Hypervisor-aware Hypervisor-unaware
Kernel (Ring 0) Wndows Kernel (Ring 0) Linux Kernel (Ring 0) Kernel (Ring 0)
Y ¥
([vsps J[vip] VSCs /ICs_J (vscs/ics |
| WinHv ' WinHv LinuxHv I
VMBus Je--:3-{- TCT 2 o S » VMBus |
\ -) \ J \ - \.
: : : : : Unenlightened Child
L Root / Parent Partition Enlightened Child Partiti@)n Enlightened Chilp Partition Partition
¥ Py 8) 4 ¥ Y
YVY v
Hypervisor Address Partition
(Ring-1) [Hypercalls] [MSRs] [APIC] [Scheduler] [Management] [Management

Hardware (x86)

Processor

b (

)
7 Memory

FIGURE 3.17

Microsoft Hyper-V architecture.

106 CHAPTER 3 Virtualization

the parent partition. The parent partition (also called the root partition) is the only one that has
direct access to the hardware. It runs the virtualization stack, hosts all the drivers required to
configure guest operating systems, and creates child partitions through the hypervisor. Child parti-
tions are used to host guest operating systems and do not have access to the underlying hardware,
but their interaction with it is controlled by either the parent partition or the hypervisor itself.

Hypervisor
The hypervisor is the component that directly manages the underlying hardware (processors and
memory). It is logically defined by the following components:

* Hypercalls interface. This is the entry point for all the partitions for the execution of sensitive
instructions. This is an implementation of the paravirtualization approach already discussed with
Xen. This interface is used by drivers in the partitioned operating system to contact the
hypervisor using the standard Windows calling convention. The parent partition also uses this
interface to create child partitions.

* Memory service routines (MSRs). These are the set of functionalities that control the memory
and its access from partitions. By leveraging hardware-assisted virtualization, the hypervisor
uses the Input/Output Memory Management Unit (I/O MMU or IOMMU) to fast-track access to
devices from partitions by translating virtual memory addresses.

* Advanced programmable interrupt controller (APIC). This component represents the interrupt
controller, which manages the signals coming from the underlying hardware when some event
occurs (timer expired, I/O ready, exceptions and traps). Each virtual processor is equipped with
a synthetic interrupt controller (SynIC), which constitutes an extension of the local APIC. The
hypervisor is responsible of dispatching, when appropriate, the physical interrupts to the
synthetic interrupt controllers.

* Scheduler. This component schedules the virtual processors to run on available physical
processors. The scheduling is controlled by policies that are set by the parent partition.

e Address manager. This component is used to manage the virtual network addresses that are
allocated to each guest operating system.

* Partition manager. This component is in charge of performing partition creation, finalization,
destruction, enumeration, and configurations. Its services are available through the hypercalls
interface API previously discussed.

The hypervisor runs in Ring -1 and therefore requires corresponding hardware technology that
enables such a condition. By executing in this highly privileged mode, the hypervisor can support
legacy operating systems that have been designed for x86 hardware. Operating systems of newer
generations can take advantage of the new specific architecture of Hyper-V especially for the I/O
operations performed by child partitions.

Enlightened 1/0 and synthetic devices

Enlightened 1/0O provides an optimized way to perform I/O operations, allowing guest operating
systems to leverage an interpartition communication channel rather than traversing the hardware
emulation stack provided by the hypervisor. This option is only available to guest operating sys-
tems that are hypervisor aware. Enlightened I/O leverages VMBus, an interpartition communication

3.6 Technology examples 107

channel that is used to exchange data between partitions (child and parent) and is utilized mostly
for the implementation of virtual device drivers for guest operating systems.

The architecture of Enlightened I/O is described in Figure 3.17. There are three fundamental
components: VMBus, Virtual Service Providers (VSPs), and Virtual Service Clients (VSCs).
VMBus implements the channel and defines the protocol for communication between partitions.
VSPs are kernel-level drivers that are deployed in the parent partition and provide access to the
corresponding hardware devices. These interact with VSCs, which represent the virtual device
drivers (also called synthetic drivers) seen by the guest operating systems in the child partitions.
Operating systems supported by Hyper-V utilize this preferred communication channel to perform
I/O for storage, networking, graphics, and input subsystems. This also results in enhanced perfor-
mance in child-to-child I/O as a result of virtual networks between guest operating systems. Legacy
operating systems, which are not hypervisor aware, can still be run by Hyper-V but rely on device
driver emulation, which is managed by the hypervisor and is less efficient.

Parent partition

The parent partition executes the host operating system and implements the virtualization stack that
complements the activity of the hypervisor in running guest operating systems. This partition
always hosts an instance of the Windows Server 2008 R2, which manages the virtualization stack
made available to the child partitions. This partition is the only one that directly accesses device
drivers and mediates the access to them by child partitions by hosting the VSPs.

The parent partition is also the one that manages the creation, execution, and destruction of
child partitions. It does so by means of the Virtualization Infrastructure Driver (VID), which con-
trols access to the hypervisor and allows the management of virtual processors and memory. For
each child partition created, a Virtual Machine Worker Process (VMWP) is instantiated in the par-
ent partition, which manages the child partitions by interacting with the hypervisor through the
VID. Virtual Machine Management services are also accessible remotely through a WMI® provider
that allows remote hosts to access the VID.

Child partitions

Child partitions are used to execute guest operating systems. These are isolated environments that
allow secure and controlled execution of guests. Two types of child partition exist, they differ on
whether the guest operating system is supported by Hyper-V or not. These are called Enlightened
and Unenlightened partitions, respectively. The first ones can benefit from Enlightened 1/O; the
other ones are executed by leveraging hardware emulation from the hypervisor.

3.6.3.2 Cloud computing and infrastructure management
Hyper-V constitutes the basic building block of Microsoft virtualization infrastructure. Other com-
ponents contribute to creating a fully featured platform for server virtualization.

To increase the performance of virtualized environments, a new version of Windows Server
2008, called Windows Server Core, has been released. This is a specific version of the operating

SWMI stands for Windows Management Instrumentation. This is a specification used in the Windows environment to
provide access to the underlying hardware. The specification is based on providers that give authorized clients access to
a specific subsystem of the hardware.

108 CHAPTER 3 Virtualization

system with a reduced set of features and a smaller footprint. In particular, Windows Server Core
has been designed by removing those features, which are not required in a server environment,
such as the GUI component and other bulky components such as the .NET Framework and all the
applications developed on top of it (for example, PowerShell). This design decision has both advan-
tages and disadvantages. On the plus side, it allows for reduced maintenance (i.e., fewer software
patches), reduced attack surface, reduced management, and less disk space. On the negative side,
the embedded features are reduced. Still, there is the opportunity to leverage all the “removed
features” by means of remote management from a fully featured Windows installation. For
instance, administrators can use the PowerShell to remotely manage the Windows Server Core
installation through WMI.

Another component that provides advanced management of virtual machines is System Center
Virtual Machine Manager (SCVMM) 2008. This is a component of the Microsoft System Center
suite, which brings into the suite the virtual infrastructure management capabilities from an IT life-
cycle point of view. Essentially, SCVMM complements the basic features offered by Hyper-V with
management capabilities, including:

e Management portal for the creation and management of virtual instances
e Virtual to Virtual (V2V) and Physical to Virtual (P2V) conversions

* Delegated administration

» Library functionality and deep PowerShell integration

» Intelligent placement of virtual machines in the managed environment

* Host capacity management

SCVMM has also been designed to work with other virtualization platforms such as VMware
vSphere (ESX servers) but benefits most from the virtual infrastructure management implemented
with Hyper-V.

3.6.3.3 Observations

Compared with Xen and VMware, Hyper-V is a hybrid solution because it leverages both paravir-
tualization techniques and full hardware virtualization.

The basic architecture of the hypervisor is based on paravirtualized architecture. The hypervisor
exposes its services to the guest operating systems by means of hypercalls. Also, paravirtualized
kernels can leverage VMBus for fast I/O operations. Moreover, partitions are conceptually similar
to domains in Xen: The parent partition maps Domain 0, while child partitions map Domains U.
The only difference is that the Xen hypervisor is installed on bare hardware and filters all the
access to the underlying hardware, whereas Hyper-V is installed as a role in the existing operating
system, and the way it interacts with partitions is quite similar to the strategy implemented by
VMware, as we discussed.

The approach adopted by Hyper-V has both advantages and disadvantages. The advantages
reside in a flexible virtualization platform supporting a wide range of guest operating systems. The
disadvantages are represented by both hardware and software requirements. Hyper-V is compatible
only with Windows Server 2008 and newer Windows Server platforms running on a x64 architec-
ture. Moreover, it requires a 64-bit processor supporting hardware-assisted virtualization and data
execution prevention. Finally, as noted above, Hyper-V is a role that can be installed on a existing
operating system, while vSphere and Xen can be installed on the bare hardware.

Review questions 109

SUMMARY

The term virtualization is a large umbrella under which a variety of technologies and concepts are
classified. The common root of all the forms of virtualization is the ability to provide the illusion
of a specific environment, whether a runtime environment, a storage facility, a network connection,
or a remote desktop, by using some kind of emulation or abstraction layer. All these concepts play
a fundamental role in building cloud computing infrastructure and services in which hardware,
IT infrastructure, applications, and services are delivered on demand through the Internet or more
generally via a network connection.

Review questions

What is virtualization and what are its benefits?

What are the characteristics of virtualized environments?

Discuss classification or taxonomy of virtualization at different levels.
Discuss the machine reference model of execution virtualization.

What are hardware virtualization techniques?

List and discuss different types of virtualization.

What are the benefits of virtualization in the context of cloud computing?
What are the disadvantages of virtualization?

What is Xen? Discuss its elements for virtualization.

Discuss the reference model of full virtualization.

Discuss the architecture of Hyper-V. Discuss its use in cloud computing.

SO0 NOaTRWN =

— —

This page intentionally left blank

CHAPTER

Cloud Computing Architecture

The term cloud computing is a wide umbrella encompassing many different things; lately it has
become a buzzword that is easily misused to revamp existing technologies and ideas for the public.
What makes cloud computing so interesting to IT stakeholders and research practitioners? How
does it introduce innovation into the field of distributed computing? This chapter addresses all these
questions and characterizes the phenomenon. It provides a reference model that serves as a basis
for discussion of cloud computing technologies.

Introduction

Utility-oriented data centers are the first outcome of cloud computing, and they serve as the infra-
structure through which the services are implemented and delivered. Any cloud service, whether
virtual hardware, development platform, or application software, relies on a distributed infrastruc-
ture owned by the provider or rented from a third party. As noted in the previous definition, the
characterization of a cloud is quite general: It can be implemented using a datacenter, a collection
of clusters, or a heterogeneous distributed system composed of desktop PCs, workstations, and ser-
vers. Commonly, clouds are built by relying on one or more datacenters. In most cases hardware
resources are virtualized to provide isolation of workloads and to best exploit the infrastructure.
According to the specific service delivered to the end user, different layers can be stacked on top
of the virtual infrastructure: a virtual machine manager, a development platform, or a specific appli-
cation middleware.

As noted in earlier chapters, the cloud computing paradigm emerged as a result of the conver-
gence of various existing models, technologies, and concepts that changed the way we deliver and
use IT services. A broad definition of the phenomenon could be as follows:

Cloud computing is a utility-oriented and Internet-centric way of delivering IT services on
demand. These services cover the entire computing stack: from the hardware infrastructure pack-
aged as a set of virtual machines to software services such as development platforms and distrib-
uted applications.

This definition captures the most important and fundamental aspects of cloud computing. We
now discuss a reference model that aids in categorization of cloud technologies, applications, and
services.

111

112 CHAPTER 4 Cloud Computing Architecture

The cloud reference model

Cloud computing supports any IT service that can be consumed as a utility and delivered through a
network, most likely the Internet. Such characterization includes quite different aspects: infrastruc-
ture, development platforms, application and services.

Architecture

It is possible to organize all the concrete realizations of cloud computing into a layered view cover-
ing the entire stack (see Figure 4.1), from hardware appliances to software systems. Cloud
resources are harnessed to offer “computing horsepower” required for providing services. Often,
this layer is implemented using a datacenter in which hundreds and thousands of nodes are stacked
together. Cloud infrastructure can be heterogeneous in nature because a variety of resources, such
as clusters and even networked PCs, can be used to build it. Moreover, database systems and other
storage services can also be part of the infrastructure.

The physical infrastructure is managed by the core middleware, the objectives of which are to
provide an appropriate runtime environment for applications and to best utilize resources. At the
bottom of the stack, virtualization technologies are used to guarantee runtime environment customi-
zation, application isolation, sandboxing, and quality of service. Hardware virtualization is most
commonly used at this level. Hypervisors manage the pool of resources and expose the distributed
infrastructure as a collection of virtual machines. By using virtual machine technology it is possible
to finely partition the hardware resources such as CPU and memory and to virtualize specific
devices, thus meeting the requirements of users and applications. This solution is generally paired

@ ? o f—l Cloud Applications]' ~
©
@ ®] | Applications Social Computing, Enterprise ISV, ScientificComputing, CDNs

a \)

m _% /—| Cloud Programming Environment and Tools I—\
LR User-level Web 2.0, Mashups, Concurrent and Distributed Programming, z
o 9—; Middleware Workflows , Libraries, Scripting zls
a| \. y, o3
2 s
9 ~—1 Cloud Hosting Platforms | ~ 3|5
S|~ Z |0
= QoS Negotiation, Admission ControlPricing, SLA Management, S|
@ v 5 Monitoring, Execution Management, Metering, Accounting L%; |i.r-|

. .

= Core ‘1 3 §
Middl . . =
— Virtual Machine (VM), VM Management and Deployment 3

/—| Cloud Resources | ~

System | iﬂ .
Infrastructure .)
L L L \, R iy y.
FIGURE 4.1

The cloud computing architecture.

4.2 The cloud reference model 113

with storage and network virtualization strategies, which allow the infrastructure to be completely
virtualized and controlled. According to the specific service offered to end users, other virtualiza-
tion techniques can be used; for example, programming-level virtualization helps in creating a
portable runtime environment where applications can be run and controlled. This scenario generally
implies that applications hosted in the cloud be developed with a specific technology or a program-
ming language, such as Java, .NET, or Python. In this case, the user does not have to build its sys-
tem from bare metal. Infrastructure management is the key function of core middleware, which
supports capabilities such as negotiation of the quality of service, admission control, execution
management and monitoring, accounting, and billing.

The combination of cloud hosting platforms and resources is generally classified as a
Infrastructure-as-a-Service (laaS) solution. We can organize the different examples of IaaS into
two categories: Some of them provide both the management layer and the physical infrastructure;
others provide only the management layer (laaS (M)). In this second case, the management layer is
often integrated with other IaaS solutions that provide physical infrastructure and adds value to
them.

IaaS solutions are suitable for designing the system infrastructure but provide limited services
to build applications. Such service is provided by cloud programming environments and tools,
which form a new layer for offering users a development platform for applications. The range of
tools include Web-based interfaces, command-line tools, and frameworks for concurrent and dis-
tributed programming. In this scenario, users develop their applications specifically for the cloud
by using the API exposed at the user-level middleware. For this reason, this approach is also known
as Platform-as-a-Service (PaaS) because the service offered to the user is a development platform
rather than an infrastructure. PaaS solutions generally include the infrastructure as well, which is
bundled as part of the service provided to users. In the case of Pure PaaS, only the user-level mid-
dleware is offered, and it has to be complemented with a virtual or physical infrastructure.

The top layer of the reference model depicted in Figure 4.1 contains services delivered at the
application level. These are mostly referred to as Software-as-a-Service (SaaS). In most cases these
are Web-based applications that rely on the cloud to provide service to end users. The horsepower
of the cloud provided by IaaS and PaaS solutions allows independent software vendors to deliver
their application services over the Internet. Other applications belonging to this layer are those that
strongly leverage the Internet for their core functionalities that rely on the cloud to sustain a larger
number of users; this is the case of gaming portals and, in general, social networking websites.

As a vision, any service offered in the cloud computing style should be able to adaptively
change and expose an autonomic behavior, in particular for its availability and performance. As a
reference model, it is then expected to have an adaptive management layer in charge of elastically
scaling on demand. SaaS implementations should feature such behavior automatically, whereas
PaaS and IaaS generally provide this functionality as a part of the API exposed to users.

The reference model described in Figure 4.1 also introduces the concept of everything as a
Service (XaaS). This is one of the most important elements of cloud computing: Cloud services
from different providers can be combined to provide a completely integrated solution covering all
the computing stack of a system. laaS providers can offer the bare metal in terms of virtual
machines where PaaS solutions are deployed. When there is no need for a PaaS layer, it is possible
to directly customize the virtual infrastructure with the software stack needed to run applications.
This is the case of virtual Web farms: a distributed system composed of Web servers, database

114 CHAPTER 4 Cloud Computing Architecture

servers, and load balancers on top of which prepackaged software is installed to run Web applica-
tions. This possibility has made cloud computing an interesting option for reducing startups’ capital
investment in IT, allowing them to quickly commercialize their ideas and grow their infrastructure
according to their revenues.

Table 4.1 summarizes the characteristics of the three major categories used to classify cloud
computing solutions. In the following section, we briefly discuss these characteristics along with
some references to practical implementations.

Infrastructure- and hardware-as-a-service

Infrastructure- and Hardware-as-a-Service (IaaS/HaaS) solutions are the most popular and devel-
oped market segment of cloud computing. They deliver customizable infrastructure on demand.
The available options within the IaaS offering umbrella range from single servers to entire infra-
structures, including network devices, load balancers, and database and Web servers.

The main technology used to deliver and implement these solutions is hardware virtualization:
one or more virtual machines opportunely configured and interconnected define the distributed sys-
tem on top of which applications are installed and deployed. Virtual machines also constitute the
atomic components that are deployed and priced according to the specific features of the virtual
hardware: memory, number of processors, and disk storage. ITaaS/HaaS solutions bring all the bene-
fits of hardware virtualization: workload partitioning, application isolation, sandboxing, and hard-
ware tuning. From the perspective of the service provider, laaS/HaaS allows better exploiting the
IT infrastructure and provides a more secure environment where executing third party applications.
From the perspective of the customer it reduces the administration and maintenance cost as well as
the capital costs allocated to purchase hardware. At the same time, users can take advantage of the
full customization offered by virtualization to deploy their infrastructure in the cloud; in most cases
virtual machines come with only the selected operating system installed and the system can be

Table 4.1 Cloud Computing Services Classification

Vendors and

hardware and storage on top of which they
can build their infrastructure.

management
infrastructure
Storage management
Network management

Category Characteristics Product Type Products
SaaS Customers are provided with applications that Web applications and SalesForce.com
are accessible anytime and from anywhere. services (Web 2.0) (CRVM)
Clarizen.com (project
management)
Google Apps
PaaS Customers are provided with a platform for Programming APIs and Google AppEngine
developing applications hosted in the cloud. frameworks Microsoft Azure
Deployment systems Manjrasoft Aneka
Data Synapse
laaS/HaaS Customers are provided with virtualized Virtual machine Amazon EC2 and S3

GoGrid
Nirvanix

http://www.SalesForce.com
http://www.Clarizen.com

4.2 The cloud reference model 115

configured with all the required packages and applications. Other solutions provide prepackaged
system images that already contain the software stack required for the most common uses: Web
servers, database servers, or LAMP' stacks. Besides the basic virtual machine management capabil-
ities, additional services can be provided, generally including the following: SLA resource-based
allocation, workload management, support for infrastructure design through advanced Web inter-
faces, and the ability to integrate third-party IaaS solutions.

Figure 4.2 provides an overall view of the components forming an Infrastructure-as-a-Service
solution. It is possible to distinguish three principal layers: the physical infrastructure, the software
management infrastructure, and the user interface. At the top layer the user interface provides
access to the services exposed by the software management infrastructure. Such an interface is

Web-Based Management Interface
Web Services, Portals, REST API

Pricing / Billing QoS SLA &anagemen% Scheduling \D

Provisioning

/-I Infrastructure Management Software |— Fiy

9 @

J 1 \ o
Monitoring Reservation | [_VM Image Repository
%

1
/_I Physical Infrastructure |

Desktop /
Heterogeneous Resources

QL

[Third-Party laaS Cloud |

FIGURE 4.2

Infrastructure-as-a-Service reference implementation.

'LAMP is an acronym for Linux Apache MySql and PHP and identifies a specific server configuration running the Linux
operating system, featuring Apache as Web server, MySQL as database server, and PHP: Hypertext Preprocessor (PHP)
as server-side scripting technology for developing Web applications. LAMP stacks are the most common packaged solu-
tions for quickly deploying Web applications.

116 CHAPTER 4 Cloud Computing Architecture

generally based on Web 2.0 technologies: Web services, RESTful APIs, and mash-ups. These tech-
nologies allow either applications or final users to access the services exposed by the underlying
infrastructure. Web 2.0 applications allow developing full-featured management consoles completely
hosted in a browser or a Web page. Web services and RESTful APIs allow programs to interact with
the service without human intervention, thus providing complete integration within a software
system. The core features of an IaaS solution are implemented in the infrastructure management soft-
ware layer. In particular, management of the virtual machines is the most important function
performed by this layer. A central role is played by the scheduler, which is in charge of allocating
the execution of virtual machine instances. The scheduler interacts with the other components that
perform a variety of tasks:

e The pricing and billing component takes care of the cost of executing each virtual machine
instance and maintains data that will be used to charge the user.

e The monitoring component tracks the execution of each virtual machine instance and maintains
data required for reporting and analyzing the performance of the system.

* The reservation component stores the information of all the virtual machine instances that have
been executed or that will be executed in the future.

e If support for QoS-based execution is provided, a QoS/SLA management component will
maintain a repository of all the SLAs made with the users; together with the monitoring
component, this component is used to ensure that a given virtual machine instance is executed
with the desired quality of service.

* The VM repository component provides a catalog of virtual machine images that users can use
to create virtual instances. Some implementations also allow users to upload their specific
virtual machine images.

* A VM pool manager component is responsible for keeping track of all the live instances.

* Finally, if the system supports the integration of additional resources belonging to a third-party
IaaS provider, a provisioning component interacts with the scheduler to provide a virtual
machine instance that is external to the local physical infrastructure directly managed by the
pool.

The bottom layer is composed of the physical infrastructure, on top of which the management
layer operates. As previously discussed, the infrastructure can be of different types; the specific
infrastructure used depends on the specific use of the cloud. A service provider will most likely use
a massive datacenter containing hundreds or thousands of nodes. A cloud infrastructure developed
in house, in a small or medium-sized enterprise or within a university department, will most likely
rely on a cluster. At the bottom of the scale it is also possible to consider a heterogeneous environ-
ment where different types of resources—PCs, workstations, and clusters—can be aggregated. This
case mostly represents an evolution of desktop grids where any available computing resource (such
as PCs and workstations that are idle outside of working hours) is harnessed to provide a huge com-
pute power. From an architectural point of view, the physical layer also includes the virtual
resources that are rented from external laaS providers.

In the case of complete IaaS solutions, all three levels are offered as service. This is generally
the case with public clouds vendors such as Amazon, GoGrid, Joyent, Rightscale, Terremark,
Rackspace, ElasticHosts, and Flexiscale, which own large datacenters and give access to their com-
puting infrastructures using an [aaS approach. Other solutions instead cover only the user interface

4.2 The cloud reference model 117

and the infrastructure software management layers. They need to provide credentials to access
third-party IaaS providers or to own a private infrastructure in which the management software is
installed. This is the case with Enomaly, Elastra, Eucalyptus, OpenNebula, and specific laaS (M)
solutions from VMware, IBM, and Microsoft.

The proposed architecture only represents a reference model for IaaS implementations. It has
been used to provide general insight into the most common features of this approach for providing
cloud computing services and the operations commonly implemented at this level. Different solu-
tions can feature additional services or even not provide support for some of the features discussed
here. Finally, the reference architecture applies to IaaS implementations that provide computing
resources, especially for the scheduling component. If storage is the main service provided, it is still
possible to distinguish these three layers. The role of infrastructure management software is not to
keep track and manage the execution of virtual machines but to provide access to large infrastruc-
tures and implement storage virtualization solutions on top of the physical layer.

4.2.3 Platform as a service

Platform-as-a-Service (PaaS) solutions provide a development and deployment platform for running
applications in the cloud. They constitute the middleware on top of which applications are built. A
general overview of the features characterizing the PaaS approach is given in Figure 4.3.

,_I Web-Based Interface
Web Services, Portals, REST API

\,

/—i PaaS Core Middleware I

Y Au
Elasticity &
Scaling —
[Runtime Application
iiii Management ;
\ [Resources Management] QoS / SLAB’:ﬂ?nr:dgnem &

Physical Infrastructure I_\ ’—| laaS Providers || ~

FIGURE 4.3
The Platform-as-a-Service reference model.

118 CHAPTER 4 Cloud Computing Architecture

Application management is the core functionality of the middleware. PaaS implementations pro-
vide applications with a runtime environment and do not expose any service for managing the
underlying infrastructure. They automate the process of deploying applications to the infrastructure,
configuring application components, provisioning and configuring supporting technologies such as
load balancers and databases, and managing system change based on policies set by the user.
Developers design their systems in terms of applications and are not concerned with hardware
(physical or virtual), operating systems, and other low-level services. The core middleware is in
charge of managing the resources and scaling applications on demand or automatically, according
to the commitments made with users. From a user point of view, the core middleware exposes
interfaces that allow programming and deploying applications on the cloud. These can be in the
form of a Web-based interface or in the form of programming APIs and libraries.

The specific development model decided for applications determines the interface exposed to
the user. Some implementations provide a completely Web-based interface hosted in the cloud and
offering a variety of services. It is possible to find integrated developed environments based on
4GL and visual programming concepts, or rapid prototyping environments where applications are
built by assembling mash-ups and user-defined components and successively customized. Other
implementations of the PaaS model provide a complete object model for representing an applica-
tion and provide a programming language-based approach. This approach generally offers more
flexibility and opportunities but incurs longer development cycles. Developers generally have the
full power of programming languages such as Java, .NET, Python, or Ruby, with some restrictions
to provide better scalability and security. In this case the traditional development environments can
be used to design and develop applications, which are then deployed on the cloud by using the
APIs exposed by the PaaS provider. Specific components can be offered together with the develop-
ment libraries for better exploiting the services offered by the PaaS environment. Sometimes a local
runtime environment that simulates the conditions of the cloud is given to users for testing their
applications before deployment. This environment can be restricted in terms of features, and it is
generally not optimized for scaling.

PaaS solutions can offer middleware for developing applications together with the infrastructure
or simply provide users with the software that is installed on the user premises. In the first case, the
PaaS provider also owns large datacenters where applications are executed; in the second case,
referred to in this book as Pure PaaS, the middleware constitutes the core value of the offering. It
is also possible to have vendors that deliver both middleware and infrastructure and ship only the
middleware for private installations.

Table 4.2 provides a classification of the most popular PaaS implementations. It is possible to
organize the various solutions into three wide categories: PaaS-I, PaaS-1I, and PaaS-III. The first
category identifies PaaS implementations that completely follow the cloud computing style for
application development and deployment. They offer an integrated development environment
hosted within the Web browser where applications are designed, developed, composed, and
deployed. This is the case of Force.com and Longjump. Both deliver as platforms the combination
of middleware and infrastructure. In the second class we can list all those solutions that are focused
on providing a scalable infrastructure for Web application, mostly websites. In this case, developers
generally use the providers’ APIs, which are built on top of industrial runtimes, to develop

http://Force.com

4.2 The cloud reference model 119

Table 4.2 Platform-as-a-Service Offering Classification
Vendors and

Category Description Product Type Products

PaaS-/ Runtime environment with Web-hosted Middleware + Infrastructure ~ Force.com
application development platform. Rapid Middleware + Infrastructure Longjump
application prototyping.

PaaS-Il Runtime environment for scaling Web Middleware + Infrastructure ~ Google AppEngine
applications. The runtime could be Middleware AppScale
enhanced by additional components that Middleware + Infrastructure ~ Heroku
provide scaling capabilities. Middleware + Infrastructure Engine Yard

Middleware + Infrastructure Joyent Smart
Middleware Platform
GigaSpaces XAP

PaaS-Iil Middleware and programming model for Middleware + Infrastructure Microsoft Azure
developing distributed applications in the Middleware DataSynapse
cloud. Middleware Cloud 1Q

Middleware Manjrasof Aneka

Middleware Apprenda

Middleware SaaSGrid
GigaSpaces
DataGrid

applications. Google AppEngine is the most popular product in this category. It provides a scalable
runtime based on the Java and Python programming languages, which have been modified for pro-
viding a secure runtime environment and enriched with additional APIs and components to support
scalability. AppScale, an open-source implementation of Google AppEngine, provides interface-
compatible middleware that has to be installed on a physical infrastructure. Joyent Smart Platform
provides a similar approach to Google AppEngine. A different approach is taken by Heroku and
Engine Yard, which provide scalability support for Ruby- and Ruby on Rails-based Websites. In
this case developers design and create their applications with the traditional methods and then
deploy them by uploading to the provider’s platform.

The third category consists of all those solutions that provide a cloud programming platform
for any kind of application, not only Web applications. Among these, the most popular is
Microsoft Windows Azure, which provides a comprehensive framework for building service-
oriented cloud applications on top of the .NET technology, hosted on Microsoft’s datacenters.
Other solutions in the same category, such as Manjrasoft Aneka, Apprenda SaaSGrid, Appistry
Cloud IQ Platform, DataSynapse, and GigaSpaces DataGrid, provide only middleware with differ-
ent services. Table 4.2 shows only a few options available in the Platform-as-a-Service market
segment.

The PaaS umbrella encompasses a variety of solutions for developing and hosting applications
in the cloud. Despite this heterogeneity, it is possible to identify some criteria that are expected to

http://www.Force.com

120 CHAPTER 4 Cloud Computing Architecture

be found in any implementation. As noted by Sam Charrington, product manager at Appistry.com,’
there are some essential characteristics that identify a PaaS solution:

* Runtime framework. This framework represents the “software stack” of the PaaS model and
the most intuitive aspect that comes to people’s minds when they refer to PaaS solutions. The
runtime framework executes end-user code according to the policies set by the user and the
provider.

e Abstraction. PaaS solutions are distinguished by the higher level of abstraction that they
provide. Whereas in the case of IaaS solutions the focus is on delivering “raw” access to virtual
or physical infrastructure, in the case of PaaS the focus is on the applications the cloud must
support. This means that PaaS solutions offer a way to deploy and manage applications on the
cloud rather than a bunch of virtual machines on top of which the IT infrastructure is built and
configured.

e Automation. PaaS environments automate the process of deploying applications to the
infrastructure, scaling them by provisioning additional resources when needed. This process is
performed automatically and according to the SLA made between the customers and the
provider. This feature is normally not native in IaaS solutions, which only provide ways to
provision more resources.

e Cloud services. PaaS offerings provide developers and architects with services and APIs,
helping them to simplify the creation and delivery of elastic and highly available cloud
applications. These services are the key differentiators among competing PaaS solutions and
generally include specific components for developing applications, advanced services for
application monitoring, management, and reporting.

Another essential component for a PaaS-based approach is the ability to integrate third-party
cloud services offered from other vendors by leveraging service-oriented architecture. Such inte-
gration should happen through standard interfaces and protocols. This opportunity makes the
development of applications more agile and able to evolve according to the needs of customers
and users. Many of the PaaS offerings provide this facility, which is naturally built into the frame-
work they leverage to provide a cloud computing solution.

One of the major concerns of leveraging PaaS solutions for implementing applications is vendor
lock-in. Differently from IaaS solutions, which deliver bare virtual servers that can be fully custom-
ized in terms of the software stack installed, PaaS environments deliver a platform for developing
applications, which exposes a well-defined set of APIs and, in most cases, binds the application to
the specific runtime of the PaaS provider. Even though a platform-based approach strongly simpli-
fies the development and deployment cycle of applications, it poses the risk of making these appli-
cations completely dependent on the provider. Such dependency can become a significant obstacle
in retargeting the application to another environment and runtime if the commitments made with
the provider cease. The impact of the vendor lock-in on applications obviously varies according to
the various solutions. Some of them, such as Force.com, rely on a proprietary runtime framework,
which makes the retargeting process very difficult. Others, such as Google AppEngine and
Microsoft Azure, rely on industry-standard runtimes but utilize private data storage facilities and

*The full detail of this analysis can be found in the Cloud-pulse blog post available at the following address: http:/
Cloudpulseblog.com/2010/02/the-essential-characteristics-of-paas.

http://www.Appistry.com
http://Force.com
http://www.openCloudconsortium.org
http://www.openCloudconsortium.org

4.2 The cloud reference model 121

computing infrastructure. In this case it is possible to find alternatives based on PaaS solutions
implementing the same interfaces, with perhaps different performance. Others, such as Appistry
Cloud IQ Platform, Heroku, and Engine Yard, completely rely on open standards, thus making the
migration of applications easier.

Finally, from a financial standpoint, although IaaS solutions allow shifting the capital cost into
operational costs through outsourcing, PaaS solutions can cut the cost across development, deploy-
ment, and management of applications. It helps management reduce the risk of ever-changing tech-
nologies by offloading the cost of upgrading the technology to the PaaS provider. This happens
transparently for the consumers of this model, who can concentrate their effort on the core value of
their business. The PaaS approach, when bundled with underlying IaaS solutions, helps even small
start-up companies quickly offer customers integrated solutions on a hosted platform at a very mini-
mal cost. These opportunities make the PaaS offering a viable option that targets different market
segments.

Software as a service

Software-as-a-Service (SaaS) is a software delivery model that provides access to applications
through the Internet as a Web-based service. It provides a means to free users from complex hard-
ware and software management by offloading such tasks to third parties, which build applications
accessible to multiple users through a Web browser. In this scenario, customers neither need install
anything on their premises nor have to pay considerable up-front costs to purchase the software and
the required licenses. They simply access the application website, enter their credentials and billing
details, and can instantly use the application, which, in most of the cases, can be further customized
for their needs. On the provider side, the specific details and features of each customer’s applica-
tion are maintained in the infrastructure and made available on demand.

The SaaS model is appealing for applications serving a wide range of users and that can be
adapted to specific needs with little further customization. This requirement characterizes SaaS as a
“one-to-many” software delivery model, whereby an application is shared across multiple users.
This is the case of CRM> and ERP* applications that constitute common needs for almost all enter-
prises, from small to medium-sized and large business. Every enterprise will have the same
requirements for the basic features concerning CRM and ERP; different needs can be satisfied with
further customization. This scenario facilitates the development of software platforms that provide
a general set of features and support specialization and ease of integration of new components.
Moreover, it constitutes the perfect candidate for hosted solutions, since the applications delivered
to the user are the same, and the applications themselves provide users with the means to shape the

3CRM is an acronym for customer relationship management and identifies concerns related to interactions with custo-
mers and prospect sales. CRM solutions are software systems that simplify the process of managing customers and iden-
tifying sales strategies.

“ERP, an acronym for enterprise resource planning, generally refers to an integrated computer-based system used to
manage internal and external resources, including tangible assets, materials, and financial and human resources. ERP
software provides an integrated view of the enterprise and facilitates the management of the information flows between
business functions and resources.

122 CHAPTER 4 Cloud Computing Architecture

applications according to user needs. As a result, SaaS applications are naturally multitenant.
Multitenancy, which is a feature of SaaS compared to traditional packaged software, allows provi-
ders to centralize and sustain the effort of managing large hardware infrastructures, maintaining
and upgrading applications transparently to the users, and optimizing resources by sharing the costs
among the large user base. On the customer side, such costs constitute a minimal fraction of the
usage fee paid for the software.

As noted previously (see Section 1.2), the concept of software as a service preceded cloud com-
puting, starting to circulate at the end of the 1990s, when it began to gain marketplace acceptance
[31]. The acronym SaaS was then coined in 2001 by the Software Information & Industry
Association (SIIA) [32] with the following connotation:

In the software as a service model, the application, or service, is deployed from a centralized
datacenter across a network—Internet, Intranet, LAN, or VPN—providing access and use on a
recurring fee basis. Users “rent,” “subscribe to,
the applications from a central provider. Business models vary according to the level to which
the software is streamlined, to lower price and increase efficiency, or value-added through cus-
tomization to further improve digitized business processes.

» o« »

are assigned,” or “are granted access to”

The analysis carried out by SIIA was mainly oriented to cover application service providers
(ASPs) and all their variations, which capture the concept of software applications consumed as a
service in a broader sense. ASPs already had some of the core characteristics of SaaS:

* The product sold to customer is application access.

e The application is centrally managed.

* The service delivered is one-to-many.

* The service delivered is an integrated solution delivered on the contract, which means provided
as promised.

Initially ASPs offered hosting solutions for packaged applications, which were served to multi-
ple customers. Successively, other options, such as Web-based integration of third-party application
services, started to gain interest and a new range of opportunities open up to independent software
vendors and service providers. These opportunities eventually evolved into a more flexible model
to deliver applications as a service: the SaaS model. ASPs provided access to packaged software
solutions that addressed the needs of a variety of customers. Initially this approach was affordable
for service providers, but it later became inconvenient when the cost of customizations and speciali-
zations increased. The SaaS approach introduces a more flexible way of delivering application ser-
vices that are fully customizable by the user by integrating new services, injecting their own
components, and designing the application and information workflows. Such a new approach has
also been possible with the support of Web 2.0 technologies, which allowed turning the Web
browser into a full-featured interface, able even to support application composition and
development.

How is cloud computing related to SaaS? According to the classification of services shown in
Figure 4.1, the SaaS approach lays on top of the cloud computing stack. It fits into the cloud com-
puting vision expressed by the XaaS acronym, Everything-as-a-Service; and with SaaS, applications

4.2 The cloud reference model 123

are delivered as a service. Initially the SaaS model was of interest only for lead users and early
adopters. The benefits delivered at that stage were the following:

* Software cost reduction and total cost of ownership (TCO) were paramount
* Service-level improvements

* Rapid implementation

» Standalone and configurable applications

* Rudimentary application and data integration

* Subscription and pay-as-you-go (PAYG) pricing

With the advent of cloud computing there has been an increasing acceptance of SaaS as a viable
software delivery model. This led to transition into SaaS 2.0 [40], which does not introduce a new
technology but transforms the way in which SaaS is used.

In particular, SaaS 2.0 is focused on providing a more robust infrastructure and application plat-
forms driven by SLAs. Rather than being characterized as a more rapid implementation and deploy-
ment environment, SaaS 2.0 will focus on the rapid achievement of business objectives. This is
why such evolution does not introduce any new technology: The existing technologies are com-
posed together in order to achieve business goals efficiently. Fundamental to this perspective is the
ability to leverage existing solutions and integrate value-added business services. The existing SaaS
infrastructures not only allow the development and customization of applications, but they also
facilitate the integration of services that are exposed by other parties. SaaS applications are then the
result of the interconnection and the synergy of different applications and components that together
provide customers with added value. This approach dramatically changes the software ecosystem
of the SaaS market, which is no longer monopolized by a few vendors but is now a fully intercon-
nected network of service providers, clustered around some “big hubs” that deliver the application
to the customer. In this scenario, each single component integrated into the SaaS application
becomes responsible to the user for ensuring the attached SLA and at the same time could be priced
differently. Customers can then choose how to specialize their applications by deciding which com-
ponents and services they want to integrate.

Software-as-a-Service applications can serve different needs. CRM, ERP, and social networking
applications are definitely the most popular ones. SalesForce.com is probably the most successful and
popular example of a CRM service. It provides a wide range of services for applications: customer
relationship and human resource management, enterprise resource planning, and many other features.
SalesForce.com builds on top of the Force.com platform, which provides a fully featured environment
for building applications. It offers either a programming language or a visual environment to arrange
components together for building applications. In addition to the basic features provided, the integra-
tion with third-party-made applications enriches SalesForce.com’s value. In particular, through
AppExchange customers can publish, search, and integrate new services and features into their exist-
ing applications. This makes SalesForce.com applications completely extensible and customizable.
Similar solutions are offered by NetSuite and RightNow. NetSuite is an integrated software business
suite featuring financials, CRM, inventory, and ecommerce functionalities integrated all together.
RightNow is customer experience-centered SaaS application that integrates together different features,
from chat to Web communities, to support the common activity of an enterprise.

http://www.SalesForce.com
http://www.SalesForce.com
http://www.Force.com
http://www.SalesForce.com

124 CHAPTER 4 Cloud Computing Architecture

Another important class of popular SaaS applications comprises social networking applications
such as Facebook and professional networking sites such as LinkedIn. Other than providing the
basic features of networking, they allow incorporating and extending their capabilities by integrat-
ing third-party applications. These can be developed as plug-ins for the hosting platform, as hap-
pens for Facebook, and made available to users, who can select which applications they want to
add to their profile. As a result, the integrated applications get full access to the network of contacts
and users’ profile data. The nature of these applications can be of different types: office automation
components, games, or integration with other existing services.

Office automation applications are also an important representative for SaaS applications:
Google Documents and Zoho Office are examples of Web-based applications that aim to address
all user needs for documents, spreadsheets, and presentation management. They offer a Web-based
interface for creating, managing, and modifying documents that can be easily shared among users
and made accessible from anywhere.

It is important to note the role of SaaS solution enablers, which provide an environment in
which to integrate third-party services and share information with others. A quite successful exam-
ple is Box.net, an SaaS application providing users with a Web space and profile that can be
enriched and extended with third-party applications such as office automation, integration with
CRM-based solutions, social Websites, and photo editing.

Types of clouds

Clouds constitute the primary outcome of cloud computing. They are a type of parallel and distrib-
uted system harnessing physical and virtual computers presented as a unified computing resource.
Clouds build the infrastructure on top of which services are implemented and delivered to custo-
mers. Such infrastructures can be of different types and provide useful information about the nature
and the services offered by the cloud. A more useful classification is given according to the admin-
istrative domain of a cloud: It identifies the boundaries within which cloud computing services are
implemented, provides hints on the underlying infrastructure adopted to support such services, and
qualifies them. It is then possible to differentiate four different types of cloud:

e Public clouds. The cloud is open to the wider public.

e Private clouds. The cloud is implemented within the private premises of an institution and
generally made accessible to the members of the institution or a subset of them.

* Hybrid or heterogeneous clouds. The cloud is a combination of the two previous solutions and
most likely identifies a private cloud that has been augmented with resources or services hosted
in a public cloud.

e Community clouds. The cloud is characterized by a multi-administrative domain involving
different deployment models (public, private, and hybrid), and it is specifically designed to
address the needs of a specific industry.

Almost all the implementations of clouds can be classified in this categorization. In the follow-
ing sections, we provide brief characterizations of these clouds.

4.3 Types of clouds 125

Public clouds

Public clouds constitute the first expression of cloud computing. They are a realization of the
canonical view of cloud computing in which the services offered are made available to anyone,
from anywhere, and at any time through the Internet. From a structural point of view they are a dis-
tributed system, most likely composed of one or more datacenters connected together, on top of
which the specific services offered by the cloud are implemented. Any customer can easily sign in
with the cloud provider, enter her credential and billing details, and use the services offered.

Historically, public clouds were the first class of cloud that were implemented and offered.
They offer solutions for minimizing IT infrastructure costs and serve as a viable option for handling
peak loads on the local infrastructure. They have become an interesting option for small enterprises,
which are able to start their businesses without large up-front investments by completely relying on
public infrastructure for their IT needs. What made attractive public clouds compared to the reshap-
ing of the private premises and the purchase of hardware and software was the ability to grow or
shrink according to the needs of the related business. By renting the infrastructure or subscribing to
application services, customers were able to dynamically upsize or downsize their IT according to
the demands of their business. Currently, public clouds are used both to completely replace the
IT infrastructure of enterprises and to extend it when it is required.

A fundamental characteristic of public clouds is multitenancy. A public cloud is meant to serve
a multitude of users, not a single customer. Any customer requires a virtual computing environment
that is separated, and most likely isolated, from other users. This is a fundamental requirement to
provide effective monitoring of user activities and guarantee the desired performance and the other
QoS attributes negotiated with users. QoS management is a very important aspect of public clouds.
Hence, a significant portion of the software infrastructure is devoted to monitoring the cloud
resources, to bill them according to the contract made with the user, and to keep a complete history
of cloud usage for each customer. These features are fundamental to public clouds because they
help providers offer services to users with full accountability.

A public cloud can offer any kind of service: infrastructure, platform, or applications. For example,
Amazon EC2 is a public cloud that provides infrastructure as a service; Google AppEngine is a public
cloud that provides an application development platform as a service; and SalesForce.com is a public
cloud that provides software as a service. What makes public clouds peculiar is the way they are con-
sumed: They are available to everyone and are generally architected to support a large quantity of
users. What characterizes them is their natural ability to scale on demand and sustain peak loads.

From an architectural point of view there is no restriction concerning the type of distributed sys-
tem implemented to support public clouds. Most likely, one or more datacenters constitute the
physical infrastructure on top of which the services are implemented and delivered. Public clouds
can be composed of geographically dispersed datacenters to share the load of users and better serve
them according to their locations. For example, Amazon Web Services has datacenters installed in
the United States, Europe, Singapore, and Australia; they allow their customers to choose between
three different regions: us-west-1, us-east-1, or eu-west-1. Such regions are priced differently and
are further divided into availability zones, which map to specific datacenters. According to the spe-
cific class of services delivered by the cloud, a different software stack is installed to manage the
infrastructure: virtual machine managers, distributed middleware, or distributed applications.

http://www.SalesForce.com

126 CHAPTER 4 Cloud Computing Architecture

Private clouds

Public clouds are appealing and provide a viable option to cut IT costs and reduce capital expenses,
but they are not applicable in all scenarios. For example, a very common critique to the use of
cloud computing in its canonical implementation is the loss of control. In the case of public clouds,
the provider is in control of the infrastructure and, eventually, of the customers’ core logic and sen-
sitive data. Even though there could be regulatory procedure in place that guarantees fair manage-
ment and respect of the customer’s privacy, this condition can still be perceived as a threat or as an
unacceptable risk that some organizations are not willing to take. In particular, institutions such as
government and military agencies will not consider public clouds as an option for processing or
storing their sensitive data. The risk of a breach in the security infrastructure of the provider could
expose such information to others; this could simply be considered unacceptable.

In other cases, the loss of control of where your virtual IT infrastructure resides could open the
way to other problematic situations. More precisely, the geographical location of a datacenter gen-
erally determines the regulations that are applied to management of digital information. As a result,
according to the specific location of data, some sensitive information can be made accessible to
government agencies or even considered outside the law if processed with specific cryptographic
techniques. For example, the USA PATRIOT Act’ provides its government and other agencies with
virtually limitless powers to access information, including that belonging to any company that
stores information in the U.S. territory. Finally, existing enterprises that have large computing infra-
structures or large installed bases of software do not simply want to switch to public clouds, but
they use the existing IT resources and optimize their revenue. All these aspects make the use of a
public computing infrastructure not always possible. Yet the general idea supported by the cloud
computing vision can still be attractive. More specifically, having an infrastructure able to deliver
IT services on demand can still be a winning solution, even when implemented within the private
premises of an institution. This idea led to the diffusion of private clouds, which are similar to pub-
lic clouds, but their resource-provisioning model is limited within the boundaries of an
organization.

Private clouds are virtual distributed systems that rely on a private infrastructure and provide
internal users with dynamic provisioning of computing resources. Instead of a pay-as-you-go model
as in public clouds, there could be other schemes in place, taking into account the usage of the
cloud and proportionally billing the different departments or sections of an enterprise. Private
clouds have the advantage of keeping the core business operations in-house by relying on the exist-
ing IT infrastructure and reducing the burden of maintaining it once the cloud has been set up. In
this scenario, security concerns are less critical, since sensitive information does not flow out of the
private infrastructure. Moreover, existing IT resources can be better utilized because the private
cloud can provide services to a different range of users. Another interesting opportunity that comes
with private clouds is the possibility of testing applications and systems at a comparatively lower

5The USA PATRIOT Act is a statute enacted by the U.S. government that increases the ability of law enforcement agen-
cies to search telephone, email, medical, financial, and other records and eases restrictions on foreign intelligence gather-
ing within the United States. The full text of the act is available at the Website of the Library of the Congress at the
following address: http://thomas.loc.gov/cgi-bin/bdquery/z?d107:hr03162: (accessed April 20, 2010).

http://www.openCloudconsortium.org

4.3 Types of clouds 127

price rather than public clouds before deploying them on the public virtual infrastructure. A
Forrester report [34] on the benefits of delivering in-house cloud computing solutions for enter-
prises highlighted some of the key advantages of using a private cloud computing infrastructure:

* Customer information protection. Despite assurances by the public cloud leaders about security,
few provide satisfactory disclosure or have long enough histories with their cloud offerings to
provide warranties about the specific level of security put in place on their systems. In-house
security is easier to maintain and rely on.

e Infrastructure ensuring SLAs. Quality of service implies specific operations such as appropriate
clustering and failover, data replication, system monitoring and maintenance, and disaster
recovery, and other uptime services can be commensurate to the application needs. Although
public cloud vendors provide some of these features, not all of them are available as needed.

* Compliance with standard procedures and operations. If organizations are subject to third-party
compliance standards, specific procedures have to be put in place when deploying and
executing applications. This could be not possible in the case of the virtual public infrastructure.

All these aspects make the use of cloud-based infrastructures in private premises an interesting
option.

From an architectural point of view, private clouds can be implemented on more heterogeneous
hardware: They generally rely on the existing IT infrastructure already deployed on the private pre-
mises. This could be a datacenter, a cluster, an enterprise desktop grid, or a combination of them.
The physical layer is complemented with infrastructure management software (i.e., IaaS (M); see
Section 4.2.2) or a PaaS solution, according to the service delivered to the users of the cloud.

Different options can be adopted to implement private clouds. Figure 4.4 provides a compre-
hensive view of the solutions together with some reference to the most popular software used to
deploy private clouds. At the bottom layer of the software stack, virtual machine technologies
such as Xen [35], KVM [36], and VMware serve as the foundations of the cloud. Virtual
machine management technologies such as VMware vCloud, Eucalyptus [37], and OpenNebula
[38] can be used to control the virtual infrastructure and provide an IaaS solution. VMware
vCloud is a proprietary solution, but Eucalyptus provides full compatibility with Amazon Web
Services interfaces and supports different virtual machine technologies such as Xen, KVM, and
VMware. Like Eucalyptus, OpenNebula is an open-source solution for virtual infrastructure man-
agement that supports KVM, Xen, and VMware, which has been designed to easily integrate
third-party laaS providers. Its modular architecture allows extending the software with additional
features such as the capability of reserving virtual machine instances by using Haizea [39] as
scheduler.

Solutions that rely on the previous virtual machine managers and provide added value are
OpenPEX [40] and InterGrid [41]. OpenPEX is Web-based system that allows the reservation of
virtual machine instances and is designed to support different back ends (at the moment only the
support for Xen is implemented). InterGrid provides added value on top of OpenNebula and
Amazon EC2 by allowing the reservation of virtual machine instances and managing multi-
administrative domain clouds. PaaS solutions can provide an additional layer and deliver a high-
level service for private clouds. Among the options available for private deployment of clouds we
can consider DataSynapse, Zimory Pools, Elastra, and Aneka. DataSynapse is a global provider of
application virtualization software. By relying on the VMware virtualization technology,

128 CHAPTER 4 Cloud Computing Architecture
(_| Platform-as-a-Service Solutions !
® DataSynapse, Zimory Pools,
© Elastra CloudServer, Aneka,
& \.
@ i /—| Infrastructure Management Software I—\
- fi’jﬁj Eucalyptus, OpenNebula, VMWare
s s vCloud, OpenPEX, InterGrid, ..
% . 8 v
2 /—l Virtual Machine Technology I—\
ﬁ'ﬁ KVM, Xen, VMWare, ...
_ it y,
|
N Datacenters, Clusters, Desktop Grids
L L* i Physical Infrastructure
FIGURE 4.4

Private clouds hardware and software stack.

DataSynapse provides a flexible environment for building private clouds on top of datacenters.
Elastra Cloud Server is a platform for easily configuring and deploying distributed application
infrastructures on clouds. Zimory provides a software infrastructure layer that automates the use of
resource pools based on Xen, KVM, and VMware virtualization technologies. It allows creating an
internal cloud composed of sparse private and public resources and provides facilities for migrating
applications within the existing infrastructure. Aneka is a software development platform that can
be used to deploy a cloud infrastructure on top of heterogeneous hardware: datacenters, clusters,
and desktop grids. It provides a pluggable service-oriented architecture that’s mainly devoted to
supporting the execution of distributed applications with different programming models: bag of
tasks, MapReduce, and others.

Private clouds can provide in-house solutions for cloud computing, but if compared to public
clouds they exhibit more limited capability to scale elastically on demand.

Hybrid clouds

Public clouds are large software and hardware infrastructures that have a capability that is huge
enough to serve the needs of multiple users, but they suffer from security threats and administra-
tive pitfalls. Although the option of completely relying on a public virtual infrastructure is appeal-
ing for companies that did not incur IT capital costs and have just started considering their
IT needs (i.e., start-ups), in most cases the private cloud option prevails because of the existing
IT infrastructure.

4.3 Types of clouds 129

Private clouds are the perfect solution when it is necessary to keep the processing of informa-
tion within an enterprise’s premises or it is necessary to use the existing hardware and software
infrastructure. One of the major drawbacks of private deployments is the inability to scale on
demand and to efficiently address peak loads. In this case, it is important to leverage capabilities of
public clouds as needed. Hence, a hybrid solution could be an interesting opportunity for taking
advantage of the best of the private and public worlds. This led to the development and diffusion
of hybrid clouds.

Hybrid clouds allow enterprises to exploit existing IT infrastructures, maintain sensitive infor-
mation within the premises, and naturally grow and shrink by provisioning external resources and
releasing them when they’re no longer needed. Security concerns are then only limited to the public
portion of the cloud that can be used to perform operations with less stringent constraints but that
are still part of the system workload. Figure 4.5 provides a general overview of a hybrid cloud: It is
a heterogeneous distributed system resulting from a private cloud that integrates additional services
or resources from one or more public clouds. For this reason they are also called heterogeneous
clouds. As depicted in the diagram, dynamic provisioning is a fundamental component in this sce-
nario. Hybrid clouds address scalability issues by leveraging external resources for exceeding

Desktop Grids /
NOWs

FIGURE 4.5

Hybrid/heterogeneous cloud overview.

130 CHAPTER 4 Cloud Computing Architecture

capacity demand. These resources or services are temporarily leased for the time required and then
released. This practice is also known as cloudbursting.°

Whereas the concept of hybrid cloud is general, it mostly applies to IT infrastructure rather than
software services. Service-oriented computing already introduces the concept of integration of paid
software services with existing application deployed in the private premises. In an IaaS scenario,
dynamic provisioning refers to the ability to acquire on demand virtual machines in order to
increase the capability of the resulting distributed system and then release them. Infrastructure man-
agement software and PaaS solutions are the building blocks for deploying and managing hybrid
clouds. In particular, with respect to private clouds, dynamic provisioning introduces a more com-
plex scheduling algorithm and policies, the goal of which is also to optimize the budget spent to
rent public resources.

Infrastructure management software such as OpenNebula already exposes the capability of inte-
grating resources from public clouds such as Amazon EC2. In this case the virtual machine
obtained from the public infrastructure is managed as all the other virtual machine instances main-
tained locally. What is missing is then an advanced scheduling engine that’s able to differentiate
these resources and provide smart allocations by taking into account the budget available to extend
the existing infrastructure. In the case of OpenNebula, advanced schedulers such as Haizea can be
integrated to provide cost-based scheduling. A different approach is taken by InterGrid. This is
essentially a distributed scheduling engine that manages the allocation of virtual machines in a col-
lection of peer networks. Such networks can be represented by a local cluster, a gateway to a public
cloud, or a combination of the two. Once a request is submitted to one of the InterGrid gateways, it
is served by possibly allocating virtual instances in all the peered networks, and the allocation of
requests is performed by taking into account the user budget and the peering arrangements between
networks.

Dynamic provisioning is most commonly implemented in PaaS solutions that support hybrid
clouds. As previously discussed, one of the fundamental components of PaaS middleware is the
mapping of distributed applications onto the cloud infrastructure. In this scenario, the role of
dynamic provisioning becomes fundamental to ensuring the execution of applications under the
QoS agreed on with the user. For example, Aneka provides a provisioning service that leverages
different TaaS providers for scaling the existing cloud infrastructure [42]. The provisioning service
cooperates with the scheduler, which is in charge of guaranteeing a specific QoS for applications.
In particular, each user application has a budget attached, and the scheduler uses that budget to
optimize the execution of the application by renting virtual nodes if needed. Other PaaS implemen-
tations support the deployment of hybrid clouds and provide dynamic provisioning capabilities.
Among those discussed for the implementation and management of private clouds we can cite
Elastra CloudServer and Zimory Pools.

SAccording to the Cloud Computing Wiki, the term cloudburst has a double meaning; it also refers to the “failure of a
cloud computing environment due to the inability to handle a spike in demand” (http://sites.google.com/site/
Cloudcomputingwiki/Home/Cloud-computing-vocabulary). In this book, we always refer to the dynamic provisioning of
resources from public clouds when mentioning this term.

http://www.openCloudconsortium.org
http://www.openCloudconsortium.org

4.3 Types of clouds 131

(i] N
i A [Community Cloud] ;
: / N :
: - g N :
: o 4 bt !
: |’/ y —\;::‘L&/"'\ :
' ! . | ;
; '_,_ / Application]
i { y, = Services E
! | Third-Party Cloud - > ;
i ' L !
E i *<f—\/"\>_7_7 Development | Private Cloud | E
b A Platforms — —5 '
i \ - '
i ?-— . N '
i

i

Federal and
Government Bodies

Private
Users

Industries
Enterprises

FIGURE 4.6
A community cloud.

4.3.4 Community clouds

Community clouds are distributed systems created by integrating the services of different clouds to
address the specific needs of an industry, a community, or a business sector. The National Institute
of Standards and Technologies (NIST) [43] characterizes community clouds as follows:

The infrastructure is shared by several organizations and supports a specific community that has
shared concerns (e.g., mission, security requirements, policy, and compliance considerations). It
may be managed by the organizations or a third party and may exist on premise or off premise.

Figure 4.6 provides a general view of the usage scenario of community clouds, together with
reference architecture. The users of a specific community cloud fall into a well-identified commu-
nity, sharing the same concerns or needs; they can be government bodies, industries, or even simple
users, but all of them focus on the same issues for their interaction with the cloud. This is a differ-
ent scenario than public clouds, which serve a multitude of users with different needs. Community
clouds are also different from private clouds, where the services are generally delivered within the
institution that owns the cloud.

From an architectural point of view, a community cloud is most likely implemented over multi-
ple administrative domains. This means that different organizations such as government bodies,

132 CHAPTER 4 Cloud Computing Architecture

private enterprises, research organizations, and even public virtual infrastructure providers contrib-
ute with their resources to build the cloud infrastructure.
Candidate sectors for community clouds are as follows:

* Media industry. In the media industry, companies are looking for low-cost, agile, and simple
solutions to improve the efficiency of content production. Most media productions involve an
extended ecosystem of partners. In particular, the creation of digital content is the outcome of a
collaborative process that includes movement of large data, massive compute-intensive
rendering tasks, and complex workflow executions. Community clouds can provide a shared
environment where services can facilitate business-to-business collaboration and offer the
horsepower in terms of aggregate bandwidth, CPU, and storage required to efficiently support
media production.

* Healthcare industry. In the healthcare industry, there are different scenarios in which
community clouds could be of use. In particular, community clouds can provide a global
platform on which to share information and knowledge without revealing sensitive data
maintained within the private infrastructure. The naturally hybrid deployment model of
community clouds can easily support the storing of patient-related data in a private cloud while
using the shared infrastructure for noncritical services and automating processes within
hospitals.

e FEnergy and other core industries. In these sectors, community clouds can bundle the
comprehensive set of solutions that together vertically address management, deployment, and
orchestration of services and operations. Since these industries involve different providers,
vendors, and organizations, a community cloud can provide the right type of infrastructure to
create an open and fair market.

e Public sector. Legal and political restrictions in the public sector can limit the adoption of
public cloud offerings. Moreover, governmental processes involve several institutions and
agencies and are aimed at providing strategic solutions at local, national, and international
administrative levels. They involve business-to-administration, citizen-to-administration, and
possibly business-to-business processes. Some examples include invoice approval, infrastructure
planning, and public hearings. A community cloud can constitute the optimal venue to provide a
distributed environment in which to create a communication platform for performing such
operations.

e Scientific research. Science clouds are an interesting example of community clouds. In this case,
the common interest driving different organizations sharing a large distributed infrastructure is
scientific computing.

The term community cloud can also identify a more specific type of cloud that arises from con-
cern over the controls of vendors in cloud computing and that aspire to combine the principles of
digital ecosystems’ [44] with the case study of cloud computing. A community cloud is formed by
harnessing the underutilized resources of user machines [45] and providing an infrastructure in

7Digital ecosystems are distributed, adaptive, and open sociotechnical systems with properties of self-organization, scal-
ability, and sustainability inspired by natural ecosystems. The primary aim of digital ecosystems is to sustain the regional
development of small and medium-sized enterprises (SMEs).

4.4 Economics of the cloud 133

which each can be at the same time a consumer, a producer, or a coordinator of the services offered
by the cloud. The benefits of these community clouds are the following:

e Openness. By removing the dependency on cloud vendors, community clouds are open systems
in which fair competition between different solutions can happen.

* Community. Being based on a collective that provides resources and services, the infrastructure
turns out to be more scalable because the system can grow simply by expanding its user base.

e Graceful failures. Since there is no single provider or vendor in control of the infrastructure,
there is no single point of failure.

* Convenience and control. Within a community cloud there is no conflict between convenience
and control because the cloud is shared and owned by the community, which makes all the
decisions through a collective democratic process.

* Environmental sustainability. The community cloud is supposed to have a smaller carbon
footprint because it harnesses underutilized resources. Moreover, these clouds tend to be more
organic by growing and shrinking in a symbiotic relationship to support the demand of the
community, which in turn sustains it.

This is an alternative vision of a community cloud, focusing more on the social aspect of the
clouds that are formed as an aggregation of resources of community members. The idea of a hetero-
geneous infrastructure built to serve the needs of a community of people is also reflected in the pre-
vious definition, but in that case the attention is focused on the commonality of interests that
aggregates the users of the cloud into a community. In both cases, the concept of community is
fundamental.

Economics of the cloud

The main drivers of cloud computing are economy of scale and simplicity of software delivery and
its operation. In fact, the biggest benefit of this phenomenon is financial: the pay-as-you-go model
offered by cloud providers. In particular, cloud computing allows:

* Reducing the capital costs associated to the IT infrastructure

* Eliminating the depreciation or lifetime costs associated with IT capital assets
¢ Replacing software licensing with subscriptions

e Cutting the maintenance and administrative costs of IT resources

A capital cost is the cost occurred in purchasing an asset that is useful in the production of
goods or the rendering of services. Capital costs are one-time expenses that are generally paid up
front and that will contribute over the long term to generate profit. The IT infrastructure and the
software are capital assets because enterprises require them to conduct their business. At present it
does not matter whether the principal business of an enterprise is related to IT, because the business
will definitely have an IT department that is used to automate many of the activities that are per-
formed within the enterprise: payroll, customer relationship management, enterprise resource plan-
ning, tracking and inventory of products, and others. Hence, IT resources constitute a capital cost
for any kind of enterprise. It is good practice to try to keep capital costs low because they introduce

134 CHAPTER 4 Cloud Computing Architecture

expenses that will generate profit over time; more than that, since they are associated with material
things they are subject to depreciation over time, which in the end reduces the profit of the
enterprise because such costs are directly subtracted from the enterprise revenues. In the case of
IT capital costs, the depreciation costs are represented by the loss of value of the hardware over
time and the aging of software products that need to be replaced because new features are
required.

Before cloud computing diffused within the enterprise, the budget spent on IT infrastructure and
software constituted a significant expense for medium-sized and large enterprises. Many enterprises
own a small or medium-sized datacenter that introduces several operational costs in terms of main-
tenance, electricity, and cooling. Additional operational costs are occurred in maintaining an
IT department and an IT support center. Moreover, other costs are triggered by the purchase of
potentially expensive software. With cloud computing these costs are significantly reduced or sim-
ply disappear according to its penetration. One of the advantages introduced by the cloud comput-
ing model is that it shifts the capital costs previously allocated to the purchase of hardware and
software into operational costs inducted by renting the infrastructure and paying subscriptions for
the use of software. These costs can be better controlled according to the business needs and pros-
perity of the enterprise. Cloud computing also introduces reductions in administrative and mainte-
nance costs. That is, there is no or limited need for having administrative staff take care of the
management of the cloud infrastructure. At the same time, the cost of IT support staff is also
reduced. When it comes to depreciation costs, they simply disappear for the enterprise, since in a
scenario where all the IT needs are served by the cloud there are no IT capital assets that depreciate
over time.

The amount of cost savings that cloud computing can introduce within an enterprise is related
to the specific scenario in which cloud services are used and how they contribute to generate a
profit for the enterprise. In the case of a small startup, it is possible to completely leverage the
cloud for many aspects, such as:

e IT infrastructure
* Software development
¢ CRM and ERP

In this case it is possible to completely eliminate capital costs because there are no initial IT
assets. The situation is completely different in the case of enterprises that already have a consider-
able amount of IT assets. In this case, cloud computing, especially IaaS-based solutions, can help
manage unplanned capital costs that are generated by the needs of the enterprise in the short term.
In this case, by leveraging cloud computing, these costs can be turned into operational costs that
last as long as there is a need for them. For example, IT infrastructure leasing helps more effi-
ciently manage peak loads without inducing capital expenses. As soon as the increased load does
not justify the use of additional resources, these can be released and the costs associated with them
disappear. This is the most adopted model of cloud computing because many enterprises already
have IT facilities. Another option is to make a slow transition toward cloud-based solutions while
the capital IT assets get depreciated and need to be replaced. Between these two cases there is a
wide variety of scenarios in which cloud computing could be of help in generating profits for
enterprises.

4.5 Open challenges 135

Another important aspect is the elimination of some indirect costs that are generated by IT
assets, such as software licensing and support and carbon footprint emissions. With cloud comput-
ing, an enterprise uses software applications on a subscription basis, and there is no need for any
licensing fee because the software providing the service remains the property of the provider.
Leveraging IaaS solutions allows room for datacenter consolidation that in the end could result in a
smaller carbon footprint. In some countries such as Australia, the carbon footprint emissions are
taxable, so by reducing or completely eliminating such emissions, enterprises can pay less tax.

In terms of the pricing models introduced by cloud computing, we can distinguish three differ-
ent strategies that are adopted by the providers:

o Tiered pricing. In this model, cloud services are offered in several tiers, each of which offers a
fixed computing specification and SLA at a specific price per unit of time. This model is used by
Amazon for pricing the EC2 service, which makes available different server configurations in
terms of computing capacity (CPU type and speed, memory) that have different costs per hour.

e Per-unit pricing. This model is more suitable to cases where the principal source of revenue for
the cloud provider is determined in terms of units of specific services, such as data transfer and
memory allocation. In this scenario customers can configure their systems more efficiently
according to the application needs. This model is used, for example, by GoGrid, which makes
customers pay according to RAM/hour units for the servers deployed in the GoGrid cloud.

e Subscription-based pricing. This is the model used mostly by SaaS providers in which users pay
a periodic subscription fee for use of the software or the specific component services that are
integrated in their applications.

All of these costs are based on a pay-as-you-go model, which constitutes a more flexible solu-
tion for supporting the delivery on demand of IT services. This is what actually makes possible the
conversion of IT capital costs into operational costs, since the cost of buying hardware turns into a
cost for leasing it and the cost generated by the purchase of software turns into a subscription fee
paid for using it.

Open challenges

Still in its infancy, cloud computing presents many challenges for industry and academia. There is
a significant amount of work in academia focused on defining the challenges brought by this phe-
nomenon [46—49]. In this section, we highlight the most important ones: the definition and the for-
malization of cloud computing, the interoperation between different clouds, the creation of
standards, security, scalability, fault tolerance, and organizational aspects.

Cloud definition

As discussed earlier, there have been several attempts made to define cloud computing and to pro-
vide a classification of all the services and technologies identified as such. One of the most com-
prehensive formalizations is noted in the NIST working definition of cloud computing [43]. It
characterizes cloud computing as on-demand self-service, broad network access, resource-pooling,

136 CHAPTER 4 Cloud Computing Architecture

rapid elasticity, and measured service; classifies services as SaaS, PaaS, and [aaS; and categorizes
deployment models as public, private, community, and hybrid clouds. The view is in line with our
discussion and shared by many IT practitioners and academics.

Despite the general agreement on the NIST definition, there are alternative taxonomies for cloud
services. David Linthicum, founder of BlueMountains Labs, provides a more detailed classifica-
tion,® which comprehends 10 different classes and better suits the vision of cloud computing within
the enterprise. A different approach has been taken at the University of California, Santa Barbara
(UCSB) [50], which departs from the XaaS concept and tries to define an ontology for cloud com-
puting. In their work the concept of a cloud is dissected into five main layers: applications, soft-
ware environments, software infrastructure, software kernel, and hardware. Each layer addresses
the needs of a different class of users within the cloud computing community and most likely
builds on the underlying layers. According to the authors, this work constitutes the first effort to
provide a more robust interaction model between the different cloud entities on both the functional
level and the semantic level.

These characterizations and taxonomies reflect what is meant by cloud computing at the present
time, but being in its infancy the phenomenon is constantly evolving, and the same will happen to
the attempts to capture the real nature of cloud computing. It is interesting to note that the principal
characterization used in this book as a reference for introducing and explaining cloud computing is
considered a working definition, which by nature identifies something that continuously changes
over time by becoming refined.

Cloud interoperability and standards

Cloud computing is a service-based model for delivering IT infrastructure and applications like util-
ities such as power, water, and electricity. To fully realize this goal, introducing standards and
allowing interoperability between solutions offered by different vendors are objectives of funda-
mental importance. Vendor lock-in constitutes one of the major strategic barriers against the seam-
less adoption of cloud computing at all stages. In particular there is major fear on the part of
enterprises in which IT constitutes the significant part of their revenues. Vendor lock-in can prevent
a customer from switching to another competitor’s solution, or when this is possible, it happens at
considerable conversion cost and requires significant amounts of time. This can occur either
because the customer wants to find a more suitable solution for customer needs or because the ven-
dor is no longer able to provide the required service. The presence of standards that are actually
implemented and adopted in the cloud computing community could give room for interoperability
and then lessen the risks resulting from vendor lock-in.

The current state of standards and interoperability in cloud computing resembles the early
Internet era, when there was no common agreement on the protocols and technologies used and
each organization had its own network. Yet the first steps toward a standardization process have
been made, and a few organizations, such as the Cloud Computing Interoperability Forum (CCIF),”

8David Linthicum, Cloud Computing Ontology Framework; http://Cloudcomputing.sys-con.com/node/811519.
“www.Cloudforum.org.

http://www.openCloudconsortium.org
http://www.dmtf.org/about/Cloud-incubator

4.5 Open challenges 137

the Open Cloud Consortium,'® and the DMTF Cloud Standards Incubator,'" are leading the path.
Another interesting initiative is the Open Cloud Manifesto,'? which embodies the point of view of
various stakeholders on the benefits of open standards in the field.

The standardization efforts are mostly concerned with the lower level of the cloud computing
architecture, which is the most popular and developed. In particular, in the IaaS market, the use of
a proprietary virtual machine format constitutes the major reasons for the vendor lock-in, and
efforts to provide virtual machine image compatibility between laaS vendors can possibly improve
the level of interoperability among them. The Open Virtualization Format (OVF) [51] is an attempt
to provide a common format for storing the information and metadata describing a virtual machine
image. Even though the OVF provides a full specification for packaging and distributing virtual
machine images in completely platform-independent fashion, it is supported by few vendors that
use it to import static virtual machine images. The challenge is providing standards for supporting
the migration of running instances, thus allowing the real ability of switching from one infrastruc-
ture vendor to another in a completely transparent manner.

Another direction in which standards try to move is devising a general reference architecture for
cloud computing systems and providing a standard interface through which one can interact with
them. At the moment the compatibility between different solutions is quite restricted, and the lack
of a common set of APIs make the interaction with cloud-based solutions vendor specific. In the
TaaS market, Amazon Web Services plays a leading role, and other IaaS solutions, mostly open
source, provide AWS-compatible APIs, thus constituting themselves as valid alternatives. Even in
this case, there is no consistent trend in devising some common APIs for interfacing with IaaS
(and, in general, XaaS), and this constitutes one of the areas in which a considerable improvement
can be made in the future.

Scalability and fault tolerance

The ability to scale on demand constitutes one of the most attractive features of cloud computing.
Clouds allow scaling beyond the limits of the existing in-house IT resources, whether they are
infrastructure (compute and storage) or applications services. To implement such a capability, the
cloud middleware has to be designed with the principle of scalability along different dimensions in
mind—for example, performance, size, and load. The cloud middleware manages a huge number of
resource and users, which rely on the cloud to obtain the horsepower that they cannot obtain within
the premises without bearing considerable administrative and maintenance costs. These costs are a
reality for whomever develops, manages, and maintains the cloud middleware and offers the service
to customers. In this scenario, the ability to tolerate failure becomes fundamental, sometimes even
more important than providing an extremely efficient and optimized system. Hence, the challenge
in this case is designing highly scalable and fault-tolerant systems that are easy to manage and at
the same time provide competitive performance.

'Owww.opencloudconsortium.org.

"'www.dmtf.org/about/cloud-incubator.
2www.opencloudmanifesto.org.

http://www.openCloudconsortium.org
http://www.dmtf.org/about/Cloud-incubator
http://www.openCloudmanifesto.org

138 CHAPTER 4 Cloud Computing Architecture

Security, trust, and privacy

Security, trust, and privacy issues are major obstacles for massive adoption of cloud computing.
The traditional cryptographic technologies are used to prevent data tampering and access to sensi-
tive information. The massive use of virtualization technologies exposes the existing system to new
threats, which previously were not considered applicable. For example, it might be possible that
applications hosted in the cloud can process sensitive information; such information can be stored
within a cloud storage facility using the most advanced technology in cryptography to protect data
and then be considered safe from any attempt to access it without the required permissions.
Although these data are processed in memory, they must necessarily be decrypted by the legitimate
application, but since the application is hosted in a managed virtual environment it becomes acces-
sible to the virtual machine manager that by program is designed to access the memory pages of
such an application. In this case, what is experienced is a lack of control over the environment in
which the application is executed, which is made possible by leveraging the cloud. It then happens
that a new way of using existing technologies creates new opportunities for additional threats to the
security of applications. The lack of control over their own data and processes also poses severe
problems for the trust we give to the cloud service provider and the level of privacy we want to
have for our data.

On one side we need to decide whether to trust the provider itself; on the other side, specific
regulations can simply prevail over the agreement the provider is willing to establish with us con-
cerning the privacy of the information managed on our behalf. Moreover, cloud services delivered
to the end user can be the result of a complex stack of services that are obtained by third parties
via the primary cloud service provider. In this case there is a chain of responsibilities in terms of
service delivery that can introduce more vulnerability for the secure management of data, the
enforcement of privacy rules, and the trust given to the service provider. In particular, when a vio-
lation of privacy or illegal access to sensitive information is detected, it could become difficult to
identify who is liable for such violations. The challenges in this area are, then, mostly concerned
with devising secure and trustable systems from different perspectives: technical, social, and legal.

Organizational aspects

Cloud computing introduces a significant change in the way IT services are consumed and man-
aged. More precisely, storage, compute power, network infrastructure, and applications are deliv-
ered as metered services over the Internet. This introduces a billing model that is new within
typical enterprise IT departments, which requires a certain level of cultural and organizational pro-
cess maturity. In particular, a wide acceptance of cloud computing will require a significant change
to business processes and organizational boundaries. Some interesting questions arise in considering
the role of the IT department in this new scenario. In particular, the following questions have to be
considered:

e What is the new role of the IT department in an enterprise that completely or significantly relies
on the cloud?

* How will the compliance department perform its activity when there is a considerable lack of
control over application workflows?

Review questions 139

* What are the implications (political, legal, etc.) for organizations that lose control over some
aspects of their services?
* What will be the perception of the end users of such services?

From an organizational point of view, the lack of control over the management of data and pro-
cesses poses not only security threats but also new problems that previously did not exist.
Traditionally, when there was a problem with computer systems, organizations developed strategies
and solutions to cope with them, often by relying on local expertise and knowledge. One of the
major advantages of moving IT infrastructure and services to the cloud is to reduce or completely
remove the costs related to maintenance and support. As a result, users of such infrastructure and
services lose a reference to deal with for IT troubleshooting. At the same time, the existing IT staff
is required to have a different kind of competency and, in general, fewer skills, thus reducing their
value. These are the challenges from an organizational point of view that must be faced and that
will significantly change the relationships within the enterprise itself among the various groups of
people working together.

SUMMARY

In this chapter we discussed the fundamental characteristics of cloud computing and introduced ref-
erence architecture for classifying and organizing cloud services. To best sum up the content of this
chapter, we can recall the NIST working definition of cloud computing, which outlines the funda-
mental aspects of this phenomenon as follows:

* Five essential characteristics. In-demand self-service, broad network access, resource pooling,
rapid elasticity, and measured service.

o Three service models. Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), and
Infrastructure-as-a-Service (IaaS).

e Four deployment models. Public clouds, private clouds, community clouds, and hybrid clouds.

The major driving force for rapid adoption of cloud computing are the economics and the sim-
plicity of software delivery and operation. Cloud computing presents considerable opportunity to
increase the profits of enterprises by reducing capital costs of IT assets and transforming them into
operational costs. For these reasons we have also discussed the economic and cost models intro-
duced with cloud computing.

Although cloud computing has been rapidly adopted in industry, there are several open research
challenges in areas such as management of cloud computing systems, their security, and social and
organizational issues. There is significant room for advancement in software infrastructure and
models supporting cloud computing.

Review questions

1. What does the acronym XaaS stand for?
2. What are the fundamental components introduced in the cloud reference model?

|
140

—
COPNO U AW

11.
12.
13.
14.

15.

16.

CHAPTER 4 Cloud Computing Architecture

What does Infrastructure-as-a-Service refer to?

Which are the basic components of an laaS-based solution for cloud computing?

Provide some examples of [aaS implementations.

What are the main characteristics of a Platform-as-a-Service solution?

Describe the different categories of options available in a PaaS market.

What does the acronym SaaS mean? How does it relate to cloud computing?

Give the name of some popular Software-as-a-Service solutions.

Classify the various types of clouds.

Give an example of the public cloud.

Which is the most common scenario for a private cloud?

What kinds of needs are addressed by heterogeneous clouds?

Describe the fundamental features of the economic and business model behind cloud
computing.

How does cloud computing help to reduce the time to market for applications and to cut down
capital expenses?

List some of the challenges in cloud computing.

PART

Cloud Application
Programming and
the Aneka Platform

This page intentionally left blank

CHAPTER

Aneka
Cloud Application Platform

Aneka is Manjrasoft Pty. Ltd.’s solution for developing, deploying, and managing cloud applica-
tions. Aneka consists of a scalable cloud middleware that can be deployed on top of heterogeneous
computing resources. It offers an extensible collection of services coordinating the execution of
applications, helping administrators monitor the status of the cloud, and providing integration with
existing cloud technologies. One of Aneka’s key advantages is its extensible set of application pro-
gramming interfaces (APIs) associated with different types of programming models—such as Task,
Thread, and MapReduce—used for developing distributed applications, integrating new capabilities
into the cloud, and supporting different types of cloud deployment models: public, private, and
hybrid (see Figure 5.1). These features differentiate Aneka from infrastructure management soft-
ware and characterize it as a platform for developing, deploying, and managing execution of appli-
cations on various types of clouds.

This chapter provides a complete overview of the framework by first describing the architecture
of the system. It introduces Aneka’s components and the fundamental services that make up the
Aneka Cloud and discusses some common deployment scenarios.

Framework overview

Aneka is a software platform for developing cloud computing applications. It allows harnessing of
disparate computing resources and managing them into a unique virtual domain—the Aneka
Cloud—in which applications are executed. According to the Cloud Computing Reference Model
presented in Chapter 1, Aneka is a pure PaaS$ solution for cloud computing. Aneka is a cloud mid-
dleware product that can be deployed on a heterogeneous set of resources: a network of computers,
a multicore server, datacenters, virtual cloud infrastructures, or a mixture of these. The framework
provides both middleware for managing and scaling distributed applications and an extensible set
of APIs for developing them.

Figure 5.2 provides a complete overview of the components of the Aneka framework. The core
infrastructure of the system provides a uniform layer that allows the framework to be deployed
over different platforms and operating systems. The physical and virtual resources representing the
bare metal of the cloud are managed by the Aneka container, which is installed on each node and
constitutes the basic building block of the middleware. A collection of interconnected containers
constitute the Aneka Cloud: a single domain in which services are made available to users and

143

144 CHAPTER 5 Aneka

Multiple Applications

Thread Task ... MapReduce

Multicore Cluster Grid Cloud

Multiple Infrastructures

FIGURE 5.1

Aneka’s capabilities at a glance.

developers. The container features three different classes of services: Fabric Services, Foundation
Services, and Execution Services. These take care of infrastructure management, supporting ser-
vices for the Aneka Cloud, and application management and execution, respectively. These services
are made available to developers and administrators by means of the application management and
development layer, which includes interfaces and APIs for developing cloud applications and the
management tools and interfaces for controlling Aneka Clouds.

Aneka implements a service-oriented architecture (SOA), and services are the fundamental com-
ponents of an Aneka Cloud. Services operate at container level and, except for the platform abstrac-
tion layer, they provide developers, users, and administrators with all features offered by the
framework. Services also constitute the extension and customization point of Aneka Clouds: The
infrastructure allows for the integration of new services or replacement of the existing ones with a
different implementation. The framework includes the basic services for infrastructure and node
management, application execution, accounting, and system monitoring; existing services can
be extended and new features can be added to the cloud by dynamically plugging new ones into
the container. Such extensible and flexible infrastructure enables Aneka Clouds to support different
programming and execution models for applications. A programming model represents a collection
of abstractions that developers can use to express distributed applications; the runtime support for a
programming model is constituted by a collection of execution and foundation services interacting
together to carry out application execution. Thus, the implementation of a new model requires the
development of the specific programming abstractions used by application developers and the

5.1 Framework overview 145

Application Development & Management I

|
|
l
|
Management: Tools, Interfaces and APIs { Software Development kit: APIs & Tools ‘ :
|
|
|

Application Services | N
!Distributed Threads :|MapReduce lBag ofTasksr\ PSM | Other models... |

Foundation Services I

Storage i[Resource Reservation \ Billing & Reporting .‘ Licensing & Accounting :

High-Availability !IResource Provisioning H Hardware Profiling ‘| Membership |

[—{ Fabric Services I ~

o PAL — Platform Abstraction Layer o

[—{ infrastructure I

waa U

[Enterprise Desktop Grid . Data Centers _| Clusters .~ | Public Cloud

@

FIGURE 5.2
Aneka framework overview.

services, providing runtime support for them. Programming models are just one aspect of applica-
tion management and execution. Within an Aneka Cloud environment, there are different aspects
involved in providing a scalable and elastic infrastructure and distributed runtime for applications.
These services involve:

e Elasticity and scaling. By means of the dynamic provisioning service, Aneka supports
dynamically upsizing and downsizing of the infrastructure available for applications.

* Runtime management. The runtime machinery is responsible for keeping the infrastructure up
and running and serves as a hosting environment for services. It is primarily represented by the
container and a collection of services that manage service membership and lookup, infrastructure
maintenance, and profiling.

* Resource management. Aneka is an elastic infrastructure in which resources are added and
removed dynamically according to application needs and user requirements. To provide

146 CHAPTER 5 Aneka

QoS-based execution, the system not only allows dynamic provisioning but also provides
capabilities for reserving nodes for exclusive use by specific applications.

* Application management. A specific subset of services is devoted to managing applications.
These services include scheduling, execution, monitoring, and storage management.

e User management. Aneka is a multitenant distributed environment in which multiple
applications, potentially belonging to different users, are executed. The framework provides an
extensible user system via which it is possible to define users, groups, and permissions. The
services devoted to user management build up the security infrastructure of the system and
constitute a fundamental element for accounting management.

* QoS/SLA management and billing. Within a cloud environment, application execution is
metered and billed. Aneka provides a collection of services that coordinate together to take into
account the usage of resources by each application and to bill the owning user accordingly.

All these services are available to specific interfaces and APIs on top of which the software
development kit (SDK) and management kit are built. The SDK mainly relates to application devel-
opment and modeling; it provides developers with APIs to develop applications with the existing
programming models and an object model for creating new models. The management kit is mostly
focused on interacting with the runtime services for managing the infrastructure, users, and applica-
tions. The management kit gives a complete view of Aneka Clouds and allows monitoring Aneka’s
status, whereas the SDK is more focused on the single application and provides means to control
its execution from a single user. Both components are meant to provide an easy-to-use interface via
which to interact and manage containers that are the core component of the Aneka framework.

Anatomy of the Aneka container

The Aneka container constitutes the building blocks of Aneka Clouds and represents the runtime
machinery available to services and applications. The container, the unit of deployment in Aneka
Clouds, is a lightweight software layer designed to host services and interact with the underlying
operating system and hardware. The main role of the container is to provide a lightweight environ-
ment in which to deploy services and some basic capabilities such as communication channels
through which it interacts with other nodes in the Aneka Cloud. Almost all operations performed
within Aneka are carried out by the services managed by the container. The services installed in
the Aneka container can be classified into three major categories:

e Fabric Services
¢ Foundation Services
e Application Services

The services stack resides on top of the Platform Abstraction Layer (PAL), representing the
interface to the underlying operating system and hardware. It provides a uniform view of the soft-
ware and hardware environment in which the container is running. Persistence and security traverse
all the services stack to provide a secure and reliable infrastructure. In the following sections we
discuss the components of these layers in more detail.

5.2 Anatomy of the Aneka container 147

From the ground up: the platform abstraction layer

The core infrastructure of the system is based on the .NET technology and allows the Aneka container
to be portable over different platforms and operating systems. Any platform featuring an ECMA-334
[52] and ECMA-335 [53] compatible environment can host and run an instance of the Aneka container.

The Common Language Infrastructure (CLI), which is the specification introduced in the
ECMA-334 standard, defines a common runtime environment and application model for executing
programs but does not provide any interface to access the hardware or to collect performance data
from the hosting operating system. Moreover, each operating system has a different file system
organization and stores that information differently. The Platform Abstraction Layer (PAL)
addresses this heterogeneity and provides the container with a uniform interface for accessing the
relevant hardware and operating system information, thus allowing the rest of the container to run
unmodified on any supported platform.

The PAL is responsible for detecting the supported hosting environment and providing the cor-
responding implementation to interact with it to support the activity of the container. The PAL pro-
vides the following features:

* Uniform and platform-independent implementation interface for accessing the hosting platform
e Uniform access to extended and additional properties of the hosting platform

e Uniform and platform-independent access to remote nodes

¢ Uniform and platform-independent management interfaces

The PAL is a small layer of software that comprises a detection engine, which automatically
configures the container at boot time, with the platform-specific component to access the above
information and an implementation of the abstraction layer for the Windows, Linux, and Mac OS
X operating systems.

The collectible data that are exposed by the PAL are the following:

¢ Number of cores, frequency, and CPU usage

* Memory size and usage

e Aggregate available disk space

* Network addresses and devices attached to the node

Moreover, additional custom information can be retrieved by querying the properties of the hard-
ware. The PAL interface provides means for custom implementations to pull additional information
by using name-value pairs that can host any kind of information about the hosting platform. For
example, these properties can contain additional information about the processor, such as the model
and family, or additional data about the process running the container.

Fabric services

Fabric Services define the lowest level of the software stack representing the Aneka Container.
They provide access to the resource-provisioning subsystem and to the monitoring facilities imple-
mented in Aneka. Resource-provisioning services are in charge of dynamically providing new
nodes on demand by relying on virtualization technologies, while monitoring services allow for
hardware profiling and implement a basic monitoring infrastructure that can be used by all the ser-
vices installed in the container.

148 CHAPTER 5 Aneka

5.2.2.1 Profiling and monitoring

Profiling and monitoring services are mostly exposed through the Heartbeat, Monitoring, and
Reporting Services. The first makes available the information that is collected through the PAL; the
other two implement a generic infrastructure for monitoring the activity of any service in the
Aneka Cloud.

The Heartbeat Service periodically collects the dynamic performance information about the
node and publishes this information to the membership service in the Aneka Cloud. These data are
collected by the index node of the Cloud, which makes them available for services such as reserva-
tions and scheduling in order to optimize the use of a heterogeneous infrastructure. As already dis-
cussed, basic information about memory, disk space, CPU, and operating system is collected.
Moreover, additional data are pulled into the “alive” message, such as information about the
installed software in the system and any other useful information. More precisely, the infrastructure
has been designed to carry over any type of data that can be expressed by means of text-valued
properties. As previously noted, the information published by the Heartbeat Service is mostly con-
cerned with the properties of the node. A specific component, called Node Resolver, is in charge of
collecting these data and making them available to the Heartbeat Service. Aneka provides different
implementations for such component in order to cover a wide variety of hosting environments.
A variety of operating systems are supported with different implementations of the PAL, and differ-
ent node resolvers allow Aneka to capture other types of data that do not strictly depend on the
hosting operating system. For example, the retrieval of the public IP of the node is different in the
case of physical machines or virtual instances hosted in the infrastructure of an IaaS provider such
as EC2 or GoGrid. In virtual deployment, a different node resolver is used so that all other compo-
nents of the system can work transparently.

The set of built-in services for monitoring and profiling is completed by a generic monitoring
infrastructure, which allows any custom service to report its activity. This infrastructure is com-
posed of the Reporting and Monitoring Services. The Reporting Service manages the store for mon-
itored data and makes them accessible to other services or external applications for analysis
purposes. On each node, an instance of the Monitoring Service acts as a gateway to the Reporting
Service and forwards to it all the monitored data that has been collected on the node. Any service
that wants to publish monitoring data can leverage the local monitoring service without knowing
the details of the entire infrastructure. Currently several built-in services provide information
through this channel:

* The Membership Catalogue tracks the performance information of nodes.

* The Execution Service monitors several time intervals for the execution of jobs.

* The Scheduling Service tracks the state transitions of jobs.

e The Storage Service monitors and makes available information about data transfer, such as
upload and download times, filenames, and sizes.

e The Resource Provisioning Service tracks the provisioning and lifetime information of virtual
nodes.

All this information can be stored on a relational database management system (RDBMS) or a
flat file and can be further analyzed by specific applications. For example, the Management
Console provides a view on such data for administrative purposes.

5.2 Anatomy of the Aneka container 149

5.2.2.2 Resource management

Resource management is another fundamental feature of Aneka Clouds. It comprises several tasks:
resource membership, resource reservation, and resource provisioning. Aneka provides a collection
of services that are in charge of managing resources. These are the Index Service (or Membership
Catalogue), Reservation Service, and Resource Provisioning Service.

The Membership Catalogue is Aneka’s fundamental component for resource management; it keeps
track of the basic node information for all the nodes that are connected or disconnected. The
Membership Catalogue implements the basic services of a directory service, allowing the search for
services using attributes such as names and nodes. During container startup, each instance publishes its
information to the Membership Catalogue and updates it constantly during its lifetime. Services and
external applications can query the membership catalogue to discover the available services and inter-
act with them. To speed up and enhance the performance of queries, the membership catalogue is orga-
nized as a distributed database: All the queries that pertain to information maintained locally are
resolved locally; otherwise the query is forwarded to the main index node, which has a global knowl-
edge of the entire Cloud. The Membership Catalogue is also the collector of the dynamic performance
data of each node, which are then sent to the local monitoring service to be persisted in the long term.

Indexing and categorizing resources are fundamental to resource management. On top of the
basic indexing service, provisioning completes the set of features that are available for resource
management within Aneka. Deployment of container instances and their configuration are per-
formed by the infrastructure management layer and are not part of the Fabric Services.

Dynamic resource provisioning allows the integration and management of virtual resources leased
from IaaS providers into the Aneka Cloud. This service changes the structure of the Aneka Cloud by
allowing it to scale up and down according to different needs: handling node failures, ensuring the
quality of service for applications, or maintaining a constant performance and throughput of the
Cloud. Aneka defines a very flexible infrastructure for resource provisioning whereby it is possible
to change the logic that triggers provisioning, support several back-ends, and change the runtime
strategy with which a specific back-end is selected for provisioning. The resource-provisioning infra-
structure built into Aneka is mainly concentrated in the Resource Provisioning Service, which
includes all the operations that are needed for provisioning virtual instances. The implementation of
the service is based on the idea of resource pools. A resource pool abstracts the interaction with a
specific IaaS provider by exposing a common interface so that all the pools can be managed uni-
formly. A resource pool does not necessarily map to an laaS provider but can be used to expose as
dynamic resources a private cloud managed by a Xen Hypervisor or a collection of physical
resources that are only used sporadically. The system uses an open protocol, allowing for the use of
metadata to provide additional information for describing resource pools and to customize provision-
ing requests. This infrastructure simplifies the implementation of additional features and the support
of different implementations that can be transparently integrated into the existing system.

Resource provisioning is a feature designed to support QoS requirements-driven execution of
applications. Therefore, it mostly serves requests coming from the Reservation Service or the
Scheduling Services. Despite this, external applications can directly leverage Aneka’s resource-
provisioning capabilities by dynamically retrieving a client to the service and interacting with the
infrastructure to it. This extends the resource-provisioning scenarios that can be handled by Aneka,
which can also be used as a virtual machine manager.

150 CHAPTER 5 Aneka

Foundation services

Fabric Services are fundamental services of the Aneka Cloud and define the basic infrastructure
management features of the system. Foundation Services are related to the logical management of
the distributed system built on top of the infrastructure and provide supporting services for the exe-
cution of distributed applications. All the supported programming models can integrate with and
leverage these services to provide advanced and comprehensive application management. These
services cover:

* Storage management for applications
e Accounting, billing, and resource pricing
* Resource reservation

Foundation Services provide a uniform approach to managing distributed applications and allow
developers to concentrate only on the logic that distinguishes a specific programming model from
the others. Together with the Fabric Services, Foundation Services constitute the core of the Aneka
middleware. These services are mostly consumed by the execution services and Management
Consoles. External applications can leverage the exposed capabilities for providing advanced appli-
cation management.

5.2.3.1 Storage management

Data management is an important aspect of any distributed system, even in computing clouds.
Applications operate on data, which are mostly persisted and moved in the format of files. Hence,
any infrastructure that supports the execution of distributed applications needs to provide facilities
for file/data transfer management and persistent storage. Aneka offers two different facilities for
storage management: a centralized file storage, which is mostly used for the execution of compute-
intensive applications, and a distributed file system, which is more suitable for the execution of
data-intensive applications. The requirements for the two types of applications are rather different.
Compute-intensive applications mostly require powerful processors and do not have high demands
in terms of storage, which in many cases is used to store small files that are easily transferred from
one node to another. In this scenario, a centralized storage node, or a pool of storage nodes, can
constitute an appropriate solution. In contrast, data-intensive applications are characterized by large
data files (gigabytes or terabytes), and the processing power required by tasks does not constitute a
performance bottleneck. In this scenario, a distributed file system harnessing the storage space of
all the nodes belonging to the cloud might be a better and more scalable solution.

Centralized storage is implemented through and managed by Aneka’s Storage Service. The ser-
vice constitutes Aneka’s data-staging facilities. It provides distributed applications with the basic
file transfer facility and abstracts the use of a specific protocol to end users and other components
of the system, which are dynamically configured at runtime according to the facilities installed in
the cloud. The option that is currently installed by default is normal File Transfer Protocol (FTP).

To support different protocols, the system introduces the concept of a file channel that identifies
a pair of components: a file channel controller and a file channel handler. The file channel control-
ler constitutes the server component of the channel, where files are stored and made available; the
file channel handler represents the client component, which is used by user applications or other
components of the system to upload, download, or browse files. The storage service uses the

5.2 Anatomy of the Aneka container 151

configured file channel factory to first create the server component that will manage the storage
and then create the client component on demand. User applications that require support for file
transfer are automatically configured with the appropriate file channel handler and transparently
upload input files or download output files during application execution. In the same way, worker
nodes are configured by the infrastructure to retrieve the required files for the execution of the jobs
and to upload their results.

An interesting property of the file channel abstraction is the ability to chain two different chan-
nels to move files by using two different protocols. Each file in Aneka contains metadata that helps
the infrastructure select the appropriate channel for moving the file. For example, an output file
whose final location is an S3 bucket can be moved from the worker node to the Storage Service
using the internal FTP protocol and then can be staged out on S3 by the FTP channel controller
managed by the service. The Storage Service supports the execution of task-based programming
such as the Task and the Thread Model as well as Parameter Sweep-based applications.

Storage support for data-intensive applications is provided by means of a distributed file system.
The reference model for the distributed file system is the Google File System [54], which features
a highly scalable infrastructure based on commodity hardware. The architecture of the file system
is based on a master node, which contains a global map of the file system and keeps track of the
status of all the storage nodes, and a pool of chunk servers, which provide distributed storage space
in which to store files. Files are logically organized into a directory structure but are persisted on
the file system using a flat namespace based on a unique ID. Each file is organized as a collection
of chunks that are all of the same size. File chunks are assigned unique IDs and stored on different
servers, eventually replicated to provide high availability and failure tolerance. The model proposed
by the Google File System provides optimized support for a specific class of applications that
expose the following characteristics:

» Files are huge by traditional standards (multi-gigabytes).

* Files are modified by appending new data rather than rewriting existing data.

e There are two kinds of major workloads: large streaming reads and small random reads.
e It is more important to have a sustained bandwidth than a low latency.

Moreover, given the huge number of commodity machines that the file system harnesses
together, failure (process or hardware failure) is the norm rather than an exception. These character-
istics strongly influenced the design of the storage, which provides the best performance for appli-
cations specifically designed to operate on data as described. Currently, the only programming
model that makes use of the distributed file system is MapReduce [55], which has been the primary
reason for the Google File System implementation. Aneka provides a simple distributed file system
(DES), which relies on the file system services of the Windows operating system.

5.2.3.2 Accounting, billing, and resource pricing
Accounting Services keep track of the status of applications in the Aneka Cloud. The collected
information provides a detailed breakdown of the distributed infrastructure usage and is vital for
the proper management of resources.

The information collected for accounting is primarily related to infrastructure usage and applica-
tion execution. A complete history of application execution and storage as well as other resource

152 CHAPTER 5 Aneka

utilization parameters is captured and minded by the Accounting Services. This information consti-
tutes the foundation on which users are charged in Aneka.

Billing is another important feature of accounting. Aneka is a multitenant cloud programming
platform in which the execution of applications can involve provisioning additional resources from
commercial TaaS providers. Aneka Billing Service provides detailed information about each user’s
usage of resources, with the associated costs. Each resource can be priced differently according to
the set of services that are available on the corresponding Aneka container or the installed software
in the node. The accounting model provides an integrated view of budget spent for each applica-
tion, a summary view of the costs associated to a specific user, and the detailed information about
the execution cost of each job.

The accounting capabilities are concentrated within the Accounting Service and the Reporting
Service. The former keeps track of the information that is related to application execution, such as
the distribution of jobs among the available resources, the timing of each of job, and the associated
cost. The latter makes available the information collected from the monitoring services for account-
ing purposes: storage utilization and CPU performance. This information is primarily consumed by
the Management Console.

5.2.3.3 Resource reservation

Aneka’s Resource Reservation supports the execution of distributed applications and allows for
reserving resources for exclusive use by specific applications. Resource reservation is built out of
two different kinds of services: Resource Reservation and the Allocation Service. Resource
Reservation keeps track of all the reserved time slots in the Aneka Cloud and provides a unified
view of the system. The Allocation Service is installed on each node that features execution ser-
vices and manages the database of information regarding the allocated slots on the local node.
Applications that need to complete within a given deadline can make a reservation request for a
specific number of nodes in a given timeframe. If it is possible to satisfy the request, the
Reservation Service will return a reservation identifier as proof of the resource booking. During
application execution, such an identifier is used to select the nodes that have been reserved, and
they will be used to execute the application. On each reserved node, the execution services will
check with the Allocation Service that each job has valid permissions to occupy the execution time-
line by verifying the reservation identifier. Even though this is the general reference model for the
reservation infrastructure, Aneka allows for different implementations of the service, which mostly
vary in the protocol that is used to reserve resources or the parameters that can be specified while
making a reservation request. Different protocol and strategies are integrated in a completely trans-
parent manner, and Aneka provides extensible APIs for supporting advanced services. At the
moment, the framework supports three different implementations:

* Basic Reservation. Features the basic capability to reserve execution slots on nodes and
implements the alternate offers protocol, which provides alternative options in case the initial
reservation requests cannot be satisfied.

e Libra Reservation. Represents a variation of the previous implementation that features the
ability to price nodes differently according to their hardware capabilities.

* Relay Reservation. Constitutes a very thin implementation that allows a resource broker to
reserve nodes in Aneka Clouds and control the logic with which these nodes are reserved. This

5.2 Anatomy of the Aneka container 153

implementation is useful in integration scenarios in which Aneka operates in an intercloud
environment.

Resource reservation is fundamental to ensuring the quality of service that is negotiated for
applications. It allows Aneka to have a predictable environment in which applications can complete
within the deadline or not be executed at all. The assumptions made by the reservation service for
accepting reservation requests are based on the static allocation of such requests to the existing
physical (or virtual) infrastructure available at the time of the requests and by taking into account
the current and future load. This solution is sensitive to node failures that could make Aneka unable
to fulfill the service-level agreement (SLA) made with users. Specific implementations of the ser-
vice tend to delay the allocation of nodes to reservation requests as late as possible in order to cope
with temporary failures or limited outages, but in the case of serious outages in which the remain-
ing available nodes are not able to cover the demand, this strategy is not enough. In this case,
resource provisioning can provide an effective solution: Additional nodes can be provisioned from
external resource providers in order to cover the outage and meet the SLA defined for applications.
The current implementation of the resource reservation infrastructure leverages the provisioning
capabilities of the fabric layer when the current availability in the system is not able to address the
reservation requests already confirmed. Such behavior solves the problems of both insufficient
resources and temporary failures.

Application services

Application Services manage the execution of applications and constitute a layer that differentiates
according to the specific programming model used for developing distributed applications on top of
Aneka. The types and the number of services that compose this layer for each of the programming
models may vary according to the specific needs or features of the selected model. It is possible to
identify two major types of activities that are common across all the supported models: scheduling
and execution. Aneka defines a reference model for implementing the runtime support for program-
ming models that abstracts these two activities in corresponding services: the Scheduling Service
and the Execution Service. Moreover, it also defines base implementations that can be extended in
order to integrate new models.

5.2.4.1 Scheduling

Scheduling Services are in charge of planning the execution of distributed applications on top of
Aneka and governing the allocation of jobs composing an application to nodes. They also constitute
the integration point with several other Foundation and Fabric Services, such as the Resource
Provisioning Service, the Reservation Service, the Accounting Service, and the Reporting Service.
Common tasks that are performed by the scheduling component are the following:

* Job to node mapping

* Rescheduling of failed jobs

* Job status monitoring

* Application status monitoring

154 CHAPTER 5 Aneka

Aneka does not provide a centralized scheduling engine, but each programming model features
its own scheduling service that needs to work in synergy with the existing services of the middle-
ware. As already mentioned, these services mostly belong to the fabric and the foundation layers of
the architecture shown in Figure 5.2. The possibility of having different scheduling engines for dif-
ferent models gives great freedom in implementing scheduling and resource allocation strategies
but, at the same time, requires a careful design of use of shared resources. In this scenario, common
situations that have to be appropriately managed are the following: multiple jobs sent to the same
node at the same time; jobs without reservations sent to reserved nodes; and jobs sent to nodes
where the required services are not installed. Aneka’s Foundation Services provide sufficient infor-
mation to avoid these cases, but the runtime infrastructure does not feature specific policies to
detect these conditions and provide corrective action. The current design philosophy in Aneka is to
keep the scheduling engines completely separate from each other and to leverage existing services
when needed. As a result, it is possible to enforce that only one job per programming model is run
on each node at any given time, but the execution of applications is not mutually exclusive unless
Resource Reservation is used.

5.2.4.2 Execution

Execution Services control the execution of single jobs that compose applications. They are in
charge of setting up the runtime environment hosting the execution of jobs. As happens for the
scheduling services, each programming model has its own requirements, but it is possible to iden-
tify some common operations that apply across all the range of supported models:

¢ Unpacking the jobs received from the scheduler

* Retrieval of input files required for job execution

* Sandboxed execution of jobs

* Submission of output files at the end of execution

* Execution failure management (i.e., capturing sufficient contextual information useful to
identify the nature of the failure)

¢ Performance monitoring

* Packing jobs and sending them back to the scheduler

Execution Services constitute a more self-contained unit with respect to the corresponding
scheduling services. They handle less information and are required to integrate themselves only
with the Storage Service and the local Allocation and Monitoring Services. Aneka provides a refer-
ence implementation of execution services that has built-in integration with all these services, and
currently two of the supported programming models specialize on the reference implementation.

Application Services constitute the runtime support of the programming model in the Aneka
Cloud. Currently there are several supported models:

e Task Model. This model provides the support for the independent “bag of tasks” applications
and many computing tasks. In this model, an application is modeled as a collection of tasks that
are independent from each other and whose execution can be sequenced in any order.

* Thread Model. This model provides an extension to the classical multithreaded programming to
a distributed infrastructure and uses the abstraction of Thread to wrap a method that is executed
remotely.

5.3 Building Aneka clouds 155

* MapReduce Model. This is an implementation of MapReduce as proposed by Google on top of
Aneka.

* Parameter Sweep Model. This model is a specialization of the Task Model for applications that
can be described by a template task whose instances are created by generating different
combinations of parameters, which identify a specific point into the domain of interest.

Other programming models have been developed for internal use and are at an experimental
stage. These are the Dataflow Model [56], the Message-Passing Interface, and the Actor Model [57].

Building Aneka clouds

Aneka is primarily a platform for developing distributed applications for clouds. As a software plat-
form it requires infrastructure on which to be deployed; this infrastructure needs to be managed.
Infrastructure management tools are specifically designed for this task, and building clouds is one
of the primary tasks of administrators. Aneka supports various deployment models for public, pri-
vate, and hybrid clouds.

Infrastructure organization

Figure 5.3 provides an overview of Aneka Clouds from an infrastructure point of view. The sce-
nario is a reference model for all the different deployments Aneka supports. A central role is played
by the Administrative Console, which performs all the required management operations. A funda-
mental element for Aneka Cloud deployment is constituted by repositories. A repository provides
storage for all the libraries required to lay out and install the basic Aneka platform. These libraries
constitute the software image for the node manager and the container programs. Repositories can
make libraries available through a variety of communication channels, such as HTTP, FTP, com-
mon file sharing, and so on. The Management Console can manage multiple repositories and select
the one that best suits the specific deployment. The infrastructure is deployed by harnessing a col-
lection of nodes and installing on them the Aneka node manager, also called the Aneka daemon.
The daemon constitutes the remote management service used to deploy and control container
instances. The collection of resulting containers identifies the Aneka Cloud.

From an infrastructure point of view, the management of physical or virtual nodes is performed
uniformly as long as it is possible to have an Internet connection and remote administrative access
to the node. A different scenario is constituted by the dynamic provisioning of virtual instances;
these are generally created by prepackaged images already containing an installation of Aneka,
which only need to be configured to join a specific Aneka Cloud. It is also possible to simply
install the container or install the Aneka daemon, and the selection of the proper solution mostly
depends on the lifetime of virtual resources.

Logical organization

The logical organization of Aneka Clouds can be very diverse, since it strongly depends on the con-
figuration selected for each of the container instances belonging to the Cloud. The most common

156 CHAPTER 5 Aneka

HTTP

File Share
-, (W
_l"/'

Aneka R

epository

. _ K
Management .
Console Containers

FIGURE 5.3

Aneka cloud infrastructure overview.

scenario is to use a master-worker configuration with separate nodes for storage, as shown in
Figure 5.4.

The master node features all the services that are most likely to be present in one single copy

and that provide the intelligence of the Aneka Cloud. What specifically characterizes a node as a
master node is the presence of the Index Service (or Membership Catalogue) configured in master
mode; all the other services, except for those that are mandatory, might be present or located in
other nodes. A common configuration of the master node is as follows:

Index Service (master copy)

Heartbeat Service

Logging Service

Reservation Service

Resource Provisioning Service

Accounting Service

Reporting and Monitoring Service

Scheduling Services for the supported programming models

i Index (master)

Scheduling

Accounting

Reservation

Failover

Provisioning

Mandatory

Index (slave)

| Index (slave)

Execution

Worker Node

FIGURE 5.4

Allocation H’F/
[BN,
Mandatory

Execution

Allocation —E‘/

5.3 Building Aneka clouds 157

Index (slave)

Mandatory

Storage |—~; :
Mandatory !

Storage Node

A.

Index (slave)

Execution

Allocation |=

Mandatory

Logical organization of an Aneka cloud.

The master node also provides connection to an RDBMS facility where the state of several ser-
vices is maintained. For the same reason, all the scheduling services are maintained in the master
node. They share the application store that is normally persisted on the RDBMS in order to provide
a fault-tolerant infrastructure. The master configuration can then be replicated in several nodes to
provide a highly available infrastructure based on the failover mechanism.

The worker nodes constitute the workforce of the Aneka Cloud and are generally configured for
the execution of applications. They feature the mandatory services and the specific execution ser-
vices of each of the supported programming models in the Cloud. A very common configuration is

the following:

¢ Index Service
e Heartbeat Service
* Logging Service

* Allocation Service
* Monitoring Service

* Execution Services for the supported programming models

158 CHAPTER 5 Aneka

A different option is to partition the pool of worker nodes with a different selection of execution
services in order to balance the load between programming models and reserve some nodes for a
specific class of applications.

Storage nodes are optimized to provide storage support to applications. They feature, among the
mandatory and usual services, the presence of the Storage Service. The number of storage nodes
strictly depends on the predicted workload and storage consumption of applications. Storage nodes
mostly reside on machines that have considerable disk space to accommodate a large quantity of
files. The common configuration of a storage node is the following:

e Index Service

* Heartbeat Service

¢ Logging Service

* Monitoring Service
* Storage Service

In specific cases, when the data transfer requirements are not demanding, there might be only
one storage node. In some cases, for very small deployments, there is no need to have a separate
storage node, and the Storage Service is installed and hosted on the master node.

All nodes are registered with the master node and transparently refer to any failover partner in
the case of a high-availability configuration.

Private cloud deployment mode

A private deployment mode is mostly constituted by local physical resources and infrastructure
management software providing access to a local pool of nodes, which might be virtualized. In this
scenario Aneka Clouds are created by harnessing a heterogeneous pool of resources such has desk-
top machines, clusters, or workstations. These resources can be partitioned into different groups,
and Aneka can be configured to leverage these resources according to application needs. Moreover,
leveraging the Resource Provisioning Service, it is possible to integrate virtual nodes provisioned
from a local resource pool managed by systems such as XenServer, Eucalyptus, and OpenStack.

Figure 5.5 shows a common deployment for a private Aneka Cloud. This deployment is
acceptable for a scenario in which the workload of the system is predictable and a local virtual machine
manager can easily address excess capacity demand. Most of the Aneka nodes are constituted of physi-
cal nodes with a long lifetime and a static configuration and generally do not need to be reconfigured
often. The different nature of the machines harnessed in a private environment allows for specific poli-
cies on resource management and usage that can be accomplished by means of the Reservation
Service. For example, desktop machines that are used during the day for office automation can be
exploited outside the standard working hours to execute distributed applications. Workstation clusters
might have some specific legacy software that is required for supporting the execution of applications
and should be preferred for the execution of applications with special requirements.

Public cloud deployment mode

Public Cloud deployment mode features the installation of Aneka master and worker nodes over a
completely virtualized infrastructure that is hosted on the infrastructure of one or more resource

5.3 Building Aneka clouds 159

] Master Node [eSS e s } emmmemsesmcmsessessscessssesm=a= 1

—>, Eucalyptus
w 7 / ’ Systems

Resource
Provisioning

E @ Application | ——— 8 O

Management & | |Resource
I Scheduling | |Reservation

__

aw

-1 Desktop Machines --

-1 Workstations E- o) Clusters L.

FIGURE 5.5
Private cloud deployment.

providers such as Amazon EC2 or GoGrid. In this case it is possible to have a static deployment
where the nodes are provisioned beforehand and used as though they were real machines. This
deployment merely replicates a classic Aneka installation on a physical infrastructure without any
dynamic provisioning capability. More interesting is the use of the elastic features of IaaS providers
and the creation of a Cloud that is completely dynamic. Figure 5.6 provides an overview of this
scenario.

The deployment is generally contained within the infrastructure boundaries of a single IaaS pro-
vider. The reasons for this are to minimize the data transfer between different providers, which is
generally priced at a higher cost, and to have better network performance. In this scenario it is pos-
sible to deploy an Aneka Cloud composed of only one node and to completely leverage dynamic
provisioning to elastically scale the infrastructure on demand. A fundamental role is played by the
Resource Provisioning Service, which can be configured with different images and templates to
instantiate. Other important services that have to be included in the master node are the Accounting
and Reporting Services. These provide details about resource utilization by users and applications
and are fundamental in a multitenant Cloud where users are billed according to their consumption
of Cloud capabilities.

Dynamic instances provisioned on demand will mostly be configured as worker nodes, and, in
the specific case of Amazon EC2, different images featuring a different hardware setup can be
made available to instantiate worker containers. Applications with specific requirements for com-
puting capacity or memory can provide additional information to the scheduler that will trigger the
appropriate provisioning request. Application execution is not the only use of dynamic instances; any
service requiring elastic scaling can leverage dynamic provisioning. Another example is the Storage
Service. In multitenant Clouds, multiple applications can leverage the support for storage; in this

160 CHAPTER 5 Aneka

Reporting,

’{S‘n"‘g Billing, Accounting
@E Application

i
1
1
h Management &
1 .
p Scheduling | provisioning
{ :\ — ..,,—,,—,fl(—— L rw/—v—:T‘{ — = L—
Y

Amazon EC2 Instance

L\

Resource
@ —
N Ve L =
< \(—

FIGURE 5.6
Public Aneka cloud deployment.

scenario it is then possible to introduce bottlenecks or simply reach the quota limits allocated for
storage on the node. Dynamic provisioning can easily solve this issue as it does for increasing the
computing capability of an Aneka Cloud.

Deployments using different providers are unlikely to happen because of the data transfer costs
among providers, but they might be a possible scenario for federated Aneka Clouds [58]. In this
scenario resources can be shared or leased among providers under specific agreements and more
convenient prices. In this case the specific policies installed in the Resource Provisioning Service
can discriminate among different resource providers, mapping different IaaS providers to provide
the best solution to a provisioning request.

5.3.5 Hybrid cloud deployment mode

The hybrid deployment model constitutes the most common deployment of Aneka. In many cases,
there is an existing computing infrastructure that can be leveraged to address the computing needs
of applications. This infrastructure will constitute the static deployment of Aneka that can be elasti-
cally scaled on demand when additional resources are required. An overview of this deployment is
presented in Figure 5.7.

This scenario constitutes the most complete deployment for Aneka that is able to leverage all
the capabilities of the framework:

e Dynamic Resource Provisioning

* Resource Reservation

* Workload Partitioning

¢ Accounting, Monitoring, and Reporting

5.3 Building Aneka clouds 161

e e e A Public Clouds ~ }---,

=N ‘ Provisioning
L — .) Servi .
i {“ﬂ‘lg: Reporting, Billing, Accounting rvice D
| WA ————— /=0 |
P Application Resource Jral] b
: Management & Scheduling Reservation "+, .

—» . Eucalyptus
/f ! Systems

)5 e

FIGURE 5.7
Hybrid cloud deployment.

Moreover, if the local premises offer some virtual machine management capabilities, it is possible to
provide a very efficient use of resources, thus minimizing the expenditure for application execution.

In a hybrid scenario, heterogeneous resources can be used for different purposes. As we discussed
in the case of a private cloud deployment, desktop machines can be reserved for low priority work-
load outside the common working hours. The majority of the applications will be executed on work-
stations and clusters, which are the nodes that are constantly connected to the Aneka Cloud. Any
additional computing capability demand can be primarily addressed by the local virtualization facili-
ties, and if more computing power is required, it is possible to leverage external laaS providers.

Different from the Aneka Public Cloud deployment is the case in which it makes more sense to
leverage a variety of resource providers to provision virtual resources. Since part of the infrastructure
is local, a cost in data transfer to the external IaaS infrastructure cannot be avoided. It is then impor-
tant to select the most suitable option to address application needs. The Resource Provisioning

162 CHAPTER 5 Aneka

Service implemented in Aneka exposes the capability of leveraging several resource pools at the
same time and configuring specific policies to select the most appropriate pool for satisfying a provi-
sioning request. These features simplify the development of custom policies that can better serve the
needs of a specific hybrid deployment.

Cloud programming and management

Aneka’s primary purpose is to provide a scalable middleware product in which to execute distrib-
uted applications. Application development and management constitute the two major features that
are exposed to developers and system administrators. To simplify these activities, Aneka provides
developers with a comprehensive and extensible set of APIs and administrators with powerful and
intuitive management tools. The APIs for development are mostly concentrated in the Aneka SDK;
management tools are exposed through the Management Console.

Aneka SDK

Aneka provides APIs for developing applications on top of existing programming models, imple-
menting new programming models, and developing new services to integrate into the Aneka Cloud.
The development of applications mostly focuses on the use of existing features and leveraging the
services of the middleware, while the implementation of new programming models or new services
enriches the features of Aneka. The SDK provides support for both programming models and ser-
vices by means of the Application Model and the Service Model. The former covers the develop-
ment of applications and new programming models; the latter defines the general infrastructure for
service development.

5.4.1.1 Application model

Aneka provides support for distributed execution in the Cloud with the abstraction of programming
models. A programming model identifies both the abstraction used by the developers and the run-
time support for the execution of programs on top of Aneka. The Application Model represents the
minimum set of APIs that is common to all the programming models for representing and program-
ming distributed applications on top of Aneka. This model is further specialized according to the
needs and the particular features of each of the programming models.

An overview of the components that define the Aneka Application Model is shown in
Figure 5.8. Each distributed application running on top of Aneka is an instance of the
ApplicationBase <M > class, where M identifies the specific type of application manager used to
control the application. Application classes constitute the developers’ view of a distributed applica-
tion on Aneka Clouds, whereas application managers are internal components that interact with
Aneka Clouds in order to monitor and control the execution of the application. Application man-
agers are also the first element of specialization of the model and vary according to the specific
programming model used.

Whichever the specific model used, a distributed application can be conceived as a set of tasks
for which the collective execution defines the execution of the application on the Cloud. Aneka fur-
ther specializes applications into two main categories: (1) applications whose tasks are generated

IApplicationManager
Q ?

= '] [}
1 = IApplicationManager -l ApplicationManagerBase
ApplicationBase <M> # Configuration El ApplicationData A MApplic nl AEciocn
i prran— P
urationBase
 Fields @ Fields Properties Fields
& Fields a y B ApplicationData & Properties
& properties Properties !
SRS & properties ' CreatedDateTime 2 Canfiguration IF ApplicationData
§ ApplicationManager H LegacyRequi ot A DisplayName BT schedulerservice B Configuration
' Dt Name N
e :‘p:d 5 LogMessages #F FinishedDateTime = Methods 3 scheduierservice
e 3 PolingTime * Home @ Bindapplication 2 submissionlterator
o o 3 Qos 1 @ Initiatize S SubmissionWindow
; Isdm 3 Requirements ' LegacyRequirement % PouseApplication 5 WaorkUnitCacheStore
5 " 3 ResubmitMode ' MainStorageServer “% ProvideDynamicDependencies = Methods
Methods 2 SchedulerUri = Managerinfo ¥ QueryQosProperties @ BindApplication
@ AddSharedFile (+ 1 overload) 3 ShareOutputDirectory = MirrorStorageServers @ ResumeApplication 3% FireApplicationError
#% AfterapplicationManagerinit = SingleSubmission * Qos @ stopapplication 3@ FireApplicationFinished
4% ApplicationBase (+ 2 overloads) ' StorageBuckets = SharedFiles @ submitApplication % Initialize
4% InitapplicationManager 37 UseFileTransfer R state 9 Updoteapplication % PauseApplication
InvokeAndWait (+ 1 overload) ' UserCredential ' StorageBuckets @ updateQoSProperties @ ProvideDynamicDependencies
% OnApplicationFinished 5 workspace B UseFlleTransfer = fvents @ QueryQoSProperties
" RemovashanedFile & Methods = UserCredential ¥ Eror @ ResumeApplication
@ StopErecution / A Workspace F Finished 4% shutdown
% SubmitExecution = WorkUnits S — @ StopApplication
= Events & Methods z & submitApplication
¥ ApplicationFinished) AddworkUnit “@ UpdateApplication
#% ApplicationData (+ 4 overloads) % UpdateQoSProperties
(ST P % Clone
WorkU:)
Class ait @ DeleteWorkUnit
® GetObjectData
b,
& Fields
& properties
“* Applicationld
3 CompletionTime
= Exception
= 1d
AnelaApplication<W, M>) ' InputFiles
Generic Class 2 MaximumExecutionTime IManualApplicationManager a
- ApplicationBase<M> Interface
' Name B
IApplicationManager
Birpenied * Nodeld
F i ; n-mu:;ﬁe IAutoApplicationManager £ E;;’”""”
2T SchedulerService
= Methods = priority T-f'ﬂw i -
@ AddWorkUnit = QueuedTime JRceh T Menege ol
9 AfterapplicationManagerinit ZP Reservationld - StopWorktnit
#% AnekaApplication (+ 2 overloads) A ResubmitMode »
% Bind ' ScheduleTime = Events
% DeleteWorkUnit 3 State F WorkUnitStateChanged
¥ ExecuteWorkUnit #F submissionTime
2% OnWorkUnitStatusChanged 1 UserCredential
@ StopWorkUnit = Methods
& Events @ AddFile (+ 1 overload) IDisposable
WorkUnitAborted @ Equals IManualApplicationManager
WorkUnitFailed @ GetHashCode [ManualapplicationManagerBase < W> [E3
WorkUnitFinished @ Removefile (+ 1 overload) | e Abrract Class
- & WorkUnit \ - ApplicationManagerBase
i
i
} & Fields
| @ Methods
| & Events
} @ Nested Types
{

FIGURE 5.8

The Aneka application model.

164 CHAPTER 5 Aneka

by the user and (2) applications whose tasks are generated by the runtime infrastructure. These two
categories generally correspond to different application base classes and different implementations
of the application manager.

The first category is the most common and it is used as a reference for several programming
models supported by Aneka: the Task Model, the Thread Model, and the Parameter Sweep Model.
Applications that fall into this category are composed of a collection of units of work submitted by
the user and represented by the WorkUnit class. Each unit of work can have input and output files,
the transfer of which is transparently managed by the runtime. The specific type of WorkUnit class
used to represent the unit of work depends on the programming model used (AnekaTask for the
Task Model and AnekaThread for the Thread Model). All the applications that fall into this cate-
gory inherit or are instances of AnekaApplication <W,M >, where W is the specific type of
WorkUnit class used, and M is the type of application manager used to implement the
IManualApplicationManager interface.

The second category covers the case of MapReduce and all those other scenarios in which the
units of work are generated by the runtime infrastructure rather than the user. In this case there is
no common unit-of-work class used, and the specific classes used by application developers strictly
depend on the requirements of the programming model used. For example, in the case of the
MapReduce programming model, developers express their distributed applications in terms of two
functions, map and reduce; hence, the MapReduceApplication class provides an interface for speci-
fying the Mapper < K,V > and Reducer <K,V > types and the input files required by the applica-
tion. Other programming models might have different requirements and expose different interfaces.
For this reason there are no common base types for this category except for
ApplicationBase < M >, where M implements IAutoApplicationManager.

A set of additional classes completes the object model. Among these classes, the most
notable are the Configuration class, which is used to specify the settings required to initialize the
application and customize its behavior, and the ApplicationData class, which contains the runtime
information of the application.

Table 5.1 summarizes the features that are available in the Aneka Application Model and the
way they reflect into the supported programming model. The model has been designed to be exten-
sible, and these classes can be used as a starting point to implement a new programming model.
This can be done by augmenting the features (or specializing) an existing implementation of a

Table 5.1 Aneka’s Application Model Features
Work Programming

Category Description Base Application Type Units? Models
Manual Units of work are generated AnekaApplication < W,M > Yes Task Model

by the user and submitted IManualApplicationManager <W > Thread Model

through the application. ManualApplicationManager < W > Parameter

Sweep Model

Auto Units of work are generated ApplicationBase <M > No MapReduce

by the runtime infrastructure IAutoApplicationManager Model

and managed internally.

5.4 Cloud programming and management 165

programming model or by using the base classes to define new models and abstractions. For exam-
ple, the Parameter Sweep Model is a specialization of the Task Model, and it has been implemented
in the context of management of applications on Aneka. It is achieved by providing a different
interface to end users who just need to define a template task and the parameters that customize it.

5.4.1.2 Service model

The Aneka Service Model defines the basic requirements to implement a service that can be hosted
in an Aneka Cloud. The container defines the runtime environment in which services are hosted.
Each service that is hosted in the container must be compliant with the IService interface, which
exposes the following methods and properties:

¢ Name and status
e Control operations such as Start, Stop, Pause, and Continue methods
e Message handling by means of the HandleMessage method

Specific services can also provide clients if they are meant to directly interact with end users.
Examples of such services might be Resource Provisioning and Resource Reservation Services,
which ship their own clients for allowing resource provisioning and reservation. Apart from control
operations, which are used by the container to set up and shut down the service during the container
life cycle, the core logic of a service resides in its message-processing functionalities that are con-
tained in the HandleMessage method. Each operation that is requested to a service is triggered by a
specific message, and results are communicated back to the caller by means of messages.

Figure 5.9 describes the reference life cycle of each service instance in the Aneka container.
The shaded balloons indicate transient states; the white balloons indicate steady states. A service
instance can initially be in the Unknown or Initialized state, a condition that refers to the creation
of the service instance by invoking its constructor during the configuration of the container. Once
the container is started, it will iteratively call the Start method on each service method. As a result
the service instance is expected to be in a Starting state until the startup process is completed, after
which it will exhibit the Running state. This is the condition in which the service will last as long
as the container is active and running. This is the only state in which the service is able to process
messages. If an exception occurs while starting the service, it is expected that the service will fall
back to the Unknown state, thus signaling an error.

When a service is running it is possible to pause its activity by calling the Pause method and
resume it by calling Continue. As described in the figure, the service moves first into the Pausing
state, thus reaching the Paused state. From this state, it moves into the Resuming state while restor-
ing its activity to return to the Running state. Not all the services need to support the pause/con-
tinue operations, and the current implementation of the framework does not feature any service
with these capabilities.

When the container shuts down, the Stop method is iteratively called on each service running,
and services move first into the transient Stopping state to reach the final Stopped state, where all
resources that were initially allocated have been released.

Aneka provides a default base class for simplifying service implementation and a set of guide-
lines that service developers should follow to design and implement services that are compliant
with Aneka. In particular, the guidelines define a ServiceBase class that can be further extended to

166 CHAPTER 5 Aneka

FIGURE 5.9

Initialized

IService.Start()

/7
4
7

<Error> IService.Pause()

IService.Stop()

Paused

IService.Continue()

Service life cycle.

provide a proper implementation. This class is the base class of several services in the framework

and provides some built-in features:

* Implementation of the basic properties exposed by IService

* Implementation of the control operations with logging capabilities and state control

e Built-in infrastructure for delivering a service specific client
* Support for service monitoring

Developers are provided with template methods for specializing the behavior of control opera-
tions, implementing their own message-processing logic, and providing a service-specific client.

Aneka uses a strongly typed message-passing communication model, whereby each service
defines its own messages, which are in turn the only ones that the service is able to process. As a
result, developers who implement new services in Aneka need also to define the type of messages
that the services will use to communicate with services and clients. Each message type inherits

from the base class Message defining common properties such as:

* Source node and target node
* Source service and target service
* Security credentials

5.4 Cloud programming and management 167

Additional properties are added to carry the specific information for each type. Messages are
generally used inside the Aneka infrastructure. In case the service exposes features directly used by
applications, they may expose a service client that provides an object-oriented interface to the
operations exposed by the service. Aneka features a ready-to-use infrastructure for dynamically
injecting service clients into applications by querying the middleware. Services inheriting from the
ServiceBase class already support such a feature and only need to define an interface and a specific
implementation for the service client. Service clients are useful to integrate Aneka services into
existing applications that do not necessarily need support for the execution of distributed applica-
tions or require access to additional services.

Aneka also provides advanced capabilities for service configuration. Developers can define edi-
tors and configuration classes that allow Aneka’s management tools to integrate the configuration
of services within the common workflow required by the container configuration.

Management tools

Aneka is a pure PaaS implementation and requires virtual or physical hardware to be deployed.
Hence, infrastructure management, together with facilities for installing logical clouds on such
infrastructure, is a fundamental feature of Aneka’s management layer. This layer also includes
capabilities for managing services and applications running in the Aneka Cloud.

5.4.2.1 Infrastructure management

Aneka leverages virtual and physical hardware in order to deploy Aneka Clouds. Virtual hardware
is generally managed by means of the Resource Provisioning Service, which acquires resources on
demand according to the need of applications, while physical hardware is directly managed by the
Administrative Console by leveraging the Aneka management API of the PAL. The management
features are mostly concerned with the provisioning of physical hardware and the remote installa-
tion of Aneka on the hardware.

5.4.2.2 Platform management

Infrastructure management provides the basic layer on top of which Aneka Clouds are deployed.
The creation of Clouds is orchestrated by deploying a collection of services on the physical infra-
structure that allows the installation and the management of containers. A collection of connected
containers defines the platform on top of which applications are executed. The features available
for platform management are mostly concerned with the logical organization and structure of
Aneka Clouds. It is possible to partition the available hardware into several Clouds variably config-
ured for different purposes. Services implement the core features of Aneka Clouds and the manage-
ment layer exposes operations for some of them, such as Cloud monitoring, resource provisioning
and reservation, user management, and application profiling.

5.4.2.3 Application management

Applications identify the user contribution to the Cloud. The management APIs provide administra-
tors with monitoring and profiling features that help them track the usage of resources and relate
them to users and applications. This is an important feature in a cloud computing scenario in which

168 CHAPTER 5 Aneka

users are billed for their resource usage. Aneka exposes capabilities for giving summary and
detailed information about application execution and resource utilization.

All these features are made accessible through the Aneka Cloud Management Studio, which
constitutes the main Administrative Console for the Cloud.

SUMMARY

In this chapter we introduced Aneka, a platform for application programming in the cloud. Aneka
is a pure PaaS implementation of the Cloud Computing Reference Model and constitutes a middle-
ware product that enables the creation of computing clouds on top of heterogeneous hardware:
desktop machines, clusters, and public virtual resources.

One of the key aspects of Aneka’s framework is its configurable runtime environment, which
allows for the creation of a service-based middleware where applications are executed. A funda-
mental element of the infrastructure is the container, which represents the deployment unit of
Aneka Clouds. The container hosts a collection of services that define the capabilities of the mid-
dleware. Fundamental services in the Aneka middleware are:

» Fabric Services for monitoring, resource provisioning, hardware profiling, and membership
» Foundation Services for storage, resource reservation, billing, accounting, and reporting
* Application Services for scheduling and execution

From an application programming point of view, Aneka provides the capability of supporting
different programming models, thus allowing developers to express distributed applications with
different abstractions. The framework currently supports three different models: independent “bag
of tasks” applications, multithreaded applications, and MapReduce.

The infrastructure is extensible, and Aneka provides both an application model and a service
model that can be easily extended to integrate new services and programming models.

Review questions

1. Describe in a few words the main characteristics of Aneka.
2. What is the Aneka container and what is its use?
3. Which types of services are hosted inside the Aneka container?
4. Describe Aneka’s resource-provisioning capabilities.
5. Describe the storage architecture implemented in Aneka.
6. What is a programming model?
7. List the programming models supported by Aneka.
8. Which are the components that compose the Aneka infrastructure?
9. Discuss the logical organization of an Aneka Cloud.
10. Which services are hosted in a worker node?
11. Discuss the private deployment of Aneka Clouds.
12. Discuss the public deployment of Aneka Clouds.

13.
14.
15.
16.
17.

Review questions 169

Discuss the role of dynamic provisioning in hybrid deployments.

Which facilities does Aneka provide for development?

Discuss the major features of the Aneka Application Model.

Discuss the major features of the Aneka Service Model.

Describe the features of the Aneka management tools in terms of infrastructure, platform, and
applications.

This page intentionally left blank

CHAPTER

Concurrent Computing
Thread Programming

Throughput computing focuses on delivering high volumes of computation in the form of transac-
tions. Initially related to the field of transaction processing [60], throughput computing has since
been extended beyond that domain. Advances in hardware technologies led to the creation of multi-
core systems, which have made possible the delivery of high-throughput computations, even in a
single computer system. In this case, throughput computing is realized by means of multiprocessing
and multithreading. Multiprocessing is the execution of multiple programs in a single machine,
whereas multithreading relates to the possibility of multiple instruction streams within the same
program.

This chapter presents the concept of multithreading and describes how it supports the develop-
ment of high-throughput computing applications. It discusses how multithreaded programming,
originally conceived to be contained within the boundaries of a single machine, can be extended to
a distributed context and which limitations apply. The Aneka Thread Programming Model will be
taken as a reference model to review a practical implementation of a multithreaded model for com-
puting clouds.

Introducing parallelism for single-machine computation

Parallelism has been a technique for improving the performance of computers since the early
1960’s, when Burroughs Corporation designed the D825, the first MIMD multiprocessor ever pro-
duced. From there on, a variety of parallel strategies have been developed. In particular, multipro-
cessing, which is the use of multiple processing units within a single machine, has gained a good
deal of interest and gave birth to several parallel architectures.

One of the most important distinctions is made in terms of the symmetry of processing units.
Asymmetric multiprocessing involves the concurrent use of different processing units that are spe-
cialized to perform different functions. Symmetric multiprocessing features the use of similar or
identical processing units to share the computation load. Other examples are nonuniform memory
access (NUMA) and clustered multiprocessing, which, respectively, define a specific architecture
for accessing a shared memory between processors and the use of multiple computers joined
together as a single virtual computer.

Symmetric and asymmetric multiprocessing are the techniques used to increase the performance
of commodity computer hardware. The introduction of graphical processing units (GPUs), which

17

172 CHAPTER 6 Concurrent Computing

Cache L1 Cache L1 Cache L1

[WCore 1][WCore 2] ———————— [WCore N]

FIGURE 6.1
Multicore processor.

are de facto processors, is an application of asymmetric processing, whereas multicore technology
is the latest evolution of symmetric multiprocessing. Multiprocessor and especially multicore tech-
nologies are now of fundamental importance because of the physical constraint imposed on fre-
quency scaling,’ which has been the common practice for performance gain in recent years. It
became no longer possible to increase the frequency of the processor clock without paying in terms
of power consumption and cooling, and this condition became unsustainable in May 2004, when
Intel officially cancelled the development of two new microprocessors in favor of multicore devel-
opment.” This date is generally considered the end of the frequency-scaling era and the beginning
of multicore technology. Other issues also determined the end of frequency scaling, such as the
continuously increasing gap between processor and memory speeds and the difficulty of increasing
the instruction-level parallelism® in order to keep a single high-performance core busy.

Multicore systems are composed of a single processor that features multiple processing cores
that share the memory. Each core has generally its own L1 cache, and the L2 cache is common to
all the cores, which connect to it by means of a shared bus, as depicted in Figure 6.1. Dual- and
quad-core configurations are quite popular nowadays and constitute the standard hardware configu-
ration for commodity computers. Architectures with multiple cores are also available but are not
designed for the commodity market. Multicore technology has been used not only as a support for
processor design but also in other devices, such as GPUs and network devices, thus becoming a
standard practice for improving performance.

YFrequency scaling refers to the practice of increasing the clock frequency of a processor to improve its performance.
The increase of clock frequency leads to higher power consumption and a higher temperature on the die, which becomes
unsustainable over certain values of the frequency clock. Also known as frequency ramping, this was the dominant tech-
nique for achieving performance gain from the mid-1980s to the end of 2004.
2www.nytimes.com/2004/05/08/business/08chip.html%ex = 1399348800&en = 98cc44cad7blas562&ei = 5007.
3Instruction-level parallelism (ILP) is a measure of how many operations a computer program can perform at one time.
There are several techniques that can be applied to increase the ILP at the microarchitectural level. One of these is
instruction pipelining, which involves the division of instructions into stages so that a single processing unit can execute
multiple instructions at the same time by carrying out different stages for each of them.

http://www.download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://www.download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://www.download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://www.download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html

6.2 Programming applications with threads 173

Multiprocessing is just one technique that can be used to achieve parallelism, and it does that
by leveraging parallel hardware architectures. Parallel architectures are better exploited when pro-
grams are designed to take advantage of their features. In particular, an important role is played by
the operating system, which defines the runtime structure of applications by means of the abstrac-
tion of process and thread. A process is the runtime image of an application, or better, a program
that is running, while a thread identifies a single flow of the execution within a process. A system
that allows the execution of multiple processes at the same time supports multitasking. It supports
multithreading when it provides structures for explicitly defining multiple threads within a process.

Note that both multitasking and multithreading can be implemented on top of computer hard-
ware that is constituted of a single processor and a single core, as was the common practice before
the introduction of multicore technology. In this case, the operating system gives the illusion of
concurrent execution by interleaving the execution of instructions of different processes and of dif-
ferent threads within the same process. This is also the case in multiprocessor/multicore systems,
since the number of threads or processes is higher than the number of processors or cores.
Nowadays, almost all the commonly used operating systems support multitasking and multithread-
ing. Moreover, all the mainstream programming languages incorporate the abstractions of process
and thread within their APIs, whereas direct support of multiple processors and cores for developers
is very limited and often reduced and confined to specific libraries, which are available for a subset
of the programming languages such as C/C+ +.

In this chapter, we concentrate our attention on multithreaded programming, which now has full
support and constitutes the simplest way to achieve parallelism within a single process, despite the
underlying hardware architecture.

Programming applications with threads

Modern applications perform multiple operations at the same time. Developers organize pro-
grams in terms of threads in order to express intraprocess concurrency. The use of threads
might be implicit or explicit. Implicit threading happens when the underlying APIs use internal
threads to perform specific tasks supporting the execution of applications such as graphical user
interface (GUI) rendering, or garbage collection in the case of virtual machine-based languages.
Explicit threading is characterized by the use of threads within a program by application devel-
opers, who use this abstraction to introduce parallelism. Common cases in which threads are
explicitly used are I/O from devices and network connections, long computations, or the execu-
tion of background operations for which the outcome does not have specific time bounds. The
use of threads was initially directed to allowing asynchronous operations—in particular, provid-
ing facilities for asynchronous I/O or long computations so that the user interface of applica-
tions did not block or became unresponsive. With the advent of parallel architectures the use of
multithreading has become a useful technique to increase the throughput of the system and a
viable option for throughput computing. To this purpose, the use of threads strongly impacts
the design of algorithms that need to be refactored in order to leverage threads. In this section,
we discuss the use of threading as a support for the design of parallel and distributed
algorithms.

174 CHAPTER 6 Concurrent Computing

What is a thread?

A thread identifies a single control flow, which is a logical sequence of instructions, within a pro-
cess. By logical sequence of instructions, we mean a sequence of instructions that have been
designed to be executed one after the other one. More commonly, a thread identifies a kind of yarn
that is used for sewing, and the feeling of continuity that is expressed by the interlocked fibers of
that yarn is used to recall the concept that the instructions of thread express a logically continuous
sequence of operations.

Operating systems that support multithreading identify threads as the minimal building blocks
for expressing running code. This means that, despite their explicit use by developers, any sequence
of instruction that is executed by the operating system is within the context of a thread. As a conse-
quence, each process contains at least one thread but, in several cases, is composed of many threads
having variable lifetimes. Threads within the same process share the memory space and the execu-
tion context; besides this, there is no substantial difference between threads belonging to different
processes.

In a multitasking environment the operating system assigns different time slices to each process
and interleaves their execution. The process of temporarily stopping the execution of one process,
saving all the information in the registers (and in general the state of the CPU in order to restore it
later), and replacing it with the information related to another process is known as a context switch.
This operation is generally considered demanding, and the use of multithreading minimizes the
latency imposed by context switches, thus allowing the execution of multiple tasks in a lighter fash-
ion. The state representing the execution of a thread is minimal compared to the one describing a
process. Therefore, switching between threads is a preferred practice over switching between pro-
cesses. Obviously the use of multiple threads in place of multiple processes is justified if and only
if the tasks implemented are logically related to each other and require sharing memory or other
resources. If this is not the case, a better design is provided by separating them into different
processes.

Figure 6.2 provides an overview of the relation between threads and processes and a sim-
plified representation of the runtime execution of a multithreaded application. A running pro-
gram is identified by a process, which contains at least one thread, also called the main
thread. Such a thread is implicitly created by the compiler or the runtime environment execut-
ing the program. This thread is likely to last for the entire lifetime of the process and be the
origin of other threads, which in general exhibit a shorter duration. As main threads, these
threads can spawn other threads. There is no difference between the main thread and other
threads created during the process lifetime. Each of them has its own local storage and a
sequence of instructions to execute, and they all share the memory space allocated for the
entire process. The execution of the process is considered terminated when all the threads are
completed.

Thread APIs

Even though the support for multithreading varies according to the operating system and
the specific programming languages that are used to develop applications, it is possible to identify
a minimum set of features that are commonly available across all the implementations.

6.2 Programming applications with threads 175

Process [e

-------- Main Thread

(0]
£
_g Thread Local
IS Storage
[=
g T
§ Instructions
! (program counter)
@ {_Thread I

e o Trread)

rr—Thread

[]

FIGURE 6.2
The relationship between processes and threads.

6.2.2.1 POSIX Threads

Portable Operating System Interface for Unix (POSIX) is a set of standards related to the applica-
tion programming interfaces for a portable development of applications over the Unix operating
system flavors. Standard POSIX 1.c (IEEE Std 1003.1c-1995) addresses the implementation of
threads and the functionalities that should be available for application programmers to develop
portable multithreaded applications. The standards address the Unix-based operating systems, but
an implementation of the same specification has been provided for Windows-based systems.

The POSIX standard defines the following operations: creation of threads with attri-
butes, termination of a thread, and waiting for thread completion (join operation). In addition to the
logical structure of a thread, other abstractions, such as semaphores, conditions, reader-writer locks,
and others, are introduced in order to support proper synchronization among threads.

The model proposed by POSIX has been taken as a reference for other implementations that
might provide developers with a different interface but a similar behavior. What is important to
remember from a programming point of view is the following:

* A thread identifies a logical sequence of instructions.
e A thread is mapped to a function that contains the sequence of instructions to execute.

176 CHAPTER 6 Concurrent Computing

e A thread can be created, terminated, or joined.

e A thread has a state that determines its current condition, whether it is executing, stopped,
terminated, waiting for I/O, etc.

* The sequence of states that the thread undergoes is partly determined by the operating system
scheduler and partly by the application developers.

e Threads share the memory of the process, and since they are executed concurrently, they need
synchronization structures.

» Different synchronization abstractions are provided to solve different synchronization problems.

A default implementation of the POSIX 1.c specification has been provided for the C language.
All the available functions and data structures are exposed in the pthread.h header file, which is
part of the standard C implementations.

6.2.2.2 Threading support in java and .NET

Languages such as Java and C# provide a rich set of functionalities for multithreaded programming
by using an object-oriented approach. Since both Java and .NET execute code on top of a virtual
machine, the APIs exposed by the libraries refer to managed or logical threads. These are mapped
to physical threads (i.e., those made available as abstractions by the underlying operating system)
by the runtime environment in which programs developed with these languages execute. Despite
such a mapping process, managed threads are considered, from a programming point of view, as
physical threads and expose the same functionalities.

Both Java and .NET express the thread abstraction with the class Thread exposing the common
operations performed on threads: start, stop, suspend, resume, abort, sleep, join, and interrupt.
Start and stop/abort are used to control the lifetime of the thread instance, while suspend and
resume are used to programmatically pause and then continue the execution of a thread. These
two operations are generally deprecated in both of the two implementations that favor the use of
appropriate techniques involving proper locks of the use of the sleep operation. This operation
allows pausing the execution of a thread for a predefined period of time. This one is different
from the join operation that makes one thread wait until another thread is completed. These wait-
ing states can be interrupted by using the inferrupt operation, which resumes the execution of
the thread and generates an exception within the code of the thread to notify the abnormal
resumption.

The two frameworks provide different support for implementing synchronization among
threads. In general the basic features for implementing mutexes, critical regions, and reader-writer
locks are completely covered by means of the basic class libraries or additional libraries. More
advanced constructs than the thread abstraction are available in both languages. In the case of
Java, most of them are contained in the java.util.concurrent4 package, whereas the rich set of
APIs for concurrent programming in .NET is further extended by the .NET Parallel Extension
framework.’

“http://download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html.
Shttp://msdn.microsoft.com/en-us/concurrency/default.aspx.

http://www.download.oracle.com/javase/6/docs/api/java/util/concurrent/package-summary.html
http://www.msdn.microsoft.com/en-us/concurrency/default.aspx

6.2 Programming applications with threads 177

Techniques for parallel computation with threads

Developing parallel applications requires an understanding of the problem and its logical structure.
Understanding the dependencies and the correlation of tasks within an application is fundamental
to designing the right program structure and to introducing parallelism where appropriate.
Decomposition is a useful technique that aids in understanding whether a problem is divided into
components (or tasks) that can be executed concurrently. If such decomposition is possible, it also
provides a starting point for a parallel implementation, since it allows the breaking down into inde-
pendent units of work that can be executed concurrently with the support provided by threads. The
two main decomposition/partitioning techniques are domain and functional decompositions.

6.2.3.1 Domain decomposition
Domain decomposition is the process of identifying patterns of functionally repetitive, but independent,
computation on data. This is the most common type of decomposition in the case of throughput com-
puting, and it relates to the identification of repetitive calculations required for solving a problem.
When these calculations are identical, only differ from the data they operate on, and can be exe-
cuted in any order, the problem is said to be embarrassingly parallel [59]. Embarrassingly parallel
problems constitute the easiest case for parallelization because there is no need to synchronize differ-
ent threads that do not share any data. Moreover, coordination and communication between threads
are minimal; this strongly simplifies the code logic and allows a high computing throughput.
In many cases it is possible to devise a general structure for solving such problems and, in gen-
eral, problems that can be parallelized through domain decomposition. The master-slave model is a
quite common organization for these scenarios:

e The system is divided into two major code segments.

* One code segment contains the decomposition and coordination logic.

* Another code segment contains the repetitive computation to perform.

* A master thread executes the first code segment.

e As a result of the master thread execution, as many slave threads as needed are created to
execute the repetitive computation.

e The collection of the results from each of the slave threads and an eventual composition of the
final result are performed by the master thread.

Although the complexity of the repetitive computation strictly depends on the nature of the
problem, the coordination and decomposition logic is often quite simple and involves identifying
the appropriate number of units of work to create. In general, a while or a for loop is used to
express the decomposition logic, and each iteration generates a new unit of work to be assigned to
a slave thread. An optimization, of this process involves the use of thread pooling to limit the num-
ber of threads used to execute repetitive computations.

Several practical problems fall into this category; in the case of embarrassingly parallel pro-
blems, we can mention:

¢ Geometrical transformation of two (or higher) dimensional data sets
* Independent and repetitive computations over a domain such as Mandelbrot set and Monte
Carlo computations

178 CHAPTER 6 Concurrent Computing

Even though embarrassingly parallel problems are quite common, they are based on the strong
assumption that at each of the iterations of the decomposition method, it is possible to isolate an
independent unit of work. This is what makes it possible to obtain a high computing throughput.
Such a condition is not met if the values of all the iterations are dependent on some of the values
obtained in the previous iterations. In this case, the problem is said to be inherently sequential, and
it is not possible to directly apply the methodology described previously. Despite this, it can still be
possible to break down the whole computation into a set of independent units of work, which might
have a different granularity—for example, by grouping into single computation-dependent itera-
tions. Figure 6.3 provides a schematic representation of the decomposition of embarrassingly paral-
lel and inherently sequential problems.

To show how domain decomposition can be applied, it is possible to create a simple program
that performs matrix multiplication using multiple threads.

Matrix multiplication is a binary operation that takes two matrices and produces another matrix
as a result. This is obtained as a result of the composition of the linear transformation of the origi-
nal matrices. There are several techniques for performing matrix multiplication; among them, the
matrix product is the most popular. Figure 6.4 provides an overview of how a matrix product can
be performed.

nlts of work-

[Process |
DDDDDD | Result |
I EEEN
OO0
OO0

.,00000g .~

a. Embarrassingly parallel

nlts of WOPK--mmmmmemmeeeeeeeee

§ NS
\ Iy

b. Inherently sequential

FIGURE 6.3
Domain decomposition techniques.

6.2 Programming applications with threads 179

The matrix product computes each element of the resulting matrix as a linear combination of
the corresponding row and column of the first and second input matrices, respectively. The formula
that applies for each of the resulting matrix elements is the following:

n—1

Cj=) AuBy
k=0

Therefore, two conditions hold in order to perform a matrix product:

e Input matrices must contain values of a comparable nature for which the scalar product is
defined.

e The number of columns in the first matrix must match the number of rows of the second
matrix.

Given these conditions, the resulting matrix will have the number of rows of the first matrix
and the number of columns of the second matrix, and each element will be computed as described
by the preceding equation.

It is evident that the repetitive operation is the computation of each of the elements of the
resulting matrix. These are subject to the same formula, and the computation does not depend on
values that have been obtained by the computation of other elements of the resulting matrix.
Hence, the problem is embarrassingly parallel, and we can logically organize the multithreaded pro-
gram in the following steps:

¢ Define a function that performs the computation of the single element of the resulting matrix by
implementing the previous equation.

* Create a double for loop (the first index iterates over the rows of the first matrix and the second
over the columns of the second matrix) that spawns a thread to compute the elements of the
resulting matrix.

e Join all the threads for completion, and compose the resulting matrix.

In order to give a practical example of the implementation of such a solution, we demonstrate
the use of .NET threading. The .NET framework provides the System.Threading.Thread class that

| E—

7 —0

2,1

FIGURE 6.4
A matrix product.

180 CHAPTER 6 Concurrent Computing

can be configured with a function pointer, also known as a delegate, to execute asynchronously.
Such a delegate must reference a defined method in some class. Hence, we can define a simple
class that exposes as properties the row and the column to multiply and the result value. This class
will also define the method for performing the actual computation. Listing 6.1 shows the class
ScalarProduct.

The creation of the main thread of control is very simple. In this case, we skip the boilerplate
code that is required to read the matrices from the standard input or from a file and concentrate our
attention on the main control logic that decomposes the computation, creates threads, and waits for
their completion in order to compose the resulting matrix.

To control the threads, we need to keep track of them so that we can query their status and
obtain the result once they have completed the computation. We can create a simple program that
reads the matrices, keeps track of all the threads in an appropriate data structure, and, once the
threads have been completed, composes the final result. Listing 6.2 shows the content of the
MatrixProduct class with some omissions.

Whereas the domain decomposition is quite simple, note that most of the complexity of the pro-
gram resides in the management of threads. A few issues arise from the previous implementation:

e Matrix layout. Because of the way in which multidimensional arrays are stored, retrieving
the column for the scalar product is not as straightforward as obtaining the row. This problem
can be easily solved by memorizing the second matrix as columns X rows rather than
rows X columns.

* Result composition. The composition of results is made on the master thread, and this requires
keeping track of all the worker threads. Maintaining a reference to all the worker threads is in
general a good programming practice, since it is necessary to terminate all of them before the
application completes; but in this case it is possible to modify the application by using
synchronization constructs that allow updating the resulting matrix from the worker threads.
The new design implies storing the information about the indexes of rows and columns and a
reference to the resulting matrix in the ScalarProduct class. As a result, there is no need to
maintain a dictionary for threads, and we do not need the ComposeResult method in the master
thread.

The example of a matrix product has been taken as a model to sketch the basic logic that is
required to implement domain decomposition for an embarrassingly parallel problem and how to
use threads in .NET to achieve throughput computing. This example can be taken as a reference to
develop more sophisticated applications.

6.2.3.2 Functional decomposition
Functional decomposition is the process of identifying functionally distinct but independent compu-
tations. The focus here is on the type of computation rather than on the data manipulated by the
computation. This kind of decomposition is less common and does not lead to the creation of a
large number of threads, since the different computations that are performed by a single program
are limited.

Functional decomposition leads to a natural decomposition of the problem in separate units of
work because it does not involve partitioning the dataset, but the separation among them is clearly

6.2 Programming applications with threads

///<summary>
/// Class ScalarProduct.
/// arrays.

/

summary>

public class ScalarProduct

181

Computes the scalar product between the row and the column

{
/// <summa ry>
/// Scalar product.
/// summary>
private double result;
/// <summarys>
/// Gets the resulting scalar product.
/// </summary>
public double Result{ get { returnthis.result; } }
/// <summarys>
/// Arrays containing the elements of the row and the column to multiply.
/// </summarys>
private double[] row, column;
/// <summa ry>
/// Creates an instance of the ScalarProduct class and configures it with the given
/// row and column arrays.
"row">Array with the elements of the row to be multiplied.</params
/// <K name="column">Array with the elements of the column to be multiplied.
/// </param>
public ScalarProduct (double[] row, double[] column)
{
this.row = row;
this.colum = colum;
}
/// <summarys>
/// Executes the scalar product between the row and the colum.
/// summary>
/// <param name="row'>Array with the elements of the row to be multiplied.</param=>
/// <param name="column's>Array with the elements of the column to be multiplied.
/// </param>
public void Multiply ()
{
this.result = 0;
for(int i=0; i<this.row.Length; i++)
{
this.result += this.row[i] * this.column[i];
}
}
}

LISTING 6.1

ScalarProduct Class.

182 CHAPTER 6 Concurrent Computing

using System;
using System.Threading;
using System.Collections.Generic;

mmary >
/// Class MatrixProduct. Performs the matrix product of two matrices.
//</summarys>
public class MatrixProduct
{
///<summary>
/// First and second matrix of the produt.
/ /</summar

private static doublel,la, b;

<summarys>

/// Result matrix.

'/ /</summary>

private static doublel[,] c;
//<summary>

// Dictionary mapping the thread instances to the corresponding ScalarProduct
instances that are run inside.

sumr
private static IDictionary<Thread, ScalarProductsworkers.

/// Read the command line parameters and perform the scalar product.
/[/</sumn 7

///<param name="args'>Array strings containing the command line parameters.</param>

public static void Main(string[] args)

{
// reads the input matrices a and b.
MatrixProduct.ReadMatrices () ;
// executes the parallel matrix product.
MatrixProduct.ExecuteProudct () ;
// waits for all the threads to complete and
// composes the final matrix.
MatrixProduct.ComposeResult () ;

}

ummary>

/// Executes the parallel matrix product by decomposing the problem in
/ independent scalar product between rows and colums.
/< /summary>

private static void ExecuteThreads ()

{

MatrixProduct.workers = newList<Threads>();

int rows = MatrixProduct.a.Length;

// in .NET matrices are arrays of arrays and the number of columns is
// 1s represented by the length of the second array.
int columns = MatrixProduct.b[0].Length;
for(int i=0; i<rows; i++)
for (int j=0; j<columns; J++)
{
double[] row = MatrixProduct.ali];
// because matrices are stored as arrays of arrays in order to
// to get the columns we need to traverse the array and copy the
// the data to another array.

LISTING 6.2

MatrixProduct Class (Main Program).

LISTING 6.2

6.2 Programming applications with threads

double[] column = new double[common];
for (int k=0; k<common; k++)
{

column([j] = MatrixProduct.b[j][i];
}
// creates a ScalarProduct instance with the previous rows and
// columns and starts a thread executing the Multiply method.
duct (row, column) ;
Thread worker = newThread (newThreadStart (scalar.Multiply));
worker.Name =string.Format("{0}.{1}",row,column);
worker.Start () ;
// adds the thread to the dictionary so that it can be
// further retrieved.
Ma "t .workers.Add (worker, scalar);

ScalarProduct scalar = newScalarPro

fatrixProdu

Waits for the completion of all the threads and composes the final

result matrix.

summary s>

private static void ComposeResult ()

{

MatrixProduct .c = new double [rows,columns];

foreach (Ke

{

}

alarProducts>pair in M

Value r<Thread,

Thread worker = pair.Key;

// we have saved the coordinates of each scalar product in the name

// of the thread now we get them back by parsing the name
string[] indices = string.Split(worker.Name, new char[] {'."});
int 1 = int.Parse(indices([0]);

int j = int.Parse(indices([1]);

// we wait for the thread to complete

worker.Join () ;

// we set the result computed at the given coordinates.

MatrixProduct.c[i,j] = pair.vValue.Result;

MatrixProduct .PrintMatrix (MatrixProduct.c);

summary>

Reads the matrices.

/summary>

private static void ReadMatrices (

{

// code for reading the matrices a and b

mmarys

Prints the given matrix.

summary>

<param name=

matrix"sMatrix to print.</params

private static void PrintMatrices(double[,] matrix)

{

// code for printing the matrix.

rixProduct .workers)

183

(Continued)

184 CHAPTER 6 Concurrent Computing

FIGURE 6.5
Functional decomposition.

defined by distinct logic operations. Figure 6.5 provides a pictorial view of how decomposition
operates and allows parallelization.

As described by the schematic in Figure 6.5, problems that are subject to functional decomposi-
tion can also require a composition phase in which the outcomes of each of the independent units
of work are composed together. In the case of domain decomposition, this phase often results in an
aggregation process. The way in which results are composed in this case strongly depends on the
type of operations that define the problem.

In the following, we show a very simple example of how a mathematical problem can be paral-
lelized using functional decomposition. Suppose, for example, that we need to calculate the value
of the following function for a given value of x:

f(x) = sin(x) + cos(x) + tan(x)

It is apparent that, once the value of x has been set, the three different operations can be per-
formed independently of each other. This is an example of functional decomposition because the
entire problem can be separated into three distinct operations. A possible implementation of a paral-
lel version of the computation is shown in Listing 6.3.

The program computes the sine, cosine, and tangent functions in three separate threads and then
aggregates the results. The implementation provided constitutes an example of the alternative tech-
nique discussed in the previous sample program. Instead of using a data structure for keeping track
of the worker threads that have been created, a function pointer is passed to each thread so that it
can update the final result at the end of the computation. This technique introduces a synchroniza-
tion problem that is properly handled with the lock statement in the method referenced by the func-
tion pointer. The lock statement creates a critical section that can only be accessed by one thread at
time and guarantees that the final result is properly updated.

6.2 Programming applications with threads 185

using System;
using System.Threading;
using System.Collections.Generic;

/// <summary>

/// Delegate UpdateResult. Function pointer that is used to update the final result
/// from the slave threads once the computation is completed.

/// </summary>

/// <param name="x">partial value to add.</param>

public delegate void UpdateResult (double x);

S l["HlEi]f','\)
/// Class Sine. Computes the sine of a given value.

/// <

3‘11mmary>
public class Sine
{
/// <summary>
/// Input value for which the sine function is computed.
/// </summary>
private double x;
/// <summary>
/// Gets the input value of the sine function.
/// </summary>
public double X { get { return this.x; } }
/// <summary>
/// Result value.
/// </summary>
private double y;
/// <summary>
/// Gets the result value of the sine function.
/// </summary>
public double Y { get { return this.y; } }
/// <summary>
/// Function pointer used to update the result.
/// </summary>
private UpdateResult updater;
/// <summary>
/// Creates an instance of the Sine and sets the input to the given angle.
/// </summary>

/// <param n

="x">Angle in radiants.</param>

/// <param name="updater">Function pointer used to update the result.</param>
public Sine (double x, Upd ultupdater)
{
this.x = x;
this.updater = updater;
}

/// <summary>
/// Executes the sine function.
/// </summary>

public void Apply ()

{
this.y = Math.Sin(this.x);
if (this.updater != null)
{

this.updater (this.y);

LISTING 6.3
Mathematical Function.

186 CHAPTER 6 Concurrent Computing

///<summary>
/// Class Cosine. Computes the cosine of a given value.
///</summary>

public class Cosine

{

/// <summary>
/// Input value for which the cosine function is computed.
/// </summary>
private double x;
/// <summary>
/// Gets the input value of the cosine function.
/// </summary>
public double X { get { return this.x; } }
/// <summary>
/// Result value.
/// </summary>
private double y;
/// <summary>
/// Gets the result value of the cosine function.
/// mmary>
public double Y { get { return this.y; } }
/// <summary>
/// Function pointer used to update the result.
/// </summary>
private Upd esultupdater;
/// <summary>
/// Creates an instance of the Cosine and sets the input to the given angle.
/// </summary>
/// am name="x">Angle in radiants.</param>
/// <param name="updater">Function pointer used to update the result.</param>
public Cosine (double x, UpdateResultupdater)
{

this.x = x;

this.updater = updater;
}
/// <summary>
/// Executes the cosine function.
/// </summary>
public void Apply ()
{

this.y = Math.Cos(this.x);

if (this.updater != null)

{

this.updater(this.y);

}

}
}

///<summary>

/// Class Tangent. Computes the tangent of a given value.
///</summary>

public class Tangent

{

LISTING 6.3

(Continued)

6.2 Programming applications with threads 187

/77

mmary>

/// Input value for which the tangent function is computed.
/// </summary>

private double x;

///

ummary>

/// Gets the input value of the tangent function.
/// </summary>

public double X { get { return this.x; } }

/// <summary>

/// Result value.

/// </summary>

private double y;

///
/// Gets the result value of the tangent function.

mmary>

/// </summary>

public double Y { get { return this.y; } }

/// <summary>

/// Function pointer used to update the result.
/// </summary>

private UpdateResultupdater;

///

summary>
/// Creates an instance of the Tangent and sets the input to the given angle.

/// </summa

/// <param name="x">Angle in radiants.</param>
/// <param name="updater">Function pointer used to update the result.</param>
public Tangent (double x, UpdateResultupdater)
{

this.x = x;

this.updater = updater;
}
/// <summary>
/// Executes the cosine function.
/// </summary>
public void Apply ()
{

this.y = Math.Tan(this.x);

if (this.updater != null)

{

this.updater (this.y);

}
/// <summary>
/// Class Program. Computes the function sin(x) + cos(x) + tan(x).
/// </summary>
public class Program
{
/// <summary>
/// Variable storing the coputed value for the function.
/// </summary>
private static double result;
/// <summary>
/// Synchronization instance used to avoid keeping track of the threads.
/// </summary>
private static object synchRoot = new object();
/// <summary>

/// Read the command line parameters and perform the scalar product.

LISTING 6.3
(Continued)

188 CHAPTER 6 Concurrent Computing

/// </summary>
/// <param name="args">Array strings containing the command line parameters.</param>
public static void Main(string[] args)
{
// gets a value for x
double x = 3.4d;

// creates the function pointer to the update method.
UpdateResult updater = newUpdateResult (Program.Sum);

// creates the sine thread.

sine = newSine (x, updater);
ad tSine =new Thread(new ThreadStart (sine.Apply);

// creates the cosine thread.
ine cosine = newCosine(x, updater);
ad tCosine =new Thread(new ThreadStart (cosine.Apply) ;

// creates the tangent thread.
Tangent tangent = newTangent (x, updater);
Thread tTangent =new Thread(new ThreadStart (tangent.Apply);

// shuffles the execution order.
tTangent.Start () ;

tSine.Start () ;

tCosine.Start();

// waits for the completion of the threads.
tCosine.Join () ;

tTangent.Join () ;

tSine.Join();

// the result is available, dumps it to console.
Console.WriteLine("£({0}): {1}", x, Program.result);

/// <summary>

/// Callback that is executed once the computation in the thread is completed
/// and adds the partial value passed as a parameter to the result.

/// </summary>

/// <param name="partial">Partial value to add.</p
private static voidSum(double partial)

{

lock (Program.synchRoot)
{

Program.result += partial;

LISTING 6.3

(Continued)

6.3 Multithreading with Aneka 189

6.2.3.3 Computation vs. communication

In designing parallel and in general distributed applications, it is very important to carefully evaluate
the communication patterns among the components that have been identified during problem decom-
position. The two decomposition methods presented in this section and the corresponding sample
applications are based on the assumption that the computations are independent. This means that:

e The input values required by one computation do not depend on the output values generated by
another computation.

e The different units of work generated as a result of the decomposition do not need to interact
(i.e., exchange data) with each other.

These two assumptions strongly simplify the implementation and allow achieving a high degree
of parallelism and a high throughput. Having all the worker threads independent from each other
gives the maximum freedom to the operating system (or the virtual runtime environment) scheduler
in scheduling all the threads. The need to exchange data among different threads introduces depen-
dencies among them and ultimately can result in introducing performance bottlenecks. For exam-
ple, we did not introduce any queuing technique for threads; but queuing threads might potentially
constitute a problem for the execution of the application if data need to be exchanged with some
threads that are still in the queue. A more common disadvantage is the fact that while a thread
exchanges data with another one, it uses some kind of synchronization strategy that might lead to
blocking the execution of other threads. The more data that need to be exchanged, the more they
block threads for synchronization, thus ultimately impacting the overall throughput.

As a general rule of thumb, it is important to minimize the amount of data that needs to be
exchanged while implementing parallel and distributed applications. The lack of communication
among different threads constitutes the condition leading to the highest throughput.

Multithreading with Aneka

As applications become increasingly complex, there is greater demand for computational power
that can be delivered by a single multicore machine. Often this demand cannot be addressed with
the computing capacity of a single machine. It is then necessary to leverage distributed infrastruc-
tures such as clouds. Decomposition techniques can be applied to partition a given application into
several units of work that, rather than being executed as threads on a single node, can be submitted
for execution by leveraging clouds.

Even though a distributed facility can dramatically increase the degree of parallelism of applica-
tions, its use comes with a cost in term of application design and performance. For example, since
the different units of work are not executing within the same process space but on different nodes,
both the code and the data need to be moved to a different execution context; the same happens for
results that need to be collected remotely and brought back to the master process. Moreover, if
there is any communication among the different workers, it is necessary to redesign the communi-
cation model eventually by leveraging the APIs, if any, provided by the middleware. In other
words, the transition from a single-process multithreaded execution to a distributed execution is not
transparent, and application redesign and reimplementation are often required.

190 CHAPTER 6 Concurrent Computing

The amount of effort required to convert an application often depends on the facilities offered
by the middleware managing the distributed infrastructure. Aneka, as middleware for managing
clusters, grids, and clouds, provides developers with advanced capabilities for implementing distrib-
uted applications. In particular, it takes traditional thread programming a step further. It lets you
write multithreaded applications the traditional way, with the added twist that each of these threads
can now be executed outside the parent process and on a separate machine. In reality, these
“threads” are independent processes executing on different nodes and do not share memory or other
resources, but they allow you to write applications using the same thread constructs for concurrency
and synchronization as with traditional threads. Aneka threads, as they are called, let you easily
port existing multithreaded compute-intensive applications to distributed versions that can run faster
by utilizing multiple machines simultaneously, with minimum conversion effort.

Introducing the thread programming model

Aneka offers the capability of implementing multithreaded applications over the cloud by means of
the Thread Programming Model. This model introduces the abstraction of distributed thread, also
called Aneka thread, which mimics the behavior of local threads but executes over a distributed
infrastructure. The Thread Programming Model has been designed to transparently port high-
throughput multithreaded parallel applications over a distributed infrastructure and provides the
best advantage in the case of embarrassingly parallel applications.

As described in Section 5.4.1, each application designed for Aneka is represented by a local
object that interfaces to the middleware. According to the various programming models supported
by the framework, such an interface exposes different capabilities, which are tailored to efficiently
support the design and the implementation of applications by following a specific programming
style. In the case of the Thread Programming Model, the application is designed as a collection of
threads, the collective execution of which represents the application run. Threads are created and
controlled by the application developer, while Aneka is in charge of scheduling their execution
once they have been started. Threads are transparently moved and remotely executed while develo-
pers control them from local objects that act like proxies of the remote threads. This approach
makes the transition from local multithreaded applications to distributed applications quite easy and
seamless.

The Thread Programming Model exhibits APIs that mimic the ones exposed by .NET base class
libraries for threading. In this way developers do not have to completely rewrite applications in
order to leverage Aneka; the process of porting local multithreaded applications is as simple as
replacing the System.Threading.Thread class and introducing the AnekaApplication class. There are
three major elements that constitute the object model of applications based on the Thread
Programming Model:

* Application. This class represents the interface to the Aneka middleware and constitutes a local
view of a distributed application. In the Thread Programming Model the single units of work
are created by the programmer. Therefore, the specific class used will be Aneka.Entity.
AnekaApplication <T,M >, with T and M properly selected.

* Threads. Threads represent the main abstractions of the model and constitute the building
blocks of the distributed application. Aneka provides the Aneka.Threading.AnekaThread class,
which represents a distributed thread. This class exposes a subset of the methods exposed by the

6.3 Multithreading with Aneka 191

System.Threading.Thread class, which has been reduced to those operations and properties that
make sense or can be efficiently implemented in a distributed context.

e Thread Manager. This is an internal component that is used to keep track of the execution of
distributed threads and provide feedback to the application. Aneka provides a specific version
of the manager for this model, which is implemented in the Aneka.Threading.ThreadManager
class.

As a result, porting local multithreaded applications to Aneka involves defining an instance of
the AnekaApplication < AnekaThread, ThreadManager > class and replacing any occurrence of
System.Threading. Thread with Aneka.Threading.AnekaThread. Developers can start creating
threads, control their life cycles, and coordinate their execution similarly to local threads.

Aneka applications expose additional other properties, such as events that notify the completion
of threads, their failure, the completion of the entire application, and thread state transitions. These
operations are also available for the Thread Programming Model and constitute additional features
that can be leveraged while porting local multithreaded applications, where this support needs to be
explicitly programmed. Also, the AnekaApplication class provides support for files, which are auto-
matically and transparently moved in the distributed environment.

Aneka thread vs. common threads

To efficiently run on a distributed infrastructure, Aneka threads have certain limitations compared
to local threads. These limitations relate to the communication and synchronization strategies that
are normally used in multithreaded applications.

6.3.2.1 Interface compatibility

The Aneka.Threading.AnekaThread class exposes almost the same interface as the System.Threading.
Thread class with the exception of a few operations that are not supported. Table 6.1 compares the
operations that are exposed by the two classes. The reference namespace that defines all the types
referring to the support for threading is Aneka.Threading rather than System.Threading.

The basic control operations for local threads such as Start and Abort have a direct mapping,
whereas operations that involve the temporary interruption of the thread execution have not been
supported. The reasons for such a design decision are twofold. First, the use of the Suspend/Resume
operations is generally a deprecated practice, even for local threads, since Suspend abruptly inter-
rupts the execution state of the thread. Second, thread suspension in a distributed environment leads
to an ineffective use of the infrastructure, where resources are shared among different tenants and
applications. This is also the reason that the Sleep operation is not supported. Therefore, there is no
need to support the Interrupt operation, which forcibly resumes the thread from a waiting or a
sleeping state. To support synchronization among threads, a corresponding implementation of the
Join operation has been provided.

Besides the basic thread control operations, the most relevant properties have been implemen-
ted, such as name, unique identifier, and state. Whereas the name can be freely assigned, the identi-
fier is generated by Aneka, and it represents a globally unique identifier (GUID) in its string form
rather than an integer. Properties such as IsBackground, Priority, and IsThreadPoolThread have
been provided for interface compatibility but actually do not have any effect on thread scheduling
and always expose the values reported in the table. Other properties concerning the state of the

192 CHAPTER 6 Concurrent Computing

Table 6.1 Thread APl Comparison

.Net Threading API Aneka Threading API

System. Threading Aneka. Threading

Thread AnekaThread

Thread.ManagedThreadld (int) AnekaThread.ld (string)

Thread.Name AnekaThread.Name

Thread. ThreadState (ThreadState) AnekaThread.State

Thread.IsAlive AnekaThread.IsAlive

Thread.IsRunning AnekaThread.IsRunning
Thread.IsBackground AnekaThread.lsBackground|false]
Thread. Priority AnekaThread.Priority[ThreadPriority.Normal]
Thread.IsThreadPoolThread AnekaThread.IsThreadPoolThread [false]
Thread.Start AnekaThread. Start

Thread.Abort AnekaThread.Abort

Thread.Sleep [Not provided]

Thread.Interrupt [Not provided]

Thread.Suspend [Not provided]

Thread.Resume [Not provided]

Thread.Join AnekaThread.Join

thread, such as IsAlive and IsRunning, exhibit the expected behavior, whereas a slightly different
behavior has been implemented for the ThreadState property that is mapped to the State property.
The remaining methods of the System.Threading. Thread class (.NET 2.0) are not supported.

Finally, it is important to note differences in thread creation. Local threads implicitly belong to the
hosting process and their range of action is limited by the process boundaries. To create local threads it
is only necessary to provide a pointer to a method to execute in the form of the ThreadStart or
ParameterizedThreadStart delegates. Aneka threads live in the context of a distributed application, and
multiple distributed applications can be managed within a single process; for this reason, thread crea-
tion also requires the specification of the reference to the application to which the thread belongs.

Interface compatibility between Aneka threading APIs and the base class library allow quick
porting of most of the local multithreaded applications to Aneka by simply replacing the class
names and modifying the thread constructors.

6.3.2.2 Thread life cycle

Since Aneka threads live and execute in a distributed environment, their life cycle is necessarily
different from the life cycle of local threads. For this reason, it is not possible to directly map the
state values of a local thread to those exposed by Aneka threads. Figure 6.6 provides a comparative
view of the two life cycles.

The white balloons in the figure indicate states that do not have a corresponding mapping on the
other life cycle; the shaded balloons indicate the common states. Moreover, in local threads most of the
state transitions are controlled by the developer, who actually triggers the state transition by invoking
methods on the thread instance, whereas in Aneka threads, many of the state transitions are controlled

6.3 Multithreading with Aneka 193

start) Start()

Abort() Rejected

Suspended

{ Wait(/Sleep()iJoin() | Interrupt() |

Running Failed
Staging Completed
Out
a. System.Threading.Threadlife cycle. b. Aneka.Threading.AnekaThreadlife cycle.

FIGURE 6.6
Thread life-cycle comparison.

by the middleware. As depicted in Figure 6.6, Aneka threads exhibit more states than local threads
because Aneka threads support file staging and they are scheduled by the middleware, which can queue
them for a considerable amount of time. As Aneka supports the reservation of nodes for execution of
thread related to a specific application, an explicit state indicating execution failure due to missing res-
ervation credential has been introduced. This occurs when a thread is sent to an execution node in a
time window where only nodes with specific reservation credentials can be executed.

An Aneka thread is initially found in the Unstarted state. Once the Start() method is called, the
thread transits to the Started state, from which it is possible to move to the Stagingln state if there
are files to upload for its execution or directly to the Queued state. If there is any error while
uploading files, the thread fails and it ends its execution with the Failed state, which can also be
reached for any exception that occurred while invoking Start().

Another outcome might be the Rejected state that occurs if the thread is started with an invalid
reservation token. This is a final state and implies execution failure due to lack of rights. Once the
thread is in the queue, if there is a free node where to execute it, the middleware moves all the
object data and depending files to the remote node and starts its execution, thus changing the state
into Running. If the thread generates an exception or does not produce the expected output files,
the execution is considered failed and the final state of the thread is set to Failed. If the execution
is successful, the final state is set to Completed. If there are output files to retrieve, the thread state
is set to StagingOut while files are collected and sent to their final destination, and then it transits

194 CHAPTER 6 Concurrent Computing

to Completed. At any point, if the developer stops the execution of the application or directly calls
the Abort() method, the thread is aborted and its final state is set to Aborted.

In most cases, the normal state transition will resemble the one occurring for local threads:
Unstarted — [Started] — [Queued] — Running — Completed/Aborted/Failed.

6.3.2.3 Thread synchronization

The .NET base class libraries provide advanced facilities to support thread synchronization by
the means of monitors, semaphores, reader-writer locks, and basic synchronization constructs at the
language level. Aneka provides minimal support for thread synchronization that is limited to
the implementation of the join operation for thread abstraction. Most of the constructs and classes
that are provided by the .NET framework are used to provide controlled access to shared data from
different threads in order to preserve their integrity. This requirement is less stringent in a distrib-
uted environment, where there is no shared memory among the thread instances and therefore it is
not necessary. Moreover, the reason for porting a local multithread application to Aneka threads
implicitly involves the need for a distributed facility in which to execute a large number of threads,
which might not be executing all at the same time. Providing coordination facilities that introduce
a locking strategy in such an environment might lead to distributed deadlocks that are hard to
detect. Therefore, by design Aneka threads do not feature any synchronization facility that goes
beyond the simple join operation between executing threads.

6.3.2.4 Thread priorities

The System.Threading.Thread class supports thread priorities, where the scheduling priority can be
one selected from one of the values of the ThreadPriority enumeration: Highest, AboveNormal,
Normal, BelowNormal, or Lowest. However, operating systems are not required to honor the prior-
ity of a thread, and the current version of Aneka does not support thread priorities. For interface
compatibility purposes the Aneka.Threading.Thread class exhibits a Priority property whose type is
ThreadPriority, but its value is always set to Normal, and changes to it do not produce any effect
on thread scheduling by the Aneka middleware.

6.3.2.5 Type serialization

Aneka threads execute in a distributed environment in which the object code in the form of libraries
and live instances information are moved over the network. This condition imposes some limita-
tions that are mostly concerned with the serialization of types in the .NET framework.

Local threads execute all within the same address space and share memory; therefore, they do
not need objects to be copied or transferred into a different address space. Aneka threads are dis-
tributed and execute on remote computing nodes, and this implies that the object code related to
the method to be executed within a thread needs to be transferred over the network. Since delegates
can point to instance methods, the state of the enclosing instance needs to be transferred and recon-
structed on the remote execution environment. This is a particular feature at the class level and
goes by the term type serialization.

A NET type is considered serializable if it is possible to convert an instance of the type into a
binary array containing all the information required to revert it to its original form or into a possi-
bly different execution context. This property is generally given for several types defined in the
.NET framework by simply tagging the class definition with the Serializable attribute. If the class

6.4 Programming applications with Aneka threads 195

exposes a specific set of characteristics, the framework will automatically provide facilities to seri-
alize and deserialize instances of that type. Alternatively, custom serialization can be implemented
for any user-defined type.

Aneka threads execute methods defined in serializable types, since it is necessary to move the
enclosing instance to remote execution method. In most cases, providing serialization is as easy as
tagging the class definition with the Serializable attribute; in other cases it might be necessary to
implement the ISerializable interface and provide appropriate constructors for the type. This is not
a strong limitation, since there are very few cases in which types cannot be defined as serializable.
For example, local threads, network connections, and streams are not serializable since they directly
access local resources that cannot be implicitly moved onto a different node.

Programming applications with Aneka threads

To show how it is possible to quickly port multithreaded application to Aneka threads, we provide
a distributed implementation of the previously discussed examples for local threads.

Aneka threads application model

The Thread Programming Model is a programming model in which the programmer creates the
units of work as Aneka threads. Therefore, it is necessary to utilize the AnekaApplication < W,M >
class, which is the application reference class for all the programming models falling into this cate-
gory. The Aneka APIs make strong use of generics and characterize the support given to different
programming models through template specialization. Hence, to develop distributed applications
with Aneka threads, it is necessary to specialize the template type as follows:

AnekaApplication < AnekaThread, ThreadManager >

This will be the class type for all the distributed applications that use the Thread Programming
Model. These two types are defined in the Aneka.Threading namespace noted in the Aneka.
Threading.dll library of the Aneka SDK.

Another important component of the application model is the Configuration class, which is
defined in the Aneka. Entity namespace (Aneka.dll). This class contains a set of properties that allow
the application class to configure its interaction with the middleware, such as the address of the
Aneka index service, which constitutes the main entry point of Aneka Clouds; the user credentials
required to authenticate the application with the middleware; some additional tuning parameters;
and an extended set of properties that might be used to convey additional information to the mid-
dleware. The code excerpt presented in Listing 6.4 demonstrates how to create a simple application
instance and configure it to connect to an Aneka Cloud whose index service is local.

Once the application has been created, it is possible to create threads by specifying the reference
to the application and the method to execute in each thread, and the management of the application
execution is mostly concerned with controlling the execution of each thread instance. Listing 6.5
provides a very simple example of how to create Aneka threads.

The rest of the operations relate to the common management of thread instances, similar to local
multithreaded applications discussed earlier.

196 CHAPTER 6 Concurrent Computing

// namespaces containing types of common use
using System;

using System.Collections.Generic;

// common Aneka namespaces.

using Aneka;

using Aneka.Util;

using Aneka.Entity;

// Aneka Thread Programming Model user classes
using Aneka.Threading;

<summary

Creates an instance of the Aneka Application configured to use the

Thread Programming Model.
summary

Application instance.

retur:

Janager> CreateApplication();

private A aApplication<AnekaThread, Thr

{
Configuration conf =new Configuration();
// this is the common address and port of a local installation

// of the Aneka Cloud.

"tcp://localhost:9090/Aneka") ;
ntials ("Administrator", string.Empty);

conf.SchedulerUri = newUr

conf.Credentials =newU
// we will not need support for file transfer, hence we optimize the
// application in order to not require any file transfer service.
conf.UseFileTransfer = false;

// we do not need any other configuration setting

// we create the application instance and configure it.

AnekaApplication

return app;

LISTING 6.4
Application Creation and Configuration.

Domain decomposition: matrix multiplication

To port to Aneka threads the multithreaded matrix multiplication, we need to apply the considera-
tions made in the previous section. Hence, we start reviewing the code by first making the proper
changes to the ScalarProduct class. Listing 6.6 shows the modified version of ScalarProduct.

The class has been tagged with the Serializable attribute and extended with the methods
required to implement custom serialization. Supporting custom serialization implies the following:

e Including the System.Runtime.Serialization namespace.

e Implementing the ISerializable interface. This interface has only one method that is void
GetObjectData(Serializationlnfo, StreamingContext), and it is called when the runtime needs to
serialize the instance.

e Providing a constructor with the following signature: ScalarProduct(Serializationinfo,
StreamingContext). This constructor is invoked when the instance is deserialized.

6.4 Programming applications with Aneka threads 197

VAV — continues from the previous listing
<summary>
Thread worker method (implementation skipped).
summary>
private void WorkerMethod ()
{

<summary s>
Creates a collection of threads that are executed in the context of the
the given application.
summary>

<param name="app'>>Application instance.</param>

private void CreateThreads (AnekalApplication<AnekaThread, ThreadManager> app) ;
{
// creates a delegate to the method to execute inside the threads.
ThreadStart worker = newThreadStart (this.WorkerMethod) ;
// iterates over a loop and creates ten threads.
for(int 1=0; 1<10; i++)
{
AnekaThread thread = new AnekaThread (worker, app);
thread.Start () ;

}

LISTING 6.5
Thread Creation and Execution.

The SerializationInfo class has a central role of providing a repository where all the properties
defining the serialized format of a class can be stored and referenced by name. With minimum
changes to the class layout, it would be possible to rely on the default serialization provided by the
framework. To leverage such capability, it is necessary that all the properties defining the state of
an instance are accessible through both get and ser methods. In that case, it would be possible to
simply tag the class as serialization, since all the fields constituting the state of the instance are
also serializable. It can be noted that, apart from serialization, there is no need to make any change
to the way the class operates.

The second step is to change the MatrixProduct class to leverage Aneka threads. We need to
first create a properly configured application and then substitute the occurrences of the System.
Threading.Thread class with Aneka.Threading.Thread (see Listing 6.7).

As shown in Listing 6.7, the changes that need to be applied to the logic of the program are
minimal, and most of the modifications are related to exception management and the proper use of
Aneka logging facilities. The MatrixProduct class integrates the method discussed in the previous
section for application creation and setup and introduces a try...catch.. finally block to handle
exceptions that occurred while the application was executing. The rest of the code, except for
renaming the occurrences of the Thread class, is unchanged.

There is only one important change to note: Once the Aneka thread instance is completed, the
updated reference to the object containing the remotely executed method is exposed by the

198 CHAPTER 6 Concurrent Computing

using System.Runtime.Serialization;

///<summary>

/// Class ScalarProduct. Computes the scalar product between the row and the column
/// arrays. The class uses custom serialization. In order to do so it implements the
/// the ISerializable interface.

[/ /</summary>
[Serializable]
public class ScalarProduct : ISerializable
{
/// <summarys>
/// Scalar product.
/// </summarys>
private double result;
/// <summarys>
/// Gets the resulting scalar product.
/// </summary>
public double Result{get { returnthis.result; }}
/// <summary>
/// Arrays containing the elements of the row and the column to multiply.
/// </summary>
private double[] row, column;
/// <summary>
/// Creates an instance of the ScalarProduct class and configures it with the given
/// row and column arrays.
/// </summarys>
/// <param name="row"s>Array with the elements of the row to be multiplied.</param>
/// <param name="column's>Array with the elements of the column to be multiplied.
/// </param>
public ScalarProduct (double[] row, double[] column)
{
this.row = row;
this.colum = colum;
¥
/// <summary>
/// Deserialization constructor used by the .NET runtime to recreate instances of
/// of types implementing custom serialization.
/// </summary>
/// <param name="info">Bag containing the serialized data instance.</param>
/// <param name="context">Serialization context (not used).</param>
public ScalarProduct(SerializationInfo info, StreamingContext context)
{
this.result = info.GetDouble("result");
this.row = info.GetValue('"row", typeof(double[])) as doublel];
this.column = info.GetValue("column", typeof (double[])) as doublel];
}
LISTING 6.6

ScalarProduct Class (Modified Version).

6.4 Programming applications with Aneka threads 199

/// <summary>
/// Executes the scalar product between the row and the colum.
/// </summary>

"row">Array with the elements of the row to be multiplied.</param>

/// aram name="column'>Array with the elements of the column to be multiplied.
/// </param>
public void Multiply ()
{

this.result = 0;

for(int 1=0; i<this.row.Length; i++)

{

this.result += this.row[i] * this.column[i];

}

}

/// <summarys>

/// Serialization method used by the .NET runtime to serialize instances of
/// of types implementing custom serialization.

/// </summary>

/// <param name="info">Bag containing the serialized data instance.</param>
/// <param name="context">Serialization context (not used).</params>

public ScalarProduct(SerializationInfo info, StreamingContext context)

{
this.result = info.GetDouble("result");
this.row = info.GetValue("row", typeof (doublel[])) as doublel[];
this.column = info.GetValue("column", typeof(double[])) as doublel];
}

/// <summary>
/// Executes the scalar product between the row and the colum.

/) </summary>

‘param name="row'>Array with the elements of the row to be multiplied.</params>
/// <param name="column'>Array with the elements of the column to be multiplied.

'/ / </param>
public void Multiply ()

{
this.result = 0;
for(int 1=0; i<this.row.Length; i++)
{
this.result += this.row[i] * this.column[i];
}
}

/// <summary>

/// Serialization method used by the .NET runtime to serialize instances of
/// of types implementing custom serialization.

/// </summary>

/// <param name="info">Bag containing the serialized data instance.</param>
/// <param name="context">Serialization context (not used).</param>

public void GetObjectData(SerializationInfo info, StreamingContext context)

{
info.Addvalue("result",this.result);
info.Addvalue("row", this.row,typeof (doublel[])):;
info.Addvalue("column", this.column,typeof (doublel]));
}
}
LISTING 6.6

(Continued)

|
200 CHAPTER 6 Concurrent Computing

using System;

// we do not anymore need the reference to the threading namespace.
// using System.Threading;

using System.Collections.Generic;

// reference to the Aneka namespaces of interest.
// common Aneka namespaces.

using Aneka;

using Aneka.Util;

using Aneka.Entity;

// Aneka Thread Programming Model user classes
using Aneka.Threading;

<summary:>
Class MatrixProduct. Performs the matrix product of two matrices.
[/ </ summary

public class MatrixProduct

{
<summary>
First and second matrix of the produt.
[/ </ summary=>
private static doublel[,la, b;
[/ < mmary>
/// Result matrix.
// /summary>
private static doublel[,] c;
/ /<summary>
Dictionary mapping the thread instances to the corresponding ScalarProduct
///instances that are run inside.The occurrence of the Thread class has been
///substituted with AnekaThread.
/summary >
private static IDictionary<AnekaThread, ScalarProduct> workers.
/// <summarys>
/// Reference to the distributed application the threads belong to.
/// </summary=>
private static AnekaApplication<AnekaThread, ThreadManagers> app;
ary=
the command line parameters and perform the scalar product.
<param name='"args'>Array strings containing the command line parameters.<
public static void Main(string[] args)
{
try
{
// activates the logging facility.
Logger.Start();
// creates the Aneka application instance.
MatrixProduct.app =Program.CreateApplication();
// reads the input matrices a and b.
MatrixProduct.ReadMatrices () ;
// executes the parallel matrix product.
MatrixProduct.ExecuteProudct () ;
// waits for all the threads to complete and
// composes the final matrix.
LISTING 6.7

MatrixProduct Class (Modified Version).

6.4 Programming applications with Aneka threads 201

MatrixProduct.ComposeResult () ;

}
catch(Exception ex)
{
TOUtil.DumpErrorReport (ex, "Matrix Multiplication - Error executing " +
"the application");
}
finally
{
try
{
// checks whether the application instance has been created
// stops it.
if (MatrixProduct.app != null)
{
MatrixProduct.app.Stop();
}
}
catch (Exception ex)
{
IOUtil.DumpErrorReport (ex, "Matrix Multiplication - Error stopping " +
"the application");
¥
// stops the logging thread.
Logger.Stop();
}

mmnarys
Executes the parallel matrix product by decomposing the problem in
/// independent scalar product between rows and colums.
</summary>

private static void ExecuteThreads (

{
// we replace the Thread class with AnekaThread.
MatrixProduct.workers = new Dictionary<AnekaThread, ScalarProduct>();
int rows = MatrixProduct.a.Length;
// in .NET matrices are arrays of arrays and the number of columns is
// 1is represented by the length of the second array.
int columns = MatrixProduct.b[0].Length;
for(int 1=0; i<rows; i++)
for (int j=0; j<columns; Jj++)
{
double[] row = MatrixProduct.al[il];
// beacause matrices are stored as arrays of arrays in order to
// to get the columns we need to traverse the array and copy the
// the data to another array.
double[] column = new double[common] ;
for (int k=0; k<common; k++)
{
column[j] = MatrixProduct.b([j][1];
¥
// creates a ScalarProduct instance with the previous rows and
// columns and starts a thread executing the Multiply method.
ScalarProduct scalar = newScalarProduct (row, column) ;
// we change the System.Threading.Thread class with the corresponding
LISTING 6.7

(Continued)

202 CHAPTER 6 Concurrent Computing

// Aneka.Threading.AnekaThread class and reference the application instance.
AnekaThread worker = newAnekaThread(newThreadStart(scalar.Multiply), app);
worker.Name =string.Format("{0}.{1}",row,column) ;

worker.Start () ;

// adds the thread to the dictionary so that it can be

// further retrieved.

MatrixProduct.workers.Add (worker, scalar);

/ /) <sSumme
/// Waits for the completion of all the threads and composes the final
/// result matrix.
/// </summary>
private static void ComposeResult ()
{
MatrixProduct.c = new double[rows,columns];
// we replace the Thread class with AnekaThread.
foreach(KeyValuePair<AnekaThread, ScalarProduct>pair in MatrixProduct.workers)
{
AnekaThread worker = pair.Key;
// we have saved the coordinates of each scalar product in the name
// of the thread now we get them back by parsing the name.

string[] indices = string.Split(worker.Name, new char[] {'."});
int 1 = int.Parse(indices[0]);
int j = int.Parse(indices[1]);

// we wait for the thread to complete
worker.Join() ;
// instead of using the local value of the ScalarProduct instance
// we use the one that has is stored in the Target property.
// MatrixProduct.c[i,j] = pair.Value.Result;
MatrixProduct.c[i,j] = ((ScalarProduct) worker.Target).Result;
}

MatrixProduct.PrintMatrix (MatrixProduct.c) ;

/// Reads the matrices.
/] /summary>
private static void ReadMatrices()

{

// code for reading the matrices a and b

// <summary>
/// Prints the given matrix.

mmary>

/// <param name='matrix"sMatrix to print.</param>
private static voidPrintMatrices (double[,] matrix)
{
// code for printing the matrix.
}
/// <summary>
/// Creates an instance of the Aneka Application configured to use the
/// Thread Programming Model.
/// </summary>
/// <returns>Application instance.</returns>
private AnekaApplication<AnekaThread,ThreadManager> CreateApplication();
{

LISTING 6.7

(Continued)

Summary 203

Configuration conf =new Configuration();

// this is the common address and port of a local installation

// of the Aneka Cloud.

conf.SchedulerUri = newUri("tcp://localhost:9090/Aneka");
conf.Credentials =newUserCredentials ("Administrator", string.Empty);
// we will not need support for file transfer, hence we optimize the
// application in order to not require any file transfer service.
conf.UseFileTransfer = false;

// we do not need any other configuration setting

// we create the application instance and configure it.
AnekaApplication<AnekaThread, ThreadManager> app =

new AnekaApplication<AnekaThread,ThreadManagers>(conf);
return app;

}

LISTING 6.7
(Continued)

AnekaThread.Target property and not the local variable referencing the object that was initially
used to create the delegate.

Functional decomposition: Sine, Cosine, and Tangent

The modifications required to port this sample to Aneka threads are basically the same as those dis-
cussed in the previous example. There is only one significant difference in this case: Each of the
threads has a reference to a delegate that is used to update the global sum at the end of the compu-
tation. Since we are operating in a distributed environment, the instance on which the object will
operate is not shared among the threads, but each thread instance has its own local copy. This pre-
vents the global sum from being updated in the master thread and requires a change in the update
strategy utilized.

This example also illustrates how to modify the classes Sine, Cosine, and Tangent so that they
can leverage the default serialization capabilities of the framework (see Listing 6.8).

This example demonstrated how to change the logic of the application in case the worker methods
executed in the threads have a reference to a local object that is updated as a consequence of the exe-
cution. To allow the execution of such applications with Aneka threads, it is necessary to extrapolate
the update logic from the worker method of the threads and perform it into the master thread.

SUMMARY

This chapter provided a brief overview of multithreaded programming and the technologies used
for multiprocessing on a single machine. We introduced the basics of multicore technology, which
is the latest technological advancement for achieving parallelism on a single computer, and dis-
cussed how such parallelism can be leveraged to speed up applications by using multithreaded pro-
gramming. A thread defines a single control flow within a process, which is the logical unit for

204 CHAPTER 6 Concurrent Computing

using System;

// we do not anymore need the reference to the threading namespace.
// using System.Threading;

using System.Collections.Generic;

// reference to the Aneka namespaces of interest.
// common Aneka namespaces.

using Aneka;

using Aneka.Util;

using Aneka.Entity;

// Aneka Thread Programming Model user classes
using Aneka.Threading;

// this is not needed anymore.

// /// <summarys>

// /// Delegate UpdateResult. Function pointer that is used to update the final result
// /// from the slave threads once the computation is completed.

// /// </summary>

// /// <param name="x">partial value to add.</param>

// public delegate void UpdateResult (double x);

<summarys

Class Sine. Computes the sine of a given value.

// </summary>
[Serializable]
public class Sine
{
Input value for which the sine function is computed.
/// </summarys>
private double x;
/ <summarys
Gets or sets the input value of the sine function.
// /summary>
public double X { get { return this.x; } set { this.x = value; } }
<summary>
Result value.
</summary>
private double y;
/ <summarys
/// Gets or sets the result value of the sine function.
/7 /summarys>
public double Y { get { return this.y; } set { this.y = value; } }
// we can’t use this anymore.
// /// <summary>
// /// Function pointer used to update the result.
// /// </summary>
// private UpdateResult updater;
// we need a default constructor, which is automatically provided by the compiler
// if we do not specify any constructor.
// /// <summary>
// /// Creates an instance of the Sine and sets the input to the given angle.
// /// </summary>
// /// <param name="x">Angle in radiants.</param>
// /// <param name="updater">Funct ion pointer used to update the result.</param>
LISTING 6.8

Mathematical Function (Modified Version).

Summary 205

// public Sine(double x, UpdateResult updater)

/7 £
// this.x = x;
/7 this.updater = updater;

/7%

immar

Executes the sine function.
/ / /summary>
public void Apply ()
{
this.y = Math.Sin(this.x);
// we cannot use this anymore because there is no
// shared memory space.
// if (this.updater != null)

/7 A
// this.updater(this.y);
/7 %}
}
}
/<summary>
Class Cosine. Computes the cosine of a given value. The same changes have been
applied by removing the code not needed anymore rather than commenting it out.
/ /summary>
[Serializable]
public class Cosine
{
v
Input value for which the cosine function is computed.
/summary >
private double x;
/ summary>
public double X { get { return this.x; } set { this.x = value; } }
/ <summary>
Result value.
/summary>
private double y;
mmary>
Gets or sets the result value of the cosine function.
/ </ summary>
public double Y { get { return this.y; } set { this.y = value; } }
// <summary
Executes the cosine function.
// </summary:>
public voidApply ()
{
this.y = Math.Cos(this.x);
}
}
<summarys>
Class Cosine. Computes the cosine of a given value. The same changes have been
applied by removing the code not needed anymore rather than commenting it out.
/ /summary>
[Serializable]
LISTING 6.8

(Continued)

206 CHAPTER 6 Concurrent Computing

public class Ta

{
<summary:>
Input value for which the tangent function is computed.
/summary>
private double x;
<summary>
Gets or sets the input value of the tangent function.
/ / summary>
public double X { get { return this.x; } set { this.x = value; } }
/ <summary:>
Result value.
/7 / summary>
private double y;
<summary>
Gets or sets the result value of the tangent function.
/summary>
public double Y { get { return this.y; } set { this.y = value; } }
/ <summarys>
Executes the tangent function.
</ summary>
public voidApply ()
{
this.y = Math.Cos(this.x);
}
}
marys>
Class Cosine. Computes the cosine of a given value. The same changes have been
applied by removing the code not needed anymore rather than commenting it out.
summary>
[Serializable]
public class Tangent
{

<summary>

Input value for which the tangent function is computed.

/// </summarys>

private double x;

/ <summarys>

Gets or sets the input value of the tangent function.

summary>

public double X { get { return this.x; } set { this.x = value; } }
<summary>

Result value.

summary>

private double y;

<summary:>

Gets or sets the result value of the tangent function.
/// </summary>
public double Y { get { return this.y; } set { this.y = value; } }
/ <summary>

Executes the tangent function.

/ < mary>

public voidApply ()
{

this.y = Math.Tan(this.x);

LISTING 6.8

(Continued)

Summary 207

/// <summary>
/// Class Program. Computes the function sin(x) + cos(x) + tan(x).
/// </summary>
public class Program
{
/// <summary>
/// Variable storing the coputed value for the function.
/// </summarys>

private static double result;

// we do not need synchronization anymore, because the update of the global
// sum is done sequentially.

// /// <summary>

// /// Synchronization instance used to avoid keeping track of the threads.
// /// </summary>

// private static object synchRoot = new object();

/// <summarys>

/// Reference to the distributed application the threads belong to .

ummary >

private static AnekaApplication<AnekaThread, ThreadManagers> app;

< mmary>
/// Read the command line parameters and perform the scalar product.

/// <param name="arc >Array strings containing the command line parameters. </param>
public static voidMain(string[] args)

{

try
{
// activates the logging facility.
Logger.Start();
// creates the Aneka application instance.
app = Program.CreateApplication();

// gets a value for x
double x = 3.44d;

// creates the function pointer to the update method.
UpdateResult updater = newUpdateResult (Program.Sum) ;

// creates the sine thread.
Sine sine = newSine(x, updater);
AnekaThread tSine =newAnekaThread (new ThreadStart (sine.Apply), app);

// creates the cosine thread.
Cosine cosine = newCosine(x, updater);
AnekaThread tCosine =newAnekaThread (new ThreadStart (cosine.Apply), app);

// creates the tangent thread.
Tangent tangent = newTangent (x, updater);
AnekaThread tTangent =newAnekaThread (new ThreadStart (tangent.Apply), app):;

// shuffles the execution order.
tTangent.Start () ;

LISTING 6.8
(Continued)

208 CHAPTER 6 Concurrent Computing

¥

/7
//
/7
/7
/7
/7
/7
/7
/7
//
//
//

LISTING 6.8

}

tSine.Start();
tCosine.Start();

// waits for the completion of the threads.
tCosine.Join () ;

tTangent.Join() ;

tSine.Join() ;

// once we have joined all the threads the values have been collected back
// and we use the Target property in order to obtain the object with the
// updated values.

sine = (Sine) tSine.Target;

cosine = (Cosine) tSine.Target;

tangent = (Tangent) tSine.Target;

Program.result = sine.Target.Y + cosine.Y + tangent.Y;

// the result is available, dumps it to console.
Console.WriteLine("f({0}): {1}", x, Program.result);

catch (Exception ex)

{

}

I0Util .DumpErrorReport (ex, "Math Functions - Error executing " +
"the application");

finally

{

we
/17
/17
/17
/17
/17
pri

{

try
{
// checks whether the application instance has been created
// stops it.
if (app != null)
{
app.Stop();

¥
catch (Exception ex)
{
I0Util.DumpErrorReport (ex, "Math Functions - Error stopping " +
"the application");
}
// stops the logging thread.
Logger.Stop () ;

do not need this anymore.

<summary>

Callback that is executed once the computation in the thread is completed
and adds the partial value passed as a parameter to the result.
</summary>

<param name="partial"s>Partial value to add.</param>
vate static void Sum(double partial)

lock (Program.synchRoot)
{
Program.result += partial;

(Continued)

Summary 209

/7 }
/// <summary>
/// Creates an instance of the Aneka Application configured to use the
/// Thread Programming Model.
/// </summarys>
/// <returns>Application instance.</returnss>
private AnekaApplication<AnekaThread,ThreadManagers> CreateApplication();
{
Configuration conf =new Configuration();
// this is the common address and port of a local installation
// of the Aneka Cloud.
conf.SchedulerUri = newUri("tcp://localhost:9090/Aneka");
conf.Credentials =newUserCredentials ("Administrator", string.Empty):;
// we will not need support for file transfer, hence we optimize the
// application in order to not require any file transfer service.
conf.UseFileTransfer = false;
// we do not need any other configuration setting

// we create the application instance and configure it.
AnekaApplication<AnekaThread, ThreadManager> app =

new AnekaApplication<AnekaThread, ThreadManager>(conf);
return app;

}

LISTING 6.8
(Continued)

representing a running program in modern operating systems. Currently, all the most popular oper-
ating systems support multithreading, irrespective of whether the underlying hardware explicitly
supports real parallelism or not. Real parallelism is supported by the use of multiple processors or
cores at the same time, if they are available; otherwise, multithreading is obtained by interleaving
the execution of multiple threads on the same processing unit.

To support multithreaded programming, programming languages define the abstraction of pro-
cess and thread in their class libraries. A popular standard for operations on threads and thread syn-
chronization is POSIX, which is supported by all the Linux/UNIX operating systems and is
available as an additional library for the Windows operating systems family. A common implemen-
tation of POSIX is given in C/C+ + as a library of functions. New-generation languages such as
Java and C# ((NET) provide a set of abstractions for thread management and synchronization that
is compliant and that most closely follows the object-oriented design that characterizes these lan-
guages. These implementations are portable over any operating system that provides an implemen-
tation for the runtime environment required by these languages.

Multithreaded programming is a practice that allows achieving parallelism within the boundaries
of a single machine. Applications requiring a high degree of parallelism cannot be supported by
normal multithreaded programming and must rely on distributed infrastructures such as clusters,
grids, or, most recently, clouds. The use of these facilities imposes application redesign and the use
of specific APIs, which might require significant changes to the existing applications. To address
this issue, Aneka provides the Thread Programming Model, which extends the philosophy behind
multithreaded programming beyond the boundaries of a single node and allows leveraging

210 CHAPTER 6 Concurrent Computing

heterogeneous distributed infrastructure for execution. To minimize application reconversion, the
Thread Programming Model mimics the API of the System.Threading namespace, with some lim-
itations that are imposed by the fact that threads are executed on a distributed infrastructure. High-
throughput applications can be easily ported to Aneka threads with minimal or no changes at all to
their logic. Examples of such features and the basic steps of converting a local multithreaded appli-
cation to Aneka threads were given in the chapter by discussing simple applications demonstrating
the methodology of domain and functional decomposition for parallel problems.

As a framework for distributed programming, Aneka provides many built-in features that are
not generally of use while architecting an application in terms of concurrent threads. These are, for
example, event notification and support for file transfer. These capabilities are available as core
features of the Aneka application model but have not been demonstrated in the case of the Thread
Programming Model, which is concerned with providing support for partitioning the execution of
algorithms to speed up execution. However, they are indeed of great use in the case of “bag of
tasks” applications, discussed in the next chapter.

Review questions

What is throughput computing and what does it aim to achieve?

What is multiprocessing? Describe the different techniques for implementing multiprocessing.

What is multicore technology and how does it relate to multiprocessing?

Briefly describe the architecture of a multicore system.

What is multitasking?

What is multithreading and how does it relate to multitasking?

Describe the relationship between a process and a thread.

Does parallelism of applications depend on parallel hardware architectures?

Describe the principal characteristics of a thread from a programming point of view and the

uses of threads for parallelizing application execution.

10. What is POSIX?

11. Describe the support given for programming with threads in new-generation languages such as
Java or C#.

12. What do the terms logical thread and physical thread refer to?

13. What are the common operations implemented for a thread?

14. Describe the two major techniques used to define a parallel implementation of computer
algorithms.

15. What is an embarrassingly parallel problem?

16. Describe how to implement a parallel matrix scalar product by using domain decomposition.

17. How does communication impact design and the implementation of parallel or distributed
algorithms?

18. Which kind of support does Aneka provide for multithreading?

19. Describe the major differences between Aneka threads and local threads.

20. What are the limitations of the Thread Programming Model?

21. Design a parallel implementation for the tabulation of the Gaussian function by using simple

threads and then convert it to Aneka threads.

N prWN =

CHAPTER

High-Throughput Computing

Task Programming

Task computing is a wide area of distributed system programming encompassing several different
models of architecting distributed applications, which, eventually, are based on the same fundamen-
tal abstraction: the rask. A task generally represents a program, which might require input files and
produce output files as a result of its execution. Applications are then constituted of a collection of
tasks. These are submitted for execution and their output data are collected at the end of their exe-
cution. The way tasks are generated, the order in which they are executed, or whether they need to
exchange data differentiate the application models that fall under the umbrella of task
programming.

This chapter characterizes the abstraction of a task and provides a brief overview of the distrib-
uted application models that are based on the task abstraction. The Aneka Task Programming
Model is taken as a reference implementation to illustrate the execution of bag-of-tasks (BoT)
applications on a distributed infrastructure.

Task computing

Organizing an application in terms of tasks is the most intuitive and common practice for develop-
ing parallel and distributed computing applications. A task identifies one or more operations that
produce a distinct output and that can be isolated as a single logical unit. In practice, a task is
represented as a distinct unit of code, or a program, that can be separated and executed in a remote
runtime environment. Programs are the most common option for representing tasks, especially in
the field of scientific computing, which has leveraged distributed computing for its computational
needs.

Multithreaded programming is mainly concerned with providing a support for parallelism within
a single machine. Task computing provides distribution by harnessing the compute power of several
computing nodes. Hence, the presence of a distributed infrastructure is explicit in this model.
Historically, the infrastructures that have been leveraged to execute tasks are clusters, supercompu-
ters, and computing grids. Now clouds have emerged as an attractive solution to obtain a huge
computing power on demand for the execution of distributed applications. To achieve it,
suitable middleware is needed. A reference scenario for task computing is depicted in Figure 7.1.

The middleware is a software layer that enables the coordinated use of multiple resources,
which are drawn from a datacenter or geographically distributed networked computers. A user

211

212 CHAPTER 7 High-Throughput Computing

Middleware

“\‘ Computing
“wo__.-""|__Nodes

FIGURE 7.1
Task computing scenario.

submits the collection of tasks to the access point(s) of the middleware, which will take care of
scheduling and monitoring the execution of tasks. Each computing resource provides an appropriate
runtime environment, which may vary from implementation to implementation (a simple shell, a
sandboxed environment, or a virtual machine). Task submission is normally done using the APIs
provided by the middleware, whether a Web or programming language interface. Appropriate APIs
are also provided to monitor task status and collect their results upon completion.

Because task abstraction is general, there exist different models of distributed applications fall-
ing under the umbrella of task computing. Despite this variety, it is possible to identify a set of
common operations that the middleware needs to support the creation and execution of task-based
applications. These operations are:

* Coordinating and scheduling tasks for execution on a set of remote nodes
e Moving programs to remote nodes and managing their dependencies

* Creating an environment for execution of tasks on the remote nodes

* Monitoring each task’s execution and informing the user about its status
e Access to the output produced by the task

Models for task computing may differ in the way tasks are scheduled, which in turn depends on
whether tasks are interrelated or they need to communicate among themselves.

7.1.1 Characterizing a task

A task is a general abstraction that identifies a program or a combination of programs that consti-
tute a computing unit of a distributed application with a tangible output. A task represents a compo-
nent of an application that can be logically isolated and executed separately. Distributed

7.1 Task computing 213

applications are composed of tasks, the collective execution and interrelations of which define the
nature of the applications. A task can be represented by different elements:

* A shell script composing together the execution of several applications

* A single program

* A unit of code (a Java/C+ +/.NET class) that executes within the context of a specific runtime
environment

A task is generally characterized by input files, executable code (programs, shell scripts, etc.),
and output files. In many cases the common runtime environment in which tasks execute is repre-
sented by the operating system or an equivalent sandboxed environment. A task may also need spe-
cific software appliances on the remote execution nodes in addition to the library dependencies that
can be transferred to the node.

Some distributed applications may have additional constraints. For example, distributed comput-
ing frameworks that present the abstraction of tasks at programming level, by means of a class to
inherit or an interface to implement, might require additional constraints (i.e., compliance to the
inheritance rules) but also a richer set of features that can be exploited by developers. Based on the
specific model of application, tasks might have dependencies.

Computing categories

According to the specific nature of the problem, a variety of categories for task computing have
been proposed over time. These categories do not enforce any specific application model but pro-
vide an overall view of the characteristics of the problems. They implicitly impose requirements on
the infrastructure and the middleware. Applications falling into this category are high-performance
computing (HPC), high-throughput computing (HTC), and many-task computing (MTC).

7.1.2.1 High-performance computing

High-performance computing (HPC) is the use of distributed computing facilities for solving pro-
blems that need large computing power. Historically, supercomputers and clusters are specifically
designed to support HPC applications that are developed to solve “Grand Challenge” problems in
science and engineering. The general profile of HPC applications is constituted by a large collec-
tion of compute-intensive tasks that need to be processed in a short period of time. It is common to
have parallel and tightly coupled tasks, which require low-latency interconnection networks to min-
imize the data exchange time. The metrics to evaluate HPC systems are floating-point operations
per second (FLOPS), now tera-FLOPS or even peta-FLOPS, which identify the number of floating-
point operations per second that a computing system can perform.

7.1.2.2 High-throughput computing

High-throughput computing (HTC) is the use of distributed computing facilities for applications
requiring large computing power over a long period of time. HTC systems need to be robust and to
reliably operate over a long time scale. Traditionally, computing grids composed of heterogeneous
resources (clusters, workstations, and volunteer desktop machines) have been used to support HTC.
The general profile of HTC applications is that they are made up of a large number of tasks of
which the execution can last for a considerable amount of time (i.e., weeks or months). Classical

214 CHAPTER 7 High-Throughput Computing

examples of such applications are scientific simulations or statistical analyses. It is quite common
to have independent tasks that can be scheduled in distributed resources because they do not need
to communicate. HTC systems measure their performance in terms of jobs completed per month.

7.1.2.3 Many-task computing

The many-task computing (MTC) [61] model started receiving attention recently and covers a wide
variety of applications. It aims to bridge the gap between HPC and HTC. MTC is similar to HTC,
but it concentrates on the use of many computing resources over a short period of time to accom-
plish many computational tasks. In brief, MTC denotes high-performance computations comprising
multiple distinct activities coupled via file system operations. What characterizes MTC is the het-
erogeneity of tasks that might be of considerably different nature: Tasks may be small or large,
single-processor or multiprocessor, compute-intensive or data-intensive, static or dynamic, homoge-
neous or heterogeneous. The general profile of MTC applications includes loosely coupled
applications that are generally communication-intensive but not naturally expressed using the
message-passing interface commonly found in HPC, drawing attention to the many computations
that are heterogeneous but not embarrassingly parallel. Given the large number of tasks commonly
composing MTC applications, any distributed facility with a large availability of computing ele-
ments is able to support MTC. Such facilities include supercomputers, large clusters, and emerging
cloud infrastructures.

Frameworks for task computing

There are several frameworks that can be used to support the execution of task-based applications
on distributed computing resources, including clouds. Some popular software systems that support
the task-computing framework are Condor [5], Globus Toolkit [12], Sun Grid Engine (SGE) [13],
BOINC [14], Nimrod/G [164], and Aneka.

Architecture of all these systems is similar to the general reference architecture depicted in
Figure 7.1. They consist of two main components: a scheduling node (one or more) and worker
nodes. The organization of the system components may vary. For example, multiple scheduling
nodes can be organized in hierarchical structures. This configuration is quite common in the mid-
dleware for computing grids, which harness a variety of distributed resources from one or more
organizations or sites. Each of these sites may have their own scheduling engine, especially if the
system contributes to the grid but also serves local users.

A classic example is the cluster setup where the system might feature an installation of Condor
or SGE for batch job submission; these services are generally used locally to the site, but the clus-
ter can be integrated into a larger grid where meta-schedulers such as GRAM (Globus Resource
Allocation Manager)' can dispatch a collection of jobs to the