Distributed and Cloud Computing

From Parallel Processing to the Internet of Things

Kal Hwang - Geoffrey C. Fox . Jack J. Dongarra




Distributed and Cloud
Computing



This page intentionally left blank



Distributed and Cloud
Computing

From Parallel Processing to the
Internet of Things

Kai Hwang

Geoffrey C. Fox

Jack J. Dongarra

AMSTERDAM « BOSTON ¢ HEIDELBERG * LONDON
NEW YORK ¢ OXFORD ¢ PARIS « SAN DIEGO

— = SAN FRANCISCO * SINGAPORE « SYDNEY * TOKYO
ELSEVIER Morgan Kaufmann is an imprint of Elsevier




Acquiring Editor: Todd Green
Development Editor: Robyn Day
Project Manager: Danielle S. Miller
Designer: Eric DeCicco

Morgan Kaufimann is an imprint of Elsevier
225 Wyman Street, Waltham, MA 02451, USA

© 2012 Elsevier, Inc. All rights reserved.

AMD, the AMD logo, AMD Opteron, and combinations thereof are trademarks of, and used with permission from,
Advanced Micro Devices, Inc.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical,
including photocopying, recording, or any information storage and retrieval system, without permission in writing from the
publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our
arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found
at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may
be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods or professional practices, may become necessary. Practitioners and researchers
must always rely on their own experience and knowledge in evaluating and using any information or methods described
herein. In using such information or methods they should be mindful of their own safety and the safety of others, including
parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any
injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or
operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
Application submitted

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-385880-1

For information on all MK publications visit our
website at www.mkp.com

Typeset by: diacriTech, Chennai, India

Printed in the United States of America
131415 1098765432

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

ELSEVIER BOOKAID  q,phre Foundation



http://www.elsevier.com/permissions
http://www.mkp.com

This book is dedicated to our wives: Jennifer, Judy, and Sue;
and to our children: Tony, Andrew, Katherine, Annie, Alexis,
James, Heather, Pamela, Oliver, Nick, Ben, and Katie.

KH, GF, and JD



This page intentionally left blank



Contents

PrefaCe . . . oo XV
ADOUL the AULNOTS . . ... e e e e e e e e e X1iX
FOTEWOId . . .. Xx1

PART 1 SYSTEMS MODELING, CLUSTERING,
AND VIRTUALIZATION 1

CHAPTER 1 Distributed System Models and Enabling Technologies...........ccvveevuunnn.. 3
SUMIMATY .+ e e e ettt e et e et e e e e e ettt e e et e 4

1.1 Scalable Computing over the Internet. ..............o.viiiuiiiiniirniniannan.. 4
1.1.1 The Age of Internet COMPULING. ... ..ottt eees 4
1.1.2 Scalable Computing Trends and New Paradigms..................cooiiiii... 8
1.1.3 The Internet of Things and Cyber-Physical Systems............................ 11

1.2 Technologies for Network-Based Systems. ............cuveieiiiiiniineenaan.. 13
1.2.1 Multicore CPUs and Multithreading Technologies. .................ooiiiii.... 14
1.2.2 GPU Computing to Exascale and Beyond.......... ... ..., 17
1.2.3 Memory, Storage, and Wide-Area Networking. .............oooviiiiiiiii.. 20
1.2.4 Virtual Machines and Virtualization Middleware. .............................. 22
1.2.5 Data Center Virtualization for Cloud Computing. .. ...........c.coeiiuennnnnn... 25

1.3 System Models for Distributed and Cloud Computing. .................co.oon... 27
1.3.1 Clusters of Cooperative COMPULETS. . ... vvvtttttt ettt eteneneeeennneneeennennn. 28
1.3.2 Grid Computing InfrastruCtures. . ... ...oovttt ittt 29
1.3.3 Peer-to-Peer Network Families............ ... ... . o i, 32
1.3.4 Cloud Computing over the Internet. ........... ..o, 34

1.4 Software Environments for Distributed Systems and Clouds.................... 36
1.4.1 Service-Oriented Architecture (SOA). ...ttt i e 37
1.4.2 Trends toward Distributed Operating Systems. ...........uueriiieeeeeenennnn.. 40
1.4.3 Parallel and Distributed Programming Models. .......... ... ..., 42

1.5 Performance, Security, and Energy Efficiency........................co. 44
1.5.1 Performance Metrics and Scalability Analysis...........ccoieiiiiiieiana.. 45
1.5.2 Fault Tolerance and System Availability.......... ... ... .. 48
1.5.3 Network Threats and Data Integrity............ ... . i, 49
1.5.4 Energy Efficiency in Distributed Computing. ..........c.cooviiiiiiiiinininnnn... 51

1.6 Bibliographic Notes and Homework Problems....................c.covviinn.... 55
AckNOWIedgments. .. ... ...t e 56
References. . . ..o 56
Homework Problems. ........ ... 58

vii



viii Contents

CHAPTER 2

2.1

2.2

23

24

25

2.6

CHAPTER 3

3.1

3.2

Computer Clusters for Scalable Parallel Computing..............c.ccveianatn. 65
SUMMATY . . e ettt e e et e e e e e e e e ettt e 66
Clustering for Massive Parallelism............. ... ..o .. 66
2.1.1 Cluster Development Trends. ........ouuunuininit i 66
2.1.2 Design Objectives of Computer CIUSters. ... .vvvuuin ettt ennnn 68
2.1.3 Fundamental Cluster Design Issues..............oooiiiiiiiiiiiiiiiii ... 69
2.1.4 Analysis of the Top 500 SupercOmMputers. ... .....ooueteninieeeeennn.. 71
Computer Clusters and MPP Architectures..............cooiviiiiiiaine... 75
2.2.1 Cluster Organization and Resource Sharing...............cocooiiiiiii ... 76
2.2.2 Node Architectures and MPP Packaging............ ... oo, 77
2.2.3 Cluster System INterCONNECES . . . o vt vttt ettt et et iae e iiae e 80
2.2.4 Hardware, Software, and Middleware Support............c.cooviiiiiiineennn .. 83
2.2.5 GPU Clusters for Massive Parallelism............ ... i, 83
Design Principles of Computer CIUSters. .. ...........ooveitiitieiiiaenenn.. 87
2.3.1 Single-System Image Features.......... ..ottt 87
2.3.2 High Availability through Redundancy............co o it 95
2.3.3 Fault-Tolerant Cluster Configurations. .. ...... ..., 99
2.3.4 Checkpointing and Recovery Techniques...............coiiiiiiiiiinann.. 101
Cluster Job and Resource Management. ..............cooiuiiieinennnennnenn.. 104
2.4.1 Cluster Job Scheduling Methods. ............... i 104
2.4.2 Cluster Job Management SYSteIMS . . . . ...t 107
2.4.3 Load Sharing Facility (LSF) for Cluster Computing. . ..........cccouuuieeeeen.. 109
2.4.4 MOSIX: An OS for Linux Clusters and Clouds................. ... ... 110
Case Studies of Top Supercomputer SyStems. ...........ouvirviirinreneennn.. 112
2.5.1 Tianhe-1A: The World Fastest Supercomputer in 2010......................... 112
2.5.2 Cray XTS5 Jaguar: The Top Supercomputer in 2009........................... 116
2.5.3 IBM Roadrunner: The Top Supercomputer in 2008............................ 119
Bibliographic Notes and Homework Problems................................ 120
ACKNOWIEdEMENtS. . . ..ot e 121
ReferenCes . . . .o 121
Homework Problems. ....... ... 122
Virtual Machines and Virtualization of Clusters and Data Centers............ 129
SUMMATY . . .o e e e e e e 130
Implementation Levels of Virtualization......................ciiiiiiiia... 130
3.1.1 Levels of Virtualization Implementation. .............ccoiiiiiiiiiiiina.. 130
3.1.2 VMM Design Requirements and Providers.................oooiiiiiiiiiiie. 133
3.1.3 Virtualization Support at the OS Level........ ..., 135
3.1.4 Middleware Support for Virtualization. ...........c.c..uieiiiiiinneeennnnneenn. 138
Virtualization Structures/Tools and Mechanisms............................... 140
3.2.1 Hypervisor and Xen Architecture. ........ ...ttt 140
3.2.2 Binary Translation with Full Virtualization. ............. ...t 141

3.2.3 Para-Virtualization with Compiler Support. ....... ...t iiiiiiiiiinnaan. 143



3.3

34

3.5

3.6

Contents ix

Virtualization of CPU, Memory, and I/O Devices...............ccoooviin... 145
3.3.1 Hardware Support for Virtualization.................cooiiiiiiiiiiieeennnn.. 145
3.3.2 CPU VirtualiZation . . . . .. .vuuett ettt ettt et e e et e et e ees 147
3.3.3 Memory VirtualiZation. . ... ..oovutit i e 148
334 /O VIrtualization. . ... ..ottt e 150
3.3.5 Virtualization in Multi-Core Processors.......... ..., 153
Virtual Clusters and Resource Management. ..............o.viuivieninenne.... 155
3.4.1 Physical versus Virtual CIUSters. ... ittt e eeenn 156
3.4.2 Live VM Migration Steps and Performance Effects......................... ... 159
3.4.3 Migration of Memory, Files, and Network Resources....................... ... 162
3.4.4 Dynamic Deployment of Virtual Clusters. ...........oooiiiiiiiiiiiiiinneao.. 165
Virtualization for Data-Center Automation.............c..o.oevuiuiiinnenenn.n. 169
3.5.1 Server Consolidation in Data Centers. . ... ......uuuuieeeeiinneeeennnnneennns 169
3.5.2 Virtual Storage Management. . .. ... ..ottt e et tntniiaaaaaeeeeeeann 171
3.5.3 Cloud OS for Virtualized Data Centers. .. ........uouueeeeeeetumununnnneneenn 172
3.5.4 Trust Management in Virtualized Data Centers. ...........c.oouuiiiiinnnnn. . 176
Bibliographic Notes and Homework Problems.................... ... . .. ... 179
ACKNOWIEdZMEntS. .. ..o 179
ReferenCes . . ..ot 180
Homework Problems. ....... ... 183

PART 2 COMPUTING CLOUDS, SERVICE-ORIENTED
ARCHITECTURE, AND PROGRAMMING 189

4.1

4.2

4.3

Cloud Platform Architecture over Virtualized Data Centers................... 191
SUMMATY . ..o 192
Cloud Computing and Service Models. ... ... 192
4.1.1 Public, Private, and Hybrid Clouds. ...........ccooiiiiiiiiiiiiiiiiiii... 192
4.1.2 Cloud Ecosystem and Enabling Technologies............. ..., 196
4.1.3 Infrastructure-as-a-Service (IaaS)........ ... i 200
4.1.4 Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS).................. 203
Data-Center Design and Interconnection Networks............................ 206
4.2.1 Warehouse-Scale Data-Center Design. .........couuuuniiiiiiinenennn.. 206
4.2.2 Data-Center Interconnection Networks. . ..., 208
4.2.3 Modular Data Center in Shipping COntainers. .........c..ueeeuuneernuneeennn.s 211
4.2.4 Interconnection of Modular Data Centers............ ..., 212
4.2.5 Data-Center Management ISSU€S. . ... 213
Architectural Design of Compute and Storage Clouds......................... 215
4.3.1 A Generic Cloud Architecture Design. . .........cccouuiuniiiniiiiinnnnn.. 215
4.3.2 Layered Cloud Architectural Development. ...........ccooiiiiiiiiiinnnn... 218
4.3.3 Virtualization Support and Disaster Recovery.................oooooiiiiiiLL. 221

4.3.4 Architectural Design Challenges. . ........oeuunneeiinn i 225



X Contents

4.4

4.5

4.6

4.7

CHAPTER 5

5.1

5.2

5.3

54

Public Cloud Platforms: GAE, AWS, and Azure...............cciiiiinnn.. 227
4.4.1 Public Clouds and Service Offerings. ...........c.oooiiiiiiiiiiiinnnnnnn.. 227
4.4.2 Google App Engine (GAE). ...ttt e 229
4.4.3 Amazon Web Services (AWS) . ..ot e e 231
4.4.4 Microsoft WINdOWS AZUIC. . ...ttt ettt ettt 233
Inter-cloud Resource Management. ............ouiuiiuit it iinnnenennanans 234
4.5.1 Extended Cloud Computing SeIVICeS. ... .vvettueettee e ineeenneeennnn. 235
4.5.2 Resource Provisioning and Platform Deployment.................. ... ... 237
4.5.3 Virtual Machine Creation and Management. .. ...........uuueeeeiunnnneeeenn. 243
4.5.4 Global Exchange of Cloud Resources............oooiiiiiiiiiiinnnnna.. 246
Cloud Security and Trust Management. ............coouuieirenininineneanan... 249
4.6.1 Cloud Security Defense Strate@ies. ........ouuuuuutiiieeenininnnnnnnnn. 249
4.6.2 Distributed Intrusion/Anomaly Detection. .............couuiieeiinneeeennn.. 253
4.6.3 Data and Software Protection Techniques.............cooiiiiiiii .. 255
4.6.4 Reputation-Guided Protection of Data Centers. ............uviiineeeeeeeennnnn. 257
Bibliographic Notes and Homework Problems................. ... ... ..... 261
AcCKNOWIEdEemeNtS . . .. ..ottt 261
References. . . ..o 261
Homework Problems. ....... ... o 265
Service-Oriented Architectures for Distributed Computing.................... 271
SUMMATY . . ettt et e e e e e 272
Services and Service-Oriented Architecture...............cooviiiiiiin... 272
5.1.1 REST and Systems of SyStems. .. .......uuiiiiuiintiii i 273
5.1.2 Services and Web ServiCes. ... .....ouuuuuenn ettt 277
5.1.3 Enterprise Multitier Architecture. .. ..........ouiiiiiiiiiiiiinnnnnnnn. 282
5.1.4 Grid Services and OGSA. ... ...t e 283
5.1.5 Other Service-Oriented Architectures and Systems. .. ........ccoeveeeeenennnnn.. 287
Message-Oriented Middleware. . ..........ovuiirinii i, 289
5.2.1 Enterprise Bus. . ..ot 289
5.2.2 Publish-Subscribe Model and Notification. ..............ooiiiiiiiiiiiiina.. 291
5.2.3 Queuing and Messaging SyStemS. . ... ...ttt 291
5.2.4 Cloud or Grid Middleware Applications. ................coouiiiiiiiiannana.. 291
Portals and Science Gateways. .. .........uueuinininiininiiiiiaaaaen.. 294
5.3.1 Science Gateway Exemplars. . ... ..o 295
5.3.2 HUBzero Platform for Scientific Collaboration.............. ..., 297
5.3.3 Open Gateway Computing Environments (OGCE)............. ... ... ....... 301
Discovery, Registries, Metadata, and Databases..........................o.... 304
5.4.1 UDDI and Service ReZIStrIeS . . . ... uvuuutet e 304
5.4.2 Databases and Publish-Subscribe. .......... ..o i i i i 307
5.4.3 Metadata Catalogs. . .« oo vt vttt e 308
5.4.4 Semantic Web and Grid.........ooiiiiiiii i e 309

5.4.5 Job Execution Environments and Monitoring. . .........c.ooveiunneennnneenn.. 312



5.5

5.6

CHAPTER 6

6.1

6.2

6.3

6.4

6.5

6.6

Contents xi

Workflow in Service-Oriented Architectures...............c.ooviiiiiiin... 314
5.5.1 Basic Workflow COncCepts. ... .....ouuuutimntetini i 315
5.5.2 Workflow Standards. . . ...t e 316
5.5.3 Workflow Architecture and Specification. ............ ..o, 317
5.5.4 Workflow Execution Engine.......... ..o, 319
5.5.5 Scripting Workflow System Swift............oo i 321
Bibliographic Notes and Homework Problems............. ... .. .. ... .. 322
ACKNOWIBAEMENTS . . . ..ottt e 324
References. . . ... 324
Homework Problems. ...... ... 331
Cloud Programming and Software Environments.............cccvvivinvnnnnn.. 335
SUMIMATY . . o ettt e e e e e e e e e e e e e 336
Features of Cloud and Grid Platforms........... ... ..o .. 336
6.1.1 Cloud Capabilities and Platform Features.................. ... .. ... ... ... 336
6.1.2 Traditional Features Common to Grids and Clouds............... ... .. ... 336
6.1.3 Data Features and Databases. ...........ooiitiiumiii i 340
6.1.4 Programming and Runtime Support.............ccoiiiiiiiniiiiinnn. 341
Parallel and Distributed Programming Paradigms.......................... ... 343
6.2.1 Parallel Computing and Programming Paradigms......................cooa... 344
6.2.2 MapReduce, Twister, and Iterative MapReduce.................... .. ... ... 345
6.2.3 Hadoop Library from Apache........... ... . i, 355
6.2.4 Dryad and DryadLINQ from Microsoft.............. ... . oo, 359
6.2.5 Sawzall and Pig Latin High-Level Languages. ............ccooiiiiiiiiin.. 365
6.2.6 Mapping Applications to Parallel and Distributed Systems...................... 368
Programming Support of Google App Engine................. ... ... 370
6.3.1 Programming the Google App Engine..............ooiiiiiiiiiiiiinneenn.. 370
6.3.2 Google File System (GFS).........o i 373
6.3.3 BigTable, Google’s NOSQL SyStem. . .....ouinniiiii e 376
6.3.4 Chubby, Google’s Distributed Lock Service.............. ..o, 379
Programming on Amazon AWS and Microsoft Azure......................... 379
6.4.1 Programming on Amazon EC2...... ... ... i 380
6.4.2 Amazon Simple Storage Service (S3). ...t e 382
6.4.3 Amazon Elastic Block Store (EBS) and SimpleDB............................ 383
6.4.4 Microsoft Azure Programming SUpport. ...............ooiiiiiinneeennnnn.. 384
Emerging Cloud Software Environments..................cooiiiiiiiiiian.. 387
6.5.1 Open Source Eucalyptus and Nimbus. . ..., 387
6.5.2 OpenNebula, Sector/Sphere, and OpenStack............. ..., 389
6.5.3 Manjrasoft Aneka Cloud and Appliances. . ..........uuuieieeiiinneeeennnnn. 393
Bibliographic Notes and Homework Problems................................ 399
ACKNOWIEAEEMENt. . . ..ottt 399
References. ... ... 399

Homework Problems. .. ... ... 405



xii Contents

PART 3 GRIDS, P2P, AND THE FUTURE INTERNET 413

CHAPTER 7

7.1

7.2

7.3

1.4

1.5

1.6

CHAPTER 8

8.1

8.2

Grid Computing Systems and Resource Management........................ 415
SUMMATY . . ettt e et e e e e 416
Grid Architecture and Service Modeling. ............. ..., 416
7.1.1 Grid History and Service Families......... ... ... i i, 416
7.1.2 CPU Scavenging and Virtual Supercomputers. . ..........oveveeiuunnnneeennn. 419
7.1.3 Open Grid Services Architecture (OGSA). ...ttt i 422
7.1.4 Data-Intensive Grid Service Models. ........... ..ot 425
Grid Projects and Grid Systems Built........ ... .. ... . L 427
7.2.1 National Grids and International Projects........... ... .. .. 428
7.2.2 NSF TeraGrid in the United States. ...ttt 430
7.2.3 DataGrid in the European Union. ......... ...t ieiiiineeeinneneennnnn. 431
7.2.4 The ChinaGrid Design EXperiences. .. .......couuueiineeineeinnennnnennn. 434
Grid Resource Management and Brokering.....................cooiiiiii... 435
7.3.1 Resource Management and Job Scheduling........................iia 435
7.3.2 Grid Resource Monitoring with CGSP...... ... ... .. .. i, 437
7.3.3 Service Accounting and Economy Model. ........... ..., 439
7.3.4 Resource Brokering with Gridbus........ ... ... o i 440
Software and Middleware for Grid Computing...............ooevuiiuienn.... 443
7.4.1 Open Source Grid Middleware Packages. ..............ooiiiiiiiiiiinnn.. 444
7.4.2 The Globus Toolkit Architecture (GT4). .. ...t i 446
7.4.3 Containers and Resources/Data Management. . ..........ooveieiunnnnneeeennn. 450
7.4.4 The ChinaGrid Support Platform (CGSP). ..., 452
Grid Application Trends and Security Measures...............c.cooviiiinan... 455
7.5.1 Grid Applications and Technology Fusion............. ..., 456
7.5.2 Grid Workload and Performance Prediction................ ... ... 457
7.5.3 Trust Models for Grid Security Enforcement................................. 461
7.5.4 Authentication and Authorization Methods. .......... ..., 464
7.5.5 Grid Security Infrastructure (GSI)..........uuunun 466
Bibliographic Notes and Homework Problems..................... ... ... .. 470
ACKNOWIEdEMENtS. . . ..ot e 471
References. .. ... 471
Homework Problems. ...... ... i 473
Peer-to-Peer Computing and Overlay Networks...............ccccoviivinintn, 479
SUMIMATY . . ¢ oot et 480
Peer-to-Peer Computing SyStemsS. ... ....ouutntit it 480
8.1.1 Basic Concepts of P2P Computing Systems. . ........oviiiiiiiuninnnnneeeen 480
8.1.2 Fundamental Challenges in P2P Computing. ............coiiiiiiineeennn... 486
8.1.3 Taxonomy of P2P Network Systems. ....... ...t 490
P2P Overlay Networks and Properties............. ... ... i 492

8.2.1 Unstructured P2P Overlay Networks. ..., 492



8.3

84

8.5

8.6

CHAPTER 9

9.1

9.2

9.3

9.4

Contents xiii

8.2.2 Distributed Hash Tables (DHTS). . ....oouiiiii it 496
8.2.3 Structured P2P Overlay Networks. ... .....oouuuiiet i 498
8.2.4 Hierarchically Structured Overlay Networks. ......... ... ..ot 501
Routing, Proximity, and Fault Tolerance....................ooiiiiiiiiin.. 505
8.3.1 Routing in P2P Overlay Networks. ... 505
8.3.2 Network Proximity in P2P Overlays........ ..o 507
8.3.3 Fault Tolerance and Failure Recovery........ ... ..., 509
8.3.4 Churn Resilience against Failures. ........... .ot 512
Trust, Reputation, and Security Management...............coovvivieneanen... 514
8.4.1 Peer Trust and Reputation SyStems. . ...........ouuuutiieniiieennnneennnnnn 514
8.4.2 Trust Overlay and DHT Implementation. . .............ooiuiiununnnnnnneen. 517
8.4.3 PowerTrust: A Scalable Reputation System..............oiiiiiiiiiienen. 520
8.4.4 Securing Overlays to Prevent DDoS Attacks. ..., 522
P2P File Sharing and Copyright Protection...............ccoviiiii ... 523
8.5.1 Fast Search, Replica, and ConsiStency . .......oouuuneteinneeiineeennnnnenn. 524
8.5.2 P2P Content Delivery Networks. ..........ooo i i i 529
8.5.3 Copyright Protection Issues and SOIUtions. . ............uuuiiiiiennn. 533
8.5.4 Collusive Piracy Prevention in P2P Networks........... ... ..o iiiiiio.. 535
Bibliographic Notes and Homework Problems................................ 538
ACKNOWIEdZeMENtS . . . ... o ettt e 538
References. ... ... 539
Homework Problems. ....... ... i 541
Ubiquitous Clouds and the Internet of Things.............ccooiiiiiiina.. 545
SUMMATY .« ettt e et e e e e e e 546
Cloud Trends in Supporting Ubiquitous Computing................c..oovuena... 546
9.1.1 Use of Clouds for HPC/HTC and Ubiquitous Computing. .............c........ 546
9.1.2 Large-Scale Private Clouds at NASA and CERN.............. ... ... ... 552
9.1.3 Cloud Mashups for Agility and Scalability............... .. ... .. ... 555
9.1.4 Cloudlets for Mobile Cloud Computing. . . ........uuuuuuuneinnnn. 558
Performance of Distributed Systems and the Cloud............................ 561
9.2.1 Review of Science and Research Clouds..................... .. ..o o 562
9.2.2 Data-Intensive Scalable Computing (DISC)....... ... .. 566
9.2.3 Performance Metrics for HPC/HTC Systems. ..........oviiiiiiinnneennnn.. 568
9.2.4 Quality of Service in Cloud Computing. .............oiiiiiieniiinee.... 572
9.2.5 Benchmarking MPI, Azure, EC2, MapReduce, and Hadoop.................... 574
Enabling Technologies for the Internet of Things.................... ... ... .. 576
9.3.1 The Internet of Things for Ubiquitous Computing. ...........ccvveuuurunnnnnnn. 576
9.3.2 Radio-Frequency Identification (RFID)....... ... ..., 580
9.3.3 Sensor Networks and ZigBee Technology.............ccooiiiiiiiiiiinnn.. 582
9.3.4 Global Positioning System (GPS)........ ..o i il 587
Innovative Applications of the Internet of Things.............................. 590

9.4.1 Applications of the Internet of Things............... ... .. ... .. 591



Xiv

Contents
9.4.2 Retailing and Supply-Chain Management. ............ ..., 591
9.4.3 Smart Power Grid and Smart Buildings......... ... ... .o i, 594
9.4.4 Cyber-Physical System (CPS)....... ... 595
9.5 Online Social and Professional Networking..................cooooiiiiiaon... 597
9.5.1 Online Social Networking Characteristics. .................. ..., 597
9.5.2 Graph-Theoretic Analysis of Social Networks...............cooiiiiiiiiina.. 600
9.5.3 Communities and Applications of Social Networks.............. ... ..ot 603
9.5.4 Facebook: The World’s Largest Social Network........... ..., 608
9.5.5 Twitter for Microblogging, News, and Alert Services. ..............ccovueeen... 611
9.6 Bibliographic Notes and Homework Problems..................... ... .... 614
AcCKkNOWIedgements. . .. ......ouiu i e 614
References. . . ... 614
Homework Problems. . ...... ... 618



Preface

ABOUT THE BOOK

Over the past three decades, parallel processing and distributed computing have emerged as a well-
developed field in computer science and information technology. Many universities and colleges are
now offering standard courses in this field. However, the instructors and students are still in search of
a comprehensive textbook that integrates computing theories and information technologies with the
design, programming, and application of distributed systems. This book is designed to meet these
demands. The book can be also used as a major reference for professionals working in this field.

The book addresses the latest advances in hardware and software, system architecture, new program-
ming paradigms, and ecosystems emphasizing both speed performance and energy efficiency. These lat-
est developments explain how to create high-performance clusters, scalable networks, automated data
centers, and high-throughput cloud/grid systems. We also cover programming, and the use of distributed
or cloud systems in innovative Internet applications. The book aims to transform traditional multiproces-
sors and multi-computer clusters into web-scale grids, clouds, and P2P networks for ubiquitous use in
the future Internet, including large-scale social networks and the Internet of things that are emerging
rapidly in recent years.

A GLANCE AT THE CONTENTS

We have included many milestone developments in a single volume. We present the contributions
not only from our own research groups but also from leading research peers in the U.S., China, and
Australia. Collectively, this group of authors and contributors summarize the progress that has been
made in recent years, ranging from parallel processing to distributed computing and the future
Internet.

Starting with an overview of modern distributed models, the text exposes the design principles,
system architectures and innovative applications of parallel, distributed, and cloud computing sys-
tems. This book attempts to integrate parallel processing technologies with the network-based dis-
tributed systems. The book emphasizes scalable physical systems and virtualized data centers and
cloud systems for research, e-commerce, social networking, supercomputing, and more applications,
using concrete examples from open-source and commercial vendors.

The nine chapters are divided into three Parts: Part 1 covers system models and enabling tech-
nologies, including clustering and virtualization. Part 2 presents data center design, cloud computing
platforms, service-oriented architectures, and distributed programming paradigms and software sup-
port. In Part 3, we study computational/data grids, peer-to-peer networks, ubiquitous clouds, the
Internet of Things, and social networks.

Cloud computing material is addressed in six chapters (1, 3, 4, 5, 6, 9). Cloud systems presented
include the public clouds: Google AppEngine, Amazon Web Service, Facebook, SalesForce.com,
and many others. These cloud systems play an increasingly important role in upgrading the web ser-
vices and Internet applications. Computer architects, software engineers, and system designers may
want to explore the cloud technology to build the future computers and Internet-based systems.

XV



Xvi Preface

KEY FEATURES

* Coverage of modern distributed computing technology including computer clusters,
virtualization, service-oriented architecture, massively parallel processors, peer-to-peer systems,
cloud computing, social networks, and the Internet of Things.
* Major emphases of the book lie in exploiting the ubiquity, agility, efficiency, scalability,
availability, and programmability of parallel, distributed, and cloud computing systems.
* Latest developments in Hardware, Networks, and System Architecture:
Multi-core CPUs and Many-Core GPUs (Intel, Nvidia, AMD)
Virtual Machines and Virtual Clusters (CoD, Violin, Amazon VPC)
Top-500 Architectures (Tianbhe-1A, Jaguar, Roadrunner, etc.)
Google AppEngine, Amazon AWS, Microsoft Azure, IBM BlueCloud
TeraGrid, DataGrid, ChinaGrid, BOINIC, Grid5000 and FutureGrid
Chord, Napster, BiTorrent, KaZaA, PPlive, JXTA, and .NET
RFID, Sensor Networks, GPS, CPS, and the Internet of Things
Facebook, Force.Com, Twitter, SGI Cylone, Nebula, and GoGrid

* Recent advances in paradigms, programming, software and ecosystems:
MapReduce, Dryad, Hadoop, MPI, Twister, BigTable, DISC, etc
Cloud Service and Trust Models (SaaS, IaaS, PaaS, and PowerTrust)
Programming Languages and Protocols (Python, SOAP, UDDI, Pig Latin)
Virtualization Software (XEN, KVM, VMWare ESX, etc.)
Cloud OS and Meshups (Eucalyptus, Nimbus, OpenNebula, vShere/4, etc.)
Service-Oriented Architecture (REST, WS, Web 2.0, OGSA, etc.)
Distributed Operating Systems (DCE, Amoeba, and MOSIX)
Middleware and Software Libraries (LSF, Globus, Hadoop, Aneka)

* Over 100 examples are illustrated with 300 figures, designed to meet the need of students taking
a distributed system course. Each chapter includes exercises and further reading.

* Included are case studies from the leading distributed computing vendors: Amazon, Google,
Microsoft, IBM, HP, Sun, Silicon Graphics, Rackspace, SalesForce.com, netSuite, Enomaly, and
many more.

READERSHIP AND SUGGESTIONS TO INSTRUCTORS/STUDENTS

The readership includes students taking a distributed systems or distributed computing class. Profes-
sional system designers and engineers may find this book useful as a reference to the latest distribu-
ted system technologies including clusters, grids, clouds, and the Internet of Things. The book gives
a balanced coverage of all of these topics, looking into the future of Internet and IT evolutions.

The nine chapters are logically sequenced for use in an one-semester (45-hour lectures) course
for seniors and graduate-level students. For use in a tri-semester system, Chapters 1, 2, 3, 4, 6, and 9
are suitable for a 10-week course (30-hour lectures). In addition to solving homework problems, the
students are advised to conduct some parallel and distributed programming experiments on available
clusters, grids, P2P, and cloud platforms. Sample projects and a solutions manual will be made avail-
able to proven instructors from Morgan Kaufmann, Publishers.
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Foreword

Richard Feynman, in his wonderful autobiography Surely You're Joking, Mr. Feynman, recounts how
at Los Alamos in 1944 he was responsible for supervising the human computers who performed the
long and tedious calculations required by the Manhattan Project. Using the mechanical calculators that
were then the state of the art, the best human computer could achieve only one addition or multiplica-
tion every few seconds. Feynman and his team thus developed methods for decomposing problems
into smaller tasks that could be performed simultaneously by different people (they passed cards with
intermediate results between people operating adders, multipliers, collators, and sorters); for running
multiple computations at once in the same computing complex (they used different color cards); for
prioritizing a more important computation (they eliminated cards of other colors); and for detecting
and recovering efficiently from errors (relevant cards, and their descendants, were removed, and com-
putations restarted).

Seventy years later, computer architects face similar challenges—and have adopted similar solu-
tions. Individual computing devices are far faster, but physical constraints still limit their speed.
Thus, today’s computing landscape is characterized by pervasive parallelism. Individual processors
incorporate pipelining, parallel instructions, speculative execution, and multithreading. Essentially
every computer system, from the humblest desktop to the most powerful supercomputer, incorpo-
rates multiple processors. Designers of future exascale supercomputers, to be capable of 10'® opera-
tions per second, tell us that these computers will need to support 107 concurrent operations.

Parallelism is fundamentally about communication and coordination, and those two activities have
also been transformed over the past seventy years by dramatic technological change. Light is no fas-
ter, at 8 inches or 20 centimeters per nanosecond in fiber, than in Feynman’s time; one can never
expect to send a message in less than 50 milliseconds from Los Angeles to Auckland. But the rate at
which data can be transmitted has changed dramatically, from a few characters per second in 1910
(early telegraphs) to thousands of characters per second in 1960 (ARPANET) to more than 10 billion
characters per second over optical fibers in 2010.

Quasi-ubiquitous high-speed communications not only allows call centers to be relocated to India,
it also allows computation to be moved to centralized facilities that achieve massive economies of
scale, and permits enormous quantities of data to be collected and organized to support decision mak-
ing by people worldwide. Thus, government agencies, research laboratories, and companies who need
to simulate complex phenomena create and operate enormous supercomputers with hundreds of
thousands of processors. Similarly, companies such as Google, Facebook, and Microsoft who need
to process large quantities of data operate numerous massive “cloud” data centers that may each
occupy tens of thousands of square feet and contain tens or hundreds of thousands of computers. Like
Feynman’s Los Alamos team, these computing complexes provide computing as a service for many
people, and must juggle many computations performed for different purposes.

Massive parallelism, ultra-fast communication, and massive centralization are all fundamental to
human decision making today. The computations that are used to forecast tomorrow’s weather,
index the web, recommend movies, suggest social connections, predict the future state of the stock
market, or provide any one of a multitude of other desirable information products are typically dis-
tributed over thousands of processors and depend on data collected from sometimes millions of
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sources worldwide. Indeed, little of the modern world could function as it does without parallel and
distributed computing.

In this pervasively parallel and distributed world, an understanding of distributed computing is
surely an essential part of any undergraduate education in computer science. (Indeed, I would
argue, an understanding of these topics should be an essential part of any undergraduate education.
But I leave that argument for another time.) The most complex computer systems today are no
longer individual microprocessors, but entire data centers. The most complex computer programs
written today are those that manage or run on data-center-scale systems. A student who graduates
with a degree in computer science and does not understand how these systems and programs are
constructed is profoundly unprepared to engage productively in the modern workforce.

Hwang, Fox, and Dongarra’s text is thus especially timely. In its three sections, it covers pro-
gressively the hardware and software architectures that underpin modern massively parallel compu-
ter systems; the concepts and technologies that enable cloud and distributed computing; and
advanced topics in distributed computing, including grid, peer-to-peer, and the Internet of Things.
In each area, the text takes a systems approach, describing not only concepts but also representative
technologies and realistic large-scale distributed computing deployments. Computing is as much an
engineering discipline as a science, and these descriptions of real systems will both prepare students
to use those systems and help them understand how other architects have maneuvered the
constraints associated with large-scale distributed system design.

The text also addresses some of the more challenging issues facing computer science researchers
today. To name just two, computers have emerged as a major consumer of electricity, accounting for
several percent of all electricity used in the US. (In Japan, it is ironic that following the 2011 tsunami,
the large supercomputers that may help prepare for future natural disasters must often be turned off
to conserve power.) And, the fact that 98% of the roughly 10 billion processors sold each year are
for embedded devices, and that these embedded devices are increasingly communication-enabled,
introduces the opportunity and challenge of an “Internet of Things” that will be vastly larger, more
complex, and more capable than today’s Internet of People.

I hope that the appearance of this book will stimulate more teaching of distributed computing in
universities and colleges—and not just as an optional topic, as is too often the case, but as a core
element of the undergraduate curriculum. I hope also that others outside universities will take this
opportunity to learn about distributed computing, and more broadly about what computing looks
like on the cutting edge: sometimes messy; often complex; but above all tremendously exciting.

Ian Foster
Jackson Hole, Wyoming
August, 2011



PART

Systems Modeling, Clustering,
and Virtualization

The first three chapters cover systems models and review two enabling technologies. We model
distributed systems and cloud platforms in Chapter 1. The clustering technology is presented in
Chapter 2, and virtualization technology in Chapter 3. These two technologies enable distributed
and cloud computing. The system models include computer clusters, computing grid, P2P networks,
and cloud computing platform. System clustering is supported by hardware, software, and middle-
ware advances. Virtualization creates virtual machines, virtualized clusters, automation of datacen-
ters, and building of elastic cloud platforms.

CHAPTER 1: DISTRIBUTED SYSTEM MODELS AND
ENABLING TECHNOLOGIES

This introductory chapter assesses the evolutional changes in computing and IT trends in the past
30 years. We study both high-performance computing (HPC) for scientific computing and high-
throughput computing (HTC) systems for business computing. We examine clusters/MPP, grids,
P2P networks, and Internet clouds. These systems are distinguished by their platform architectures,
OS platforms, processing algorithms, communication protocols, security demands, and service models
applied. The study emphasizes the scalability, performance, availability, security, energy-efficiency,
workload outsourcing, data center protection, and so on.

This chapter is authored by Kai Hwang with partial contributions by Geoffrey Fox (Section 1.4.1)
and Albert Zomaya (Section 1.5.4), and assisted by Nikzad Babaii Rizvandi, Young-Choon Lee,
Xiaosong Lou, and Lizhong Chen. The final manuscript was edited by Jack Dongarra.

CHAPTER 2: COMPUTER CLUSTERS FOR SCALABLE
PARALLEL COMPUTING

Clustering enables the construction of scalable parallel and distributed systems for both HPC and
HTC applications. Today’s cluster nodes are built with either physical servers or virtual machines.
In this chapter, we study clustered computing systems and massively parallel processors. We focus
on design principles and assess the hardware, software, and middleware support needed. We study
scalability, availability, programmability, single system image, job management, and fault tolerance.
We study the clustering MPP architectures in three top supercomputers reported in recent years,
namely China’s Tiahe-1A, the Cray XT5 Jaguar, and IBM’s RoadRunner.
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This chapter is coauthored by Kai Hwang and Jack Dongarra with partial contributions by
Rajkumar Buyya and Ninghui Sun. Special technical assistances are from Zhiwei Xu, Zhou Zhao,
Xiaosong Lou, and Lizhong Chen.

CHAPTER 3: VIRTUAL MACHINES AND VIRTUALIZATION OF CLUSTERS
AND DATA CENTERS

Virtualization technology was primarily designed for the sharing of expensive hardware resources
by multiplexing virtual machines (VM) on the same set of hardware hosts. The surge of interest in
installing virtual machines has widened the scope of system applications and upgraded computer
performance and efficiency in recent years. We study VMs, live migration of VMs, virtual cluster
construction, resource provisioning, virtual configuration adaptation, and the design of virtualized
data centers for cloud computing applications. We emphasize the roles of using virtual clusters and
virtualized resource management for building dynamic grids and cloud platforms.

This chapter is coauthored by Zhibin Yu and Kai Hwang with technical assistance from Hai Jin,
Xiaofei Liao, Chongyuan Qin, Lizhong Chen, and Zhou Zhao.
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SUMMARY

This chapter presents the evolutionary changes that have occurred in parallel, distributed, and cloud
computing over the past 30 years, driven by applications with variable workloads and large data
sets. We study both high-performance and high-throughput computing systems in parallel computers
appearing as computer clusters, service-oriented architecture, computational grids, peer-to-peer net-
works, Internet clouds, and the Internet of Things. These systems are distinguished by their hard-
ware architectures, OS platforms, processing algorithms, communication protocols, and service
models applied. We also introduce essential issues on the scalability, performance, availability,
security, and energy efficiency in distributed systems.

SCALABLE COMPUTING OVER THE INTERNET

Over the past 60 years, computing technology has undergone a series of platform and environment
changes. In this section, we assess evolutionary changes in machine architecture, operating system
platform, network connectivity, and application workload. Instead of using a centralized computer
to solve computational problems, a parallel and distributed computing system uses multiple
computers to solve large-scale problems over the Internet. Thus, distributed computing becomes
data-intensive and network-centric. This section identifies the applications of modern computer
systems that practice parallel and distributed computing. These large-scale Internet applications
have significantly enhanced the quality of life and information services in society today.

The Age of Internet Computing

Billions of people use the Internet every day. As a result, supercomputer sites and large data centers
must provide high-performance computing services to huge numbers of Internet users concurrently.
Because of this high demand, the Linpack Benchmark for high-performance computing (HPC)
applications is no longer optimal for measuring system performance. The emergence of computing
clouds instead demands high-throughput computing (HTC) systems built with parallel and distribu-
ted computing technologies [5,6,19,25]. We have to upgrade data centers using fast servers, storage
systems, and high-bandwidth networks. The purpose is to advance network-based computing and
web services with the emerging new technologies.

1.1.1.1 The Platform Evolution
Computer technology has gone through five generations of development, with each generation lasting
from 10 to 20 years. Successive generations are overlapped in about 10 years. For instance, from
1950 to 1970, a handful of mainframes, including the IBM 360 and CDC 6400, were built to satisfy
the demands of large businesses and government organizations. From 1960 to 1980, lower-cost mini-
computers such as the DEC PDP 11 and VAX Series became popular among small businesses and on
college campuses.

From 1970 to 1990, we saw widespread use of personal computers built with VLSI microproces-
sors. From 1980 to 2000, massive numbers of portable computers and pervasive devices appeared in
both wired and wireless applications. Since 1990, the use of both HPC and HTC systems hidden in
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FIGURE 1.1

Evolutionary trend toward parallel, distributed, and cloud computing with clusters, MPPs, P2P networks, grids,
clouds, web services, and the Internet of Things.

clusters, grids, or Internet clouds has proliferated. These systems are employed by both consumers
and high-end web-scale computing and information services.

The general computing trend is to leverage shared web resources and massive amounts of data
over the Internet. Figure 1.1 illustrates the evolution of HPC and HTC systems. On the HPC side,
supercomputers (massively parallel processors or MPPs) are gradually replaced by clusters of
cooperative computers out of a desire to share computing resources. The cluster is often a collection
of homogeneous compute nodes that are physically connected in close range to one another. We will
discuss clusters, MPPs, and grid systems in more detail in Chapters 2 and 7.

On the HTC side, peer-to-peer (P2P) networks are formed for distributed file sharing and
content delivery applications. A P2P system is built over many client machines (a concept we
will discuss further in Chapter 5). Peer machines are globally distributed in nature. P2P, cloud
computing, and web service platforms are more focused on HTC applications than on HPC appli-
cations. Clustering and P2P technologies lead to the development of computational grids or data
grids.

1.1.1.2 High-Performance Computing

For many years, HPC systems emphasize the raw speed performance. The speed of HPC systems
has increased from Gflops in the early 1990s to now Pflops in 2010. This improvement was driven
mainly by the demands from scientific, engineering, and manufacturing communities. For example,
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the Top 500 most powerful computer systems in the world are measured by floating-point speed in
Linpack benchmark results. However, the number of supercomputer users is limited to less than
10% of all computer users. Today, the majority of computer users are using desktop computers or
large servers when they conduct Internet searches and market-driven computing tasks.

1.1.1.3 High-Throughput Computing

The development of market-oriented high-end computing systems is undergoing a strategic change
from an HPC paradigm to an HTC paradigm. This HTC paradigm pays more attention to high-flux
computing. The main application for high-flux computing is in Internet searches and web services
by millions or more users simultaneously. The performance goal thus shifts to measure high
throughput or the number of tasks completed per unit of time. HTC technology needs to not only
improve in terms of batch processing speed, but also address the acute problems of cost, energy
savings, security, and reliability at many data and enterprise computing centers. This book will
address both HPC and HTC systems to meet the demands of all computer users.

1.1.1.4 Three New Computing Paradigms

As Figure 1.1 illustrates, with the introduction of SOA, Web 2.0 services become available. Advances
in virtualization make it possible to see the growth of Internet clouds as a new computing paradigm.
The maturity of radio-frequency identification (RFID), Global Positioning System (GPS), and sensor
technologies has triggered the development of the Internet of Things (IoT). These new paradigms
are only briefly introduced here. We will study the details of SOA in Chapter 5; virtualization in
Chapter 3; cloud computing in Chapters 4, 6, and 9; and the IoT along with cyber-physical systems
(CPS) in Chapter 9.

When the Internet was introduced in 1969, Leonard Klienrock of UCLA declared: “As of now,
computer networks are still in their infancy, but as they grow up and become sophisticated, we will
probably see the spread of computer utilities, which like present electric and telephone utilities,
will service individual homes and offices across the country.” Many people have redefined the term
“computer” since that time. In 1984, John Gage of Sun Microsystems created the slogan, “The net-
work is the computer.” In 2008, David Patterson of UC Berkeley said, “The data center is the compu-
ter. There are dramatic differences between developing software for millions to use as a service
versus distributing software to run on their PCs.” Recently, Rajkumar Buyya of Melbourne University
simply said: “The cloud is the computer.”

This book covers clusters, MPPs, P2P networks, grids, clouds, web services, social networks,
and the IoT. In fact, the differences among clusters, grids, P2P systems, and clouds may blur in the
future. Some people view clouds as grids or clusters with modest changes through virtualization.
Others feel the changes could be major, since clouds are anticipated to process huge data sets gener-
ated by the traditional Internet, social networks, and the future IoT. In subsequent chapters, the
distinctions and dependencies among all distributed and cloud systems models will become clearer
and more transparent.

1.1.1.5 Computing Paradigm Distinctions

The high-technology community has argued for many years about the precise definitions of
centralized computing, parallel computing, distributed computing, and cloud computing. In general,
distributed computing is the opposite of centralized computing. The field of parallel computing



1.1 Scalable Computing over the Internet 7

overlaps with distributed computing to a great extent, and cloud computing overlaps with distributed,
centralized, and parallel computing. The following list defines these terms more clearly; their architec-
tural and operational differences are discussed further in subsequent chapters.

* Centralized computing This is a computing paradigm by which all computer resources are
centralized in one physical system. All resources (processors, memory, and storage) are fully
shared and tightly coupled within one integrated OS. Many data centers and supercomputers are
centralized systems, but they are used in parallel, distributed, and cloud computing applications
[18,26].

* Parallel computing In parallel computing, all processors are either tightly coupled with
centralized shared memory or loosely coupled with distributed memory. Some authors refer to
this discipline as parallel processing [15,27]. Interprocessor communication is accomplished
through shared memory or via message passing. A computer system capable of parallel
computing is commonly known as a parallel computer [28]. Programs running in a parallel
computer are called parallel programs. The process of writing parallel programs is often
referred to as parallel programming [32].

* Distributed computing This is a field of computer science/engineering that studies distributed
systems. A distributed system [8,13,37,46] consists of multiple autonomous computers, each
having its own private memory, communicating through a computer network. Information
exchange in a distributed system is accomplished through message passing. A computer
program that runs in a distributed system is known as a distributed program. The process of
writing distributed programs is referred to as distributed programming.

* Cloud computing An Internet cloud of resources can be either a centralized or a distributed
computing system. The cloud applies parallel or distributed computing, or both. Clouds can be
built with physical or virtualized resources over large data centers that are centralized or
distributed. Some authors consider cloud computing to be a form of utility computing or service
computing [11,19].

As an alternative to the preceding terms, some in the high-tech community prefer the term con-
current computing or concurrent programming. These terms typically refer to the union of parallel
computing and distributing computing, although biased practitioners may interpret them differently.
Ubiquitous computing refers to computing with pervasive devices at any place and time using wired
or wireless communication. The Internet of Things (I0T) is a networked connection of everyday
objects including computers, sensors, humans, etc. The [oT is supported by Internet clouds to
achieve ubiquitous computing with any object at any place and time. Finally, the term Internet
computing is even broader and covers all computing paradigms over the Internet. This book covers
all the aforementioned computing paradigms, placing more emphasis on distributed and cloud com-
puting and their working systems, including the clusters, grids, P2P, and cloud systems.

1.1.1.6 Distributed System Families

Since the mid-1990s, technologies for building P2P networks and networks of clusters have been
consolidated into many national projects designed to establish wide area computing infrastructures,
known as computational grids or data grids. Recently, we have witnessed a surge in interest in
exploring Internet cloud resources for data-intensive applications. Internet clouds are the result of
moving desktop computing to service-oriented computing using server clusters and huge databases
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at data centers. This chapter introduces the basics of various parallel and distributed families. Grids
and clouds are disparity systems that place great emphasis on resource sharing in hardware,
software, and data sets.

Design theory, enabling technologies, and case studies of these massively distributed systems
are also covered in this book. Massively distributed systems are intended to exploit a high degree
of parallelism or concurrency among many machines. In October 2010, the highest performing
cluster machine was built in China with 86016 CPU processor cores and 3,211,264 GPU cores
in a Tianhe-1A system. The largest computational grid connects up to hundreds of server clus-
ters. A typical P2P network may involve millions of client machines working simultaneously.
Experimental cloud computing clusters have been built with thousands of processing nodes. We
devote the material in Chapters 4 through 6 to cloud computing. Case studies of HTC systems
will be examined in Chapters 4 and 9, including data centers, social networks, and virtualized
cloud platforms

In the future, both HPC and HTC systems will demand multicore or many-core processors that
can handle large numbers of computing threads per core. Both HPC and HTC systems emphasize
parallelism and distributed computing. Future HPC and HTC systems must be able to satisfy this
huge demand in computing power in terms of throughput, efficiency, scalability, and reliability. The
system efficiency is decided by speed, programming, and energy factors (i.e., throughput per watt
of energy consumed). Meeting these goals requires to yield the following design objectives:

* Efficiency measures the utilization rate of resources in an execution model by exploiting
massive parallelism in HPC. For HTC, efficiency is more closely related to job throughput, data
access, storage, and power efficiency.

* Dependability measures the reliability and self-management from the chip to the system and
application levels. The purpose is to provide high-throughput service with Quality of Service
(QoS) assurance, even under failure conditions.

* Adaptation in the programming model measures the ability to support billions of job requests
over massive data sets and virtualized cloud resources under various workload and service
models.

* Flexibility in application deployment measures the ability of distributed systems to run well in
both HPC (science and engineering) and HTC (business) applications.

Scalable Computing Trends and New Paradigms

Several predictable trends in technology are known to drive computing applications. In fact,
designers and programmers want to predict the technological capabilities of future systems. For
instance, Jim Gray’s paper, “Rules of Thumb in Data Engineering,” is an excellent example of how
technology affects applications and vice versa. In addition, Moore’s law indicates that processor
speed doubles every 18 months. Although Moore’s law has been proven valid over the last
30 years, it is difficult to say whether it will continue to be true in the future.

Gilder’s law indicates that network bandwidth has doubled each year in the past. Will that trend
continue in the future? The tremendous price/performance ratio of commodity hardware was driven
by the desktop, notebook, and tablet computing markets. This has also driven the adoption and use
of commodity technologies in large-scale computing. We will discuss the future of these computing
trends in more detail in subsequent chapters. For now, it’s important to understand how distributed
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systems emphasize both resource distribution and concurrency or high degree of parallelism (DoP).
Let’s review the degrees of parallelism before we discuss the special requirements for distributed
computing.

1.1.2.1 Degrees of Parallelism
Fifty years ago, when hardware was bulky and expensive, most computers were designed in a
bit-serial fashion. In this scenario, bit-level parallelism (BLP) converts bit-serial processing to
word-level processing gradually. Over the years, users graduated from 4-bit microprocessors to 8-,
16-, 32-, and 64-bit CPUs. This led us to the next wave of improvement, known as instruction-level
parallelism (ILP), in which the processor executes multiple instructions simultaneously rather than
only one instruction at a time. For the past 30 years, we have practiced ILP through pipelining, super-
scalar computing, VLIW (very long instruction word) architectures, and multithreading. ILP requires
branch prediction, dynamic scheduling, speculation, and compiler support to work efficiently.
Data-level parallelism (DLP) was made popular through SIMD (single instruction, multiple
data) and vector machines using vector or array types of instructions. DLP requires even more hard-
ware support and compiler assistance to work properly. Ever since the introduction of multicore
processors and chip multiprocessors (CMPs), we have been exploring task-level parallelism (TLP).
A modern processor explores all of the aforementioned parallelism types. In fact, BLP, ILP, and
DLP are well supported by advances in hardware and compilers. However, TLP is far from being
very successful due to difficulty in programming and compilation of code for efficient execution on
multicore CMPs. As we move from parallel processing to distributed processing, we will see an
increase in computing granularity to job-level parallelism (JLP). It is fair to say that coarse-grain
parallelism is built on top of fine-grain parallelism.

1.1.2.2 Innovative Applications

Both HPC and HTC systems desire transparency in many application aspects. For example, data
access, resource allocation, process location, concurrency in execution, job replication, and failure
recovery should be made transparent to both users and system management. Table 1.1 highlights a
few key applications that have driven the development of parallel and distributed systems over the

Table 1.1 Applications of High-Performance and High-Throughput Systems

Domain Specific Applications
Science and engineering Scientific simulations, genomic analysis, etc.

Earthquake prediction, global warming, weather forecasting, etc.
Business, education, services Telecommunication, content delivery, e-commerce, etc.
industry, and health care Banking, stock exchanges, transaction processing, etc.

Air traffic control, electric power grids, distance education, etc.

Health care, hospital automation, telemedicine, etc.
Internet and web services, Internet search, data centers, decision-making systems, etc.
and government applications Traffic monitoring, worm containment, cyber security, etc.

Digital government, online tax return processing, social networking, etc.
Mission-critical applications Military command and control, intelligent systems, crisis management, etc.
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years. These applications spread across many important domains in science, engineering, business,
education, health care, traffic control, Internet and web services, military, and government
applications.

Almost all applications demand computing economics, web-scale data collection, system
reliability, and scalable performance. For example, distributed transaction processing is often prac-
ticed in the banking and finance industry. Transactions represent 90 percent of the existing market for
reliable banking systems. Users must deal with multiple database servers in distributed transactions.
Maintaining the consistency of replicated transaction records is crucial in real-time banking services.
Other complications include lack of software support, network saturation, and security threats in these
applications. We will study applications and software support in more detail in subsequent chapters.

1.1.2.3 The Trend toward Utility Computing

Figure 1.2 identifies major computing paradigms to facilitate the study of distributed systems and
their applications. These paradigms share some common characteristics. First, they are all ubiquitous
in daily life. Reliability and scalability are two major design objectives in these computing models.
Second, they are aimed at autonomic operations that can be self-organized to support dynamic dis-
covery. Finally, these paradigms are composable with QoS and SLAs (service-level agreements).
These paradigms and their attributes realize the computer utility vision.

Utility computing focuses on a business model in which customers receive computing resources
from a paid service provider. All grid/cloud platforms are regarded as utility service providers.
However, cloud computing offers a broader concept than utility computing. Distributed cloud
applications run on any available servers in some edge networks. Major technological challenges
include all aspects of computer science and engineering. For example, users demand new network-
efficient processors, scalable memory and storage schemes, distributed OSes, middleware for
machine virtualization, new programming models, effective resource management, and application

Web services
Data centers
Utility computing
Service computing
Grid computing
P2P computing

HTC in
business
and HPC in
scientific
applications

Technology
convergence

Cloud computing

Computing paradigms

B Ubiquitous: Reliable and scalable
B Autonomic: Dynamic and discovery
B Composable: QoS, SLA, etc.

Attributes/
capabilities

FIGURE 1.2

The vision of computer utilities in modern distributed computing systems.
(Modified from presentation slide by Raj Buyya, 2010)
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program development. These hardware and software supports are necessary to build distributed
systems that explore massive parallelism at all processing levels.

1.1.2.4 The Hype Cycle of New Technologies

Any new and emerging computing and information technology may go through a hype cycle, as
illustrated in Figure 1.3. This cycle shows the expectations for the technology at five different
stages. The expectations rise sharply from the trigger period to a high peak of inflated expectations.
Through a short period of disillusionment, the expectation may drop to a valley and then increase
steadily over a long enlightenment period to a plateau of productivity. The number of years for an
emerging technology to reach a certain stage is marked by special symbols. The hollow circles
indicate technologies that will reach mainstream adoption in two years. The gray circles represent
technologies that will reach mainstream adoption in two to five years. The solid circles represent
those that require five to 10 years to reach mainstream adoption, and the triangles denote those that
require more than 10 years. The crossed circles represent technologies that will become obsolete
before they reach the plateau.

The hype cycle in Figure 1.3 shows the technology status as of August 2010. For example, at
that time consumer-generated media was at the disillusionment stage, and it was predicted to take
less than two years to reach its plateau of adoption. Internet micropayment systems were forecast to
take two to five years to move from the enlightenment stage to maturity. It was believed that 3D
printing would take five to 10 years to move from the rising expectation stage to mainstream adop-
tion, and mesh network sensors were expected to take more than 10 years to move from the inflated
expectation stage to a plateau of mainstream adoption.

Also as shown in Figure 1.3, the cloud technology had just crossed the peak of the expectation
stage in 2010, and it was expected to take two to five more years to reach the productivity stage.
However, broadband over power line technology was expected to become obsolete before leaving
the valley of disillusionment stage in 2010. Many additional technologies (denoted by dark circles
in Figure 1.3) were at their peak expectation stage in August 2010, and they were expected to take
five to 10 years to reach their plateau of success. Once a technology begins to climb the slope of
enlightenment, it may reach the productivity plateau within two to five years. Among these promis-
ing technologies are the clouds, biometric authentication, interactive TV, speech recognition, predic-
tive analytics, and media tablets.

The Internet of Things and Cyber-Physical Systems

In this section, we will discuss two Internet development trends: the Internet of Things [48] and
cyber-physical systems. These evolutionary trends emphasize the extension of the Internet to every-
day objects. We will only cover the basics of these concepts here; we will discuss them in more
detail in Chapter 9.

1.1.3.1 The Internet of Things

The traditional Internet connects machines to machines or web pages to web pages. The concept of
the IoT was introduced in 1999 at MIT [40]. The IoT refers to the networked interconnection of
everyday objects, tools, devices, or computers. One can view the IoT as a wireless network of sen-
sors that interconnect all things in our daily life. These things can be large or small and they vary
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with respect to time and place. The idea is to tag every object using RFID or a related sensor or
electronic technology such as GPS.

With the introduction of the IPv6 protocol, 2'?® IP addresses are available to distinguish all the
objects on Earth, including all computers and pervasive devices. The IoT researchers have estimated
that every human being will be surrounded by 1,000 to 5,000 objects. The IoT needs to be designed
to track 100 trillion static or moving objects simultaneously. The IoT demands universal addressa-
bility of all of the objects or things. To reduce the complexity of identification, search, and storage,
one can set the threshold to filter out fine-grain objects. The IoT obviously extends the Internet and
is more heavily developed in Asia and European countries.

In the IoT era, all objects and devices are instrumented, interconnected, and interacted with each
other intelligently. This communication can be made between people and things or among the things
themselves. Three communication patterns co-exist: namely H2H (human-to-human), H2T (human-to-
thing), and T2T (thing-to-thing). Here things include machines such as PCs and mobile phones. The idea
here is to connect things (including human and machine objects) at any time and any place intelligently
with low cost. Any place connections include at the PC, indoor (away from PC), outdoors, and on the
move. Any time connections include daytime, night, outdoors and indoors, and on the move as well.

The dynamic connections will grow exponentially into a new dynamic network of networks,
called the Internet of Things (IoT). The IoT is still in its infancy stage of development. Many proto-
type IoTs with restricted areas of coverage are under experimentation at the time of this writing.
Cloud computing researchers expect to use the cloud and future Internet technologies to support
fast, efficient, and intelligent interactions among humans, machines, and any objects on Earth.
A smart Earth should have intelligent cities, clean water, efficient power, convenient transportation,
good food supplies, responsible banks, fast telecommunications, green IT, better schools, good
health care, abundant resources, and so on. This dream living environment may take some time to
reach fruition at different parts of the world.

1.1.3.2 Cyber-Physical Systems

A cyber-physical system (CPS) is the result of interaction between computational processes and the
physical world. A CPS integrates “cyber” (heterogeneous, asynchronous) with “physical” (concur-
rent and information-dense) objects. A CPS merges the “3C” technologies of computation, commu-
nication, and control into an intelligent closed feedback system between the physical world and the
information world, a concept which is actively explored in the United States. The IoT emphasizes
various networking connections among physical objects, while the CPS emphasizes exploration of
virtual reality (VR) applications in the physical world. We may transform how we interact with the
physical world just like the Internet transformed how we interact with the virtual world. We will
study IoT, CPS, and their relationship to cloud computing in Chapter 9.

TECHNOLOGIES FOR NETWORK-BASED SYSTEMS

With the concept of scalable computing under our belt, it’s time to explore hardware, software, and
network technologies for distributed computing system design and applications. In particular, we
will focus on viable approaches to building distributed operating systems for handling massive par-
allelism in a distributed environment.
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Multicore CPUs and Multithreading Technologies

Consider the growth of component and network technologies over the past 30 years. They are
crucial to the development of HPC and HTC systems. In Figure 1.4, processor speed is measured
in millions of instructions per second (MIPS) and network bandwidth is measured in megabits per
second (Mbps) or gigabits per second (Gbps). The unit GE refers to 1 Gbps Ethernet bandwidth.

1.2.1.1 Advances in CPU Processors

Today, advanced CPUs or microprocessor chips assume a multicore architecture with dual, quad,
six, or more processing cores. These processors exploit parallelism at ILP and TLP levels. Processor
speed growth is plotted in the upper curve in Figure 1.4 across generations of microprocessors or
CMPs. We see growth from 1 MIPS for the VAX 780 in 1978 to 1,800 MIPS for the Intel Pentium
4 in 2002, up to a 22,000 MIPS peak for the Sun Niagara 2 in 2008. As the figure shows, Moore’s
law has proven to be pretty accurate in this case. The clock rate for these processors increased from
10 MHz for the Intel 286 to 4 GHz for the Pentium 4 in 30 years.

However, the clock rate reached its limit on CMOS-based chips due to power limitations. At the
time of this writing, very few CPU chips run with a clock rate exceeding 5 GHz. In other words,
clock rate will not continue to improve unless chip technology matures. This limitation is attributed
primarily to excessive heat generation with high frequency or high voltages. The ILP is highly
exploited in modern CPU processors. ILP mechanisms include multiple-issue superscalar architecture,
dynamic branch prediction, and speculative execution, among others. These ILP techniques demand
hardware and compiler support. In addition, DLP and TLP are highly explored in graphics processing
units (GPUs) that adopt a many-core architecture with hundreds to thousands of simple cores.

1000000 1000000
—{— Processor speed
100000 4 | —®— Network bandwidth Intel Core i7 990x ]
athlon FX- —
_. 10000+ Intel Pentium 4 0 GE 2
£ s
= Intel Pentium IlI L
2 1000 . 10000 £
o Intel Pentium Pro S
[0}
L Intel Pentium g
5 109 igabi 1000 ¢
2 Motorola 68040 Gigabit ethernet - g
© 104 Motorola 68030 §
Motorola 68020 Fast ethernet L 100
1 .
LFVAX 11/780
Ether|
0.1 4 T T T T T T T T T T 10
1978 1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011
FIGURE 1.4

Improvement in processor and network technologies over 33 years.
(Courtesy of Xiaosong Lou and Lizhong Chen of University of Southern California, 2011)
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Schematic of a modern multicore CPU chip using a hierarchy of caches, where L1 cache is private to each
core, on-chip L2 cache is shared and L3 cache or DRAM Is off the chip.

Both multi-core CPU and many-core GPU processors can handle multiple instruction threads at
different magnitudes today. Figure 1.5 shows the architecture of a typical multicore processor.
Each core is essentially a processor with its own private cache (L1 cache). Multiple cores are
housed in the same chip with an L2 cache that is shared by all cores. In the future, multiple CMPs
could be built on the same CPU chip with even the L3 cache on the chip. Multicore and multi-
threaded CPUs are equipped with many high-end processors, including the Intel i7, Xeon, AMD
Opteron, Sun Niagara, IBM Power 6, and X cell processors. Each core could be also multithreaded.
For example, the Niagara II is built with eight cores with eight threads handled by each core. This
implies that the maximum ILP and TLP that can be exploited in Niagara is 64 (8 X 8 = 64). In
2011, the Intel Core i7 990x has reported 159,000 MIPS execution rate as shown in the upper-
most square in Figure 1.4.

1.2.1.2 Multicore CPU and Many-Core GPU Architectures

Multicore CPUs may increase from the tens of cores to hundreds or more in the future. But the
CPU has reached its limit in terms of exploiting massive DLP due to the aforementioned memory
wall problem. This has triggered the development of many-core GPUs with hundreds or more thin
cores. Both IA-32 and IA-64 instruction set architectures are built into commercial CPUs. Now,
x-86 processors have been extended to serve HPC and HTC systems in some high-end server
processors.

Many RISC processors have been replaced with multicore x-86 processors and many-core GPUs
in the Top 500 systems. This trend indicates that x-86 upgrades will dominate in data centers and
supercomputers. The GPU also has been applied in large clusters to build supercomputers in MPPs.
In the future, the processor industry is also keen to develop asymmetric or heterogeneous chip mul-
tiprocessors that can house both fat CPU cores and thin GPU cores on the same chip.

1.2.1.3 Multithreading Technology
Consider in Figure 1.6 the dispatch of five independent threads of instructions to four pipelined data
paths (functional units) in each of the following five processor categories, from left to right: a
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Five micro-architectures in modern CPU processors, that exploit ILP and TLP supported by multicore and
multithreading technologies.

four-issue superscalar processor, a fine-grain multithreaded processor, a coarse-grain multi-
threaded processor, a two-core CMP, and a simultaneous multithreaded (SMT) processor. The
superscalar processor is single-threaded with four functional units. Each of the three multithreaded
processors is four-way multithreaded over four functional data paths. In the dual-core processor,
assume two processing cores, each a single-threaded two-way superscalar processor.

Instructions from different threads are distinguished by specific shading patterns for instruc-
tions from five independent threads. Typical instruction scheduling patterns are shown here. Only
instructions from the same thread are executed in a superscalar processor. Fine-grain multithread-
ing switches the execution of instructions from different threads per cycle. Course-grain multi-
threading executes many instructions from the same thread for quite a few cycles before
switching to another thread. The multicore CMP executes instructions from different threads com-
pletely. The SMT allows simultaneous scheduling of instructions from different threads in the
same cycle.

These execution patterns closely mimic an ordinary program. The blank squares correspond to
no available instructions for an instruction data path at a particular processor cycle. More blank
cells imply lower scheduling efficiency. The maximum ILP or maximum TLP is difficult to achieve
at each processor cycle. The point here is to demonstrate your understanding of typical instruction
scheduling patterns in these five different micro-architectures in modern processors.
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GPU Computing to Exascale and Beyond

A GPU is a graphics coprocessor or accelerator mounted on a computer’s graphics card or video
card. A GPU offloads the CPU from tedious graphics tasks in video editing applications. The
world’s first GPU, the GeForce 256, was marketed by NVIDIA in 1999. These GPU chips can pro-
cess a minimum of 10 million polygons per second, and are used in nearly every computer on the
market today. Some GPU features were also integrated into certain CPUs. Traditional CPUs are
structured with only a few cores. For example, the Xeon X5670 CPU has six cores. However, a
modern GPU chip can be built with hundreds of processing cores.

Unlike CPUs, GPUs have a throughput architecture that exploits massive parallelism by
executing many concurrent threads slowly, instead of executing a single long thread in a conven-
tional microprocessor very quickly. Lately, parallel GPUs or GPU clusters have been garnering a
lot of attention against the use of CPUs with limited parallelism. General-purpose computing on
GPUs, known as GPGPUs, have appeared in the HPC field. NVIDIA’s CUDA model was for
HPC using GPGPUs. Chapter 2 will discuss GPU clusters for massively parallel computing in
more detail [15,32].

1.2.2.1 How GPUs Work

Early GPUs functioned as coprocessors attached to the CPU. Today, the NVIDIA GPU has been
upgraded to 128 cores on a single chip. Furthermore, each core on a GPU can handle eight threads
of instructions. This translates to having up to 1,024 threads executed concurrently on a single
GPU. This is true massive parallelism, compared to only a few threads that can be handled by a
conventional CPU. The CPU is optimized for latency caches, while the GPU is optimized to deliver
much higher throughput with explicit management of on-chip memory.

Modern GPUs are not restricted to accelerated graphics or video coding. They are used in HPC
systems to power supercomputers with massive parallelism at multicore and multithreading levels.
GPUs are designed to handle large numbers of floating-point operations in parallel. In a way, the
GPU offloads the CPU from all data-intensive calculations, not just those that are related to video
processing. Conventional GPUs are widely used in mobile phones, game consoles, embedded sys-
tems, PCs, and servers. The NVIDIA CUDA Tesla or Fermi is used in GPU clusters or in HPC sys-
tems for parallel processing of massive floating-pointing data.

1.2.2.2 GPU Programming Model

Figure 1.7 shows the interaction between a CPU and GPU in performing parallel execution of
floating-point operations concurrently. The CPU is the conventional multicore processor with
limited parallelism to exploit. The GPU has a many-core architecture that has hundreds of
simple processing cores organized as multiprocessors. Each core can have one or more
threads. Essentially, the CPU’s floating-point kernel computation role is largely offloaded to
the many-core GPU. The CPU instructs the GPU to perform massive data processing. The
bandwidth must be matched between the on-board main memory and the on-chip GPU memory.
This process is carried out in NVIDIA’s CUDA programming using the GeForce 8800 or Tesla
and Fermi GPUs. We will study the use of CUDA GPUs in large-scale cluster computing in
Chapter 2.
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The use of a GPU along with a CPU for massively parallel execution in hundreds or thousands of processing
cores.

(Courtesy of B. He, et al., PACT'08 [23])
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Example 1.1 The NVIDIA Fermi GPU Chip with 512 CUDA Cores

In November 2010, three of the five fastest supercomputers in the world (the Tianhe-1a, Nebulae, and
Tsubame) used large numbers of GPU chips to accelerate floating-point computations. Figure 1.8 shows
the architecture of the Fermi GPU, a next-generation GPU from NVIDIA. This is a streaming multiprocessor
(SM) module. Multiple SMs can be built on a single GPU chip. The Fermi chip has 16 SMs implemented
with 3 billion transistors. Each SM comprises up to 512 streaming processors (SPs), known as CUDA
cores. The Tesla GPUs used in the Tianhe-1a have a similar architecture, with 448 CUDA cores.

The Fermi GPU is a newer generation of GPU, first appearing in 2011. The Tesla or Fermi GPU can be
used in desktop workstations to accelerate floating-point calculations or for building large-scale data cen-
ters. The architecture shown is based on a 2009 white paper by NVIDIA [36]. There are 32 CUDA cores
per SM. Only one SM is shown in Figure 1.8. Each CUDA core has a simple pipelined integer ALU and an
FPU that can be used in parallel. Each SM has 16 load/store units allowing source and destination
addresses to be calculated for 16 threads per clock. There are four special function units (SFUs) for
executing transcendental instructions.

All functional units and CUDA cores are interconnected by an NoC (network on chip) to a large
number of SRAM banks (L2 caches). Each SM has a 64 KB L1 cache. The 768 KB unified L2 cache is
shared by all SMs and serves all load, store, and texture operations. Memory controllers are used to con-
nect to 6 GB of off-chip DRAMs. The SM schedules threads in groups of 32 parallel threads called warps.
In total, 256/512 FMA (fused multiply and add) operations can be done in parallel to produce 32/64-bit
floating-point results. The 512 CUDA cores in an SM can work in parallel to deliver up to 515 Gflops of
double-precision results, if fully utilized. With 16 SMs, a single GPU has a peak speed of 82.4 Tflops. Only
12 Fermi GPUs have the potential to reach the Pflops performance.

In the future, thousand-core GPUs may appear in Exascale (Eflops or 10'® flops) systems. This
reflects a trend toward building future MPPs with hybrid architectures of both types of processing
chips. In a DARPA report published in September 2008, four challenges are identified for exascale
computing: (1) energy and power, (2) memory and storage, (3) concurrency and locality, and
(4) system resiliency. Here, we see the progress of GPUs along with CPU advances in power
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FIGURE 1.8

NVIDIA Fermi GPU built with 16 streaming multiprocessors (SMs) of 32 CUDA cores each; only one SM Is
shown. More details can be found also in [49].

(Courtesy of NVIDIA, 2009 [36] 2011)

efficiency, performance, and programmability [16]. In Chapter 2, we will discuss the use of GPUs
to build large clusters.

1.2.2.3 Power Efficiency of the GPU
Bill Dally of Stanford University considers power and massive parallelism as the major benefits of
GPUs over CPUs for the future. By extrapolating current technology and computer architecture, it
was estimated that 60 Gflops/watt per core is needed to run an exaflops system (see Figure 1.10).
Power constrains what we can put in a CPU or GPU chip. Dally has estimated that the CPU chip
consumes about 2 nJ/instruction, while the GPU chip requires 200 pJ/instruction, which is 1/10 less
than that of the CPU. The CPU is optimized for latency in caches and memory, while the GPU is
optimized for throughput with explicit management of on-chip memory.

Figure 1.9 compares the CPU and GPU in their performance/power ratio measured in Gflops/
watt per core. In 2010, the GPU had a value of 5 Gflops/watt at the core level, compared with less
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The GPU performance (middle line, measured 5 Gflops/W/core in 2011), compared with the lower CPU
performance (lower line measured 0.8 Gflops/W/core in 2011) and the estimated 60 Gflops/W/core

performance in 2011 for the Exascale (EF in upper curve) in the future.
(Courtesy of Bill Dally [15])

than 1 Gflop/watt per CPU core. This may limit the scaling of future supercomputers. However, the
GPUs may close the gap with the CPUs. Data movement dominates power consumption. One needs
to optimize the storage hierarchy and tailor the memory to the applications. We need to promote
self-aware OS and runtime support and build locality-aware compilers and auto-tuners for GPU-
based MPPs. This implies that both power and software are the real challenges in future parallel
and distributed computing systems.

Memory, Storage, and Wide-Area Networking

1.2.3.1 Memory Technology

The upper curve in Figure 1.10 plots the growth of DRAM chip capacity from 16 KB in 1976 to 64 GB
in 2011. This shows that memory chips have experienced a 4x increase in capacity every three years.
Memory access time did not improve much in the past. In fact, the memory wall problem is getting
worse as the processor gets faster. For hard drives, capacity increased from 260 MB in 1981 to 250 GB
in 2004. The Seagate Barracuda XT hard drive reached 3 TB in 2011. This represents an approximately
10x increase in capacity every eight years. The capacity increase of disk arrays will be even greater in
the years to come. Faster processor speed and larger memory capacity result in a wider gap between
processors and memory. The memory wall may become even worse a problem limiting the CPU perfor-
mance in the future.

1.2.3.2 Disks and Storage Technology

Beyond 2011, disks or disk arrays have exceeded 3 TB in capacity. The lower curve in Figure 1.10
shows the disk storage growth in 7 orders of magnitude in 33 years. The rapid growth of flash
memory and solid-state drives (SSDs) also impacts the future of HPC and HTC systems. The mor-
tality rate of SSD is not bad at all. A typical SSD can handle 300,000 to 1 million write cycles per
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Improvement in memory and disk technologies over 33 years. The Seagate Barracuda XT disk has a capacity
of 3TB in 2011.

(Courtesy of Xiaosong Lou and Lizhong Chen of University of Southern California, 2011)

block. So the SSD can last for several years, even under conditions of heavy write usage. Flash and
SSD will demonstrate impressive speedups in many applications.

Eventually, power consumption, cooling, and packaging will limit large system development.
Power increases linearly with respect to clock frequency and quadratic ally with respect to voltage
applied on chips. Clock rate cannot be increased indefinitely. Lowered voltage supplies are very
much in demand. Jim Gray once said in an invited talk at the University of Southern California,
“Tape units are dead, disks are tape units, flashes are disks, and memory are caches now.” This
clearly paints the future for disk and storage technology. In 2011, the SSDs are still too expensive
to replace stable disk arrays in the storage market.

1.2.3.3 System-Area Interconnects

The nodes in small clusters are mostly interconnected by an Ethernet switch or a local area network
(LAN). As Figure 1.11 shows, a LAN typically is used to connect client hosts to big servers.
A storage area network (SAN) connects servers to network storage such as disk arrays. Network
attached storage (NAS) connects client hosts directly to the disk arrays. All three types of networks
often appear in a large cluster built with commercial network components. If no large distributed
storage is shared, a small cluster could be built with a multiport Gigabit Ethernet switch plus copper
cables to link the end machines. All three types of networks are commercially available.
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FIGURE 1.11

Three interconnection networks for connecting servers, client hosts, and storage devices; the LAN connects
client hosts and servers, the SAN connects servers with disk arrays, and the NAS connects clients with large
storage systems in the network environment.

1.2.3.4 Wide-Area Networking

The lower curve in Figure 1.10 plots the rapid growth of Ethernet bandwidth from 10 Mbps in
1979 to 1 Gbps in 1999, and 40 ~ 100 GE in 2011. It has been speculated that 1 Tbps network
links will become available by 2013. According to Berman, Fox, and Hey [6], network links with
1,000, 1,000, 100, 10, and 1 Gbps bandwidths were reported, respectively, for international,
national, organization, optical desktop, and copper desktop connections in 2006.

An increase factor of two per year on network performance was reported, which is faster than
Moore’s law on CPU speed doubling every 18 months. The implication is that more computers will
be used concurrently in the future. High-bandwidth networking increases the capability of building
massively distributed systems. The IDC 2010 report predicted that both InfiniBand and Ethernet
will be the two major interconnect choices in the HPC arena. Most data centers are using Gigabit
Ethernet as the interconnect in their server clusters.

Virtual Machines and Virtualization Middleware

A conventional computer has a single OS image. This offers a rigid architecture that tightly couples
application software to a specific hardware platform. Some software running well on one machine
may not be executable on another platform with a different instruction set under a fixed OS. Virtual
machines (VMs) offer novel solutions to underutilized resources, application inflexibility, software
manageability, and security concerns in existing physical machines.

Today, to build large clusters, grids, and clouds, we need to access large amounts of computing,
storage, and networking resources in a virtualized manner. We need to aggregate those resources,
and hopefully, offer a single system image. In particular, a cloud of provisioned resources must rely
on virtualization of processors, memory, and I/O facilities dynamically. We will cover virtualization
in Chapter 3. However, the basic concepts of virtualized resources, such as VMs, virtual storage,
and virtual networking and their virtualization software or middleware, need to be introduced first.
Figure 1.12 illustrates the architectures of three VM configurations.
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Three VM architectures in (b), (c), and (d), compared with the traditional physical machine shown in (a).
(Courtesy of M. Abde-Majeed and S. Kulkarni, 2009 USC)

1.2.4.1 Virtual Machines

In Figure 1.12, the host machine is equipped with the physical hardware, as shown at the bottom of
the figure. An example is an x-86 architecture desktop running its installed Windows OS, as shown
in part (a) of the figure. The VM can be provisioned for any hardware system. The VM is built
with virtual resources managed by a guest OS to run a specific application. Between the VMs and
the host platform, one needs to deploy a middleware layer called a virtual machine monitor (VMM).
Figure 1.12(b) shows a native VM installed with the use of a VMM called a hypervisor in privi-
leged mode. For example, the hardware has x-86 architecture running the Windows system.

The guest OS could be a Linux system and the hypervisor is the XEN system developed at
Cambridge University. This hypervisor approach is also called bare-metal VM, because the hypervi-
sor handles the bare hardware (CPU, memory, and I/O) directly. Another architecture is the host VM
shown in Figure 1.12(c). Here the VMM runs in nonprivileged mode. The host OS need not be modi-
fied. The VM can also be implemented with a dual mode, as shown in Figure 1.12(d). Part of the
VMM runs at the user level and another part runs at the supervisor level. In this case, the host OS
may have to be modified to some extent. Multiple VMs can be ported to a given hardware system to
support the virtualization process. The VM approach offers hardware independence of the OS and
applications. The user application running on its dedicated OS could be bundled together as a virtual
appliance that can be ported to any hardware platform. The VM could run on an OS different from
that of the host computer.

1.2.4.2 VM Primitive Operations

The VMM provides the VM abstraction to the guest OS. With full virtualization, the VMM exports
a VM abstraction identical to the physical machine so that a standard OS such as Windows 2000 or
Linux can run just as it would on the physical hardware. Low-level VMM operations are indicated
by Mendel Rosenblum [41] and illustrated in Figure 1.13.
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VM multiplexing, suspension, provision, and migration in a distributed computing environment.
(Courtesy of M. Rosenblum, Keynote address, ACM ASPLOS 2006 [41])

* First, the VMs can be multiplexed between hardware machines, as shown in Figure 1.13(a).

* Second, a VM can be suspended and stored in stable storage, as shown in Figure 1.13(b).

* Third, a suspended VM can be resumed or provisioned to a new hardware platform, as shown in
Figure 1.13(c).

¢ Finally, a VM can be migrated from one hardware platform to another, as shown in Figure 1.13(d).

These VM operations enable a VM to be provisioned to any available hardware platform. They
also enable flexibility in porting distributed application executions. Furthermore, the VM approach
will significantly enhance the utilization of server resources. Multiple server functions can be
consolidated on the same hardware platform to achieve higher system efficiency. This will eliminate
server sprawl via deployment of systems as VMs, which move transparency to the shared hardware.
With this approach, VMware claimed that server utilization could be increased from its current
5-15 percent to 60—80 percent.

1.2.4.3 Virtual Infrastructures

Physical resources for compute, storage, and networking at the bottom of Figure 1.14 are mapped to
the needy applications embedded in various VMs at the top. Hardware and software are then sepa-
rated. Virtual infrastructure is what connects resources to distributed applications. It is a dynamic
mapping of system resources to specific applications. The result is decreased costs and increased
efficiency and responsiveness. Virtualization for server consolidation and containment is a good
example of this. We will discuss VMs and virtualization support in Chapter 3. Virtualization support
for clusters, clouds, and grids is covered in Chapters 3, 4, and 7, respectively.
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Growth and cost breakdown of data centers over the years.

(Source: IDC Report, 2009)

Data Center Virtualization for Cloud Computing

In this section, we discuss basic architecture and design considerations of data centers. Cloud architecture
is built with commodity hardware and network devices. Almost all cloud platforms choose the popular
x86 processors. Low-cost terabyte disks and Gigabit Ethernet are used to build data centers. Data center
design emphasizes the performance/price ratio over speed performance alone. In other words, storage
and energy efficiency are more important than shear speed performance. Figure 1.13 shows the server
growth and cost breakdown of data centers over the past 15 years. Worldwide, about 43 million servers
are in use as of 2010. The cost of utilities exceeds the cost of hardware after three years.

1.2.5.1 Data Center Growth and Cost Breakdown

A large data center may be built with thousands of servers. Smaller data centers are typically built
with hundreds of servers. The cost to build and maintain data center servers has increased over the
years. According to a 2009 IDC report (see Figure 1.14), typically only 30 percent of data center
costs goes toward purchasing IT equipment (such as servers and disks), 33 percent is attributed to
the chiller, 18 percent to the uninterruptible power supply (UPS), 9 percent to computer room air
conditioning (CRAC), and the remaining 7 percent to power distribution, lighting, and transformer
costs. Thus, about 60 percent of the cost to run a data center is allocated to management and main-
tenance. The server purchase cost did not increase much with time. The cost of electricity and cool-
ing did increase from 5 percent to 14 percent in 15 years.

1.2.5.2 Low-Cost Design Philosophy
High-end switches or routers may be too cost-prohibitive for building data centers. Thus, using
high-bandwidth networks may not fit the economics of cloud computing. Given a fixed budget,
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commodity switches and networks are more desirable in data centers. Similarly, using commodity
x86 servers is more desired over expensive mainframes. The software layer handles network traffic
balancing, fault tolerance, and expandability. Currently, nearly all cloud computing data centers use
Ethernet as their fundamental network technology.

1.2.5.3 Convergence of Technologies

Essentially, cloud computing is enabled by the convergence of technologies in four areas: (1) hard-
ware virtualization and multi-core chips, (2) utility and grid computing, (3) SOA, Web 2.0, and WS
mashups, and (4) atonomic computing and data center automation. Hardware virtualization and mul-
ticore chips enable the existence of dynamic configurations in the cloud. Utility and grid computing
technologies lay the necessary foundation for computing clouds. Recent advances in SOA, Web
2.0, and mashups of platforms are pushing the cloud another step forward. Finally, achievements in
autonomic computing and automated data center operations contribute to the rise of cloud
computing.

Jim Gray once posted the following question: “Science faces a data deluge. How to manage and
analyze information?” This implies that science and our society face the same challenge of data
deluge. Data comes from sensors, lab experiments, simulations, individual archives, and the web in
all scales and formats. Preservation, movement, and access of massive data sets require generic
tools supporting high-performance, scalable file systems, databases, algorithms, workflows, and
visualization. With science becoming data-centric, a new paradigm of scientific discovery is becom-
ing based on data-intensive technologies.

On January 11, 2007, the Computer Science and Telecommunication Board (CSTB) recom-
mended fostering tools for data capture, data creation, and data analysis. A cycle of interaction
exists among four technical areas. First, cloud technology is driven by a surge of interest in data
deluge. Also, cloud computing impacts e-science greatly, which explores multicore and parallel
computing technologies. These two hot areas enable the buildup of data deluge. To support data-
intensive computing, one needs to address workflows, databases, algorithms, and virtualization
issues.

By linking computer science and technologies with scientists, a spectrum of e-science or
e-research applications in biology, chemistry, physics, the social sciences, and the humanities has
generated new insights from interdisciplinary activities. Cloud computing is a transformative
approach as it promises much more than a data center model. It fundamentally changes how we
interact with information. The cloud provides services on demand at the infrastructure, platform, or
software level. At the platform level, MapReduce offers a new programming model that transpar-
ently handles data parallelism with natural fault tolerance capability. We will discuss MapReduce in
more detail in Chapter 6.

Iterative MapReduce extends MapReduce to support a broader range of data mining algorithms
commonly used in scientific applications. The cloud runs on an extremely large cluster of commod-
ity computers. Internal to each cluster node, multithreading is practiced with a large number of
cores in many-core GPU clusters. Data-intensive science, cloud computing, and multicore comput-
ing are converging and revolutionizing the next generation of computing in architectural design and
programming challenges. They enable the pipeline: Data becomes information and knowledge, and
in turn becomes machine wisdom as desired in SOA.
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SYSTEM MODELS FOR DISTRIBUTED AND CLOUD COMPUTING

Distributed and cloud computing systems are built over a large number of autonomous computer
nodes. These node machines are interconnected by SANs, LANs, or WANS in a hierarchical man-
ner. With today’s networking technology, a few LAN switches can easily connect hundreds of
machines as a working cluster. A WAN can connect many local clusters to form a very large cluster
of clusters. In this sense, one can build a massive system with millions of computers connected to
edge networks.

Massive systems are considered highly scalable, and can reach web-scale connectivity, either
physically or logically. In Table 1.2, massive systems are classified into four groups: clusters, P2P
networks, computing grids, and Internet clouds over huge data centers. In terms of node number,
these four system classes may involve hundreds, thousands, or even millions of computers as
participating nodes. These machines work collectively, cooperatively, or collaboratively at various
levels. The table entries characterize these four system classes in various technical and application

aspects.

Functionality,
Applications

Architecture,
Network
Connectivity, and
Size

Control and
Resources
Management

Applications and
Network-centric
Services

Representative
Operational
Systems

Computer
Clusters
[10,28,38]

Network of
compute nodes
interconnected by
SAN, LAN, or
WAN
hierarchically

Homogeneous
nodes with
distributed
control, running
UNIX or Linux

High-performance
computing,
search engines,
and web services,
etc.

Google search
engine, SunBlade,
IBM Road
Runner, Cray
XT4, etc.

Peer-to-Peer
Networks
[34,46]

Flexible network
of client machines
logically
connected by an
overlay network

Autonomous
client nodes, free
in and out, with
self-organization

Most appealing to
business file
sharing, content
delivery, and
social networking

Gnutella, eMule,
BitTorrent,
Napster, KaZaA,
Skype, JXTA

Table 1.2 Classification of Parallel and Distributed Computing Systems

Data/
Computational
Grids [6,18,51]

Heterogeneous
clusters
interconnected by
high-speed
network links over
selected resource
sites

Centralized
control, server-
oriented with
authenticated
security
Distributed
supercomputing,
global problem
solving, and data
center services

TeraGrid,
GriPhyN, UK
EGEE, D-Grid,
ChinaGrid, etc.

Cloud Platforms
[1,9,11,12,30]

Virtualized cluster
of servers over
data centers via
SLA

Dynamic resource
provisioning of
servers, storage,
and networks

Upgraded web
search, utility
computing, and
outsourced
computing
services
Google App
Engine, IBM
Bluecloud, AWS,
and Microsoft
Azure
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From the application perspective, clusters are most popular in supercomputing applications. In
2009, 417 of the Top 500 supercomputers were built with cluster architecture. It is fair to say that
clusters have laid the necessary foundation for building large-scale grids and clouds. P2P networks
appeal most to business applications. However, the content industry was reluctant to accept P2P
technology for lack of copyright protection in ad hoc networks. Many national grids built in the
past decade were underutilized for lack of reliable middleware or well-coded applications. Potential
advantages of cloud computing include its low cost and simplicity for both providers and users.

Clusters of Cooperative Computers

A computing cluster consists of interconnected stand-alone computers which work cooperatively as
a single integrated computing resource. In the past, clustered computer systems have demonstrated
impressive results in handling heavy workloads with large data sets.

1.3.1.1 Cluster Architecture

Figure 1.15 shows the architecture of a typical server cluster built around a low-latency, high-
bandwidth interconnection network. This network can be as simple as a SAN (e.g., Myrinet) or a
LAN (e.g., Ethernet). To build a larger cluster with more nodes, the interconnection network can be
built with multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand switches. Through hierarchical
construction using a SAN, LAN, or WAN, one can build scalable clusters with an increasing
number of nodes. The cluster is connected to the Internet via a virtual private network (VPN)
gateway. The gateway IP address locates the cluster. The system image of a computer is decided by
the way the OS manages the shared cluster resources. Most clusters have loosely coupled node
computers. All resources of a server node are managed by their own OS. Thus, most clusters have
multiple system images as a result of having many autonomous nodes under different OS control.

A Cluster

Servers

SAN, LAN, NAS Networks
(Ethernet, Myrinet, InfiniBand, etc.)

Disk arrays

1/0 devices

FIGURE 1.15

A cluster of servers interconnected by a high-bandwidth SAN or LAN with shared I/O devices and disk arrays;
the cluster acts as a single computer attached to the Internet.
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1.3.1.2 Single-System Image

Greg Pfister [38] has indicated that an ideal cluster should merge multiple system images into
a single-system image (SSI). Cluster designers desire a cluster operating system or some middle-
ware to support SSI at various levels, including the sharing of CPUs, memory, and I/O across all
cluster nodes. An SSI is an illusion created by software or hardware that presents a collection of
resources as one integrated, powerful resource. SSI makes the cluster appear like a single
machine to the user. A cluster with multiple system images is nothing but a collection of inde-
pendent computers.

1.3.1.3 Hardware, Software, and Middleware Support

In Chapter 2, we will discuss cluster design principles for both small and large clusters. Clusters
exploring massive parallelism are commonly known as MPPs. Almost all HPC clusters in the Top
500 list are also MPPs. The building blocks are computer nodes (PCs, workstations, servers, or
SMP), special communication software such as PVM or MPI, and a network interface card in each
computer node. Most clusters run under the Linux OS. The computer nodes are interconnected by a
high-bandwidth network (such as Gigabit Ethernet, Myrinet, InfiniBand, etc.).

Special cluster middleware supports are needed to create SSI or high availability (HA). Both
sequential and parallel applications can run on the cluster, and special parallel environments are
needed to facilitate use of the cluster resources. For example, distributed memory has multiple
images. Users may want all distributed memory to be shared by all servers by forming distribu-
ted shared memory (DSM). Many SSI features are expensive or difficult to achieve at various
cluster operational levels. Instead of achieving SSI, many clusters are loosely coupled machines.
Using virtualization, one can build many virtual clusters dynamically, upon user demand. We
will discuss virtual clusters in Chapter 3 and the use of virtual clusters for cloud computing in
Chapters 4, 5, 6, and 9.

1.3.1.4 Major Cluster Design Issues

Unfortunately, a cluster-wide OS for complete resource sharing is not available yet. Middleware
or OS extensions were developed at the user space to achieve SSI at selected functional levels.
Without this middleware, cluster nodes cannot work together effectively to achieve cooperative
computing. The software environments and applications must rely on the middleware to achieve
high performance. The cluster benefits come from scalable performance, efficient message passing,
high system availability, seamless fault tolerance, and cluster-wide job management, as summarized
in Table 1.3. We will address these issues in Chapter 2.

Grid Computing Infrastructures

In the past 30 years, users have experienced a natural growth path from Internet to web and grid
computing services. Internet services such as the Telnet command enables a local computer to con-
nect to a remote computer. A web service such as HTTP enables remote access of remote web
pages. Grid computing is envisioned to allow close interaction among applications running on dis-
tant computers simultaneously. Forbes Magazine has projected the global growth of the IT-based
economy from $1 trillion in 2001 to $20 trillion by 2015. The evolution from Internet to web and
grid services is certainly playing a major role in this growth.
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Features

Availability and Support

Hardware Fault Tolerance

Single System Image (SSI)

Efficient Communications

Cluster-wide Job
Management

Dynamic Load Balancing

Scalability and
Programmability

Functional Characterization

Hardware and software support for
sustained HA in cluster

Automated failure management to
eliminate all single points of failure

Achieving SSI at functional level with
hardware and software support,
middleware, or OS extensions

To reduce message-passing system
overhead and hide latencies

Using a global job management
system with better scheduling and
monitoring

Balancing the workload of all
processing nodes along with failure
recovery

Adding more servers to a cluster or
adding more clusters to a grid as
the workload or data set increases

Table 1.3 Critical Cluster Design Issues and Feasible Implementations

Feasible Implementations

Failover, failback, check pointing,
rollback recovery, nonstop OS, etc.
Component redundancy, hot
swapping, RAID, multiple power
supplies, etc.

Hardware mechanisms or
middleware support to achieve DSM
at coherent cache level

Fast message passing, active
messages, enhanced MP! library, etc.
Application of single-job
management systems such as LSF,
Codine, etc.

Workload monitoring, process
migration, job replication and gang
scheduling, etc.

Use of scalable interconnect,
performance monitoring, distributed
execution environment, and better

software tools

1.3.2.1 Computational Grids

Like an electric utility power grid, a computing grid offers an infrastructure that couples computers,
software/middleware, special instruments, and people and sensors together. The grid is often con-
structed across LAN, WAN, or Internet backbone networks at a regional, national, or global scale.
Enterprises or organizations present grids as integrated computing resources. They can also be
viewed as virtual platforms to support virtual organizations. The computers used in a grid are pri-
marily workstations, servers, clusters, and supercomputers. Personal computers, laptops, and PDAs
can be used as access devices to a grid system.

Figure 1.16 shows an example computational grid built over multiple resource sites owned by
different organizations. The resource sites offer complementary computing resources, including
workstations, large servers, a mesh of processors, and Linux clusters to satisfy a chain of computa-
tional needs. The grid is built across various IP broadband networks including LANs and WANs
already used by enterprises or organizations over the Internet. The grid is presented to users as an
integrated resource pool as shown in the upper half of the figure.

Special instruments may be involved such as using the radio telescope in SETI@Home
search of life in the galaxy and the austrophysics@Swineburne for pulsars. At the server end,
the grid is a network. At the client end, we see wired or wireless terminal devices. The grid
integrates the computing, communication, contents, and transactions as rented services. Enter-
prises and consumers form the user base, which then defines the usage trends and service char-
acteristics. Many national and international grids will be reported in Chapter 7, the NSF
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TeraGrid in US, EGEE in Europe, and ChinaGrid in China for various distributed scientific grid
applications.

1.3.2.2 Grid Families

Grid technology demands new distributed computing models, software/middleware support, network
protocols, and hardware infrastructures. National grid projects are followed by industrial grid plat-
form development by IBM, Microsoft, Sun, HP, Dell, Cisco, EMC, Platform Computing, and
others. New grid service providers (GSPs) and new grid applications have emerged rapidly, similar
to the growth of Internet and web services in the past two decades. In Table 1.4, grid systems are
classified in essentially two categories: computational or data grids and P2P grids. Computing or
data grids are built primarily at the national level. In Chapter 7, we will cover grid applications and
lessons learned.
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FIGURE 1.16

Computational grid or data grid providing computing utility, data, and information services through resource
sharing and cooperation among participating organizations.

(Courtesy of Z. Xu, Chinese Academy of Science, 2004)

Table 1.4 Two Grid Computing Infrastructures and Representative Systems

Computational and Data

Design Issues

Grid Applications Reported

Representative Systems

Development Lessons Learned

Grids

Distributed supercomputing,
National Grid initiatives, etc.
TeraGrid built in US, ChinaGrid in
China, and the e-Science grid
built in UK

Restricted user groups,
middleware bugs, protocols to
acquire resources

P2P Grids

Open grid with P2P flexibility, all
resources from client machines

JXTA, FightAid@home,
SETI@home

Unreliable user-contributed
resources, limited to a few apps
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Peer-to-Peer Network Families

An example of a well-established distributed system is the client-server architecture. In this sce-
nario, client machines (PCs and workstations) are connected to a central server for compute, e-mail,
file access, and database applications. The P2P architecture offers a distributed model of networked
systems. First, a P2P network is client-oriented instead of server-oriented. In this section, P2P sys-
tems are introduced at the physical level and overlay networks at the logical level.

1.3.3.1 P2P Systems

In a P2P system, every node acts as both a client and a server, providing part of the system
resources. Peer machines are simply client computers connected to the Internet. All client machines
act autonomously to join or leave the system freely. This implies that no master-slave relationship
exists among the peers. No central coordination or central database is needed. In other words, no
peer machine has a global view of the entire P2P system. The system is self-organizing with distrib-
uted control.

Figure 1.17 shows the architecture of a P2P network at two abstraction levels. Initially, the peers
are totally unrelated. Each peer machine joins or leaves the P2P network voluntarily. Only the parti-
cipating peers form the physical network at any time. Unlike the cluster or grid, a P2P network does
not use a dedicated interconnection network. The physical network is simply an ad hoc network
formed at various Internet domains randomly using the TCP/IP and NAI protocols. Thus, the physi-
cal network varies in size and topology dynamically due to the free membership in the P2P
network.

1.3.3.2 Overlay Networks
Data items or files are distributed in the participating peers. Based on communication or file-sharing
needs, the peer IDs form an overlay network at the logical level. This overlay is a virtual network

FIGURE 1.17

The structure of a P2P system by mapping a physical IP network to an overlay network built with virtual
links.

(Courtesy of Zhenyu Li, Institute of Computing Technology, Chinese Academy of Sciences, 2010)
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formed by mapping each physical machine with its ID, logically, through a virtual mapping as
shown in Figure 1.17. When a new peer joins the system, its peer ID is added as a node in the
overlay network. When an existing peer leaves the system, its peer ID is removed from the overlay
network automatically. Therefore, it is the P2P overlay network that characterizes the logical con-
nectivity among the peers.

There are two types of overlay networks: unstructured and structured. An unstructured overlay
network is characterized by a random graph. There is no fixed route to send messages or files
among the nodes. Often, flooding is applied to send a query to all nodes in an unstructured overlay,
thus resulting in heavy network traffic and nondeterministic search results. Structured overlay net-
works follow certain connectivity topology and rules for inserting and removing nodes (peer IDs)
from the overlay graph. Routing mechanisms are developed to take advantage of the structured
overlays.

1.3.3.3 P2P Application Families

Based on application, P2P networks are classified into four groups, as shown in Table 1.5. The first
family is for distributed file sharing of digital contents (music, videos, etc.) on the P2P network. This
includes many popular P2P networks such as Gnutella, Napster, and BitTorrent, among others. Colla-
boration P2P networks include MSN or Skype chatting, instant messaging, and collaborative design,
among others. The third family is for distributed P2P computing in specific applications. For example,
SETI@home provides 25 Tflops of distributed computing power, collectively, over 3 million Internet
host machines. Other P2P platforms, such as JXTA, .NET, and FightingAID @home, support naming,
discovery, communication, security, and resource aggregation in some P2P applications. We will dis-
cuss these topics in more detail in Chapters 8 and 9.

1.3.3.4 P2P Computing Challenges

P2P computing faces three types of heterogeneity problems in hardware, software, and network
requirements. There are too many hardware models and architectures to select from; incompat-
ibility exists between software and the OS; and different network connections and protocols

Table 1.5 Major Categories of P2P Network Families [46]
System Distributed File Collaborative Distributed P2P
Features Sharing Platform Computing P2P Platform
Attractive Content Instant messaging, Scientific Open networks for
Applications distribution of MP3 collaborative exploration and public resources
music, video, open design and gaming social networking
software, etc.
Operational Loose security and Lack of trust, Security holes, Lack of standards
Problems serious online disturbed by selfish partners, or protection
copyright violations spam, privacy, and and peer collusion protocols
peer collusion
Example Gnutella, Napster, ICQ, AlM, Groove, SETI@home, JXTA, .NET,
Systems eMule, BitTorrent, Magi, Multiplayer Geonome@home, FightingAid@home,
Aimster, KaZaA, Games, Skype, etc. etc.
etc. etc.
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make it too complex to apply in real applications. We need system scalability as the workload
increases. System scaling is directly related to performance and bandwidth. P2P networks do
have these properties. Data location is also important to affect collective performance. Data
locality, network proximity, and interoperability are three design objectives in distributed P2P
applications.

P2P performance is affected by routing efficiency and self-organization by participating peers.
Fault tolerance, failure management, and load balancing are other important issues in using overlay
networks. Lack of trust among peers poses another problem. Peers are strangers to one another.
Security, privacy, and copyright violations are major worries by those in the industry in terms of
applying P2P technology in business applications [35]. In a P2P network, all clients provide resources
including computing power, storage space, and I/O bandwidth. The distributed nature of P2P net-
works also increases robustness, because limited peer failures do not form a single point of failure.

By replicating data in multiple peers, one can easily lose data in failed nodes. On the other hand,
disadvantages of P2P networks do exist. Because the system is not centralized, managing it is difficult.
In addition, the system lacks security. Anyone can log on to the system and cause damage or abuse.
Further, all client computers connected to a P2P network cannot be considered reliable or virus-free. In
summary, P2P networks are reliable for a small number of peer nodes. They are only useful for applica-
tions that require a low level of security and have no concern for data sensitivity. We will discuss P2P
networks in Chapter 8, and extending P2P technology to social networking in Chapter 9.

Cloud Computing over the Internet

Gordon Bell, Jim Gray, and Alex Szalay [5] have advocated: “Computational science is changing to
be data-intensive. Supercomputers must be balanced systems, not just CPU farms but also petascale
I/O and networking arrays.” In the future, working with large data sets will typically mean sending
the computations (programs) to the data, rather than copying the data to the workstations. This
reflects the trend in IT of moving computing and data from desktops to large data centers, where
there is on-demand provision of software, hardware, and data as a service. This data explosion has
promoted the idea of cloud computing.

Cloud computing has been defined differently by many users and designers. For example, IBM, a
major player in cloud computing, has defined it as follows: “A cloud is a pool of virtualized computer
resources. A cloud can host a variety of different workloads, including batch-style backend jobs and
interactive and user-facing applications.” Based on this definition, a cloud allows workloads to be
deployed and scaled out quickly through rapid provisioning of virtual or physical machines. The cloud
supports redundant, self-recovering, highly scalable programming models that allow workloads to
recover from many unavoidable hardware/software failures. Finally, the cloud system should be able to
monitor resource use in real time to enable rebalancing of allocations when needed.

1.3.4.1 Internet Clouds

Cloud computing applies a virtualized platform with elastic resources on demand by provisioning
hardware, software, and data sets dynamically (see Figure 1.18). The idea is to move desktop
computing to a service-oriented platform using server clusters and huge databases at data centers.
Cloud computing leverages its low cost and simplicity to benefit both users and providers. Machine
virtualization has enabled such cost-effectiveness. Cloud computing intends to satisfy many user
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FIGURE 1.18

Virtualized resources from data centers to form an Internet cloud, provisioned with hardware, software,
storage, network, and services for paid users to run their applications.

applications simultaneously. The cloud ecosystem must be designed to be secure, trustworthy, and
dependable. Some computer users think of the cloud as a centralized resource pool. Others consider
the cloud to be a server cluster which practices distributed computing over all the servers used.

1.3.4.2 The Cloud Landscape

Traditionally, a distributed computing system tends to be owned and operated by an autonomous
administrative domain (e.g., a research laboratory or company) for on-premises computing needs.
However, these traditional systems have encountered several performance bottlenecks: constant sys-
tem maintenance, poor utilization, and increasing costs associated with hardware/software upgrades.
Cloud computing as an on-demand computing paradigm resolves or relieves us from these problems.
Figure 1.19 depicts the cloud landscape and major cloud players, based on three cloud service mod-
els. Chapters 4, 6, and 9 provide details regarding these cloud service offerings. Chapter 3 covers the
relevant virtualization tools.

* Infrastructure as a Service (IaaS) This model puts together infrastructures demanded by
users—namely servers, storage, networks, and the data center fabric. The user can deploy and
run on multiple VMs running guest OSes on specific applications. The user does not manage or
control the underlying cloud infrastructure, but can specify when to request and release the
needed resources.

* Platform as a Service (PaaS) This model enables the user to deploy user-built applications
onto a virtualized cloud platform. PaaS includes middleware, databases, development tools, and
some runtime support such as Web 2.0 and Java. The platform includes both hardware and
software integrated with specific programming interfaces. The provider supplies the API and
software tools (e.g., Java, Python, Web 2.0, .NET). The user is freed from managing the cloud
infrastructure.

* Software as a Service (SaaS) This refers to browser-initiated application software over
thousands of paid cloud customers. The SaaS model applies to business processes, industry
applications, consumer relationship management (CRM), enterprise resources planning (ERP),
human resources (HR), and collaborative applications. On the customer side, there is no upfront
investment in servers or software licensing. On the provider side, costs are rather low, compared
with conventional hosting of user applications.
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Three cloud service models in a cloud landscape of major providers.
(Courtesy of Dennis Gannon, keynote address at Cloudcom2010 [19])

Platform as a Service

Internet clouds offer four deployment modes: private, public, managed, and hybrid [11]. These
modes demand different levels of security implications. The different SLAs imply that the security
responsibility is shared among all the cloud providers, the cloud resource consumers, and the third-
party cloud-enabled software providers. Advantages of cloud computing have been advocated by
many IT experts, industry leaders, and computer science researchers.

In Chapter 4, we will describe major cloud platforms that have been built and various cloud
services offerings. The following list highlights eight reasons to adapt the cloud for upgraded
Internet applications and web services:

Desired location in areas with protected space and higher energy efficiency

Sharing of peak-load capacity among a large pool of users, improving overall utilization
Separation of infrastructure maintenance duties from domain-specific application development
Significant reduction in cloud computing cost, compared with traditional computing paradigms
Cloud computing programming and application development

Service and data discovery and content/service distribution

Privacy, security, copyright, and reliability issues

Service agreements, business models, and pricing policies

ONoOARWN=

1.4 SOFTWARE ENVIRONMENTS FOR DISTRIBUTED SYSTEMS
AND CLOUDS

This section introduces popular software environments for using distributed and cloud computing
systems. Chapters 5 and 6 discuss this subject in more depth.
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Service-Oriented Architecture (SOA)

In grids/web services, Java, and CORBA, an entity is, respectively, a service, a Java object, and a
CORBA distributed object in a variety of languages. These architectures build on the traditional
seven Open Systems Interconnection (OSI) layers that provide the base networking abstractions. On
top of this we have a base software environment, which would be .NET or Apache Axis for web
services, the Java Virtual Machine for Java, and a broker network for CORBA. On top of this base
environment one would build a higher level environment reflecting the special features of the
distributed computing environment. This starts with entity interfaces and inter-entity communication,
which rebuild the top four OSI layers but at the entity and not the bit level. Figure 1.20 shows the
layered architecture for distributed entities used in web services and grid systems.

1.4.1.1 Layered Architecture for Web Services and Grids

The entity interfaces correspond to the Web Services Description Language (WSDL), Java method, and
CORBA interface definition language (IDL) specifications in these example distributed systems. These
interfaces are linked with customized, high-level communication systems: SOAP, RMI, and IIOP in the
three examples. These communication systems support features including particular message patterns
(such as Remote Procedure Call or RPC), fault recovery, and specialized routing. Often, these commu-
nication systems are built on message-oriented middleware (enterprise bus) infrastructure such as Web-
Sphere MQ or Java Message Service (JMS) which provide rich functionality and support virtualization
of routing, senders, and recipients.

In the case of fault tolerance, the features in the Web Services Reliable Messaging (WSRM)
framework mimic the OSI layer capability (as in TCP fault tolerance) modified to match the differ-
ent abstractions (such as messages versus packets, virtualized addressing) at the entity levels. Secur-
ity is a critical capability that either uses or reimplements the capabilities seen in concepts such as
Internet Protocol Security (IPsec) and secure sockets in the OSI layers. Entity communication is
supported by higher level services for registries, metadata, and management of the entities discussed
in Section 5.4.

Application specific services/grids Higher
Generally useful services and grids level
Workflow services
Service management Service
Service discovery and information I context
Service Internet transport » Protocol -
Service interfaces I Service
- - Internet
Base hosting environment
Protocol HTTP FTP DNS ...
Presentation XDR ...
Session SSH ... Bit level
Transport TCP UDP ... Internet
Network IP ...
Data link/Physical

FIGURE 1.20
Layered achitecture for web services and the grids.
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Here, one might get several models with, for example, INDI (Jini and Java Naming and Directory
Interface) illustrating different approaches within the Java distributed object model. The CORBA Trad-
ing Service, UDDI (Universal Description, Discovery, and Integration), LDAP (Lightweight Directory
Access Protocol), and ebXML (Electronic Business using eXtensible Markup Language) are other
examples of discovery and information services described in Section 5.4. Management services include
service state and lifetime support; examples include the CORBA Life Cycle and Persistent states, the
different Enterprise JavaBeans models, Jini’s lifetime model, and a suite of web services specifications
in Chapter 5. The above language or interface terms form a collection of entity-level capabilities.

The latter can have performance advantages and offers a “shared memory” model allowing more
convenient exchange of information. However, the distributed model has two critical advantages:
namely, higher performance (from multiple CPUs when communication is unimportant) and a
cleaner separation of software functions with clear software reuse and maintenance advantages. The
distributed model is expected to gain popularity as the default approach to software systems. In the
earlier years, CORBA and Java approaches were used in distributed systems rather than today’s
SOAP, XML, or REST (Representational State Transfer).

1.4.1.2 Web Services and Tools

Loose coupling and support of heterogeneous implementations make services more attractive than
distributed objects. Figure 1.20 corresponds to two choices of service architecture: web services
or REST systems (these are further discussed in Chapter 5). Both web services and REST sys-
tems have very distinct approaches to building reliable interoperable systems. In web services,
one aims to fully specify all aspects of the service and its environment. This specification is car-
ried with communicated messages using Simple Object Access Protocol (SOAP). The hosting
environment then becomes a universal distributed operating system with fully distributed capabil-
ity carried by SOAP messages. This approach has mixed success as it has been hard to agree on
key parts of the protocol and even harder to efficiently implement the protocol by software such
as Apache Axis.

In the REST approach, one adopts simplicity as the universal principle and delegates most of
the difficult problems to application (implementation-specific) software. In a web services language,
REST has minimal information in the header, and the message body (that is opaque to generic
message processing) carries all the needed information. REST architectures are clearly more appro-
priate for rapid technology environments. However, the ideas in web services are important and
probably will be required in mature systems at a different level in the stack (as part of the applica-
tion). Note that REST can use XML schemas but not those that are part of SOAP; “XML over
HTTP” is a popular design choice in this regard. Above the communication and management
layers, we have the ability to compose new entities or distributed programs by integrating several
entities together.

In CORBA and Java, the distributed entities are linked with RPCs, and the simplest way to build
composite applications is to view the entities as objects and use the traditional ways of linking them
together. For Java, this could be as simple as writing a Java program with method calls replaced by
Remote Method Invocation (RMI), while CORBA supports a similar model with a syntax reflecting the
C++ style of its entity (object) interfaces. Allowing the term “grid” to refer to a single service or to
represent a collection of services, here sensors represent entities that output data (as messages), and
grids and clouds represent collections of services that have multiple message-based inputs and outputs.
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1.4.1.3 The Evolution of SOA
As shown in Figure 1.21, service-oriented architecture (SOA) has evolved over the years. SOA
applies to building grids, clouds, grids of clouds, clouds of grids, clouds of clouds (also known as
interclouds), and systems of systems in general. A large number of sensors provide data-collection
services, denoted in the figure as SS (sensor service). A sensor can be a ZigBee device, a Bluetooth
device, a WiFi access point, a personal computer, a GPA, or a wireless phone, among other things.
Raw data is collected by sensor services. All the SS devices interact with large or small computers,
many forms of grids, databases, the compute cloud, the storage cloud, the filter cloud, the discovery
cloud, and so on. Filter services (fs in the figure) are used to eliminate unwanted raw data, in order
to respond to specific requests from the web, the grid, or web services.

A collection of filter services forms a filter cloud. We will cover various clouds for compute,
storage, filter, and discovery in Chapters 4, 5, and 6, and various grids, P2P networks, and the IoT
in Chapters 7, 8, and 9. SOA aims to search for, or sort out, the useful data from the massive
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FIGURE 1.21

The evolution of SOA: grids of clouds and grids, where “SS” refers to a sensor service and “fs” to a filter or
transforming service.
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amounts of raw data items. Processing this data will generate useful information, and subsequently,
the knowledge for our daily use. In fact, wisdom or intelligence is sorted out of large knowledge
bases. Finally, we make intelligent decisions based on both biological and machine wisdom. Read-
ers will see these structures more clearly in subsequent chapters.

Most distributed systems require a web interface or portal. For raw data collected by a large
number of sensors to be transformed into useful information or knowledge, the data stream may go
through a sequence of compute, storage, filter, and discovery clouds. Finally, the inter-service mes-
sages converge at the portal, which is accessed by all users. Two example portals, OGFCE and
HUBzero, are described in Section 5.3 using both web service (portlet) and Web 2.0 (gadget) tech-
nologies. Many distributed programming models are also built on top of these basic constructs.

1.4.1.4 Grids versus Clouds

The boundary between grids and clouds are getting blurred in recent years. For web services, work-
flow technologies are used to coordinate or orchestrate services with certain specifications used to
define critical business process models such as two-phase transactions. Section 5.2 discusses the gen-
eral approach used in workflow, the BPEL Web Service standard, and several important workflow
approaches including Pegasus, Taverna, Kepler, Trident, and Swift. In all approaches, one is building
a collection of services which together tackle all or part of a distributed computing problem.

In general, a grid system applies static resources, while a cloud emphasizes elastic resources. For
some researchers, the differences between grids and clouds are limited only in dynamic resource
allocation based on virtualization and autonomic computing. One can build a grid out of multiple
clouds. This type of grid can do a better job than a pure cloud, because it can explicitly support
negotiated resource allocation. Thus one may end up building with a system of systems: such as a
cloud of clouds, a grid of clouds, or a cloud of grids, or inter-clouds as a basic SOA architecture.

Trends toward Distributed Operating Systems

The computers in most distributed systems are loosely coupled. Thus, a distributed system inher-
ently has multiple system images. This is mainly due to the fact that all node machines run with an
independent operating system. To promote resource sharing and fast communication among node
machines, it is best to have a distributed OS that manages all resources coherently and efficiently.
Such a system is most likely to be a closed system, and it will likely rely on message passing and
RPCs for internode communications. It should be pointed out that a distributed OS is crucial for
upgrading the performance, efficiency, and flexibility of distributed applications.

1.4.2.1 Distributed Operating Systems

Tanenbaum [26] identifies three approaches for distributing resource management functions in a
distributed computer system. The first approach is to build a network OS over a large number of
heterogeneous OS platforms. Such an OS offers the lowest transparency to users, and is essentially
a distributed file system, with independent computers relying on file sharing as a means of
communication. The second approach is to develop middleware to offer a limited degree of resource
sharing, similar to the MOSIX/OS developed for clustered systems (see Section 2.4.4). The third
approach is to develop a truly distributed OS to achieve higher use or system transparency.
Table 1.6 compares the functionalities of these three distributed operating systems.
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Distributed OS
Functionality

History and Current
System Status

Distributed OS
Architecture

OS Kernel, Middleware,
and Virtualization
Support

Communication
Mechanisms

AMOEBA Developed
at Vrije University [46]

Written in C and tested
in the European
community; version 5.2
released in 1995

Microkernel-based and
location-transparent,
uses many servers to
handle files, directory,
replication, run, boot,
and TCP/IP services

A special microkernel
that handles low-level
process, memory, I/O,
and communication
functions

Uses a network-layer
FLIP protocol and RPC
to implement point-to-
point and group
communication

Table 1.6 Feature Comparison of Three Distributed Operating Systems

DCE as OSF/1 by
Open Software
Foundation [7]

Built as a user
extension on top of
UNIX, VMS, Windows,
08/2, etc.

Middleware OS
providing a platform for
running distributed
applications; The
system supports RPC,
security, and threads

DCE packages handle
file,time, directory,
security services, RPC,
and authentication at
middleware or user
space

RPC supports
authenticated
communication and
other security services
in user programs

MOSIX for Linux
Clusters at Hebrew
University [3]

Developed since 1977,
now called MOSIX2
used in HPC Linux and
GPU clusters

A distributed OS with
resource discovery,
process migration,
runtime support, load
balancing, flood control,
configuration, etc.
MOSIX2 runs with
Linux 2.6; extensions
for use in multiple
clusters and clouds
with provisioned VMs

Using PVM, MPI in
collective
communications,
priority process control,
and queuing services

1.4.2.2 Amoeba versus DCE

DCE is a middleware-based system for distributed computing environments. The Amoeba was
academically developed at Free University in the Netherlands. The Open Software Foundation
(OSF) has pushed the use of DCE for distributed computing. However, the Amoeba, DCE, and
MOSIX?2 are still research prototypes that are primarily used in academia. No successful commer-
cial OS products followed these research systems.

We need new web-based operating systems to support virtualization of resources in distributed
environments. This is still a wide-open area of research. To balance the resource management work-
load, the functionalities of such a distributed OS should be distributed to any available server. In
this sense, the conventional OS runs only on a centralized platform. With the distribution of OS
services, the distributed OS design should take a lightweight microkernel approach like the Amoeba
[46], or should extend an existing OS like the DCE [7] by extending UNIX. The trend is to free
users from most resource management duties.

1.4.2.3 MOSIX2 for Linux Clusters

MOSIX?2 is a distributed OS [3], which runs with a virtualization layer in the Linux environment.
This layer provides a partial single-system image to user applications. MOSIX?2 supports both
sequential and parallel applications, and discovers resources and migrates software processes among
Linux nodes. MOSIX2 can manage a Linux cluster or a grid of multiple clusters. Flexible management
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of a grid allows owners of clusters to share their computational resources among multiple cluster
owners. A MOSIX-enabled grid can extend indefinitely as long as trust exists among the cluster owners.
The MOSIX?2 is being explored for managing resources in all sorts of clusters, including Linux clusters,
GPU clusters, grids, and even clouds if VMs are used. We will study MOSIX and its applications in
Section 2.4.4.

1.4.2.4 Transparency in Programming Environments

Figure 1.22 shows the concept of a transparent computing infrastructure for future computing
platforms. The user data, applications, OS, and hardware are separated into four levels. Data is
owned by users, independent of the applications. The OS provides clear interfaces, standard
programming interfaces, or system calls to application programmers. In future cloud infrastruc-
ture, the hardware will be separated by standard interfaces from the OS. Thus, users will be
able to choose from different OSes on top of the hardware devices they prefer to use. To sepa-
rate user data from specific application programs, users can enable cloud applications as SaaS.
Thus, users can switch among different services. The data will not be bound to specific
applications.

Parallel and Distributed Programming Models

In this section, we will explore four programming models for distributed computing with expected
scalable performance and application flexibility. Table 1.7 summarizes three of these models, along
with some software tool sets developed in recent years. As we will discuss, MPI is the most popular
programming model for message-passing systems. Google’s MapReduce and BigTable are for
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User data Data storage

Application @ O ,;u o;.m

Standard programming interface for various environment

Operating ja=_]
systems

Hardware

FIGURE 1.22

A transparent computing environment that separates the user data, application, OS, and hardware in time
and space - an ideal model for cloud computing.
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Table 1.7 Parallel and Distributed Programming Models and Tool Sets

Model Description Features

MPI A library of subprograms that can be Specify synchronous or asynchronous
called from C or FORTRAN to write point-to-point and collective
parallel programs running on distributed communication commands and /O
computer systems [6,28,42] operations in user programs for

message-passing execution

MapReduce A web programming model for scalable Map function generates a set of
data processing on large clusters over intermediate key/value pairs; Reduce
large data sets, or in web search function merges all intermediate values
operations [16] with the same key

Hadoop A software library to write and run large A scalable, economical, efficient, and
user applications on vast data sets in reliable tool for providing users with
business applications (http://hadoop easy access of commercial clusters
.apache.org/core)

effective use of resources from Internet clouds and data centers. Service clouds demand extending
Hadoop, EC2, and S3 to facilitate distributed computing over distributed storage systems. Many
other models have also been proposed or developed in the past. In Chapters 5 and 6, we will dis-
cuss parallel and distributed programming in more details.

1.4.3.1 Message-Passing Interface (MPI)

This is the primary programming standard used to develop parallel and concurrent programs to run
on a distributed system. MPI is essentially a library of subprograms that can be called from C or
FORTRAN to write parallel programs running on a distributed system. The idea is to embody
clusters, grid systems, and P2P systems with upgraded web services and utility computing applica-
tions. Besides MPI, distributed programming can be also supported with low-level primitives such
as the Parallel Virtual Machine (PVM). Both MPI and PVM are described in Hwang and Xu [28].

1.4.3.2 MapReduce

This is a web programming model for scalable data processing on large clusters over large data sets
[16]. The model is applied mainly in web-scale search and cloud computing applications. The user
specifies a Map function to generate a set of intermediate key/value pairs. Then the user applies a
Reduce function to merge all intermediate values with the same intermediate key. MapReduce is
highly scalable to explore high degrees of parallelism at different job levels. A typical MapReduce
computation process can handle terabytes of data on tens of thousands or more client machines.
Hundreds of MapReduce programs can be executed simultaneously; in fact, thousands of MapRe-
duce jobs are executed on Google’s clusters every day.

1.4.3.3 Hadoop Library

Hadoop offers a software platform that was originally developed by a Yahoo! group. The pack-
age enables users to write and run applications over vast amounts of distributed data. Users can
easily scale Hadoop to store and process petabytes of data in the web space. Also, Hadoop is
economical in that it comes with an open source version of MapReduce that minimizes overhead
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Table 1.8 Grid Standards and Toolkits for Scientific and Engineering Applications [6]
Key Features and Security
Standards Service Functionalities Infrastructure
OGSA Standard Open Grid Services Architecture; offers Supports a heterogeneous distributed
common grid service standards for environment, bridging CAs, multiple
general public use trusted intermediaries, dynamic policies,
multiple security mechanisms, etc.
Globus Toolkits Resource allocation, Globus security Sign-in multisite authentication with
infrastructure (GSI), and generic PKI, Kerberos, SSL, Proxy, delegation,
security service API and GSS API for message integrity and
confidentiality
IBM Grid Toolbox AIX and Linux grids built on top of Uses simple CA, grants access, grid
Globus Toolkit, autonomic computing, service (ReGS), supports grid
replica services application for Java (GAF4J), GridMap
in IntraGrid for security update

in task spawning and massive data communication. It is efficient, as it processes data with a high
degree of parallelism across a large number of commodity nodes, and it is reliable in that it auto-
matically keeps multiple data copies to facilitate redeployment of computing tasks upon unex-
pected system failures.

1.4.3.4 Open Grid Services Architecture (0GSA)

The development of grid infrastructure is driven by large-scale distributed computing applications.
These applications must count on a high degree of resource and data sharing. Table 1.8 introduces
OGSA as a common standard for general public use of grid services. Genesis II is a realization of
OGSA. Key features include a distributed execution environment, Public Key Infrastructure (PKI)
services using a local certificate authority (CA), trust management, and security policies in grid
computing.

1.4.3.5 Globus Toolkits and Extensions

Globus is a middleware library jointly developed by the U.S. Argonne National Laboratory and
USC Information Science Institute over the past decade. This library implements some of the
OGSA standards for resource discovery, allocation, and security enforcement in a grid environment.
The Globus packages support multisite mutual authentication with PKI certificates. The current ver-
sion of Globus, GT 4, has been in use since 2008. In addition, IBM has extended Globus for busi-
ness applications. We will cover Globus and other grid computing middleware in more detail in
Chapter 7.

PERFORMANCE, SECURITY, AND ENERGY EFFICIENCY

In this section, we will discuss the fundamental design principles along with rules of thumb for
building massively distributed computing systems. Coverage includes scalability, availability, pro-
gramming models, and security issues in clusters, grids, P2P networks, and Internet clouds.
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Performance Metrics and Scalability Analysis

Performance metrics are needed to measure various distributed systems. In this section, we will dis-
cuss various dimensions of scalability and performance laws. Then we will examine system scalabil-
ity against OS images and the limiting factors encountered.

1.5.1.1 Performance Metrics

We discussed CPU speed in MIPS and network bandwidth in Mbps in Section 1.3.1 to estimate pro-
cessor and network performance. In a distributed system, performance is attributed to a large number
of factors. System throughput is often measured in MIPS, Tflops (tera floating-point operations per
second), or TPS (transactions per second). Other measures include job response time and network
latency. An interconnection network that has low latency and high bandwidth is preferred. System
overhead is often attributed to OS boot time, compile time, I/O data rate, and the runtime support sys-
tem used. Other performance-related metrics include the QoS for Internet and web services; system
availability and dependability; and security resilience for system defense against network attacks.

1.5.1.2 Dimensions of Scalability

Users want to have a distributed system that can achieve scalable performance. Any resource upgrade in
a system should be backward compatible with existing hardware and software resources. Overdesign
may not be cost-effective. System scaling can increase or decrease resources depending on many practi-
cal factors. The following dimensions of scalability are characterized in parallel and distributed systems:

* Size scalability This refers to achieving higher performance or more functionality by increasing
the machine size. The word “size” refers to adding processors, cache, memory, storage, or /O
channels. The most obvious way to determine size scalability is to simply count the number of
processors installed. Not all parallel computer or distributed architectures are equally size-
scalable. For example, the IBM S2 was scaled up to 512 processors in 1997. But in 2008, the
IBM BlueGene/L system scaled up to 65,000 processors.

* Software scalability This refers to upgrades in the OS or compilers, adding mathematical and
engineering libraries, porting new application software, and installing more user-friendly
programming environments. Some software upgrades may not work with large system
configurations. Testing and fine-tuning of new software on larger systems is a nontrivial job.

* Application scalability This refers to matching problem size scalability with machine size
scalability. Problem size affects the size of the data set or the workload increase. Instead of increasing
machine size, users can enlarge the problem size to enhance system efficiency or cost-effectiveness.

* Technology scalability This refers to a system that can adapt to changes in building tech-
nologies, such as the component and networking technologies discussed in Section 3.1. When
scaling a system design with new technology one must consider three aspects: time, space, and
heterogeneity. (1) Time refers to generation scalability. When changing to new-generation pro-
cessors, one must consider the impact to the motherboard, power supply, packaging and cooling,
and so forth. Based on past experience, most systems upgrade their commodity processors every
three to five years. (2) Space is related to packaging and energy concerns. Technology scalabil-
ity demands harmony and portability among suppliers. (3) Heterogeneity refers to the use of
hardware components or software packages from different vendors. Heterogeneity may limit the
scalability.
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1.5.1.3 Scalabhility versus 0S Image Count

In Figure 1.23, scalable performance is estimated against the multiplicity of OS images in distribu-
ted systems deployed up to 2010. Scalable performance implies that the system can achieve higher
speed by adding more processors or servers, enlarging the physical node’s memory size, extending
the disk capacity, or adding more I/O channels. The OS image is counted by the number of inde-
pendent OS images observed in a cluster, grid, P2P network, or the cloud. SMP and NUMA are
included in the comparison. An SMP (symmetric multiprocessor) server has a single system image,
which could be a single node in a large cluster. By 2010 standards, the largest shared-memory
SMP node was limited to a few hundred processors. The scalability of SMP systems is constrained
primarily by packaging and the system interconnect used.

NUMA (nonuniform memory access) machines are often made out of SMP nodes with distribu-
ted, shared memory. A NUMA machine can run with multiple operating systems, and can scale to
a few thousand processors communicating with the MPI library. For example, a NUMA machine
may have 2,048 processors running 32 SMP operating systems, resulting in 32 OS images in the
2,048-processor NUMA system. The cluster nodes can be either SMP servers or high-end machines
that are loosely coupled together. Therefore, clusters have much higher scalability than NUMA
machines. The number of OS images in a cluster is based on the cluster nodes concurrently in use.
The cloud could be a virtualized cluster. As of 2010, the largest cloud was able to scale up to a
few thousand VMs.

Keeping in mind that many cluster nodes are SMP or multicore servers, the total number of pro-
cessors or cores in a cluster system is one or two orders of magnitude greater than the number of
OS images running in the cluster. The grid node could be a server cluster, or a mainframe, or a
supercomputer, or an MPP. Therefore, the number of OS images in a large grid structure could be
hundreds or thousands fewer than the total number of processors in the grid. A P2P network can
easily scale to millions of independent peer nodes, essentially desktop machines. P2P performance
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System scalability versus multiplicity of OS images based on 2010 technology.
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depends on the QoS in a public network. Low-speed P2P networks, Internet clouds, and computer
clusters should be evaluated at the same networking level.

1.5.1.4 Amdahl’s Law
Consider the execution of a given program on a uniprocessor workstation with a total execution
time of T minutes. Now, let’s say the program has been parallelized or partitioned for parallel
execution on a cluster of many processing nodes. Assume that a fraction « of the code must be exe-
cuted sequentially, called the sequential bottleneck. Therefore, (1 — a) of the code can be compiled
for parallel execution by n processors. The total execution time of the program is calculated by
aT+ (1 —a)T/n, where the first term is the sequential execution time on a single processor and the
second term is the parallel execution time on n processing nodes.

All system or communication overhead is ignored here. The I/O time or exception handling time
is also not included in the following speedup analysis. Amdahl’s Law states that the speedup factor
of using the n-processor system over the use of a single processor is expressed by:

Speedup=S=T/[aT + (1 —a)T/n]=U[a+ (1 —a)/n] (1.1

The maximum speedup of n is achieved only if the sequential bottleneck « is reduced to zero or
the code is fully parallelizable with a = 0. As the cluster becomes sufficiently large, that is, n —
o0, S approaches 1/a, an upper bound on the speedup S. Surprisingly, this upper bound is indepen-
dent of the cluster size n. The sequential bottleneck is the portion of the code that cannot be paral-
lelized. For example, the maximum speedup achieved is 4, if a = 0.25 or 1 —a = 0.75, even if one
uses hundreds of processors. Amdahl’s law teaches us that we should make the sequential bottle-
neck as small as possible. Increasing the cluster size alone may not result in a good speedup in
this case.

1.5.1.5 Problem with Fixed Workload

In Amdahl’s law, we have assumed the same amount of workload for both sequential and parallel
execution of the program with a fixed problem size or data set. This was called fixed-workload
speedup by Hwang and Xu [14]. To execute a fixed workload on n processors, parallel processing
may lead to a system efficiency defined as follows:

E=Sh=1/[an+1-d] (1.2)

Very often the system efficiency is rather low, especially when the cluster size is very large.
To execute the aforementioned program on a cluster with n = 256 nodes, extremely low efficiency
E=1/[0.25 %256 + 0.75] = 1.5% is observed. This is because only a few processors (say, 4) are
kept busy, while the majority of the nodes are left idling.

1.5.1.6 Gustafson’s Law

To achieve higher efficiency when using a large cluster, we must consider scaling the problem size
to match the cluster capability. This leads to the following speedup law proposed by John Gustafson
(1988), referred as scaled-workload speedup in [14]. Let W be the workload in a given program.
When using an n-processor system, the user scales the workload to W' = aW + (1 — a)nW. Note that
only the parallelizable portion of the workload is scaled n times in the second term. This scaled
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workload W’ is essentially the sequential execution time on a single processor. The parallel
execution time of a scaled workload W’ on n processors is defined by a scaled-workload speedup
as follows:

S'=W/IW=[aW+ (1 —a)nW)/W=a+ (1 —a)n (1.3)

This speedup is known as Gustafson’s law. By fixing the parallel execution time at level W, the
following efficiency expression is obtained:

E'=Sn=aln+(1-a) (1.4)

For the preceding program with a scaled workload, we can improve the efficiency of using a
256-node cluster to E'=0.25/256+0.75 = 0.751. One should apply Amdahl’s law and Gustafson’s
law under different workload conditions. For a fixed workload, users should apply Amdahl’s law.
To solve scaled problems, users should apply Gustafson’s law.

Fault Tolerance and System Availability

In addition to performance, system availability and application flexibility are two other important
design goals in a distributed computing system.

1.5.2.1 System Availability

HA (high availability) is desired in all clusters, grids, P2P networks, and cloud systems. A system is
highly available if it has a long mean time to failure (MTTF) and a short mean time to repair
(MTTR). System availability is formally defined as follows:

System Availability=MTTF/(MTTF + MTTR) (1.5)

System availability is attributed to many factors. All hardware, software, and network compo-
nents may fail. Any failure that will pull down the operation of the entire system is called a single
point of failure. The rule of thumb is to design a dependable computing system with no single
point of failure. Adding hardware redundancy, increasing component reliability, and designing for
testability will help to enhance system availability and dependability. In Figure 1.24, the effects on
system availability are estimated by scaling the system size in terms of the number of processor
cores in the system.

In general, as a distributed system increases in size, availability decreases due to a higher chance
of failure and a difficulty in isolating the failures. Both SMP and MPP are very vulnerable with
centralized resources under one OS. NUMA machines have improved in availability due to the use
of multiple OSes. Most clusters are designed to have HA with failover capability. Meanwhile, pri-
vate clouds are created out of virtualized data centers; hence, a cloud has an estimated availability
similar to that of the hosting cluster. A grid is visualized as a hierarchical cluster of clusters. Grids
have higher availability due to the isolation of faults. Therefore, clusters, clouds, and grids have
decreasing availability as the system increases in size. A P2P file-sharing network has the highest
aggregation of client machines. However, it operates independently with low availability, and even
many peer nodes depart or fail simultaneously.
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FIGURE 1.24
Estimated system availability by system size of common configurations in 2010.

Network Threats and Data Integrity

Clusters, grids, P2P networks, and clouds demand security and copyright protection if they are to be
accepted in today’s digital society. This section introduces system vulnerability, network threats,
defense countermeasures, and copyright protection in distributed or cloud computing systems.

1.5.3.1 Threats to Systems and Networks
Network viruses have threatened many users in widespread attacks. These incidents have created a
worm epidemic by pulling down many routers and servers, and are responsible for the loss of bil-
lions of dollars in business, government, and services. Figure 1.25 summarizes various attack types
and their potential damage to users. As the figure shows, information leaks lead to a loss of confi-
dentiality. Loss of data integrity may be caused by user alteration, Trojan horses, and service spoof-
ing attacks. A denial of service (DoS) results in a loss of system operation and Internet connections.
Lack of authentication or authorization leads to attackers’ illegitimate use of computing
resources. Open resources such as data centers, P2P networks, and grid and cloud infrastructures
could become the next targets. Users need to protect clusters, grids, clouds, and P2P systems.
Otherwise, users should not use or trust them for outsourced work. Malicious intrusions to these
systems may destroy valuable hosts, as well as network and storage resources. Internet anomalies
found in routers, gateways, and distributed hosts may hinder the acceptance of these public-resource
computing services.

1.5.3.2 Security Responsibilities

Three security requirements are often considered: confidentiality, integrity, and availability for most
Internet service providers and cloud users. In the order of SaaS, PaaS, and IaaS, the providers gra-
dually release the responsibility of security control to the cloud users. In summary, the SaaS model
relies on the cloud provider to perform all security functions. At the other extreme, the IaaS model
wants the users to assume almost all security functions, but to leave availability in the hands of the
providers. The PaaS model relies on the provider to maintain data integrity and availability, but bur-
dens the user with confidentiality and privacy control.
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FIGURE 1.25
Various system attacks and network threats to the cyberspace, resulting 4 types of losses.

1.5.3.3 Copyright Protection

Collusive piracy is the main source of intellectual property violations within the boundary of a P2P
network. Paid clients (colluders) may illegally share copyrighted content files with unpaid clients
(pirates). Online piracy has hindered the use of open P2P networks for commercial content delivery.
One can develop a proactive content poisoning scheme to stop colluders and pirates from alleged copy-
right infringements in P2P file sharing. Pirates are detected in a timely manner with identity-based
signatures and timestamped tokens. This scheme stops collusive piracy from occurring without hurting
legitimate P2P clients. Chapters 4 and 7 cover grid and cloud security, P2P reputation systems, and
copyright protection.

1.5.3.4 System Defense Technologies

Three generations of network defense technologies have appeared in the past. In the first generation,
tools were designed to prevent or avoid intrusions. These tools usually manifested themselves as
access control policies or tokens, cryptographic systems, and so forth. However, an intruder could
always penetrate a secure system because there is always a weak link in the security provisioning
process. The second generation detected intrusions in a timely manner to exercise remedial actions.
These techniques included firewalls, intrusion detection systems (IDSes), PKI services, reputation
systems, and so on. The third generation provides more intelligent responses to intrusions.

1.5.3.5 Data Protection Infrastructure

Security infrastructure is required to safeguard web and cloud services. At the user level, one
needs to perform trust negotiation and reputation aggregation over all users. At the application
end, we need to establish security precautions in worm containment and intrusion detection
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against virus, worm, and distributed DoS (DDoS) attacks. We also need to deploy mechanisms to
prevent online piracy and copyright violations of digital content. In Chapter 4, we will study
reputation systems for protecting cloud systems and data centers. Security responsibilities are
divided between cloud providers and users differently for the three cloud service models. The
providers are totally responsible for platform availability. The TaaS users are more responsible for
the confidentiality issue. The [aaS providers are more responsible for data integrity. In PaaS and
SaaS services, providers and users are equally responsible for preserving data integrity and
confidentiality.

Energy Efficiency in Distributed Computing

Primary performance goals in conventional parallel and distributed computing systems are high
performance and high throughput, considering some form of performance reliability (e.g., fault tol-
erance and security). However, these systems recently encountered new challenging issues including
energy efficiency, and workload and resource outsourcing. These emerging issues are crucial not
only on their own, but also for the sustainability of large-scale computing systems in general. This
section reviews energy consumption issues in servers and HPC systems, an area known as distribu-
ted power management (DPM).

Protection of data centers demands integrated solutions. Energy consumption in parallel and dis-
tributed computing systems raises various monetary, environmental, and system performance issues.
For example, Earth Simulator and Petaflop are two systems with 12 and 100 megawatts of peak
power, respectively. With an approximate price of $100 per megawatt, their energy costs during
peak operation times are $1,200 and $10,000 per hour; this is beyond the acceptable budget of
many (potential) system operators. In addition to power cost, cooling is another issue that must be
addressed due to negative effects of high temperature on electronic components. The rising tempera-
ture of a circuit not only derails the circuit from its normal range, but also decreases the lifetime of
its components.

1.5.4.1 Energy Consumption of Unused Servers

To run a server farm (data center) a company has to spend a huge amount of money for hardware,
software, operational support, and energy every year. Therefore, companies should thoroughly
identify whether their installed server farm (more specifically, the volume of provisioned resources)
is at an appropriate level, particularly in terms of utilization. It was estimated in the past that, on
average, one-sixth (15 percent) of the full-time servers in a company are left powered on without
being actively used (i.e., they are idling) on a daily basis. This indicates that with 44 million servers
in the world, around 4.7 million servers are not doing any useful work.

The potential savings in turning off these servers are large—$3.8 billion globally in energy costs
alone, and $24.7 billion in the total cost of running nonproductive servers, according to a study
by 1E Company in partnership with the Alliance to Save Energy (ASE). This amount of wasted
energy is equal to 11.8 million tons of carbon dioxide per year, which is equivalent to the CO
pollution of 2.1 million cars. In the United States, this equals 3.17 million tons of carbon dioxide,
or 580,678 cars. Therefore, the first step in IT departments is to analyze their servers to find unused
and/or underutilized servers.



52 CHAPTER 1 Distributed System Models and Enabling Technologies

Application layer

1 o N £
DNA sequence Event simulation and analysis  High energy physics
L alignment forecasting )
4 N

Middleware layer

Reliability
control

- J
e A
Resource layer

Server Laptop Supercomputer Telescope
o J
( Network layer )
Router Switch Copper Fiber optic
o J
FIGURE 1.26

Four operational layers of distributed computing systems.
(Courtesy of Zomaya, Rivandi and Lee of the University of Sydney [33])

1.5.4.2 Reducing Energy in Active Servers

In addition to identifying unused/underutilized servers for energy savings, it is also necessary to
apply appropriate techniques to decrease energy consumption in active distributed systems with neg-
ligible influence on their performance. Power management issues in distributed computing platforms
can be categorized into four layers (see Figure 1.26): the application layer, middleware layer,
resource layer, and network layer.

1.5.4.3 Application Layer

Until now, most user applications in science, business, engineering, and financial areas tend to
increase a system’s speed or quality. By introducing energy-aware applications, the challenge is to
design sophisticated multilevel and multi-domain energy management applications without hurting
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performance. The first step toward this end is to explore a relationship between performance and
energy consumption. Indeed, an application’s energy consumption depends strongly on the number
of instructions needed to execute the application and the number of transactions with the storage
unit (or memory). These two factors (compute and storage) are correlated and they affect comple-
tion time.

1.5.4.4 Middleware Layer

The middleware layer acts as a bridge between the application layer and the resource layer. This
layer provides resource broker, communication service, task analyzer, task scheduler, security
access, reliability control, and information service capabilities. It is also responsible for applying
energy-efficient techniques, particularly in task scheduling. Until recently, scheduling was aimed at
minimizing makespan, that is, the execution time of a set of tasks. Distributed computing systems
necessitate a new cost function covering both makespan and energy consumption.

1.5.4.5 Resource Layer

The resource layer consists of a wide range of resources including computing nodes and storage
units. This layer generally interacts with hardware devices and the operating system; therefore, it
is responsible for controlling all distributed resources in distributed computing systems. In the
recent past, several mechanisms have been developed for more efficient power management of
hardware and operating systems. The majority of them are hardware approaches particularly for
processors.

Dynamic power management (DPM) and dynamic voltage-frequency scaling (DVFS) are two
popular methods incorporated into recent computer hardware systems [21]. In DPM, hardware
devices, such as the CPU, have the capability to switch from idle mode to one or more lower-
power modes. In DVFS, energy savings are achieved based on the fact that the power consumption
in CMOS circuits has a direct relationship with frequency and the square of the voltage supply.
Execution time and power consumption are controllable by switching among different frequencies
and voltages [31].

1.5.4.6 Network Layer

Routing and transferring packets and enabling network services to the resource layer are the main
responsibility of the network layer in distributed computing systems. The major challenge to build
energy-efficient networks is, again, determining how to measure, predict, and create a balance
between energy consumption and performance. Two major challenges to designing energy-efficient
networks are:

* The models should represent the networks comprehensively as they should give a full
understanding of interactions among time, space, and energy.

* New, energy-efficient routing algorithms need to be developed. New, energy-efficient protocols
should be developed against network attacks.

As information resources drive economic and social development, data centers become increas-
ingly important in terms of where the information items are stored and processed, and where ser-
vices are provided. Data centers become another core infrastructure, just like the power grid and
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transportation systems. Traditional data centers suffer from high construction and operational costs,
complex resource management, poor usability, low security and reliability, and huge energy con-
sumption. It is necessary to adopt new technologies in next-generation data-center designs, a topic
we will discuss in more detail in Chapter 4.

1.5.4.7 DVFS Method for Energy Efficiency

The DVFS method enables the exploitation of the slack time (idle time) typically incurred by inter-
task relationship. Specifically, the slack time associated with a task is utilized to execute the task in
a lower voltage frequency. The relationship between energy and voltage frequency in CMOS
circuits is related by:

E=Cyf’t
_ (v—v,)2 (1.6)
f=k—=

where v, C,4, K, and v, are the voltage, circuit switching capacity, a technology dependent factor,
and threshold voltage, respectively, and the parameter ¢ is the execution time of the task under
clock frequency f. By reducing voltage and frequency, the device’s energy consumption can also be
reduced.

B
Example 1.2 Energy Efficiency in Distributed Power Management

Figure 1.27 illustrates the DVFS method. This technique as shown on the right saves the energy compared
to traditional practices shown on the left. The idea is to reduce the frequency and/or voltage during work-
load slack time. The transition latencies between lower-power modes are very small. Thus energy is saved
by switching between operational modes. Switching between low-power modes affects performance.
Storage units must interact with the computing nodes to balance power consumption. According to Ge,
Feng, and Cameron [21], the storage devices are responsible for about 27 percent of the total energy con-
sumption in a data center. This figure increases rapidly due to a 60 percent increase in storage needs
annually, making the situation even worse.
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FIGURE 1.27

The DVFS technique (right) saves energy, compared to traditional practices (left) by reducing the
frequency or voltage during slack time.
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BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS

Over the past four decades, parallel processing and distributed computing have been hot topics for
research and development. Earlier work in parallel computing can be found in several classic books
[14,17,27,28]. Recent coverage of distributed systems can be found in [8,13,20,22]. Cluster comput-
ing was covered in [2,10,28,38] and grid computing in [6,18,42,47,51]. P2P networks were intro-
duced in [6,34,46]. Multicore CPUs and many-core GPU processors were discussed in [15,32,36].
Information on the Top 500 supercomputers can be found in [50].

Data centers are introduced in [4,19,26], and recent computer architecture in [24,26]. Cloud
computing is studied in [1,9,11,18,29,30,39,44]. The edited volume [11] on cloud computing by
Buyya, Broberg, and Goscinski serves as a good resource on cloud computing research. Chou’s
book [12] emphasizes business models for cloud services. Virtualization techniques were introduced
in [40-44]. The articles by Bell, Gray, and Szalay [5]; Foster, et al. [18]; and Hey [25] address
critical issues concerning data-intensive grid and cloud computing. Massive data parallelism and
programming are covered in [14,32].

Distributed algorithms and MPI programming are studied in [3,12,15,22,28]. Distributed operat-
ing systems and software tools are covered in [3,7,13,46]. Energy efficiency and power manage-
ment are studied in [21,31,52]. The Internet of Things is studied in [45,48]. The work of Hwang
and Li [30] suggested ways to cope with cloud security and data protection problems. In subsequent
chapters, additional references will be provided. The following list highlights some international
conferences, magazines, and journals that often report on the latest developments in parallelism,
clusters, grids, P2P systems, and cloud and distributed systems:

* IEEE and Related Conference Publications Internet Computing, TPDS (Transactions on
Parallel and Distributed Systems), TC (Transactions on Computers), TON (Transactions on
Networking), ICDCS (International Conference on Distributed Computing Systems), IPDPS
(International Parallel and Distributed Processing Symposium), INFOCOM, GLOBECOM,
CCGrid (Clusters, Clouds and The Grid), P2P Computing, HPDC (High-Performance
Distributed Computing), CloudCom (International Conference on Cloud Computing Technology
and Science), ISCA (International Symposium on Computer Architecture), HPCA (High-
Performance Computer Architecture), Computer Magazine, TDSC (Transactions on Dependable
and Secure Computing), TKDE (Transactions on Knowledge and Data Engineering), HPCC
(High Performance Computing and Communications), ICPADS (International Conference on
Parallel and Distributed Applications and Systems), NAS (Networks, Architectures, and
Storage), and GPC (Grid and Pervasive Computing)

* ACM, Internet Society, IFIP, and Other Relevant Publications Supercomputing Conference,
ACM Transactions on Computing Systems, USENIX Technical Conference, JPDC (Journal of
Parallel and Distributed Computing), Journal of Cloud Computing, Journal of Distributed
Computing, Journal of Cluster Computing, Future Generation Computer Systems, Journal of
Grid Computing, Journal of Parallel Computing, International Conference on Parallel Processing
(ICPP), European Parallel Computing Conference (EuroPAR), Concurrency: Practice and
Experiences (Wiley), NPC (IFIP Network and Parallel Computing), and PDCS (ISCA Parallel
and Distributed Computer Systems)
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HOMEWORK PROBLEMS
Problem 1.1

Briefly define the following basic techniques and technologies that represent recent related advances
in computer architecture, parallel processing, distributed computing, Internet technology, and
information services:

. High-performance computing (HPC) system
. High-throughput computing (HTC) system

. Peer-to-peer (P2P) network

. Computer cluster versus computational grid
. Service-oriented architecture (SOA)

. Pervasive computing versus Internet computing
. Virtual machine versus virtual infrastructure
. Public cloud versus private cloud

. Radio-frequency identifier (RFID)

. Global positioning system (GPS)

. Sensor network

. Internet of Things (IoT)

. Cyber-physical system (CPS)

Problem 1.2

Circle only one correct answer in each of the following two questions:

S O XN . T0Q D 20 T D

1. In the 2009 Top 500 list of the fastest computer systems, which architecture dominates?
a. Symmetric shared-memory multiprocessor systems.
b. Centralized massively parallel processor (MPP) systems.
€. Clusters of cooperative computers.
2. In a cloud formed by a cluster of servers, all servers must be selected as follows:
a. All cloud machines must be built on physical servers.
b. All cloud machines must be built with virtual servers.
€. The cloud machines can be either physical or virtual servers.

Problem 1.3

An increasing number of organizations in industry and business sectors adopt cloud systems.
Answer the following questions regarding cloud computing:

a. List and describe the main characteristics of cloud computing systems.
h. Discuss key enabling technologies in cloud computing systems.
c. Discuss different ways for cloud service providers to maximize their revenues.

Problem 1.4

Match 10 abbreviated terms and system models on the left with their descriptions on the right. Enter
the description label (a, b, ¢, ..., j) in the underlined blanks in front of the terms.
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Globus (@) A scalable software platform promoted by Apache for web users to write and
run applications over vast amounts of distributed data

BitTorrent (b) A P2P network for MP3 music delivery with a centralized directory server

Gnutella (e) The programming model and associated implementation by Google for
distributed mapping and reduction of very large data sets

EC2 (d) A middleware library jointly developed by USC/ISI and Argonne National Lab for
grid resource management and job scheduling

TeraGrid (e) A distributed storage program by Google for managing structured data that can
scale to very large sizes

EGEE (f A P2P file-sharing network using multiple file index trackers

Hadoop (g) A critical design goal of clusters of computers to tolerate nodal faults or recovery
from host failures

SETI@home (h) The service architecture specification as an open grid standard

Napster (i) An elastic and flexible computing environment that allows web application
developers to acquire cloud resources effectively

BigTable () A P2P grid over 3 million desktops for distributed signal processing in search of
extraterrestrial intelligence

Problem 1.5

Consider a multicore processor with four heterogeneous cores labeled A, B, C, and D. Assume cores A
and D have the same speed. Core B runs twice as fast as core A, and core C runs three times faster than
core A. Assume that all four cores start executing the following application at the same time and no
cache misses are encountered in all core operations. Suppose an application needs to compute the square
of each element of an array of 256 elements. Assume 1 unit time for core A or D to compute the square
of an element. Thus, core B takes % unit time and core C takes % unit time to compute the square of an
element. Given the following division of labor in four cores:

Core A 32 elements
Core B 128 elements
Core C 64 elements
Core D 32 elements

a. Compute the rotal execution time (in time units) for using the four-core processor to compute the
squares of 256 elements in parallel. The four cores have different speeds. Some faster cores finish
the job and may become idle, while others are still busy computing until all squares are computed.

h. Calculate the processor utilization rate, which is the total amount of time the cores are busy (not
idle) divided by the total execution time they are using all cores in the processor to execute the
above application.

Problem 1.6

Consider parallel execution of an MPI-coded C program in SPMD (single program and multiple
data streams) mode on a server cluster consisting of n identical Linux servers. SPMD mode means



60 CHAPTER 1 Distributed System Models and Enabling Technologies

the same MPI program is running simultaneously on all servers but over different data sets of
identical workloads. Assume that 25 percent of the program execution is attributed to the execution
of MPI commands. For simplicity, assume that all MPI commands take the same amount of execu-
tion time. Answer the following questions using Amdahl’s law:

a. Given that the total execution time of the MPI program on a four-server cluster is 7 minutes,
what is the speedup factor of executing the same MPI program on a 256-server cluster,
compared with using the four-server cluster? Assume that the program execution is deadlock-
free and ignore all other runtime execution overheads in the calculation.

b. Suppose that all MPI commands are now enhanced by a factor of 2 by using active messages
executed by message handlers at the user space. The enhancement can reduce the execution
time of all MPI commands by half. What is the speedup of the 256-server cluster installed
with this MPI enhancement, computed with the old 256-server cluster without MPI
enhancement?

Problem 1.7

Consider a program for multiplying two large-scale N X N matrices, where N is the matrix size. The
sequential multiply time on a single server is T, = ¢N° minutes, where ¢ is a constant determined by
the server used. An MPI-code parallel program requires T, = cN°/n + dN*/n®> minutes to complete
execution on an n-server cluster system, where d is a constant determined by the MPI version used.
Assume the program has a zero sequential bottleneck (a =0). The second term in 7,, accounts for
the total message-passing overhead experienced by n servers.

Answer the following questions for a given cluster configuration with n = 64 servers, ¢ = 0.8,
and d = 0.1. Parts (a, b) have a fixed workload corresponding to the matrix size N = 15,000. Parts
(c, d) have a scaled workload associated with an enlarged matrix size N’ = n'? N=64"% x 15,000 =
4 x 15,000 = 60,000. Assume the same cluster configuration to process both workloads. Thus, the
system parameters n, ¢, and d stay unchanged. Running the scaled workload, the overhead also
increases with the enlarged matrix size N'.

a. Using Amdahl’s law, calculate the speedup of the n-server cluster over a single server.

h. What is the efficiency of the cluster system used in Part (a)?

c. Calculate the speedup in executing the scaled workload for an enlarged N’ X N’ matrix on the
same cluster configuration using Gustafson’s law.

d. Calculate the efficiency of running the scaled workload in Part (c) on the 64-processor cluster.

e. Compare the above speedup and efficiency results and comment on their implications.

Problem 1.8

Compare the similarities and differences between traditional computing clusters/grids and the
computing clouds launched in recent years. Consider all technical and economic aspects as listed
below. Answer the following questions against real example systems or platforms built in recent
years. Also discuss the possible convergence of the two computing paradigms in the future.

a. Hardware, software, and networking support
h. Resource allocation and provisioning methods
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€. Infrastructure management and protection
d. Support of utility computing services
e. Operational and cost models applied

Problem 1.9

Answer the following questions regarding PC and HPC systems:

a. Explain why PCs and HPCs were evolutionary rather than revolutionary in the past 30 years.

h. Discuss the drawbacks in disruptive changes in processor architecture. Why is the memory wall
a major problem in achieving scalable changes in performance?

c. Explain why x-86 processors are still dominating the PC and HPC markets.

Problem 1.10

Multicore and many-core processors have appeared in widespread use in both desktop computers
and HPC systems. Answer the following questions regarding advanced processors, memory devices,
and system interconnects:

a. What are the differences between multicore CPUs and GPUs in terms of architecture and usage?

b. Explain why parallel programming cannot match the progress of processor technology.

€. Suggest ideas and defend your argument with some plausible solutions to this mismatch problem
between core scaling and effective programming and use of multicores.

d. Explain why flash memory SSD can deliver better speedups in some HPC or HTC applications.

e. Justify the prediction that InfiniBand and Ethernet will continue to dominate the HPC market.

Problem 1.11

In Figure 1.7, you studied five categories of modern processors. Characterize in Table 1.9 five
micro-architectures for designing these processors. Comment on their advantages/shortcomings
and identify the names of two example commercial processors that are built in each processor
category. Assume a single core in the superscalar processor and the three multithreaded proces-
sors. The last processor category is a multicore CMP and each core is assumed to handle one
thread at a time.

Table 1.9 Comparison of Five Micro-architectures for Modern Processors

Architecture Advantages/ Representative
Processor Micro-architectures Charcteristics Shortcomings Processors
Single-threaded Superscalar
Fine-grain Multithreading
Coarse-grain Multithreading
Simultaneous Multithreading (SMT)
Multicore Chip Multiprocessor (CMP)
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Problem 1.12

Discuss the major advantages and disadvantages in the following areas:

a. Why are virtual machines and virtual clusters suggested in cloud computing systems?
b. What breakthroughs are required to build virtualized cloud systems cost-effectively?
€. What are the impacts of cloud platforms on the future of the HPC and HTC industry?

Problem 1.13

Characterize the following three cloud computing models:

a. What is an TaaS (Infrastructure-as-a-Service) cloud? Give one example system.
b. What is a PaaS (Platform-as-a-Service) cloud? Give one example system.
€. What is a SaaS (Software-as-a-Service) cloud? Give one example system.

Problem 1.14

Briefly explain each of the following cloud computing services. Identify two cloud providers by
company name in each service category.

Application cloud services
Platform cloud services
Compute and storage services
Collocation cloud services
Network cloud services

Problem 1.15

Briefly explain the following terms associated with network threats or security defense in a distribu-
ted computing system:

Pa2oo®

Denial of service (DoS)
Trojan horse

Network worm

Service spoofing
Authorization
Authentication

Data integrity
Confidentiality

Problem 1.16

Briefly answer the following questions regarding green information technology and energy effi-
ciency in distributed systems:

TR AP 20D

a. Why is power consumption critical to data-center operations?

b. What constitutes the dynamic voltage frequency scaling (DVFS) technique?

c. Conduct in-depth research on recent progress in green IT research, and write a report on its
applications to data-center design and cloud service applications.
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Problem 1.17

Compare GPU and CPU chips in terms of their strengths and weaknesses. In particular, discuss the
trade-offs between power efficiency, programmability, and performance. Also compare various
MPP architectures in processor selection, performance target, efficiency, and packaging constraints.

Problem 1.18

Compare three distributed operating systems: Amoeba, DCE, and MOSIX. Research their recent
developments and their impact on applications in clusters, grids, and clouds. Discuss the suitability
of each system in its commercial or experimental distributed applications. Also discuss each
system’s limitations and explain why they were not successful as commercial systems.



This page intentionally left blank



CHAPTER

Computer Clusters for Scalable
Parallel Computing

CHAPTER OUTLINE

R0 1111111 T /2 66
2.1 Clustering for Massive Parallelism. .. ..........ooiiiiiiiiii e e e e ean e eeaens 66
2.1.1 Cluster Development Trends. . ...t e e e 66
2.1.2 Design Objectives of Computer Clusters. ... i 68
2.1.3 Fundamental Cluster Design ISSUES. ... ..ottt e 69
2.1.4 Analysis of the Top 500 SUPErCOMPULEIS. ..\ttt i 71
2.2 Computer Clusters and MPP Architectures. .........covuiiiiiiri i e e i i raraeannrnnannns 75
2.2.1 Cluster Organization and Resource Sharing. ........ ..o 76
2.2.2 Node Architectures and MPP Packaging..........couiiiiiiiiii i 77
2.2.3 Cluster System Interconnects. ... 80
2.2.4 Hardware, Software, and Middleware Support......... ... i 83
2.2.5 GPU Clusters for Massive Parallelism. . ........oouiii e 83
2.3 Design Principles of Computer CIUSEerS. .. ........cuieri et a e e raraeaeaneaenens 87
2.3.1 Single-System Image Features. . ... e 87
2.3.2 High Availability through Redundancy......... ..o e 95
2.3.3 Fault-Tolerant Cluster Configurations. .......... i e 99
2.3.4 Checkpointing and Recovery TeChniqQUes. .. ...t e 101
2.4 Cluster Job and Resource Management. . ..........ueuurrnrnerarnaranrnranraranrarsnararensnnnns 104
2.4.1 Cluster Job Scheduling Methods. ... e 104
2.4.2 Cluster Job Management Systems. . ...t 107
2.4.3 Load Sharing Facility (LSF) for Cluster Computing........ ..., 109
2.4.4 MOSIX: An OS for Linux Clusters and Clouds. . .......ouueiiiiiii i 110
2.5 Case Studies of Top Supercomputer SYStemS. .......vurieiriei i iieararaerararanrnaranannnnns 112
2.5.1 Tianhe-1A: The World Fastest Supercomputer in 2010.......... ..., 112
2.5.2 Cray XT5 Jaguar: The Top Supercomputer in 2009. ... ... ..ot 116
2.5.3 IBM Roadrunner: The Top Supercomputer in 2008. ... 119
2.6 Bibliographic Notes and Homework Problems. ............ooiiiiiiiiri it ieiii e i raeaarnnnns 120
ACKNOWIBAGMENTS. . ..t e ittt e i e e aa st 121
L3 =T =T 1T 121
Homework Problems. .. ...t e e e ra e aaaaans 122
Distributed and Cloud Computing 6 5

© 2012 Elsevier, Inc. All rights reserved.



66 CHAPTER 2 Computer Clusters for Scalable Parallel Computing

SUMMARY

Clustering of computers enables scalable parallel and distributed computing in both science and busi-
ness applications. This chapter is devoted to building cluster-structured massively parallel processors.
We focus on the design principles and assessment of the hardware, software, middleware, and operating
system support to achieve scalability, availability, programmability, single-system images, and fault tol-
erance in clusters. We will examine the cluster architectures of Tianhe-1A, Cray XTS5 Jaguar, and IBM
Roadrunner. The study also covers the LSF middleware and MOSIX/OS for job and resource manage-
ment in Linux clusters, GPU clusters and cluster extensions to building grids and clouds. Only physical
clusters are studied in this chapter. Virtual clusters will be studied in Chapters 3 and 4.

CLUSTERING FOR MASSIVE PARALLELISM

A computer cluster is a collection of interconnected stand-alone computers which can work together
collectively and cooperatively as a single integrated computing resource pool. Clustering explores
massive parallelism at the job level and achieves high availability (HA) through stand-alone opera-
tions. The benefits of computer clusters and massively parallel processors (MPPs) include scalable
performance, HA, fault tolerance, modular growth, and use of commodity components. These fea-
tures can sustain the generation changes experienced in hardware, software, and network compo-
nents. Cluster computing became popular in the mid-1990s as traditional mainframes and vector
supercomputers were proven to be less cost-effective in many high-performance computing (HPC)
applications.

Of the Top 500 supercomputers reported in 2010, 85 percent were computer clusters or MPPs
built with homogeneous nodes. Computer clusters have laid the foundation for today’s supercompu-
ters, computational grids, and Internet clouds built over data centers. We have come a long way
toward becoming addicted to computers. According to a recent IDC prediction, the HPC market
will increase from $8.5 billion in 2010 to $10.5 billion by 2013. A majority of the Top 500 super-
computers are used for HPC applications in science and engineering. Meanwhile, the use of high-
throughput computing (HTC) clusters of servers is growing rapidly in business and web services
applications.

Cluster Development Trends

Support for clustering of computers has moved from interconnecting high-end mainframe computers
to building clusters with massive numbers of x86 engines. Computer clustering started with the link-
ing of large mainframe computers such as the IBM Sysplex and the SGI Origin 3000. Originally,
this was motivated by a demand for cooperative group computing and to provide higher availability
in critical enterprise applications. Subsequently, the clustering trend moved toward the networking
of many minicomputers, such as DEC’s VMS cluster, in which multiple VAXes were intercon-
nected to share the same set of disk/tape controllers. Tandem’s Himalaya was designed as a busi-
ness cluster for fault-tolerant online transaction processing (OLTP) applications.

In the early 1990s, the next move was to build UNIX-based workstation clusters represented by
the Berkeley NOW (Network of Workstations) and IBM SP2 AIX-based server cluster. Beyond
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2000, we see the trend moving to the clustering of RISC or x86 PC engines. Clustered products
now appear as integrated systems, software tools, availability infrastructure, and operating system
extensions. This clustering trend matches the downsizing trend in the computer industry. Supporting
clusters of smaller nodes will increase sales by allowing modular incremental growth in cluster con-
figurations. From IBM, DEC, Sun, and SGI to Compaq and Dell, the computer industry has lever-
aged clustering of low-cost servers or x86 desktops for their cost-effectiveness, scalability, and HA
features.

2.1.1.1 Milestone Cluster Systems

Clustering has been a hot research challenge in computer architecture. Fast communication, job
scheduling, SSI, and HA are active areas in cluster research. Table 2.1 lists some milestone cluster
research projects and commercial cluster products. Details of these old clusters can be found in
[14]. These milestone projects have pioneered clustering hardware and middleware development
over the past two decades. Each cluster project listed has developed some unique features. Modern
clusters are headed toward HPC clusters as studied in Section 2.5.

The NOW project addresses a whole spectrum of cluster computing issues, including architecture,
software support for web servers, single system image, I/O and file system, efficient communication,
and enhanced availability. The Rice University TreadMarks is a good example of software-implemented
shared-memory cluster of workstations. The memory sharing is implemented with a user-space runtime
library. This was a research cluster built over Sun Solaris workstations. Some cluster OS functions were
developed, but were never marketed successfully.

Table 2.1 Milestone Research or Commercial Cluster Computer Systems [14]

Project Special Features That Support Clustering

DEC VAXcluster (1991) A UNIX cluster of symmetric multiprocessing (SMP) servers running
the VMS OS with extensions, mainly used in HA applications

U.C. Berkeley NOW Project (1995) A serverless network of workstations featuring active messaging,
cooperative filing, and GLUnix development

Rice University TreadMarks (1996) Software-implemented distributed shared memory for use in
clusters of UNIX workstations based on page migration

Sun Solaris MC Cluster (1995) A research cluster built over Sun Solaris workstations; some cluster

OS functions were developed but were never marketed
successfully

Tandem Himalaya Cluster (1994) A scalable and fault-tolerant cluster for OLTP and database
processing, built with nonstop operating system support
IBM SP2 Server Cluster (1996) An AIX server cluster built with Power2 nodes and the Omega

network, and supported by IBM LoadLeveler and MPI extensions

Google Search Engine Cluster (2003) A 4,000-node server cluster built for Internet search and web
service applications, supported by a distributed file system and
fault tolerance

MOSIX (2010) www.mosix.org A distributed operating system for use in Linux clusters,
multiclusters, grids, and clouds; used by the research community
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A Unix cluster of SMP servers running VMS/OS with extensions, mainly used in high-
availability applications. An AIX server cluster built with Power2 nodes and Omega network and
supported by IBM Loadleveler and MPI extensions. A scalable and fault-tolerant cluster for OLTP
and database processing built with non-stop operating system support. The Google search engine
was built at Google using commodity components. MOSIX is a distributed operating systems for
use in Linux clusters, multi-clusters, grids, and the clouds, originally developed by Hebrew Univer-
sity in 1999.

Design Objectives of Computer Clusters

Clusters have been classified in various ways in the literature. We classify clusters using six ortho-
gonal attributes: scalability, packaging, control, homogeneity, programmability, and security.

2.1.2.1 Scalability

Clustering of computers is based on the concept of modular growth. To scale a cluster from hundreds
of uniprocessor nodes to a supercluster with 10,000 multicore nodes is a nontrivial task. The scalabil-
ity could be limited by a number of factors, such as the multicore chip technology, cluster topology,
packaging method, power consumption, and cooling scheme applied. The purpose is to achieve scal-
able performance constrained by the aforementioned factors. We have to also consider other limiting
factors such as the memory wall, disk I/O bottlenecks, and latency tolerance, among others.

2.1.2.2 Packaging

Cluster nodes can be packaged in a compact or a slack fashion. In a compact cluster, the nodes are
closely packaged in one or more racks sitting in a room, and the nodes are not attached to periph-
erals (monitors, keyboards, mice, etc.). In a slack cluster, the nodes are attached to their usual peri-
pherals (i.e., they are complete SMPs, workstations, and PCs), and they may be located in different
rooms, different buildings, or even remote regions. Packaging directly affects communication wire
length, and thus the selection of interconnection technology used. While a compact cluster can uti-
lize a high-bandwidth, low-latency communication network that is often proprietary, nodes of a
slack cluster are normally connected through standard LANs or WANS.

2.1.2.3 Control

A cluster can be either controlled or managed in a centralized or decentralized fashion. A compact
cluster normally has centralized control, while a slack cluster can be controlled either way. In a cen-
tralized cluster, all the nodes are owned, controlled, managed, and administered by a central opera-
tor. In a decentralized cluster, the nodes have individual owners. For instance, consider a cluster
comprising an interconnected set of desktop workstations in a department, where each workstation
is individually owned by an employee. The owner can reconfigure, upgrade, or even shut down the
workstation at any time. This lack of a single point of control makes system administration of such
a cluster very difficult. It also calls for special techniques for process scheduling, workload migra-
tion, checkpointing, accounting, and other similar tasks.

2.1.2.4 Homogeneity
A homogeneous cluster uses nodes from the same platform, that is, the same processor architecture
and the same operating system; often, the nodes are from the same vendors. A heterogeneous
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cluster uses nodes of different platforms. Interoperability is an important issue in heterogeneous
clusters. For instance, process migration is often needed for load balancing or availability. In a
homogeneous cluster, a binary process image can migrate to another node and continue execution.
This is not feasible in a heterogeneous cluster, as the binary code will not be executable when the
process migrates to a node of a different platform.

2.1.2.5 Security

Intracluster communication can be either exposed or enclosed. In an exposed cluster, the communi-
cation paths among the nodes are exposed to the outside world. An outside machine can access the
communication paths, and thus individual nodes, using standard protocols (e.g., TCP/IP). Such
exposed clusters are easy to implement, but have several disadvantages:

* Being exposed, intracluster communication is not secure, unless the communication subsystem
performs additional work to ensure privacy and security.

* Outside communications may disrupt intracluster communications in an unpredictable fashion.
For instance, heavy BBS traffic may disrupt production jobs.

* Standard communication protocols tend to have high overhead.

In an enclosed cluster, intracluster communication is shielded from the outside world, which
alleviates the aforementioned problems. A disadvantage is that there is currently no standard for
efficient, enclosed intracluster communication. Consequently, most commercial or academic clusters
realize fast communications through one-of-a-kind protocols.

2.1.2.6 Dedicated versus Enterprise Clusters

A dedicated cluster is typically installed in a deskside rack in a central computer room. It is homo-
geneously configured with the same type of computer nodes and managed by a single administrator
group like a frontend host. Dedicated clusters are used as substitutes for traditional mainframes or
supercomputers. A dedicated cluster is installed, used, and administered as a single machine. Many
users can log in to the cluster to execute both interactive and batch jobs. The cluster offers much
enhanced throughput, as well as reduced response time.

An enterprise cluster is mainly used to utilize idle resources in the nodes. Each node is usually a
full-fledged SMP, workstation, or PC, with all the necessary peripherals attached. The nodes are typi-
cally geographically distributed, and are not necessarily in the same room or even in the same build-
ing. The nodes are individually owned by multiple owners. The cluster administrator has only limited
control over the nodes, as a node can be turned off at any time by its owner. The owner’s “local” jobs
have higher priority than enterprise jobs. The cluster is often configured with heterogeneous computer
nodes. The nodes are often connected through a low-cost Ethernet network. Most data centers are
structured with clusters of low-cost servers. Virtual clusters play a crucial role in upgrading data cen-
ters. We will discuss virtual clusters in Chapter 6 and clouds in Chapters 7, 8, and 9.

Fundamental Cluster Design Issues

In this section, we will classify various cluster and MPP families. Then we will identify the major
design issues of clustered and MPP systems. Both physical and virtual clusters are covered. These
systems are often found in computational grids, national laboratories, business data centers,
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supercomputer sites, and virtualized cloud platforms. A good understanding of how clusters and
MPPs work collectively will pave the way toward understanding the ins and outs of large-scale
grids and Internet clouds in subsequent chapters. Several issues must be considered in developing
and using a cluster. Although much work has been done in this regard, this is still an active
research and development area.

2.1.3.1 Scalable Performance

This refers to the fact that scaling of resources (cluster nodes, memory capacity, I/O bandwidth,
etc.) leads to a proportional increase in performance. Of course, both scale-up and scale-down cap-
abilities are needed, depending on application demand or cost-effectiveness considerations. Cluster-
ing is driven by scalability. One should not ignore this factor in all applications of cluster or MPP
computing systems.

2.1.3.2 Single-System Image (SSI)

A set of workstations connected by an Ethernet network is not necessarily a cluster. A cluster is a
single system. For example, suppose a workstation has a 300 Mflops/second processor, 512 MB of
memory, and a 4 GB disk and can support 50 active users and 1,000 processes. By clustering 100
such workstations, can we get a single system that is equivalent to one huge workstation, or a
megastation, that has a 30 Gflops/second processor, S0 GB of memory, and a 400 GB disk and can
support 5,000 active users and 100,000 processes? This is an appealing goal, but it is very difficult
to achieve. SSI techniques are aimed at achieving this goal.

2.1.3.3 Availability Support

Clusters can provide cost-effective HA capability with lots of redundancy in processors, memory,
disks, I/O devices, networks, and operating system images. However, to realize this potential, avail-
ability techniques are required. We will illustrate these techniques later in the book, when we dis-
cuss how DEC clusters (Section 10.4) and the IBM SP2 (Section 10.3) attempt to achieve HA.

2.1.3.4 Cluster Job Management

Clusters try to achieve high system utilization from traditional workstations or PC nodes that are
normally not highly utilized. Job management software is required to provide batching, load balan-
cing, parallel processing, and other functionality. We will study cluster job management systems in
Section 3.4. Special software tools are needed to manage multiple jobs simultaneously.

2.1.3.5 Internode Communication

Because of their higher node complexity, cluster nodes cannot be packaged as compactly as MPP
nodes. The internode physical wire lengths are longer in a cluster than in an MPP. This is true even
for centralized clusters. A long wire implies greater interconnect network latency. But more impor-
tantly, longer wires have more problems in terms of reliability, clock skew, and cross talking.
These problems call for reliable and secure communication protocols, which increase overhead.
Clusters often use commodity networks (e.g., Ethernet) with standard protocols such as TCP/IP.

2.1.3.6 Fault Tolerance and Recovery
Clusters of machines can be designed to eliminate all single points of failure. Through redundancy,
a cluster can tolerate faulty conditions up to a certain extent. Heartbeat mechanisms can be installed
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to monitor the running condition of all nodes. In case of a node failure, critical jobs running on the
failing nodes can be saved by failing over to the surviving node machines. Rollback recovery
schemes restore the computing results through periodic checkpointing.

2.1.3.7 Cluster Family Classification

Based on application demand, computer clusters are divided into three classes:

* Compute clusters These are clusters designed mainly for collective computation over a single
large job. A good example is a cluster dedicated to numerical simulation of weather conditions.
The compute clusters do not handle many I/O operations, such as database services. When a
single compute job requires frequent communication among the cluster nodes, the cluster must
share a dedicated network, and thus the nodes are mostly homogeneous and tightly coupled.
This type of clusters is also known as a Beowulf cluster.

When the nodes require internode communication over a small number of heavy-duty nodes, they
are essentially known as a computational grid. Tightly coupled compute clusters are designed for
supercomputing applications. Compute clusters apply middleware such as a message-passing
interface (MPI) or Parallel Virtual Machine (PVM) to port programs to a wide variety of clusters.

* High-Availability clusters HA (high-availability) clusters are designed to be fault-tolerant and
achieve HA of services. HA clusters operate with many redundant nodes to sustain faults or
failures. The simplest HA cluster has only two nodes that can fail over to each other. Of course,
high redundancy provides higher availability. HA clusters should be designed to avoid all single
points of failure. Many commercial HA clusters are available for various operating systems.

* Load-balancing clusters These clusters shoot for higher resource utilization through load
balancing among all participating nodes in the cluster. All nodes share the workload or function
as a single virtual machine (VM). Requests initiated from the user are distributed to all node
computers to form a cluster. This results in a balanced workload among different machines, and
thus higher resource utilization or higher performance. Middleware is needed to achieve
dynamic load balancing by job or process migration among all the cluster nodes.

Analysis of the Top 500 Supercomputers

Every six months, the world’s Top 500 supercomputers are evaluated by running the Linpack
Benchmark program over very large data sets. The ranking varies from year to year, similar to a
competition. In this section, we will analyze the historical share in architecture, speed, operating
systems, countries, and applications over time. In addition, we will compare the top five fastest sys-
tems in 2010.

2.1.4.1 Architectural Evolution

It is interesting to observe in Figure 2.1 the architectural evolution of the Top 500 supercomputers
over the years. In 1993, 250 systems assumed the SMP architecture and these SMP systems all disap-
peared in June of 2002. Most SMPs are built with shared memory and shared I/O devices. There
were 120 MPP systems built in 1993, MPPs reached the peak mof 350 systems in mod-200, and
dropped to less than 100 systems in 2010. The single instruction, multiple data (SIMD) machines dis-
appeared in 1997. The cluster architecture appeared in a few systems in 1999. The cluster systems are
now populated in the Top-500 list with more than 400 systems as the dominating architecture class.
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FIGURE 2.1

Architectural share of the Top 500 systems.
(Courtesy of www.top500.org [25])

In 2010, the Top 500 architecture is dominated by clusters (420 systems) and MPPs (80 systems).
The basic distinction between these two classes lies in the components they use to build the systems.
Clusters are often built with commodity hardware, software, and network components that are com-
mercially available. MPPs are built with custom-designed compute nodes, boards, modules, and cabi-
nets that are interconnected by special packaging. MPPs demand high bandwidth, low latency, better
power efficiency, and high reliability. Cost-wise, clusters are affordable by allowing modular growth
with scaling capability. The fact that MPPs appear in a much smaller quantity is due to their high
cost. Typically, only a few MPP-based supercomputers are installed in each country.

2.1.4.2 Speed Improvement over Time

Figure 2.2 plots the measured performance of the Top 500 fastest computers from 1993 to 2010.
The y-axis is scaled by the sustained speed performance in terms of Gflops, Tflops, and Pflops.
The middle curve plots the performance of the fastest computers recorded over 17 years; peak per-
formance increases from 58.7 Gflops to 2.566 Pflops. The bottom curve corresponds to the speed
of the 500th computer, which increased from 0.42 Gflops in 1993 to 31.1 Tflops in 2010. The top
curve plots the speed sum of all 500 computers over the same period. In 2010, the total speed sum
of 43.7 Pflops was achieved by all 500 computers, collectively. It is interesting to observe that the
total speed sum increases almost linearly with time.

2.1.4.3 Operating System Trends in the Top 500

The five most popular operating systems have more than a 10 percent share among the Top 500
computers, according to data released by TOP500.org (www.top500.org/stats/list/36/0s) in Novem-
ber 2010. According to the data, 410 supercomputers are using Linux with a total processor count
exceeding 4.5 million. This constitutes 82 percent of the systems adopting Linux. The IBM AIX/
OS is in second place with 17 systems (a 3.4 percent share) and more than 94,288 processors.
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Performance plot of the Top 500 supercomputers from 1993 to 2010.
(Courtesy of www.top500.org [25])

Third place is represented by the combined use of the SLEs10 with the SGI ProPack$, with 15 sys-
tems (3 percent) over 135,200 processors. Fourth place goes to the CNK/SLES9 used by 14 systems
(2.8 percent) over 1.13 million processors. Finally, the CNL/OS was used in 10 systems (2 percent)
over 178,577 processors. The remaining 34 systems applied 13 other operating systems with a total
share of only 6.8 percent. In conclusion, the Linux OS dominates the systems in the Top 500 list.

2.1.4.4 The Top Five Systems in 2010

In Table 2.2, we summarize the key architecture features and sustained Linpack Benchmark perfor-
mance of the top five supercomputers reported in November 2010. The Tianhe-1A was ranked as
the fastest MPP in late 2010. This system was built with 86,386 Intel Xeon CPUs and NVIDIA
GPUs by the National University of Defense Technology in China. We will present in Section 2.5
some of the top winners: namely the Tianhe-1A, Cray Jaguar, Nebulae, and IBM Roadrunner that
were ranked among the top systems from 2008 to 2010. All the top five machines in Table 2.3
have achieved a speed higher than 1 Pflops. The sustained speed, R,,,, in Pflops is measured from
the execution of the Linpack Benchmark program corresponding to a maximum matrix size.

The system efficiency reflects the ratio of the sustained speed to the peak speed, R, eqr, When all
computing elements are fully utilized in the system. Among the top five systems, the two U.S.-built
systems, the Jaguar and the Hopper, have the highest efficiency, more than 75 percent. The two sys-
tems built in China, the Tianhe-1A and the Nebulae, and Japan’s TSUBAME 2.0, are all low in
efficiency. In other words, these systems should still have room for improvement in the future. The
average power consumption in these 5 systems is 3.22 MW. This implies that excessive power con-
sumption may post the limit to build even faster supercomputers in the future. These top systems
all emphasize massive parallelism using up to 250,000 processor cores per system.
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Table 2.2 The Top Five Supercomputers Evaluated in November 2010

Linpack Efficiency

System Name, System Name, Processors, OS, Speed (R1ax), (Rmax/Rpear)

Site, and URL Topology, and Developer Power

1. Tianhe-1A, National NUDT TH1A with 14,336 Xeon X5670 2.57 Pflops, 54.6% (over
Supercomputing CPUs (six cores each) plus 7168 NVIDIA 4.02 MW a peak of
Center, Tianjin, China, Tesla M2050 GPUs (448 CUDA cores 4.7 Pflops)
http://www.nscc-tj. each), running Linux, built by National
gov.cn/en/ Univ. of Defense Technology, China

2. Jaguar, DOE/SC/Oak Cray XT5-HE: MPP with 224,162 x 6 1.76 Pflops, 75.6% (over
Ridge National Lab., AMD Opteron, 3D torus network, Linux 6.95 MW a peak of
United States, http:// (CLE), manufactured by Cray, Inc. 4.7 Pflops)
computing.ornl.gov

3. Nebulae at China’s TC3600 Blade, 120,640 cores in 55,680 1.27 Pflops, 42.6% (over
National Xeon X5650 plus 64,960 NVIDIA Tesla 2.55 MW a peak of
Supercomputer C2050 GPUs, Linux, InfiniBand, built by 2.98 Pflops)
Center, ShenZhen, Dawning, Inc.
China http://www.ict
.cas.cas.cn

4. TSUBAME 2.0, GSIC HP cluster, 3000SL, 73,278 x 6 Xeon 1.19 Pflops, 52.19% (over
Center, Tokyo Institute X5670 processors, NVIDIA GPU, Linux/ 1.8 MW a peak of
of Technology, Tokyo, SLES 11, built by NEC/HP 2.3 Pflops)
Japan, http://www.
gsic.titech.ac.jp/

5. Hopper, DOE/SC/ Cray XE6 150,408 x 12 AMD Opteron, 1.05 Pflops, 78.47% (over
LBNL/ NERSC, Linux (CLE), built by Cray, Inc. 2.8 MW a peak of
Berkeley, CA. USA, 1.35 Pflops)

Node Architecture

Major Characteristics

Table 2.3 Sample Compute Node Architectures for Large Cluster Construction

Representative Systems

Homogeneous node
using the same
multicore processors
Hybrid nodes using CPU
plus GPU or FLP
accelerators

Multicore processors mounted on the
same node with a crossbar connected to
shared memory or local disks
General-purpose CPU for integer
operations, with GPUs acting as
coprocessors to speed up FLP operations

The Cray XT5 uses two six-core
AMD Opteron processors in
each compute node

China’s Tianhe-1A uses two Intel
Xeon processors plus one
NVIDIA GPU per compute node

2.1.4.5 Country Share and Application Share

In the 2010 Top-500 list, there were 274 supercomputing systems installed in the US, 41 systems in
China, and 103 systems in Japan, France, UK, and Germany. The remaining countries have 82 sys-
tems. This country share roughly reflects the countries’ economic growth over the years. Countries
compete in the Top 500 race every six months. Major increases of supercomputer applications are
in the areas of database, research, finance, and information services.
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Power and performance of the top 5 supercomputers in November 2010.
(Courtesy of www.top500.org [25] and B. Dally [10])

2.1.4.6 Power versus Performance in the Top Five in 2010

In Figure 2.3, the top five supercomputers are ranked by their speed (Gflops) on the left side
and by their power consumption (MW per system) on the right side. The Tiahhe-1A scored the
highest with a 2.57 Pflops speed and 4.01 MW power consumption. In second place, the Jaguar
consumes the highest power of 6.9 MW. In fourth place, the TSUBAME system consumes the
least power, 1.5 MW, and has a speed performance that almost matches that of the Nebulae sys-
tem. One can define a performance/power ratio to see the trade-off between these two metrics.
There is also a Top 500 Green contest that ranks the supercomputers by their power efficiency.
This chart shows that all systems using the hybrid CPU/GPU architecture consume much less
power.

2.2 COMPUTER CLUSTERS AND MPP ARCHITECTURES

Most clusters emphasize higher availability and scalable performance. Clustered systems evolved
from the Microsoft Wolfpack and Berkeley NOW to the SGI Altix Series, IBM SP Series, and
IBM Roadrunner. NOW was a UC Berkeley research project designed to explore new mechan-
isms for clustering of UNIX workstations. Most clusters use commodity networks such as Gigabit
Ethernet, Myrinet switches, or InfiniBand networks to interconnect the compute and storage
nodes. The clustering trend moves from supporting large rack-size, high-end computer systems to
high-volume, desktop or deskside computer systems, matching the downsizing trend in the com-
puter industry.
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Cluster Organization and Resource Sharing

In this section, we will start by discussing basic, small-scale PC or server clusters. We will discuss
how to construct large-scale clusters and MPPs in subsequent sections.

2.2.1.1 A Basic Cluster Architecture

Figure 2.4 shows the basic architecture of a computer cluster over PCs or workstations. The figure
shows a simple cluster of computers built with commodity components and fully supported with
desired SSI features and HA capability. The processing nodes are commodity workstations, PCs, or
servers. These commodity nodes are easy to replace or upgrade with new generations of hardware.
The node operating systems should be designed for multiuser, multitasking, and multithreaded
applications. The nodes are interconnected by one or more fast commodity networks. These net-
works use standard communication protocols and operate at a speed that should be two orders of
magnitude faster than that of the current TCP/IP speed over Ethernet.

The network interface card is connected to the node’s standard I/O bus (e.g., PCI). When the
processor or the operating system is changed, only the driver software needs to change. We desire
to have a platform-independent cluster operating system, sitting on top of the node platforms. But
such a cluster OS is not commercially available. Instead, we can deploy some cluster middleware to
glue together all node platforms at the user space. An availability middleware offers HA services.
An SSI layer provides a single entry point, a single file hierarchy, a single point of control, and a
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single job management system. Single memory may be realized with the help of the compiler or a
runtime library. A single process space is not necessarily supported.

In general, an idealized cluster is supported by three subsystems. First, conventional databases
and OLTP monitors offer users a desktop environment in which to use the cluster. In addition to
running sequential user programs, the cluster supports parallel programming based on standard
languages and communication libraries using PVM, MPI, or OpenMP. The programming environ-
ment also includes tools for debugging, profiling, monitoring, and so forth. A user interface sub-
system is needed to combine the advantages of the web interface and the Windows GUI. It
should also provide user-friendly links to various programming environments, job management
tools, hypertext, and search support so that users can easily get help in programming the compu-
ter cluster.

2.2.1.2 Resource Sharing in Clusters

Supporting clusters of smaller nodes will increase computer sales. Clustering improves both avail-
ability and performance. These two clustering goals are not necessarily in conflict. Some HA clus-
ters use hardware redundancy for scalable performance. The nodes of a cluster can be connected
in one of three ways, as shown in Figure 2.5. The shared-nothing architecture is used in most
clusters, where the nodes are connected through the I/O bus. The shared-disk architecture is in
favor of small-scale availability clusters in business applications. When one node fails, the other
node takes over.

The shared-nothing configuration in Part (a) simply connects two or more autonomous compu-
ters via a LAN such as Ethernet. A shared-disk cluster is shown in Part (b). This is what most busi-
ness clusters desire so that they can enable recovery support in case of node failure. The shared disk
can hold checkpoint files or critical system images to enhance cluster availability. Without shared
disks, checkpointing, rollback recovery, failover, and failback are not possible in a cluster. The
shared-memory cluster in Part (c) is much more difficult to realize. The nodes could be connected
by a scalable coherence interface (SCI) ring, which is connected to the memory bus of each node
through an NIC module. In the other two architectures, the interconnect is attached to the I/O bus.
The memory bus operates at a higher frequency than the I/O bus.

There is no widely accepted standard for the memory bus. But there are such standards for the
I/O buses. One recent, popular standard is the PCI I/O bus standard. So, if you implement an NIC
card to attach a faster Ethernet network to the PCI bus you can be assured that this card can be
used in other systems that use PCI as the I/O bus. The I/O bus evolves at a much slower rate than
the memory bus. Consider a cluster that uses connections through the PCI bus. When the processors
are upgraded, the interconnect and the NIC do not have to change, as long as the new system still
uses PCL. In a shared-memory cluster, changing the processor implies a redesign of the node board
and the NIC card.

Node Architectures and MPP Packaging

In building large-scale clusters or MPP systems, cluster nodes are classified into two categories:
compute nodes and service nodes. Compute nodes appear in larger quantities mainly used for large-
scale searching or parallel floating-point computations. Service nodes could be built with different
processors mainly used to handle I/O, file access, and system monitoring. For MPP clusters, the
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Three ways to connect cluster nodes (P/C: Processor and Cache; M: Memory; D: Disk; NIC: Network
Interface Circuitry; MIO: Memory-1/0 Bridge.)
(Courtesy of Hwang and Xu [14])

compute nodes dominate in system cost, because we may have 1,000 times more compute nodes
than service nodes in a single large clustered system. Table 2.3 introduces two example compute
node architectures: homogeneous design and hybrid node design.

In the past, most MPPs are built with a homogeneous architecture by interconnecting a large
number of the same compute nodes. In 2010, the Cray XT5 Jaguar system was built with 224,162
AMD Opteron processors with six cores each. The Tiahe-1A adopted a hybrid node design using two
Xeon CPUs plus two AMD GPUs per each compute node. The GPU could be replaced by special
floating-point accelerators. A homogeneous node design makes it easier to program and maintain
the system.

L
Example 2.1 Modular Packaging of the IBM Blue Gene/L System

The Blue Gene/L is a supercomputer jointly developed by IBM and Lawrence Livermore National Labora-
tory. The system became operational in 2005 with a 136 Tflops performance at the No. 1 position in the
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FIGURE 2.6

The IBM Blue Gene/L architecture built with modular components packaged hierarchically in five levels.
(Courtesy of N. Adiga, et al., IBM Corp., 2005 [1])

Top-500 list—toped the Japanese Earth Simulator. The system was upgraded to score a 478 Tflops speed
in 2007. By examining the architecture of the Blue Gene series, we reveal the modular construction of a
scalable MPP system as shown in Figure 2.6. With modular packaging, the Blue Gene/L system is con-
structed hierarchically from processor chips to 64 physical racks. This system was built with a total of
65,536 nodes with two PowerPC 449 FP2 processors per node. The 64 racks are interconnected by a
huge 3D 64 x 32 x 32 torus network.

|

In the lower-left corner, we see a dual-processor chip. Two chips are mounted on a computer card.
Sixteen computer cards (32 chips or 64 processors) are mounted on a node board. A cabinet houses
32 node boards with an 8 x 8 x 16 torus interconnect. Finally, 64 cabinets (racks) form the total
system at the upper-right corner. This packaging diagram corresponds to the 2005 configuration. Cus-
tomers can order any size to meet their computational needs. The Blue Gene cluster was designed to
achieve scalable performance, reliability through built-in testability, resilience by preserving locality of
failures and checking mechanisms, and serviceability through partitioning and isolation of fault
locations.
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Cluster System Interconnects
2.2.3.1 High-Bandwidth Interconnects

Table 2.4 compares four families of high-bandwidth system interconnects. In 2007, Ethernet used a
1 Gbps link, while the fastest InfiniBand links ran at 30 Gbps. The Myrinet and Quadrics perform
in between. The MPI latency represents the state of the art in long-distance message passing. All
four technologies can implement any network topology, including crossbar switches, fat trees, and
torus networks. The InfiniBand is the most expensive choice with the fastest link speed.
The Ethernet is still the most cost-effective choice. We consider two example cluster interconnects
over 1,024 nodes in Figure 2.7 and Figure 2.9. The popularity of five cluster interconnects is

compared in Figure 2.8.
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Table 2.4 Comparison of Four Cluster Interconnect Technologies Reported in 2007
Feature Myrinet Quadrics InfiniBand Ethernet
Available link 1.28 Gbps (M-XP) 2.8 Gbps (Qs/Net) 2.5 Gbps (1X) 1 Gbps
speeds 10 Gbps (M-10G) 7.2 Gbps (QsNetll) 10 Gbps (4X)
30 Gbps (712X)
MPI latency ~3 us ~3 us ~4.5 us ~40 us
Network Yes Yes Yes No
processor
Topologies Any Any Any Any
Network topology Clos Fat tree Fat tree Any
Routing Source-based, Source-based, Destination-based Destination-based
cut-through cut-through
Flow control Stop and go Worm-hole Credit-based 802.3x
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Google search engine cluster architecture.

(Courtesy of Google, Inc. [6])
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L
Example 2.2 Crossbar Switch in Google Search Engine Cluster
Google has many data centers using clusters of low-cost PC engines. These clusters are mainly used to
support Google's web search business. Figure 2.7 shows a Google cluster interconnect of 40 racks of PC
engines via two racks of 128 x 128 Ethernet switches. Each Ethernet switch can handle 128 one Gbps
Ethernet links. A rack contains 80 PCs. This is an earlier cluster of 3,200 PCs. Google's search engine
clusters are built with a lot more nodes. Today’s server clusters from Google are installed in data centers
with container trucks.

Two switches are used to enhance cluster availability. The cluster works fine even when one switch
fails to provide the links among the PCs. The front ends of the switches are connected to the Internet via
2.4 Gbps OC 12 links. The 622 Mbps OC 12 links are connected to nearby data-center networks. In case

of failure of the OC 48 links, the cluster is still connected to the outside world via the OC 12 links. Thus,
the Google cluster eliminates all single points of failure.

2.2.3.2 Share of System Interconnects over Time

Figure 2.8 shows the distribution of large-scale system interconnects in the Top 500 systems from
2003 to 2008. Gigabit Ethernet is the most popular interconnect due to its low cost and market
readiness. The InfiniBand network has been chosen in about 150 systems for its high-bandwidth

performance. The Cray interconnect is designed for use in Cray systems only. The use of Myrinet
and Quadrics networks had declined rapidly in the Top 500 list by 2008.
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FIGURE 2.8
Distribution of high-bandwidth interconnects in the Top 500 systems from 2003 to 2008.

(Courtesy of www.top500.org [25])
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L
Example 2.3 Understanding the InfiniBand Architecture [8]
The InfiniBand has a switch-based point-to-point interconnect architecture. A large InfiniBand has a
layered architecture. The interconnect supports the virtual interface architecture (VIA) for distributed mes-
saging. The InfiniBand switches and links can make up any topology. Popular ones include crossbars, fat
trees, and torus networks. Figure 2.9 shows the layered construction of an InfiniBand network. According
to Table 2.5, the InfiniBand provides the highest speed links and the highest bandwidth in reported large-
scale systems. However, InfiniBand networks cost the most among the four interconnect technologies.
Each end point can be a storage controller, a network interface card (NIC), or an interface to a host system.
A host channel adapter (HCA) connected to the host processor through a standard peripheral component inter-
connect (PCl), PCl extended (PCI-X), or PCl express bus provides the host interface. Each HCA has more than
one InfiniBand port. A target channel adapter (TCA) enables 1/0 devices to be loaded within the network. The
TCA includes an I/0 controller that is specific to its particular device’s protocol such as SCSI, Fibre Channel, or
Ethernet. This architecture can be easily implemented to build very large scale cluster interconnects that con-
nect thousands or more hosts together. Supporting the InfiniBand in cluster applications can be found in [8].
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FIGURE 2.9

The InfiniBand system fabric built in a typical high-performance computer cluster.
(Source: O. Celebioglu, et al, “Exploring InfiniBand as an HPC Cluster Interconnect”, Dell Power Solutions,
Oct.2004 © 2011 Dell Inc. All Rights Reserved)
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Hardware, Software, and Middleware Support

Realistically, SSI and HA features in a cluster are not obtained free of charge. They must be sup-
ported by hardware, software, middleware, or OS extensions. Any change in hardware design and
OS extensions must be done by the manufacturer. The hardware and OS support could be cost-
prohibitive to ordinary users. However, programming level is a big burden to cluster users. There-
fore, the middleware support at the application level costs the least to implement. As an example,
we show in Figure 2.10 the middleware, OS extensions, and hardware support needed to achieve
HA in a typical Linux cluster system.

Close to the user application end, middleware packages are needed at the cluster management
level: one for fault management to support failover and failback, to be discussed in Section 2.3.3.
Another desired feature is to achieve HA using failure detection and recovery and packet switching.
In the middle of Figure 2.10, we need to modify the Linux OS to support HA, and we need special
drivers to support HA, I/O, and hardware devices. Toward the bottom, we need special hardware to
support hot-swapped devices and provide router interfaces. We will discuss various supporting
mechanisms in subsequent sections.

GPU Clusters for Massive Parallelism

Commodity GPUs are becoming high-performance accelerators for data-parallel computing. Modern
GPU chips contain hundreds of processor cores per chip. Based on a 2010 report [19], each GPU

IP packet applications

Cluster management middleware

Fault management Availability management

Failback support

Failover support Packet switching

Li Li Linux OS extensions: Li
NS LS High-availability interface, hardware drivers LS
1/O drivers, platform management drivers
Hardware support:
CPU/GPU CPU/GPU Hot swap devices, router interfaces CPU/GPU
FIGURE 2.10

Middleware, Linux extensions, and hardware support for achieving massive parallelism and HA in a Linux
cluster system built with CPUs and GPUs.
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chip is capable of achieving up to 1 Tflops for single-precision (SP) arithmetic, and more than
80 Gflops for double-precision (DP) calculations. Recent HPC-optimized GPUs contain up to 4 GB
of on-board memory, and are capable of sustaining memory bandwidths exceeding 100 GB/second.
GPU clusters are built with a large number of GPU chips. GPU clusters have already demonstrated
their capability to achieve Pflops performance in some of the Top 500 systems. Most GPU clusters
are structured with homogeneous GPUs of the same hardware class, make, and model. The software
used in a GPU cluster includes the OS, GPU drivers, and clustering API such as an MPIL.

The high performance of a GPU cluster is attributed mainly to its massively parallel multicore
architecture, high throughput in multithreaded floating-point arithmetic, and significantly reduced
time in massive data movement using large on-chip cache memory. In other words, GPU clusters
already are more cost-effective than traditional CPU clusters. GPU clusters result in not only a
quantum jump in speed performance, but also significantly reduced space, power, and cooling
demands. A GPU cluster can operate with a reduced number of operating system images, compared
with CPU-based clusters. These reductions in power, environment, and management complexity
make GPU clusters very attractive for use in future HPC applications.

2.2.5.1 The Echelon GPU Chip Design

Figure 2.11 shows the architecture of a future GPU accelerator that was suggested for use in build-
ing a NVIDIA Echelon GPU cluster for Exascale computing. This Echelong project led by Bill
Dally at NVIDIA is partially funded by DARPA under the Ubiquitous High-Performance Comput-
ing (UHPC) program. This GPU design incorporates 1024 stream cores and 8 latency-optimized
CPU-like cores (called latency processor) on a single chip. Eight stream cores form a stream multi-
processor (SM) and there are 128 SMs in the Echelon GPU chip.

Each SM is designed with 8 processor cores to yield a 160 Gflops peak speed. With 128 SMs,
the chip has a peak speed of 20.48 Tflops. These nodes are interconnected by a NoC (network on
chip) to 1,024 SRAM banks (L2 caches). Each cache band has a 256 KB capacity. The MCs (mem-
ory controllers) are used to connect to off-chip DRAMs and the NI (network interface) is to scale
the size of the GPU cluster hierarchically, as shown in Figure 2.14. At the time of this writing, the
Echelon is only a research project. With permission from Bill Dally, we present the design for

To off-chip To network

DRAMs routers
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| SM 0 || SM1 | | SM127| | LP O || LP 7 |

FIGURE 2.11

The proposed GPU chip design for 20 Tflops performance and 1.6 TB/s memory bandwidth in the Echelon system.
(Courtesy of Bill Dally, Reprinted with Permission [10])
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academic interest to illustrate how one can explore the many-core GPU technology to achieve
Exascale computing in the future PU technology to achieve Exascale computing in the future.

2.2.5.2 GPU Cluster Components

A GPU cluster is often built as a heterogeneous system consisting of three major components: the CPU
host nodes, the GPU nodes and the cluster interconnect between them. The GPU nodes are formed with
general-purpose GPUs, known as GPGPUs, to carry out numerical calculations. The host node controls
program execution. The cluster interconnect handles inter-node communications. To guarantee the per-
formance, multiple GPUs must be fully supplied with data streams over high-bandwidth network and
memory. Host memory should be optimized to match with the on-chip cache bandwidths on the GPUs.
Figure 2.12 shows the proposed Echelon GPU clusters using the GPU chips shown in Figure 2.13 as
building blocks interconnected by a hierarchically constructed network.

2.2.5.3 Echelon GPU Cluster Architecture

The Echelon system architecture is shown in Figure 2.11, hierarchically. The entire Echelon system is
built with N cabinets, labeled CO, C1, ... , CN. Each cabinet is built with 16 compute module labeled
as MO, M1, ..., M15. Each compute module is built with 8 GPU nodes labeled as NO, N1, ..., N7.
Each GPU node is the innermost block labeled as PC in Figure 2.12 (also detailed in Figure 2.11).

4 N
Dragonfly interconnect (optical fiber)
| oee | Jeee]
s L— N M
High-radix router module (RM)
Self-aware
oS
Self-aware
runtime
Locality-aware
compiler &
M15 autotuner
\___Cabinet 0 (C0) 26 PF, 205TB/s,_321B J
\ Echelon system
FIGURE 2.12

The architecture of NVIDIA Echelon system built with a hierarchical network of GPUs that can deliver
2.6 Pflops per cabinet, and takes at least N = 400 cabinets to achieve the desired Eflops performance.
(Courtesy of Bill Dally, Reprinted with Permission [10])
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Each compute module features a performance of 160 Tflops and 12.8 TB/s over 2 TB of memory.
Thus, a single cabinet can house 128 GPU nodes or 16,000 processor cores. Each cabinet has the
potential to deliver 2.6 Pflops over 32 TB memory and 205 TB/s bandwidth. The N cabinets are
interconnected by a Dragonfly network with optical fiber.

To achieve Eflops performance, we need to use at least N = 400 cabinets. In total, an Exascale
system needs 327,680 processor cores in 400 cabinets. The Echelon system is supported by a self-
aware OS and runtime system. The Echelon system is also designed to preserve locality with the
support of compiler and autotuner. At present, NVIDIA Fermi (GF110) chip has 512 stream proces-
sors. Thus the Echelon design is about 25 times faster. It is highly likely that the Echelon will
employ post-Maxwell NVIDIA GPU planned to appear in 2013 ~ 2014 time frame.

2.2.5.4 CUDA Parallel Programming

CUDA (Compute Unified Device Architecture) offers a parallel computing architecture developed by
NVIDIA. CUDA is the computing engine in NVIDIA GPUs. This software is accessible to develo-
pers through standard programming languages. Programmers use C for CUDA C with NVIDIA
extensions and certain restrictions. This CUDA C is compiled through a PathScale Open64 C com-
piler for parallel execution on a large number of GPU cores. Example 2.4 shows the advantage of
using CUDA C in parallel processing.

|
Example 2.4 Parallel SAXPY Execution Using CUDA C Code on GPUs

SAXPY is a kernel operation frequently performed in matrix multiplication. It essentially performs repeated mul-
tiply and add operations to generate the dot product of two long vectors. The following saxpy_serial routine
is written in standard C code. This code is only suitable for sequential execution on a single processor core.

Void saxpy_serial (intn, float a, float*x, float *
{ for (inti=0;1<n;++i), y[il=a*x[1]1+yl[i]}
// Invoke the serial SAXPY kernel
saxpy_serial (n, 2.0, x, y);

The following saxpy_parallel routine is written in CUDA C code for parallel execution by 256
threads/block on many processing cores on the GPU chip. Note that n blocks are handled by n pro-
cessing cores, where n could be on the order of hundreds of blocks.

_global__void saxpy_parallel (intn, float a, float*x, float *y)
{ Int i =blockIndex.x*bTockDim.x + threadIndex.x; if (i <n)y [il=a*x[1]+y[i]}
// Invoke the parallel SAXPY kernel with 256 threads/block int nblocks = (n+ 255)/256;
saxpy_parallel << nblocks, 256 >>> (n, 2.0, x, y);

This is a good example of using CUDA C to exploit massive parallelism on a cluster of multi-
core and multithreaded processors using the CODA GPGPUs as building blocks.

2.2.5.5 CUDA Programming Interfaces
CUDA architecture shares a range of computational interfaces with two competitors: the Khronos
Group’s Open Computing Language and Microsoft’s DirectCompute. Third-party wrappers are also
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available for using Python, Perl, FORTRAN, Java, Ruby, Lua, MATLAB, and IDL. CUDA has
been used to accelerate nongraphical applications in computational biology, cryptography, and other
fields by an order of magnitude or more. A good example is the BOINC distributed computing cli-
ent. CUDA provides both a low-level API and a higher-level API. CUDA works with all NVIDIA
GPUs from the G8X series onward, including the GeForce, Quadro, and Tesla lines. NVIDIA states
that programs developed for the GeForce 8 series will also work without modification on all future
NVIDIA video cards due to binary compatibility.

2.2.5.6 Trends in CUDA Usage
Tesla and Fermi are two generations of CUDA architecture released by NVIDIA in 2007 and 2010,
respectively. The CUDA version 3.2 is used for using a single GPU module in 2010. A newer
CUDA version 4.0 will allow multiple GPUs to address use an unified virtual address space of
shared memory. The next NVIDIA GPUs will be Kepler-designed to support C++. The Fermi has
eight times the peak double-precision floating-point performance of the Tesla GPU (5.8 Gflops/W
versus 0.7 Gflops/W). Currently, the Fermi has up to 512 CUDA cores on 3 billion transistors.
Future applications of the CUDA GPUs and the Echelon system may include the following:

* The search for extraterrestrial intelligence (SETI@Home)

* Distributed calculations to predict the native conformation of proteins

* Medical analysis simulations based on CT and MRI scan images

* Physical simulations in fluid dynamics and environment statistics

* Accelerated 3D graphics, cryptography, compression, and interconversion of video file formats
* Building the single-chip cloud computer (SCC) through virtualization in many-core architecture.

DESIGN PRINCIPLES OF COMPUTER CLUSTERS

Clusters should be designed for scalability and availability. In this section, we will cover the design
principles of SSI, HA, fault tolerance, and rollback recovery in general-purpose computers and clus-
ters of cooperative computers.

Single-System Image Features

SSI does not mean a single copy of an operating system image residing in memory, as in an SMP
or a workstation. Rather, it means the illusion of a single system, single control, symmetry, and
transparency as characterized in the following list:

* Single system The entire cluster is viewed by users as one system that has multiple processors.
The user could say, “Execute my application using five processors.” This is different from a
distributed system.

* Single control Logically, an end user or system user utilizes services from one place with a
single interface. For instance, a user submits batch jobs to one set of queues; a system
administrator configures all the hardware and software components of the cluster from one
control point.
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* Symmetry A user can use a cluster service from any node. In other words, all cluster services
and functionalities are symmetric to all nodes and all users, except those protected by access
rights.

* Location-transparent The user is not aware of the where abouts of the physical device that
eventually provides a service. For instance, the user can use a tape drive attached to any cluster
node as though it were physically attached to the local node.

The main motivation to have SSI is that it allows a cluster to be used, controlled, and main-
tained as a familiar workstation is. The word “single” in “single-system image” is sometimes synon-
ymous with “global” or “central.” For instance, a global file system means a single file hierarchy,
which a user can access from any node. A single point of control allows an operator to monitor and
configure the cluster system. Although there is an illusion of a single system, a cluster service or
functionality is often realized in a distributed manner through the cooperation of multiple compo-
nents. A main requirement (and advantage) of SSI techniques is that they provide both the perfor-
mance benefits of distributed implementation and the usability benefits of a single image.

From the viewpoint of a process P, cluster nodes can be classified into three types. The home
node of a process P is the node where P resided when it was created. The local node of a process
P is the node where P currently resides. All other nodes are remote nodes to P. Cluster nodes can
be configured to suit different needs. A host node serves user logins through Telnet, rlogin, or even
FTP and HTTP. A compute node is one that performs computational jobs. An I/O node is one that
serves file I/O requests. If a cluster has large shared disks and tape units, they are normally physi-
cally attached to I/O nodes.

There is one home node for each process, which is fixed throughout the life of the process. At
any time, there is only one local node, which may or may not be the host node. The local node and
remote nodes of a process may change when the process migrates. A node can be configured to
provide multiple functionalities. For instance, a node can be designated as a host, an I/O node, and
a compute node at the same time. The illusion of an SSI can be obtained at several layers, three of
which are discussed in the following list. Note that these layers may overlap with one another.

* Application software layer Two examples are parallel web servers and various parallel
databases. The user sees an SSI through the application and is not even aware that he is using a
cluster. This approach demands the modification of workstation or SMP applications for clusters.

* Hardware or kernel layer Ideally, SSI should be provided by the operating system or by the
hardware. Unfortunately, this is not a reality yet. Furthermore, it is extremely difficult to provide
an SSI over heterogeneous clusters. With most hardware architectures and operating systems
being proprietary, only the manufacturer can use this approach.

* Middleware layer The most viable approach is to construct an SSI layer just above the OS kernel.
This approach is promising because it is platform-independent and does not require application
modification. Many cluster job management systems have already adopted this approach.

Each computer in a cluster has its own operating system image. Thus, a cluster may display
multiple system images due to the stand-alone operations of all participating node computers. Deter-
mining how to merge the multiple system images in a cluster is as difficult as regulating many indi-
vidual personalities in a community to a single personality. With different degrees of resource
sharing, multiple systems could be integrated to achieve SSI at various operational levels.



2.3 Design Principles of Computer Clusters 89

2.3.1.1 Single Entry Point

Single-system image (SSI) is a very rich concept, consisting of single entry point, single file
hierarchy, single I/O space, single networking scheme, single control point, single job manage-
ment system, single memory space, and single process space. The single entry point enables users
to log in (e.g., through Telnet, rlogin, or HTTP) to a cluster as one virtual host, although the clus-
ter may have multiple physical host nodes to serve the login sessions. The system transparently
distributes the user’s login and connection requests to different physical hosts to balance the load.
Clusters could substitute for mainframes and supercomputers. Also, in an Internet cluster server,
thousands of HTTP or FTP requests may come simultaneously. Establishing a single entry point
with multiple hosts is not a trivial matter. Many issues must be resolved. The following is just a
partial list:

* Home directory Where do you put the user’s home directory?

* Authentication How do you authenticate user logins?

* Multiple connections What if the same user opens several sessions to the same user account?
* Host failure How do you deal with the failure of one or more hosts?

B
Example 2.5 Realizing a Single Entry Point in a Cluster of Computers

Figure 2.13 illustrates how to realize a single entry point. Four nodes of a cluster are used as host nodes to
receive users’ login requests. Although only one user is shown, thousands of users can connect to the
cluster in the same fashion. When a user logs into the cluster, he issues a standard UNIX command such
as telnet cluster.cs.hku.hk, using the symbolic name of the cluster system.

The DNS translates the symbolic name and returns the IP address 159.226.41.150 of the least-
loaded node, which happens to be node Hostl. The user then logs in using this IP address. The
DNS periodically receives load information from the host nodes to make load-balancing translation
decisions. In the ideal case, if 200 users simultaneously log in, the login sessions are evenly distrib-
uted among our hosts with 50 users each. This allows a single host to be four times more
powerful.

. cluster.cs.hku.hk .| Domain name
| User terminal < server (DNS)

159.226.41.150
Connect usingv\A %d
159.226.41.150 information

Host1 | Host2 | Host3 | Host4

Cluster nodes

FIGURE 2.13
Realizing a single entry point using a load-balancing domain name system (DNS).

(Courtesy of Hwang and Xu [14])
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2.3.1.2 Single File Hierarchy

We use the term “single file hierarchy” in this book to mean the illusion of a single, huge file sys-
tem image that transparently integrates local and global disks and other file devices (e.g., tapes). In
other words, all files a user needs are stored in some subdirectories of the root directory /, and they
can be accessed through ordinary UNIX calls such as open, read, and so on. This should not be
confused with the fact that multiple file systems can exist in a workstation as subdirectories of the
root directory.

The functionalities of a single file hierarchy have already been partially provided by existing distrib-
uted file systems such as Network File System (NFS) and Andrew File System (AFS). From the view-
point of any process, files can reside on three types of locations in a cluster, as shown in Figure 2.14.

Local storage is the disk on the local node of a process. The disks on remote nodes are remote
storage. A stable storage requires two aspects: It is persistent, which means data, once written to the
stable storage, will stay there for a sufficiently long time (e.g., a week), even after the cluster shuts
down; and it is fault-tolerant to some degree, by using redundancy and periodic backup to tapes.

Figure 2.14 uses stable storage. Files in stable storage are called global files, those in local sto-
rage local files, and those in remote storage remote files. Stable storage could be implemented as
one centralized, large RAID disk. But it could also be distributed using local disks of cluster nodes.
The first approach uses a large disk, which is a single point of failure and a potential performance
bottleneck. The latter approach is more difficult to implement, but it is potentially more economical,
more efficient, and more available. On many cluster systems, it is customary for the system to make
visible to the user processes the following directories in a single file hierarchy: the usual system
directories as in a traditional UNIX workstation, such as /usr and /usr/local; and the user’s home
directory ~/ that has a small disk quota (1-20 MB). The user stores his code files and other files
here. But large data files must be stored elsewhere.

* A global directory is shared by all users and all processes. This directory has a large disk space
of multiple gigabytes. Users can store their large data files here.

* On a cluster system, a process can access a special directory on the local disk. This directory
has medium capacity and is faster to access than the global directory.

Stable storage (also known as
persistent storage, global storage)

Node 1 /

Node N

| Local storage |

-LI Remote storage

FIGURE 2.14

Three types of storage in a single file hierarchy. Solid lines show what process P can access and the
dashed line shows what P may be able to access.

(Courtesy of Hwang and Xu [14])
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2.3.1.3 Visibility of Files

The term “visibility” here means a process can use traditional UNIX system or library calls such as
fopen, fread, and fwrite to access files. Note that there are multiple local scratch directories in a
cluster. The local scratch directories in remote nodes are not in the single file hierarchy, and are not
directly visible to the process. A user process can still access them with commands such as rcp or
some special library functions, by specifying both the node name and the filename.

The name “scratch” indicates that the storage is meant to act as a scratch pad for temporary
information storage. Information in the local scratch space could be lost once the user logs out.
Files in the global scratch space will normally persist even after the user logs out, but will be
deleted by the system if not accessed in a predetermined time period. This is to free disk space for
other users. The length of the period can be set by the system administrator, and usually ranges
from one day to several weeks. Some systems back up the global scratch space to tapes periodically
or before deleting any files.

2.3.1.4 Support of Single-File Hierarchy
It is desired that a single file hierarchy have the SSI properties discussed, which are reiterated for
file systems as follows:

* Single system There is just one file hierarchy from the user’s viewpoint.

* Symmetry A user can access the global storage (e.g., /scratch) using a cluster service from any
node. In other words, all file services and functionalities are symmetric to all nodes and all
users, except those protected by access rights.

* Location-transparent The user is not aware of the whereabouts of the physical device that
eventually provides a service. For instance, the user can use a RAID attached to any cluster
node as though it were physically attached to the local node. There may be some performance
differences, though.

A cluster file system should maintain UNIX semantics: Every file operation (fopen, fread, fwrite,
fclose, etc.) is a transaction. When an fread accesses a file after an fwrite modifies the same file,
the fread should get the updated value. However, existing distributed file systems do not completely
follow UNIX semantics. Some of them update a file only at close or flush. A number of alternatives
have been suggested to organize the global storage in a cluster. One extreme is to use a single file
server that hosts a big RAID. This solution is simple and can be easily implemented with current
software (e.g., NFS). But the file server becomes both a performance bottleneck and a single point
of failure. Another extreme is to utilize the local disks in all nodes to form global storage. This
could solve the performance and availability problems of a single file server.

2.3.1.5 Single /0, Networking, and Memory Space

To achieve SSI, we desire a single control point, a single address space, a single job management
system, a single user interface, and a single process control, as depicted in Figure 2.17. In this
example, each node has exactly one network connection. Two of the four nodes each have two I/O
devices attached.

Single Networking: A properly designed cluster should behave as one system (the shaded area).
In other words, it is like a big workstation with four network connections and four I/O devices
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attached. Any process on any node can use any network and I/O device as though it were attached
to the local node. Single networking means any node can access any network connection.

Single Point of Control: The system administrator should be able to configure, monitor, test,
and control the entire cluster and each individual node from a single point. Many clusters help
with this through a system console that is connected to all nodes of the cluster. The system
console is normally connected to an external LAN (not shown in Figure 2.15) so that the
administrator can log in remotely to the system console from anywhere in the LAN to perform
administration work.

Note that single point of control does not mean all system administration work should be
carried out solely by the system console. In reality, many administrative functions are
distributed across the cluster. It means that controlling a cluster should be no more difficult than
administering an SMP or a mainframe. It implies that administration-related system information
(such as various configuration files) should be kept in one logical place. The administrator
monitors the cluster with one graphics tool, which shows the entire picture of the cluster, and
the administrator can zoom in and out at will.

Single point of control (or single point of management) is one of the most challenging issues

in constructing a cluster system. Techniques from distributed and networked system
management can be transferred to clusters. Several de facto standards have already been
developed for network management. An example is Simple Network Management Protocol
(SNMP). It demands an efficient cluster management package that integrates with the availability
support system, the file system, and the job management system.
Single Memory Space: Single memory space gives users the illusion of a big, centralized main
memory, which in reality may be a set of distributed local memory spaces. PVPs, SMPs, and DSMs
have an edge over MPPs and clusters in this respect, because they allow a program to utilize all
global or local memory space. A good way to test if a cluster has a single memory space is to run a
sequential program that needs a memory space larger than any single node can provide.

Suppose each node in Figure 2.15 has 2 GB of memory available to users. An ideal single
memory image would allow the cluster to execute a sequential program that needs 8 GB of
memory. This would enable a cluster to operate like an SMP system. Several approaches have

[ RAID | [Tape unit] |CD—ROM| | RAID |
Fast l l I I
Ethernet/ Node 1 Node 2 \ FDDI
System
console
ATM Ethernet
\ Node 3 Node 4

FIGURE 2.15

A cluster with single networking, single I/O space, single memory, and single point of control.

(Courtesy of Hwang and Xu [14])
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been attempted to achieve a single memory space on clusters. Another approach is to let the
compiler distribute the data structures of an application across multiple nodes. It is still a
challenging task to develop a single memory scheme that is efficient, platform-independent, and
able to support sequential binary codes.

Single I/0 Address Space: Assume the cluster is used as a web server. The web information
database is distributed between the two RAIDs. An HTTP daemon is started on each node to
handle web requests, which come from all four network connections. A single I/O space implies
that any node can access the two RAIDs. Suppose most requests come from the ATM network.
It would be beneficial if the functions of the HTTP on node 3 could be distributed to all four
nodes. The following example shows a distributed RAID-x architecture for I/O-centric cluster
computing [9].

=
Example 2.6 Single 1/0 Space over Distributed RAID for 1/0-Centric Clusters

A distributed disk array architecture was proposed by Hwang, et al. [9] for establishing a single /0 space
in I/O-centric cluster applications. Figure 2.16 shows the architecture for a four-node Linux PC cluster, in
which three disks are attached to the SCSI bus of each host node. All 12 disks form an integrated RAID-x
with a single address space. In other words, all PCs can access both local and remote disks. The addres-
sing scheme for all disk blocks is interleaved horizontally. Orthogonal stripping and mirroring make it possi-
ble to have a RAID-1 equivalent capability in the system.

The shaded blocks are images of the blank blocks. A disk block and its image will be mapped on dif-
ferent physical disks in an orthogonal manner. For example, the block Bg is located on disk DO. The
image block M, of block Bg is located on disk D3. The four disks DO, D1, D2, and D3 are attached to four
servers, and thus can be accessed in parallel. Any single disk failure will not lose the data block, because
its image is available in recovery. All disk blocks are labeled to show image mapping. Benchmark experi-
ments show that this RAID-x is scalable and can restore data after any single disk failure. The distributed
RAID-x has improved aggregate 1/0 bandwidth in both parallel read and write operations over all physical
disks in the cluster.

2.3.1.6 Other Desired SSI Features

The ultimate goal of SSI is for a cluster to be as easy to use as a desktop computer. Here are addi-
tional types of SSI, which are present in SMP servers:

* Single job management system All cluster jobs can be submitted from any node to a single
job management system.

* Single user interface The users use the cluster through a single graphical interface. Such an
interface is available for workstations and PCs. A good direction to take in developing a cluster
GUI is to utilize web technology.

* Single process space All user processes created on various nodes form a single process space
and share a uniform process identification scheme. A process on any node can create
(e.g., through a UNIX fork) or communicate with (e.g., through signals, pipes, etc.) processes
on remote nodes.
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[ Cluster network ]
Node 0 Node 1 Node 2 Node 3
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FIGURE 2.16

Distributed RAID architecture with a single 1/0 space over 12 distributed disks attached to 4 host computers
in the cluster (Di stands for Disk i, B; for disk block j, M; an image for blocks B;, P/M for processor/memory
node, and CDD for cooperative disk driver.)

(Courtesy of Hwang, Jin, and Ho [13])

¢ Middleware support for SSI clustering As shown in Figure 2.17, various SSI features are
supported by middleware developed at three cluster application levels:

¢ Management level This level handles user applications and provides a job management system
such as GLUnix, MOSIX, Load Sharing Facility (LSF), or Codine.

* Programming level This level provides single file hierarchy (NFS, xFS, AFS, Proxy) and
distributed shared memory (TreadMark, Wind Tunnel).
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User applications

Management level Job management system
(GLUnix, MOSIX, LSF, PBC)

Programming level

Single file hierarchy Distributed shared memory
(NFS, AFS, xFS, Proxy) (treadmark, wind tunnel)

Implementation level

) Checkpoint and :
Single process space process migration Single 1/0 space

| Cluster hardware and OS platform |

FIGURE 2.17

Relationship among clustering middleware at the job management, programming, and implementation levels.
(Courtesy of K. Hwang, H. Jin, C.L. Wang and Z. Xu [16])

* Implementation level This level supports a single process space, checkpointing, process
migration, and a single I/O space. These features must interface with the cluster hardware and
OS platform. The distributed disk array, RAID-x, in Example 2.6 implements a single I/O space.

High Availability through Redundancy

When designing robust, highly available systems three terms are often used together: reliability,
availability, and serviceability (RAS). Availability is the most interesting measure since it combines
the concepts of reliability and serviceability as defined here:

* Reliability measures how long a system can operate without a breakdown.

* Availability indicates the percentage of time that a system is available to the user, that is, the
percentage of system uptime.

* Serviceability refers to how easy it is to service the system, including hardware and software
maintenance, repair, upgrades, and so on.

The demand for RAS is driven by practical market needs. A recent Find/SVP survey found the
following figures among Fortune 1000 companies: An average computer is down nine times per
year with an average downtime of four hours. The average loss of revenue per hour of downtime is
$82,500. With such a hefty penalty for downtime, many companies are striving for systems that
offer 24/365 availability, meaning the system is available 24 hours per day, 365 days per year.

2.3.2.1 Availability and Failure Rate
As Figure 2.18 shows, a computer system operates normally for a period of time before it fails. The
failed system is then repaired, and the system returns to normal operation. This operate-repair cycle
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then repeats. A system’s reliability is measured by the mean time to failure (MTTF), which is the
average time of normal operation before the system (or a component of the system) fails. The metric
for serviceability is the mean time to repair (MTTR), which is the average time it takes to repair the
system and restore it to working condition after it fails. The availability of a system is defined by:

Availability = MTTF/(MTTF + MTTR) 2.1

2.3.2.2 Planned versus Unplanned Failure
When studying RAS, we call any event that prevents the system from normal operation a failure.
This includes:

* Unplanned failures The system breaks, due to an operating system crash, a hardware failure, a
network disconnection, human operation errors, a power outage, and so on. All these are simply
called failures. The system must be repaired to correct the failure.

* Planned shutdowns The system is not broken, but is periodically taken off normal operation
for upgrades, reconfiguration, and maintenance. A system may also be shut down for weekends
or holidays. The MTTR in Figure 2.18 for this type of failure is the planned downtime.

Table 2.5 shows the availability values of several representative systems. For instance, a conven-
tional workstation has an availability of 99 percent, meaning it is up and running 99 percent of
the time or it has a downtime of 3.6 days per year. An optimistic definition of availability does
not consider planned downtime, which may be significant. For instance, many supercomputer
installations have a planned downtime of several hours per week, while a telephone system cannot
tolerate a downtime of a few minutes per year.

2.3.2.3 Transient versus Permanent Failures
A lot of failures are transient in that they occur temporarily and then disappear. They can be dealt
with without replacing any components. A standard approach is to roll back the system to a known

OK Fail (fault occurs) OK

| Normal operation Being repaired | Time

|<* Mean time to fail (MTTF) —»<—Mean time to repair (MTTR)%I

FIGURE 2.18
The operate-repair cycle of a computer system.

Table 2.5 Availability of Computer System Types

System Type Availability (%) Downtime in a Year
Conventional workstation 99 3.6 days

HA system 99.9 8.5 hours
Fault-resilient system 99.99 1 hour

Fault-tolerant system 99.999 5 minutes
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state and start over. For instance, we all have rebooted our PC to take care of transient failures such
as a frozen keyboard or window. Permanent failures cannot be corrected by rebooting. Some hard-
ware or software component must be repaired or replaced. For instance, rebooting will not work if
the system hard disk is broken.

2.3.2.4 Partial versus Total Failures
A failure that renders the entire system unusable is called a total failure. A failure that only affects
part of the system is called a partial failure if the system is still usable, even at a reduced capacity.
A key approach to enhancing availability is to make as many failures as possible partial failures, by
systematically removing single points of failure, which are hardware or software components whose
failure will bring down the entire system.

B
Example 2.7 Single Points of Failure in an SMP and in Clusters of Computers

In an SMP (Figure 2.19(a)), the shared memory, the OS image, and the memory bus are all single points
of failure. On the other hand, the processors are not forming a single point of failure. In a cluster of work-
stations (Figure 2.19(b)), interconnected by Ethernet, there are multiple OS images, each residing in a
workstation. This avoids the single point of failure caused by the OS as in the SMP case. However, the
Ethernet network now becomes a single point of failure, which is eliminated in Figure 2.21(c), where a
high-speed network is added to provide two paths for communication.

When a node fails in the clusters in Figure 2.19(b) and Figure 2.19(c), not only will the node
applications all fail, but also all node data cannot be used until the node is repaired. The shared
disk cluster in Figure 2.19(d) provides a remedy. The system stores persistent data on the shared
disk, and periodically checkpoints to save intermediate results. When one WS node fails, the data
will not be lost in this shared-disk cluster.

LeJle e [P ] ws ws ws
| Bus (0S) (0S) (0S)
Shared memory [ [ [
where OS resides Ethernet
(a) An SMP (b) A cluster of workstations
High-speed network Ethernet
I I I | |
WS WS WS WS Shared WS
(0S) (08) (0S) (08S) RAID (08)
I I I Ethernet
(c) A dual-networked cluster (d) A shared-disk cluster

FIGURE 2.19

Single points of failure (SPF) in an SMP and in three clusters, where greater redundancy eliminates more
SPFs in systems from (a) to (d).

(Courtesy of Hwang and Xu [14])
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2.3.2.5 Redundancy Technigues
Consider the cluster in Figure 2.19(d). Assume only the nodes can fail. The rest of the system (e.g.,
interconnect and the shared RAID disk) is 100 percent available. Also assume that when a node fails,
its workload is switched over to the other node in zero time. We ask, what is the availability of the
cluster if planned downtime is ignored? What is the availability if the cluster needs one hour/week for
maintenance? What is the availability if it is shut down one hour/week, one node at a time?
According to Table 2.4, a workstation is available 99 percent of the time. The time both nodes
are down is only 0.01 percent. Thus, the availability is 99.99 percent. It is now a fault-resilient sys-
tem, with only one hour of downtime per year. The planned downtime is 52 hours per year, that is,
52 / (365 x 24) = 0.0059. The total downtime is now 0.59 percent + 0.01 percent = 0.6 percent.
The availability of the cluster becomes 99.4 percent. Suppose we ignore the unlikely situation in
which the other node fails while one node is maintained. Then the availability is 99.99 percent.
There are basically two ways to increase the availability of a system: increasing MTTF or redu-
cing MTTR. Increasing MTTF amounts to increasing the reliability of the system. The computer
industry has strived to make reliable systems, and today’s workstations have MTTFs in the range of
hundreds to thousands of hours. However, to further improve MTTF is very difficult and costly. Clus-
ters offer an HA solution based on reducing the MTTR of the system. A multinode cluster has a lower
MTTF (thus lower reliability) than a workstation. However, the failures are taken care of quickly to
deliver higher availability. We consider several redundancy techniques used in cluster design.

2.3.2.6 Isolated Redundancy

A key technique to improve availability in any system is to use redundant components. When a
component (the primary component) fails, the service it provided is taken over by another compo-
nent (the backup component). Furthermore, the primary and the backup components should be iso-
lated from each other, meaning they should not be subject to the same cause of failure. Clusters
provide HA with redundancy in power supplies, fans, processors, memories, disks, I/O devices, net-
works, operating system images, and so on. In a carefully designed cluster, redundancy is also iso-
lated. Isolated redundancy provides several benefits:

* First, a component designed with isolated redundancy is not a single point of failure, and the
failure of that component will not cause a total system failure.

* Second, the failed component can be repaired while the rest of the system is still working.

* Third, the primary and the backup components can mutually test and debug each other.

The IBM SP2 communication subsystem is a good example of isolated-redundancy design. All
nodes are connected by two networks: an Ethernet network and a high-performance switch. Each
node uses two separate interface cards to connect to these networks. There are two communication
protocols: a standard IP and a user-space (US) protocol; each can run on either network. If either
network or protocol fails, the other network or protocol can take over.

2.3.2.7 N-Version Programming to Enhance Software Reliability

A common isolated-redundancy approach to constructing a mission-critical software system is called
N-version programming. The software is implemented by N isolated teams who may not even know
the others exist. Different teams are asked to implement the software using different algorithms,
programming languages, environment tools, and even platforms. In a fault-tolerant system, the
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N versions all run simultaneously and their results are constantly compared. If the results differ, the
system is notified that a fault has occurred. But because of isolated redundancy, it is extremely unli-
kely that the fault will cause a majority of the N versions to fail at the same time. So the system
continues working, with the correct result generated by majority voting. In a highly available but
less mission-critical system, only one version needs to run at a time. Each version has a built-in
self-test capability. When one version fails, another version can take over.

Fault-Tolerant Cluster Configurations

The cluster solution was targeted to provide availability support for two server nodes with three
ascending levels of availability: hot standby, active takeover, and fault-tolerant. In this section, we
will consider the recovery time, failback feature, and node activeness. The level of availability
increases from standby to active and fault-tolerant cluster configurations. The shorter is the recovery
time, the higher is the cluster availability. Failback refers to the ability of a recovered node return-
ing to normal operation after repair or maintenance. Activeness refers to whether the node is used in
active work during normal operation.

* Hot standby server clusters In a hot standby cluster, only the primary node is actively doing
all the useful work normally. The standby node is powered on (hot) and running some
monitoring programs to communicate heartbeat signals to check the status of the primary node,
but is not actively running other useful workloads. The primary node must mirror any data to
shared disk storage, which is accessible by the standby node. The standby node requires a
second copy of data.

* Active-takeover clusters In this case, the architecture is symmetric among multiple server
nodes. Both servers are primary, doing useful work normally. Both failover and failback are
often supported on both server nodes. When a node fails, the user applications fail over to
the available node in the cluster. Depending on the time required to implement the failover,
users may experience some delays or may lose some data that was not saved in the last
checkpoint.

* Failover cluster This is probably the most important feature demanded in current clusters for
commercial applications. When a component fails, this technique allows the remaining system to
take over the services originally provided by the failed component. A failover mechanism must
provide several functions, such as failure diagnosis, failure notification, and failure recovery.
Failure diagnosis refers to the detection of a failure and the location of the failed component
that caused the failure. A commonly used technique is heartbeat, whereby the cluster nodes
send out a stream of heartbeat messages to one another. If the system does not receive the
stream of heartbeat messages from a node, it can conclude that either the node or the network
connection has failed.

=
Example 2.8 Failure Diagnosis and Recovery in a Dual-Network Cluster

A cluster uses two networks to connect its nodes. One node is designated as the master node. Each node
has a heartbeat daemon that periodically (every 10 seconds) sends a heartbeat message to the master
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node through both networks. The master node will detect a failure if it does not receive messages for a
beat (10 seconds) from a node and will make the following diagnoses:

® A node’s connection to one of the two networks failed if the master receives a heartbeat from the node
through one network but not the other.

® The node failed if the master does not receive a heartbeat through either network. It is assumed that
the chance of both networks failing at the same time is negligible.

The failure diagnosis in this example is simple, but it has several pitfalls. What if the master node fails? Is
the 10-second heartbeat period too long or too short? What if the heartbeat messages are dropped by the net-
work (e.g., due to network congestion)? Can this scheme accommodate hundreds of nodes? Practical HA sys-
tems must address these issues. A popular trick is to use the heartbeat messages to carry load information so
that when the master receives the heartbeat from a node, it knows not only that the node is alive, but also the
resource utilization status of the node. Such load information is useful for load balancing and job management.

Once a failure is diagnosed, the system notifies the components that need to know the failure event.
Failure notification is needed because the master node is not the only one that needs to have this informa-
tion. For instance, in case of the failure of a node, the DNS needs to be told so that it will not connect
more users to that node. The resource manager needs to reassign the workload and to take over the
remaining workload on that node. The system administrator needs to be alerted so that she can initiate
proper actions to repair the node.

2.3.3.1 Recovery Schemes

Failure recovery refers to the actions needed to take over the workload of a failed component. There
are two types of recovery techniques. In backward recovery, the processes running on a cluster per-
iodically save a consistent state (called a checkpoint) to a stable storage. After a failure, the system
is reconfigured to isolate the failed component, restores the previous checkpoint, and resumes nor-
mal operation. This is called rollback.

Backward recovery is relatively easy to implement in an application-independent, portable fashion,
and has been widely used. However, rollback implies wasted execution. If execution time is crucial,
such as in real-time systems where the rollback time cannot be tolerated, a forward recovery scheme
should be used. With such a scheme, the system is not rolled back to the previous checkpoint upon a
failure. Instead, the system utilizes the failure diagnosis information to reconstruct a valid system state
and continues execution. Forward recovery is application-dependent and may need extra hardware.

L
Example 2.9 MTTF, MTTR, and Failure Cost Analysis
Consider a cluster that has little availability support. Upon a node failure, the following sequence of events

takes place:

1. The entire system is shut down and powered off.

2. The faulty node is replaced if the failure is in hardware.
3. The system is powered on and rebooted.

4. The user application is reloaded and rerun from the start.
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Assume one of the cluster nodes fails every 100 hours. Other parts of the cluster never fail. Steps 1
through 3 take two hours. On average, the mean time for step 4 is two hours. What is the availability of
the cluster? What is the yearly failure cost if each one-hour downtime costs $82,500?

Solution: The cluster's MTTF is 100 hours; the MTTR is 2 + 2 = 4 hours. According to Table 2.5, the
availability is 100/104 = 96.15 percent. This corresponds to 337 hours of downtime in a year, and the
failure cost is $82500 x 337, that is, more than $27 million.

||

B
Example 2.10 Availability and Cost Analysis of a Cluster of Computers

Repeat Example 2.9, but assume that the cluster now has much increased availability support. Upon a
node failure, its workload automatically fails over to other nodes. The failover time is only six minutes.
Meanwhile, the cluster has hot swap capability: The faulty node is taken off the cluster, repaired,
replugged, and rebooted, and it rejoins the cluster, all without impacting the rest of the cluster. What is
the availability of this ideal cluster, and what is the yearly failure cost?

Solution: The cluster’'s MTTF is still 100 hours, but the MTTR is reduced to 0.1 hours, as the cluster
is available while the failed node is being repaired. From to Table 2.5, the availability is 100/100.5 =
99.9 percent. This corresponds to 8.75 hours of downtime per year, and the failure cost is $82,500,
a 27M/722K = 38 times reduction in failure cost from the design in Example 3.8.

Checkpointing and Recovery Techniques

Checkpointing and recovery are two techniques that must be developed hand in hand to enhance the
availability of a cluster system. We will start with the basic concept of checkpointing. This is
the process of periodically saving the state of an executing program to stable storage, from which
the system can recover after a failure. Each program state saved is called a checkpoint. The disk file
that contains the saved state is called the checkpoint file. Although all current checkpointing soft-
ware saves program states in a disk, research is underway to use node memories in place of stable
storage in order to improve performance.

Checkpointing techniques are useful not only for availability, but also for program debugging,
process migration, and load balancing. Many job management systems and some operating systems
support checkpointing to a certain degree. The Web Resource contains pointers to numerous check-
point-related web sites, including some public domain software such as Condor and Libckpt. Here
we will present the important issues for the designer and the user of checkpoint software. We will
first consider the issues that are common to both sequential and parallel programs, and then we will
discuss the issues pertaining to parallel programs.

2.3.4.1 Kernel, Library, and Application Levels

Checkpointing can be realized by the operating system at the kernel level, where the OS transpar-
ently checkpoints and restarts processes. This is ideal for users. However, checkpointing is not sup-
ported in most operating systems, especially for parallel programs. A less transparent approach links
the user code with a checkpointing library in the user space. Checkpointing and restarting are
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handled by this runtime support. This approach is used widely because it has the advantage that
user applications do not have to be modified.

A main problem is that most current checkpointing libraries are static, meaning the application
source code (or at least the object code) must be available. It does not work if the application is in
the form of executable code. A third approach requires the user (or the compiler) to insert check-
pointing functions in the application; thus, the application has to be modified, and the transparency
is lost. However, it has the advantage that the user can specify where to checkpoint. This is helpful
to reduce checkpointing overhead. Checkpointing incurs both time and storage overheads.

2.3.4.2 Checkpoint Overheads

During a program’s execution, its states may be saved many times. This is denoted by the time con-
sumed to save one checkpoint. The storage overhead is the extra memory and disk space required
for checkpointing. Both time and storage overheads depend on the size of the checkpoint file. The
overheads can be substantial, especially for applications that require a large memory space. A num-
ber of techniques have been suggested to reduce these overheads.

2.3.4.3 Choosing an Optimal Checkpoint Interval

The time period between two checkpoints is called the checkpoint interval. Making the interval
larger can reduce checkpoint time overhead. However, this implies a longer computation time after
a failure. Wong and Franklin [28] derived an expression for optimal checkpoint interval as illu-
strated in Figure 2.20.

Optimal checkpoint interval = Square root (MTTF x t.)/h (2.2)

Here, MTTF is the system’s mean time to failure. This MTTF accounts the time consumed to
save one checkpoint, and £ is the average percentage of normal computation performed in a check-
point interval before the system fails. The parameter 4 is always in the range. After a system is
restored, it needs to spend /& X (checkpoint interval) time to recompute.

2.3.4.4 Incremental Checkpoint

Instead of saving the full state at each checkpoint, an incremental checkpoint scheme saves only the
portion of the state that is changed from the previous checkpoint. However, care must be taken
regarding old checkpoint files. In full-state checkpointing, only one checkpoint file needs to be kept
on disk. Subsequent checkpoints simply overwrite this file. With incremental checkpointing, old files
needed to be kept, because a state may span many files. Thus, the total storage requirement is larger.
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FIGURE 2.20
Time parameters between two checkpoints.

(Courtesy of Hwang and Xu [14])
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2.3.4.5 Forked Checkpointing

Most checkpoint schemes are blocking in that the normal computation is stopped while checkpoint-
ing is in progress. With enough memory, checkpoint overhead can be reduced by making a copy of
the program state in memory and invoking another asynchronous thread to perform the checkpoint-
ing concurrently. A simple way to overlap checkpointing with computation is to use the UNIX
fork( ) system call. The forked child process duplicates the parent process’s address space and
checkpoints it. Meanwhile, the parent process continues execution. Overlapping is achieved since
checkpointing is disk-1/O intensive. A further optimization is to use the copy-on-write mechanism.

2.3.4.6 User-Directed Checkpointing

The checkpoint overheads can sometimes be substantially reduced if the user inserts code (e.g.,
library or system calls) to tell the system when to save, what to save, and what not to save. What
should be the exact contents of a checkpoint? It should contain just enough information to allow a
system to recover. The state of a process includes its data state and control state. For a UNIX process,
these states are stored in its address space, including the text (code), the data, the stack segments, and
the process descriptor. Saving and restoring the full state is expensive and sometimes impossible.

For instance, the process ID and the parent process ID are not restorable, nor do they need to be
saved in many applications. Most checkpointing systems save a partial state. For instance, the code seg-
ment is usually not saved, as it does not change in most applications. What kinds of applications can be
checkpointed? Current checkpoint schemes require programs to be well behaved, the exact meaning of
which differs in different schemes. At a minimum, a well-behaved program should not need the exact
contents of state information that is not restorable, such as the numeric value of a process ID.

2.3.4.7 Checkpointing Parallel Programs

We now turn to checkpointing parallel programs. The state of a parallel program is usually much larger
than that of a sequential program, as it consists of the set of the states of individual processes, plus the
state of the communication network. Parallelism also introduces various timing and consistency problems.

|
Example 2.11 Checkpointing a Parallel Program

Figure 2.21 illustrates checkpointing of a three-process parallel program. The arrows labeled x, y, and z
represent point-to-point communication among the processes. The three thick lines labeled a, b, and ¢
represent three global snapshots (or simply snapshots), where a global snapshot is a set of checkpoints

a b
P

X
Q
R

FIGURE 2.21
Consistent and inconsistent checkpoints in a parallel program.

(Courtesy of Hwang and Xu [14])
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(represented by dots), one from every process. In addition, some communication states may need to be
saved. The intersection of a snapshot line with a process’s time line indicates where the process should
take a (local) checkpoint. Thus, the program’s snapshot c¢ consists of three local checkpoints: s, t, u for
processes P, Q, and R, respectively, plus saving the communication y.

2.3.4.8 Consistent Snapshot

A global snapshot is called consistent if there is no message that is received by the checkpoint of
one process, but not yet sent by another process. Graphically, this corresponds to the case that no
arrow crosses a snapshot line from right to left. Thus, snapshot a is consistent, because arrow x is
from left to right. But snapshot ¢ is inconsistent, as y goes from right to left. To be consistent, there
should not be any zigzag path between two checkpoints [20]. For instance, checkpoints u# and s can-
not belong to a consistent global snapshot. A stronger consistency requires that no arrows cross the
snapshot. Thus, only snapshot b is consistent in Figure 2.23.

2.3.4.9 Coordinated versus Independent Checkpointing

Checkpointing schemes for parallel programs can be classified into two types. In coordinated check-
pointing (also called consistent checkpointing), the parallel program is frozen, and all processes are
checkpointed at the same time. In independent checkpointing, the processes are checkpointed inde-
pendent of one another. These two types can be combined in various ways. Coordinated check-
pointing is difficult to implement and tends to incur a large overhead. Independent checkpointing
has a small overhead and can utilize existing checkpointing schemes for sequential programs.

CLUSTER JOB AND RESOURCE MANAGEMENT

This section covers various scheduling methods for executing multiple jobs on a clustered system.
The LSF is described as middleware for cluster computing. MOSIX is introduced as a distributed
OS for managing resources in large-scale clusters or in clouds.

Cluster Job Scheduling Methods

Cluster jobs may be scheduled to run at a specific time (calendar scheduling) or when a particular
event happens (event scheduling). Table 2.6 summarizes various schemes to resolve job scheduling
issues on a cluster. Jobs are scheduled according to priorities based on submission time, resource
nodes, execution time, memory, disk, job type, and user identity. With static priority, jobs are
assigned priorities according to a predetermined, fixed scheme. A simple scheme is to schedule jobs
in a first-come, first-serve fashion. Another scheme is to assign different priorities to users. With
dynamic priority, the priority of a job may change over time.

Three schemes are used to share cluster nodes. In the dedicated mode, only one job runs in the clus-
ter at a time, and at most, one process of the job is assigned to a node at a time. The single job runs
until completion before it releases the cluster to run other jobs. Note that even in the dedicated mode,
some nodes may be reserved for system use and not be open to the user job. Other than that, all cluster
resources are devoted to run a single job. This may lead to poor system utilization. The job resource
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Table 2.6 Job Scheduling Issues and Schemes for Cluster Nodes
Issue Scheme Key Problems
Job priority Nonpreemptive Delay of high-priority jobs
Preemptive Overhead, implementation
Resource required Static Load imbalance
Dynamic Overhead, implementation
Resource sharing Dedicated Poor utilization
Space sharing Tiling, large job
Scheduling Time sharing Process-based job control with context switch
overhead
Independent Severe slowdown
Gang scheduling Implementation difficulty
Competing with foreign Stay Local job slowdown
(local) jobs Migrate Migration threshold, migration overhead

requirement can be static or dynamic. Static scheme fixes the number of nodes for a single job for its
entire period. Static scheme may underutilize the cluster resource. It cannot handle the situation when
the needed nodes become unavailable, such as when the workstation owner shuts down the machine.

Dynamic resource allows a job to acquire or release nodes during execution. However, it is
much more difficult to implement, requiring cooperation between a running job and the Java Mes-
sage Service (JMS). The jobs make asynchronous requests to the JMS to add/delete resources. The
JMS needs to notify the job when resources become available. The synchrony means that a job
should not be delayed (blocked) by the request/notification. Cooperation between jobs and the JMS
requires modification of the programming languages/libraries. A primitive mechanism for such
cooperation exists in PVM and MPL

2.4.1.1 Space Sharing

A common scheme is to assign higher priorities to short, interactive jobs in daytime and during eve-
ning hours using tiling. In this space-sharing mode, multiple jobs can run on disjointed partitions
(groups) of nodes simultaneously. At most, one process is assigned to a node at a time. Although a
partition of nodes is dedicated to a job, the interconnect and the I/O subsystem may be shared by
all jobs. Space sharing must solve the tiling problem and the large-job problem.

=
Example 2.12 Job Scheduling by Tiling over Cluster Nodes

Figure 2.22 illustrates the tiling technigue. In Part (a), the JMS schedules four jobs in a first-come first-serve
fashion on four nodes. Jobs 1 and 2 are small and thus assigned to nodes 1 and 2. Jobs 3 and 4 are paral-
lel; each needs three nodes. When job 3 comes, it cannot run immediately. It must wait until job 2 finishes
to free up the needed nodes. Tiling will increase the utilization of the nodes as shown in Figure 2.22(b). The
overall execution time of the four jobs is reduced after repacking the jobs over the available nodes. This pro-
blem cannot be solved in dedicated or space-sharing modes. However, it can be alleviated by timesharing.
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FIGURE 2.22

The tiling technique for scheduling more jobs to cluster nodes to shorten the total makespan and thus
increase the job throughput.

(Courtesy of Hwang and Xu [14])

2.4.1.2 Time Sharing

In the dedicated or space-sharing model, only one user process is allocated to a node. However, the sys-
tem processes or daemons are still running on the same node. In the time-sharing mode, multiple user pro-
cesses are assigned to the same node. Time sharing introduces the following parallel scheduling policies:

1. Independent scheduling The most straightforward implementation of time sharing is to use the
operating system of each cluster node to schedule different processes as in a traditional
workstation. This is called local scheduling or independent scheduling. However, the
performance of parallel jobs could be significantly degraded. Processes of a parallel job need to
interact. For instance, when one process wants to barrier-synchronize with another, the latter
may be scheduled out. So the first process has to wait. As the second process is rescheduled,
the first process may be swapped out.

2. Gang scheduling The gang scheduling scheme schedules all processes of a parallel job
together. When one process is active, all processes are active. The cluster nodes are not
perfectly clock-synchronized. In fact, most clusters are asynchronous systems, and are not driven
by the same clock. Although we say, “All processes are scheduled to run at the same time,” they
do not start exactly at the same time. Gang-scheduling skew is the maximum difference between
the time the first process starts and the time the last process starts. The execution time of a
parallel job increases as the gang-scheduling skew becomes larger, leading to longer execution
time. We should use a homogeneous cluster, where gang scheduling is more effective. However,
gang scheduling is not yet realized in most clusters, because of implementation difficulties.

3. Competition with foreign (local) jobs Scheduling becomes more complicated when both
cluster jobs and local jobs are running. Local jobs should have priority over cluster jobs. With
one keystroke, the owner wants command of all workstation resources. There are basically two
ways to deal with this situation: The cluster job can either stay in the workstation node or
migrate to another idle node. A stay scheme has the advantage of avoiding migration cost. The
cluster process can be run at the lowest priority. The workstation’s cycles can be divided into
three portions, for kernel processes, local processes, and cluster processes. However, to stay
slows down both the local and the cluster jobs, especially when the cluster job is a load-
balanced parallel job that needs frequent synchronization and communication. This leads to the
migration approach to flow the jobs around available nodes, mainly for balancing the workload.



2.4 Cluster Job and Resource Management 107

Cluster Job Management Systems

Job management is also known as workload management, load sharing, or load management. We
will first discuss the basic issues facing a job management system and summarize the available soft-
ware packages. A Job Management System (JMS) should have three parts:

* A user server lets the user submit jobs to one or more queues, specify resource requirements for
each job, delete a job from a queue, and inquire about the status of a job or a queue.

* A job scheduler performs job scheduling and queuing according to job types, resource
requirements, resource availability, and scheduling policies.

* A resource manager allocates and monitors resources, enforces scheduling policies, and collects
accounting information.

2.4.2.1 JMS Administration

The functionality of a JMS is often distributed. For instance, a user server may reside in each host
node, and the resource manager may span all cluster nodes. However, the administration of a JMS
should be centralized. All configuration and log files should be maintained in one location. There
should be a single user interface to use the JMS. It is undesirable to force the user to run PVM jobs
through one software package, MPI jobs through another, and HPF jobs through yet another.

The JMS should be able to dynamically reconfigure the cluster with minimal impact on the running
jobs. The administrator’s prologue and epilogue scripts should be able to run before and after each job
for security checking, accounting, and cleanup. Users should be able to cleanly kill their own jobs. The
administrator or the JMS should be able to cleanly suspend or kill any job. Clean means that when a
job is suspended or killed, all its processes must be included. Otherwise, some “orphan” processes are
left in the system, which wastes cluster resources and may eventually render the system unusable.

2.4.2.2 Cluster Job Types
Several types of jobs execute on a cluster. Serial jobs run on a single node. Parallel jobs use multi-
ple nodes. Interactive jobs are those that require fast turnaround time, and their input/output is
directed to a terminal. These jobs do not need large resources, and users expect them to execute
immediately, not to wait in a queue. Batch jobs normally need more resources, such as large mem-
ory space and long CPU time. But they do not need immediate responses. They are submitted to a
job queue to be scheduled to run when the resource becomes available (e.g., during off hours).
While both interactive and batch jobs are managed by the JMS, foreign jobs are created outside
the JMS. For instance, when a network of workstations is used as a cluster, users can submit inter-
active or batch jobs to the JMS. Meanwhile, the owner of a workstation can start a foreign job at
any time, which is not submitted through the JMS. Such a job is also called a local job, as opposed
to cluster jobs (interactive or batch, parallel or serial) that are submitted through the JMS of the
cluster. The characteristic of a local job is fast response time. The owner wants all resources to exe-
cute his job, as though the cluster jobs did not exist.

2.4.2.3 Characteristics of a Cluster Workload

To realistically address job management issues, we must understand the workload behavior of clus-
ters. It may seem ideal to characterize workload based on long-time operation data on real clusters.
The parallel workload traces include both development and production jobs. These traces are then
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fed to a simulator to generate various statistical and performance results, based on different sequen-
tial and parallel workload combinations, resource allocations, and scheduling policies. The following
workload characteristics are based on a NAS benchmark experiment. Of course, different workloads
may have variable statistics.

Roughly half of parallel jobs are submitted during regular working hours. Almost 80 percent of
parallel jobs run for three minutes or less. Parallel jobs running longer than 90 minutes account
for 50 percent of the total time.

The sequential workload shows that 60 percent to 70 percent of workstations are available to
execute parallel jobs at any time, even during peak daytime hours.

On a workstation, 53 percent of all idle periods are three minutes or less, but 95 percent of idle
time is spent in periods of time that are 10 minutes or longer.

A 2:1 rule applies, which says that a network of 64 workstations, with proper JMS software, can
sustain a 32-node parallel workload in addition to the original sequential workload. In other
words, clustering gives a supercomputer half of the cluster size for free!

2.4.2.4 Migration Schemes

A migration scheme must consider the following three issues:

Node availability This refers to node availability for job migration. The Berkeley NOW project
has reported such opportunity does exist in university campus environment. Even during peak
hours, 60 percent of workstations in a cluster are available at Berkeley campus.

Migration overhead What is the effect of the migration overhead? The migration time can
significantly slow down a parallel job. It is important to reduce the migration overhead (e.g., by
improving the communication subsystem) or to migrate only rarely. The slowdown is
significantly reduced if a parallel job is run on a cluster of twice the size. For instance, for a
32-node parallel job run on a 60-node cluster, the slowdown caused by migration is no more
than 20 percent, even when the migration time is as long as three minutes. This is because more
nodes are available, and thus the migration demand is less frequent.

Recruitment threshold What should be the recruitment threshold? In the worst scenario, right
after a process migrates to a node, the node is immediately claimed by its owner. Thus, the
process has to migrate again, and the cycle continues. The recruitment threshold is the amount
of time a workstation stays unused before the cluster considers it an idle node.

2.4.2.5 Desired Features in A JMS

Here are some features that have been built in some commercial JMSes in cluster computing
applications:

Most support heterogeneous Linux clusters. All support parallel and batch jobs. However,
Connect:Queue does not support interactive jobs.

Enterprise cluster jobs are managed by the JMS. They will impact the owner of a workstation in
running local jobs. However, NQE and PBS allow the impact to be adjusted. In DQS, the
impact can be configured to be minimal.

All packages offer some kind of load-balancing mechanism to efficiently utilize cluster
resources. Some packages support checkpointing.

Most packages cannot support dynamic process migration. They support static migration: A
process can be dispatched to execute on a remote node when the process is first created.
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However, once it starts execution, it stays in that node. A package that does support dynamic
process migration is Condor.
e All packages allow dynamic suspension and resumption of a user job by the user or by the
administrator. All packages allow resources (e.g., nodes) to be dynamically added to or deleted.
* Most packages provide both a command-line interface and a graphical user interface. Besides
UNIX security mechanisms, most packages use the Kerberos authentication system.

Load Sharing Facility (LSF) for Cluster Computing

LSF is a commercial workload management system from Platform Computing [29]. LSF empha-
sizes job management and load sharing on both parallel and sequential jobs. In addition, it supports
checkpointing, availability, load migration, and SSI. LSF is highly scalable and can support a clus-
ter of thousands of nodes. LSF has been implemented for various UNIX and Windows/NT plat-
forms. Currently, LSF is being used not only in clusters but also in grids and clouds.

2.4.3.1 LSF Architecture

LSF supports most UNIX platforms and uses the standard IP for JMS communication. Because of
this, it can convert a heterogeneous network of UNIX computers into a cluster. There is no need to
change the underlying OS kernel. The end user utilizes the LSF functionalities through a set of uti-
lity commands. PVM and MPI are supported. Both a command-line interface and a GUI are pro-
vided. LSF also offers skilled users an API that is a runtime library called LSLIB (load sharing
library). Using LSLIB explicitly requires the user to modify the application code, whereas using the
utility commands does not. Two LSF daemons are used on each server in the cluster. The load
information managers (LIMs) periodically exchange load information. The remote execution server
(RES) executes remote tasks.

2.4.3.2 LSF Utility Commands

A cluster node may be a single-processor host or an SMP node with multiple processors, but always
runs with only a single copy of the operating system on the node. Here are interesting features built
into the LSF facilities:

* LSF supports all four combinations of interactive, batch, sequential, and parallel jobs. A job that
is not executed through LSF is called a foreign job. A server node is one which can execute
LSF jobs. A client node is one that can initiate or submit LSF jobs but cannot execute them.
Only the resources on the server nodes can be shared. Server nodes can also initiate or submit
LSF jobs.

* LSF offers a set of tools (Istools) to get information from LSF and to run jobs remotely. For
instance, Ishosts lists the static resources (discussed shortly) of every server node in the cluster.
The command Isrun executes a program on a remote node.

* When a user types the command line %lsrun-R ‘swp>100" myjob at a client node, the
application myjob will be automatically executed on the most lightly loaded server node that has
an available swap space greater than 100 MB.

* The Isbatch utility allows users to submit, monitor, and execute batch jobs through LSF. This
utility is a load-sharing version of the popular UNIX command interpreter zcsh. Once a user
enters the Istcsh shell, every command issued will be automatically executed on a suitable node.
This is done transparently: The user sees a shell exactly like a fcsh running on the local node.
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* The Ismake utility is a parallel version of the UNIX make utility, allowing a makefile to be
processed in multiple nodes simultaneously.

L
Example 2.13 Application of the LSF on a Cluster of Computers

Suppose a cluster consists of eight expensive server nodes and 100 inexpensive client nodes (workstations
or PCs). The server nodes are expensive due to better hardware and software, including application soft-
ware. A license is available to install a FORTRAN compiler and a CAD simulation package, both valid for
up to four users. Using a JMS such as LSF, all the hardware and software resources of the server nodes
are made available to the clients transparently.

A user sitting in front of a client’s terminal feels as though the client node has all the software and
speed of the servers locally. By typing Ismake my.makefile, the user can compile his source code on up to
four servers. LSF selects the nodes with the least amount of load. Using LSF also benefits resource utiliza-
tion. For instance, a user wanting to run a CAD simulation can submit a batch job. LSF will schedule the
job as soon as the software becomes available.

MOSIX: An 0S for Linux Clusters and Clouds

MOSIX is a distributed operating system that was developed at Hebrew University in 1977. Initi-
ally, the system extended BSD/OS system calls for resource sharing in Pentium clusters. In 1999,
the system was redesigned to run on Linux clusters built with x86 platforms. The MOSIX project is
still active as of 2011, with 10 versions released over the years. The latest version, MOSIX2, is
compatible with Linux 2.6.

2.4.4.1 MOXIS2 for Linux Clusters

MOSIX2 runs as a virtualization layer in the Linux environment. This layer provides SSI to users
and applications along with runtime Linux support. The system runs applications in remote nodes
as though they were run locally. It supports both sequential and parallel applications, and can dis-
cover resources and migrate software processes transparently and automatically among Linux nodes.
MOSIX2 can also manage a Linux cluster or a grid of multiple clusters.

Flexible management of a grid allows owners of clusters to share their computational resources
among multiple cluster owners. Each cluster can still preserve its autonomy over its own clusters
and its ability to disconnect its nodes from the grid at any time. This can be done without disrupt-
ing the running programs. A MOSIX-enabled grid can extend indefinitely as long as trust exists
among the cluster owners. The condition is to guarantee that guest applications cannot be modified
while running in remote clusters. Hostile computers are not allowed to connect to the local
network.

2.4.4.2 SSI Features in MOSIX2

The system can run in native mode or as a VM. In native mode, the performance is better, but it
requires that you modify the base Linux kernel, whereas a VM can run on top of any unmodified
OS that supports virtualization, including Microsoft Windows, Linux, and Mac OS X. The system
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is most suitable for running compute-intensive applications with low to moderate amounts of I/O.
Tests of MOSIX2 show that the performance of several such applications over a 1 GB/second
campus grid is nearly identical to that of a single cluster. Here are some interesting features of
MOSIX2:

* Users can log in on any node and do not need to know where their programs run.

* There is no need to modify or link applications with special libraries.

* There is no need to copy files to remote nodes, thanks to automatic resource discovery and
workload distribution by process migration.

* Users can load-balance and migrate processes from slower to faster nodes and from nodes that
run out of free memory.

* Sockets are migratable for direct communication among migrated processes.

* The system features a secure runtime environment (sandbox) for guest processes.

* The system can run batch jobs with checkpoint recovery along with tools for automatic
installation and configuration scripts.

2.4.4.3 Applications of MOSIX for HPC

The MOSIX is a research OS for HPC cluster, grid, and cloud computing. The system’s designers
claim that MOSIX offers efficient utilization of wide-area grid resources through automatic resource
discovery and load balancing. The system can run applications with unpredictable resource require-
ments or runtimes by running long processes, which are automatically sent to grid nodes. The sys-
tem can also combine nodes of different capacities by migrating processes among nodes based on
their load index and available memory.

MOSIX became proprietary software in 2001. Application examples include scientific computa-
tions for genomic sequence analysis, molecular dynamics, quantum dynamics, nanotechnology and
other parallel HPC applications; engineering applications including CFD, weather forecasting, crash
simulations, oil industry simulations, ASIC design, and pharmaceutical design; and cloud applica-
tions such as for financial modeling, rendering farms, and compilation farms.

=
Example 2.14 Memory-Ushering Algorithm Using MOSIX versus PVM

Memory ushering is practiced to borrow the main memory of a remote cluster node, when the main mem-
ory on a local node is exhausted. The remote memory access is done by process migration instead of
paging or swapping to local disks. The ushering process can be implemented with PVYM commands or it
can use MOSIX process migration. In each execution, an average memory chunk can be assigned to the
nodes using PVM. Figure 2.23 shows the execution time of the memory algorithm using PVYM compared
with the use of the MOSIX routine.

For a small cluster of eight nodes, the execution times are closer. When the cluster scales to 32 nodes, the
MOSIX routine shows a 60 percent reduction in ushering time. Furthermore, MOSIX performs almost the same
when the cluster size increases. The PVM ushering time increases monotonically by an average of 3.8 percent
per node increase, while MOSIX consistently decreases by 0.4 percent per node increase. The reduction in
time results from the fact that the memory and load-balancing algorithms of MOSIX are more scalable than
PVM.
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Performance of the memory-ushering algorithm using MOSIX versus PVM.

(Courtesy of A. Barak and O. La’adan [5])

CASE STUDIES OF TOP SUPERCOMPUTER SYSTEMS

This section reviews three top supercomputers that have been singled out as winners in the Top 500 List
for the years 2008-2010. The IBM Roadrunner was the world’s first petaflops computer, ranked No. 1
in 2008. Subsequently, the Cray XT5 Jaguar became the top system in 2009. In November 2010, Chi-
na’s Tianhe-1A became the fastest system in the world. All three systems are Linux cluster-structured
with massive parallelism in term of large number of compute nodes that can execute concurrently.

Tianhe-1A: The World Fastest Supercomputer in 2010

In November 2010, the Tianhe-1A was unveiled as a hybrid supercomputer at the 2010 ACM Supercom-
puting Conference. This system demonstrated a sustained speed of 2.507 Pflops in Linpack Benchmark
testing runs and thus became the No. 1 supercomputer in the 2010 Top 500 list. The system was built by
the National University of Defense Technology (NUDT) and was installed in August 2010 at the National
Supercomputer Center (NSC), Tianjin, in northern China (www.nscc.tj.gov.cn). The system is intended
as an open platform for research and education. Figure 2.24 shows the Tianh-1A system installed at NSC.

2.5.1.1 Architecture of Tianhe-1A

Figure 2.25 shows the abstract architecture of the Tianhe-1A system. The system consists of five
major components. The compute subsystem houses all the CPUs and GPUs on 7,168 compute nodes.
The service subsystem comprises eight operation nodes. The storage subsystem has a large number of
shared disks. The monitoring and diagnosis subsystem is used for control and I/O operations. The
communication subsystem is composed of switches for connecting to all functional subsystems.

2.5.1.2 Hardware Implementation

This system is equipped with 14,336 six-core Xeon E5540/E5450 processors running 2.93 GHz
with 7,168 NVIDIA Tesla M2050s. It has 7,168 compute nodes, each composed of two Intel Xeon
X5670 (Westmere) processors at 2.93 GHz, six cores per socket, and one NVIDIA M2050 GPU
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The Tianhe-1A system built by the National University of Defense Technology and installed at the National
Supercomputer Center, Tianjin, China, in 2010 [11].
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Abstract architecture of the Tianhe-1A system.

connected via PCI-E. A blade has two nodes and is 2U in height (Figure 2.25). The complete sys-
tem has 14,336 Intel sockets (Westmere) plus 7,168 NVIDIA Fermi boards plus 2,048 Galaxy sock-
ets (the Galaxy processor-based nodes are used as frontend processing for the system). A compute
node has two Intel sockets plus a Fermi board plus 32 GB of memory.
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7168(nodes)x2(CPU)x2.93(GHz) x 6(Cores) x4

=1.008 PFlops
Total:
+ 4,701,061 GFlops

7168(nodes) x 1(GPU)x 1.15(GHz)*448(CUDA Cores)
=3.692 PFlops

FIGURE 2.26
Calculation of the theoretical peak speed of Tianhe-1A system.

The total system has a theoretical peak of 4.7 Pflops/second as calculated in Figure 2.26. Note
that there are 448 CUDA cores in each GPU node. The peak speed is achieved through 14,236
Xeon CPUs (with 380,064 cores) and 7,168 Tesla GPUs (with 448 CUDA cores per node and
3,496,884 CUDA cores in total). There are 3,876,948 processing cores in both the CPU and GPU
chips. An operational node has two eight-core Galaxy chips (I GHz, SPARC architecture) plus
32 GB of memory. The Tianhe-1A system is packaged in 112 compute cabinets, 12 storage cabinets,
six communications cabinets, and eight I/O cabinets.

The operation nodes are composed of two eight-core Galaxy FT-1000 chips. These processors
were designed by NUDT and run at 1 GHz. The theoretical peak for the eight-core chip is
8 Gflops/second. The complete system has 1,024 of these operational nodes with each having
32 GB of memory. These operational nodes are intended to function as service nodes for job crea-
tion and submission. They are not intended as general-purpose computational nodes. Their speed is
excluded from the calculation of the peak or sustained speed. The peak speed of the Tianhe-1A is
calculated as 3.692 Pflops [11]. It uses 7,168 compute nodes (with 448 CUDA cores/GPU/compute
node) in parallel with 14,236 CPUs with six cores in four subsystems.

The system has total disk storage of 2 petabytes implemented with a Lustre clustered file sys-
tem. There are 262 terabytes of main memory distributed in the cluster system. The Tianhe-1A epi-
tomizes modern heterogeneous CPU/GPU computing, enabling significant achievements in
performance, size, and power. The system would require more than 50,000 CPUs and twice as
much floor space to deliver the same performance using CPUs alone. A 2.507-petaflop system built
entirely with CPUs would consume at least 12 megawatts, which is three times more power than
what the Tianhe-1A consumes.

2.5.1.3 ARCH Fat-Tree Interconnect

The high performance of the Tianhe-1A is attributed to a customed-designed ARCH interconnect by
the NUDT builder. This ARCH is built with the InfiniBand DDR 4X and 98 TB of memory. It
assumes a fat-tree architecture as shown in Figure 2.27. The bidirectional bandwidth is 160 Gbps,
about twice the bandwidth of the QDR InfiniBand network over the same number of nodes. The
ARCH has a latency for a node hop of 1.57 microseconds, and an aggregated bandwidth of 61 Tb/
second. At the first stage of the ARCH fat tree, 16 nodes are connected by a 16-port switching
board. At the second stage, all parts are connects to eleven 384-port switches. The router and net-
work interface chips are designed by the NUDT team.
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Switches

FIGURE 2.27
The ARCH fat-tree interconnect in two stages of high-bandwidth switches [11].

2.5.1.4 Software Stack

The software stack on the Tianhe-1A is typical of any high-performance system. It uses Kylin Linux, an
operating system developed by NUDT and successfully approved by China’s 863 Hi-tech Research and
Development Program office in 2006. Kylin is based on Mach and FreeBSD, is compatible with other
mainstream operating systems, and supports multiple microprocessors and computers of different struc-
tures. Kylin packages include standard open source and public packages, which have been brought onto
one system for easy installation. Figure 2.28 depicts the Tianhe-1A software architecture.

The system features FORTRAN, C, C++, and Java compilers from Intel (icc 11.1), CUDA, OpenMP,
and MPI based on MPICH2 with custom GLEX (Galaxy Express) Channel support. The NUDT builder
developed a mathematics library, which is based on Intel’s MKL 10.3.1.048 and BLAS for the GPU
based on NVIDIA and optimized by NUDT. In addition, a High Productive Parallel Running Environ-
ment (HPPRE) was installed. This provides a parallel toolkit based on Eclipse, which is intended to inte-
grate all the tools for editing, debugging, and performance analysis. In addition, the designers provide
workflow support for Quality of Service (QoS) negotiations and resource reservations.

2.5.1.5 Power Consumption, Space, and Cost

The power consumption of the Tianhe-1A under load is 4.04 MWatt. The system has a footprint of
700 square meters and is cooled by a closed-coupled chilled water-cooling system with forced air.
The hybrid architecture consumes less power—about one-third of the 12 MW that is needed to run
the system entirely with the multicore CPUs. The budget for the system is 600 million RMB
(approximately $90 million); 200 million RMB comes from the Ministry of Science and Technol-
ogy (MOST) and 400 million RMB is from the Tianjin local government. It takes about $20 million
annually to run, maintain, and keep the system cool in normal operations.

2.5.1.6 Linpack Benchmark Results and Planned Applications
The performance of the Linpack Benchmark on October 30, 2010 was 2.566 Pflops/second on a
matrix of 3,600,000 and a Ny, = 1,000,000. The total time for the run was 3 hours and 22 minutes.
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FIGURE 2.28
Software architecture of the Tianhe-1A supercomputer [11].

The system has an efficiency of 54.58 percent, which is much lower than the 75 percent efficiency
achieved by Jaguar and Roadrunner. Listed below are some applications of Tianhe-1A. Most of
them are specially tailored to satisfy China’s national needs.

¢ Parallel AMR (Adaptive Mesh Refinement) method

¢ Parallel eigenvalue problems

¢ Parallel fast multipole methods

* Parallel computing models

* Gridmol computational chemistry

¢ ScGrid middleware, grid portal

¢ PSEPS parallel symmetric eigenvalue package solvers

¢ FMM-radar fast multipole methods on radar cross sections
¢ Transplant many open source software programs

¢ Sandstorm prediction, climate modeling, EM scattering, or cosmology
¢ CAD/CAE for automotive industry

2.5.2 Cray XT5 Jaguar: The Top Supercomputer in 2009

The Cray XTS5 Jaguar was ranked the world’s fastest supercomputer in the Top 500 list released at
the ACM Supercomputing Conference in June 2010. This system became the second fastest super-
computer in the Top 500 list released in November 2010, when China’s Tianhe-1A replaced the
Jaguar as the No. 1 machine. This is a scalable MPP system built by Cray, Inc. The Jaguar belongs
to Cray’s system model XT5-HE. The system is installed at the Oak Ridge National Laboratory,
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The interconnect SeaStar router chip design in the Cray XT5 Jaguar supercomputer.
(Courtesy of Cray, Inc. [9] and Oak Ridge National Laboratory, United States, 2009)

Department of Energy, in the United States. The entire Jaguar system is built with 86 cabinets. The
following are some interesting architectural and operational features of the Jaguar system:

* Built with AMD six-core Opteron processors running Linux at a 2.6 GHz clock rate

* Has a total of 224,162 cores on more than 37,360 processors in 88 cabinets in four rows (there
are 1,536 or 2,304 processor cores per cabinet)

* Features 8,256 compute nodes and 96 service nodes interconnected by a 3D torus network, built
with Cray SeaStar2+ chips

* Attained a sustained speed, Ry,.x, from the Linpack Benchmark test of 1.759 Pflops

* Largest Linpack matrix size tested recorded as N,.x = 5,474,272 unknowns

The basic building blocks are the compute blades. The interconnect router in the SeaStar+ chip
(Figure 2.29) provides six high-speed links to six neighbors in the 3D torus, as seen in Figure 2.30.
The system is scalable by design from small to large configurations. The entire system has 129 TB
of compute memory. In theory, the system was designed with a peak speed of Ry, =2.331 Pflops.
In other words, only 75 percent (=1.759/2.331) efficiency was achieved in Linpack experiments.
The external I/O interface uses 10 Gbps Ethernet and InfiniBand links. MPI 2.1 was applied in mes-
sage-passing programming. The system consumes 32-43 KW per cabinet. With 160 cabinets, the
entire system consumes up to 6.950 MW. The system is cooled with forced cool air, which con-
sumes a lot of electricity.

2.5.2.1 3D Torus Interconnect

Figure 2.30 shows the system’s interconnect architecture. The Cray XTS5 system incorporates a
high-bandwidth, low-latency interconnect using the Cray SeaStar2+ router chips. The system is con-
figured with XTS5 compute blades with eight sockets supporting dual or quad-core Opterons. The
XTS5 applies a 3D torus network topology. This SeaStar2+ chip provides six high-speed network
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The 3D torus interconnect in the Cray XT5 Jaguar supercomputer.
(Courtesy of Cray, Inc. [9] and Oak Ridge National Laboratory, United States, 2009)

links which connect to six neighbors in the 3D torus. The peak bidirectional bandwidth of each link
is 9.6 GB/second with sustained bandwidth in excess of 6 GB/second. Each port is configured with
an independent router table, ensuring contention-free access for packets.

The router is designed with a reliable link-level protocol with error correction and retransmis-
sion, ensuring that message-passing traffic reliably reaches its destination without the costly timeout
and retry mechanism used in typical clusters. The torus interconnect directly connects all the nodes
in the Cray XT5 system, eliminating the cost and complexity of external switches and allowing for
easy expandability. This allows systems to economically scale to tens of thousands of nodes—
well beyond the capacity of fat-tree switches. The interconnect carries all message-passing and I/O
traffic to the global file system.

2.5.2.2 Hardware Packaging

The Cray XTS5 family employs an energy-efficient packaging technology, which reduces power use
and thus lowers maintenance costs. The system’s compute blades are packaged with only the neces-
sary components for building an MPP with processors, memory, and interconnect. In a Cray XT5
cabinet, vertical cooling takes cold air straight from its source—the floor—and efficiently cools the
processors on the blades, which are uniquely positioned for optimal airflow. Each processor also
has a custom-designed heat sink depending on its position within the cabinet. Each Cray XTS5 sys-
tem cabinet is cooled with a single, high-efficiency ducted turbine fan. It takes 400/480VAC
directly from the power grid without transformer and PDU loss.
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The Cray XTS5 3D torus architecture is designed for superior MPI performance in HPC applica-
tions. This is accomplished by incorporating dedicated compute nodes and service nodes. Compute
nodes are designed to run MPI tasks efficiently and reliably to completion. Each compute node is
composed of one or two AMD Opteron microprocessors (dual or quad core) and direct attached
memory, coupled with a dedicated communications resource. Service nodes are designed to provide
system and I/O connectivity and also serve as login nodes from which jobs are compiled and
launched. The I/O bandwidth of each compute node is designed for 25.6 GB/second performance.

IBM Roadrunner: The Top Supercomputer in 2008

In 2008, the IBM Roadrunner was the first general-purpose computer system in the world to
reach petaflops performance. The system has a Linpack performance of 1.456 Pflops and is
installed at the Los Alamos National Laboratory (LANL) in New Mexico. Subsequently, Cray’s
Jaguar topped the Roadrunner in late 2009. The system was used mainly to assess the decay of
the U.S. nuclear arsenal. The system has a hybrid design with 12,960 IBM 3.2 GHz PowerXcell
81 CPUs (Figure 2.26) and 6,480 AMD 1.8 GHz Opteron 2210 dual-core processors. In total, the
system has 122,400 cores. Roadrunner is an Opteron cluster accelerated by IBM Cell processors
with eight floating-point cores.

2.5.3.1 Processor Chip and Compute Blade Design

The Cell/B.E. processors provide extraordinary compute power that can be harnessed from a single
multicore chip. As shown in Figure 2.31, the Cell/B.E. architecture supports a very broad range of
applications. The first implementation is a single-chip multiprocessor with nine processor elements
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FIGURE 2.31

Schematic of the IBMCell processor architecture.
(Courtesy of IBM, http://www.redbooks.ibm.com/redpapers/pdfs/redp4477.pdf [28])
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operating on a shared memory model. The rack is built with TriBlade servers, which are connected by
an InfiniBand network. In order to sustain this compute power, the connectivity within each node con-
sists of four PCI Express x8 links, each capable of 2 GB/s transfer rates, with a 2 ps latency. The
expansion slot also contains the InfiniBand interconnect, which allows communications to the rest of
the cluster. The capability of the InfiniBand interconnect is rated at 2 GB/s with a 2 ps latency.

2.5.3.2 InfiniBand Interconnect

The Roadrunner cluster was constructed hierarchically. The InfiniBand switches cluster together 18
connected units in 270 racks. In total, the cluster connects 12,960 IBM Power XCell 8i processors
and 6,480 Opteron 2210 processors together with a total of 103.6 TB of RAM. This cluster com-
plex delivers approximately 1.3 Pflops. In addition, the system’s 18 Com/Service nodes deliver 4.5
Tflops using 18 InfiniBand switches. The second storage units are connected with eight InfiniBand
switches. In total, 296 racks are installed in the system. The tiered architecture is constructed in two
levels. The system consumes 2.35 MW power, and was the fourth most energy-efficient supercom-
puter built in 2009.

2.5.3.3 Message-Passing Performance

The Roadrunner uses MPI APIs to communicate with the other Opteron processors the application is
running on in a typical single-program, multiple-data (SPMD) fashion. The number of compute nodes
used to run the application is determined at program launch. The MPI implementation of Roadrunner is
based on the open source Open MPI Project, and therefore is standard MPL. In this regard, Roadrunner
applications are similar to other typical MPI applications such as those that run on the IBM Blue Gene
solution. Where Roadrunner differs in the sphere of application architecture is how its Cell/B.E. accel-
erators are employed. At any point in the application flow, the MPI application running on each
Opteron can offload computationally complex logic to its subordinate Cell/B.E. processor.

BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS

Cluster computing has been a hot research area since 1990. Cluster computing was pioneered by
DEC and IBM as reported in Pfister [26]. His book provides a good introduction of several key
concepts, including SSI and HA. Historically, milestone computer clusters include the VAXcluster
running the VMS/OS in 1984, the Tandem Himalaya HA cluster (1994), and the IBM SP2 cluster
in 1996. These earlier clusters were covered in [3,7,14,23,26]. In recent years, more than 85 percent
of the Top 500 systems are built with cluster configurations [9,11,20,25,28,29].

Annually, IEEE and ACM hold several international conferences related to this topic. They
include Cluster Computing (Cluster); Supercomputing Conference (SC); International Symposium
on Parallel and Distributed Systems (IPDPS); International Conferences on Distributed Computing
Systems (ICDCS); High-Performance Distributed Computing (HPDC); and Clusters, Clouds, and
The Grids (CCGrid). There are also several journals related to this topic, including the Journal of
Cluster Computing, Journal of Parallel and Distributed Computing (JPDC), and IEEE Transactions
on Parallel and Distributed Systems (TPDS).

Cluster applications are assessed in Bader and Pennington [2]. Some figures and examples in
this chapter are modified from the earlier book by Hwang and Xu [14]. Buyya has treated cluster
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computing in two edited volumes [7]. Two books on Linux clusters are [20,23]. HA clusters are
treated in [24]. Recent assessment of HPC interconnects can be found in [6,8,12,22]. The Google
cluster interconnect was reported by Barroso, et al. [6]. GPUs for supercomputing was discussed in
[10]. GPU clusters were studied in [19]. CUDA parallel programming for GPUs is treated in [31].
MOSIX/OS for cluster or grid computing is treated in [4,5,30].

Hwang, Jin, and Ho developed a distributed RAID system for achieving a single I/O space in a
cluster of PCs or workstations [13—17]. More details of LSF can be found in Zhou [35]. The Top 500
list was cited from the release in June and November 2010 [25]. The material on the Tianhe-1A can
be found in Dongarra [11] and on Wikipedia [29]. The IBM Blue Gene/L architecture was reported
by Adiga, et al. [1] and subsequently upgraded to a newer model called the Blue Gene/P solution.
The IBM Roadrunner was reported by Kevin, et al. [18] and also in Wikipedia [28]. The Cray XTS5
and Jaguar systems are described in [9]. China’s Nebulae supercomputer was reported in [27]. Speci-
fic cluster applications and checkpointing techniques can be found in [12,16,17,24,32,34]. Cluster
applications can be found in [7,15,18,21,26,27,33,34].
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HOMEWORK PROBLEMS
Problem 2.1

Differentiate and exemplify the following terms related to clusters:

a. Compact versus slack clusters
b. Centralized versus decentralized clusters
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¢. Homogeneous versus heterogeneous clusters
d. Enclosed versus exposed clusters
e. Dedicated versus enterprise clusters

Problem 2.2

This problem refers to the redundancy technique. Assume that when a node fails, it takes 10 seconds
to diagnose the fault and another 30 seconds for the workload to be switched over.

a. What is the availability of the cluster if planned downtime is ignored?
b. What is the availability of the cluster if the cluster is taken down one hour per week for
maintenance, but one node at a time?

Problem 2.3

This is a research project to evaluate the cluster architectures of four supercomputers built in recent
years. Study the details of the No. 1 supercomputer, the Tianhe-1A, which was announced in the
Top 500 list released in November 2010. Your study should include the following:

a. Conduct an in-depth evaluation of the Tianhe-1A architecture, hardware components, operating
system, software support, parallelizing compilers, packaging, cooling, and new applications.

h. Compare the relative strengths and limitations of the Tianhe-1A with respect to the three case-
study systems: the Jaguar, Nebulae, and Roadrunner, studied in Section 2.5. Use tabulations or
plot curves, if you find enough benchmark data to conduction the comparison study.

Problem 2.4

This problem consists of two parts related to cluster computing:

1. Define and distinguish among the following terms on scalability:
a. Scalability over machine size
b. Scalability over problem size
c. Resource scalability
d. Generation scalability

2. Explain the architectural and functional differences among three availability cluster
configurations: hot standby, active takeover, and fault-tolerant clusters. Give two example
commercial cluster systems in each availability cluster configuration. Comment on their relative
strengths and weaknesses in commercial applications.

Problem 2.5

Distinguish between multiprocessors and multicomputers based on their structures, resource sharing,
and interprocessor communications.

a. Explain the differences among UMA, NUMA, COMA, DSM, and NORMA memory models.

b. What are the additional functional features of a cluster that are not found in a conventional
network of autonomous computers?

€. What are the advantages of a clustered system over a traditional SMP server?
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Problem 2.6

Study the five research virtual cluster projects listed in Table 2.6 and answer the following ques-
tions regarding the coverage on COD and Violin experience given in Sections 2.5.3 and 2.5.4:

a. From the viewpoints of dynamic resource provisioning, evaluate the five virtual clusters and
discuss their relative strengths and weaknesses based on the open literature.

b. Report on the unique contribution from each of the five virtual cluster projects in terms of the
hardware setting, software tools, and experimental environments developed and performance
results reported.

Problem 2.7

This problem is related to the use of high-end x86 processors in HPC system construction. Answer
the following questions:

a. Referring to the latest Top 500 list of supercomputing systems, list all systems that have used
x86 processors. Identify the processor models and key processor characteristics such as number
of cores, clock frequency, and projected performance.

b. Some have used GPUs to complement the x86 CPUs. Identify those systems that have
procured substantial GPUs. Discuss the roles of GPUs to provide peak or sustained flops per
dollar.

Problem 2.8

Assume a sequential computer has 512 MB of main memory and enough disk space. The disk read/
write bandwidth for a large data block is 1 MB/second. The following code needs to apply

checkpointing:
do 1000 iterations
A = foo (C from last iteration) /* this statement takes 10 minutes */
B = goo (A) /* this statement takes 10 minutes */
C =hoo (B) /* this statement takes 10 minutes */
end do

A, B, and C are arrays of 120 MB each. All other parts of the code, operating system, libraries
take, at most, 16 MB of memory. Assume the computer fails exactly once, and the time to restore
the computer is ignored.

a. What is the worst-case execution time for the successful completion of the code if checkpointing
is performed?

b. What is the worst-case execution time for the successful completion of the code if plain
transparent checkpointing is performed?

c. Is it beneficial to use forked checkpointing with (b)?

d. What is the worst-case execution time for the code if user-directed checkpointing is performed?
Show the code where user directives are added.

e. What is the worst-case execution time of the code if forked checkpointing is used with (d)?
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Problem 2.9

Compare the latest Top 500 list with the Top 500 Green List of HPC systems. Discuss a few top
winners and losers in terms of energy efficiency in power and cooling costs. Reveal the green-
energy winners’ stories and report their special design features, packaging, cooling, and manage-
ment policies that make them the winners. How different are the ranking orders in the two lists?
Discuss their causes and implications based on publicly reported data.

Problem 2.10

This problem is related to processor selection and system interconnects used in building the top
three clustered systems with commercial interconnects in the latest Top 500 list.

a. Compare the processors used in these clusters and identify their strengths and weaknesses in
terms of potential peak floating-point performance.

h. Compare the commercial interconnects of these three clusters. Discuss their potential performance
in terms of their topological properties, network latency, bisection bandwidth, and hardware used.

Problem 2.11

Study Example 2.6 and the original paper [14] reporting the distributed RAID-x architecture and
performance results. Answer the following questions with technical justifications or evidence:

a. Explain how the RAID-x system achieved a single I/O address space across distributed disks
attached to cluster nodes.

b. Explain the functionality of the cooperative disk drivers (CCDs) implemented in the RAID-x
system. Comment on its application requirements and scalability based on current PC
architecture, SCSI bus, and SCSI disk technology.

c. Explain why RAID-x has a fault-tolerance capability equal to that of the RAID-5 architecture.

d. Explain the strengths and limitations of RAID-x, compared with other RAID architectures.

Problem 2.12

Study the relevant material in Sections 2.2 and 2.5 and compare the system interconnects of the IBM
Blue Gene/L, IBM Roadrunner, and Cray XT5 supercomputers released in the November 2009 Top
500 evaluation. Dig deeper to reveal the details of these systems. These systems may use custom-
designed routers in interconnects. Some also use some commercial interconnects and components.

a. Compare the basic routers or switches used in the three system interconnects in terms of
technology, chip design, routing scheme, and claimed message-passing performance.

b. Compare the topological properties, network latency, bisection bandwidth, and hardware
packaging of the three system interconnects.

Problem 2.13

Study the latest and largest commercial HPC clustered system built by SGI, and report on the clus-
ter architecture in the following technical and benchmark aspects:

a. What is the SGI system model and its specification? Illustrate the cluster architecture with a
block diagram and describe the functionality of each building block.
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b.
c.

Discuss the claimed peak performance and reported sustained performance from SGI.
What are the unique hardware, software, networking, or design features that contribute to the
claimed performance in Part (b)? Describe or illustrate those system features.

Problem 2.14

Consider in Figure 2.32 a server-client cluster with an active-takeover configuration between two
identical servers. The servers share a disk via a SCSI bus. The clients (PCs or workstations) and the
Ethernet are fail-free. When a server fails, its workload is switched to the surviving server.

a.

Assume that each server has an MTTF of 200 days and an MTTR of five days. The disk has an
MTTF of 800 days and an MTTR of 20 days. In addition, each server is shut down for
maintenance for one day every week, during which time that server is considered unavailable.
Only one server is shut down for maintenance at a time. The failure rates cover both natural
failures and scheduled maintenance. The SCSI bus has a failure rate of 2 percent. The servers
and the disk fail independently. The disk and SCSI bus have no scheduled shutdown. The client
machine will never fail.

. The servers are considered available if at least one server is available. What is the combined

availability of the two servers?

. In normal operation, the cluster must have the SCSI bus, the disk, and at least one server

available simultaneously. What are the possible single points of failure in this cluster?

The cluster is considered unacceptable if both servers fail at the same time. Furthermore, the
cluster is declared unavailable when either the SCSI bus or the disk is down. Based on the
aforementioned conditions, what is the system availability of the entire cluster?

Under the aforementioned failure and maintenance conditions, propose an improved architecture
to eliminate all single points of failure identified in Part (a).

Client Client LR Client

Ethernet

Server 1 Server 2

SCSI bus

Disk array

FIGURE 2.32

An HA cluster with redundant hardware components.
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Problem 2.15

Study various cluster job scheduling policies in Table 2.6 and answer the following questions. You
may need to gather more information from Wikipedia, Google, or other sources if any of the sche-
duling policies are new to you.

a. Explain the advantages and disadvantages of nonpreemptive and preemptive scheduling policies
and suggest methods to amend the problems.

Repeat Part (a) for static and dynamic scheduling policies.

Repeat Part (a) for dedicated and space-sharing scheduling policies.

Compare the relative performance of time-sharing, independent, and gang scheduling policies.

. Compare the relative performance in stay and migrating policies on local jobs against remote jobs.

Problem 2.16

Study various SSI features and HA support for clusters in Section 2.3 and answer the following
questions, providing reasons for your answers. Identify some example cluster systems that are
equipped with these features. Comment on their implementation requirements and discuss the opera-
tional obstacles to establish each SSI feature in a cluster system.

a0

Single entry point in a cluster environment
Single memory space in a cluster system
Single file hierarchy in a cluster system
Single I/O space in a cluster system
Single network space in a cluster system
Single networking in a cluster system
Single point of control in a cluster system
Single job management in a cluster system
Single user interface in a cluster system
Single process space in a cluster system

Problem 2.17

Use examples to explain the following terms on cluster job management systems.

TTr/eShe oo 20 oo

Serial jobs versus parallel jobs

Batch jobs versus interactive jobs

Cluster jobs versus foreign (local) jobs

Cluster processes, local processes, and kernel processes
Dedicated mode, space-sharing mode, and timesharing mode
Independent scheduling versus gang scheduling

Problem 2.18

This problem focuses on the concept of LSF:

;o0 T o

a. Give an example of each of the four types of LSF jobs.
b. For a 1,000-server cluster, give two reasons why the LSF load-sharing policy is better if (1) the
entire cluster has one master LIM or (2) all LIMs are masters.
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€. In the LSF master-election scheme, a node in the “no master” state waits for a time period
proportional to the node number before becoming a new master. Why is the wait time
proportional to the node number?

Problem 2.19

This problem is related to the use of MOSIX for cluster computing. Check with the open literature
on current features that have been claimed by designers and developers in supporting Linux clus-
ters, GPU clusters, multiclusters, and even virtualized clouds. Discuss the advantages and shortcom-
ings from the user’s perspective.

Problem 2.20

Compare China’s Tianhe-1A with the Cray Jaguar in terms of their relative strengths and weak-
nesses in architecture design, resource management, software environment, and reported applica-
tions. You may need to conduct some research to find the latest developments regarding these
systems. Justify your assessment with reasoning and evidential information.
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SUMMARY

The reincarnation of virtual machines (VMs) presents a great opportunity for parallel, cluster, grid,
cloud, and distributed computing. Virtualization technology benefits the computer and IT industries
by enabling users to share expensive hardware resources by multiplexing VMs on the same set of
hardware hosts. This chapter covers virtualization levels, VM architectures, virtual networking,
virtual cluster construction, and virtualized data-center design and automation in cloud computing.
In particular, the designs of dynamically structured clusters, grids, and clouds are presented with
VMs and virtual clusters.

IMPLEMENTATION LEVELS OF VIRTUALIZATION

Virtualization is a computer architecture technology by which multiple virfual machines (VMs) are
multiplexed in the same hardware machine. The idea of VMs can be dated back to the 1960s [53].
The purpose of a VM is to enhance resource sharing by many users and improve computer perfor-
mance in terms of resource utilization and application flexibility. Hardware resources (CPU, mem-
ory, I/O devices, etc.) or software resources (operating system and software libraries) can be
virtualized in various functional layers. This virtualization technology has been revitalized as the
demand for distributed and cloud computing increased sharply in recent years [41].

The idea is to separate the hardware from the software to yield better system efficiency. For
example, computer users gained access to much enlarged memory space when the concept of virtual
memory was introduced. Similarly, virtualization techniques can be applied to enhance the use of
compute engines, networks, and storage. In this chapter we will discuss VMs and their applications
for building distributed systems. According to a 2009 Gartner Report, virtualization was the top
strategic technology poised to change the computer industry. With sufficient storage, any computer
platform can be installed in another host computer, even if they use processors with different
instruction sets and run with distinct operating systems on the same hardware.

Levels of Virtualization Implementation

A traditional computer runs with a host operating system specially tailored for its hardware architec-
ture, as shown in Figure 3.1(a). After virtualization, different user applications managed by their
own operating systems (guest OS) can run on the same hardware, independent of the host OS. This
is often done by adding additional software, called a virtualization layer as shown in Figure 3.1(b).
This virtualization layer is known as hypervisor or virtual machine monitor (VMM) [54]. The VMs
are shown in the upper boxes, where applications run with their own guest OS over the virtualized
CPU, memory, and I/O resources.

The main function of the software layer for virtualization is to virtualize the physical hardware
of a host machine into virtual resources to be used by the VMs, exclusively. This can be implemen-
ted at various operational levels, as we will discuss shortly. The virtualization software creates the
abstraction of VMs by interposing a virtualization layer at various levels of a computer system.
Common virtualization layers include the instruction set architecture (ISA) level, hardware level,
operating system level, library support level, and application level (see Figure 3.2).



3.1 Implementation Levels of Virtualization 131

Application Application

Virtual
Machines

Application Guest OS Guest OS
Host operating system < < <

Hardware [ Virtualization layer (Hypervisor or VMM) ]

Hardware running the Host OS

(a) Traditional computer (b) After virtualization

FIGURE 3.1

The architecture of a computer system before and after virtualization, where VMM stands for virtual machine
monitor.
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3.1.1.1 Instruction Set Architecture Level

At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the host
machine. For example, MIPS binary code can run on an x86-based host machine with the help of
ISA emulation. With this approach, it is possible to run a large amount of legacy binary code writ-
ten for various processors on any given new hardware host machine. Instruction set emulation leads
to virtual ISAs created on any hardware machine.

The basic emulation method is through code interpretation. An interpreter program interprets the
source instructions to target instructions one by one. One source instruction may require tens or
hundreds of native target instructions to perform its function. Obviously, this process is relatively
slow. For better performance, dynamic binary translation is desired. This approach translates basic
blocks of dynamic source instructions to target instructions. The basic blocks can also be extended
to program traces or super blocks to increase translation efficiency. Instruction set emulation
requires binary translation and optimization. A virtual instruction set architecture (V-ISA) thus
requires adding a processor-specific software translation layer to the compiler.

3.1.1.2 Hardware Abstraction Level

Hardware-level virtualization is performed right on top of the bare hardware. On the one hand, this
approach generates a virtual hardware environment for a VM. On the other hand, the process manages
the underlying hardware through virtualization. The idea is to virtualize a computer’s resources, such as
its processors, memory, and I/O devices. The intention is to upgrade the hardware utilization rate by
multiple users concurrently. The idea was implemented in the IBM VM/370 in the 1960s. More
recently, the Xen hypervisor has been applied to virtualize x86-based machines to run Linux or other
guest OS applications. We will discuss hardware virtualization approaches in more detail in Section 3.3.

3.1.1.3 Operating System Level

This refers to an abstraction layer between traditional OS and user applications. OS-level virtualiza-
tion creates isolated containers on a single physical server and the OS instances to utilize the hard-
ware and software in data centers. The containers behave like real servers. OS-level virtualization is
commonly used in creating virtual hosting environments to allocate hardware resources among a
large number of mutually distrusting users. It is also used, to a lesser extent, in consolidating server
hardware by moving services on separate hosts into containers or VMs on one server. OS-level
virtualization is depicted in Section 3.1.3.

3.1.1.4 Library Support Level

Most applications use APIs exported by user-level libraries rather than using lengthy system calls
by the OS. Since most systems provide well-documented APIs, such an interface becomes another
candidate for virtualization. Virtualization with library interfaces is possible by controlling the com-
munication link between applications and the rest of a system through API hooks. The software
tool WINE has implemented this approach to support Windows applications on top of UNIX hosts.
Another example is the vVCUDA which allows applications executing within VMs to leverage GPU
hardware acceleration. This approach is detailed in Section 3.1.4.

3.1.1.5 User-Application Level
Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an
application often runs as a process. Therefore, application-level virtualization is also known as
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process-level virtualization. The most popular approach is to deploy high level language (HLL)
VMs. In this scenario, the virtualization layer sits as an application program on top of the operating
system, and the layer exports an abstraction of a VM that can run programs written and compiled
to a particular abstract machine definition. Any program written in the HLL and compiled for this
VM will be able to run on it. The Microsoft .NET CLR and Java Virtual Machine (JVM) are two
good examples of this class of VM.

Other forms of application-level virtualization are known as application isolation, application
sandboxing, or application streaming. The process involves wrapping the application in a layer that
is isolated from the host OS and other applications. The result is an application that is much easier
to distribute and remove from user workstations. An example is the LANDesk application virtuali-
zation platform which deploys software applications as self-contained, executable files in an isolated
environment without requiring installation, system modifications, or elevated security privileges.

3.1.1.6 Relative Merits of Different Approaches

Table 3.1 compares the relative merits of implementing virtualization at various levels. The column
headings correspond to four technical merits. “Higher Performance” and “Application Flexibility”
are self-explanatory. “Implementation Complexity” implies the cost to implement that particular vir-
tualization level. “Application Isolation” refers to the effort required to isolate resources committed
to different VMs. Each row corresponds to a particular level of virtualization.

The number of X’s in the table cells reflects the advantage points of each implementation level.
Five X’s implies the best case and one X implies the worst case. Overall, hardware and OS support
will yield the highest performance. However, the hardware and application levels are also the most
expensive to implement. User isolation is the most difficult to achieve. ISA implementation offers
the best application flexibility.

VMM Design Requirements and Providers

As mentioned earlier, hardware-level virtualization inserts a layer between real hardware and tradi-
tional operating systems. This layer is commonly called the Virtual Machine Monitor (VMM) and it
manages the hardware resources of a computing system. Each time programs access the hardware the
VMM captures the process. In this sense, the VMM acts as a traditional OS. One hardware compo-
nent, such as the CPU, can be virtualized as several virtual copies. Therefore, several traditional oper-
ating systems which are the same or different can sit on the same set of hardware simultaneously.

Table 3.1 Relative Merits of Virtualization at Various Levels (More “X"’s Means Higher Merit, with a
Maximum of 5 X's)

Higher Application Implementation Application
Level of Implementation Performance Flexibility Complexity Isolation
ISA X XXXXX XXX XXX
Hardware-level virtualization XXXXX XXX XXXXX XXXX
OS-level virtualization XXXXX XX XXX XX
Runtime library support XXX XX XX XX
User application level XX XX XXXXX XXXXX




134 CHAPTER 3 Virtual Machines and Virtualization of Clusters and Data Centers

There are three requirements for a VMM. First, a VMM should provide an environment for pro-
grams which is essentially identical to the original machine. Second, programs run in this environ-
ment should show, at worst, only minor decreases in speed. Third, a VMM should be in complete
control of the system resources. Any program run under a VMM should exhibit a function identical
to that which it runs on the original machine directly. Two possible exceptions in terms of differ-
ences are permitted with this requirement: differences caused by the availability of system resources
and differences caused by timing dependencies. The former arises when more than one VM is run-
ning on the same machine.

The hardware resource requirements, such as memory, of each VM are reduced, but the sum of
them is greater than that of the real machine installed. The latter qualification is required because of
the intervening level of software and the effect of any other VMs concurrently existing on the same
hardware. Obviously, these two differences pertain to performance, while the function a VMM pro-
vides stays the same as that of a real machine. However, the identical environment requirement
excludes the behavior of the usual time-sharing operating system from being classed as a VMM.

A VMM should demonstrate efficiency in using the VMs. Compared with a physical machine,
no one prefers a VMM if its efficiency is too low. Traditional emulators and complete software
interpreters (simulators) emulate each instruction by means of functions or macros. Such a method
provides the most flexible solutions for VMMs. However, emulators or simulators are too slow to
be used as real machines. To guarantee the efficiency of a VMM, a statistically dominant subset
of the virtual processor’s instructions needs to be executed directly by the real processor, with no
software intervention by the VMM. Table 3.2 compares four hypervisors and VMMs that are in
use today.

Complete control of these resources by a VMM includes the following aspects: (1) The VMM is
responsible for allocating hardware resources for programs; (2) it is not possible for a program to
access any resource not explicitly allocated to it; and (3) it is possible under certain circumstances
for a VMM to regain control of resources already allocated. Not all processors satisfy these require-
ments for a VMM. A VMM s tightly related to the architectures of processors. It is difficult to

Table 3.2 Comparison of Four VMM and Hypervisor Software Packages
Provider and
References Host CPU Host OS Guest OS Architecture
VMware x86, x86-64 Windows, Windows, Linux, Full Virtualization
Workstation [71] Linux Solaris, FreeBSD,
Netware, OS/2, SCO,
BeOS, Darwin
VMware ESX x86, x86-64 No host OS The same as VMware Para-Virtualization
Server [71] Workstation
Xen [7,13,42] x86, x86-64, |IA-64 NetBSD, FreeBSD, NetBSD, Hypervisor
Linux, Linux, Solaris,
Solaris Windows XP and
2003 Server
KVM [31] x86, x86-64, IA-64, Linux Linux, Windows, Para-Virtualization
S390, PowerPC FreeBSD, Solaris
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implement a VMM for some types of processors, such as the x86. Specific limitations include the
inability to trap on some privileged instructions. If a processor is not designed to support virtualiza-
tion primarily, it is necessary to modify the hardware to satisfy the three requirements for a VMM.
This is known as hardware-assisted virtualization.

Virtualization Support at the 0S Level

With the help of VM technology, a new computing mode known as cloud computing is emerging.
Cloud computing is transforming the computing landscape by shifting the hardware and staffing costs
of managing a computational center to third parties, just like banks. However, cloud computing has at
least two challenges. The first is the ability to use a variable number of physical machines and VM
instances depending on the needs of a problem. For example, a task may need only a single CPU dur-
ing some phases of execution but may need hundreds of CPUs at other times. The second challenge
concerns the slow operation of instantiating new VMs. Currently, new VMs originate either as fresh
boots or as replicates of a template VM, unaware of the current application state. Therefore, to better
support cloud computing, a large amount of research and development should be done.

3.1.3.1 Why 0S-Level Virtualization?

As mentioned earlier, it is slow to initialize a hardware-level VM because each VM creates its own
image from scratch. In a cloud computing environment, perhaps thousands of VMs need to be initi-
alized simultaneously. Besides slow operation, storing the VM images also becomes an issue. As a
matter of fact, there is considerable repeated content among VM images. Moreover, full virtualiza-
tion at the hardware level also has the disadvantages of slow performance and low density, and the
need for para-virtualization to modify the guest OS. To reduce the performance overhead of
hardware-level virtualization, even hardware modification is needed. OS-level virtualization provides
a feasible solution for these hardware-level virtualization issues.

Operating system virtualization inserts a virtualization layer inside an operating system to
partition a machine’s physical resources. It enables multiple isolated VMs within a single operating
system kernel. This kind of VM is often called a virtual execution environment (VE), Virtual
Private System (VPS), or simply container. From the user’s point of view, VEs look like real ser-
vers. This means a VE has its own set of processes, file system, user accounts, network interfaces
with IP addresses, routing tables, firewall rules, and other personal settings. Although VEs can be
customized for different people, they share the same operating system kernel. Therefore, OS-level
virtualization is also called single-OS image virtualization. Figure 3.3 illustrates operating system
virtualization from the point of view of a machine stack.

3.1.3.2 Advantages of 0S Extensions

Compared to hardware-level virtualization, the benefits of OS extensions are twofold: (1) VMs at the
operating system level have minimal startup/shutdown costs, low resource requirements, and high
scalability; and (2) for an OS-level VM, it is possible for a VM and its host environment to synchro-
nize state changes when necessary. These benefits can be achieved via two mechanisms of OS-level
virtualization: (1) All OS-level VMs on the same physical machine share a single operating system
kernel; and (2) the virtualization layer can be designed in a way that allows processes in VMs to
access as many resources of the host machine as possible, but never to modify them. In cloud
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The OpenVZ virtualization layer inside the host OS, which provides some OS images to create VMs quickly.
(Courtesy of OpenVZ User's Guide [65])

computing, the first and second benefits can be used to overcome the defects of slow initialization of
VMs at the hardware level, and being unaware of the current application state, respectively.

3.1.3.3 Disadvantages of 0S Extensions

The main disadvantage of OS extensions is that all the VMs at operating system level on a single
container must have the same kind of guest operating system. That is, although different OS-level
VMs may have different operating system distributions, they must pertain to the same operating
system family. For example, a Windows distribution such as Windows XP cannot run on a
Linux-based container. However, users of cloud computing have various preferences. Some prefer
Windows and others prefer Linux or other operating systems. Therefore, there is a challenge for
OS-level virtualization in such cases.

Figure 3.3 illustrates the concept of OS-level virtualization. The virtualization layer is inserted
inside the OS to partition the hardware resources for multiple VMs to run their applications in
multiple virtual environments. To implement OS-level virtualization, isolated execution environ-
ments (VMs) should be created based on a single OS kernel. Furthermore, the access requests from
a VM need to be redirected to the VM’s local resource partition on the physical machine. For
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example, the chroot command in a UNIX system can create several virtual root directories within a
host OS. These virtual root directories are the root directories of all VMs created.

There are two ways to implement virtual root directories: duplicating common resources to each
VM partition; or sharing most resources with the host environment and only creating private
resource copies on the VM on demand. The first way incurs significant resource costs and overhead
on a physical machine. This issue neutralizes the benefits of OS-level virtualization, compared with
hardware-assisted virtualization. Therefore, OS-level virtualization is often a second choice.

3.1.3.4 Virtualization on Linux or Windows Platforms

By far, most reported OS-level virtualization systems are Linux-based. Virtualization support on the
Windows-based platform is still in the research stage. The Linux kernel offers an abstraction layer
to allow software processes to work with and operate on resources without knowing the hardware
details. New hardware may need a new Linux kernel to support. Therefore, different Linux plat-
forms use patched kernels to provide special support for extended functionality.

However, most Linux platforms are not tied to a special kernel. In such a case, a host can run
several VMs simultaneously on the same hardware. Table 3.3 summarizes several examples of OS-
level virtualization tools that have been developed in recent years. Two OS tools (Linux vServer
and OpenVZ) support Linux platforms to run other platform-based applications through virtualiza-
tion. These two OS-level tools are illustrated in Example 3.1. The third tool, FVM, is an attempt
specifically developed for virtualization on the Windows NT platform.

B
Example 3.1 Virtualization Support for the Linux Platform

OpenVZ is an OS-level tool designed to support Linux platforms to create virtual environments for running
VMs under different guest OSes. OpenVZ is an open source container-based virtualization solution built on
Linux. To support virtualization and isolation of various subsystems, limited resource management, and
checkpointing, OpenVZ modifies the Linux kernel. The overall picture of the OpenVZ system is illustrated
in Figure 3.3. Several VPSes can run simultaneously on a physical machine. These VPSes look like normal

Table 3.3 Virtualization Support for Linux and Windows NT Platforms

Virtualization Support and Source of Brief Introduction on Functionality and
Information Application Platforms

Linux vServer for Linux platforms (http://linux- Extends Linux kernels to implement a security
vserver.org/) mechanism to help build VMs by setting resource

limits and file attributes and changing the root
environment for VM isolation

OpenVZ for Linux platforms [65]; http://ftp.openvz Supports virtualization by creating virtual private

.org/doc/OpenVZ-Users-Guide.pdf) servers (VPSes); the VPS has its own files, users,
process tree, and virtual devices, which can be
isolated from other VPSes, and checkpointing and
live migration are supported

FVM (Feather-Weight Virtual Machines) for Uses system call interfaces to create VMs at the NY

virtualizing the Windows NT platforms [78]) kernel space; multiple VMs are supported by
virtualized namespace and copy-on-write
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Linux servers. Each VPS has its own files, users and groups, process tree, virtual network, virtual devices,
and IPC through semaphores and messages.

The resource management subsystem of OpenVZ consists of three components: two-level disk alloca-
tion, a two-level CPU scheduler, and a resource controller. The amount of disk space a VM can use is set
by the OpenVZ server administrator. This is the first level of disk allocation. Each VM acts as a standard
Linux system. Hence, the VM administrator is responsible for allocating disk space for each user and
group. This is the second-level disk quota. The first-level CPU scheduler of OpenVZ decides which VM to
give the time slice to, taking into account the virtual CPU priority and limit settings.

The second-level CPU scheduler is the same as that of Linux. OpenVZ has a set of about 20 parameters
which are carefully chosen to cover all aspects of VM operation. Therefore, the resources that a VM can use
are well controlled. OpenVZ also supports checkpointing and live migration. The complete state of a VM can
quickly be saved to a disk file. This file can then be transferred to another physical machine and the VM can
be restored there. It only takes a few seconds to complete the whole process. However, there is still a delay
in processing because the established network connections are also migrated.

Middleware Support for Virtualization

Library-level virtualization is also known as user-level Application Binary Interface (ABI) or API
emulation. This type of virtualization can create execution environments for running alien programs
on a platform rather than creating a VM to run the entire operating system. API call interception
and remapping are the key functions performed. This section provides an overview of several
library-level virtualization systems: namely the Windows Application Binary Interface (WABI),
Ixrun, WINE, Visual MainWin, and vCUDA, which are summarized in Table 3.4.

Table 3.4 Middleware and Library Support for Virtualization

Middleware or Runtime Library and References or
Web Link Brief Introduction and Application Platforms

WABI (http://docs.sun.com/app/docs/doc/802-6306) Middleware that converts Windows system calls
running on x86 PCs to Solaris system calls
running on SPARC workstations

Lxrun (Linux Run) (http://www.ugcs.caltech.edu/ A system call emulator that enables Linux

~steven/Ixrun/) applications written for x86 hosts to run on UNIX
systems such as the SCO OpenServer

WINE (http://www.winehq.org/) A library support system for virtualizing x86

processors to run Windows applications under
Linux, FreeBSD, and Solaris

Visual MainWin (http://www.mainsoft.com/) A compiler support system to develop Windows
applications using Visual Studio to run on Solaris,
Linux, and AlX hosts

vCUDA (Example 3.2) (IEEE IPDPS 2009 [57]) Virtualization support for using general-purpose
GPUs to run data-intensive applications under a
special guest OS
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The WABI offers middleware to convert Windows system calls to Solaris system calls. Lxrun is
really a system call emulator that enables Linux applications written for x86 hosts to run on UNIX
systems. Similarly, Wine offers library support for virtualizing x86 processors to run Windows appli-
cations on UNIX hosts. Visual MainWin offers a compiler support system to develop Windows appli-
cations using Visual Studio to run on some UNIX hosts. The vCUDA is explained in Example 3.2
with a graphical illustration in Figure 3.4.

=
Example 3.2 The vCUDA for Virtualization of General-Purpose GPUs

CUDA is a programming model and library for general-purpose GPUSs. It leverages the high performance of
GPUs to run compute-intensive applications on host operating systems. However, it is difficult to run CUDA
applications on hardware-level VMs directly. vCUDA virtualizes the CUDA library and can be installed on
guest OSes. When CUDA applications run on a guest OS and issue a call to the CUDA API, vCUDA
intercepts the call and redirects it to the CUDA API running on the host OS. Figure 3.4 shows the basic
concept of the vVCUDA architecture [57].

The vCUDA employs a client-server model to implement CUDA virtualization. It consists of three user
space components: the vCUDA library, a virtual GPU in the guest OS (which acts as a client), and the
vCUDA stub in the host OS (which acts as a server). The vCUDA library resides in the guest OS as a
substitute for the standard CUDA library. It is responsible for intercepting and redirecting API calls from
the client to the stub. Besides these tasks, vVCUDA also creates vGPUs and manages them.

The functionality of a vGPU is threefold: It abstracts the GPU structure and gives applications a uni-
form view of the underlying hardware; when a CUDA application in the guest OS allocates a device's mem-
ory the vGPU can return a local virtual address to the application and notify the remote stub to allocate the
real device memory, and the vGPU is responsible for storing the CUDA API flow. The vCUDA stub receives

Host OS . . Guest OS
VCUDA stub : E CUDA application
¥ ; v
CUDA library ' vCUDA library
¥

Device driver

Device (GPU, Hard disk, Network card)

FIGURE 3.4
Basic concept of the vCUDA architecture.

(Courtesy of Lin Shi, et al. © IEEE [57])
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and interprets remote requests and creates a corresponding execution context for the API calls from the
guest OS, then returns the results to the guest OS. The vCUDA stub also manages actual physical resource
allocation.

VIRTUALIZATION STRUCTURES/TOOLS AND MECHANISMS

In general, there are three typical classes of VM architecture. Figure 3.1 showed the architectures of
a machine before and after virtualization. Before virtualization, the operating system manages the
hardware. After virtualization, a virtualization layer is inserted between the hardware and the operat-
ing system. In such a case, the virtualization layer is responsible for converting portions of the real
hardware into virtual hardware. Therefore, different operating systems such as Linux and Windows
can run on the same physical machine, simultaneously. Depending on the position of the virtualiza-
tion layer, there are several classes of VM architectures, namely the hypervisor architecture, para-
virtualization, and host-based virtualization. The hypervisor is also known as the VMM (Virtual
Machine Monitor). They both perform the same virtualization operations.

Hypervisor and Xen Architecture

The hypervisor supports hardware-level virtualization (see Figure 3.1(b)) on bare metal devices like
CPU, memory, disk and network interfaces. The hypervisor software sits directly between the physi-
cal hardware and its OS. This virtualization layer is referred to as either the VMM or the hypervisor.
The hypervisor provides hypercalls for the guest OSes and applications. Depending on the functional-
ity, a hypervisor can assume a micro-kernel architecture like the Microsoft Hyper-V. Or it can
assume a monolithic hypervisor architecture like the VMware ESX for server virtualization.

A micro-kernel hypervisor includes only the basic and unchanging functions (such as physical
memory management and processor scheduling). The device drivers and other changeable components
are outside the hypervisor. A monolithic hypervisor implements all the aforementioned functions,
including those of the device drivers. Therefore, the size of the hypervisor code of a micro-kernel hyper-
visor is smaller than that of a monolithic hypervisor. Essentially, a hypervisor must be able to convert
physical devices into virtual resources dedicated for the deployed VM to use.

3.2.1.1 The Xen Architecture
Xen is an open source hypervisor program developed by Cambridge University. Xen is a micro-
kernel hypervisor, which separates the policy from the mechanism. The Xen hypervisor implements
all the mechanisms, leaving the policy to be handled by Domain 0, as shown in Figure 3.5. Xen
does not include any device drivers natively [7]. It just provides a mechanism by which a guest OS
can have direct access to the physical devices. As a result, the size of the Xen hypervisor is kept
rather small. Xen provides a virtual environment located between the hardware and the OS.
A number of vendors are in the process of developing commercial Xen hypervisors, among them
are Citrix XenServer [62] and Oracle VM [42].

The core components of a Xen system are the hypervisor, kernel, and applications. The organi-
zation of the three components is important. Like other virtualization systems, many guest OSes
can run on top of the hypervisor. However, not all guest OSes are created equal, and one in
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The Xen architecture’s special domain O for control and 1/0, and several guest domains for user applications.
(Courtesy of P. Barham, et al. [7])

particular controls the others. The guest OS, which has control ability, is called Domain 0, and the
others are called Domain U. Domain 0 is a privileged guest OS of Xen. It is first loaded when Xen
boots without any file system drivers being available. Domain 0 is designed to access hardware
directly and manage devices. Therefore, one of the responsibilities of Domain 0 is to allocate and
map hardware resources for the guest domains (the Domain U domains).

For example, Xen is based on Linux and its security level is C2. Its management VM is named
Domain 0, which has the privilege to manage other VMs implemented on the same host. If Domain
0 is compromised, the hacker can control the entire system. So, in the VM system, security policies
are needed to improve the security of Domain 0. Domain 0, behaving as a VMM, allows users to
create, copy, save, read, modify, share, migrate, and roll back VMs as easily as manipulating a file,
which flexibly provides tremendous benefits for users. Unfortunately, it also brings a series of
security problems during the software life cycle and data lifetime.

Traditionally, a machine’s lifetime can be envisioned as a straight line where the current state of
the machine is a point that progresses monotonically as the software executes. During this time, con-
figuration changes are made, software is installed, and patches are applied. In such an environment,
the VM state is akin to a tree: At any point, execution can go into N different branches where multiple
instances of a VM can exist at any point in this tree at any given time. VMs are allowed to roll back
to previous states in their execution (e.g., to fix configuration errors) or rerun from the same point
many times (e.g., as a means of distributing dynamic content or circulating a “live” system image).

Binary Translation with Full Virtualization

Depending on implementation technologies, hardware virtualization can be classified into two cate-
gories: full virtualization and host-based virtualization. Full virtualization does not need to modify
the host OS. It relies on binary translation to trap and to virtualize the execution of certain
sensitive, nonvirtualizable instructions. The guest OSes and their applications consist of noncritical
and critical instructions. In a host-based system, both a host OS and a guest OS are used. A virtuali-
zation software layer is built between the host OS and guest OS. These two classes of VM architec-
ture are introduced next.
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3.2.2.1 Full Virtualization

With full virtualization, noncritical instructions run on the hardware directly while critical
instructions are discovered and replaced with traps into the VMM to be emulated by software. Both
the hypervisor and VMM approaches are considered full virtualization. Why are only critical
instructions trapped into the VMM? This is because binary translation can incur a large performance
overhead. Noncritical instructions do not control hardware or threaten the security of the system, but
critical instructions do. Therefore, running noncritical instructions on hardware not only can
promote efficiency, but also can ensure system security.

3.2.2.2 Binary Translation of Guest 0S Requests Using a VMM

This approach was implemented by VMware and many other software companies. As shown in
Figure 3.6, VMware puts the VMM at Ring 0 and the guest OS at Ring 1. The VMM scans the
instruction stream and identifies the privileged, control- and behavior-sensitive instructions. When
these instructions are identified, they are trapped into the VMM, which emulates the behavior of
these instructions. The method used in this emulation is called binary translation. Therefore, full vir-
tualization combines binary translation and direct execution. The guest OS is completely decoupled
from the underlying hardware. Consequently, the guest OS is unaware that it is being virtualized.

The performance of full virtualization may not be ideal, because it involves binary translation
which is rather time-consuming. In particular, the full virtualization of I/O-intensive applications is
a really a big challenge. Binary translation employs a code cache to store translated hot instructions
to improve performance, but it increases the cost of memory usage. At the time of this writing, the
performance of full virtualization on the x86 architecture is typically 80 percent to 97 percent that
of the host machine.

3.2.2.3 Host-Based Virtualization

An alternative VM architecture is to install a virtualization layer on top of the host OS. This host OS
is still responsible for managing the hardware. The guest OSes are installed and run on top of the
virtualization layer. Dedicated applications may run on the VMs. Certainly, some other applications
can also run with the host OS directly. This host-
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direct execution of simple instructions on the same host.
(Courtesy of VM Ware [71])

low. When an application requests hardware
access, it involves four layers of mapping which
downgrades performance significantly. When the
ISA of a guest OS is different from the ISA of
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the underlying hardware, binary translation must be adopted. Although the host-based architecture has
flexibility, the performance is too low to be useful in practice.

3.2.3 Para-Virtualization with Compiler Support

Para-virtualization needs to modify the guest operating systems. A para-virtualized VM provides
special APIs requiring substantial OS modifications in user applications. Performance degradation is
a critical issue of a virtualized system. No one wants to use a VM if it is much slower than using a
physical machine. The virtualization layer can be inserted at different positions in a machine soft-
ware stack. However, para-virtualization attempts to reduce the virtualization overhead, and thus
improve performance by modifying only the guest OS kernel.

Figure 3.7 illustrates the concept of a para-virtualized VM architecture. The guest operating sys-
tems are para-virtualized. They are assisted by an intelligent compiler to replace the nonvirtualizable
OS instructions by hypercalls as illustrated in Figure 3.8. The traditional x86 processor offers four
instruction execution rings: Rings 0, 1, 2, and 3. The lower the ring number, the higher the privi-
lege of instruction being executed. The OS is responsible for managing the hardware and the privi-
leged instructions to execute at Ring 0, while user-level applications run at Ring 3. The best
example of para-virtualization is the KVM to be described below.

3.2.3.1 Para-Virtualization Architecture

When the x86 processor is virtualized, a virtualization layer is inserted between the hardware and
the OS. According to the x86 ring definition, the virtualization layer should also be installed at
Ring 0. Different instructions at Ring 0 may cause some problems. In Figure 3.8, we show that
para-virtualization replaces nonvirtualizable instructions with hypercalls that communicate directly
with the hypervisor or VMM. However, when the guest OS kernel is modified for virtualization, it
can no longer run on the hardware directly.

Ring 3 User apps Direct
execution
of user
requests
( Application ) ( Application )
Para-virtualized Para-virtualized — ‘Hypercalls’ to the
guest operating guest operating P‘"‘ra"""t“ao"zsed virtualization
system system gues layer replace
. ) . nonvirtualizable
Hypervisor/ VMM Virtualization layer 0S instructions
Hardware Host computer
system hardware
FIGURE 3.7

Para-virtualized VM architecture, which involves FIGURE 3.8

modifying the guest OS kernel to replace
nonvirtualizable instructions with hypercalls for the
hypervisor or the VMM to carry out the virtualization
process (See Figure 3.8 for more details.)

The use of a para-virtualized guest OS assisted by
an intelligent compiler to replace nonvirtualizable OS
instructions by hypercalls.

(Courtesy of VMWare [71])
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Although para-virtualization reduces the overhead, it has incurred other problems. First, its
compatibility and portability may be in doubt, because it must support the unmodified OS as
well. Second, the cost of maintaining para-virtualized OSes is high, because they may require
deep OS kernel modifications. Finally, the performance advantage of para-virtualization varies
greatly due to workload variations. Compared with full virtualization, para-virtualization is
relatively easy and more practical. The main problem in full virtualization is its low performance
in binary translation. To speed up binary translation is difficult. Therefore, many virtualization
products employ the para-virtualization architecture. The popular Xen, KVM, and VMware ESX
are good examples.

3.2.3.2 KVM (Kernel-Based VM)

This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel. Memory
management and scheduling activities are carried out by the existing Linux kernel. The KVM does
the rest, which makes it simpler than the hypervisor that controls the entire machine. KVM is a
hardware-assisted para-virtualization tool, which improves performance and supports unmodified
guest OSes such as Windows, Linux, Solaris, and other UNIX variants.

3.2.3.3 Para-Virtualization with Compiler Support

Unlike the full virtualization architecture which intercepts and emulates privileged and sensitive
instructions at runtime, para-virtualization handles these instructions at compile time. The guest OS
kernel is modified to replace the privileged and sensitive instructions with hypercalls to the hypervi-
sor or VMM. Xen assumes such a para-virtualization architecture.

The guest OS running in a guest domain may run at Ring 1 instead of at Ring 0. This implies
that the guest OS may not be able to execute some privileged and sensitive instructions. The
privileged instructions are implemented by hypercalls to the hypervisor. After replacing the instructions
with hypercalls, the modified guest OS emulates the behavior of the original guest OS. On an UNIX
system, a system call involves an interrupt or service routine. The hypercalls apply a dedicated service
routine in Xen.

L
Example 3.3 VMware ESX Server for Para-Virtualization

VMware pioneered the software market for virtualization. The company has developed virtualization tools
for desktop systems and servers as well as virtual infrastructure for large data centers. ESX is a VMM or
a hypervisor for bare-metal x86 symmetric multiprocessing (SMP) servers. It accesses hardware
resources such as I/0 directly and has complete resource management control. An ESX-enabled server
consists of four components: a virtualization layer, a resource manager, hardware interface components,
and a service console, as shown in Figure 3.9. To improve performance, the ESX server employs
a para-virtualization architecture in which the VM kernel interacts directly with the hardware without
involving the host OS.

The VMM layer virtualizes the physical hardware resources such as CPU, memory, network and disk
controllers, and human interface devices. Every VM has its own set of virtual hardware resources. The
resource manager allocates CPU, memory disk, and network bandwidth and maps them to the virtual
hardware resource set of each VM created. Hardware interface components are the device drivers and the
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The VMware ESX server architecture using para-virtualization.
(Courtesy of VMware [71])

VMware ESX Server File System. The service console is responsible for booting the system, initiating the
execution of the VMM and resource manager, and relinquishing control to those layers. It also facilitates
the process for system administrators.

VIRTUALIZATION OF CPU, MEMORY, AND 1/0 DEVICES

To support virtualization, processors such as the x86 employ a special running mode and instructions,
known as hardware-assisted virtualization. In this way, the VMM and guest OS run in different
modes and all sensitive instructions of the guest OS and its applications are trapped in the VMM. To
save processor states, mode switching is completed by hardware. For the x86 architecture, Intel and
AMD have proprietary technologies for hardware-assisted virtualization.

Hardware Support for Virtualization

Modern operating systems and processors permit multiple processes to run simultaneously. If there
is no protection mechanism in a processor, all instructions from different processes will access the
hardware directly and cause a system crash. Therefore, all processors have at least two modes, user
mode and supervisor mode, to ensure controlled access of critical hardware. Instructions running in
supervisor mode are called privileged instructions. Other instructions are unprivileged instructions.
In a virtualized environment, it is more difficult to make OSes and applications run correctly
because there are more layers in the machine stack. Example 3.4 discusses Intel’s hardware support
approach.
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At the time of this writing, many hardware virtualization products were available. The VMware
Workstation is a VM software suite for x86 and x86-64 computers. This software suite allows users
to set up multiple x86 and x86-64 virtual computers and to use one or more of these VMs simulta-
neously with the host operating system. The VMware Workstation assumes the host-based virtuali-
zation. Xen is a hypervisor for use in IA-32, x86-64, Itanium, and PowerPC 970 hosts. Actually,
Xen modifies Linux as the lowest and most privileged layer, or a hypervisor.

One or more guest OS can run on top of the hypervisor. KVM (Kernel-based Virtual Machine)
is a Linux kernel virtualization infrastructure. KVM can support hardware-assisted virtualization and
paravirtualization by using the Intel VT-x or AMD-v and VirtlO framework, respectively. The
VirtlO framework includes a paravirtual Ethernet card, a disk I/O controller, a balloon device for
adjusting guest memory usage, and a VGA graphics interface using VMware drivers.

B
Example 3.4 Hardware Support for Virtualization in the Intel x86 Processor

Since software-based virtualization techniques are complicated and incur performance overhead,
Intel provides a hardware-assist technique to make virtualization easy and improve performance.
Figure 3.10 provides an overview of Intel’s full virtualization techniques. For processor virtualization,
Intel offers the VT-x or VT-i technique. VT-x adds a privileged mode (VMX Root Mode) and some
instructions to processors. This enhancement traps all sensitive instructions in the VMM automatically.
For memory virtualization, Intel offers the EPT, which translates the virtual address to the machine’s
physical addresses to improve performance. For I/O virtualization, Intel implements VT-d and VT-c to
support this.
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Intel hardware support for virtualization of processor, memory, and I/0O devices.
(Modified from [68], Courtesy of Lizhong Chen, USC)
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CPU Virtualization

A VM is a duplicate of an existing computer system in which a majority of the VM instructions are
executed on the host processor in native mode. Thus, unprivileged instructions of VMs run directly on the
host machine for higher efficiency. Other critical instructions should be handled carefully for correctness
and stability. The critical instructions are divided into three categories: privileged instructions, control-
sensitive instructions, and behavior-sensitive instructions. Privileged instructions execute in a privileged
mode and will be trapped if executed outside this mode. Control-sensitive instructions attempt to change
the configuration of resources used. Behavior-sensitive instructions have different behaviors depending
on the configuration of resources, including the load and store operations over the virtual memory.

A CPU architecture is virtualizable if it supports the ability to run the VM’s privileged and
unprivileged instructions in the CPU’s user mode while the VMM runs in supervisor mode. When
the privileged instructions including control- and behavior-sensitive instructions of a VM are exe-
cuted, they are trapped in the VMM. In this case, the VMM acts as a unified mediator for hardware
access from different VMs to guarantee the correctness and stability of the whole system. However,
not all CPU architectures are virtualizable. RISC CPU architectures can be naturally virtualized
because all control- and behavior-sensitive instructions are privileged instructions. On the contrary,
x86 CPU architectures are not primarily designed to support virtualization. This is because about 10
sensitive instructions, such as SGDT and SMSW, are not privileged instructions. When these instruc-
tions execute in virtualization, they cannot be trapped in the VMM.

On a native UNIX-like system, a system call triggers the 80h interrupt and passes control to the
OS kernel. The interrupt handler in the kernel is then invoked to process the system call. On a para-
virtualization system such as Xen, a system call in the guest OS first triggers the 80h interrupt nor-
mally. Almost at the same time, the 82/ interrupt in the hypervisor is triggered. Incidentally,
control is passed on to the hypervisor as well. When the hypervisor completes its task for the guest
OS system call, it passes control back to the guest OS kernel. Certainly, the guest OS kernel may
also invoke the hypercall while it’s running. Although paravirtualization of a CPU lets unmodified
applications run in the VM, it causes a small performance penalty.

3.3.2.1 Hardware-Assisted CPU Virtualization

This technique attempts to simplify virtualization because full or paravirtualization is complicated.
Intel and AMD add an additional mode called privilege mode level (some people call it Ring-1) to
x86 processors. Therefore, operating systems can still run at Ring O and the hypervisor can run at
Ring -1. All the privileged and sensitive instructions are trapped in the hypervisor automatically.
This technique removes the difficulty of implementing binary translation of full virtualization. It
also lets the operating system run in VMs without modification.

L
Example 3.5 Intel Hardware-Assisted CPU Virtualization

Although x86 processors are not virtualizable primarily, great effort is taken to virtualize them. They are used
widely in comparing RISC processors that the bulk of x86-based legacy systems cannot discard easily. Virtuali-
zation of x86 processors is detailed in the following sections. Intel’s VT-x technology is an example of
hardware-assisted virtualization, as shown in Figure 3.11. Intel calls the privilege level of x86 processors the
VMX Root Mode. In order to control the start and stop of a VM and allocate a memory page to maintain the
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FIGURE 3.11
Intel hardware-assisted CPU virtualization.

CPU state for VMs, a set of additional instructions is added. At the time of this writing, Xen, VMware, and the
Microsoft Virtual PC all implement their hypervisors by using the VT-x technology.

Generally, hardware-assisted virtualization should have high efficiency. However, since the transition from
the hypervisor to the guest OS incurs high overhead switches between processor modes, it sometimes
cannot outperform binary translation. Hence, virtualization systems such as VMware now use a hybrid
approach, in which a few tasks are offloaded to the hardware but the rest is still done in software. In addition,
para-virtualization and hardware-assisted virtualization can be combined to improve the performance further.

Memory Virtualization

Virtual memory virtualization is similar to the virtual memory support provided by modern operat-
ing systems. In a traditional execution environment, the operating system maintains mappings of
virtual memory to machine memory using page tables, which is a one-stage mapping from virtual
memory to machine memory. All modern x86 CPUs include a memory management unit (MMU)
and a translation lookaside buffer (TLB) to optimize virtual memory performance. However, in a
virtual execution environment, virtual memory virtualization involves sharing the physical system
memory in RAM and dynamically allocating it to the physical memory of the VMs.

That means a two-stage mapping process should be maintained by the guest OS and the VMM,
respectively: virtual memory to physical memory and physical memory to machine memory.
Furthermore, MMU virtualization should be supported, which is transparent to the guest OS.
The guest OS continues to control the mapping of virtual addresses to the physical memory
addresses of VMs. But the guest OS cannot directly access the actual machine memory. The VMM
is responsible for mapping the guest physical memory to the actual machine memory. Figure 3.12
shows the two-level memory mapping procedure.
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Two-level memory mapping procedure.

(Courtesy of R. Rblig, et al. [68])

Since each page table of the guest OSes has a separate page table in the VMM corresponding to
it, the VMM page table is called the shadow page table. Nested page tables add another layer of
indirection to virtual memory. The MMU already handles virtual-to-physical translations as defined
by the OS. Then the physical memory addresses are translated to machine addresses using another
set of page tables defined by the hypervisor. Since modern operating systems maintain a set of
page tables for every process, the shadow page tables will get flooded. Consequently, the perfor-
mance overhead and cost of memory will be very high.

VMware uses shadow page tables to perform virtual-memory-to-machine-memory address trans-
lation. Processors use TLB hardware to map the virtual memory directly to the machine memory to
avoid the two levels of translation on every access. When the guest OS changes the virtual memory
to a physical memory mapping, the VMM updates the shadow page tables to enable a direct
lookup. The AMD Barcelona processor has featured hardware-assisted memory virtualization since
2007. It provides hardware assistance to the two-stage address translation in a virtual execution
environment by using a technology called nested paging.

L
Example 3.6 Extended Page Table by Intel for Memory Virtualization

Since the efficiency of the software shadow page table technique was too low, Intel developed a hardware-
based EPT technique to improve it, as illustrated in Figure 3.13. In addition, Intel offers a Virtual Processor
ID (VPID) to improve use of the TLB. Therefore, the performance of memory virtualization is greatly
improved. In Figure 3.13, the page tables of the guest OS and EPT are all four-level.

When a virtual address needs to be translated, the CPU will first look for the L4 page table pointed to by
Guest CR3. Since the address in Guest CR3 is a physical address in the guest OS, the CPU needs to convert
the Guest CR3 GPA to the host physical address (HPA) using EPT. In this procedure, the CPU will check the
EPT TLB to see if the translation is there. If there is no required translation in the EPT TLB, the CPU will look
for it in the EPT. If the CPU cannot find the translation in the EPT, an EPT violation exception will be raised.

When the GPA of the L4 page table is obtained, the CPU will calculate the GPA of the L3 page table
by using the GVA and the content of the L4 page table. If the entry corresponding to the GVA in the L4
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Memory virtualization using EPT by Intel (the EPT is also known as the shadow page table [68]).

page table is a page fault, the CPU will generate a page fault interrupt and will let the guest OS kernel
handle the interrupt. When the PGA of the L3 page table is obtained, the CPU will look for the EPT to get
the HPA of the L3 page table, as described earlier. To get the HPA corresponding to a GVA, the CPU
needs to look for the EPT five times, and each time, the memory needs to be accessed four times. There-
fore, there are 20 memory accesses in the worst case, which is still very slow. To overcome this short-
coming, Intel increased the size of the EPT TLB to decrease the number of memory accesses.

|

I/0 Virtualization

I/O virtualization involves managing the routing of I/O requests between virtual devices and
the shared physical hardware. At the time of this writing, there are three ways to implement I/O vir-
tualization: full device emulation, para-virtualization, and direct I/O. Full device emulation is the first
approach for I/O virtualization. Generally, this approach emulates well-known, real-world devices.
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Device emulation for I/O virtualization implemented inside the middle layer that maps real I/0 devices into the
virtual devices for the guest device driver to use.

(Courtesy of V. Chadha, et al. [10] and Y. Dong, et al. [15])

All the functions of a device or bus infrastructure, such as device enumeration, identification,
interrupts, and DMA, are replicated in software. This software is located in the VMM and acts as a
virtual device. The I/O access requests of the guest OS are trapped in the VMM which interacts with
the I/O devices. The full device emulation approach is shown in Figure 3.14.

A single hardware device can be shared by multiple VMs that run concurrently. However, software
emulation runs much slower than the hardware it emulates [10,15]. The para-virtualization method of
I/O virtualization is typically used in Xen. It is also known as the split driver model consisting of a
frontend driver and a backend driver. The frontend driver is running in Domain U and the backend dri-
ver is running in Domain 0. They interact with each other via a block of shared memory. The frontend
driver manages the I/O requests of the guest OSes and the backend driver is responsible for managing
the real I/O devices and multiplexing the I/O data of different VMs. Although para-I/O-virtualization
achieves better device performance than full device emulation, it comes with a higher CPU overhead.

Direct I/O virtualization lets the VM access devices directly. It can achieve close-to-native per-
formance without high CPU costs. However, current direct I/O virtualization implementations focus
on networking for mainframes. There are a lot of challenges for commodity hardware devices. For
example, when a physical device is reclaimed (required by workload migration) for later reassign-
ment, it may have been set to an arbitrary state (e.g., DMA to some arbitrary memory locations)
that can function incorrectly or even crash the whole system. Since software-based I/O virtualization
requires a very high overhead of device emulation, hardware-assisted I/O virtualization is critical.
Intel VT-d supports the remapping of I/O DMA transfers and device-generated interrupts. The archi-
tecture of VT-d provides the flexibility to support multiple usage models that may run unmodified,
special-purpose, or “virtualization-aware” guest OSes.

Another way to help I/O virtualization is via self-virtualized I/O (SV-10) [47]. The key idea of
SV-IO is to harness the rich resources of a multicore processor. All tasks associated with virtualizing an
I/O device are encapsulated in SV-IO. It provides virtual devices and an associated access API to VMs
and a management API to the VMM. SV-IO defines one virtual interface (VIF) for every kind of virtua-
lized I/O device, such as virtual network interfaces, virtual block devices (disk), virtual camera devices,
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and others. The guest OS interacts with the VIFs via VIF device drivers. Each VIF consists of two mes-
sage queues. One is for outgoing messages to the devices and the other is for incoming messages from
the devices. In addition, each VIF has a unique ID for identifying it in SV-IO.

B
Example 3.7 VMware Workstation for 1/0 Virtualization

The VMware Workstation runs as an application. It leverages the 1/0 device support in guest OSes, host OSes,
and VMM to implement 1/O virtualization. The application portion (VMApp) uses a driver loaded into the host
operating system (VMDriver) to establish the privileged VMM, which runs directly on the hardware. A given
physical processor is executed in either the host world or the VMM world, with the VMDriver facilitating the
transfer of control between the two worlds. The VMware Workstation employs full device emulation to
implement 1/0 virtualization. Figure 3.15 shows the functional blocks used in sending and receiving packets
via the emulated virtual NIC.
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FIGURE 3.15
Functional blocks involved in sending and receiving network packets.

(Courtesy of VMWare [71])
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The virtual NIC models an AMD Lance Am79C970A controller. The device driver for a Lance controller
in the guest OS initiates packet transmissions by reading and writing a sequence of virtual 1/0 ports; each
read or write switches back to the VMApp to emulate the Lance port accesses. When the last OUT instruc-
tion of the sequence is encountered, the Lance emulator calls a normal write() to the VMNet driver. The
VMNet driver then passes the packet onto the network via a host NIC and then the VMApp switches back
to the VMM. The switch raises a virtual interrupt to notify the guest device driver that the packet was sent.
Packet receives occur in reverse.

Virtualization in Multi-Core Processors

Virtualizing a multi-core processor is relatively more complicated than virtualizing a uni-core processor.
Though multicore processors are claimed to have higher performance by integrating multiple processor
cores in a single chip, muti-core virtualiuzation has raised some new challenges to computer architects,
compiler constructors, system designers, and application programmers. There are mainly two difficul-
ties: Application programs must be parallelized to use all cores fully, and software must explicitly
assign tasks to the cores, which is a very complex problem.

Concerning the first challenge, new programming models, languages, and libraries are needed to
make parallel programming easier. The second challenge has spawned research involving scheduling
algorithms and resource management policies. Yet these efforts cannot balance well among perfor-
mance, complexity, and other issues. What is worse, as technology scales, a new challenge called
dynamic heterogeneity is emerging to mix the fat CPU core and thin GPU cores on the same chip,
which further complicates the multi-core or many-core resource management. The dynamic hetero-
geneity of hardware infrastructure mainly comes from less reliable transistors and increased complexity
in using the transistors [33,66].

3.3.5.1 Physical versus Virtual Processor Cores

Wells, et al. [74] proposed a multicore virtualization method to allow hardware designers to get an
abstraction of the low-level details of the processor cores. This technique alleviates the burden and
inefficiency of managing hardware resources by software. It is located under the ISA and remains
unmodified by the operating system or VMM (hypervisor). Figure 3.16 illustrates the technique of a
software-visible VCPU moving from one core to another and temporarily suspending execution of a
VCPU when there are no appropriate cores on which it can run.

3.3.5.2 Virtual Hierarchy

The emerging many-core chip multiprocessors (CMPs) provides a new computing landscape.
Instead of supporting time-sharing jobs on one or a few cores, we can use the abundant cores in a
space-sharing, where single-threaded or multithreaded jobs are simultaneously assigned to separate
groups of cores for long time intervals. This idea was originally suggested by Marty and Hill [39].
To optimize for space-shared workloads, they propose using virtual hierarchies to overlay a coher-
ence and caching hierarchy onto a physical processor. Unlike a fixed physical hierarchy, a virtual
hierarchy can adapt to fit how the work is space shared for improved performance and performance
isolation.
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FIGURE 3.16
Multicore virtualization method that exposes four VCPUs to the software, when only three cores are actually
present.

(Courtesy of Wells, et al. [74])

Today’s many-core CMPs use a physical hierarchy of two or more cache levels that stati-
cally determine the cache allocation and mapping. A virtual hierarchy is a cache hierarchy
that can adapt to fit the workload or mix of workloads [39]. The hierarchy’s first level locates
data blocks close to the cores needing them for faster access, establishes a shared-cache domain,
and establishes a point of coherence for faster communication. When a miss leaves a tile, it
first attempts to locate the block (or sharers) within the first level. The first level can also pro-
vide isolation between independent workloads. A miss at the L1 cache can invoke the L2
access.

The idea is illustrated in Figure 3.17(a). Space sharing is applied to assign three workloads to
three clusters of virtual cores: namely VMO and VM3 for database workload, VM1 and VM2 for
web server workload, and VM4-VM?7 for middleware workload. The basic assumption is that each
workload runs in its own VM. However, space sharing applies equally within a single operating
system. Statically distributing the directory among tiles can do much better, provided operating sys-
tems or hypervisors carefully map virtual pages to physical frames. Marty and Hill suggested a
two-level virtual coherence and caching hierarchy that harmonizes with the assignment of tiles to
the virtual clusters of VMs.

Figure 3.17(b) illustrates a logical view of such a virtual cluster hierarchy in two levels. Each
VM operates in a isolated fashion at the first level. This will minimize both miss access time and
performance interference with other workloads or VMs. Moreover, the shared resources of cache
capacity, inter-connect links, and miss handling are mostly isolated between VMs. The second level
maintains a globally shared memory. This facilitates dynamically repartitioning resources without
costly cache flushes. Furthermore, maintaining globally shared memory minimizes changes to
existing system software and allows virtualization features such as content-based page sharing.
A virtual hierarchy adapts to space-shared workloads like multiprogramming and server consolida-
tion. Figure 3.17 shows a case study focused on consolidated server workloads in a tiled architecture.
This many-core mapping scheme can also optimize for space-shared multiprogrammed workloads in
a single-OS environment.
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(b) Multiple virtual clusters assigned to various workloads

FIGURE 3.17

CMP server consolidation by space-sharing of VMs into many cores forming multiple virtual clusters to
execute various workloads.

(Courtesy of Marty and Hill [39])

3.4 VIRTUAL CLUSTERS AND RESOURCE MANAGEMENT

A physical cluster is a collection of servers (physical machines) interconnected by a physical network
such as a LAN. In Chapter 2, we studied various clustering techniques on physical machines. Here,
we introduce virtual clusters and study its properties as well as explore their potential applications.
In this section, we will study three critical design issues of virtual clusters: live migration of VMs,
memory and file migrations, and dynamic deployment of virtual clusters.
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When a traditional VM is initialized, the administrator needs to manually write configuration
information or specify the configuration sources. When more VMs join a network, an inefficient
configuration always causes problems with overloading or underutilization. Amazon’s Elastic
Compute Cloud (EC2) is a good example of a web service that provides elastic computing power in
a cloud. EC2 permits customers to create VMs and to manage user accounts over the time of their
use. Most virtualization platforms, including XenServer and VMware ESX Server, support a brid-
ging mode which allows all domains to appear on the network as individual hosts. By using this
mode, VMs can communicate with one another freely through the virtual network interface card
and configure the network automatically.

Physical versus Virtual Clusters

Virtual clusters are built with VMs installed at distributed servers from one or more physical clus-
ters. The VMs in a virtual cluster are interconnected logically by a virtual network across several
physical networks. Figure 3.18 illustrates the concepts of virtual clusters and physical clusters. Each
virtual cluster is formed with physical machines or a VM hosted by multiple physical clusters. The
virtual cluster boundaries are shown as distinct boundaries.

The provisioning of VMs to a virtual cluster is done dynamically to have the following interest-
ing properties:

* The virtual cluster nodes can be either physical or virtual machines. Multiple VMs running with
different OSes can be deployed on the same physical node.

* A VM runs with a guest OS, which is often different from the host OS, that manages the
resources in the physical machine, where the VM is implemented.

* The purpose of using VMs is to consolidate multiple functionalities on the same server. This
will greatly enhance server utilization and application flexibility.
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FIGURE 3.18

A cloud platform with four virtual clusters over three physical clusters shaded differently.
(Courtesy of Fan Zhang, Tsinghua University)
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* VMs can be colonized (replicated) in multiple servers for the purpose of promoting distributed
parallelism, fault tolerance, and disaster recovery.

* The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similar to the
way an overlay network varies in size in a peer-to-peer (P2P) network.

* The failure of any physical nodes may disable some VMs installed on the failing nodes. But the
failure of VMs will not pull down the host system.

Since system virtualization has been widely used, it is necessary to effectively manage VMs
running on a mass of physical computing nodes (also called virtual clusters) and consequently build
a high-performance virtualized computing environment. This involves virtual cluster deployment,
monitoring and management over large-scale clusters, as well as resource scheduling, load
balancing, server consolidation, fault tolerance, and other techniques. The different node colors in
Figure 3.18 refer to different virtual clusters. In a virtual cluster system, it is quite important to
store the large number of VM images efficiently.

Figure 3.19 shows the concept of a virtual cluster based on application partitioning or customi-
zation. The different colors in the figure represent the nodes in different virtual clusters. As a large
number of VM images might be present, the most important thing is to determine how to store
those images in the system efficiently. There are common installations for most users or applica-
tions, such as operating systems or user-level programming libraries. These software packages can
be preinstalled as templates (called template VMs). With these templates, users can build their own
software stacks. New OS instances can be copied from the template VM. User-specific components
such as programming libraries and applications can be installed to those instances.

Three physical clusters are shown on the left side of Figure 3.18. Four virtual clusters are created
on the right, over the physical clusters. The physical machines are also called host systems. In
contrast, the VMs are guest systems. The host and guest systems may run with different operating
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The concept of a virtual cluster based on application partitioning.
(Courtesy of Kang Chen, Tsinghua University 2008)
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systems. Each VM can be installed on a remote server or replicated on multiple servers belonging to
the same or different physical clusters. The boundary of a virtual cluster can change as VM nodes are
added, removed, or migrated dynamically over time.

3.4.1.1 Fast Deployment and Effective Scheduling

The system should have the capability of fast deployment. Here, deployment means two things:
to construct and distribute software stacks (OS, libraries, applications) to a physical node inside clus-
ters as fast as possible, and to quickly switch runtime environments from one user’s virtual cluster to
another user’s virtual cluster. If one user finishes using his system, the corresponding virtual cluster
should shut down or suspend quickly to save the resources to run other VMs for other users.

The concept of “green computing” has attracted much attention recently. However, previous
approaches have focused on saving the energy cost of components in a single workstation without a
global vision. Consequently, they do not necessarily reduce the power consumption of the whole clus-
ter. Other cluster-wide energy-efficient techniques can only be applied to homogeneous workstations
and specific applications. The live migration of VMs allows workloads of one node to transfer to
another node. However, it does not guarantee that VMs can randomly migrate among themselves. In
fact, the potential overhead caused by live migrations of VMs cannot be ignored.

The overhead may have serious negative effects on cluster utilization, throughput, and QoS
issues. Therefore, the challenge is to determine how to design migration strategies to implement
green computing without influencing the performance of clusters. Another advantage of virtualiza-
tion is load balancing of applications in a virtual cluster. Load balancing can be achieved using the
load index and frequency of user logins. The automatic scale-up and scale-down mechanism of a
virtual cluster can be implemented based on this model. Consequently, we can increase the resource
utilization of nodes and shorten the response time of systems. Mapping VMs onto the most appro-
priate physical node should promote performance. Dynamically adjusting loads among nodes by
live migration of VMs is desired, when the loads on cluster nodes become quite unbalanced.

3.4.1.2 High-Performance Virtual Storage

The template VM can be distributed to several physical hosts in the cluster to customize the VMs. In
addition, existing software packages reduce the time for customization as well as switching virtual
environments. It is important to efficiently manage the disk spaces occupied by template software
packages. Some storage architecture design can be applied to reduce duplicated blocks in a distributed
file system of virtual clusters. Hash values are used to compare the contents of data blocks. Users
have their own profiles which store the identification of the data blocks for corresponding VMs in a
user-specific virtual cluster. New blocks are created when users modify the corresponding data.
Newly created blocks are identified in the users’ profiles.

Basically, there are four steps to deploy a group of VMs onto a target cluster: preparing the disk
image, configuring the VMs, choosing the destination nodes, and executing the VM deployment command
on every host. Many systems use templates to simplify the disk image preparation process. A template is
a disk image that includes a preinstalled operating system with or without certain application software.
Users choose a proper template according to their requirements and make a duplicate of it as their own
disk image. Templates could implement the COW (Copy on Write) format. A new COW backup file is
very small and easy to create and transfer. Therefore, it definitely reduces disk space consumption. In
addition, VM deployment time is much shorter than that of copying the whole raw image file.



3.4 Virtual Clusters and Resource Management 159

Every VM is configured with a name, disk image, network setting, and allocated CPU and
memory. One needs to record each VM configuration into a file. However, this method is inefficient
when managing a large group of VMs. VMs with the same configurations could use preedited profiles
to simplify the process. In this scenario, the system configures the VMs according to the chosen pro-
file. Most configuration items use the same settings, while some of them, such as UUID, VM name,
and IP address, are assigned with automatically calculated values. Normally, users do not care which
host is running their VM. A strategy to choose the proper destination host for any VM is needed. The
deployment principle is to fulfill the VM requirement and to balance workloads among the whole
host network.

Live VM Migration Steps and Performance Effects

In a cluster built with mixed nodes of host and guest systems, the normal method of operation is to
run everything on the physical machine. When a VM fails, its role could be replaced by another VM
on a different node, as long as they both run with the same guest OS. In other words, a physical node
can fail over to a VM on another host. This is different from physical-to-physical failover in a tradi-
tional physical cluster. The advantage is enhanced failover flexibility. The potential drawback is that
a VM must stop playing its role if its residing host node fails. However, this problem can be mitigated
with VM life migration. Figure 3.20 shows the process of life migration of a VM from host A to host
B. The migration copies the VM state file from the storage area to the host machine.

There are four ways to manage a virtual cluster. First, you can use a guest-based manager, by which
the cluster manager resides on a guest system. In this case, multiple VMs form a virtual cluster. For
example, openMosix is an open source Linux cluster running different guest systems on top of the Xen
hypervisor. Another example is Sun’s cluster Oasis, an experimental Solaris cluster of VMs supported
by a VMware VMM. Second, you can build a cluster manager on the host systems. The host-based
manager supervises the guest systems and can restart the guest system on another physical machine.
A good example is the VMware HA system that can restart a guest system after failure.

These two cluster management systems are either guest-only or host-only, but they do not mix. A
third way to manage a virtual cluster is to use an independent cluster manager on both the host and
guest systems. This will make infrastructure management more complex, however. Finally, you can
use an integrated cluster on the guest and host systems. This means the manager must be designed to
distinguish between virtualized resources and physical resources. Various cluster management
schemes can be greatly enhanced when VM life migration is enabled with minimal overhead.

VMs can be live-migrated from one physical machine to another; in case of failure, one VM can be
replaced by another VM. Virtual clusters can be applied in computational grids, cloud platforms, and
high-performance computing (HPC) systems. The major attraction of this scenario is that virtual cluster-
ing provides dynamic resources that can be quickly put together upon user demand or after a node
failure. In particular, virtual clustering plays a key role in cloud computing. When a VM runs a live ser-
vice, it is necessary to make a trade-off to ensure that the migration occurs in a manner that minimizes
all three metrics. The motivation is to design a live VM migration scheme with negligible downtime,
the lowest network bandwidth consumption possible, and a reasonable total migration time.

Furthermore, we should ensure that the migration will not disrupt other active services residing
in the same host through resource contention (e.g., CPU, network bandwidth). A VM can be in one
of the following four states. An inactive state is defined by the virtualization platform, under which
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Live migration process of a VM from one host to another.

(Courtesy of C. Clark, et al. [14])

the VM is not enabled. An active state refers to a VM that has been instantiated at the virtualization
platform to perform a real task. A paused state corresponds to a VM that has been instantiated but
disabled to process a task or paused in a waiting state. A VM enters the suspended state if its
machine file and virtual resources are stored back to the disk. As shown in Figure 3.20, live migra-
tion of a VM consists of the following six steps:

Steps 0 and 1: Start migration. This step makes preparations for the migration, including
determining the migrating VM and the destination host. Although users could manually make a
VM migrate to an appointed host, in most circumstances, the migration is automatically started
by strategies such as load balancing and server consolidation.

Steps 2: Transfer memory. Since the whole execution state of the VM is stored in memory,
sending the VM’s memory to the destination node ensures continuity of the service provided by
the VM. All of the memory data is transferred in the first round, and then the migration controller
recopies the memory data which is changed in the last round. These steps keep iterating until the
dirty portion of the memory is small enough to handle the final copy. Although precopying
memory is performed iteratively, the execution of programs is not obviously interrupted.
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Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s
execution is suspended when the last round’s memory data is transferred. Other nonmemory data
such as CPU and network states should be sent as well. During this step, the VM is stopped and
its applications will no longer run. This “service unavailable” time is called the “downtime” of
migration, which should be as short as possible so that it can be negligible to users.

Steps 4 and 5: Commit and activate the new host. After all the needed data is copied, on the
destination host, the VM reloads the states and recovers the execution of programs in it, and the
service provided by this VM continues. Then the network connection is redirected to the new
VM and the dependency to the source host is cleared. The whole migration process finishes by
removing the original VM from the source host.

Figure 3.21 shows the effect on the data transmission rate (Mbit/second) of live migration of a
VM from one host to another. Before copying the VM with 512 KB files for 100 clients, the data
throughput was 870 MB/second. The first precopy takes 63 seconds, during which the rate is
reduced to 765 MB/second. Then the data rate reduces to 694 MB/second in 9.8 seconds for more
iterations of the copying process. The system experiences only 165 ms of downtime, before the
VM is restored at the destination host. This experimental result shows a very small migration
overhead in live transfer of a VM between host nodes. This is critical to achieve dynamic cluster
reconfiguration and disaster recovery as needed in cloud computing. We will study these techniques
in more detail in Chapter 4.

With the emergence of widespread cluster computing more than a decade ago, many cluster con-
figuration and management systems have been developed to achieve a range of goals. These goals
naturally influence individual approaches to cluster management. VM technology has become a
popular method for simplifying management and sharing of physical computing resources. Platforms
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Effect on data transmission rate of a VM migrated from one failing web server to another.
(Courtesy of C. Clark, et al. [14])
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such as VMware and Xen allow multiple VMs with different operating systems and configurations
to coexist on the same physical host in mutual isolation. Clustering inexpensive computers is an
effective way to obtain reliable, scalable computing power for network services and compute-
intensive applications

Migration of Memory, Files, and Network Resources

Since clusters have a high initial cost of ownership, including space, power conditioning, and cool-
ing equipment, leasing or sharing access to a common cluster is an attractive solution when
demands vary over time. Shared clusters offer economies of scale and more effective utilization of
resources by multiplexing. Early configuration and management systems focus on expressive and
scalable mechanisms for defining clusters for specific types of service, and physically partition
cluster nodes among those types. When one system migrates to another physical node, we should
consider the following issues.

3.4.3.1 Memory Migration

This is one of the most important aspects of VM migration. Moving the memory instance of a VM
from one physical host to another can be approached in any number of ways. But traditionally, the
concepts behind the techniques tend to share common implementation paradigms. The techniques
employed for this purpose depend upon the characteristics of application/workloads supported by
the guest OS.

Memory migration can be in a range of hundreds of megabytes to a few gigabytes in a typical
system today, and it needs to be done in an efficient manner. The Internet Suspend-Resume (ISR)
technique exploits temporal locality as memory states are likely to have considerable overlap in the
suspended and the resumed instances of a VM. Temporal locality refers to the fact that the memory
states differ only by the amount of work done since a VM was last suspended before being initiated
for migration.

To exploit temporal locality, each file in the file system is represented as a tree of small subfiles.
A copy of this tree exists in both the suspended and resumed VM instances. The advantage of using
a tree-based representation of files is that the caching ensures the transmission of only those files
which have been changed. The ISR technique deals with situations where the migration of live
machines is not a necessity. Predictably, the downtime (the period during which the service is
unavailable due to there being no currently executing instance of a VM) is high, compared to some
of the other techniques discussed later.

3.4.3.2 File System Migration

To support VM migration, a system must provide each VM with a consistent, location-independent
view of the file system that is available on all hosts. A simple way to achieve this is to provide
each VM with its own virtual disk which the file system is mapped to and transport the contents of
this virtual disk along with the other states of the VM. However, due to the current trend of high-
capacity disks, migration of the contents of an entire disk over a network is not a viable solution.
Another way is to have a global file system across all machines where a VM could be located. This
way removes the need to copy files from one machine to another because all files are network-
accessible.
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A distributed file system is used in ISR serving as a transport mechanism for propagating a
suspended VM state. The actual file systems themselves are not mapped onto the distributed file
system. Instead, the VMM only accesses its local file system. The relevant VM files are explicitly
copied into the local file system for a resume operation and taken out of the local file system for a
suspend operation. This approach relieves developers from the complexities of implementing several
different file system calls for different distributed file systems. It also essentially disassociates the
VMM from any particular distributed file system semantics. However, this decoupling means that
the VMM has to store the contents of each VM’s virtual disks in its local files, which have to be
moved around with the other state information of that VM.

In smart copying, the VMM exploits spatial locality. Typically, people often move between the
same small number of locations, such as their home and office. In these conditions, it is possible to
transmit only the difference between the two file systems at suspending and resuming locations. This
technique significantly reduces the amount of actual physical data that has to be moved. In situations
where there is no locality to exploit, a different approach is to synthesize much of the state at the resum-
ing site. On many systems, user files only form a small fraction of the actual data on disk. Operating
system and application software account for the majority of storage space. The proactive state transfer
solution works in those cases where the resuming site can be predicted with reasonable confidence.

3.4.3.3 Network Migration

A migrating VM should maintain all open network connections without relying on forwarding
mechanisms on the original host or on support from mobility or redirection mechanisms. To enable
remote systems to locate and communicate with a VM, each VM must be assigned a virtual IP
address known to other entities. This address can be distinct from the IP address of the host machine
where the VM is currently located. Each VM can also have its own distinct virtual MAC address.
The VMM maintains a mapping of the virtual IP and MAC addresses to their corresponding VMs. In
general, a migrating VM includes all the protocol states and carries its IP address with it.

If the source and destination machines of a VM migration are typically connected to a single
switched LAN, an unsolicited ARP reply from the migrating host is provided advertising that the IP
has moved to a new location. This solves the open network connection problem by reconfiguring
all the peers to send future packets to a new location. Although a few packets that have already
been transmitted might be lost, there are no other problems with this mechanism. Alternatively, on
a switched network, the migrating OS can keep its original Ethernet MAC address and rely on the
network switch to detect its move to a new port.

Live migration means moving a VM from one physical node to another while keeping its OS
environment and applications unbroken. This capability is being increasingly utilized in today’s enter-
prise environments to provide efficient online system maintenance, reconfiguration, load balancing,
and proactive fault tolerance. It provides desirable features to satisfy requirements for computing
resources in modern computing systems, including server consolidation, performance isolation, and
ease of management. As a result, many implementations are available which support the feature using
disparate functionalities. Traditional migration suspends VMs before the transportation and then
resumes them at the end of the process. By importing the precopy mechanism, a VM could be live-
migrated without stopping the VM and keep the applications running during the migration.

Live migration is a key feature of system virtualization technologies. Here, we focus on VM
migration within a cluster environment where a network-accessible storage system, such as storage
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area network (SAN) or network attached storage (NAS), is employed. Only memory and CPU status
needs to be transferred from the source node to the target node. Live migration techniques mainly
use the precopy approach, which first transfers all memory pages, and then only copies modified pages
during the last round iteratively. The VM service downtime is expected to be minimal by using iterative
copy operations. When applications’ writable working set becomes small, the VM is suspended and
only the CPU state and dirty pages in the last round are sent out to the destination.

In the precopy phase, although a VM service is still available, much performance degradation will
occur because the migration daemon continually consumes network bandwidth to transfer dirty pages in
each round. An adaptive rate limiting approach is employed to mitigate this issue, but total migration time
is prolonged by nearly 10 times. Moreover, the maximum number of iterations must be set because not all
applications’ dirty pages are ensured to converge to a small writable working set over multiple rounds.

In fact, these issues with the precopy approach are caused by the large amount of transferred
data during the whole migration process. A checkpointing/recovery and trace/replay approach (CR/
TR-Motion) is proposed to provide fast VM migration. This approach transfers the execution trace
file in iterations rather than dirty pages, which is logged by a trace daemon. Apparently, the total
size of all log files is much less than that of dirty pages. So, total migration time and downtime of
migration are drastically reduced. However, CR/TR-Motion is valid only when the log replay rate is
larger than the log growth rate. The inequality between source and target nodes limits the applica-
tion scope of live migration in clusters.

Another strategy of postcopy is introduced for live migration of VMs. Here, all memory pages are
transferred only once during the whole migration process and the baseline total migration time is
reduced. But the downtime is much higher than that of precopy due to the latency of fetching pages
from the source node before the VM can be resumed on the target. With the advent of multicore or
many-core machines, abundant CPU resources are available. Even if several VMs reside on a same mul-
ticore machine, CPU resources are still rich because physical CPUs are frequently amenable to multi-
plexing. We can exploit these copious CPU resources to compress page frames and the amount of
transferred data can be significantly reduced. Memory compression algorithms typically have little
memory overhead. Decompression is simple and very fast and requires no memory for decompression.

3.4.3.4 Live Migration of VM Using Xen

In Section 3.2.1, we studied Xen as a VMM or hypervisor, which allows multiple commodity OSes to
share x86 hardware in a safe and orderly fashion. The following example explains how to perform live
migration of a VM between two Xen-enabled host machines. Domain 0 (or Dom0) performs tasks to
create, terminate, or migrate to another host. Xen uses a send/recv model to transfer states across VMs.

L
Example 3.8 Live Migration of VMs between Two Xen-Enabled Hosts
Xen supports live migration. It is a useful feature and natural extension to virtualization platforms that
allows for the transfer of a VM from one physical machine to another with little or no downtime of the
services hosted by the VM. Live migration transfers the working state and memory of a VM across a net-
work when it is running. Xen also supports VM migration by using a mechanism called Remote Direct
Memory Access (RDMA).

RDMA speeds up VM migration by avoiding TCP/IP stack processing overhead. RDMA implements a
different transfer protocol whose origin and destination VM buffers must be registered before any transfer
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FIGURE 3.22
Live migration of VM from the DomO domain to a Xen-enabled target host.

operations occur, reducing it to a “one-sided” interface. Data communication over RDMA does not need to
involve the CPU, caches, or context switches. This allows migration to be carried out with minimal impact
on guest operating systems and hosted applications. Figure 3.22 shows the a compression scheme for VM
migration.

This design requires that we make trade-offs between two factors. If an algorithm embodies expecta-
tions about the kinds of regularities in the memory footprint, it must be very fast and effective. A single
compression algorithm for all memory data is difficult to achieve the win-win status that we expect.
Therefore, it is necessary to provide compression algorithms to pages with different kinds of regularities.
The structure of this live migration system is presented in DomO.

Migration daemons running in the management VMs are responsible for performing migration. Shadow
page tables in the VMM layer trace modifications to the memory page in migrated VMs during the precopy
phase. Corresponding flags are set in a dirty bitmap. At the start of each precopy round, the bitmap is
sent to the migration daemon. Then, the bitmap is cleared and the shadow page tables are destroyed and
re-created in the next round. The system resides in Xen's management VM. Memory pages denoted by
bitmap are extracted and compressed before they are sent to the destination. The compressed data is
then decompressed on the target.

3.4.4 Dynamic Deployment of Virtual Clusters

Table 3.5 summarizes four virtual cluster research projects. We briefly introduce them here just
to identify their design objectives and reported results. The Cellular Disco at Stanford is a virtual
cluster built in a shared-memory multiprocessor system. The INRIA virtual cluster was built to test
parallel algorithm performance. The COD and VIOLIN clusters are studied in forthcoming examples.
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Table 3.5 Experimental Results on Four Research Virtual Clusters
Reported Results and
Project Name Design Objectives References
Cluster-on-Demand at Duke Dynamic resource allocation with a Sharing of VMs by multiple virtual
Univ. virtual cluster management system clusters using Sun GridEngine [12]
Cellular Disco at Stanford Univ. To deploy a virtual cluster on a VMs deployed on multiple
shared-memory multiprocessor processors under a VMM called
Cellular Disco [8]
VIOLIN at Purdue Univ. Multiple VM clustering to prove the Reduce execution time of
advantage of dynamic adaptation applications running VIOLIN with
adaptation [25,55]
GRAAL Project at INRIA in Performance of parallel algorithms 75% of max. performance
France in Xen-enabled virtual clusters achieved with 30% resource
slacks over VM clusters
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COD partitioning a physical cluster into multiple virtual clusters.
(Courtesy of Jeff Chase, et al., HPDC-2003 © IEEE [12])

L
Example 3.9 The Cluster-on-Demand (COD) Project at Duke University

Developed by researchers at Duke University, the COD (Cluster-on-Demand) project is a virtual cluster
management system for dynamic allocation of servers from a computing pool to multiple virtual clusters
[12]. The idea is illustrated by the prototype implementation of the COD shown in Figure 3.23. The COD
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Cluster size variations in COD over eight days at Duke University.
(Courtesy of Jeff Chase, et al., HPDC-2003 © IEEE [12])

partitions a physical cluster into multiple virtual clusters (vClusters). vCluster owners specify the operating
systems and software for their clusters through an XML-RPC interface. The vClusters run a batch schedule
from Sun’s GridEngine on a web server cluster. The COD system can respond to load changes in restruc-
turing the virtual clusters dynamically.

The Duke researchers used the Sun GridEngine scheduler to demonstrate that dynamic virtual clusters
are an enabling abstraction for advanced resource management in computing utilities such as grids. The
system supports dynamic, policy-based cluster sharing between local users and hosted grid services.
Attractive features include resource reservation, adaptive provisioning, scavenging of idle resources, and
dynamic instantiation of grid services. The COD servers are backed by a configuration database. This
system provides resource policies and template definition in response to user requests.

Figure 3.24 shows the variation in the number of nodes in each of three virtual clusters during
eight days of a live deployment. Three application workloads requested by three user groups are labeled
“Systems,” “Architecture,” and “BioGeometry” in the trace plot. The experiments were performed with
multiple SGE batch pools on a test bed of 80 rack-mounted IBM xSeries-335 servers within the Duke clus-
ter. This trace plot clearly shows the sharp variation in cluster size (number of nodes) over the eight days.
Dynamic provisioning and deprovisioning of virtual clusters are needed in real-life cluster applications.

.
Example 3.10 The VIOLIN Project at Purdue University

The Purdue VIOLIN Project applies live VM migration to reconfigure a virtual cluster environment. Its
purpose is to achieve better resource utilization in executing multiple cluster jobs on multiple cluster
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domains. The project leverages the maturity of VM migration and environment adaptation technology.
The approach is to enable mutually isolated virtual environments for executing parallel applications on
top of a shared physical infrastructure consisting of multiple domains. Figure 3.25 illustrates the idea
with five concurrent virtual environments, labeled as VIOLIN 1-5, sharing two physical clusters.

The squares of various shadings represent the VMs deployed in the physical server nodes. The
major contribution by the Purdue group is to achieve autonomic adaptation of the virtual computation
environments as active, integrated entities. A virtual execution environment is able to relocate itself
across the infrastructure, and can scale its share of infrastructural resources. The adaptation is
transparent to both users of virtual environments and administrations of infrastructures. The adaptation
overhead is maintained at 20 sec out of 1,200 sec in solving a large NEMO3D problem of 1 million
particles.

The message being conveyed here is that the virtual environment adaptation can enhance resource
utilization significantly at the expense of less than 1 percent of an increase in total execution time. The
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migration of VIOLIN environments does pay off. Of course, the gain in shared resource utilization will bene-
fit many users, and the performance gain varies with different adaptation scenarios. We leave readers to
trace the execution of another scenario in Problem 3.17 at the end of this chapter to tell the differences.
Virtual networking is a fundamental component of the VIOLIN system.

VIRTUALIZATION FOR DATA-CENTER AUTOMATION

Data centers have grown rapidly in recent years, and all major IT companies are pouring their
resources into building new data centers. In addition, Google, Yahoo!, Amazon, Microsoft, HP,
Apple, and IBM are all in the game. All these companies have invested billions of dollars in data-
center construction and automation. Data-center automation means that huge volumes of hardware,
software, and database resources in these data centers can be allocated dynamically to millions of
Internet users simultaneously, with guaranteed QoS and cost-effectiveness.

This automation process is triggered by the growth of virtualization products and cloud com-
puting services. From 2006 to 2011, according to an IDC 2007 report on the growth of virtuali-
zation and its market distribution in major IT sectors. In 2006, virtualization has a market share
of $1,044 million in business and enterprise opportunities. The majority was dominated by pro-
duction consolidation and software development. Virtualization is moving towards enhancing
mobility, reducing planned downtime (for maintenance), and increasing the number of virtual
clients.

The latest virtualization development highlights high availability (HA), backup services,
workload balancing, and further increases in client bases. IDC projected that automation, service
orientation, policy-based, and variable costs in the virtualization market. The total business
opportunities may increase to $3.2 billion by 2011. The major market share moves to the areas
of HA, utility computing, production consolidation, and client bases. In what follows, we will
discuss server consolidation, virtual storage, OS support, and trust management in automated
data-center designs.

Server Consolidation in Data Centers

In data centers, a large number of heterogeneous workloads can run on servers at various times. These
heterogeneous workloads can be roughly divided into two categories: chatty workloads and noninter-
active workloads. Chatty workloads may burst at some point and return to a silent state at some other
point. A web video service is an example of this, whereby a lot of people use it at night and few peo-
ple use it during the day. Noninteractive workloads do not require people’s efforts to make progress
after they are submitted. High-performance computing is a typical example of this. At various stages,
the requirements for resources of these workloads are dramatically different. However, to guarantee
that a workload will always be able to cope with all demand levels, the workload is statically allo-
cated enough resources so that peak demand is satisfied. Figure 3.29 illustrates server virtualization in
a data center. In this case, the granularity of resource optimization is focused on the CPU, memory,
and network interfaces.
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Therefore, it is common that most servers in data centers are underutilized. A large amount of
hardware, space, power, and management cost of these servers is wasted. Server consolidation is an
approach to improve the low utility ratio of hardware resources by reducing the number of physical
servers. Among several server consolidation techniques such as centralized and physical consolida-
tion, virtualization-based server consolidation is the most powerful. Data centers need to optimize
their resource management. Yet these techniques are performed with the granularity of a full server
machine, which makes resource management far from well optimized. Server virtualization enables
smaller resource allocation than a physical machine.

In general, the use of VMs increases resource management complexity. This causes a challenge
in terms of how to improve resource utilization as well as guarantee QoS in data centers. In detail,
server virtualization has the following side effects:

* Consolidation enhances hardware utilization. Many underutilized servers are consolidated into
fewer servers to enhance resource utilization. Consolidation also facilitates backup services and
disaster recovery.

* This approach enables more agile provisioning and deployment of resources. In a virtual
environment, the images of the guest OSes and their applications are readily cloned and reused.

* The total cost of ownership is reduced. In this sense, server virtualization causes deferred
purchases of new servers, a smaller data-center footprint, lower maintenance costs, and lower
power, cooling, and cabling requirements.

* This approach improves availability and business continuity. The crash of a guest OS has no
effect on the host OS or any other guest OS. It becomes easier to transfer a VM from one
server to another, because virtual servers are unaware of the underlying hardware.

To automate data-center operations, one must consider resource scheduling, architectural support,
power management, automatic or autonomic resource management, performance of analytical mod-
els, and so on. In virtualized data centers, an efficient, on-demand, fine-grained scheduler is one of
the key factors to improve resource utilization. Scheduling and reallocations can be done in a wide
range of levels in a set of data centers. The levels match at least at the VM level, server level,
and data-center level. Ideally, scheduling and resource reallocations should be done at all levels.
However, due to the complexity of this, current techniques only focus on a single level or, at most,
two levels.

Dynamic CPU allocation is based on VM utilization and application-level QoS metrics. One
method considers both CPU and memory flowing as well as automatically adjusting resource over-
head based on varying workloads in hosted services. Another scheme uses a two-level resource
management system to handle the complexity involved. A local controller at the VM level and a
global controller at the server level are designed. They implement autonomic resource allocation via
the interaction of the local and global controllers. Multicore and virtualization are two cutting tech-
niques that can enhance each other.

However, the use of CMP is far from well optimized. The memory system of CMP is a typical
example. One can design a virtual hierarchy on a CMP in data centers. One can consider protocols
that minimize the memory access time, inter-VM interferences, facilitating VM reassignment, and
supporting inter-VM sharing. One can also consider a VM-aware power budgeting scheme using
multiple managers integrated to achieve better power management. The power budgeting policies
cannot ignore the heterogeneity problems. Consequently, one must address the trade-off of power
saving and data-center performance.
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Virtual Storage Management

The term “storage virtualization” was widely used before the renaissance of system virtualization. Yet
the term has a different meaning in a system virtualization environment. Previously, storage virtualiza-
tion was largely used to describe the aggregation and repartitioning of disks at very coarse time scales
for use by physical machines. In system virtualization, virtual storage includes the storage managed by
VMMs and guest OSes. Generally, the data stored in this environment can be classified into two cate-
gories: VM images and application data. The VM images are special to the virtual environment, while
application data includes all other data which is the same as the data in traditional OS environments.

The most important aspects of system virtualization are encapsulation and isolation. Traditional
operating systems and applications running on them can be encapsulated in VMs. Only one operating
system runs in a virtualization while many applications run in the operating system. System virtuali-
zation allows multiple VMs to run on a physical machine and the VMs are completely isolated. To
achieve encapsulation and isolation, both the system software and the hardware platform, such as
CPUs and chipsets, are rapidly updated. However, storage is lagging. The storage systems become
the main bottleneck of VM deployment.

In virtualization environments, a virtualization layer is inserted between the hardware and tradi-
tional operating systems or a traditional operating system is modified to support virtualization. This
procedure complicates storage operations. On the one hand, storage management of the guest OS per-
forms as though it is operating in a real hard disk while the guest OSes cannot access the hard disk
directly. On the other hand, many guest OSes contest the hard disk when many VMs are running on a
single physical machine. Therefore, storage management of the underlying VMM is much more com-
plex than that of guest OSes (traditional OSes).

In addition, the storage primitives used by VMs are not nimble. Hence, operations such as remap-
ping volumes across hosts and checkpointing disks are frequently clumsy and esoteric, and sometimes
simply unavailable. In data centers, there are often thousands of VMs, which cause the VM images to
become flooded. Many researchers tried to solve these problems in virtual storage management. The
main purposes of their research are to make management easy while enhancing performance and redu-
cing the amount of storage occupied by the VM images. Parallax is a distributed storage system custo-
mized for virtualization environments. Content Addressable Storage (CAS) is a solution to reduce the
total size of VM images, and therefore supports a large set of VM-based systems in data centers.

Since traditional storage management techniques do not consider the features of storage in virtualization
environments, Parallax designs a novel architecture in which storage features that have traditionally been
implemented directly on high-end storage arrays and switchers are relocated into a federation of storage
VMs. These storage VMs share the same physical hosts as the VMs that they serve. Figure 3.30 provides
an overview of the Parallax system architecture. It supports all popular system virtualization techniques,
such as paravirtualization and full virtualization. For each physical machine, Parallax customizes a special
storage appliance VM. The storage appliance VM acts as a block virtualization layer between individual
VMs and the physical storage device. It provides a virtual disk for each VM on the same physical machine.

L
Example 3.11 Parallax Providing Virtual Disks to Client VMs from a Large Common

Shared Physical Disk

The architecture of Parallax is scalable and especially suitable for use in cluster-based environments.
Figure 3.26 shows a high-level view of the structure of a Parallax-based cluster. A cluster-wide administrative
domain manages all storage appliance VMs, which makes storage management easy. The storage appliance
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Parallax is a set of per-host storage appliances that share access to a common block device and presents
virtual disks to client VMs.

(Courtesy of D. Meyer, et al. [43])

VM also allows functionality that is currently implemented within data-center hardware to be pushed out and
implemented on individual hosts. This mechanism enables advanced storage features such as snapshot
facilities to be implemented in software and delivered above commodity network storage targets.

Parallax itself runs as a user-level application in the storage appliance VM. It provides virtual disk images
(VDIs) to VMs. A VDI is a single-writer virtual disk which may be accessed in a location-transparent manner
from any of the physical hosts in the Parallax cluster. The VDIs are the core abstraction provided by Parallax.
Parallax uses Xen'’s block tap driver to handle block requests and it is implemented as a tapdisk library. This
library acts as a single block virtualization service for all client VMs on the same physical host. In the Parallax
system, it is the storage appliance VM that connects the physical hardware device for block and network
access. As shown in Figure 3.30, physical device drivers are included in the storage appliance VM. This imple-
mentation enables a storage administrator to live-upgrade the block device drivers in an active cluster.

Cloud 0S for Virtualized Data Centers

Data centers must be virtualized to serve as cloud providers. Table 3.6 summarizes four virtual
infrastructure (VI) managers and OSes. These VI managers and OSes are specially tailored for
virtualizing data centers which often own a large number of servers in clusters. Nimbus, Eucalyptus,
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Table 3.6 VI Managers and Operating Systems for Virtualizing Data Centers [9]

Manager/

0S, Resources Being Client Public

Platforms, Virtualized, Web API, Hypervisors Cloud Special

License Link Language Used Interface Features

Nimbus VM creation, virtual EC2 WS, Xen, KVM EC2 Virtual
Linux, cluster, www WSRF, CLI networks
Apache v2 .nimbusproject.org/

Eucalyptus Virtual networking EC2 WS, Xen, KVM EC2 Virtual
Linux, BSD (Example 3.12 and CL networks

[417]), www
.eucalyptus.com/

OpenNebula Management of VM, XML-RPC, Xen, KVM EC2, Elastic Virtual
Linux, host, virtual network, CLlI, Java Host networks,
Apache v2 and scheduling tools, dynamic

www.opennebula.org/ provisioning
vSphere 4 Virtualizing OS for CLI, GUI, VMware VMware Data
Linux, data centers Portal, WS ESX, ESXi vCloud protection,
Windows, (Example 3.13), www partners vStorage,
proprietary .vmware.com/ VMFS, DRM,
products/vsphere/ [66] HA

and OpenNebula are all open source software available to the general public. Only vSphere 4 is a
proprietary OS for cloud resource virtualization and management over data centers.

These VI managers are used to create VMs and aggregate them into virtual clusters as elastic
resources. Nimbus and Eucalyptus support essentially virtual networks. OpenNebula has additional
features to provision dynamic resources and make advance reservations. All three public VI
managers apply Xen and KVM for virtualization. vSphere 4 uses the hypervisors ESX and ESXi
from VMware. Only vSphere 4 supports virtual storage in addition to virtual networking and data
protection. We will study Eucalyptus and vSphere 4 in the next two examples.

|
Example 3.12 Eucalyptus for Virtual Networking of Private Cloud
Eucalyptus is an open source software system (Figure 3.27) intended mainly for supporting Infrastructure
as a Service (laaS) clouds. The system primarily supports virtual networking and the management of VMs;
virtual storage is not supported. Its purpose is to build private clouds that can interact with end users
through Ethernet or the Internet. The system also supports interaction with other private clouds or public
clouds over the Internet. The system is short on security and other desired features for general-purpose
grid or cloud applications.

The designers of Eucalyptus [45] implemented each high-level system component as a stand-alone
web service. Each web service exposes a well-defined language-agnostic APl in the form of a WSDL
document containing both operations that the service can perform and input/output data structures.
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FIGURE 3.27

Eucalyptus for building private clouds by establishing virtual networks over the VMs linking through
Ethernet and the Internet.

(Courtesy of D. Nurmi, et al. [45])

Furthermore, the designers leverage existing web-service features such as WS-Security policies for
secure communication between components. The three resource managers in Figure 3.27 are specified
below:

e |nstance Manager controls the execution, inspection, and terminating of VM instances on the host
where it runs.

e Group Manager gathers information about and schedules VM execution on specific instance managers,
as well as manages virtual instance network.

e Cloud Manager is the entry-point into the cloud for users and administrators. It queries node managers
for information about resources, makes scheduling decisions, and implements them by making
requests to group managers.

In terms of functionality, Eucalyptus works like AWS APIs. Therefore, it can interact with EC2. It does
provide a storage APl to emulate the Amazon S3 API for storing user data and VM images. It is installed
on Linux-based platforms, is compatible with EC2 with SOAP and Query, and is S3-compatible with SOAP
and REST. CLI and web portal services can be applied with Eucalyptus.

||

B
Example 3.13 VMware vSphere 4 as a Commercial Cloud OS [66]

The vSphere 4 offers a hardware and software ecosystem developed by VMware and released in April
2009. vSphere extends earlier virtualization software products by VMware, namely the VMware Workstation,
ESX for server virtualization, and Virtual Infrastructure for server clusters. Figure 3.28 shows vSphere’s
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vSphere/4, a cloud operating system that manages compute, storage, and network resources over
virtualized data centers.
(Courtesy of VMware, April 2010 [72])

overall architecture. The system interacts with user applications via an interface layer, called vCenter.
vSphere is primarily intended to offer virtualization support and resource management of data-center
resources in building private clouds. VMware claims the system is the first cloud OS that supports
availability, security, and scalability in providing cloud computing services.

The vSphere 4 is built with two functional software suites: infrastructure services and application
services. It also has three component packages intended mainly for virtualization purposes: vCompute is
supported by ESX, ESXi, and DRS virtualization libraries from VMware; vStorage is supported by VMS and
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thin provisioning libraries; and vNetwork offers distributed switching and networking functions. These
packages interact with the hardware servers, disks, and networks in the data center. These infrastructure
functions also communicate with other external clouds.

The application services are also divided into three groups: availability, security, and scalability.
Availability support includes VMotion, Storage VMotion, HA, Fault Tolerance, and Data Recovery from
VMware. The security package supports vShield Zones and VMsafe. The scalability package was built with
DRS and Hot Add. Interested readers should refer to the vSphere 4 web site for more details regarding
these component software functions. To fully understand the use of vSphere 4, users must also learn how
to use the vCenter interfaces in order to link with existing applications or to develop new applications.

Trust Management in Virtualized Data Centers

A VMM changes the computer architecture. It provides a layer of software between the operating
systems and system hardware to create one or more VMs on a single physical platform. A VM
entirely encapsulates the state of the guest operating system running inside it. Encapsulated machine
state can be copied and shared over the network and removed like a normal file, which proposes a
challenge to VM security. In general, a VMM can provide secure isolation and a VM accesses hard-
ware resources through the control of the VMM, so the VMM is the base of the security of a virtual
system. Normally, one VM is taken as a management VM to have some privileges such as creating,
suspending, resuming, or deleting a VM.

Once a hacker successfully enters the VMM or management VM, the whole system is in danger.
A subtler problem arises in protocols that rely on the “freshness” of their random number source for
generating session keys. Considering a VM, rolling back to a point after a random number has been
chosen, but before it has been used, resumes execution; the random number, which must be “fresh”
for security purposes, is reused. With a stream cipher, two different plaintexts could be encrypted
under the same key stream, which could, in turn, expose both plaintexts if the plaintexts have suffi-
cient redundancy. Noncryptographic protocols that rely on freshness are also at risk. For example,
the reuse of TCP initial sequence numbers can raise TCP hijacking attacks.

3.5.4.1 VM-Based Intrusion Detection

Intrusions are unauthorized access to a certain computer from local or network users and intrusion
detection is used to recognize the unauthorized access. An intrusion detection system (IDS) is built
on operating systems, and is based on the characteristics of intrusion actions. A typical IDS can be
classified as a host-based IDS (HIDS) or a network-based IDS (NIDS), depending on the data
source. A HIDS can be implemented on the monitored system. When the monitored system is
attacked by hackers, the HIDS also faces the risk of being attacked. A NIDS is based on the flow
of network traffic which can’t detect fake actions.

Virtualization-based intrusion detection can isolate guest VMs on the same hardware platform.
Even some VMs can be invaded successfully; they never influence other VMs, which is similar to
the way in which a NIDS operates. Furthermore, a VMM monitors and audits access requests for
hardware and system software. This can avoid fake actions and possess the merit of a HIDS. There
are two different methods for implementing a VM-based IDS: Either the IDS is an independent
process in each VM or a high-privileged VM on the VMM; or the IDS is integrated into the VMM
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The architecture of livewire for intrusion detection using a dedicated VM.
(Courtesy of Garfinkel and Rosenblum, 2002 [17])

and has the same privilege to access the hardware as well as the VMM. Garfinkel and Rosenblum
[17] have proposed an IDS to run on a VMM as a high-privileged VM. Figure 3.29 illustrates
the concept.

The VM-based IDS contains a policy engine and a policy module. The policy framework can
monitor events in different guest VMs by operating system interface library and PTrace indicates
trace to secure policy of monitored host. It’s difficult to predict and prevent all intrusions without
delay. Therefore, an analysis of the intrusion action is extremely important after an intrusion occurs.
At the time of this writing, most computer systems use logs to analyze attack actions, but it is hard to
ensure the credibility and integrity of a log. The IDS log service is based on the operating system ker-
nel. Thus, when an operating system is invaded by attackers, the log service should be unaffected.

Besides IDS, honeypots and honeynets are also prevalent in intrusion detection. They attract and
provide a fake system view to attackers in order to protect the real system. In addition, the attack
action can be analyzed, and a secure IDS can be built. A honeypot is a purposely defective system
that simulates an operating system to cheat and monitor the actions of an attacker. A honeypot can
be divided into physical and virtual forms. A guest operating system and the applications running
on it constitute a VM. The host operating system and VMM must be guaranteed to prevent attacks
from the VM in a virtual honeypot.

L
Example 3.14 EMC Establishment of Trusted Zones for Protection of Virtual Clusters
Provided to Multiple Tenants

EMC and VMware have joined forces in building security middleware for trust management in distribu-
ted systems and private clouds. The concept of frusted zones was established as part of the virtual
infrastructure. Figure 3.30 illustrates the concept of creating trusted zones for virtual clusters (multiple
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Cloud provider

FIGURE 3.30

Techniques for establishing trusted zones for virtual cluster insulation and VM isolation.
(Courtesy of L. Nick, EMC [40])

applications and OSes for each tenant) provisioned in separate virtual environments. The physical
infrastructure is shown at the bottom, and marked as a cloud provider. The virtual clusters or infrastruc-
tures are shown in the upper boxes for two tenants. The public cloud is associated with the global user
communities at the top.

The arrowed boxes on the left and the brief description between the arrows and the zoning boxes are
security functions and actions taken at the four levels from the users to the providers. The small circles
between the four boxes refer to interactions between users and providers and among the users
themselves. The arrowed boxes on the right are those functions and actions applied between the tenant
environments, the provider, and the global communities.

Almost all available countermeasures, such as anti-virus, worm containment, intrusion detection,
encryption and decryption mechanisms, are applied here to insulate the trusted zones and isolate the
VMs for private tenants. The main innovation here is to establish the trust zones among the virtual clusters.
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The end result is to enable an end-to-end view of security events and compliance across the virtual
clusters dedicated to different tenants. We will discuss security and trust issues in Chapter 7 when we
study clouds in more detail.

BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS

Good reviews on virtualization technology can be found in Rosenblum, et al. [53,54] and in Smith
and Nair [58,59]. White papers at [71,72] report on virtualization products at VMware, including
the vSphere 4 cloud operating system. The Xen hypervisor was introduced in [7,13,42] and KVM
in [31]. Qian, et al. [50] have given some theoretical treatment of the subject. ISA-level virtualiza-
tion and binary translation techniques are treated in [3] and in Smith and Nair [58]. Some compari-
son of virtualizing software environments can be found in Buyya, et al. [9]. Hardware-level
virtualization is treated in [1,7,8,13,37,43,54,67]. Intel’s support of hardware-level virtualization is
treated in [62]. Some entries in Table 3.5 are taken from Buyya, et al. [9].

For GPU computing on VMs, the readers are referred to [57]. The x86 host virtualization
is treated in [2]. Pentium virtualization is treated in [53]. treated in [11,24,26,52]. I/O virtualization is

Sun Microsystems reports on OS-level virtualization in [64]. OpenVZ is introduced in its user’s
guide [65]. Virtualization in Windows NT machines is described in [77,78]. For GPU computing on
VMs, readers are referred to [53]. The x86 host virtualization is treated in [2]. Pentium virtualization
is treated in [53]. The book [24] have a good coverage of hardware support for virtualization. Virtual
clusters are treated in [8,12,20,25,49,55,56]. In particular, Duke’s COD is reported in [12] and
Purdue’s Violin in [25,55]. Memory virtualization is treated in [1,10,13,51,58,68].

Hardware-level virtualization is treated in [1,7,8,13,41,47,58,73]. Intel’s support of hardware-level
virtualization is treated in [68]. Wells, et al. [74] have studied multi-core virtualization.
The integration of multi-core and virtualization on future CPU/GPU chips posts a very hot research
area, called asymmetric CMP as reported in [33,39,63,66,74]. Architectural supports for virtualized
chip multiprocessors have been also studied in [17,28,30,39,66]. The maturity of this co-design CMP
approach will greatly impact the future development of HPC and HTC systems.

Server consolidation in virtualized data centers is treated in [29,39,75]. Power consumption in virtua-
lized data centers is treated in [44.,46]. Literatures [46,60,61,62] discussed the virtual resource management
in data centers. Kochut gives an analytical model for virtualized data centers [32]. Security protection and
trust management for virtualized data centers are treated in [18,45]. For virtual storage, readers are referred
to the literature [27,36,43,48,76,79]. Specific references for the examples are identified in the figure cap-
tions or in the text description of the example. The Eucalyptus was reported in [45], vSphere in [72], Par-
allax in [43]. The vCUDA was reported in [57] for CUDA programming on the VMs.
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HOMEWORK PROBLEMS
Problem 3.1

Briefly answer the following questions on virtualization levels. Highlight the key points and identify
the distinctions in different approaches. Discuss their relative advantages, shortcomings and limita-
tions. Also identify example systems implemented at each level.
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Problem 3.2

Explain the differences between hypervisor and para-virtualization and give one example VMM
(virtual machine monitor), that was built in each of the two categories.

Problem 3.3

Install the VMware Workstation on a Windows XP or Vista personal computer or laptop, and then
install Red Hat Linux and Windows XP in the VMware Workstation. Configure the network settings
of Red Hat Linux and Windows XP to get on the Internet. Write an installation and configuration
guide for the VMware Workstation, Red Hat Linux, and Windows XP systems. Include any trouble-
shooting tips in the guide.

Problem 3.4

Download a new kernel package from www.kernel.org/. Compile it in Red Hat Linux in the VMware
Workstation installed in Problem 3.3 with Red Hat Linux on a real computer. Compare the time required
for the two compilations. Which one takes longer to compile? What are their major differences?

Problem 3.5

Install Xen on a Red Hat Linux machine in two methods from the binary code or from the source
code. Compile installation guides for the two methods used. Describe the dependencies of utilities
and packages along with troubleshooting tips.

Problem 3.6

Install Red Hat Linux on the Xen you installed in Problem 3.5. Download nbench from www.tux
.org/~mayer/linux/bmark.html. Run the nbench on the VM using Xen and on a real machine. Com-
pare the performance of the programs on the two platforms.

Problem 3.7

Use the utilities for easing deployment of Google enterprise applications in VMs. The Google-vm-
deployment tool can be downloaded from http://code.google.com/p/google-vm-deployment/.

Problem 3.8

Describe the approaches used to exchange data among the domains of Xen and design experiments
to compare the performance of data communication between the domains. This is designed to famil-
iarize you with the Xen programming environment. It may require a longer period of time to port
the Xen code, implement the application code, perform the experiments, collect the performance
data, and interpret the results.

Problem 3.9

Build your own LAN by using the VMware Workstation. The topological structure of the LAN is
specified in Figure 3.31. Machine A is required to install Red Hat Linux while machine B is
required to install Windows XP.
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192.168.203.2 192.168.204.2
LAN 1 The router LAN 2
External gate way: 192.168.204.1
Internal gate way: 192.168.203.1

Machine A Machine B

FIGURE 3.31
The topological structure of the virtual LAN.

Problem 3.10

Study the relevant papers [33,63,74] on asymmetric or heterogeneous chip multitprocessors (CMP).
Write a study report to survey the area, identify the key research issues, review the current develop-
ment and open research challenges lying ahead.

Problem 3.11

Study the relevant papers [17,28,30,66] on network on chip (NoC) and virtualization of NoC
resources for multi-core CMP design and applications. Repeat Problem 3.10 with a survey report
after the research study.

Problem 3.12

Hardware and software resource deployment are 4 often complicated and time-consuming.
Automatic VM deployment can significantly reduce the time to instantiate new services or
reallocate resources depending on user needs. Visit the following web site for more informa-
tion. http://wiki.systemimager.org/index.php/Automating_Xen_VM_deployment_with_SystemI-
mager. Report your experience with automatic deployment using the SystemImager and
Xen-tools.

Problem 3.13

Design an experiment to analyze the performance of Xen live migration for I/O read-intensive appli-
cations. The performance merits include the time consumed by the precopy phase, the downtime,
the time used by the pull phase, and the total migration time.

Problem 3.14

Design an experiment to test the performance of Xen live migration for I/O write-intensive applica-
tions. The performance metrics include the time consumed by the precopy phase, the downtime,
the time used by the pull phase, and the total migration time. Compare the results with those from
Problem 3.13.
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Problem 3.15

Design and implement a VM execution environment for grid computing based on VMware Server.
The environment should enable grid users and resource providers to use services that are unique to
a VM-based approach to distributed computing. Users can define customized execution environ-
ments which can then be archived, copied, shared, and instantiated as multiple runtime clones.

Problem 3.16

Design a large-scale virtual cluster system. This problem may require three students to work together for
a semester. Assume that users can create multiple VMs at one time. Users can also manipulate and
configure multiple VMs at the same time. Common software such as OS or libraries are preinstalled as
templates. These templates enable users to create a new execution environment rapidly. Finally, you
can assume that users have their own profiles which store the identification of data blocks.

Problem 3.17

Figure 3.32 shows another VIOLIN adaptation scenario for changes in virtual environments. There
are four VIOLIN applications running in two cluster domains. Trace the three steps of VIOLIN job
execution and discuss the gains in resource utilization after live migration of the virtual execution

Without adaptation With adaptation Bl viount1 [ VioLIN3
Domain 1 Domain 2 Domain 1 Domain 2 "]]II] VIOLIN 2 D VIOLIN 4

1. Initially VIOLIN
1, 2, 3, 4 are computing.

EDE
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An adaptation scenario with four VIOLINs running in two cluster domains in the VIOLIN Virtual clustering
experiments.
(Courtesy of P. Ruth, et al. [55])
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environment in the two cluster domains. You can check your results against the cited paper to
compare your observations.

Problem 3.18

After studying the material presented in Section 3.3.5, plus reading the papers by Wells, et al. [74]
and by Marty and Hill in [39] answer the following two questions:

a. Distinguish virtual cores from physical cores and discuss the mapping technique in Wells’s
paper on upgrading resource utilization and fault tolerance in using virtualized multicore
processors.

b. Study the cache coherence protocol presented in the Marty and Hill paper and discuss its
feasibility and advantages to implement on many-core CMP in the future.
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PART

Computing Clouds,
Service-Oriented Architecture,
and Programming

Three chapters in Part 2 are devoted to cloud computing, including various cloud platforms for IaaS
(infrastructure as a service), PaaS (platform as a service), and SaaS (software as a service) applica-
tions. We present service-oriented architectures developed in recent years. Parallel and distributed
computing paradigms and their software support, language tools, and programming environments
are covered for various cloud computing services.

CHAPTER 4: CLOUD PLATFORM ARCHITECTURE OVER VIRTUALIZED
DATA CENTERS

This chapter covers the design principles and enabling technologies for cloud architecture and data
center design. We start with data center design and management. Then we present the design princi-
ples of cloud platforms. We cover layered platform designs from infrastructure clouds including
compute clouds, storage clouds, and application clouds. In particular, we study the center automa-
tion technology and interconnection networks. We apply virtualization support in resource provi-
sioning and infrastructure management. Major public cloud platforms covered include Google
AppEngine (GAE), Amazon Web Service (AWS), and Microsoft Windows Azure. The cloud secur-
ity and trust management issues are studied.

This chapter is authored by Kai Hwang with partial contributions by Rajkumar Buyya and Kang
Chen and the final manuscript was edited by Geoffrey Fox.

CHAPTER 5: SERVICE-ORIENTED ARCHITECTURES FOR
DISTRIBUTED COMPUTING

We cover two major forms of distributed services—REST and web services—and the extension of
the latter in Grid systems. Workflow is used to orchestrate or integrate multiple services and we
describe the general approach used in workflow, the BPEL Web Service standard including
Pegasus, Taverna, Kepler, Trident, and Swift. Example web interfaces or portals are described using
Web Service (portlet) and Web 2.0 (gadget). We handle data and metadata in distributed systems
using service registries and semantic web/grid.

This chapter is authored by Geoffrey Fox and Albert Zomaya with partial contributions by
Rajkumar Buyya and technical assistance from Ali Javadzadeh Boloori, Chen Wang, Shrideep
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Pallickara, Marlon Pierce, Suresh Marru, Michael McLennan, George Adams, III, Gerhard Klimeck,
and Michael Wilde. The final manuscript was edited by Kai Hwang.

CHAPTER 6: CLOUD PROGRAMMING AND SOFTWARE ENVIRONMENTS

We introduce major cloud programming paradigms: MapReduce, BigTable, Twister, Dryad,
DryadLINQ, Hadoop, Sawzall, and Pig Latin. We use concrete service examples to explain the imple-
mentation and application requirements in the cloud. We review core service models and access tech-
nologies. Cloud services provided by Google App Engine, Amazon Web Service, and Microsoft
Windows Azure are illustrated by example applications. In particular, we illustrate how-to program-
ming the GAE, AWS EC2, S3, EBS, and others. We review the open-source Eucalyptus, Nimbus,
and OpenNebula and the startup Manjrasoft Aneka system for cloud computing.

This chapter is authored by Geoffrey Fox and Albert Zomaya with partial contributions by
Rajkumar Buyya (Section 6.5.3) and Judy Qiu (Section 6.2.6). Special technical assistances are
from Gregor von Laszewski, Javier Diaz, Archit Kulshrestha, Andrew Younge, Reza Moravaeji,
Javid Teheri, and Renato Figueiredo. The final manuscript was edited by Kai Hwang.
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SUMMARY

This chapter covers design principles, architectures, and enabling technologies of cloud platforms.
We begin with a discussion of data-center design and management. Next, we present design choices
for building compute and storage cloud platforms. We cover layered platform structure, virtualiza-
tion support, resource provisioning, and infrastructure management. Several public cloud platforms
are also studied, including Amazon Web Services, the Google App Engine, and Microsoft Azure.
Subsequent chapters are devoted to service-oriented architectures, cloud computing paradigms, pro-
gramming environments, and future cloud extensions.

CLOUD COMPUTING AND SERVICE MODELS

Over the past two decades, the world economy has rapidly moved from manufacturing to more
service-oriented. In 2010, 80 percent of the U.S. economy was driven by the service industry, leav-
ing only 15 percent in manufacturing and 5 percent in agriculture and other areas. Cloud computing
benefits the service industry most and advances business computing with a new paradigm. In 2009,
the global cloud service marketplace reached $17.4 billion. IDC predicted in 2010 that the cloud-
based economy may increase to $44.2 billion by 2013. Developers of innovative cloud applications
no longer acquire large capital equipment in advance. They just rent the resources from some large
data centers that have been automated for this purpose.

In this and the next two chapters, we will study the cloud platform architecture, service models,
and programming environments. Users can access and deploy cloud applications from anywhere in
the world at very competitive costs. Virtualized cloud platforms are often built on top of large data
centers. With that in mind, we examine first the server cluster in a data center and its interconnec-
tion issues. In other words, clouds aim to power the next generation of data centers by architecting
them as virtual resources over automated hardware, databases, user interfaces, and application envir-
onments. In this sense, clouds grow out of the desire to build better data centers through automated
resource provisioning.

Public, Private, and Hybrid Clouds

The concept of cloud computing has evolved from cluster, grid, and utility computing. Cluster and
grid computing leverage the use of many computers in parallel to solve problems of any size. Utility
and Software as a Service (SaaS) provide computing resources as a service with the notion of pay per
use. Cloud computing leverages dynamic resources to deliver large numbers of services to end users.
Cloud computing is a high-throughput computing (HTC) paradigm whereby the infrastructure pro-
vides the services through a large data center or server farms. The cloud computing model enables
users to share access to resources from anywhere at any time through their connected devices.
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Recall the introduction in Chapter 1 in which we said that the cloud will free users to focus on
user application development and create business value by outsourcing job execution to cloud provi-
ders. In this scenario, the computations (programs) are sent to where the data is located, rather than
copying the data to millions of desktops as in the traditional approach. Cloud computing avoids
large data movement, resulting in much better network bandwidth utilization. Furthermore, machine
virtualization has enhanced resource utilization, increased application flexibility, and reduced the
total cost of using virtualized data-center resources.

The cloud offers significant benefit to IT companies by freeing them from the low-level task of
setting up the hardware (servers) and managing the system software. Cloud computing applies a vir-
tual platform with elastic resources put together by on-demand provisioning of hardware, software,
and data sets, dynamically. The main idea is to move desktop computing to a service-oriented plat-
form using server clusters and huge databases at data centers. Cloud computing leverages its low
cost and simplicity to both providers and users. According to Ian Foster [25], cloud computing
intends to leverage multitasking to achieve higher throughput by serving many heterogeneous appli-
cations, large or small, simultaneously.

4.1.1.1 Centralized versus Distributed Computing

Some people argue that cloud computing is centralized computing at data centers. Others claim that
cloud computing is the practice of distributed parallel computing over data-center resources. These
represent two opposite views of cloud computing. All computations in cloud applications are distributed
to servers in a data center. These are mainly virtfual machines (VMs) in virtual clusters created out of
data-center resources. In this sense, cloud platforms are systems distributed through virtualization.

As Figure 4.1 shows, both public clouds and private clouds are developed in the Internet. As many
clouds are generated by commmercial providers or by enterprises in a distributed manner, they will be
interconnected over the Internet to achieve scalable and efficient computing services. Commercial cloud
providers such as Amazon, Google, and Microsoft created their platforms to be distributed geographi-
cally. This distribution is partially attributed to fault tolerance, response latency reduction, and even
legal reasons. Intranet-based private clouds are linked to public clouds to get additional resources.
Nevertheless, users in Europe may not feel comfortable using clouds in the United States, and vice
versa, until extensive service-level agreements (SLAs) are developed between the two user communities.

4.1.1.2 Public Clouds

A public cloud is built over the Internet and can be accessed by any user who has paid for the service.
Public clouds are owned by service providers and are accessible through a subscription. The callout
box in top of Figure 4.1 shows the architecture of a typical public cloud. Many public clouds are
available, including Google App Engine (GAE), Amazon Web Services (AWS), Microsoft Azure,
IBM Blue Cloud, and Salesforce.com’s Force.com. The providers of the aforementioned clouds are
commercial providers that offer a publicly accessible remote interface for creating and managing VM
instances within their proprietary infrastructure. A public cloud delivers a selected set of business pro-
cesses. The application and infrastructure services are offered on a flexible price-per-use basis.

4.1.1.3 Private Clouds

A private cloud is built within the domain of an intranet owned by a single organization. Therefore,
it is client owned and managed, and its access is limited to the owning clients and their partners. Its
deployment was not meant to sell capacity over the Internet through publicly accessible interfaces.
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Public, private, and hybrid clouds illustrated by functional architecture and connectivity of representative
clouds available by 2011.

Private clouds give local users a flexible and agile private infrastructure to run service workloads
within their administrative domains. A private cloud is supposed to deliver more efficient and con-
venient cloud services. It may impact the cloud standardization, while retaining greater customiza-
tion and organizational control.

4.1.1.4 Hybrid Clouds

A hybrid cloud is built with both public and private clouds, as shown at the lower-left corner of
Figure 4.1. Private clouds can also support a hybrid cloud model by supplementing local infrastruc-
ture with computing capacity from an external public cloud. For example, the Research Compute
Cloud (RC2) is a private cloud, built by IBM, that interconnects the computing and IT resources at
eight IBM Research Centers scattered throughout the United States, Europe, and Asia. A hybrid
cloud provides access to clients, the partner network, and third parties. In summary, public clouds
promote standardization, preserve capital investment, and offer application flexibility. Private clouds
attempt to achieve customization and offer higher efficiency, resiliency, security, and privacy.
Hybrid clouds operate in the middle, with many compromises in terms of resource sharing.

4.1.1.5 Data-Center Networking Structure
The core of a cloud is the server cluster (or VM cluster). Cluster nodes are used as compute nodes.
A few control nodes are used to manage and monitor cloud activities. The scheduling of user jobs
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requires that you assign work to virtual clusters created for users. The gateway nodes provide the
access points of the service from the outside world. These gateway nodes can be also used for secur-
ity control of the entire cloud platform. In physical clusters and traditional grids, users expect static
demand of resources. Clouds are designed to handle fluctuating workloads, and thus demand variable
resources dynamically. Private clouds will satisfy this demand if properly designed and managed.

Data centers and supercomputers have some similarities as well as fundamental differences.
We discussed supercomputers in Chapter 2. In the case of data centers, scaling is a fundamental
requirement. Data-center server clusters are typically built with large number of servers, ranging
from thousands to millions of servers (nodes). For example, Microsoft has a data center in the
Chicago area that has 100,000 eight-core servers, housed in 50 containers. In supercomputers, a
separate data farm is used, while a data center uses disks on server nodes plus memory cache and
databases.

Data centers and supercomputers also differ in networking requirements, as illustrated in
Figure 4.2. Supercomputers use custom-designed high-bandwidth networks such as fat trees or 3D
torus networks (which we discussed in Chapter 2). Data-center networks are mostly IP-based
commodity networks, such as the 10 Gbps Ethernet network, which is optimized for Internet
access. Figure 4.2 shows a multilayer structure for accessing the Internet. The server racks are at
the bottom Layer 2, and they are connected through fast switches (S) as the hardware core. The
data center is connected to the Internet at Layer 3 with many access routers (ARs) and border
routers (BRs).

Internet

Data center
Layer 3

Key:
* BR=L3 border router
* AR=L3 access router
* S=L2 switch

l | * LB=Load balancer

« A=Rack of servers

T
A single layer 2 domain

FIGURE 4.2
Standard data-center networking for the cloud to access the Internet.

(Courtesy of Dennis Gannon, 2010 [26])
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An example of a private cloud is the one the U.S. National Aeronautics and Space Administra-
tion (NASA) is building to enable researchers to run climate models on remote systems it provides.
This can save users the capital expense of HPC machines at local sites. Furthermore, NASA can
build the complex weather models around its data centers, which is more cost-effective. Another
good example is the cloud built by the European Council for Nuclear Research (CERN). This is a
very big private cloud designed to distribute data, applications, and computing resources to thou-
sands of scientists around the world.

These cloud models demand different levels of performance, data protection, and security enfor-
cement. In this case, different SLAs may be applied to satisfy both providers and paid users. Cloud
computing exploits many existing technologies. For example, grid computing is the backbone of
cloud computing in that the grid has the same goals of resource sharing with better utilization of
research facilities. Grids are more focused on delivering storage and computing resources while
cloud computing aims to achieve economies of scale with abstracted services and resources.

4.1.1.6 Cloud Development Trends

Although most clouds built in 2010 are large public clouds, the authors believe private clouds will
grow much faster than public clouds in the future. Private clouds are easier to secure and more
trustworthy within a company or organization. Once private clouds become mature and better
secured, they could be open or converted to public clouds. Therefore, the boundary between public
and private clouds could be blurred in the future. Most likely, most future clouds will be hybrid in
nature.

For example, an e-mail application can run in the service-access nodes and provide the user
interface for outside users; the application can get the service from the internal cloud computing ser-
vices (e.g., the e-mail storage service). There are also some service nodes designed to support the
proper functioning of cloud computing clusters. These nodes are called runtime supporting service
nodes. For example, there might be distributed locking services for supporting specific applications.
Finally, it is possible that there will be some independent service nodes. Those nodes would provide
independent services for other nodes in the cluster. For example, a news service need geographical
information under service-access nodes.

With cost-effective performance as the key concept of clouds, we will consider the public cloud
in this chapter, unless otherwise specified. Many executable application codes are much smaller
than the web-scale data sets they process. Cloud computing avoids large data movement during
execution. This will result in less traffic on the Internet and better network utilization. Clouds also
alleviate the petascale I/O problem. Cloud performance and its Quality of Service (QoS) are yet to
be proven in more real-life applications. We will model the performance of cloud computing in
Chapter 9, along with data protection, security measures, service availability, fault tolerance, and
operating cost.

Cloud Ecosystem and Enabling Technologies

Cloud computing platforms differ from conventional computing platforms in many aspects. In this
section, we will identify their differences in computing paradigms and cost models applied. The tra-
ditional computing model is specified below by the process on the left, which involves buying the
hardware, acquiring the necessary system software, installing the system, testing the configuration,
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and executing the application code and management of resources. What is even worse is that this
cycle repeats itself in about every 18 months, meaning the machine we bought becomes obsolete
every 18 months.

The cloud computing paradigm is shown on the right. This computing model follows a pay-
as-you-go model. Therefore the cost is significantly reduced, because we simply rent computer
resources without buying the computer in advance. All hardware and software resources are leased
from the cloud provider without capital investment on the part of the users. Only the execution
phase costs some money. The experts at IBM have estimated that an 80 percent to 95 percent
saving results from cloud computing, compared with the conventional computing paradigm. This is
very much desired, especially for small businesses, which requires limited computing power and
thus avoid the purchase of expensive computers or servers repeatedly every few years.

Classical Computing Cloud Computing

(Repeat the following cycle every 18 months) (Pay as you go per each service provided)
Buy and own Subscribe

Hardware, system software, applications to meet ----

peak needs

Install, configure, test, verify, evaluate, manage Use (Save about 80-95% of the total cost)

Use (Finally)
---- $ - Pay for what you use
Pay $$$$$ (High cost) based on the QoS

For example, IBM has estimated that the worldwide cloud service market may reach $126 billion
by 2012, including components, infrastructure services, and business services. Internet clouds work
as service factories built around multiple data centers. To formalize the above cloud computing
model, we characterize the cloud cost model, the cloud ecosystems, and enabling technologies. These
topics help our readers understand the motivations behind cloud computing. The intention is to
remove the barriers of cloud computing

4.1.2.1 Cloud Design Objectives

Despite the controversy surrounding the replacement of desktop or deskside computing by centra-
lized computing and storage services at data centers or big IT companies, the cloud computing com-
munity has reached some consensus on what has to be done to make cloud computing universally
acceptable. The following list highlights six design objectives for cloud computing:

* Shifting computing from desktops to data centers Computer processing, storage, and software
delivery is shifted away from desktops and local servers and toward data centers over the
Internet.

* Service provisioning and cloud economics Providers supply cloud services by signing SLAs
with consumers and end users. The services must be efficient in terms of computing, storage,
and power consumption. Pricing is based on a pay-as-you-go policy.

* Scalability in performance The cloud platforms and software and infrastructure services must
be able to scale in performance as the number of users increases.
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* Data privacy protection Can you trust data centers to handle your private data and records?
This concern must be addressed to make clouds successful as trusted services.

* High quality of cloud services The QoS of cloud computing must be standardized to make
clouds interoperable among multiple providers.

* New standards and interfaces This refers to solving the data lock-in problem associated with
data centers or cloud providers. Universally accepted APIs and access protocols are needed to
provide high portability and flexibility of virtualized applications.

4.1.2.2 Cost Model

In traditional IT computing, users must acquire their own computer and peripheral equipment as
capital expenses. In addition, they have to face operational expenditures in operating and maintain-
ing the computer systems, including personnel and service costs. Figure 4.3(a) shows the addition
of variable operational costs on top of fixed capital investments in traditional IT. Note that the
fixed cost is the main cost, and that it could be reduced slightly as the number of users increases.
However, the operational costs may increase sharply with a larger number of users. Therefore, the
total cost escalates quickly with massive numbers of users. On the other hand, cloud computing
applies a pay-per-use business model, in which user jobs are outsourced to data centers. To use the
cloud, one has no up-front cost in hardware acquisitions. Only variable costs are experienced by
cloud users, as demonstrated in Figure 4.3(b).

Overall, cloud computing will reduce computing costs significantly for both small users and
large enterprises. Computing economics does show a big gap between traditional IT users and
cloud users. The savings in acquiring expensive computers up front releases a lot of burden for
startup companies. The fact that cloud users only pay for operational expenses and do not have to
invest in permanent equipment is especially attractive to massive numbers of small users. This is a
major driving force for cloud computing to become appealing to most enterprises and heavy compu-
ter users. In fact, any IT users whose capital expenses are under more pressure than their opera-
tional expenses should consider sending their overflow work to utility computing or cloud service

providers.
A A
Variable costs in
*2 operational expenses %
(@] O
Fixed cogts in capital Variable costs in
equipment .
o operational expenses
Number of users " Number of users "
(a) Traditional IT cost model (b) Cloud computing cost model
FIGURE 4.3

Computing economics between traditional IT users and cloud users.
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4.1.2.3 Cloud Ecosystems

With the emergence of various Internet clouds, an ecosystem of providers, users, and technologies
has appeared. This ecosystem has evolved around public clouds. Strong interest is growing in open
source cloud computing tools that let organizations build their own IaaS clouds using their internal
infrastructures. Private and hybrid clouds are not exclusive, since public clouds are involved in both
cloud types. A private/hybrid cloud allows remote access to its resources over the Internet using
remote web service interfaces such as that used in Amazon EC2.

An ecosystem was suggested by Sotomayor, et al. [39] (Figure 4.4) for building private clouds.
They suggested four levels of ecosystem development in a private cloud. At the user end, consu-
mers demand a flexible platform. At the cloud management level, the cloud manager provides vir-
tualized resources over an laaS platform. At the virtual infrastructure (VI) management level, the
manager allocates VMs over multiple server clusters. Finally, at the VM management level, the VM
managers handle VMs installed on individual host machines. An ecosystem of cloud tools attempts
to span both cloud management and VI management. Integrating these two layers is complicated by
the lack of open and standard interfaces between them.

An increasing number of startup companies are now basing their IT strategies on cloud
resources, spending little or no capital to manage their own IT infrastructures. We desire a flexible
and open architecture that enables organizations to build private/hybrid clouds. VI management is
aimed at this goal. Example VI tools include oVirt (https://fedorahosted.org/ovirt/), vSphere/4

Platform-as-a-

Individual users  Other clouds . Cloud consumers
service

Need raw Need to outsource| Need resources on which to instantiate
infrastructure excess workloads | services (web, databases, and so on) for their users

(a)

Cloud interfaces (Amazon EC2WS,

Nimbus WSRF, ElasticHosts REST) Cloud toolkits currently do not use

virtual infrastructure managers and,

Globus instead, manage VMs themselves Cloud
directly, without providing the full set management
of features of VI managers

Amazon EC2 Eucalyptus
and other nimbus
public clouds

(b)

OpenNebula UE VR VI management
and others
Xen KVM VM managers
(d)

(c)

FIGURE 4.4

Cloud ecosystem for building private clouds: (a) Consumers demand a flexible platform; (b) Cloud manager
provides virtualized resources over an laaS platform; (c) VI manager allocates VMs; (d) VM managers handle
VMs installed on servers.

(Courtesy of Sotomayor, et al. © IEEE [68])
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(www.vmware.com/products/vsphere/) from VMWare, and VM Orchestrator (www.platform.com/
Products/platform-vm-orchestrator) from Platfom Computing.

These tools support dynamic placement and VM management on a pool of physical resources, auto-
matic load balancing, server consolidation, and dynamic infrastructure resizing and partitioning. In addi-
tion to public clouds such as Amazon EC2, Eucalyptus and Globus Nimbus are open source tools for
virtualization of cloud infrastructure. To access these cloud management tools, one can use the Amazon
EC2WS, Nimbus WSRF, and ElasticHost REST cloud interfaces. For VI management, OpenNebula and
VMware vSphere can be used to manage all VM generation including Xen, KVM, and VMware tools.

4.1.2.4 Surge of Private Clouds

In general, private clouds leverage existing IT infrastructure and personnel within an enterprise
or government organization. Both public and private clouds handle workloads dynamically. However,
public clouds should be designed to handle workloads without communication dependency. Both
types of clouds distribute data and VM resources. However, private clouds can balance workloads
to exploit IT resources more efficiently within the same intranet. Private clouds can also provide pre-
production testing and enforce data privacy and security policies more effectively. In a public cloud,
the surge workload is often offloaded. The major advantage of public clouds lies in the avoidance of
capital expenses by users in IT investments in hardware, software, and personnel.

Most companies start with virtualization of their computing machines to lower the operating
costs. Companies such as Microsoft, Oracle, and SAP may want to establish policy-driven manage-
ment of their computing resources, mainly to improve QoS to their employees and customers. By
integrating virtualized data centers and company IT resources, they offer IT as a service to improve
the agility of their company operations. This approach avoids replacement of a large number of
servers every 18 months. As a result, these companies can upgrade their IT efficiency significantly.

Infrastructure-as-a-Service (laaS)

Cloud computing delivers infrastructure, platform, and software (application) as services, which are
made available as subscription-based services in a pay-as-you-go model to consumers. The services
provided over the cloud can be generally categorized into three different service models: namely
IaaS, Platform as a Service (PaaS), and Software as a Service (SaaS). These form the three pillars on
top of which cloud computing solutions are delivered to end users. All three models allow users to
access services over the Internet, relying entirely on the infrastructures of cloud service providers.

These models are offered based on various SLAs between providers and users. In a broad sense,
the SLA for cloud computing is addressed in terms of service availability, performance, and data
protection and security. Figure 4.5 illustrates three cloud models at different service levels of the
cloud. SaaS is applied at the application end using special interfaces by users or clients. At the
PaaS layer, the cloud platform must perform billing services and handle job queuing, launching,
and monitoring services. At the bottom layer of the IaaS services, databases, compute instances, the
file system, and storage must be provisioned to satisfy user demands.

4.1.3.1 Infrastructure as a Service
This model allows users to use virtualized IT resources for computing, storage, and networking. In
short, the service is performed by rented cloud infrastructure. The user can deploy and run his


http://www.vmware.com/products/vsphere/
http://www.platform.com/Products/platform-vm-orchestrator
http://www.platform.com/Products/platform-vm-orchestrator

4.1 Cloud Computing and Service Models 201

o SaaS

e
o

Billing
service

Billing Q

Status DB [ Distributed
. Hl file system

FIGURE 4.5
The laaS, PaaS, and SaaS cloud service models at different service levels..

(Courtesy of J. Suh and S. Kang, USC)

applications over his chosen OS environment. The user does not manage or control the underlying
cloud infrastructure, but has control over the OS, storage, deployed applications, and possibly select
networking components. This IaaS model encompasses storage as a service, compute instances as
a service, and communication as a service. The Virtual Private Cloud (VPC) in Example 4.1 shows
how to provide Amazon EC2 clusters and S3 storage to multiple users. Many startup cloud provi-
ders have appeared in recent years. GoGrid, FlexiScale, and Aneka are good examples. Table 4.1
summarizes the IaaS offerings by five public cloud providers. Interested readers can visit the
companies’ web sites for updated information. More examples can be also found in two recent
cloud books [10,18].

=
Example 4.1 Amazon VPC for Multiple Tenants
A user can use a private facility for basic computations. When he must meet a specific workload require-
ment, he can use the Amazon VPC to provide additional EC2 instances or more storage (S3) to handle
urgent applications. Figure 4.6 shows VPC which is essentially a private cloud designed to address the priv-
acy concerns of public clouds that hamper their application when sensitive data and software are involved.
Amazon EC2 provides the following services: resources from multiple data centers globally distributed,
CL1, web services (SOAP and Query), web-based console user interfaces, access to VM instances via
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Table 4.1 Public Cloud Offerings of laaS [10,18]
API and Access Hypervisor,
Cloud Name VM Instance Capacity Tools Guest OS
Amazon EC2 Each instance has 1-20 EC2 processors, CLI or web Service Xen, Linux,
1.7-15 GB of memory, and 160-1.69 TB of (WS) portal Windows
storage.
GoGrid Each instance has 1-6 CPUs, 0.5-8 GB of REST, Java, PHP, Xen, Linux,
memory, and 30-480 GB of storage. Python, Ruby Windows
Rackspace Each instance has a four-core CPU, REST, Python, PHP, Xen, Linux
Cloud 0.25-16 GB of memory, and 10-620 GB of Java, C#, .NET
storage.
FlexiScale in Each instance has 1-4 CPUs, 0.5-16 GB of web console Xen, Linux,
the UK memory, and 20-270 GB of storage. Windows
Joyent Cloud Each instance has up to eight CPUSs, No specific API, OS-level
0.25-32 GB of memory, and 30-480 GB SSH, Virtual/Min virtualization,
of storage. OpenSolaris

Customer’s isolated
AWS resources

Subnets

gateway

Amazon
web services
cloud

Secure VPN
connection over
the Internet

~__ Customer’s
network

FIGURE 4.6
Amazon VPC (virtual private cloud).

(Courtesy of VMWare, http://aws.amazon.com/vpc/)
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SSH and Windows, 99.5 percent available agreements, per-hour pricing, Linux and Windows OSes, and
automatic scaling and load balancing. We will illustrate the use of EC2 in more detail in Chapter 6. VPC
allows the user to isolate provisioned AWS processors, memory, and storage from interference by other
users. Both auto-scaling and elastic load balancing services can support related demands. Auto-scaling
enables users to automatically scale their VM instance capacity up or down. With auto-scaling, one
can ensure that a sufficient number of Amazon EC2 instances are provisioned to meet desired
performance. Or one can scale down the VM instance capacity to reduce costs, when the workload
is reduced.

Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)

In this section, we will introduce the PaaS and SaaS models for cloud computing. SaaS is often
built on top of the PaaS, which is in turn built on top of the IaaS.

4.1.4.1 Platform as a Service (PaaS)

To be able to develop, deploy, and manage the execution of applications using provisioned resources
demands a cloud platform with the proper software environment. Such a platform includes operating
system and runtime library support. This has triggered the creation of the PaaS model to enable users
to develop and deploy their user applications. Table 4.2 highlights cloud platform services offered by
five PaaS services. Further details of some of these PaaS offerings are provided in Section 4.4 and in
Chapter 6. Some illustrative examples and case studies can be found in [10,18].

The platform cloud is an integrated computer system consisting of both hardware and software
infrastructure. The user application can be developed on this virtualized cloud platform using some pro-
gramming languages and software tools supported by the provider (e.g., Java, Python, .NET). The user
does not manage the underlying cloud infrastructure. The cloud provider supports user application
development and testing on a well-defined service platform. This PaaS model enables a collaborated

Table 4.2 Five Public Cloud Offerings of PaaS [10,18]

Languages and Programming Models Target Applications
Cloud Name Developer Tools Supported by Provider and Storage Option
Google App Python, Java, and MapReduce, web Web applications and
Engine Eclipse-based IDE programming on demand BigTable storage
Salesforce.com’s Apex, Eclipse-based Workflow, Excel-like formula, Business applications
Force.com IDE, web-based Wizard Web programming on demand such as CRM
Microsoft Azure .NET, Azure tools for Unrestricted model Enterprise and web

MS Visual Studio applications
Amazon Elastic Hive, Pig, Cascading, MapReduce Data processing and
MapReduce Java, Ruby, Perl, e-commerce

Python, PHP, R, C++
Aneka .NET, stand-alone SDK Threads, task, MapReduce .NET enterprise

applications, HPC
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software development platform for users from different parts of the world. This model also encourages
third parties to provide software management, integration, and service monitoring solutions.

=
Example 4.2 Google App Engine for PaaS Applications
As web applications are running on Google’s server clusters, they share the same capability with many
other users. The applications have features such as automatic scaling and load balancing which
are very convenient while building web applications. The distributed scheduler mechanism can also
schedule tasks for triggering events at specified times and regular intervals. Figure 4.7 shows the
operational model for GAE. To develop applications using GAE, a development environment must be
provided.

Google provides a fully featured local development environment that simulates GAE on the develo-
per's computer. All the functions and application logic can be implemented locally which is quite simi-
lar to traditional software development. The coding and debugging stages can be performed locally as

Web application
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FIGURE 4.7
Google App Engine platform for PaaS operations.

(Courtesy of Yangting Wu, USC)
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well. After these steps are finished, the SDK provided provides a tool for uploading the user’s applica-
tion to Google's infrastructure where the applications are actually deployed. Many additional third-party
capabilities, including software management, integration, and service monitoring solutions, are also
provided.

Here are some useful links when logging on to the GAE system:

Google App Engine home page: http://code.google.com/appengine/

Sign up for an account or use your Gmail account name: https://appengine.google.com/
Download GAE SDK: http://code.google.com/appengine/downloads.html

Python Getting Started Guide: http://code.google.com/appengine/docs/python/gettingstarted/
Java Getting Started Guide: http://code.google.com/appengine/docs/java/gettingstarted/
Quota page for free service: http://code.google.com/appengine/docs/quotas.html#Resources
Billing page if you go over the quota: http://code.google.com/appengine/docs/billing.
html#Billable_Quota_Unit_Cost

4.1.4.2 Software as a Service (SaaS)

This refers to browser-initiated application software over thousands of cloud customers. Services
and tools offered by PaaS are utilized in construction of applications and management of their
deployment on resources offered by IaaS providers. The SaaS model provides software applications
as a service. As a result, on the customer side, there is no upfront investment in servers or software
licensing. On the provider side, costs are kept rather low, compared with conventional hosting of
user applications. Customer data is stored in the cloud that is either vendor proprietary or publicly
hosted to support PaaS and IaaS.

The best examples of SaaS services include Google Gmail and docs, Microsoft SharePoint, and
the CRM software from Salesforce.com. They are all very successful in promoting their own busi-
ness or are used by thousands of small businesses in their day-to-day operations. Providers such as
Google and Microsoft offer integrated IaaS and PaaS services, whereas others such as Amazon and
GoGrid offer pure IaaS services and expect third-party PaaS providers such as Manjrasoft to offer
application development and deployment services on top of their infrastructure services. To identify
important cloud applications in enterprises, the success stories of three real-life cloud applications
are presented in Example 4.3 for HTC, news media, and business transactions. The benefits of
using cloud services are evident in these SaaS applications.

Example 4.3 Three Success Stories on SaaS Applications

1. To discover new drugs through DNA sequence analysis, Eli Lily Company has used Amazon’s AWS
platform with provisioned server and storage clusters to conduct high-performance biological sequence
analysis without using an expensive supercomputer. The benefit of this laaS application is reduced
drug deployment time with much lower costs.

2. The New York Times has applied Amazon’s EC2 and S3 services to retrieve useful pictorial information
quickly from millions of archival articles and newspapers. The New York Times has significantly
reduced the time and cost in getting the job done.
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3. Pitney Bowes, an e-commerce company, offers clients the opportunity to perform B2B transactions
using the Microsoft Azure platform, along with .NET and SQL services. These offerings have signifi-
cantly increased the company’s client base.

4.1.4.3 Mashup of Cloud Services

At the time of this writing, public clouds are in use by a growing number of users. Due to the lack
of trust in leaking sensitive data in the business world, more and more enterprises, organizations,
and communities are developing private clouds that demand deep customization. An enterprise
cloud is used by multiple users within an organization. Each user may build some strategic applica-
tions on the cloud, and demands customized partitioning of the data, logic, and database in the
metadata representation. More private clouds may appear in the future.

Based on a 2010 Google search survey, interest in grid computing is declining rapidly. Cloud
mashups have resulted from the need to use multiple clouds simultaneously or in sequence. For
example, an industrial supply chain may involve the use of different cloud resources or services at
different stages of the chain. Some public repository provides thousands of service APIs and mash-
ups for web commerce services. Popular APIs are provided by Google Maps, Twitter, YouTube,
Amazon eCommerce, Salesforce.com, etc.

DATA-CENTER DESIGN AND INTERCONNECTION NETWORKS

A data center is often built with a large number of servers through a huge interconnection network.
In this section, we will study the design of large-scale data centers and small modular data centers
that can be housed in a 40-ft truck container. Then we will take a look at interconnection of modu-
lar data centers and their management issues and solutions.

Warehouse-Scale Data-Center Design

Dennis Gannon claims: “The cloud is built on massive datacenters” [26]. Figure 4.8 shows a data
center that is as large as a shopping mall (11 times the size of a football field) under one roof. Such a
data center can house 400,000 to 1 million servers. The data centers are built economics of scale—
meaning lower unit cost for larger data centers. A small data center could have 1,000 servers. The
larger the data center, the lower the operational cost. The approximate monthly cost to operate a huge
400-server data center is estimated by network cost $13/Mbps; storage cost $0.4/GB; and administra-
tion costs. These unit costs are greater than those of a 1,000-server data center. The network cost to
operate a small data center is about seven times greater and the storage cost is 5.7 times greater.
Microsoft has about 100 data centers, large or small, which are distributed around the globe.

4.2.1.1 Data-Center Construction Requirements

Most data centers are built with commercially available components. An off-the-shelf server consists
of a number of processor sockets, each with a multicore CPU and its internal cache hierarchy, local
shared and coherent DRAM, and a number of directly attached disk drives. The DRAM and disk
resources within the rack are accessible through first-level rack switches and all resources in all
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FIGURE 4.8

A huge data center that is 11 times the size of a football field, housing 400,000 to 1 million servers.
(Courtesy of Dennis Gannon [26])

racks are accessible via a cluster-level switch. Consider a data center built with 2,000 servers, each
with 8 GB of DRAM and four 1 TB disk drives. Each group of 40 servers is connected through a
1 Gbps link to a rack-level switch that has an additional eight 1 Gbps ports used for connecting the
rack to the cluster-level switch.

It was estimated [9] that the bandwidth available from local disks is 200 MB/s, whereas the band-
width from off-rack disks is 25 MB/s via shared rack uplinks. The total disk storage in the cluster is
almost 10 million times larger than local DRAM. A large application must deal with large discrepancies
in latency, bandwidth, and capacity. In a very large-scale data center, components are relatively cheaper.
The components used in data centers are very different from those in building supercomputer systems.

With a scale of thousands of servers, concurrent failure, either hardware failure or software
failure, of 1 percent of nodes is common. Many failures can happen in hardware; for example, CPU
failure, disk I/O failure, and network failure. It is even quite possible that the whole data center
does not work in the case of a power crash. Also, some failures are brought on by software. The
service and data should not be lost in a failure situation. Reliability can be achieved by redundant
hardware. The software must keep multiple copies of data in different locations and keep the data
accessible while facing hardware or software errors.

4.2.1.2 Cooling System of a Data-Center Room

Figure 4.9 shows the layout and cooling facility of a warehouse in a data center. The data-center
room has raised floors for hiding cables, power lines, and cooling supplies. The cooling system is
somewhat simpler than the power system. The raised floor has a steel grid resting on stanchions
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FIGURE 4.9
The cooling system in a raised-floor data center with hot-cold air circulation supporting water heat exchange
facilities.

(Courtesy of DLB Associates, D. Dyer [22])

about 2—4 ft above the concrete floor. The under-floor area is often used to route power cables to
racks, but its primary use is to distribute cool air to the server rack. The CRAC (computer room air
conditioning) unit pressurizes the raised floor plenum by blowing cold air into the plenum.

The cold air escapes from the plenum through perforated tiles that are placed in front of server
racks. Racks are arranged in long aisles that alternate between cold aisles and hot aisles to avoid
mixing hot and cold air. The hot air produced by the servers circulates back to the intakes of the
CRAC units that cool it and then exhaust the cool air into the raised floor plenum again. Typically,
the incoming coolant is at 12-14°C and the warm coolant returns to a chiller. Newer data centers
often insert a cooling tower to pre-cool the condenser water loop fluid. Water-based free cooling
uses cooling towers to dissipate heat. The cooling towers use a separate cooling loop in which
water absorbs the coolant’s heat in a heat exchanger.

Data-Center Interconnection Networks

A critical core design of a data center is the interconnection network among all servers in the data-
center cluster. This network design must meet five special requirements: low latency, high band-
width, low cost, message-passing interface (MPI) communication support, and fault tolerance. The
design of an inter-server network must satisfy both point-to-point and collective communication
patterns among all server nodes. Specific design considerations are given in the following sections.

4.2.2.1 Application Traffic Support
The network topology should support all MPI communication patterns. Both point-to-point and col-
lective MPI communications must be supported. The network should have high bisection bandwidth
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to meet this requirement. For example, one-to-many communications are used for supporting distrib-
uted file access. One can use one or a few servers as metadata master servers which need to com-
municate with slave server nodes in the cluster. To support the MapReduce programming paradigm,
the network must be designed to perform the map and reduce functions (to be treated in Chapter 7)
at a high speed. In other words, the underlying network structure should support various network
traffic patterns demanded by user applications.

4.2.2.2 Network Expandability

The interconnection network should be expandable. With thousands or even hundreds of thousands
of server nodes, the cluster network interconnection should be allowed to expand once more servers
are added to the data center. The network topology should be restructured while facing such
expected growth in the future. Also, the network should be designed to support load balancing and
data movement among the servers. None of the links should become a bottleneck that slows down
application performance. The topology of the interconnection should avoid such bottlenecks.

The fat-tree and crossbar networks studied in Chapter 2 could be implemented with low-cost
Ethernet switches. However, the design could be very challenging when the number of servers
increases sharply. The most critical issue regarding expandability is support of modular network
growth for building data-center containers, as discussed in Section 4.2.3. One single data-center
container contains hundreds of servers and is considered to be the building block of large-scale data
centers. The network interconnection among many containers will be explained in Section 4.2.4.
Cluster networks need to be designed for data-center containers. Cable connections are then needed
among multiple data-center containers.

Data centers are not built by piling up servers in multiple racks today. Instead, data-center owners
buy server containers while each container contains several hundred or even thousands of server nodes.
The owners can just plug in the power supply, outside connection link, and cooling water, and the whole
system will just work. This is quite efficient and reduces the cost of purchasing and maintaining servers.
One approach is to establish the connection backbone first and then extend the backbone links to reach
the end servers. One can also connect multiple containers through external switching and cabling.

4.2.2.3 Fault Tolerance and Graceful Degradation

The interconnection network should provide some mechanism to tolerate link or switch failures. In
addition, multiple paths should be established between any two server nodes in a data center. Fault
tolerance of servers is achieved by replicating data and computing among redundant servers. Similar
redundancy technology should apply to the network structure. Both software and hardware network
redundancy apply to cope with potential failures. One the software side, the software layer should
be aware of network failures. Packet forwarding should avoid using broken links. The network
support software drivers should handle this transparently without affecting cloud operations.

In case of failures, the network structure should degrade gracefully amid limited node failures.
Hot-swappable components are desired. There should be no critical paths or critical points which may
become a single point of failure that pulls down the entire system. Most design innovations are in the
topology structure of the network. The network structure is often divided into two layers. The lower
layer is close to the end servers, and the upper layer establishes the backbone connections among the
server groups or sub-clusters. This hierarchical interconnection approach appeals to building data
centers with modular containers.
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4.2.2.4 Switch-centric Data-Center Design

At the time of this writing, there are two approaches to building data-center-scale networks: One is switch-
centric and the other is server-centric. In a switch-centric network, the switches are used to connect the
server nodes. The switch-centric design does not affect the server side. No modifications to the servers are
needed. The server-centric design does modify the operating system running on the servers. Special
drivers are designed for relaying the traffic. Switches still have to be organized to achieve the connections.

=
Example 4.4 A Fat-Tree Interconnection Network for Data Centers

Figure 4.10 shows a fat-tree switch network design for data-center construction. The fat-tree topology is
applied to interconnect the server nodes. The topology is organized into two layers. Server nodes are in the
bottom layer, and edge switches are used to connect the nodes in the bottom layer. The upper layer
aggregates the lower-layer edge switches. A group of aggregation switches, edge switches, and their leaf
nodes form a pod. Core switches provide paths among different pods. The fat-tree structure provides multi-
ple paths between any two server nodes. This provides fault-tolerant capability with an alternate path in
case of some isolated link failures.

The failure of an aggregation switch and core switch will not affect the connectivity of the whole net-
work. The failure of any edge switch can only affect a small number of end server nodes. The extra
switches in a pod provide higher bandwidth to support cloud applications in massive data movement. The
building blocks used are the low-cost Ethernet switches. This reduces the cost quite a bit. The routing
table provides extra routing paths in case of failure. The routing algorithms are built inside the switches.
The end server nodes in the data center are not affected during a switch failure, as long as the alternate
routing path does not fail at the same time.
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FIGURE 4.10
A fat-tree interconnection topology for scalable data-center construction.

(Courtesy of M. Al-Fares, et al. [2])
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Modular Data Center in Shipping Containers

A modern data center is structured as a shipyard of server clusters housed in truck-towed containers.
Figure 4.11 shows the housing of multiple sever racks in a truck-towed container in the SGI ICE
Cube modular data center. Inside the container, hundreds of blade servers are housed in racks sur-
rounding the container walls. An array of fans forces the heated air generated by the server racks to
go through a heat exchanger, which cools the air for the next rack (detail in callout) on a continu-
ous loop. The SGI ICE Cube container can house 46,080 processing cores or 30 PB of storage per
container.

Large-scale data center built with modular containers appear as a big shipping yard of container
trucks. This container-based data center was motivated by demand for lower power consumption,
higher computer density, and mobility to relocate data centers to better locations with lower electricity
costs, better cooling water supplies, and cheaper housing for maintenance engineers. Sophisticated
cooling technology enables up to 80% reduction in cooling costs compared with traditional warehouse
data centers. Both chilled air circulation and cold water are flowing through the heat exchange pipes
to keep the server racks cool and easy to repair.

Data centers usually are built at a site where leases and utilities for electricity are cheaper,
and cooling is more efficient. Both warehouse-scale and modular data centers in containers are
needed. In fact, the modular truck containers can be used to put together a large-scale data center
like a container shipping yard. In addition to location selection and power savings in data-center
operations, one must consider data integrity, server monitoring, and security management in data
centers. These problems are easier to handle if the data center is centralized in a single large
building.

4.2.3.1 Container Data-Center Construction

The data-center module is housed in a truck-towable container. The modular container design includes
the network, computer, storage, and cooling gear. One needs to increase cooling efficiency by
varying the water and airflow with better airflow management. Another concern is to meet seasonal
load requirements. The construction of a container-based data center may start with one system (ser-
ver), then move to a rack system design, and finally to a container system. This staged development
may take different amounts of time and demand increasing costs. Building a rack of 40 servers may
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FIGURE 4.11

A modular data center built in a truck-towed ICE Cube container, that can be cooled by chilled air circulation
with cold-water heat exchanges.

(Courtesy of SGI, Inc., http://www.sgi.com/icecube)
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take half a day. Extending this to a whole container system with multiple racks for 1,000 servers
requires the layout of the floor space with power, networking, cooling, and complete testing.

The container must be designed to be weatherproof and easy to transport. Modular data-center
construction and testing may take a few days to complete if all components are available and power
and water supplies are handy. The modular data-center approach supports many cloud service appli-
cations. For example, the health care industry will benefit by installing a data center at all clinic
sites. However, how to exchange information with the central database and maintain periodic con-
sistency becomes a rather challenging design issue in a hierarchically structured data center. The
security of collocation cloud services may involve multiple data centers.

Interconnection of Modular Data Centers

Container-based data-center modules are meant for construction of even larger data centers using a
farm of container modules. Some proposed designs of container modules are presented in this sec-
tion. Their interconnections are shown for building scalable data centers. The following example is
a server-centric design of the data-center module.

L
Example 4.5 A Server-Centric Network for a Modular Data Center

Guo, et al. [30] have developed a server-centric BCube network (Figure 4.12) for interconnecting modular
data centers. The servers are represented by circles, and switches by rectangles. The BCube provides a
layered structure. The bottom layer contains all the server nodes and they form Level O. Level 1 switches
form the top layer of BCubeg. BCube is a recursively constructed structure. The BCubeg consists of n
servers connecting to an n-port switch. The BCubey (k > 1) is structured from n BCube,_; with n* n-port
switches. The example of BCube; is illustrated in Figure 4.12, where the connection rule is that the i-th
server in the j-th BCubeg connects to the j-th port of the i~th Level 1 switch. The servers in the BCube
have multiple ports attached. This allows extra devices to be used in the server.

Level 1

FIGURE 4.12

BCube, a high-performance, server-centric network for building modular data centers.
(Courtesy of C. Guo, et al. [30])
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The BCube provides multiple paths between any two nodes. Multiple paths provide extra bandwidth to
support communication patterns in different cloud applications. The BCube provides a kernel module in
the server OS to perform routing operations. The kernel module supports packet forwarding while the
incoming packets are not destined to the current node. Such modification of the kernel will not influence
the upper layer applications. Thus, the cloud application can still run on top of the BCube network
structure without any modification.

4.2.4.1 Inter-Module Connection Networks

The BCube is commonly used inside a server container. The containers are considered the building
blocks for data centers. Thus, despite the design of the inner container network, one needs another
level of networking among multiple containers. In Figure 4.13, Wu, et al. [82] have proposed a net-
work topology for intercontainer connection using the aforementioned BCube network as building
blocks. The proposed network was named MDCube (for Modularized Datacenter Cube). This net-
work connects multiple BCube containers by using high-speed switches in the BCube. Similarly,
the MDCube is constructed by shuffling networks with multiple containers. Figure 4.13 shows how
a 2D MDCube is constructed from nine BCube; containers.

The architecture builds a virtual hypercube at the container level, in addition to the cube structure
inside the container (BCube). With the server container built with the BCube network, the MDCube
is used to build a large-scale data center for supporting cloud application communication patterns.
Readers are referred to the article at [45] for detailed implementation and simulation results of this
interconnection network over multiple modular data centers built in containers. In fact, there are
many other ways to use MDCube to build the network. Essentially, this network architecture builds a
virtual hypercube at the container level, in addition to the cube structure inside the container
(BCube). With the server container built with the BCube network, the MDCube is used to build a
large-scale data center for supporting cloud application communication patterns [82].

Data-Center Management Issues

Here are basic requirements for managing the resources of a data center. These suggestions have
resulted from the design and operational experiences of many data centers in the IT and service
industries.

* Making common users happy The data center should be designed to provide quality service to
the majority of users for at least 30 years.

* Controlled information flow Information flow should be streamlined. Sustained services and
high availability (HA) are the primary goals.

* Multiuser manageability The system must be managed to support all functions of a data center,
including traffic flow, database updating, and server maintenance.

* Scalability to prepare for database growth The system should allow growth as workload
increases. The storage, processing, I/0, power, and cooling subsystems should be scalable.

* Reliability in virtualized infrastructure Failover, fault tolerance, and VM live migration
should be integrated to enable recovery of critical applications from failures or disasters.
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FIGURE 4.13

A 2D MDCube constructed from nine BCube containers.

(Courtesy of Wu, et al. [82])

Low cost to both users and providers The cost to users and providers of the cloud system
built over the data centers should be reduced, including all operational costs.

Security enforcement and data protection Data privacy and security defense mechanisms must
be deployed to protect the data center against network attacks and system interrupts and to
maintain data integrity from user abuses or network attacks.

Green information technology Saving power consumption and upgrading energy efficiency are
in high demand when designing and operating current and future data centers.
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4.2.5.1 Marketplaces in Cloud Computing Services

Container-based data-center implementation can be done more efficiently with factory racking,
stacking, and packing. One should avoid layers of packaging at the customer site. However, the
data centers are still custom-crafted rather than prefab units. The modular approach is more space-
efficient with power densities in excess of 1250 W/sq ft. Rooftop or parking lot installation is
acceptable. One should leave sufficient redundancy to allow upgrades over time.

ARCHITECTURAL DESIGN OF COMPUTE AND STORAGE CLOUDS

This section presents basic cloud design principles. We start with basic cloud architecture to process
massive amounts of data with a high degree of parallelism. Then we study virtualization support,
resource provisioning, infrastructure management, and performance modeling.

A Generic Cloud Architecture Design

An Internet cloud is envisioned as a public cluster of servers provisioned on demand to perform
collective web services or distributed applications using data-center resources. In this section, we
will discuss cloud design objectives and then present a basic cloud architecture design.

4.3.1.1 Cloud Platform Design Goals

Scalability, virtualization, efficiency, and reliability are four major design goals of a cloud
computing platform. Clouds support Web 2.0 applications. Cloud management receives the user
request, finds the correct resources, and then calls the provisioning services which invoke the
resources in the cloud. The cloud management software needs to support both physical and vir-
tual machines. Security in shared resources and shared access of data centers also pose another
design challenge.

The platform needs to establish a very large-scale HPC infrastructure. The hardware and
software systems are combined to make it easy and efficient to operate. System scalability can
benefit from cluster architecture. If one service takes a lot of processing power, storage capacity,
or network traffic, it is simple to add more servers and bandwidth. System reliability can benefit
from this architecture. Data can be put into multiple locations. For example, user e-mail can be
put in three disks which expand to different geographically separate data centers. In such a situa-
tion, even if one of the data centers crashes, the user data is still accessible. The scale of the
cloud architecture can be easily expanded by adding more servers and enlarging the network con-
nectivity accordingly.

4.3.1.2 Enabling Technologies for Clouds

The key driving forces behind cloud computing are the ubiquity of broadband and wireless
networking, falling storage costs, and progressive improvements in Internet computing software.
Cloud users are able to demand more capacity at peak demand, reduce costs, experiment with new
services, and remove unneeded capacity, whereas service providers can increase system utilization
via multiplexing, virtualization, and dynamic resource provisioning. Clouds are enabled by the
progress in hardware, software, and networking technologies summarized in Table 4.3.
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Table 4.3 Cloud-Enabling Technologies in Hardware, Software, and Networking

Technology Requirements and Benefits

Fast platform deployment Fast, efficient, and flexible deployment of cloud resources to provide
dynamic computing environment to users

Virtual clusters on demand Virtualized cluster of VMs provisioned to satisfy user demand and virtual
cluster reconfigured as workload changes

Multitenant techniques Saa$S for distributing software to a large number of users for their
simultaneous use and resource sharing if so desired

Massive data processing Internet search and web services which often require massive data
processing, especially to support personalized services

Web-scale communication Support for e-commerce, distance education, telemedicine, social
networking, digital government, and digital entertainment applications

Distributed storage Large-scale storage of personal records and public archive information
which demands distributed storage over the clouds

Licensing and billing services License management and billing services which greatly benefit all types
of cloud services in utility computing

These technologies play instrumental roles in making cloud computing a reality. Most of these
technologies are mature today to meet increasing demand. In the hardware area, the rapid progress
in multicore CPUs, memory chips, and disk arrays has made it possible to build faster data centers
with huge amounts of storage space. Resource virtualization enables rapid cloud deployment and
disaster recovery. Service-oriented architecture (SOA) also plays a vital role.

Progress in providing SaaS, Web 2.0 standards, and Internet performance have all contributed to
the emergence of cloud services. Today’s clouds are designed to serve a large number of tenants
over massive volumes of data. The availability of large-scale, distributed storage systems is the
foundation of today’s data centers. Of course, cloud computing is greatly benefitted by the progress
made in license management and automatic billing techniques in recent years.

4.3.1.3 A Generic Cloud Architecture

Figure 4.14 shows a security-aware cloud architecture. The Internet cloud is envisioned as a
massive cluster of servers. These servers are provisioned on demand to perform collective web
services or distributed applications using data-center resources. The cloud platform is formed
dynamically by provisioning or deprovisioning servers, software, and database resources. Servers in
the cloud can be physical machines or VMs. User interfaces are applied to request services. The
provisioning tool carves out the cloud system to deliver the requested service.

In addition to building the server cluster, the cloud platform demands distributed storage and
accompanying services. The cloud computing resources are built into the data centers, which are
typically owned and operated by a third-party provider. Consumers do not need to know the under-
lying technologies. In a cloud, software becomes a service. The cloud demands a high degree of
trust of massive amounts of data retrieved from large data centers. We need to build a framework
to process large-scale data stored in the storage system. This demands a distributed file system over
the database system. Other cloud resources are added into a cloud platform, including storage area
networks (SANs), database systems, firewalls, and security devices. Web service providers offer
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A security-aware cloud platform built with a virtual cluster of VMs, storage, and networking resources
over the data-center servers operated by providers.

(Courtesy of K. Hwang and D. Li, 2010 [36])

special APIs that enable developers to exploit Internet clouds. Monitoring and metering units are
used to track the usage and performance of provisioned resources.

The software infrastructure of a cloud platform must handle all resource management and do most of
the maintenance automatically. Software must detect the status of each node server joining and leaving,
and perform relevant tasks accordingly. Cloud computing providers, such as Google and Microsoft,
have built a large number of data centers all over the world. Each data center may have thousands of
servers. The location of the data center is chosen to reduce power and cooling costs. Thus, the data cen-
ters are often built around hydroelectric power. The cloud physical platform builder is more concerned
about the performance/price ratio and reliability issues than shear speed performance.

In general, private clouds are easier to manage, and public clouds are easier to access. The
trends in cloud development are that more and more clouds will be hybrid. This is because many
cloud applications must go beyond the boundary of an intranet. One must learn how to create a pri-
vate cloud and how to interact with public clouds in the open Internet. Security becomes a critical
issue in safeguarding the operation of all cloud types. We will study cloud security and privacy
issues at the end of this chapter.
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Layered Cloud Architectural Development

The architecture of a cloud is developed at three layers: infrastructure, platform, and application, as
demonstrated in Figure 4.15. These three development layers are implemented with virtualization
and standardization of hardware and software resources provisioned in the cloud. The services to
public, private, and hybrid clouds are conveyed to users through networking support over the Inter-
net and intranets involved. It is clear that the infrastructure layer is deployed first to support laaS
services. This infrastructure layer serves as the foundation for building the platform layer of the
cloud for supporting PaaS services. In turn, the platform layer is a foundation for implementing the
application layer for SaaS applications. Different types of cloud services demand application of
these resources separately.

The infrastructure layer is built with virtualized compute, storage, and network resources. The
abstraction of these hardware resources is meant to provide the flexibility demanded by users. Intern-
ally, virtualization realizes automated provisioning of resources and optimizes the infrastructure man-
agement process. The platform layer is for general-purpose and repeated usage of the collection of
software resources. This layer provides users with an environment to develop their applications, to
test operation flows, and to monitor execution results and performance. The platform should be able
to assure users that they have scalability, dependability, and security protection. In a way, the virtua-
lized cloud platform serves as a “system middleware” between the infrastructure and application layers
of the cloud.

Public clouds
(over Internet)

C ¢

Hybrid clouds
(over Internet/Internets)

Provisioning of both physical and virtualized cloud resources

1T

Application layer (SaaS)

17

Platform layer (PaaS)

1r

Infrastructure layer (laaS, HaaS, DaaS, etc.)

FIGURE 4.15

Layered architectural development of the cloud platform for laaS, PaaS, and SaaS applications over the
Internet.
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The application layer is formed with a collection of all needed software modules for SaaS
applications. Service applications in this layer include daily office management work, such as
information retrieval, document processing, and calendar and authentication services. The applica-
tion layer is also heavily used by enterprises in business marketing and sales, consumer relation-
ship management (CRM), financial transactions, and supply chain management. It should be
noted that not all cloud services are restricted to a single layer. Many applications may apply
resources at mixed layers. After all, the three layers are built from the bottom up with a depen-
dence relationship.

From the provider’s perspective, the services at various layers demand different amounts of
functionality support and resource management by providers. In general, SaaS demands the most
work from the provider, PaaS is in the middle, and IaaS demands the least. For example, Amazon
EC2 provides not only virtualized CPU resources to users, but also management of these provi-
sioned resources. Services at the application layer demand more work from providers. The best
example of this is the Salesforce.com CRM service, in which the provider supplies not only the
hardware at the bottom layer and the software at the top layer, but also the platform and software
tools for user application development and monitoring.

4.3.2.1 Market-Oriented Cloud Architecture

As consumers rely on cloud providers to meet more of their computing needs, they will require a
specific level of QoS to be maintained by their providers, in order to meet their objectives and sustain
their operations. Cloud providers consider and meet the different QoS parameters of each individual
consumer as negotiated in specific SLAs. To achieve this, the providers cannot deploy traditional
system-centric resource management architecture. Instead, market-oriented resource management is
necessary to regulate the supply and demand of cloud resources to achieve market equilibrium
between supply and demand.

The designer needs to provide feedback on economic incentives for both consumers and providers.
The purpose is to promote QoS-based resource allocation mechanisms. In addition, clients can benefit
from the potential cost reduction of providers, which could lead to a more competitive market, and
thus lower prices. Figure 4.16 shows the high-level architecture for supporting market-oriented
resource allocation in a cloud computing environment. This cloud is basically built with the following
entities:

Users or brokers acting on user’s behalf submit service requests from anywhere in the world to
the data center and cloud to be processed. The SLA resource allocator acts as the interface between
the data center/cloud service provider and external users/brokers. It requires the interaction of the
following mechanisms to support SLA-oriented resource management. When a service request is
first submitted the service request examiner interprets the submitted request for QoS requirements
before determining whether to accept or reject the request.

The request examiner ensures that there is no overloading of resources whereby many service
requests cannot be fulfilled successfully due to limited resources. It also needs the latest status infor-
mation regarding resource availability (from the VM Monitor mechanism) and workload processing
(from the Service Request Monitor mechanism) in order to make resource allocation decisions effec-
tively. Then it assigns requests to VMs and determines resource entitlements for allocated VMs.

The Pricing mechanism decides how service requests are charged. For instance, requests can be
charged based on submission time (peak/off-peak), pricing rates (fixed/changing), or availability of
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Market-oriented cloud architecture to expand/shrink leasing of resources with variation in QoS/demand from users.
(Courtesy of Raj Buyya, et al. [11])

resources (supply/demand). Pricing serves as a basis for managing the supply and demand of computing
resources within the data center and facilitates in prioritizing resource allocations effectively. The Account-
ing mechanism maintains the actual usage of resources by requests so that the final cost can be computed
and charged to users. In addition, the maintained historical usage information can be utilized by the Ser-
vice Request Examiner and Admission Control mechanism to improve resource allocation decisions.

The VM Monitor mechanism keeps track of the availability of VMs and their resource entitle-
ments. The Dispatcher mechanism starts the execution of accepted service requests on allocated
VMs. The Service Request Monitor mechanism keeps track of the execution progress of service
requests. Multiple VMs can be started and stopped on demand on a single physical machine to
meet accepted service requests, hence providing maximum flexibility to configure various partitions
of resources on the same physical machine to different specific requirements of service requests. In
addition, multiple VMs can concurrently run applications based on different operating system envir-
onments on a single physical machine since the VMs are isolated from one another on the same
physical machine.

4.3.2.2 Quality of Service Factors

The data center comprises multiple computing servers that provide resources to meet service
demands. In the case of a cloud as a commercial offering to enable crucial business operations of
companies, there are critical QoS parameters to consider in a service request, such as time, cost, relia-
bility, and trust/security. In particular, QoS requirements cannot be static and may change over time
due to continuing changes in business operations and operating environments. In short, there should
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be greater importance on customers since they pay to access services in clouds. In addition, the state
of the art in cloud computing has no or limited support for dynamic negotiation of SLAs between par-
ticipants and mechanisms for automatic allocation of resources to multiple competing requests. Nego-
tiation mechanisms are needed to respond to alternate offers protocol for establishing SLAs [72].

Commercial cloud offerings must be able to support customer-driven service management based
on customer profiles and requested service requirements. Commercial clouds define computational
risk management tactics to identify, assess, and manage risks involved in the execution of applica-
tions with regard to service requirements and customer needs. The cloud also derives appropriate
market-based resource management strategies that encompass both customer-driven service manage-
ment and computational risk management to sustain SLA-oriented resource allocation. The system
incorporates autonomic resource management models that effectively self-manage changes in service
requirements to satisfy both new service demands and existing service obligations, and leverage VM
technology to dynamically assign resource shares according to service requirements.

Virtualization Support and Disaster Recovery

One very distinguishing feature of cloud computing infrastructure is the use of system virtualization
and the modification to provisioning tools. Virtualization of servers on a shared cluster can consoli-
date web services. As the VMs are the containers of cloud services, the provisioning tools will first
find the corresponding physical machines and deploy the VMs to those nodes before scheduling the
service to run on the virtual nodes.

In addition, in cloud computing, virtualization also means the resources and fundamental
infrastructure are virtualized. The user will not care about the computing resources that are used for pro-
viding the services. Cloud users do not need to know and have no way to discover physical resources
that are involved while processing a service request. Also, application developers do not care about
some infrastructure issues such as scalability and fault tolerance (i.e., they are virtualized). Application
developers focus on service logic. Figure 4.17 shows the infrastructure needed to virtualize the servers
in a data center for implementing specific cloud applications.

4.3.3.1 Hardware Virtualization

In many cloud computing systems, virtualization software is used to virtualize the hardware. System vir-
tualization software is a special kind of software which simulates the execution of hardware and runs
even unmodified operating systems. Cloud computing systems use virtualization software as the running
environment for legacy software such as old operating systems and unusual applications. Virtualization
software is also used as the platform for developing new cloud applications that enable developers to
use any operating systems and programming environments they like. The development environment
and deployment environment can now be the same, which eliminates some runtime problems.

Some cloud computing providers have used virtualization technology to provide this service for
developers. As mentioned before, system virtualization software is considered the hardware analog
mechanism to run an unmodified operating system, usually on bare hardware directly, on top of
software. Table 4.4 lists some of the system virtualization software in wide use at the time of this
writing. Currently, the VMs installed on a cloud computing platform are mainly used for hosting
third-party programs. VMs provide flexible runtime services to free users from worrying about the
system environment.
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Virtualized servers, storage, and network for cloud platform construction.
(Courtesy of Zhong-Yuan Qin, SouthEast University, China)

Using VMs in a cloud computing platform ensures extreme flexibility for users. As the comput-
ing resources are shared by many users, a method is required to maximize the users’ privileges and
still keep them separated safely. Traditional sharing of cluster resources depends on the user and
group mechanism on a system. Such sharing is not flexible. Users cannot customize the system
for their special purposes. Operating systems cannot be changed. The separation is not complete.
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Table 4.4 Virtualized Resources in Compute, Storage, and Network Clouds [4]
Provider AWS Microsoft Azure GAE
Compute x86 instruction set, Xen VMs, Common language Predefined application
cloud with resource elasticity allows runtime VMs framework handlers written
virtual scalability through virtual provisioned by in Python, automatic
cluster of cluster, or a third party such declarative descriptions scaling up and down,
servers as RightScale must provide server failover inconsistent
the cluster with the web applications
Storage Models for block store (EBS) SQL Data Services MegaStore/BigTable
cloud with and augmented key/blob (restricted view of SQL
virtual store (SimpleDB), automatic Server), Azure storage
storage scaling varies from EBS to service
fully automatic (SimpleDB, S3)
Network Declarative IP-level topology; Automatic with user’s Fixed topology to
cloud placement details hidden, declarative descriptions accommodate three-tier
services security groups restricting or roles of app. web app. structure,
communication, availability components scaling up and down is
zones isolate network failure, automatic and
elastic IP applied programmer-invisible
> > 4
Configure Install Configure Install “Start single-step
hardware (O] oS backup automatic recovery”
agent
C
Restore VM Start data
configuration recovery
FIGURE 4.18

Recovery overhead of a conventional disaster recovery scheme, compared with that required to recover from
live migration of VMs.

An environment that meets one user’s requirements often cannot satisfy another user. Virtualization
allows users to have full privileges while keeping them separate.

Users have full access to their own VMs, which are completely separate from other users’ VMs.
Multiple VMs can be mounted on the same physical server. Different VMs may run with different
OSes. We also need to establish the virtual disk storage and virtual networks needed by the VMs.
The virtualized resources form a resource pool. The virtualization is carried out by special servers
dedicated to generating the virtualized resource pool. The virtualized infrastructure (black box in
the middle) is built with many virfualizing integration managers. These managers handle loads,
resources, security, data, and provisioning functions. Figure 4.18 shows two VM platforms. Each
platform carries out a virtual solution to a user job. All cloud services are managed in the boxes at

the top.
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4.3.3.2 Virtualization Support in Public Clouds

Armbrust, et al. [4] have assessed in Table 4.4 three public clouds in the context of virtualization
support: AWS, Microsoft Azure, and GAE. AWS provides extreme flexibility (VMs) for users to
execute their own applications. GAE provides limited application-level virtualization for users to
build applications only based on the services that are created by Google. Microsoft provides
programming-level virtualization (.NET virtualization) for users to build their applications.

The VMware tools apply to workstations, servers, and virtual infrastructure. The Microsoft tools
are used on PCs and some special servers. The XenEnterprise tool applies only to Xen-based ser-
vers. Everyone is interested in the cloud; the entire IT industry is moving toward the vision of the
cloud. Virtualization leads to HA, disaster recovery, dynamic load leveling, and rich provisioning
support. Both cloud computing and utility computing leverage the benefits of virtualization to
provide a scalable and autonomous computing environment.

4.3.3.3 Storage Virtualization for Green Data Centers

IT power consumption in the United States has more than doubled to 3 percent of the total energy
consumed in the country. The large number of data centers in the country has contributed to this
energy crisis to a great extent. More than half of the companies in the Fortune 500 are actively
implementing new corporate energy policies. Recent surveys from both IDC and Gartner confirm
the fact that virtualization had a great impact on cost reduction from reduced power consumption in
physical computing systems. This alarming situation has made the IT industry become more
energy-aware. With little evolution of alternate energy resources, there is an imminent need to con-
serve power in all computers. Virtualization and server consolidation have already proven handy
in this aspect. Green data centers and benefits of storage virtualization are considered to further
strengthen the synergy of green computing.

4.3.3.4 Virtualization for 1aaS

VM technology has increased in ubiquity. This has enabled users to create customized environments
atop physical infrastructure for cloud computing. Use of VMs in clouds has the following distinct
benefits: (1) System administrators consolidate workloads of underutilized servers in fewer servers;
(2) VM have the ability to run legacy code without interfering with other APIs; (3) VMs can be
used to improve security through creation of sandboxes for running applications with questionable
reliability; And (4) virtualized cloud platforms can apply performance isolation, letting providers
offer some guarantees and better QoS to customer applications.

4.3.3.5 VM Cloning for Disaster Recovery

VM technology requires an advanced disaster recovery scheme. One scheme is to recover one
physical machine by another physical machine. The second scheme is to recover one VM by
another VM. As shown in the top timeline of Figure 4.18, traditional disaster recovery from one
physical machine to another is rather slow, complex, and expensive. Total recovery time is attribu-
ted to the hardware configuration, installing and configuring the OS, installing the backup agents,
and the long time to restart the physical machine. To recover a VM platform, the installation
and configuration times for the OS and backup agents are eliminated. Therefore, we end up with
a much shorter disaster recovery time, about 40 percent of that to recover the physical machines.
Virtualization aids in fast disaster recovery by VM encapsulation.
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We discussed disaster recovery in Chapters 2 and 3. The cloning of VMs offers an effective
solution. The idea is to make a clone VM on a remote server for every running VM on a local server.
Among all the clone VMs, only one needs to be active. The remote VM should be in a suspended
mode. A cloud control center should be able to activate this clone VM in case of failure of the origi-
nal VM, taking a snapshot of the VM to enable live migration in a minimal amount of time. The
migrated VM can run on a shared Internet connection. Only updated data and modified states are sent
to the suspended VM to update its state. The Recovery Property Objective (RPO) and Recovery Time
Objective (RTO) are affected by the number of snapshots taken. Security of the VMs should be
enforced during live migration of VMs.

Architectural Design Challenges

In this section, we will identify six open challenges in cloud architecture development. Armbrust,
et al. [4] have observed some of these topics as both obstacles and opportunities. Plausible solutions
to meet these challenges are discussed shortly.

4.3.4.1 Challenge 1—Service Availability and Data Lock-in Problem

The management of a cloud service by a single company is often the source of single points of fail-
ure. To achieve HA, one can consider using multiple cloud providers. Even if a company has multi-
ple data centers located in different geographic regions, it may have common software infrastructure
and accounting systems. Therefore, using multiple cloud providers may provide more protection
from failures. Another availability obstacle is distributed denial of service (DDoS) attacks. Criminals
threaten to cut off the incomes of SaaS providers by making their services unavailable. Some utility
computing services offer SaaS providers the opportunity to defend against DDoS attacks by using
quick scale-ups.

Software stacks have improved interoperability among different cloud platforms, but the APIs
itself are still proprietary. Thus, customers cannot easily extract their data and programs from one
site to run on another. The obvious solution is to standardize the APIs so that a SaaS developer can
deploy services and data across multiple cloud providers. This will rescue the loss of all data due to
the failure of a single company. In addition to mitigating data lock-in concerns, standardization of
APIs enables a new usage model in which the same software infrastructure can be used in both
public and private clouds. Such an option could enable “surge computing,” in which the public
cloud is used to capture the extra tasks that cannot be easily run in the data center of a private
cloud.

4.3.4.2 Challenge 2—Data Privacy and Security Concerns
Current cloud offerings are essentially public (rather than private) networks, exposing the system to
more attacks. Many obstacles can be overcome immediately with well-understood technologies such
as encrypted storage, virtual LANs, and network middleboxes (e.g., firewalls, packet filters). For
example, you could encrypt your data before placing it in a cloud. Many nations have laws requir-
ing SaaS providers to keep customer data and copyrighted material within national boundaries.
Traditional network attacks include buffer overflows, DoS attacks, spyware, malware, rootkits,
Trojan horses, and worms. In a cloud environment, newer attacks may result from hypervisor mal-
ware, guest hopping and hijacking, or VM rootkits. Another type of attack is the man-in-the-middle
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attack for VM migrations. In general, passive attacks steal sensitive data or passwords. Active
attacks may manipulate kernel data structures which will cause major damage to cloud servers. We
will study all of these security and privacy problems on clouds in Section 4.5.

4.3.4.3 Challenge 3—Unpredictable Performance and Bottlenecks

Multiple VMs can share CPUs and main memory in cloud computing, but I/O sharing is problematic.
For example, to run 75 EC2 instances with the STREAM benchmark requires a mean bandwidth of
1,355 MB/second. However, for each of the 75 EC2 instances to write 1 GB files to the local disk
requires a mean disk write bandwidth of only 55 MB/second. This demonstrates the problem of I/O
interference between VMs. One solution is to improve I/O architectures and operating systems to
efficiently virtualize interrupts and I/O channels.

Internet applications continue to become more data-intensive. If we assume applications to be
“pulled apart” across the boundaries of clouds, this may complicate data placement and transport.
Cloud users and providers have to think about the implications of placement and traffic at every
level of the system, if they want to minimize costs. This kind of reasoning can be seen in Amazon’s
development of its new CloudFront service. Therefore, data transfer bottlenecks must be removed,
bottleneck links must be widened, and weak servers should be removed. We will study performance
issues in Chapter 8.

4.3.4.4 Challenge 4—Distributed Storage and Widespread Software Bugs

The database is always growing in cloud applications. The opportunity is to create a storage system
that will not only meet this growth, but also combine it with the cloud advantage of scaling arbitra-
rily up and down on demand. This demands the design of efficient distributed SANs. Data centers
must meet programmers’ expectations in terms of scalability, data durability, and HA. Data consis-
tence checking in SAN-connected data centers is a major challenge in cloud computing.

Large-scale distributed bugs cannot be reproduced, so the debugging must occur at a scale in the
production data centers. No data center will provide such a convenience. One solution may be a
reliance on using VMs in cloud computing. The level of virtualization may make it possible to cap-
ture valuable information in ways that are impossible without using VMs. Debugging over simula-
tors is another approach to attacking the problem, if the simulator is well designed.

4.3.4.5 Challenge 5—Cloud Scalability, Interoperability, and Standardization

The pay-as-you-go model applies to storage and network bandwidth; both are counted in terms of
the number of bytes used. Computation is different depending on virtualization level. GAE automa-
tically scales in response to load increases and decreases; users are charged by the cycles used.
AWS charges by the hour for the number of VM instances used, even if the machine is idle. The
opportunity here is to scale quickly up and down in response to load variation, in order to save
money, but without violating SLAs.

Open Virtualization Format (OVF) describes an open, secure, portable, efficient, and extensible
format for the packaging and distribution of VMs. It also defines a format for distributing software
to be deployed in VMs. This VM format does not rely on the use of a specific host platform, vir-
tualization platform, or guest operating system. The approach is to address virtual platform-agnostic
packaging with certification and integrity of packaged software. The package supports virtual
appliances to span more than one VM.
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OVF also defines a transport mechanism for VM templates, and can apply to different virtualiza-
tion platforms with different levels of virtualization. In terms of cloud standardization, we suggest
the ability for virtual appliances to run on any virtual platform. We also need to enable VMs to run
on heterogeneous hardware platform hypervisors. This requires hypervisor-agnostic VMs. We also
need to realize cross-platform live migration between x86 Intel and AMD technologies and support
legacy hardware for load balancing. All these issue are wide open for further research.

4.3.4.6 Challenge 6—Software Licensing and Reputation Sharing

Many cloud computing providers originally relied on open source software because the licensing
model for commercial software is not ideal for utility computing. The primary opportunity is either
for open source to remain popular or simply for commercial software companies to change their
licensing structure to better fit cloud computing. One can consider using both pay-for-use and
bulk-use licensing schemes to widen the business coverage.

One customer’s bad behavior can affect the reputation of the entire cloud. For instance, black-
listing of EC2 IP addresses by spam-prevention services may limit smooth VM installation. An
opportunity would be to create reputation-guarding services similar to the “trusted e-mail” services
currently offered (for a fee) to services hosted on smaller ISPs. Another legal issue concerns the
transfer of legal liability. Cloud providers want legal liability to remain with the customer, and vice
versa. This problem must be solved at the SLA level. We will study reputation systems for protect-
ing data centers in the next section.

PUBLIC CLOUD PLATFORMS: GAE, AWS, AND AZURE

In this section, we will review the system architectures of four commercially available cloud
platforms. These case studies will prepare readers for subsequent sections and chapters.

Public Clouds and Service Offerings

Cloud services are demanded by computing and IT administrators, software vendors, and end users.
Figure 4.19 introduces five levels of cloud players. At the top level, individual users and organiza-
tional users demand very different services. The application providers at the SaaS level serve mainly
individual users. Most business organizations are serviced by IaaS and PaaS providers. The infra-
structure services (IaaS) provide compute, storage, and communication resources to both applica-
tions and organizational users. The cloud environment is defined by the PaaS or platform providers.
Note that the platform providers support both infrastructure services and organizational users
directly.

Cloud services rely on new advances in machine virtualization, SOA, grid infrastructure manage-
ment, and power efficiency. Consumers purchase such services in the form of IaaS, PaaS, or SaaS as
described earlier. Also, many cloud entrepreneurs are selling value-added utility services to massive
numbers of users. The cloud industry leverages the growing demand by many enterprises and
business users to outsource their computing and storage jobs to professional providers. The provider
service charges are often much lower than the cost for users to replace their obsolete servers
frequently. Table 4.5 summarizes the profiles of five major cloud providers by 2010 standards.
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Roles of individual and organizational users and their interaction with cloud providers under various cloud
service models.

Table 4.5 Five Major Cloud Platforms and Their Service Offerings [36]
Model IBM Amazon Google Microsoft Salesforce
PaaS BlueCloud, App Engine Windows Force.com
WCA, RC2 (GAE) Azure
laaS Ensembles AWS Windows
Azure
SaaS Lotus Live Gmail, Docs NET service, Online CRM,
Dynamic CRM Gifttag
Virtualization 0OS and Xen Application OS level/
Container Hypel-V
Service SOA, B2, EC2, S8, GFS, Chubby, Live, SQL Apex, visual
Offerings TSAM, RAD, SQS, BigTable, Hotmail force, record
Web 2.0 SimpleDB MapReduce security
Security WebSphere2 PKI, VPN, Chubby locks Replicated Admin./record
Features and PowerVM EBS to for security data, rule- security, uses
tuned for recover from enforcement based access metadata API
protection failure control
User EC2 Web-based Windows
Interfaces command-line admin. Azure portal
tools console
Web API Yes Yes Yes Yes Yes
Programming AMI Python NET
Support Framework
Note: WCA: WebSphere CloudBurst Appliance; RC2: Research Compute Cloud; RAD: Rational Application Developer;
SOA: Service-Oriented Architecture; TSAM: Tivoli Service Automation Manager; EC2: Elastic Compute Cloud; S3: Simple
Storage Service; SQS: Simple Queue Service; GAE: Google App Engine; AWS: Amazon Web Services, SQL: Structured
Query Language, EBS: Elastic Block Store; CRM: Consumer Relationship Management.
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Amazon pioneered the IaaS business in supporting e-commerce and cloud applications by
millions of customers simultaneously. The elasticity in the Amazon cloud comes from the flexibi-
lity provided by the hardware and software services. EC2 provides an environment for running
virtual servers on demand. S3 provides unlimited online storage space. Both EC2 and S3 are sup-
ported in the AWS platform. Microsoft offers the Azure platform for cloud applications. It has also
supported the .NET service, dynamic CRM, Hotmail, and SQL applications. Salsforce.com offers
extensive SaaS applications for online CRM applications using its Force.com platforms.

As Table 4.5 shows, all IaaS, PaaS, and SaaS models allow users to access services over the
Internet, relying entirely on the infrastructures of the cloud service providers. These models are
offered based on various SLAs between the providers and the users. SLAs are more common in net-
work services as they account for the QoS characteristics of network services. For cloud computing
services, it is difficult to find a reasonable precedent for negotiating an SLA. In a broader sense, the
SLAs for cloud computing address service availability, data integrity, privacy, and security protection.
Blank spaces in the table refer to unknown or underdeveloped features.

Google App Engine (GAE)

Google has the world’s largest search engine facilities. The company has extensive experience in
massive data processing that has led to new insights into data-center design (see Chapter 3) and novel
programming models that scale to incredible sizes. The Google platform is based on its search engine
expertise, but as discussed earlier with MapReduce, this infrastructure is applicable to many other
areas. Google has hundreds of data centers and has installed more than 460,000 servers worldwide.
For example, 200 Google data centers are used at one time for a number of cloud applications.
Data items are stored in text, images, and video and are replicated to tolerate faults or failures. Here
we discuss Google’s App Engine (GAE) which offers a PaaS platform supporting various cloud and
web applications.

4.4.2.1 Google Cloud Infrastructure

Google has pioneered cloud development by leveraging the large number of data centers it operates.
For example, Google pioneered cloud services in Gmail, Google Docs, and Google Earth, among
other applications. These applications can support a large number of users simultaneously with HA.
Notable technology achievements include the Google File System (GFS), MapReduce, BigTable,
and Chubby. In 2008, Google announced the GAE web application platform which is becoming a
common platform for many small cloud service providers. This platform specializes in supporting
scalable (elastic) web applications. GAE enables users to run their applications on a large number
of data centers associated with Google’s search engine operations.

4.4.2.2 GAE Architecture

Figure 4.20 shows the major building blocks of the Google cloud platform which has been used to
deliver the cloud services highlighted earlier. GFS is used for storing large amounts of data.
MapReduce is for use in application program development. Chubby is used for distributed applica-
tion lock services. BigTable offers a storage service for accessing structured data. These technolo-
gies are described in more detail in Chapter 8. Users can interact with Google applications via the
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Google cloud platform and major building blocks, the blocks shown are large clusters of low-cost servers.
(Courtesy of Kang Chen, Tsinghua University, China)

web interface provided by each application. Third-party application providers can use GAE to
build cloud applications for providing services. The applications all run in data centers under tight
management by Google engineers. Inside each data center, there are thousands of servers forming
different clusters.

Google is one of the larger cloud application providers, although its fundamental service pro-
gram is private and outside people cannot use the Google infrastructure to build their own service.
The building blocks of Google’s cloud computing application include the Google File System for
storing large amounts of data, the MapReduce programming framework for application developers,
Chubby for distributed application lock services, and BigTable as a storage service for accessing
structural or semistructural data. With these building blocks, Google has built many cloud applica-
tions. Figure 4.20 shows the overall architecture of the Google cloud infrastructure. A typical cluster
configuration can run the Google File System, MapReduce jobs, and BigTable servers for structure
data. Extra services such as Chubby for distributed locks can also run in the clusters.

GAE runs the user program on Google’s infrastructure. As it is a platform running third-party
programs, application developers now do not need to worry about the maintenance of servers. GAE
can be thought of as the combination of several software components. The frontend is an application
framework which is similar to other web application frameworks such as ASP, J2EE, and JSP. At the
time of this writing, GAE supports Python and Java programming environments. The applications can
run similar to web application containers. The frontend can be used as the dynamic web serving
infrastructure which can provide the full support of common technologies.

4.4.2.3 Functional Modules of GAE

The GAE platform comprises the following five major components. The GAE is not an infrastruc-
ture platform, but rather an application development platform for users. We describe the component
functionalities separately.
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a. The datastore offers object-oriented, distributed, structured data storage services based on
BigTable techniques. The datastore secures data management operations.

b. The application runtime environment offers a platform for scalable web programming and
execution. It supports two development languages: Python and Java.

€. The software development kit (SDK) is used for local application development. The SDK allows
users to execute test runs of local applications and upload application code.

d. The administration console is used for easy management of user application development cycles,
instead of for physical resource management.

e. The GAE web service infrastructure provides special interfaces to guarantee flexible use and
management of storage and network resources by GAE.

Google offers essentially free GAE services to all Gmail account owners. You can register for a
GAE account or use your Gmail account name to sign up for the service. The service is free within
a quota. If you exceed the quota, the page instructs you on how to pay for the service. Then you
download the SDK and read the Python or Java guide to get started. Note that GAE only accepts
Python, Ruby, and Java programming languages. The platform does not provide any IaaS services,
unlike Amazon, which offers Iaas and PaaS. This model allows the user to deploy user-built appli-
cations on top of the cloud infrastructure that are built using the programming languages and soft-
ware tools supported by the provider (e.g., Java, Python). Azure does this similarly for .NET. The
user does not manage the underlying cloud infrastructure. The cloud provider facilitates support of
application development, testing, and operation support on a well-defined service platform.

4.4.2.4 GAE Applications

Well-known GAE applications include the Google Search Engine, Google Docs, Google Earth, and
Gmail. These applications can support large numbers of users simultaneously. Users can interact
with Google applications via the web interface provided by each application. Third-party application
providers can use GAE to build cloud applications for providing services. The applications are all
run in the Google data centers. Inside each data center, there might be thousands of server nodes to
form different clusters. (See the previous section.) Each cluster can run multipurpose servers.

GAE supports many web applications. One is a storage service to store application-specific data
in the Google infrastructure. The data can be persistently stored in the backend storage server while
still providing the facility for queries, sorting, and even transactions similar to traditional database
systems. GAE also provides Google-specific services, such as the Gmail account service (which is
the login service, that is, applications can use the Gmail account directly). This can eliminate the
tedious work of building customized user management components in web applications. Thus, web
applications built on top of GAE can use the APIs authenticating users and sending e-mail using
Google accounts.

Amazon Web Services (AWS)

VMs can be used to share computing resources both flexibly and safely. Amazon has been a leader
in providing public cloud services (http://aws.amazon.com/). Amazon applies the IaaS model in pro-
viding its services. Figure 4.21 shows the AWS architecture. EC2 provides the virtualized platforms
to the host VMs where the cloud application can run. S3 (Simple Storage Service) provides the
object-oriented storage service for users. EBS (Elastic Block Service) provides the block storage
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FIGURE 4.21

Amazon cloud computing infrastructure (Key services are identified here; many more are listed in Table 4.6).
(Courtesy of Kang Chen, Tsinghua University, China)

interface which can be used to support traditional applications. SQS stands for Simple Queue
Service, and its job is to ensure a reliable message service between two processes. The message can
be kept reliably even when the receiver processes are not running. Users can access their objects
through SOAP with either browsers or other client programs which support the SOAP standard.
Table 4.6 summarizes the service offerings by AWS in 12 application tracks. Details of EC2,
S3, and EBS are available in Chapter 6 where we discuss programming examples. Amazon offers
queuing and notification services (SQS and SNS), which are implemented in the AWS cloud. Note
brokering systems run very efficiently in clouds and offer a striking model for controlling sensors
and providing office support of smartphones and tablets. Different from Google, Amazon provides
a more flexible cloud computing platform for developers to build cloud applications. Small and
medium-size companies can put their business on the Amazon cloud platform. Using the AWS plat-
form, they can service large numbers of Internet users and make profits through those paid services.
ELB automatically distributes incoming application traffic across multiple Amazon EC2 instances
and allows user to avoid nonoperating nodes and to equalize load on functioning images. Both auto-
scaling and ELB are enabled by CloudWatch which monitors running instances. CloudWatch is a
web service that provides monitoring for AWS cloud resources, starting with Amazon EC2. It pro-
vides customers with visibility into resource utilization, operational performance, and overall demand
patterns, including metrics such as CPU utilization, disk reads and writes, and network traffic.
Amazon (like Azure) offers a Relational Database Service (RDS) with a messaging interface to
be covered in Section 4.1. The Elastic MapReduce capability is equivalent to Hadoop running on
the basic EC2 offering. AWS Import/Export allows one to ship large volumes of data to and from
EC2 by shipping physical disks; it is well known that this is often the highest bandwidth connection
between geographically distant systems. Amazon CloudFront implements a content distribution
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Table 4.6 AWS Offerings in 2011

Service Area Service Modules and Abbreviated Names

Compute Elastic Compute Cloud (EC2), Elastic MapReduce, Auto Scaling
Messaging Simple Queue Service (SQS), Simple Notification Service (SNS)

Storage Simple Storage Service (S3), Elastic Block Storage (EBS), AWS Import/Export
Content Delivery Amazon CloudFront

Monitoring Amazon CloudWatch

Support AWS Premium Support

Database Amazon SimpleDB, Relational Database Service (RDS)

Networking Virtual Private Cloud (VPC) (Example 4.1, Figure 4.6), Elastic Load Balancing
Web Traffic Alexa Web Information Service, Alexa Web Sites

E-Commerce Fulfillment Web Service (FWS)

Payments and Billing Flexible Payments Service (FPS), Amazon DevPay

Workforce Amazon Mechanical Turk

(Courtesy of Amazon, http.//aws.amazon.com [3])

network. Amazon DevPay is a simple-to-use online billing and account management service that
makes it easy for businesses to sell applications that are built into or run on top of AWS.

FPS provides developers of commercial systems on AWS with a convenient way to charge Amazon’s
customers that use such services built on AWS. Customers can pay using the same login credentials,
shipping address, and payment information they already have on file with Amazon. The FWS allows
merchants to access Amazon’s fulfillment capabilities through a simple web service interface.
Merchants can send order information to Amazon to fulfill customer orders on their behalf. In July 2010,
Amazon offered MPI clusters and cluster compute instances. The AWS cluster compute instances use
hardware-assisted virtualization instead of the para-virtualization used by other instance types and
requires booting from the EBS. Users are freed to create a new AMI as needed.

Microsoft Windows Azure

In 2008, Microsoft launched a Windows Azure platform to meet the challenges in cloud computing.
This platform is built over Microsoft data centers. Figure 4.22 shows the overall architecture of
Microsoft’s cloud platform. The platform is divided into three major component platforms. Windows
Azure offers a cloud platform built on Windows OS and based on Microsoft virtualization technol-
ogy. Applications are installed on VMs deployed on the data-center servers. Azure manages all
servers, storage, and network resources of the data center. On top of the infrastructure are the var-
ious services for building different cloud applications. Cloud-level services provided by the Azure
platform are introduced below. More details on Azure services are given in Chapter 6.

* Live service Users can visit Microsoft Live applications and apply the data involved across
multiple machines concurrently.

* .NET service This package supports application development on local hosts and execution on
cloud machines.
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Microsoft Windows Azure platform for cloud computing.
(Courtesy of Microsoft, 2010, http://www.microsoft.com/windowsazure)

* SQL Azure This function makes it easier for users to visit and use the relational database
associated with the SQL server in the cloud.
* SharePoint service This provides a scalable and manageable platform for users to develop their
special business applications in upgraded web services.
* Dynamic CRM service This provides software developers a business platform in managing
CRM applications in financing, marketing, and sales and promotions.

All these cloud services in Azure can interact with traditional Microsoft software applications,
such as Windows Live, Office Live, Exchange online, SharePoint online, and dynamic CRM
online. The Azure platform applies the standard web communication protocols SOAP and REST.
The Azure service applications allow users to integrate the cloud application with other platforms
or third-party clouds. You can download the Azure development kit to run a local version
of Azure. The powerful SDK allows Azure applications to be developed and debugged on the
Windows hosts.

4.5 INTER-CLOUD RESOURCE MANAGEMENT

This section characterizes the various cloud service models and their extensions. The cloud service
trends are outlined. Cloud resource management and intercloud resource exchange schemes are
reviewed. We will discuss the defense of cloud resources against network threats in Section 4.6.
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4.5.1 Extended Cloud Computing Services

Figure 4.23 shows six layers of cloud services, ranging from hardware, network, and collocation to
infrastructure, platform, and software applications. We already introduced the top three service
layers as SaaS, PaaS, and IaaS, respectively. The cloud platform provides PaaS, which sits on top
of the TaaS infrastructure. The top layer offers SaaS. These must be implemented on the cloud plat-
forms provided. Although the three basic models are dissimilar in usage, as shown in Table 4.7,
they are built one on top of another. The implication is that one cannot launch SaaS applications
with a cloud platform. The cloud platform cannot be built if compute and storage infrastructures are
not there.

The bottom three layers are more related to physical requirements. The bottommost layer
provides Hardware as a Service (HaaS). The next layer is for interconnecting all the hardware com-
ponents, and is simply called Network as a Service (NaaS). Virtual LANs fall within the scope of
NaaS. The next layer up offers Location as a Service (LaaS), which provides a collocation service
to house, power, and secure all the physical hardware and network resources. Some authors say this
layer provides Security as a Service (“SaaS”). The cloud infrastructure layer can be further subdi-
vided as Data as a Service (DaaS) and Communication as a Service (CaaS) in addition to compute
and storage in [aaS.

We will examine commercial trends in cloud services in subsequent sections. Here we will mainly
cover the top three layers with some success stories of cloud computing. As shown in Table 4.7,
cloud players are divided into three classes: (1) cloud service providers and IT administrators, (2) soft-
ware developers or vendors, and (3) end users or business users. These cloud players vary in their
roles under the IaaS, PaaS, and SaaS models. The table entries distinguish the three cloud models as
viewed by different players. From the software vendors’ perspective, application performance on a
given cloud platform is most important. From the providers’ perspective, cloud infrastructure
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Cloud software environment (PaaS) Force.com, App Engine, Facebook, MS Azure,
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FIGURE 4.23
A stack of six layers of cloud services and their providers.

(Courtesy of T. Chou, Active Book Express, 2010 [16])
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Table 4.7 Cloud Differences in Perspectives of Providers, Vendors, and Users

Cloud Players laaS PaaS SaaS

IT administrators/cloud Monitor SLAs Monitor SLAs and enable Monitor SLAs and
providers service platforms deploy software
Software developers To deploy and store Enabling platforms via Develop and deploy
(vendors) data configurators and APls software

End users or business To deploy and store To develop and test web Use business software
users data software

performance is the primary concern. From the end users’ perspective, the quality of services, including
security, is the most important.

4.5.1.1 Cloud Service Tasks and Trends

Cloud services are introduced in five layers. The top layer is for SaaS applications, as further subdi-
vided into the five application areas in Figure 4.23, mostly for business applications. For example,
CRM is heavily practiced in business promotion, direct sales, and marketing services. CRM offered
the first SaaS on the cloud successfully. The approach is to widen market coverage by investigating
customer behaviors and revealing opportunities by statistical analysis. SaaS tools also apply to dis-
tributed collaboration, and financial and human resources management. These cloud services have
been growing rapidly in recent years.

PaaS is provided by Google, Salesforce.com, and Facebook, among others. IaaS is provided by
Amazon, Windows Azure, and RackRack, among others. Collocation services require multiple
cloud providers to work together to support supply chains in manufacturing. Network cloud services
provide communications such as those by AT&T, Qwest, and AboveNet. Details can be found in
Clou’s introductory book on business clouds [18]. The vertical cloud services in Figure 4.25 refer
to a sequence of cloud services that are mutually supportive. Often, cloud mashup is practiced in
vertical cloud applications.

4.5.1.2 Software Stack for Cloud Computing

Despite the various types of nodes in the cloud computing cluster, the overall software stacks are
built from scratch to meet rigorous goals (see Table 4.7). Developers have to consider how to
design the system to meet critical requirements such as high throughput, HA, and fault tolerance.
Even the operating system might be modified to meet the special requirement of cloud data
processing. Based on the observations of some typical cloud computing instances, such as Google,
Microsoft, and Yahoo!, the overall software stack structure of cloud computing software can be
viewed as layers. Each layer has its own purpose and provides the interface for the upper layers
just as the traditional software stack does. However, the lower layers are not completely transparent
to the upper layers.

The platform for running cloud computing services can be either physical servers or virtual
servers. By using VMs, the platform can be flexible, that is, the running services are not bound to
specific hardware platforms. This brings flexibility to cloud computing platforms. The software
layer on top of the platform is the layer for storing massive amounts of data. This layer acts like
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the file system in a traditional single machine. Other layers running on top of the file system are the
layers for executing cloud computing applications. They include the database storage system, program-
ming for large-scale clusters, and data query language support. The next layers are the components in
the software stack.

4.5.1.3 Runtime Support Services

As in a cluster environment, there are also some runtime supporting services in the cloud computing
environment. Cluster monitoring is used to collect the runtime status of the entire cluster. One of
the most important facilities is the cluster job management system introduced in Chapter 2. The
scheduler queues the tasks submitted to the whole cluster and assigns the tasks to the processing
nodes according to node availability. The distributed scheduler for the cloud application has special
characteristics that can support cloud applications, such as scheduling the programs written in
MapReduce style. The runtime support system keeps the cloud cluster working properly with high
efficiency.

Runtime support is software needed in browser-initiated applications applied by thousands of
cloud customers. The SaaS model provides the software applications as a service, rather than letting
users purchase the software. As a result, on the customer side, there is no upfront investment in ser-
vers or software licensing. On the provider side, costs are rather low, compared with conventional
hosting of user applications. The customer data is stored in the cloud that is either vendor proprietary
or a publicly hosted cloud supporting PaaS and IaaS.

Resource Provisioning and Platform Deployment

The emergence of computing clouds suggests fundamental changes in software and hardware architec-
ture. Cloud architecture puts more emphasis on the number of processor cores or VM instances. Paral-
lelism is exploited at the cluster node level. In this section, we will discuss techniques to provision
computer resources or VMs. Then we will talk about storage allocation schemes to interconnect
distributed computing infrastructures by harnessing the VMs dynamically.

4.5.2.1 Provisioning of Compute Resources (VMs)

Providers supply cloud services by signing SLAs with end users. The SLAs must commit sufficient
resources such as CPU, memory, and bandwidth that the user can use for a preset period. Underpro-
visioning of resources will lead to broken SLAs and penalties. Overprovisioning of resources will
lead to resource underutilization, and consequently, a decrease in revenue for the provider. Deploy-
ing an autonomous system to efficiently provision resources to users is a challenging problem. The
difficulty comes from the unpredictability of consumer demand, software and hardware failures, het-
erogeneity of services, power management, and conflicts in signed SLAs between consumers and
service providers.

Efficient VM provisioning depends on the cloud architecture and management of cloud
infrastructures. Resource provisioning schemes also demand fast discovery of services and data in
cloud computing infrastructures. In a virtualized cluster of servers, this demands efficient installation
of VMs, live VM migration, and fast recovery from failures. To deploy VMs, users treat them as phy-
sical hosts with customized operating systems for specific applications. For example, Amazon’s EC2
uses Xen as the virtual machine monitor (VMM). The same VMM is used in IBM’s Blue Cloud.
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In the EC2 platform, some predefined VM templates are also provided. Users can choose different
kinds of VMs from the templates. IBM’s Blue Cloud does not provide any VM templates. In general,
any type of VM can run on top of Xen. Microsoft also applies virtualization in its Azure cloud platform.
The provider should offer resource-economic services. Power-efficient schemes for caching, query pro-
cessing, and thermal management are mandatory due to increasing energy waste by heat dissipation
from data centers. Public or private clouds promise to streamline the on-demand provisioning of soft-
ware, hardware, and data as a service, achieving economies of scale in IT deployment and operation.

4.5.2.2 Resource Provisioning Methods
Figure 4.24 shows three cases of static cloud resource provisioning policies. In case (a), overprovi-
sioning with the peak load causes heavy resource waste (shaded area). In case (b), underprovision-
ing (along the capacity line) of resources results in losses by both user and provider in that paid
demand by the users (the shaded area above the capacity) is not served and wasted resources still
exist for those demanded areas below the provisioned capacity. In case (c), the constant provision-
ing of resources with fixed capacity to a declining user demand could result in even worse
resource waste. The user may give up the service by canceling the demand, resulting in reduced
revenue for the provider. Both the user and provider may be losers in resource provisioning
without elasticity.

Three resource-provisioning methods are presented in the following sections. The demand-driven
method provides static resources and has been used in grid computing for many years. The event-
driven method is based on predicted workload by time. The popularity-driven method is based
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Three cases of cloud resource provisioning without elasticity: (a) heavy waste due to overprovisioning,
(b) underprovisioning and (c) under- and then overprovisioning.
(Courtesy of Armbrust, et al., UC Berkeley, 2009 [4])
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on Internet traffic monitored. We characterize these resource provisioning methods as follows
(see Figure 4.25).

4.5.2.3 Demand-Driven Resource Provisioning

This method adds or removes computing instances based on the current utilization level of the allo-
cated resources. The demand-driven method automatically allocates two Xeon processors for the
user application, when the user was using one Xeon processor more than 60 percent of the time for
an extended period. In general, when a resource has surpassed a threshold for a certain amount of
time, the scheme increases that resource based on demand. When a resource is below a threshold
for a certain amount of time, that resource could be decreased accordingly. Amazon implements
such an auto-scale feature in its EC2 platform. This method is easy to implement. The scheme does
not work out right if the workload changes abruptly.

The x-axis in Figure 4.25 is the time scale in milliseconds. In the beginning, heavy fluctuations of
CPU load are encountered. All three methods have demanded a few VM instances initially. Gradu-
ally, the utilization rate becomes more stabilized with a maximum of 20 VMs (100 percent utilization)
provided for demand-driven provisioning in Figure 4.25(a). However, the event-driven method
reaches a stable peak of 17 VMs toward the end of the event and drops quickly in Figure 4.25(b).
The popularity provisioning shown in Figure 4.25(c) leads to a similar fluctuation with peak VM
utilization in the middle of the plot.

4.5.2.4 Event-Driven Resource Provisioning

This scheme adds or removes machine instances based on a specific time event. The scheme works
better for seasonal or predicted events such as Christmastime in the West and the Lunar New Year
in the East. During these events, the number of users grows before the event period and then
decreases during the event period. This scheme anticipates peak traffic before it happens. The
method results in a minimal loss of QoS, if the event is predicted correctly. Otherwise, wasted
resources are even greater due to events that do not follow a fixed pattern.

4.5.2.5 Popularity-Driven Resource Provisioning

In this method, the Internet searches for popularity of certain applications and creates the instances by
popularity demand. The scheme anticipates increased traffic with popularity. Again, the scheme has a
minimal loss of QoS, if the predicted popularity is correct. Resources may be wasted if traffic does
not occur as expected. In Figure 4.25(c), EC2 performance by CPU utilization rate (the dark curve
with the percentage scale shown on the left) is plotted against the number of VMs provisioned (the
light curves with scale shown on the right, with a maximum of 20 VMs provisioned).

4.5.2.6 Dynamic Resource Deployment

The cloud uses VMs as building blocks to create an execution environment across multiple resource
sites. The InterGrid-managed infrastructure was developed by a Melbourne University group [19].
Dynamic resource deployment can be implemented to achieve scalability in performance. The Inter-
Grid is a Java-implemented software system that lets users create execution cloud environments on
top of all participating grid resources. Peering arrangements established between gateways enable the
allocation of resources from multiple grids to establish the execution environment. In Figure 4.26, a
scenario is illustrated by which an intergrid gateway (IGG) allocates resources from a local cluster to



240 CHAPTER 4 Cloud Platform Architecture over Virtualized Data Centers

100 I \ 20
" l — Num notes —
£ 70 W= IR
S 60 \ q W\/\ ) A H y_ 12 -§
E 50 v 5 \I\ ! \ A A /“\/\ /\/\P\,\/\ ~N MV’V\ q_[\ 10 G
I \ n LANAT n A VAN VYT AT 7 5
Eo A A | IR
5 071 f 1/ N e 2
10 Il T V I I,
1 L1 N— Y erm—————————— Lo
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134
(a) Demand-driven
a0 u s
—~ 80 ! ’ \A . / 16
2 %l M~ 1o 8
5 60 ] , , ”.f”\/\v/. A ﬂ A 1 ,\V/\ FNE | 12 -g
z ¥ . l v A A AT 2 5
= | AL 7 I VI N TP U B
S \ I [ A O O~
o [ I NIRIN] !
& 5oL A | | [ 1, =
" = V I I
5 18 23 35 36 43 50 57 64 71 75 85 9338 106 115 150 127 134
(b) Event-driven
o+ ] / \ 1
o / \ 18
e I | L 15 g
§ eo [ )\ 1y, 8
2 ST N2
S ST 71 AN W AR T
S a0 L [\ 1] [l | [\ W [1\g E
5 oA, T\ 1] | | AV AT, 2
ol T AWAS AR B 1 A
0 Hrmrt R — NS U = 0
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65
(c) Popularity-driven
FIGURE 4.25

EC2 performance results on the AWS EC2 platform, collected from experiments at the University of Southern

California using three resource provisioning methods.

(Courtesy of Ken Wu, USC)
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Cloud resource deployment using an IGG (intergrid gateway) to allocate the VMs from a Local cluster to
interact with the IGG of a public cloud provider.

(Courtesy of Constanzo, et al. © IEEE [21])

deploy applications in three steps: (1) requesting the VMs, (2) enacting the leases, and (3) deploying
the VMs as requested. Under peak demand, this IGG interacts with another IGG that can allocate
resources from a cloud computing provider.

A grid has predefined peering arrangements with other grids, which the IGG manages.
Through multiple IGGs, the system coordinates the use of InterGrid resources. An IGG is aware
of the peering terms with other grids, selects suitable grids that can provide the required
resources, and replies to requests from other IGGs. Request redirection policies determine which
peering grid InterGrid selects to process a request and a price for which that grid will perform
the task. An IGG can also allocate resources from a cloud provider. The cloud system creates a
virtual environment to help users deploy their applications. These applications use the distributed
grid resources.

The InterGrid allocates and provides a distributed virtual environment (DVE). This is a virtual
cluster of VMs that runs isolated from other virtual clusters. A component called the DVE manager
performs resource allocation and management on behalf of specific user applications. The core com-
ponent of the IGG is a scheduler for implementing provisioning policies and peering with other
gateways. The communication component provides an asynchronous message-passing mechanism.
Received messages are handled in parallel by a thread pool.



242 CHAPTER 4 Cloud Platform Architecture over Virtualized Data Centers

4.5.2.7 Provisioning of Storage Resources

The data storage layer is built on top of the physical or virtual servers. As the cloud computing
applications often provide service to users, it is unavoidable that the data is stored in the clusters of
the cloud provider. The service can be accessed anywhere in the world. One example is e-mail sys-
tems. A typical large e-mail system might have millions of users and each user can have thousands of
e-mails and consume multiple gigabytes of disk space. Another example is a web searching applica-
tion. In storage technologies, hard disk drives may be augmented with solid-state drives in the future.
This will provide reliable and high-performance data storage. The biggest barriers to adopting flash
memory in data centers have been price, capacity, and, to some extent, a lack of sophisticated query-
processing techniques. However, this is about to change as the I/O bandwidth of solid-state drives
becomes too impressive to ignore.

A distributed file system is very important for storing large-scale data. However, other forms of
data storage also exist. Some data does not need the namespace of a tree structure file system, and
instead, databases are built with stored data files. In cloud computing, another form of data storage
is (Key, Value) pairs. Amazon S3 service uses SOAP to access the objects stored in the cloud.
Table 4.8 outlines three cloud storage services provided by Google, Hadoop, and Amazon.

Many cloud computing companies have developed large-scale data storage systems to keep huge
amount of data collected every day. For example, Google’s GFS stores web data and some other
data, such as geographic data for Google Earth. A similar system from the open source community
is the Hadoop Distributed File System (HDFS) for Apache. Hadoop is the open source implementa-
tion of Google’s cloud computing infrastructure. Similar systems include Microsoft’s Cosmos file
system for the cloud.

Despite the fact that the storage service or distributed file system can be accessed directly,
similar to traditional databases, cloud computing does provide some forms of structure or semistruc-
ture database processing capability. For example, applications might want to process the information
contained in a web page. Web pages are an example of semistructural data in HTML format.
If some forms of database capability can be used, application developers will construct their appli-
cation logic more easily. Another reason to build a database-like service in cloud computing is that
it will be quite convenient for traditional application developers to code for the cloud platform.
Databases are quite common as the underlying storage device for many applications.

Thus, such developers can think in the same way they do for traditional software development.
Hence, in cloud computing, it is necessary to build databases like large-scale systems based on data

Table 4.8 Storage Services in Three Cloud Computing Systems
Storage System Features

GFS: Google File System Very large sustainable reading and writing bandwidth, mostly
continuous accessing instead of random accessing. The programming
interface is similar to that of the POSIX file system accessing interface.

HDFS: Hadoop Distributed File The open source clone of GFS. Written in Java. The programming
System interfaces are similar to POSIX but not identical.
Amazon S3 and EBS S8 is used for retrieving and storing data from/to remote servers. EBS

is built on top of S8 for using virtual disks in running EC2 instances.
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storage or distributed file systems. The scale of such a database might be quite large for processing
huge amounts of data. The main purpose is to store the data in structural or semi-structural ways
so that application developers can use it easily and build their applications rapidly. Traditional data-
bases will meet the performance bottleneck while the system is expanded to a larger scale. How-
ever, some real applications do not need such strong consistency. The scale of such databases can
be quite large. Typical cloud databases include BigTable from Google, SimpleDB from Amazon,
and the SQL service from Microsoft Azure.

Virtual Machine Creation and Management

In this section, we will consider several issues for cloud infrastructure management. First, we will
consider the resource management of independent service jobs. Then we will consider how to exe-
cute third-party cloud applications. Cloud-loading experiments are used by a Melbourne research
group on the French Grid’5000 system. This experimental setting illustrates VM creation and
management. This case study example reveals major VM management issues and suggests some
plausible solutions for workload-balanced execution. Figure 4.27 shows the interactions among VM
managers for cloud creation and management. The managers provide a public API for users to sub-
mit and control the VMs.

VMinstance vm=vmms.submit(vmTemplate, host) vminstance.shutdown()
Template directory 4 ¢ VM manager service ¢ Y
ubuntu; 1 core; 128 Mbytes Public API

fedora; 2 cores; 256 Mbytes
Interface

J OpenNebula Emulator
— laaS o i~ OAR/Kadeploy

opensuse; 1 core; 512 Mbytes

Convert the generic template
to the virtual infrastructure 4
engine format

Local physical - v
infrastructure Grid’5000

FIGURE 4.27

Interactions among VM managers for cloud creation and management; the manager provides a public
API for users to submit and control the VMs.

(Courtesy of Constanzo, et al. © IEEE [21])
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4.5.3.1 Independent Service Management

Independent services request facilities to execute many unrelated tasks. Commonly, the APIs provided
are some web services that the developer can use conveniently. In Amazon cloud computing infra-
structure, SQS is constructed for providing a reliable communication service between different provi-
ders. Even the endpoint does not run while another entity has posted a message in SQS. By using
independent service providers, the cloud applications can run different services at the same time.
Some other services are used for providing data other than the compute or storage services.

4.5.3.2 Running Third-Party Applications

Cloud platforms have to provide support for building applications that are constructed by third-party
application providers or programmers. As current web applications are often provided by using Web
2.0 forms (interactive applications with Ajax), the programming interfaces are different from the tra-
ditional programming interfaces such as functions in runtime libraries. The APIs are often in the
form of services. Web service application engines are often used by programmers for building appli-
cations. The web browsers are the user interface for end users.

In addition to gateway applications, the cloud computing platform provides the extra capabilities
of accessing backend services or underlying data. As examples, GAE and Microsoft Azure apply
their own cloud APIs to get special cloud services. The WebSphere application engine is deployed
by IBM for Blue Cloud. It can be used to develop any kind of web application written in Java. In
EC2, users can use any kind of application engine that can run in VM instances.

4.5.3.3 Virtual Machine Manager

The VM manager is the link between the gateway and resources. The gateway doesn’t share physi-
cal resources directly, but relies on virtualization technology for abstracting them. Hence, the actual
resources it uses are VMs. The manager manage VMs deployed on a set of physical resources. The
VM manager implementation is generic so that it can connect with different VIEs. Typically, VIEs
can create and stop VMs on a physical cluster. The Melbourne group has developed managers for
OpenNebula, Amazon EC2, and French Grid’5000. The manager using the OpenNebula OS (www
.opennebula.org) to deploy VMs on local clusters.

OpenNebula runs as a daemon service on a master node, so the VMM works as a remote user.
Users submit VMs on physical machines using different kinds of hypervisors, such as Xen (www
.xen.org), which enables the running of several operating systems on the same host concurrently.
The VMM also manages VM deployment on grids and IaaS providers. The InterGrid supports
Amazon EC2. The connector is a wrapper for the command-line tool Amazon provides. The VM
manager for Grid’5000 is also a wrapper for its command-line tools. To deploy a VM, the manager
needs to use its template.

4.5.3.4 Virtual Machine Templates
A VM template is analogous to a computer’s configuration and contains a description for a VM
with the following static information:

* The number of cores or processors to be assigned to the VM
* The amount of memory the VM requires
* The kernel used to boot the VM’s operating system
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* The disk image containing the VM’s file system
* The price per hour of using a VM

The gateway administrator provides the VM template information when the infrastructure is set up.
The administrator can update, add, and delete templates at any time. In addition, each gateway in
the InterGrid network must agree on the templates to provide the same configuration on each site.
To deploy an instance of a given VM, the VMM generates a descriptor from the template. This
descriptor contains the same fields as the template and additional information related to a specific VM
instance. Typically the additional information includes:

* The disk image that contains the VM’s file system

* The address of the physical machine hosting the VM

* The VM’s network configuration

* The required information for deployment on an IaaS provider

Before starting an instance, the scheduler gives the network configuration and the host’s address;
it then allocates MAC and IP addresses for that instance. The template specifies the disk image
field. To deploy several instances of the same VM template in parallel, each instance uses a tempor-
ary copy of the disk image. Hence, the descriptor contains the path to the copied disk image. The
descriptor’s fields are different for deploying a VM on an IaaS provider. Network information is
not needed, because Amazon EC2 automatically assigns a public IP to the instances. The IGG
works with a repository of VM templates, called the VM template directory.

4.5.3.5 Distributed VM Management

Figure 4.30 illustrates the interactions between InterGrid’s components. A distributed VM manager
makes requests for VMs and queries their status. This manager requests VMs from the gateway on
behalf of the user application. The manager obtains the list of requested VMs from the gateway.
This list contains a tuple of public IP/private IP addresses for each VM with Secure Shell (SSH)
tunnels. Users must specify which VM template they want to use and the number of VM instances
needed, the deadline, the wall time, and the address for an alternative gateway.

The local gateway tries to obtain resources from the underlying VIEs. When this is impossible, the
local gateway starts a negotiation with any remote gateways to fulfill the request. When a gateway
schedules the VM, it sends the VM access information to the requester gateway. Finally, the man-
ager configures the VM, sets up SSH tunnels, and executes the tasks on the VM. Under the peering
policy, each gateway’s scheduler uses conservative backfilling to schedule requests. When the sche-
duler can’t start a request immediately using local resources, a redirection algorithm will be initiated.

=
Example 4.6 Experiments on an InterGrid Test Bed over the Grid’5000

The Melbourne group conducted two experiments to evaluate the InterGrid architecture. The first one eval-
uates the performance of allocation decisions by measuring how the IGG manages load via peering
arrangements. The second considers its effectiveness in deploying a bag-of-tasks application. The experi-
ment was conducted on the French experimental grid platform Grid’5000. Grid’5000 comprises 4,792 pro-
cessor cores on nine grid sites across France. Each gateway represents one Grid’5000 site, as shown in
Figure 4.28.
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The InterGrid test bed over the French Grid’5000 located in nine cities across France.
(Courtesy of Constanzo, et al. © IEEE [21])

To prevent the gateways from interfering with real Grid’5000 users, emulated VM managers were
implemented to instantiate fictitious VMs. The number of emulated hosts is limited by the core number at
each site. A balanced workload was configured among the sites. The maximum number of VMs requested
does not exceed the number of cores in any site. The load characteristics are shown in Figure 4.29 under
a four-gateway scenario. The teal bars indicate each grid site’s load. The magenta bars show the load
when gateways redirect requests to one another. The green bars correspond to the amount of load each
gateway accepts from other gateways. The brown bars represent the amount of load that is redirected.
The results show that the loading policy can balance the load across the nine sites. Rennes, a site with a
heavy load, benefits from peering with other gateways as the gateway redirects a great share of its load to
other sites.

Global Exchange of Cloud Resources
In order to support a large number of application service consumers from around the world, cloud
infrastructure providers (i.e., IaaS providers) have established data centers in multiple geographical
locations to provide redundancy and ensure reliability in case of site failures. For example, Amazon
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Cloud loading results at four gateways at resource sites in the Grid’5000 system.
(Courtesy of Constanzo, et al. © IEEE [21])

has data centers in the United States (e.g., one on the East Coast and another on the West Coast)
and Europe. However, currently Amazon expects its cloud customers (i.e., SaaS providers) to
express a preference regarding where they want their application services to be hosted. Amazon
does not provide seamless/automatic mechanisms for scaling its hosted services across multiple
geographically distributed data centers.

This approach has many shortcomings. First, it is difficult for cloud customers to determine in
advance the best location for hosting their services as they may not know the origin of consumers
of their services. Second, SaaS providers may not be able to meet the QoS expectations of their ser-
vice consumers originating from multiple geographical locations. This necessitates building mechan-
isms for seamless federation of data centers of a cloud provider or providers supporting dynamic
scaling of applications across multiple domains in order to meet QoS targets of cloud customers.
Figure 4.30 shows the high-level components of the Melbourne group’s proposed InterCloud
architecture.

In addition, no single cloud infrastructure provider will be able to establish its data centers
at all possible locations throughout the world. As a result, cloud application service (SaaS) pro-
viders will have difficulty in meeting QoS expectations for all their consumers. Hence, they
would like to make use of services of multiple cloud infrastructure service providers who can
provide better support for their specific consumer needs. This kind of requirement often arises
in enterprises with global operations and applications such as Internet services, media hosting,
and Web 2.0 applications. This necessitates federation of cloud infrastructure service providers
for seamless provisioning of services across different cloud providers. To realize this, the
Cloudbus Project at the University of Melbourne has proposed InterCloud architecture [12] sup-
porting brokering and exchange of cloud resources for scaling applications across multiple
clouds.

By realizing InterCloud architectural principles in mechanisms in their offering, cloud providers
will be able to dynamically expand or resize their provisioning capability based on sudden spikes
in workload demands by leasing available computational and storage capabilities from other cloud
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Inter-cloud exchange of cloud resources through brokering.
(Courtesy of R. Buyya, et al., University of Melbourne [12])

service providers; operate as part of a market-driven resource leasing federation, where application
service providers such as Salesforce.com host their services based on negotiated SLA contracts dri-
ven by competitive market prices; and deliver on-demand, reliable, cost-effective, and QoS-aware
services based on virtualization technologies while ensuring high QoS standards and minimizing
service costs. They need to be able to utilize market-based utility models as the basis for provi-
sioning of virtualized software services and federated hardware infrastructure among users with
heterogeneous applications.

They consist of client brokering and coordinator services that support utility-driven federation of
clouds: application scheduling, resource allocation, and migration of workloads. The architecture
cohesively couples the administratively and topologically distributed storage and compute capabil-
ities of clouds as part of a single resource leasing abstraction. The system will ease the cross-
domain capability integration for on-demand, flexible, energy-efficient, and reliable access to the
infrastructure based on virtualization technology [6,75].

The Cloud Exchange (CEx) acts as a market maker for bringing together service producers and
consumers. It aggregates the infrastructure demands from application brokers and evaluates them
against the available supply currently published by the cloud coordinators. It supports trading of
cloud services based on competitive economic models such as commodity markets and auctions.
CEx allows participants to locate providers and consumers with fitting offers. Such markets enable
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services to be commoditized, and thus will pave the way for creation of dynamic market infrastruc-
ture for trading based on SLAs. An SLA specifies the details of the service to be provided in terms
of metrics agreed upon by all parties, and incentives and penalties for meeting and violating the
expectations, respectively. The availability of a banking system within the market ensures that
financial transactions pertaining to SLAs between participants are carried out in a secure and
dependable environment.

CLOUD SECURITY AND TRUST MANAGEMENT

Lacking trust between service providers and cloud users has hindered the universal acceptance of
cloud computing as a service on demand. In the past, trust models have been developed to protect
mainly e-commerce and online shopping provided by eBay and Amazon. For web and cloud ser-
vices, trust and security become even more demanding, because leaving user applications comple-
tely to the cloud providers has faced strong resistance by most PC and server users. Cloud
platforms become worrisome to some users for lack of privacy protection, security assurance, and
copyright protection. Trust is a social problem, not a pure technical issue. However, the social
problem can be solved with a technical approach.

Common sense dictates that technology can enhance trust, justice, reputation, credit, and assurance
in Internet applications. As a virtual environment, the cloud poses new security threats that are more
difficult to contain than traditional client and server configurations. To solve these trust problems, a
new data-protection model is presented in this section. In many cases, one can extend the trust models
for P2P networks and grid systems to protect clouds and data centers.

Cloud Security Defense Strategies

A healthy cloud ecosystem is desired to free users from abuses, violence, cheating, hacking, viruses,
rumors, pornography, spam, and privacy and copyright violations. The security demands of three
cloud service models, [aaS, PaaS, and SaaS, are described in this section. These security models are
based on various SLAs between providers and users.

4.6.1.1 Basic Cloud Security

Three basic cloud security enforcements are expected. First, facility security in data centers
demands on-site security year round. Biometric readers, CCTV (close-circuit TV), motion detection,
and man traps are often deployed. Also, network security demands fault-tolerant external firewalls,
intrusion detection systems (IDSes), and third-party vulnerability assessment. Finally, platform
security demands SSL and data decryption, strict password policies, and system trust certification.
Figure 4.31 shows the mapping of cloud models, where special security measures are deployed at
various cloud operating levels.

Servers in the cloud can be physical machines or VMs. User interfaces are applied to request
services. The provisioning tool carves out the systems from the cloud to satisfy the requested ser-
vice. A security-aware cloud architecture demands security enforcement. Malware-based attacks
such as network worms, viruses, and DDoS attacks exploit system vulnerabilities. These attacks
compromise system functionality or provide intruders unauthorized access to critical information.
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Cloud service models on the left (a) and corresponding security measures on the right (b); the laaS is at the
innermost level, PaaS is at the middle level, and SaaS is at the outermost level, including all hardware,

software, datasets, and networking resources.

(Courtesy of Hwang and Li [36])

Thus, security defenses are needed to protect all cluster servers and data centers. Here are some
cloud components that demand special security protection:

* Protection of servers from malicious software attacks such as worms, viruses, and malware
* Protection of hypervisors or VM monitors from software-based attacks and vulnerabilities
* Protection of VMs and monitors from service disruption and DoS attacks
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* Protection of data and information from theft, corruption, and natural disasters
* Providing authenticated and authorized access to critical data and services

4.6.1.2 Security Challenges in VMs

As we discussed earlier in this chapter, traditional network attacks include buffer overflows, DoS
attacks, spyware, malware, rootkits, Trojan horses, and worms. In a cloud environment, newer attacks
may result from hypervisor malware, guest hopping and hijacking, or VM rootkits. Another type of
attack is the man-in-the-middle attack for VM migrations. In general, passive attacks steal sensitive data
or passwords. Active attacks may manipulate kernel data structures which will cause major damage to
cloud servers. An IDS can be a NIDS or a HIDS. Program shepherding can be applied to control and
verify code execution. Other defense technologies include using the RIO dynamic optimization infra-
structure, or VMware’s vSafe and vShield tools, security compliance for hypervisors, and Intel vPro
technology. Others apply a hardened OS environment or use isolated execution and sandboxing.

4.6.1.3 Cloud Defense Methods

Virtualization enhances cloud security. But VMs add an additional layer of software that could
become a single point of failure. With virtualization, a single physical machine can be divided or
partitioned into multiple VMs (e.g., server consolidation). This provides each VM with better secur-
ity isolation and each partition is protected from DoS attacks by other partitions. Security attacks in
one VM are isolated and contained from affecting the other VMs. Table 4.9 lists eight protection
schemes to secure public clouds and data centers. VM failures do not propagate to other VMs. The

Table 4.9 Physical and Cyber Security Protection at Cloud/Data Centers

Protection

Schemes Brief Description and Deployment Suggestions

Secure data centers
and computer
buildings

Use redundant utilities
at multiple sites

Trust delegation and
negotiation

Worm containment
and DDoS defense
Reputation system for
data centers
Fine-grained file
access control
Copyright protection
and piracy prevention
Privacy protection

Choose hazard-free location, enforce building safety. Avoid windows, keep buffer
zone around the site, bomb detection, camera surveillance, earthquake-proof, etc.

Multiple power and supplies, alternate network connections, multiple databases at
separate sites, data consistency, data watermarking, user authentication, etc.
Cross certificates to delegate trust across PKI domains for various data centers,
trust negotiation among certificate authorities (CAs) to resolve policy conflicts
Internet worm containment and distributed defense against DDoS attacks to
secure all data centers and cloud platforms

Reputation system could be built with P2P technology; one can build a hierarchy
of reputation systems from data centers to distributed file systems

Fine-grained access control at the file or object level; this adds to security
protection beyond firewalls and IDSes

Piracy prevention achieved with peer collusion prevention, filtering of poisoned
content, nondestructive read, alteration detection, etc.

Uses double authentication, biometric identification, intrusion detection and disaster
recovery, privacy enforcement by data watermarking, data classification, etc.
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hypervisor provides visibility of the guest OS, with complete guest isolation. Fault containment and
failure isolation of VMs provide a more secure and robust environment. Malicious intrusions may
destroy valuable hosts, networks, and storage resources. Internet anomalies found in routers, gate-
ways, and distributed hosts may stop cloud services. Trust negotiation is often done at the SLA
level. Public Key Infrastructure (PKI) services could be augmented with data-center reputation sys-
tems. Worm and DDoS attacks must be contained. It is harder to establish security in the cloud
because all data and software are shared by default.

4.6.1.4 Defense with Virtualization

The VM is decoupled from the physical hardware. The entire VM can be represented as a software
component and can be regarded as binary or digital data. The VM can be saved, cloned, encrypted,
moved, or restored with ease. VMs enable HA and faster disaster recovery. Live migration of VMs
was suggested by many researchers [36] for building distributed intrusion detection systems
(DIDSes). Multiple IDS VMs can be deployed at various resource sites including data centers.
DIDS design demands trust negation among PKI domains. Security policy conflicts must be
resolved at design time and updated periodically.

4.6.1.5 Privacy and Copyright Protection

The user gets a predictable configuration before actual system integration. Yahoo!’s Pipes is a good
example of a lightweight cloud platform. With shared files and data sets, privacy, security, and copy-
right data could be compromised in a cloud computing environment. Users desire to work in a software
environment that provides many useful tools to build cloud applications over large data sets. Google’s
platform essentially applies in-house software to protect resources. The Amazon EC2 applies HMEC
and X.509 certificates in securing resources. It is necessary to protect browser-initiated application
software in the cloud environment. Here are several security features desired in a secure cloud:

* Dynamic web services with full support from secure web technologies

* Established trust between users and providers through SLAs and reputation systems
* Effective user identity management and data-access management

* Single sign-on and single sign-off to reduce security enforcement overhead

* Auditing and copyright compliance through proactive enforcement

* Shifting of control of data operations from the client environment to cloud providers
* Protection of sensitive and regulated information in a shared environment

B
Example 4.7 Cloud Security Safeguarded by Gateway and Firewalls

Figure 4.32 shows a security defense system for a typical private cloud environment. The gateway is fully
secured to protect access to commercial clouds that are wide open to the general public. The firewall provides
an external shield. The gateway secures the application server, message queue, database, web service client,
and browser with HTTP, JMS, SQL, XML, and SSL security protocols, etc. The defense scheme is needed to
protect user data from server attacks. A user’s private data must not be leaked to other users without
permission.
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The typical security structure coordinated by a secured gateway plus external firewalls to safeguard the
access of public or private clouds.
(Courtesy of Vordel Company)

4.6.2 Distributed Intrusion/Anomaly Detection

Data security is the weakest link in all cloud models. We need new cloud security standards to
apply common API tools to cope with the data lock-in problem and network attacks or abuses.
The IaaS model represented by Amazon is most sensitive to external attacks. Role-based interface
tools alleviate the complexity of the provisioning system. For example, IBM’s Blue Cloud provi-
sions through a role-based web portal. A SaaS bureau may order secretarial services from a com-
mon cloud platform. Many IT companies are now offering cloud services with no guaranteed
security.

Security threats may be aimed at VMs, guest OSes, and software running on top of the cloud.
IDSes attempt to stop these attacks before they take effect. Both signature matching and anomaly
detection can be implemented on VMs dedicated to building IDSes. Signature-matching IDS
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technology is more mature, but require frequent updates of the signature databases. Network anom-
aly detection reveals abnormal traffic patterns, such as unauthorized episodes of TCP connection
sequences, against normal traffic patterns. Distributed IDSes are needed to combat both types of
intrusions.

4.6.2.1 Distributed Defense against DDoS Flooding Attacks

A DDoS defense system must be designed to cover multiple network domains spanned by a given
cloud platform. These network domains cover the edge networks where cloud resources are con-
nected. DDoS attacks come with widespread worms. The flooding traffic is large enough to crash the
victim server by buffer overflow, disk exhaustion, or connection saturation. Figure 4.33(a) shows a
flooding attack pattern. Here, the hidden attacker launched the attack from many zombies toward a
victim server at the bottom router Ry,.

The flooding traffic flows essentially with a tree pattern shown in Figure 4.33(b). Successive
attack-transit routers along the tree reveal the abnormal surge in traffic. This DDoS defense system
is based on change-point detection by all routers. Based on the anomaly pattern detected in covered
network domains, the scheme detects a DDoS attack before the victim is overwhelmed. The

L victim
ﬂ DDosS attacking zombies
> Malicious attacking flows

(a) Traffic flow pattern of a DDoS attack (b) The attack traffic flow tree over 10 routers

FIGURE 4.33

DDoS attacks and defense by change-point detection at all routers on the flooding tree.
(Courtesy of Chen, Hwang, and Ku [15])
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detection scheme is suitable for protecting cloud core networks. The provider-level cooperation
eliminates the need for intervention by edge networks.

=
Example 4.8 Man-in-the-Middle Attacks

Figure 4.34 shows VM migration from host machine VMM A to host machine VMM B, via a security vulner-
able network. In a man-in-the-middle attack, the attacker can view the VM contents being migrated, steal
sensitive data, or even modify the VM-specific contents including the OS and application states. An
attacker posing this attack can launch an active attack to insert a VM-based rootkit into the migrating VM,
which can subvert the entire operation of the migration process without the knowledge of the guest OS
and embedded application.

Data and Software Protection Techniques

In this section, we will introduce a data coloring technique to preserve data integrity and user
privacy. Then we will discuss a watermarking scheme to protect software files from being widely
distributed in a cloud environment.

4.6.3.1 Data Integrity and Privacy Protection

Users desire a software environment that provides many useful tools to build cloud applications over
large data sets. In addition to application software for MapReduce, BigTable, EC2, 3S, Hadoop,
AWS, GAE, and WebSphere2, users need some security and privacy protection software for using
the cloud. Such software should offer the following features:

* Special APIs for authenticating users and sending e-mail using commercial accounts
* Fine-grained access control to protect data integrity and deter intruders or hackers
* Shared data sets protected from malicious alteration, deletion, or copyright violation
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Can modify arbitrary VM
v OS/application state
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Host VMM A migrates VM Host VMM B
to Host B
| Man-in-the-middle attack f
Unencrypted
FIGURE 4.34

A VM migrating from host A to host B through a vulnerable network threatened by a man-in-the-middle attack
to modify the VM template and OS state.
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* Ability to secure the ISP or cloud service provider from invading users’ privacy

* Personal firewalls at user ends to keep shared data sets from Java, JavaScript, and ActiveX
applets

* A privacy policy consistent with the cloud service provider’s policy, to protect against identity
theft, spyware, and web bugs

* VPN channels between resource sites to secure transmission of critical data objects

4.6.3.2 Data Coloring and Cloud Watermarking

With shared files and data sets, privacy, security, and copyright information could be compromised
in a cloud computing environment. Users desire to work in a trusted software environment that pro-
vides useful tools to build cloud applications over protected data sets. In the past, watermarking
was mainly used for digital copyright management. As shown in Figure 4.35, the system generates
special colors for each data object. Data coloring means labeling each data object by a unique
color. Differently colored data objects are thus distinguishable.

The user identification is also colored to be matched with the data colors. This color matching
process can be applied to implement different trust management events. Cloud storage provides
a process for the generation, embedding, and extraction of the watermarks in colored objects.
Interested readers may refer to the articles by Hwang and Li [36] for details on the data coloring
and matching process. In general, data protection was done by encryption or decryption which is
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FIGURE 4.35
Data coloring with cloud watermarking for trust management at various security clearance levels in data
centers.

(Courtesy of Hwang and Li [36])
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computationally expensive. The data coloring takes a minimal number of calculations to color or
decolor the data objects. Cryptography and watermarking or coloring can be used jointly in a cloud
environment.

4.6.3.3 Data Lock-in Problem and Proactive Solutions

Cloud computing moves both the computation and the data to the server clusters maintained by
cloud service providers. Once the data is moved into the cloud, users cannot easily extract their
data and programs from cloud servers to run on another platform. This leads to a data lock-in pro-
blem. This has hindered the use of cloud computing. Data lock-in is attributed to two causes: lack
of interoperability, whereby each cloud vendor has its proprietary API that limits users to extract
data once submitted; and lack of application compatibility, in that most computing clouds expect
users to write new applications from scratch, when they switch cloud platforms.

One possible solution to data lock-in is the use of standardized cloud APIs. This requires building
standardized virtual platforms that adhere to OVF, a platform-independent, efficient, extensible, and
open format for VMs. This will enable efficient, secure software distribution, facilitating the mobility
of VMs. Using OVF one can move data from one application to another. This will enhance QoS, and
thus enable cross-cloud applications, allowing workload migration among data centers to user-specific
storage. By deploying applications, users can access and intermix applications across different cloud
services.

Reputation-Guided Protection of Data Centers

Trust is a personal opinion, which is very subjective and often biased. Trust can be transitive but
not necessarily symmetric between two parties. Reputation is a public opinion, which is more objec-
tive and often relies on a large opinion aggregation process to evaluate. Reputation may change or
decay over time. Recent reputation should be given more preference than past reputation. In this
section, we review the reputation systems for protecting data centers or cloud user communities.

4.6.4.1 Reputation System Design Options

Figure 4.36 provides an overview of reputation system design options. Public opinion on the char-
acter or standing (such as honest behavior or reliability) of an entity could be the reputation of a
person, an agent, a product, or a service. It represents a collective evaluation by a group of people/
agents and resource owners. Many reputation systems have been proposed in the past mainly for
P2P, multiagent, or e-commerce systems.

To address reputation systems for cloud services, a systematic approach is based on the design
criteria and administration of the reputation systems. Figure 4.36 shows a two-tier classification of
existing reputation systems that have been proposed in recent years. Most of them were designed
for P2P or social networks. These reputation systems can be converted for protecting cloud comput-
ing applications. In general, the reputation systems are classified as centralized or distributed
depending on how they are implemented. In a centralized system, a single central authority is
responsible for managing the reputation system, while the distributed model involves multiple con-
trol centers working collectively. Reputation-based trust management and techniques for securing
P2P and social networks could be merged to defend data centers and cloud platforms against attacks
from the open network.
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FIGURE 4.36
Design options of reputation systems for social networks and cloud platforms.

A centralized reputation system is easier to implement, but demands more powerful and reliable
server resources; a distributed reputation system is much more complex to build. Distributed systems
are more scalable and reliable in terms of handling failures. At the second tier, reputation systems are
further classified by the scope of reputation evaluation. User-oriented reputation systems focus on
individual users or agents. Most P2P reputation systems belong to this category. In data centers, repu-
tation is modeled for the resource site as a whole. This reputation applies to products or services
offered by the cloud. Commercial reputation systems have been built by eBay, Google, and Amazon
in connection with the services they provide. These are centralized reputation systems.

Distributed reputation systems are mostly developed by academic research communities. Aberer and
Despotovic have proposed a model to manage trust in P2P systems. The Eigentrust reputation system
was developed at Stanford University using a trust matrix approach. The PeerTrust system was devel-
oped at Georgia Institute of Technology for supporting e-commerce applications. The PowerTrust sys-
tem was developed at the University of Southern California based on Power law characteristics of
Internet traffic for P2P applications. Vu, et al. proposed a QoS-based ranking system for P2P
transactions.

4.6.4.2 Reputation Systems for Clouds
Redesigning the aforementioned reputation systems for protecting data centers offers new opportu-
nities for expanded applications beyond P2P networks. Data consistency is checked across multiple
databases. Copyright protection secures wide-area content distributions. To separate user data from
specific SaaS programs, providers take the most responsibility in maintaining data integrity and con-
sistency. Users can switch among different services using their own data. Only the users have the
keys to access the requested data.

The data objects must be uniquely named to ensure global consistency. To ensure data consis-
tency, unauthorized updates of data objects by other cloud users are prohibited. The reputation system
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can be implemented with a trust overlay network. A hierarchy of P2P reputation systems is suggested
to protect cloud resources at the site level and data objects at the file level. This demands both
coarse-grained and fine-grained access control of shared resources. These reputation systems keep
track of security breaches at all levels.

The reputation system must be designed to benefit both cloud users and data centers. Data objects
used in cloud computing reside in multiple data centers over a SAN. In the past, most reputation
systems were designed for P2P social networking or for online shopping services. These reputation
systems can be converted to protect cloud platform resources or user applications in the cloud. A cen-
tralized reputation system is easier to implement, but demands more powerful and reliable server
resources. Distributed reputation systems are more scalable and reliable in terms of handling failures.
The five security mechanisms presented earlier can be greatly assisted by using a reputation system
specifically designed for data centers.

However, it is possible to add social tools such as reputation systems to support safe cloning of
VMs. Snapshot control is based on the defined RPO. Users demand new security mechanisms to
protect the cloud. For example, one can apply secured information logging, migrate over secured
virtual LANs, and apply ECC-based encryption for secure migration. Sandboxes provide a safe
execution platform for running programs. Further, sandboxes can provide a tightly controlled set of
resources for guest operating systems, which allows a security test bed to test the application code
from third-party vendors.

4.6.4.3 Trust Overlay Networks

Reputation represents a collective evaluation by users and resource owners. Many reputation
systems have been proposed in the past for P2P, multiagent, or e-commerce systems. To sup-
port trusted cloud services, Hwang and Li [36] have suggested building a trust overlay network
to model trust relationships among data-center modules. This trust overlay could be structured
with a distributed hash table (DHT) to achieve fast aggregation of global reputations from a
large number of local reputation scores. This trust overlay design was first introduced in [12].
Here, the designer needs to have two layers for fast reputation aggregation, updating, and disse-
mination to all users. Figure 4.37 shows construction of the two layers of the trust overlay
network.

At the bottom layer is the trust overlay for distributed trust negotiation and reputation aggrega-
tion over multiple resource sites. This layer handles user/server authentication, access authorization,
trust delegation, and data integrity control. At the top layer is an overlay for fast virus/worm signa-
ture generation and dissemination and for piracy detection. This overlay facilitates worm contain-
ment and IDSes against viruses, worms, and DDoS attacks. The content poisoning technique [6] is
reputation-based. This protection scheme can stop copyright violations in a cloud environment over
multiple data centers.

The reputation system enables trusted interactions between cloud users and data-center owners.
Privacy is enforced by matching colored user identifications with the colored data objects. The use
of content poisoning was suggested to protect copyright of digital content [46]. The security-aware
cloud architecture (see Figure 4.14) is specially tailored to protect virtualized cloud infrastructure.
The trust of provided cloud platforms comes from not only SLAs, but also from effective enforce-
ment of security policies and deployment of countermeasures to defend against network attacks. By
varying security control standards, one can cope with the dynamic variation of cloud operating
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DHT-based trust overlay networks built over cloud resources provisioned from multiple data centers for trust
management and distributed security enforcement.

(Courtesy of Hwang and Li [36])

conditions. The design is aimed at a trusted cloud environment to ensure high-quality services,
including security.

The cloud security trend is to apply virtualization support for security enforcement in data centers.
Both reputation systems and data watermarking mechanisms can protect data-center access at the
coarse-grained level and to limit data access at the fine-grained file level. In the long run, a new Security
as a Service is desired. This “SaaS” is crucial to the universal acceptance of web-scale cloud computing
in personal, business, community, and government applications. Internet clouds are certainly in line
with IT globalization and efficient computer outsourcing. However, interoperability among different
clouds relies on a common operational standard by building a healthy cloud ecosystem.
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BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS

Tutorials and an introduction to cloud computing can be found in [18,32] and Wikipedia [79].
Data centers are introduced in Wikipedia [81]. Four recent books on cloud computing by Buyya,
Broberg, and Goscinski [10], Linthicum [47], Rittinghouse and Ransome [62], and Velte, et al.
[71] address cloud principles, paradigms, architecture, technologies, and implementations. Ware-
house-scale data centers are covered by Barroso and Holzle [8]. Articles related to data-center
architecture and implementations can be found in Al-Fares, et al. [2], Greenberg, et al. [29], Guo,
et al. [30], Nelson, et al. [53], and Wu, et al. [82]. Green IT is studied in [22,28,60]. Articles
arguing about cloud definitions can be found in [25,32,49,86]. Benefits and opportunities of
cloud computing are found in [31,32,44,52,61]. Grid extensions for cloud computing can be
traced to [66,83].

Pros and cons of cloud computing coexist in the service industry. Others think the cloud offers
efficiency and flexibility in making desktop computing centralized. Cloud computing can consoli-
date the advantages from both centralized and distributed computing [56]. Barham, et al. [6] review
Xen [84] and its use in clouds. VMware recovery schemes are given in [74]. Cloud computing
infrastructures are reported by both academia [4,21,40,52,62,68] and IT industry or enterprises
[3,5,9,26,38,43,65,70]. Cloud technology for HPC or HTC was studied in [33,56,63,87]. Virtualiza-
tion support for cloud computing is studied in [14,21,41,42,67,76]. Live VM migration and disaster
recovery have been studied in [17,54,57,75,78]. Cloud security is covered by Hwang and Li [36]
and by Mather, et al. [51].

Business clouds are introduced by Chou in a 2010 book [16] with a lot of case studies of suc-
cesses and failures. Reputation systems studied in [23,58,73,80,85,89] could be modified for protect-
ing data centers and cloud resource sites. Data coloring and cloud watermarking are studied in
[20,36,45,46,84]. Trust models are proposed in [1,23,34,36,50,67] for cloud, pervasive computing,
and e-commerce applications. Security and privacy issues are discussed in [13,15,19,35,36,37,
48,59,85,89]. A global cloud computing test bed, called Open Circus, was recently reported in [5].
A cloud simulator, CloudSim, is available from the University of Melbourne [64]. Buyya, et al. [11]
and Stuer, et al. [69] have discussed issues concerning market-oriented cloud computing.
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HOMEWORK PROBLEMS
Problem 4.1

Compile a table to compare public clouds and private clouds in each of the following four aspects.
Also identify their differences, advantages, and shortcomings in terms of design technologies and
application flexibility. Give several example platforms that you know of under each cloud class.

Technology leveraging and IT resource ownership

Provisioning methods of resources including data and VMs, and their management
Workload distribution methods and loading policies

Security precautions and data privacy enforcement

Problem 4.2

Describe the following techniques or terminologies used in cloud computing and cloud services.
Use a concrete example cloud or case study to explain the addressed technology.

L0 T oD

a. Virtualized data center
b. Green information technology
€. Multitenant technique
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Problem 4.3

You have read a number of success or failure stories on cloud computing applications by startup
entrepreneurs or established IT companies. In Chou’s introductory book on business computing
[18], six categories of cloud services are identified, as listed here and shown below and also in
Figure 4.23.

Software Applications (SaaS): Concur, RightNOW, Teleo, Kenexa, Webex, Blackbaud,
Salesforce.com, Netsuite, Omniture, Kenexa, Vocus

Platform Services (PaaS): Force.com, App Engine, Postini, Facebook, MS Azure, NetSuite, IBM
RC2, IBM BlueCloud, SGI Cyclone, eBay, Pitney Bowes

Infrastructure Services (SaaS): Amazon AWS, OpSource Cloud, IBM Ensembles, Eli Lily,
Rackspace cloud, Windows Azure, HP, Bank North, New York Times

Collocation Services(LaaS): Savvis, Internap, NTTCommunications, Digital Realty Trust, 365
Main

Network Cloud Services (NaaS): Owest, AT&T, AboveNet

Hardware/Virtualization Services (HaaS): VMware, Intel, IBM, XenEnterprise

Pick one company from each of the six cloud service categories. Dig into the company services in
detail, contact the company directly, or visit their web sites. The purpose is to report on their inno-
vations in cloud technology, good business ideas implemented, software application development,
business models they have developed, and success/failure lessons learned.

Problem 4.4

Check the AWS cloud web site. Plan a real computing application using EC2, or S3, or SQS, separately.
You must specify the resources requested and figure out the costs charged by Amazon. Carry out the
EC2, S3, or SQS experiments on the AWS platform and report and analyze the performance results
measured.

Problem 4.5

Consider two cloud service systems: Google File System and Amazon S3. Explain how they
achieve their design goals to secure data integrity and to maintain data consistency while facing the
problems of hardware failure, especially concurrent hardware failures.

Problem 4.6

Read the articles by Buyya and associates [10—14] on market-oriented cloud architecture and
intercloud resource exchanges:

a. Discuss the reasons for scaling applications across multiple clouds. Suggest ways to leverage the
ideas in cloud mashup applications.

b. Identify key architectural elements that need to be added to realize market-oriented clouds within
commercial cloud systems supported by companies such as IBM and Microsoft.
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Problem 4.7

Suggest two hardware mechanisms and software schemes to secure the application cloud (SaaS), the
infrastructure cloud (IaaS), and the platform cloud (PaaS). Discuss their specific requirements and
difficulties and limitations that may be encountered.

Problem 4.8

Identify infrastructure components of IaaS services offered by Amazon EC2 and Google, and use
CloudSim from the University of Melbourne to model and simulate these infrastructures. Develop
an algorithm for scheduling applications across an InterCloud or federation of these simulated
infrastructures. In this evaluation, carry out experiments by modeling applications that are short-
lived such as web applications and long-lived such as high-performance computing.

Problem 4.9

Explain the following terminologies associated with data-center design and managements:

a. Differences in warehouse-scale data centers and modular data centers

b. Study three data center architecture papers in [2,24,25,45,68] and report on their contributions to
advance data-center performance and dependability

c. Discuss the scalability of those data-center architectures you studied in Part (b)

Problem 4.10

Explain the differences in the following two machine recovery schemes. Comment on their imple-
mentation requirements, advantages and shortcomings, and application potential.

a. Recovery of a physical machine failure by another physical machine
b. Recovery of a VM failure by another VM

Problem 4.11

Elaborate on four major advantages of using virtualized resources in cloud computing applications.
Your discussion should address resource management issues from the provider’s perspective and
the application flexibility, cost-effectiveness, and dependability concerns by cloud users.

Problem 4.12

Answer the following questions on the InterGrid Gateway (IGG) experiments. Read the original
paper [5] for details beyond Sections 6.3.3 and 6.3.4 on cloud creation and load peering experi-
ments in a distributed virtualized cloud infrastructure built on top of the French Grid’5000 system.

a. Study the details of the IGG software components and their usage to link resource sites

b. Repeat the IGG experiments in a local small-scale network or grid environment by getting the
IGG software from the University of Melbourne

c. Use the CloudSim simulator from the University of Melbourne or write your own simulator to
repeat the experiments in Part (b).
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Problem 4.13

Map the following 14 names or abbreviated terms on the left column with the best-match definitions
or descriptions on the right column. Just enter the description label (a, b, c, ....) in the blank spaces in
front of the terms being matched to. This is a 1-to-1 correspondence.

Term Description to Be Mapped with the Terms on the Left Column

__ GAE a) The agreement signed between users and providers in cloud computing
____CR™M b) A public cloud that must run from Windows 7 based host

______AWS c) A public cloud used mainly for PaaS applications

___ SLA d) A public compute cloud used in scalable business computing application
___ Azure e) A cloud platform built by SalesForce.com

____ EC2 f) A commercial cloud OS for transforming a data center to a cloud platform
_ S8 g) One of the most frequently used SaaS applications used in the business world
___ Force.com h) A cloud platform built mainly for laaS applications

___ VvSphere/4 i) A storage cloud service for distributed storage applications

__ _EBS i) An open-source hypervisor developed at Cambridge University

_SQL k) The distributed file system used in Google search engines and in App Engine
__ Chubby l) An Amazon block lock inteface for saving and restoring the VM instances
_ XEN m) An Azure service module for users to visit and use of relational database
_____GFS n) A distributed block lock service module in Google App Engine

Problem 4.14

This is an extended research problem on an efficient data-center network by Al-Fare, et al. [18] that
you studied in Section 4.2.2. The scalable data-center architecture was proposed to extend the fat-
tree concept. You are asked to perform the following tasks:

a. Study these two papers and justify the claimed network features on scalability, efficient routing,
and compatibility with the Ethernet, IP, and TCP protocols

h. Suggest a means to improve the network in fault tolerance, cross-section bandwidth, and
implementation efficiency based on today’s technology.

Problem 4.15

You have studied the basic concepts of live migration of VMs and disaster recovery in Section
3.5.2 and Section 4.3.3. Read the related articles in [16,19,52,55,72] and answer the following
questions based on your research findings:

a. What virtualization support is needed to achieve fast cloning of VMs? Explain how VM cloning
can enable fast recovery.

b. What are the RPO and RTO in the design of a disaster recovery scheme? Explain the role of
snapshots in disaster recovery schemes.
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Problem 4.16

Investigate the differences among encryption, watermarking, and coloring for protecting data sets
and software in cloud environments. Discuss their relative strengths and limitations.

Problem 4.17

This is an extended research problem on efficient data-center networks. In the papers by Guo, et al.
[25] and Whu, et al. [68], the MDCube networks module was proposed for building mega data cen-
ters as shown in Figure 4.13 in Section 4.2.4.

a. Discuss the advantages of using this network to improve the intercontainer bandwidth, reduce
the cost of the interconnection structure, and reduce the cabling complexity.

b. Justify the claimed low diameter, high capacity, and fault tolerance of the MDCube network
design for interconnecting data-center containers.

Problem 4.18

Read the articles [15,17,21,35,37,46,49,57] on cloud security and data protection. Can you suggest
any way to upgrade the cloud infrastructure for protection of data, privacy, and security in a cloud
platform or data-center environment? Evaluate the trust models reported in [1,25,34,36,48,64] for
securing cloud service applications.

Problem 4.19

Draw a layered diagram to relate the construction of IaaS, PaaS, and SaaS clouds from bare
machine hardware to the users applications. Briefly list the representative cloud service offerings at
each cloud layer from the major cloud providers that you know of.

Problem 4.20

Discuss the enabling technologies for building the cloud platforms from virtulized and automated
data centers to provide IaaS, PaaS, or SaaS services. Identify hardware, software, and networking
mechanisms or business models that enable multitenant services.
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SUMMARY

In this chapter, we cover two major service-oriented architecture styles, namely REST (REpresenta-
tional State Transfer) and WS (Web Services) and their extensions. We discuss message-oriented
middleware and enterprise bus infrastructure with a publish-subscribe infrastructure. Two application
interfaces (OGCE and HUBzero) are described using web service (portlet) and Web 2.0 (gadget)
technologies. We handle data and metadata in distributed systems using service registries and
semantic web/grid. Finally, we describe a general workflow approach illustrating it with the BPEL
web service standard, Pegasus, Taverna, Kepler, Trident, and Swift.

SERVICES AND SERVICE-ORIENTED ARCHITECTURE

Technology has advanced at breakneck speeds over the past decade, and many changes are still
occurring. However, in this chaos, the value of building systems in terms of services has grown in
acceptance and it has become a core idea of most distributed systems. Loose coupling and support
of heterogeneous implementations makes services more attractive than distributed objects. Web
services move beyond helping various types of applications to exchanging information. The techno-
logy also plays an increasingly important role in accessing, programming on, and integrating a set
of new and existing applications.

We have introduced service-oriented architecture (SOA) in Section 1.4.1. In general, SOA is
about how to design a software system that makes use of services of new or legacy applications
through their published or discoverable interfaces. These applications are often distributed over the
networks. SOA also aims to make service interoperability extensible and effective. It prompts archi-
tecture styles such as loose coupling, published interfaces, and a standard communication model in
order to support this goal. The World Wide Web Consortium (W3C) defines SOA as a form of dis-
tributed systems architecture characterized by the following properties [1]:

Logical view: The SOA is an abstracted, logical view of actual programs, databases, business
processes, and so on, defined in terms of what it does, typically carrying out a business-level
operation. The service is formally defined in terms of the messages exchanged between provider
agents and requester agents.
Message orientation: The internal structure of providers and requesters include the
implementation language, process structure, and even database structure. These features are
deliberately abstracted away in the SOA: Using the SOA discipline one does not and should not
need to know how an agent implementing a service is constructed. A key benefit of this
concerns legacy systems. By avoiding any knowledge of the internal structure of an agent, one
can incorporate any software component or application to adhere to the formal service definition.
Description orientation: A service is described by machine-executable metadata. The
description supports the public nature of the SOA: Only those details that are exposed to
the public and are important for the use of the service should be included in the description.
The semantics of a service should be documented, either directly or indirectly, by its description.
Granularity Services tend to use a small number of operations with relatively large and
complex messages.
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Network orientation Services tend to be oriented toward use over a network, though this is
not an absolute requirement.

Platform-neutral Messages are sent in a platform-neutral, standardized format delivered
through the interfaces. XML is the most obvious format that meets this constraint.

Unlike the component-based model, which is based on design and development of tightly
coupled components for processes within an enterprise, using different protocols and technologies
such as CORBA and DCOM, SOA focuses on loosely coupled software applications running across
different administrative domains, based on common protocols and technologies, such as HTTP and
XML. SOA is related to early efforts on the architecture style of large-scale distributed systems,
particularly Representational State Transfer (REST). Nowadays, REST still provides an alternative
to the complex standard-driven web services technology and is used in many Web 2.0 services. In
the following subsections, we introduce REST and standard-based SOA in distributed systems.

REST and Systems of Systems

REST is a software architecture style for distributed systems, particularly distributed hypermedia
systems, such as the World Wide Web. It has recently gained popularity among enterprises such as
Google, Amazon, Yahoo!, and especially social networks such as Facebook and Twitter because of
its simplicity, and its ease of being published and consumed by clients. REST, shown in Figure 5.1,
was introduced and explained by Roy Thomas Fielding, one of the principal authors of the HTTP
specification, in his doctoral dissertation [2] in 2000 and was developed in parallel with the
HTTP/1.1 protocol. The REST architectural style is based on four principles:

Resource Identification through URIs: The RESTful web service exposes a set of resources
which identify targets of interaction with its clients. The key abstraction of information in REST

HTTP packet

HTTP-REST ‘ e
client ‘ — ¢
.

HTTP verb
POST | GET | PUT | DELETE

REST aware
application

SSL |
authentication |

| HTTP server

REST payload HTTPIS®
HTML, XML, JPEG,

JSON, etc

FIGURE 5.1
A simple REST interaction between user and server in HTTP specification.

(Courtesy of Thomas Fielding [2])
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is a resource. Any information that can be named can be a resource, such as a document or
image or a temporal service. A resource is a conceptual mapping to a set of entities. Each
particular resource is identified by a unique name, or more precisely, a Uniform Resource
Identifier (URI) which is of type URL, providing a global addressing space for resources
involved in an interaction between components as well as facilitating service discovery. The
URIs can be bookmarked or exchanged via hyperlinks, providing more readability and the
potential for advertisement.

Uniform, Constrained Interface: Interaction with RESTful web services is done via the HTTP
standard, client/server cacheable protocol. Resources are manipulated using a fixed set of four
CRUD (create, read, update, delete) verbs or operations: PUT, GET, POST, and DELETE. PUT
creates a new resource, which can then be destroyed by using DELETE. GET retrieves the
current state of a resource. POST transfers a new state onto a resource.

Self-Descriptive Message: A REST message includes enough information to describe how to
process the message. This enables intermediaries to do more with the message without parsing
the message contents. In REST, resources are decoupled from their representation so that their
content can be accessed in a variety of standard formats (e.g., HTML, XML, MIME, plain text,
PDF, JPEG, JSON, etc.). REST provides multiple/alternate representations of each resource.
Metadata about the resource is available and can be used for various purposes, such as cache
control, transmission error detection, authentication or authorization, and access control.
Stateless Interactions: The REST interactions are “stateless” in the sense that the meaning of a
message does not depend on the state of the conversation. Stateless communications improve
visibility, since a monitoring system does not have to look beyond a single request data field in
order to determine the full nature of the request reliability as it facilitates the task of recovering
from partial failures, and increases scalability as discarding state between requests allows the
server component to quickly free resources. However, stateless interactions may decrease network
performance by increasing the repetitive data (per-interaction overhead). Stateful interactions are
based on the concept of explicit state transfer. Several techniques exist to exchange state, such as
URI rewriting, cookies, and hidden form fields. State can be embedded in response messages to
point to valid future states of the interaction.

Such lightweight infrastructure, where services can be built with minimal development tools, is
inexpensive and easy to adopt. The effort required to build a client to interact with a RESTful ser-
vice is rather small as developers can begin testing such services from an ordinary web browser,
without having to develop custom client-side software. From an operational point of view, a state-
less RESTful web service is scalable to serve a very large number of clients, as a result of REST
support for caching, clustering, and load balancing.

RESTful web services can be considered an alternative to SOAP stack or “big web services,”
described in the next section, because of their simplicity, lightweight nature, and integration with
HTTP. With the help of URIs and hyperlinks, REST has shown that it is possible to discover web
resources without an approach based on registration to a centralized repository. Recently, the web
Application Description Language (WADL) [3] has been proposed as an XML vocabulary to
describe RESTful web services, enabling them to be discovered and accessed immediately by poten-
tial clients. However, there are not a variety of toolkits for developing RESTful applications. Also,
restrictions on GET length, which does not allow encoding of more than 4 KB of data in the
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Table 5.1 REST Architectural Elements (Adapted from [2])
REST Elements Elements Example
Data elements Resource The intended conceptual target of a hypertext reference
Resource identifier URL
Representation HTML document, JPEG image, XML, etc.
Representation metadata Media type, last-modified time
Resource metadata Source link, alternates, vary
Control data If-modified-since, cache-control
Connectors Client libwww, libwww-perl
Server libwww, Apache API, NSAPI
Cache Browser cache, Akamai cache network
Resolver Bind (DNS lookup library)
Tunnel SSL after HTTP CONNECT
Components Origin server Apache httpd, Microsoft IS
Gateway Squid, CGl, Reverse Proxy
Proxy CERN Proxy, Netscape Proxy, Gauntlet
User agent Netscape Navigator, Lynx, MOMspider

resource URI, can create problems because the server would reject such malformed URIs, or may
even be subject to crashes. REST is not a standard. It is a design and architectural style for large-
scale distributed systems.

Table 5.1 lists the REST architectural elements. Several Java frameworks have emerged to help
with building RESTful web services. Restlet [4], a lightweight framework, implements REST archi-
tectural elements such as resources, representation, connector, and media type for any kind of
RESTful system, including web services. In the Restlet framework, both the client and the server
are components. Components communicate with each other via connectors.

JSR-311 (JAX-RS) [5], a specification provided by Sun Microsystems, defines a set of Java
APIs for the development of RESTful web services. The specification provides a set of annotations
with associated classes and interfaces that can be used to expose Java objects as web resources.
JSR-311 provides clear mappings between the URI and corresponding resources, and mappings
between HTTP methods with the methods in Java objects, by using annotations. The API supports
a wide range of HTTP entity content types including HTML, XML, JSON, GIF, JPG, and so on.
Jersey [6] is a reference implementation of the JSR-311 specification for building RESTful web ser-
vices. It also provides an API for developers to extend Jersey based on their needs.

B
Example 5.1 RESTful Web Service in Amazon S3 Interface

A good example of RESTful web service application in high-performance computing systems is the
Amazon Simple Storage Service (S3) interface. Amazon S3 is data storage for Internet applications. It
provides simple web services to store and retrieve data from anywhere at any time via the web. S3 keeps
fundamental entities, “objects,” which are named pieces of data accompanied by some metadata to be
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Table 5.2 Sample REST Request-Response for Creating an S3 Bucket

REST Request REST Response

PUT/[bucket-name] HTTP/1.0 HTTP/1.1 200 OK

Date: Wed, 15 Mar 2011 14:45:15 GMT x-amz-id-2: VjzdTviQorQtSjcglLshzCZSzN+7CnewvHA
Authorization:AWS [aws-access-key-id]: +6sNXR3VRcUPyO5fmSmo8bWnIS52ga
[header-signature] x-amz-request-id: 91A8CC60FOFC49E7

Host: s3.amazonaws.com Date: Wed, 15 Mar 2010 14:45:20 GMT

Location: /[bucket-name]
Content-Length: O
Connection: keep-alive

stored in containers called “buckets,” each identified by a unique key. Buckets serve several purposes:
They organize the Amazon S3 namespace at the highest level, identify the account responsible for storage
and data transfer charges, play a role in access control, and serve as the unit of aggregation for usage
reporting. Amazon S3 provides three types of resources: a list of user buckets, a particular bucket, and a
particular S3 object, accessible through https://s3.amazonaws.com/{name-of-bucket}/{name-of-object}.

These resources are retrieved, created, or manipulated by basic HTTP standard operations: GET,
HEAD, PUT, and DELETE. GET can be used to list buckets created by the user, objects kept inside a
bucket, or an object’s value and its related metadata. PUT can be used for creating a bucket or setting an
object’s value or metadata, DELETE for removing a particular bucket or object, and HEAD for getting a
specific object’s metadata. The Amazon S3 API supports the ability to find buckets, objects, and their
related metadata; create new buckets; upload objects; and delete existing buckets and objects for the
aforementioned operations. Table 5.2 shows some sample REST request-response message syntax for
creating an S3 bucket.

Amazon S3 REST operations are HTTP requests to create, fetch, and delete buckets and objects.
A typical REST operation consists of sending a single HTTP request to Amazon S3, followed by waiting for
an HTTP response. Like any HTTP request, a request to Amazon S3 contains a request method, a URI,
request headers which contain basic information about the request, and sometimes a query string and
request body. The response contains a status code, response headers, and sometimes a response body.

The request consists of a PUT command followed by the bucket name created on S3. The Amazon S3
REST API uses the standard HTTP header to pass authentication information. The authorization header
consists of an AWS Access Key ID and AWS SecretAccess Key, issued by the developers when they regis-
ter to S3 Web Services, followed by a signature. To authenticate, the AWSAccessKeyld element identifies
the secret key to compute the signature upon request from the developer. If the request signature matches
the signature included, the requester is authorized and subsequently, the request is processed.

The composition of RESTful web services has been the main focus of composite Web 2.0 appli-
cations, such as mashups, to be discussed in Sections 5.4 and 9.1.3. A mashup application combines
capabilities from existing web-based applications. A good example of a mashup is taking images
from an online repository such as Flickr and overlaying them on Google Maps. Mashups differ
from all-in-one software products in that instead of developing a new feature into an existing tool,
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they combine the existing tool with another tool that already has the desired feature. All tools work
independently, but create a uniquely customized experience when used together in harmony.

Services and Web Services

In an SOA paradigm, software capabilities are delivered and consumed via loosely coupled, reusa-
ble, coarse-grained, discoverable, and self-contained services interacting via a message-based com-
munication model. The web has becomes a medium for connecting remote clients with applications
for years, and more recently, integrating applications across the Internet has gained in popularity.
The term “web service” is often referred to a self-contained, self-describing, modular application
designed to be used and accessible by other software applications across the web. Once a web ser-
vice is deployed, other applications and other web services can discover and invoke the deployed
service (Figure 5.2).

In fact, a web service is one of the most common instances of an SOA implementation. The
W3C working group [1] defines a web service as a software system designed to support interoper-
able machine-to-machine interaction over a network. According to this definition, a web service has
an interface described in a machine-executable format (specifically Web Services Description Lan-
guage or WSDL). Other systems interact with the web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an XML serialization in
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FIGURE 5.2
A simple web service interaction among provider, user, and the UDDI registry.
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conjunction with other web-related standards. The technologies that make up the core of today’s
web services are as follows:

Simple Object Access Protocol (SOAP) SOAP provides a standard packaging structure for
transmission of XML documents over various Internet protocols, such as SMTP, HTTP, and
FTP. By having such a standard message format, heterogeneous middleware systems can
achieve interoperability. A SOAP message consists of a root element called envelope, which
contains a header: a container that can be extended by intermediaries with additional
application-level elements such as routing information, authentication, transaction management,
message parsing instructions, and Quality of Service (QoS) configurations, as well as a body
element that carries the payload of the message. The content of the payload will be marshaled
by the sender’s SOAP engine and unmarshaled at the receiver side, based on the XML schema
that describes the structure of the SOAP message.

Web Services Description Language (WSDL) WSDL describes the interface, a set of
operations supported by a web service in a standard format. It standardizes the representation of
input and output parameters of its operations as well as the service’s protocol binding, the way
in which the messages will be transferred on the wire. Using WSDL enables disparate clients to
automatically understand how to interact with a web service.

Universal Description, Discovery, and Integration (UDDI) UDDI provides a global registry
for advertising and discovery of web services, by searching for names, identifiers, categories, or
the specification implemented by the web service. UDDI is explained in detail in Section 5.4.

SOAP is an extension, and an evolved version of XML-RPC, a simple and effective remote pro-
cedure call protocol which uses XML for encoding its calls and HTTP as a transport mechanism,
introduced in 1999 [7]. According to its conventions, a procedure executed on the server and the
value it returns was a formatted in XML. However, XML-RPC was not fully aligned with the latest
XML standardization. Moreover, it did not allow developers to extend the request or response for-
mat of an XML-RPC call. As the XML schema became a W3C recommendation in 2001, SOAP
mainly describes the protocols between interacting parties and leaves the data format of exchanging
messages to XML schema to handle.

The major difference between web service technology and other technologies such as J2EE,
CORBA, and CGI scripting is its standardization, since it is based on standardized XML, providing a
language-neutral representation of data. Most web services transmit messages over HTTP, making
them available as Internet-scale applications. In addition, unlike CORBA and J2EE, using HTTP as
the tunneling protocol by web services enables remote communication through firewalls and proxies.

SOAP-based web services are also referred to as “big web services” [7]. As we saw earlier in
this chapter, RESTful [8] services can also be considered a web service, in an HTTP context.
SOAP-based web services interaction can be either synchronous or asynchronous, making them sui-
table for both request-response and one-way exchange patterns, thus increasing web service avail-
ability in case of failure.

5.1.2.1 WS-l Protocol Stack

Unlike RESTful web services that do not cover QoS and contractual properties, several optional
specifications have been proposed for SOAP-based web services to define nonfunctional require-
ments and to guarantee a certain level of quality in message communication as well as reliable,
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FIGURE 5.3
WS-I protocol stack and its related specifications.

transactional policies, such as WS-Security [9], WS-Agreement [10], WS-ReliableMessaging [11],
WS-Transaction [12], and WS-Coordination [13] as shown in Figure 5.3.

As mentioned, SOAP messages are encoded using XML, which requires that all self-described
data be sent as ASCII strings. The description takes the form of start and end tags which often con-
stitute half or more of the message’s bytes. Transmitting data using XML leads to a considerable
transmission overhead, increasing the amount of transferred data by a factor 4 to 10 [14]. Moreover,
XML processing is compute and memory intensive and grows with both the total size of the data
and the number of data fields, making web services inappropriate for use by limited-profile devices,
such as handheld PDAs and mobile phones.

Web services provide on-the-fly software composition, described further in Section 5.5, through the
use of loosely coupled, reusable software components. By using Business Process Execution Language
for Web Services (BPEL4WS), a standard executable language for specifying interactions between web
services recommended by OASIS, web services can be composed together to make more complex web
services and workflows. BPEL4WS is an XML-based language, built on top of web service specifica-
tions, which is used to define and manage long-lived service orchestrations or processes.

In BPEL, a business process is a large-grained stateful service, which executes steps to complete
a business goal. That goal can be the completion of a business transaction, or fulfillment of the job
of a service. The steps in the BPEL process execute activities (represented by BPEL language ele-
ments) to accomplish work. Those activities are centered on invoking partner services to perform
tasks (their job) and return results back to the process. BPEL enables organizations to automate
their business processes by orchestrating services. Workflow in a grid context is defined [15] as



280 CHAPTER 5 Service-Oriented Architectures for Distributed Computing

“The automation of the processes, which involves the orchestration of a set of Grid services, agents
and actors that must be combined together to solve a problem or to define a new service.”

The JBPM [16] Project, built for the JBoss [17] open source middleware platform, is an example
of a workflow management and business process execution system. Another workflow system,
Taverna [18], has been extensively used in life science applications. There are a variety of tools for
developing and deploying web services in different languages, among them SOAP engines such as
Apache Axis for Java, gSOAP [19] for C++, the Zolera Soap Infrastructure (ZSI) [20] for Python,
and Axis2/Java and Axis2/C. These toolkits, consisting of a SOAP engine and WSDL tools for gen-
erating client stubs, considerably hide the complexity of web service application development and
integration. As there is no standard SOAP mapping for any of the aforementioned languages, two
different implementations of SOAP may produce different encodings for the same objects.

Since SOAP can combine the strengths of XML and HTTP, as a standard transmission protocol
for data, it is an attractive technology for heterogeneous distributed computing environments, such
as grids and clouds, to ensure interoperability. As we discussed in Section 7.4, Open Grid Services
Architecture (OGSA) grid services are extensions of web services and in new grid middleware,
such as Globus Toolkit 4 and its latest released version GTS, pure standard web services. Amazon
S3 as a cloud-based persistent storage service is accessible through both a SOAP and a REST inter-
face. However, REST is the preferred mechanism for communicating with S3 due to the difficulties
of processing large binary objects in the SOAP API, and in particular, the limitation that SOAP
puts on the object size to be managed and processed. Table 5.3 depicts a sample SOAP request-
response to get a user object from S3.

A SOAP message consists of an envelope used by the applications to enclose information that
need to be sent. An envelope contains a header and a body block. The EncodingStyle element refers

Table 5.3 Sample SOAP Request-Response for Creating an S3 Bucket

SOAP Request SOAP Response

<soap:Envelope <soap:Envelope
xmins:soap="http://www.w3.0rg/2003/05/soap- xmins:soap="http://www.w3.0rg/2003/05/soap-
envelope” envelope”

soap:encodingStyle= soap:encodingStyle=
“http://www.w3.0rg/2001/12/soap-encoding”> “nttp://www.w3.0rg/2001/12/soap-encoding”>
<soap:Body> <soap:Body>

<CreateBucket xmins="http://doc.s3.amazonaws <CreateBucket xmins="http://doc.s3.amazonaws
.com/2010-03-15"> .com/2010-03-15">
<Bucket>SampleBucket</Bucket> <Bucket>SampleBucket</Bucket>
<AWSAccessKeyld> <AWSAccessKeyld>1BIFVRAYCP1VJEXAMPLE=
1BOFVRAYCP1VJEXAMPLE= </AWSAccessKeyld>

</AWSAccessKeyld> <Timestamp>2010-03-15T14:40:00.165Z
<Timestamp>2010-03-15T14:40:00.165Z </Timestamp>

</Timestamp> <Signature>luyz3d3P0aTou39dzbgaEXAMPLE
<Signature>luyz3d3P0aTou39dzbgaEXAMPLE =</Signature>

=</Signature> </CreateBucket>

</CreateBucket> </soap:Body>

</soap:Body> </soap:Envelope>

</soap:Envelope>
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Table 5.4 The 10 Areas Covered by the Core WS-* Specifications
WS-* Specification Area Examples
1. Core Service Model XML, WSDL, SOAP
2. Service Internet WS-Addressing, WS-MessageDelivery, Reliable WSRM, Efficient MOTM
3. Notification WS-Noatification, WS-Eventing (Publish-Subscribe)
4. Workflow and Transactions BPEL, WS-Choreography, WS-Coordination
5. Security WS-Security, WS-Trust, WS-Federation, SAML, WS-SecureConversation
6. Service Discovery UDDI, WS-Discovery
7. System Metadata and State WSRF, WS-MetadataExchange, WS-Context
8. Management WSDM, WS-Management, WS-Transfer
9. Policy and Agreements WS-Policy, WS-Agreement
10. Portals and User Interfaces WSRP (Remote Portlets)

to the URI address of an XML schema for encoding elements of the message. Each element of a
SOAP message may have a different encoding, but unless specified, the encoding of the whole mes-
sage is as defined in the XML schema of the root element. The header is an optional part of a
SOAP message that may contain auxiliary information as mentioned earlier, which does not exist in
this example.

The body of a SOAP request-response message contains the main information of the conversa-
tion, formatted in one or more XML blocks. In this example, the client is calling CreateBucket of
the Amazon S3 web service interface. In case of an error in service invocation, a SOAP message
including a Fault element in the body will be forwarded to the service client as a response, as an
indicator of a protocol-level error.

5.1.2.2 WS-* Core SOAP Header Standards

Table 5.4 summarizes some of the many (around 100) core SOAP header specifications. There are
many categories and several overlapping standards in each category. Many are expanded in this
chapter with XML, WSDL, SOAP, BPEL, WS-Security, UDDI, WSRF, and WSRP. The number
and complexity of the WS-* standards have contributed to the growing trend of using REST and
not web services. It was a brilliant idea to achieve interoperability through self-describing messages,
but experience showed that it was too hard to build the required tooling with the required perfor-
mance and short implementation time.

L
Example 5.2 WS-RM or WS-Reliable Messaging

WS-RM is one of the best developed of the so-called WS-* core web service specifications. WS-RM uses
message instance counts to allow destination services to recognize message delivery faults (either missing or
out-of-order messages). WS-RM somewhat duplicates the capabilities of TCP-IP in this regard, but operates
at a different level—namely at the level of user messages and not TCP packets, and from source to destina-
tion independent of TCP routing in between. This idea was not fully developed (e.g., multicast messaging is
not properly supported). Details can be found at http://en.wikipedia.org/wiki/WS-ReliableMessaging.
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Enterprise Multitier Architecture

Enterprise applications often use multitier architecture to encapsulate and integrate various functional-
ities. Multitier architecture is a kind of client/server architecture in which the presentation, the applica-
tion processing, and the data management are logically separate processes. The simplest known
multilayer architecture is a two-tier or client/server system. This traditional two-tier, client/server model
requires clustering and disaster recovery to ensure resiliency. While the use of fewer nodes in an enter-
prise simplifies manageability, change management is difficult as it requires servers to be taken offline
for repair, upgrading, and new application deployments. Moreover, the deployment of new applications
and enhancements is complex and time-consuming in fat-client environments, resulting in reduced
availability. A three-tier information system consists of the following layers (Figure 5.4):

* Presentation layer Presents information to external entities and allows them to interact with the
system by submitting operations and getting responses.

@ . ?
Presentation layer
] Y o

Web services Web server

T
-
g‘ Application logic (middleware)

Application server

4}
my

—

ke
=[]
‘ File server Database server

Data storage

Information system

FIGURE 5.4

Three-tier system architecture.
(Gustavo Alonso, et al, Web Services: Concepts, Architectures and Applications (Data-Centric Systems and Applications).

Springer Verlag, 2010. With kind permission from Springer Science+Business Media B.V.)
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* Business/application logic layer or middleware Programs that implement the actual operations
requested by the client through the presentation layer. The middle tier can also control user
authentication and access to resources, as well as performing some of the query processing for
the client, thus removing some of the load from the database servers.

* Resource management layer Also known as the data layer, deals with and implements the
different data sources of an information system.

In fact, a three-tier system is an extension of two-tier architecture where the application logic is
separated from the resource management layer [21]. By the late 1990s, as the Internet became an
important part of many applications, the industry extended the three-tier model to an N-tier
approach. SOAP-based and RESTful web services have become more integrated into applications.
As a consequence, the data tier split into a data storage tier and a data access tier. In very sophisti-
cated systems, an additional wrapper tier can be added to unify data access to both databases and
web services. Web services can benefit from the separation of concerns inherent in multitier archi-
tecture in almost the same way as most dynamic web applications [22].

The business logic and data can be shared by both automated and GUI clients. The only differ-
ences are the nature of the client and the presentation layer of the middle tier. Moreover, separating
business logic from data access enables database independence. N-tier architecture is characterized
by the functional decomposition of applications, service components, and their distributed deployment.
Such an architecture for both web services and dynamic web applications leads to reusability,
simplicity, extensibility, and clear separation of component functionalities.

Web services can be seen as another tier on top of the middleware and application integration
infrastructure [23], allowing systems to interact with a standard protocol across the Internet. Because
each tier can be managed or scaled independently, flexibility is increased in the IT infrastructure that
employs N-tier architecture. In the next section, we will describe OGSA, as multitier, service-oriented
architecture for middleware which describes the capabilities of a grid computing environment and
embodies web services to make computing resources accessible in large-scale heterogeneous
environments.

Grid Services and 0GSA

The OGSA [24], developed within the OGSA Working Group of the Global Grid Forum (recently
renamed to Open Grid Forum or OGF and being merged with the Enterprise Grid Alliance or EGA
in June 2006), is a service-oriented architecture that aims to define a common, standard, and open
architecture for grid-based applications. “Open” refers to both the process to develop standards and
the standards themselves. In OGSA, everything from registries, to computational tasks, to data
resources is considered a service. These extensible set of services are the building blocks of an
OGSA-based grid. OGSA is intended to:

* Facilitate use and management of resources across distributed, heterogeneous environments
* Deliver seamless QoS

* Define open, published interfaces in order to provide interoperability of diverse resources

* Exploit industry-standard integration technologies

* Develop standards that achieve interoperability
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* Integrate, virtualize, and manage services and resources in a distributed, heterogeneous
environment

* Deliver functionality as loosely coupled, interacting services aligned with industry-accepted web
service standards

Based on OGSA, a grid is built from a small number of standards-based components, called grid
services. [25] defines a grid service as “a web service that provides a set of well-defined interfaces,
following specific conventions (expressed using WSDL).” OGSA gives a high-level architectural
view of grid services and doesn’t go into much detail when describing grid services. It basically
outlines what a grid service should have. A grid service implements one or more interfaces, where
each interface defines a set of operations that are invoked by exchanging a defined sequence of
messages, based on the Open Grid Services Infrastructure (OGSI) [26]. OGSI, also developed by
the Global Grid Forum, gives a formal and technical specification of a grid service.

Grid service interfaces correspond to portTypes in WSDL. The set of portTypes supported by a
grid service, along with some additional information relating to versioning, are specified in the grid
service’s serviceType, a WSDL extensibility element defined by OGSA. The interfaces address dis-
covery, dynamic service creation, lifetime management, notification, and manageability; whereas the
conventions address naming and upgradeability. Grid service implementations can target native plat-
form facilities for integration with, and of, existing IT infrastructures.

According to [25], OGSA services fall into seven broad areas, defined in terms of capabilities
frequently required in a grid scenario. Figure 5.5 shows the OGSA architecture. These services are
summarized as follows:

* Infrastructure Services Refer to a set of common functionalities, such as naming, typically
required by higher level services.

¢ Execution Management Services Concerned with issues such as starting and managing tasks,
including placement, provisioning, and life-cycle management. Tasks may range from simple
jobs to complex workflows or composite services.

¢ Data Management Services Provide functionality to move data to where it is needed, maintain
replicated copies, run queries and updates, and transform data into new formats. These services
must handle issues such as data consistency, persistency, and integrity. An OGSA data service is
a web service that implements one or more of the base data interfaces to enable access to, and
management of, data resources in a distributed environment. The three base interfaces, Data
Access, Data Factory, and Data Management, define basic operations for representing, accessing,
creating, and managing data.

* Resource Management Services Provide management capabilities for grid resources:
management of the resources themselves, management of the resources as grid components, and
management of the OGSA infrastructure. For example, resources can be monitored, reserved,
deployed, and configured as needed to meet application QoS requirements. It also requires an
information model (semantics) and data model (representation) of the grid resources and services.

* Security Services Facilitate the enforcement of security-related policies within a (virtual)
organization, and supports safe resource sharing. Authentication, authorization, and integrity
assurance are essential functionalities provided by these services.

¢ Information Services Provide efficient production of, and access to, information about the grid
and its constituent resources. The term “information” refers to dynamic data or events used for
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FIGURE 5.5
The OGSA architecture.

(Courtesy of Foster, et al. [24], http://www.ogf.org/documents/GFD.80.pdf.)

status monitoring; relatively static data used for discovery; and any data that is logged.
Troubleshooting is just one of the possible uses for information provided by these services.

* Self-Management Services Support service-level attainment for a set of services (or resources),
with as much automation as possible, to reduce the costs and complexity of managing the system.
These services are essential in addressing the increasing complexity of owning and operating an
IT infrastructure.

OGSA has been adopted as reference grid architecture by a number of grid projects. The first
prototype grid service implementation was demonstrated January 29, 2002, at a Globus Toolkit
tutorial held at Argonne National Laboratory. Since then, the Globus Toolkit 3.0 and 3.2 have
offered an OGSA implementation based on OGSI. Two key properties of a grid service are transi-
ence and statefulness. Creation and destruction of a transient grid service can be done dynamically.
The creation and lifetime of OGSA grid services are handled following the “factory pattern,” to be
explained in Section 7.3.1. Web service technologies are designed to support loosely coupled,
coarse-grained dynamic systems, and hence do not meet all grid requirements, such as keeping state
information, and thus they are unable to fully address the wide range of distributed systems OGSA
is designed to support.
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OGSA applies a set of WSDL extensions to represent the identifiers necessary to implement a
grid service instance across any system. These extensions were defined by OGSI. A key extension
is the grid service reference: a network-wide pointer to a specific grid service instance, which
makes that instance accessible to remote client applications. These extensions, including the Grid
Service Handle (GSH) and Grid Service Reference (GSR), will be described in Chapter 7. These
extensions include stateful grid services and the shortcomings of OGSI with its dense and long spe-
cifications. Further problems concern incompatibility with some current web service tools and the
fact that it takes a lot of concepts from object orientation.

Unlike the nature of web services, this has led to close cooperation between the grid and web service
communities. As a result of these joint efforts, the Web Services Resource Framework (WSRF) [27],
WS-Addressing [28], and WS-Notification (WSN) specifications have been proposed to OASIS. Conse-
quently, OGSI extensions to web services have been deprecated in favor of new web service standards,
and in particular, WSRF. WSRF is a collection of five different specifications. Of course, they all relate
to the management of WS-Resources. Table 5.5 depicts WSRF-related interface operations.

Plain web services are usually stateless. This means the web service can’t “remember” informa-
tion, or keep state, from one invocation to another. However, since a web service is stateless, the
following invocations have no idea of what was done in the previous invocations. Grid applications
generally require web services to keep state information as they interact with the clients or other
web services. The purpose of WSRF is to define a generic framework for modeling and accessing

Table 5.5 WSRF and lts Related Specifications

Specification Description
WSRF WS-ResourceProperties Standardizes the definition of the resource
Specifications properties, its association with the WS interface,

and the messages defining the query and
update capability against resource properties
WS-Resourcelifetime Provides standard mechanisms to manage the
life cycle of WS-resources (e.g., setting
termination time)
WS-ServiceGroup Standard expression of aggregating web
services and WS-Resources
WS-Basefault Provides a standard way of reporting faults
WSRF- WS-Notification WS-Base Proposes a standard way of expressing the
Related Notification basic roles involved in web service publish and
Specifications subscribe for notification message exchange
WS- Standardizes message exchanges involved in
BrokeredNotification web service publish and subscribe of a
message broker
WS-Topics Defines a mechanism to organize and
categorize items of interest for a subscription
known as “topics”
WS-Addressing Transport-neutral mechanisms to address
web service and messages
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persistent resources using web services in order to facilitate the definition and implementation of a
service and the integration and management of multiple services. Note that “stateless” services can,
in fact, remember state if that is carried in messages they receive. These could contain a token
remembered in a cookie on the client side and a database or cache accessed by the service. Again,
the user accessing a stateless service can establish state for the session through the user login that
references permanent information stored in a database.

The state information of a web service is kept in a separate entity called a resource. A service
may have more than one (singleton) resource, distinguished by assigning a unique key to each
resource. Resources can be either in memory or persistent, stored in secondary storage such as a
file or database. The pairing of a web service with a resource is called a WS-Resource. The
preferred way of addressing a specific WS-Resource is to use the qualified endpoint reference
(EPR) construct, proposed by the WS-Addressing specification. Resources store actual data items,
referred to as resource properties. Resource properties are usually used to keep service data
values, providing information on the current state of the service, or metadata about such values,
or they may contain information required to manage the state, such as the time when the resource
must be destroyed. Currently, the Globus Toolkit 4.0 provides a set of OGSA capabilities based
on WSRF.

Other Service-Oriented Architectures and Systems

A survey of services and how they are used can be found in [29]. Here we give two examples: one
of a system and one of a small grid.

=
Example 5.3 U.S. DoD Net-Centric Services

The U.S. military has introduced a set of so-called Net-Centric services that are to be used in Department
of Defense (DoD) software systems to be used on the GiG - Global Information Grid. As shown in
Table 5.6, these make different choices of services from OGSA. This is not a radically different architec-
ture, but rather a different layering. Messaging is present in Table 5.6 but viewed as part of WS-* or a

Table 5.6 Core Global Information Grid Net-Centric Services

Service or Feature Examples

Enterprise services management Life-cycle management

Security; information assurance (IA) Confidentiality, integrity, availability, reliability
Messaging Publish-subscribe important

Discovery Data and services

Mediation Agents, brokering, transformation, aggregation
Collaboration Synchronous and asynchronous

User assistance Optimize Global Information Grid user experience
Storage Retention, organization, and disposition of all forms of data
Application Provisioning, operations, and maintenance
Environmental control services Policy
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higher application layer in OGSA. (see more details in http://www.ogf.org/gf/group_info/view.php?group=
infod-wg for the INFOD standard) [29].
|

=
Example 5.4 Services in CICC—The Chemical Informatics Grid
The goal of this project is to support cluster analysis, data mining, and quantum simulation/first principles
calculations on experimentally obtained data on small molecules with potential use in drug development.
Small molecule data is gathered from NIH PubChem and DTP databases, with additional large molecule
data available from service-wrapped databases such as the Varuna, Protein Data Bank, PDBBind, and
MODB. NIH-funded High Throughput Screening centers are expected to deluge the PubChem database
with assays of the next several years, making the automated organization and analysis of data essential.
Data analysis applications are interestingly combined with text analysis applications applied to journal
and technical articles to make a comprehensive scientific environment. Workflow is a key part of this pro-
ject as it encodes scientific use cases. Many CICC services are based on Cambridge University’s WWMM
project (www-pmr.ch.cam.ac.uk/wiki/Main_Page) led by Peter Rust. Table 5.7 shows the mix of system
and application services used in CICC. This is a small project and larger grids would have many more ser-
vices. Details can be found at the web site: http://www.chembiogrid.org.

Table 5.7 Services and Standards Used in CICC

Service Name Description

Workflow/Monitoring/ Uses Taverna from the UK e-Science Program/OMII or mashups written in

Management Services scripting languages.

Authentication/ Currently all services are openly available.

Authorization

Registry and Discovery Will inherit registry services from other grids.

Portal and Portlets Use a JSR 168-based portal.

File Services No specialized service. URLs are used for naming files and simple remote
download. Services developed previously for other grids can be used for
uploads.

NIH DTP Database Access to the NIH Developmental Therapeutics Program (DTP)’s database of

Services molecular screens against 60 cancer cell lines. This is a free service provided
by the NIH and used by Chembiogrid.

PubMed Search Service Searchable online database of medical journal articles. CICC develops

harvesting services of the abstracts that can be combined with text analysis
applications such as OSCARS.

SPRESI Services Clients/service proxies to the commercial SPRESI service (www.spresi.con).
This scientific database houses molecular and reaction data and references and
patents.

Varuna Database Service Molecular structure and more detailed information (such as force fields).

VOTables Data Tables CICC-developed web service based on the National Virtual Observatory’s

Web Service VOTables XML format for tabular data.
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Service Name
Specific Applications:
BCI, OpenEye, Varuna,
AutoGEFF

Condor and BirdBath
ToxTree Service

OSCARS3 Service

CDK Services

OpenBabel Service
INnChlGoogle

Key Interfaces/Standards/
Software Used

Unused Interfaces/
Software

Table 5.7 Services and Standards Used in CICC—cont’d

Description

CICC inherits job management services from other grids (including one based
on Apache Ant) for managing the execution of both commercial and in-house
developed high-performance computing applications.

Examine the use of Condor and its SOAP interface (BirdBath) as a super-
scheduler for Varuna applications on the TeraGrid.

Wraps an algorithm for estimating toxic hazards in a particular compound.
Useful in combination with other clustering programs in a workflow.

Based on OSCARS3 by the WWMM group, performs text analysis on journal
articles and other documents to extract (in XML) the chemistry-specific
information. SMILES assigned to well-known compounds. Works with
traditional database and clustering algorithms.

CICC has developed a number of simple services based on the Chemistry
Development Kit (CDK). These include similarity calculations, molecular
descriptor calculations, fingerprint generators, 2D image generators, and 3D
coordinate molecular generators.

Converts between various chemical formats (such as between InChl and
SMILES).

For a given InChl (a string specification of a molecular structure), performs a
Google search to return a page-ranked list of matches.

WSDL, SOAP (with Axis 1.x). CML, InChl, SMILES, Taverna SCUFI, JSR-168
JDBC Servlets, VOTables

WS-Security, JSDL, WSRF, BPEL, OGSA-DAI

MESSAGE-ORIENTED MIDDLEWARE

This section introduces message-oriented middleware for supporting distributed computing. The

study included enterprise bus, publish-subscribe model, queuing, and messaging systems.

Enterprise Bus

I
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In the previous section, we described services and service architectures. These services, by defini-
tion, interact with messages with a variety of different formats (APIs), wire protocols, and transport
mechanisms. It is attractive to abstract the communication mechanism so that services can be
defined that communicate independent of details of the implementation. For example, the author of
a service should not need to worry that a special port is to be used to avoid firewall difficulties or
that we need to use UDP and special fault tolerance approaches to achieve satisfactory latency on a
long-distance communication. Further, one may wish to introduce a wrapper so that services expecting
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Two message bus implementations between services or using a broker network.

messages in different styles (say, SOAP, REST, or Java RMI) can communicate with each other. The
term “enterprise service bus” or ESB [30,31] refers to the case where the bus supports the convenient
integration of many components, often in different styles. These remarks motivate the messaging black
box abstraction shown in Figure 5.6.

One does not open a channel between source and destination, but rather injects a message into the
bus with enough information to allow it to be delivered correctly. This injection is performed by code
loaded into each service and represented by the filled ovals as client interfaces in Figure 5.6(a). The
message bus is shown linking services in this figure, but it can work with any software or hardware
entity sending and receiving messages. A simple example could be desktops or smart phones as the
clients. Further, such buses can be implemented internally to an application, or in a distributed fashion.
In the latter case, the message bus is typically implemented as a set of “brokers” shown in Figure 5.6(b).

The use of multiple brokers allows the bus to scale to many clients (services) and large mes-
sage traffic. Note that the brokers of Figure 5.6(b) are “just” special servers/services that receive
messages and perform needed transformations and routing on them and send out new messages.
There is a special (simple) case of message buses where the brokers shown in Figure 5.6(b) are
not separate servers but are included in the client software. Note that such buses support not
just point-to-point messaging but broadcast or selective multicast to many recipient clients
(services).

Often, one implements brokers as managers of queues, and software in this area often has MQ
or “Message Queue” in its description. An early important example is MQSeries [32] from IBM
which is now marketed as the more recent WebSphereMQ [32,33]. Later, when we study cloud
platforms in Chapter 8, we will find that both Azure and Amazon offer basic queuing software.
A typical use of a message queue is to relate the master and workers in the “farm” model of parallel
computing where the “master” defines separate work items that are placed in a queue which is
accessed by multiple workers that select the next available item. This provides a simple dynamically
load-balanced parallel execution model. If necessary, the multiple brokers of Figure 5.6(b) can be
used to achieve scalability.
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Publish-Subscribe Model and Notification

An important concept here is “publish-subscribe” [34] which describes a particular model for link-
ing source and destination for a message bus. Here the producer of the message (publisher) labels
the message in some fashion; often this is done by associating one or more topic names from a
(controlled) vocabulary. Then the receivers of the message (subscriber) will specify the topics for
which they wish to receive associated messages. Alternatively, one can use content-based delivery
systems where the content is queried in some format such as SQL.

The use of topic or content-based message selection is termed message filtering. Note that in
each of these cases, we find a many-to-many relationship between publishers and subscribers.
Publish-subscribe messaging middleware allows straightforward implementation of notification or
event-based programming models. The messages could, for example, be labeled by the desired noti-
fying topic (e.g., an error or completion code) and contain content elaborating the notification [34].

Queuing and Messaging Systems

There are several useful standards in this field. The best known is the Java Message Service (JMS)
[35] which specifies a set of interfaces outlining the communication semantics in pub/sub and queu-
ing systems. Advanced Message Queuing Protocol (AMQP) [36] specifies the set of wire formats
for communications; unlike APIs, wire formats are cross-platform. In the web service arena, there
are competing standards, WS-Eventing and WS-Notification, but neither has developed a strong fol-
lowing. Table 5.8 compares a few common messaging and queuing systems. We selected two cloud
systems: Amazon Simple Queue and Azure Queue.

We also list MuleMQ [37], which is the messaging framework underlying the ESB [30,31] system
Mule, developed in Java, of which there are 2,500 product deployments as of 2010. The focus of Mule
is to simplify the integration of existing systems developed using JMS, Web Services, SOAP, JDBC,
and traditional HTTP. Protocols supported within Mule include POP, IMAP, FTP, RMI, SOAP, SSL,
and SMTP. ActiveMQ [38] is a popular Apache open source message broker while WebSphereMQ [33]
is IBM’s enterprise message bus offering. Finally, we list the open source NaradaBrokering [39] that is
notable for its broad range of supported transports and was successfully used to support a software Mul-
tipoint Control Unit (MCU) for multipoint video conferencing and other collaboration capabilities.

Note that the four noncloud systems support JMS. Also, some key features of messaging systems
are listed in the table but are not discussed in this brief section. These are security approach and guar-
antees and mechanisms for message delivery. Time-decoupled delivery refers to situations where the
producer and consumer do not have to be present at the same time to exchange messages. Fault toler-
ance is also an important property: Some messaging systems can back up messages and provide defi-
nitive guarantees. This table is only illustrative and there are many other important messaging
systems. For example, RabbitMQ [40] is a new impressive system based on the AMQP standard.

Cloud or Grid Middleware Applications

Three examples are given here to illustrate the use of the NaradaBrokering middleware service with
distributed computing. The first example is related to environmental protection. The second is for
Internet conferencing and the third is for earthquake science applications.
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Table 5.8 Comparison of Selected Messaging and Queuing Systems

System
Features

AMQP compliant

JMS compliant
Distributed broker

Delivery
guarantees

Ordering
guarantees

Access model

Max. message
Buffering

Time decoupled
delivery

Security scheme

Support for web
services

Transports

Subscription
formats

Amazon Simple
Queue [41]

No

No
No

Message retained
in queue for four
days

Best effort, once
delivery, duplicate
messages exist

SOAP,
HTTP-based
GET/POST
8 KB

N/A

Up to four days;
supports
timeouts

Based on HMAC-
SHA1 signature,
Support for
WS-Security 1.0
SOAP-based
interactions
HTTP/HTTPS,
SSL

Access is to
individual queues

Azure Queue
[42]

No

No
No

Message
accessible for
seven days

No ordering,
message returns
more than once

HTTP REST
interfaces

8 KB
Yes
Up to seven days

Access to
queues by HMAC
SHA256
signature

REST interfaces

HTTP/HTTPS

Access is to
individual queues

ActiveMQ

No, uses
OpenWire and
Stomp

Yes

Yes

Based on
journaling and
JDBC drivers to
databases
Publisher order
guarantee

Using JMS
classes

N/A
Yes
Yes

Authorization
based on JAAS
for authentication

REST

TCP, UDP, SSL,
HTTP/S,
Multicast, in-VM,
JXTA

JMS spec allows
for SQL
selectors; also
access to
individual queues

MuleMQ
No

Yes

Yes

Disk store uses
one file/channel,
TTL purges
messages

Not clear

JMS, Adm. AP,
and JNDI

N/A
Yes
Yes

Access control,
authentication,
SSL for
communication

REST

Mule ESB
supports TCP,
UDP, RMI, SSL,
SMTP, and FTP
JMS spec allows
for SQL
selectors; also
access to
individual queues

WebSphere MQ
No

Yes

Yes
Exactly-once
delivery
supported

Publisher order
guarantee

Message Queue
Interface, JMS

N/A
Yes
Yes

SSL, end-to-end
application-level
data security

REST, SOAP
interactions
TCP, UDP,
Multicast, SSL,
HTTP/S

JMS spec allows
SQL selectors;
access to
individual queues

Narada
Brokering

No

Yes
Yes

Guaranteed and
exactly-once

Publisher- or
time-order by
Network Time
Protocol
JMS,
WS-Eventing

N/A
Yes
Yes

SSL, end-to-end
application-level
data security, and
ACLs

WS-Eventing

TCP, Parallel
TCP, UDP,
Multicast, SSL,
HTTP/S, IPsec

SQL selectors,
regular
expressions,
<tag, value>
pairs, XQuery
and XPath
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L
Example 5.5 Environmental Monitoring and Internet Conference Using NaradaBrokering

The GOAT project at Clemson University is part of the Program of Integrated Study for Coastal Environmen-
tal Sustainability (PISCES), which addresses environmental sustainability issues that can accompany
coastal development. The current study incorporates groundwater monitoring, surface water quality and
quantity monitoring, weather, and a variety of ecological measurements. The project utilizes the publish-
subscribe messaging system, NaradaBrokering, to provide a flexible and reliable layer to move observation
data from a wide variety of sensor sources to users that have diverse data management and processing
requirements. NaradaBrokering can display environmental sensors.

The commercial Internet Meeting software Anabas (www.anabas.com) incorporates support for
sharing applications besides incorporating support for shared whiteboards, and chat tools. Anabas uses
NaradaBrokering for its content dissemination and messaging requirements. On a daily basis, Anabas sup-
ports several online meetings in the United States, Hong Kong, and mainland China. Note NaradaBroker-
ing supports audio-video conferencing (using UDP) as well as other collaborative applications using TCP.
Dynamic screen display published to NaradaBrokering can be displayed on collaborating clients.

B
Example 5.6 QuakeSim Project for Earthquake Science

The NASA-funded QuakeSim project uses NaradaBrokering to manage workflows that connect distributed
services, and to support GPS filters delivering real-time GPS data to both human and application consu-
mers as shown in Figure 5.7 (http://quakesim.jpl.nasa.gov/). The GPS application is an important
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FIGURE 5.7

Display of GPS sensors managed by NaradaBrokering in Southern California; the map displays the
time series produced by one of the GPS stations. (http:/quakesim.jpl.nasa.gov/).
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application similar to Example 5.4 where publish-subscribe systems manage sensor networks. In fact, one
can consider webcams as sensors (as they produce real-time streams) and so Example 5.5 is also of this
type. Clouds are an important implementation for this type of application as brokers can be added on
demand to support myriad dynamic sensors from cell phones to military or civil sensors responding to an
extreme event. The display of GPS sensors is managed by NaradaBrokering. The map displays the time
series produced by GPS stations.

5.3 PORTALS AND SCIENCE GATEWAYS

Science gateways [43,44] are tools that enable interactive, web-based science, education, and colla-
boration. Gateways provide user-centric environments for interacting with remote computational
resources through user interfaces that are typically (but not exclusively) built with web technologies.
Although they have superficial similarities to web sites and may leverage tools such as content
management systems for their presentation layers, gateways are much more complicated entities.
Science gateways are also termed portals. This section describes the general architecture of gate-
ways, surveys several prominent examples, and discusses example gateway-building software.

We can categorize gateway software as “turnkey” solutions, exemplified by HUBzero; and “tool-
box” solutions, exemplified by the Open Gateway Computing Environments project. Turnkey gate-
way software provides an end-to-end solution for building gateways, including hosting. Toolbox
gateway software provides tools that solve specific problems and can be integrated into customized
software stacks. The SimpleGrid project [45] is another toolkit example. HUBzero and OGCE soft-
ware will be described in more detail shortly.

Figure 5.8 provides a high-level overview of the grouping of components that make up a gate-
way. The bottom tier is the resource layer, which may include campus computing clusters and

User Web/gadget | Web/gadget |Web-enabled desktop | Gateway abstraction
interfaces container interfaces applications interfaces

Application Fault o User Information
. Monitoring 1
abstractions tolerance management services

Gateway

i Workflow | Audiing& | security || Provenance
system reporting gistry Y & metadata

Resource Cloud interfaces Grid middleware S el
middleware managers

Compute Computational Computational

. Local resources
resources clouds grids

FIGURE 5.8
A gateway component software stack for scientific applications.
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storage systems, national-scale grid resources such as the TeraGrid [46] and the Open Science Grid
[47], and computational cloud resources. The second tier consists of middleware for interacting with
these resources. Common middleware examples include Globus [48] (providing job execution and
remote file management), Condor [49] (providing job scheduling), and iRods [50] (providing data
and metadata movement and management). Middleware systems typically expose secure, network-
accessible APIs and developer libraries as well as providing numerous command-line tools.

Tier 2 software and services run on the resources of Tier 1. The next two tiers are not tied to these
resources and can run on separate host machines. Tier 3 is the gateway software layer and consists of
service components that manage the execution of scientific applications and data on the Tier 1
resources through the Tier 2 interfaces. Execution management for both data and science applications
can be decoupled into several components: the initial invocation, monitoring, fault tolerance, and task
coupling as workflows. Security considerations [51,52] (such as authentication and authorization)
permeate all tiers, but we locate the component in Tier 3 since the user’s identity is established here.

We also place user and group management (including social networking) in this tier, along with
third-party information services [53]. Finally, the top tier (Tier 4) is the user presentation layer. Pre-
sentation layers may be built with a number of different tools, including content management sys-
tems, Open Social gadgets, and desktop applications, as described in more detail shortly. Figure 5.8
is flexible enough to describe most gateways. We next make the description more concrete by
reviewing two example science gateways: GridChem and UltraScan. Both gateways have been used
for significant scientific research.

Science Gateway Exemplars

Three examples are given here to illustrate the gateway concept in scientific applications using com-
putational grids or Internet clouds.

L
Example 5.7 Computational Chemistry Grid (CCG)
The CCG is also known as GridChem (www.gridchem.org) [54,55]1, which is one of the most heavily used
Science Gateways in TeraGrid. GridChem provides a grid-enabled desktop interface that enables users to
set up, launch, and manage computational chemistry simulations on the TeraGrid. Applications supported
by GridChem include Gaussian, CHARMM, and GAMESS.

These are computationally demanding parallel applications that require supercomputers, although sup-
porting applications—input validation and visualization tools—can run on the user’s desktop. GridChem
pioneered gateway concepts such as “community users,” which allow users to access resources through a
shared allocation, that are now commonplace in many Science Gateways. GridChem has delivered signifi-
cant scientific accomplishments in the form of scientific publications that acknowledge and highlight the
GridChem cyber-infrastructure’s utility for computational chemistry [56].

=
Example 5.8 UltraScan Biophysics Gateway

UltraScan [57,58] has developed a TeraGrid Science Gateway for the high-resolution analysis and model-
ing of hydrodynamic data from an analytical ultracentrifuge (AUC). This application is used for the
solution-based study of biological macromolecules and synthetic polymers by biochemists, biophysicists,
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and material scientists for fitting experimental data to finite element solutions of flow equations. More than
700 biochemists, biophysicists, biologists, and material scientists worldwide rely on UltraScan software for
analysis of their experimental data. The software has assisted in understanding an array of disease pro-
cesses, including cancer, neurodegenerative diseases, HIV/AIDS, diabetes, Huntington’s disease, and
aging studies. By conservative estimates, UltraScan has contributed to more than 250 peer-reviewed publi-
cations including 23 known publications from 2009 [59].

UltraScan makes its core experimental analysis software available as an online service to scientific
users through its Science Gateway. This analysis software is computationally demanding and must be run
on clusters and supercomputers. UltraScan job management services (Tier 3) hide complexities and pro-
vide fault tolerance for the experimental scientists using the portal. Although it uses TeraGrid for some of
its computing power, UltraScan needs to span multiple resource providers: It also uses university clusters
and would like to extend its resources to include international grids in Germany and Australia. The key to
UltraScan’s success and growth over the next three years is to provide the ability to manage jobs across
multiple cyberinfrastructure resources that are not collectively part of a single, managed grid.

Gateways such as UltraScan provide an example where code optimization and efficient use of compute
resources are done by experts in the field and shared with hundreds of end users. The gateways lower the
entry barrier for analyzing the data on high-end resources. As an example, the UltraScan gateway provides
an optimal solution for solving large non-negative least squares problems that arise in data analysis
[60,61]. Solving these problems requires significant compute resources. The procedure improves compute
resource utilization targeting the inverse problem involved in modeling analytical ultracentrifugation experi-
mental data. Solving large non-negatively constrained least squares systems is frequently used in the phy-
sical sciences to estimate model parameters which best fit experimental data.

AUC is an important hydrodynamic experimental technique used in biophysics to characterize macro-
molecules and to determine parameters such as molecular weight and shape. Newer AUC instruments
equipped with multi-wavelength (MWL) detectors have recently increased the data sizes by three orders of
magnitude. Analyzing the MWL data requires significant compute resources. UltraScan gateway bridges
these requirements for end users by providing both the procedures and the capabilities to execute them
on supercomputing resources.

=
Example 5.9 The nanoHUB.org Gateway

The nanoHUB.org gateway is operated by the National Science Foundation (NSF)-funded Network
for Computational Nanotechnology (NCN) to support the National Nanotechnology Initiative in the
United States and worldwide and to accelerate the transformation of nanoscience into nanotechnology.
Since 2002, the community using nanoHUB.org has grown from 1,000 users mostly at Purdue University
to more than 290,000 visitors each year from 172 countries worldwide. From August 2009 to July 2010,
some 8,600 users accessed more than 170 nanotechnology simulation tools and launched 340,000 simu-
lation runs.

Today nanoHUB.org hosts more than 2,000 content items such as 170 online simulation tools and 43
complete courses, plus tutorials, research seminars, and teaching materials. All of nanoHUB.org’s services
are free of charge to the user. All resources on nanoHUB.org are presented in scholarly form with title,
authors, abstract, and archival citation information. To date, there are more than 560 citations in academic
literature to nanoHUB.org and the tools, seminars, and other resources published there. Also to date, 379
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courses at 131 institutions of higher education have used nanoHUB.org resources. The journal citations
and the documented use in classrooms is evidence that nanoHUB.org resources aid both research and
education.

HUBzero Platform for Scientific Collaboration

HUBzero is an open source software platform used to create web sites or “hubs” for scientific colla-
boration, research, and education.' It has a unique combination of capabilities that appeals to many
people engaged in research and educational activities. Like YouTube.com, HUBzero allows people
to upload content and “publish” to a wide audience, but instead of being restricted to short video
clips, it handles many different kinds of scientific content. In that respect, HUBzero resembles
MIT’s OpenCourseWare [64], but it also integrates the content with collaboration capabilities. Like
Google Groups, HUBzero lets people work together in a private space where they can share docu-
ments and send messages to one another. Like Askville on Amazon.com, HUBzero lets people ask
questions and post responses, but about scientific concepts instead of products.

Perhaps the most interesting feature of HUBzero is the way it handles simulation and modeling
programs, or “tools.” Like SourceForge.net, HUBzero allows researchers to work collaboratively on
the source code of their simulation programs and share those programs with the community. But
instead of sharing only by offering source code bundles to download, HUBzero also offers live pub-
lished programs available for use instantly and entirely within an ordinary web browser. The simu-
lation engines run start to finish on computational resources selected for that hub.

Computationally demanding runs can be dispatched to remote resources in a way that is comple-
tely transparent to users. Tools are driven by friendly GUIs that enable end-to-end operation of the
simulation process encompassing setup, execution, and data visualization. Many GUIs are built
using HUBzero’s Rappture toolkit, which lets researchers compare simulation results from multiple
runs and ask “What if?” questions. In effect, each hub powered by HUBzero is an “app store” for a
scientific community connected to a cloud of resources for app execution, complete with a library
of training materials and other collaboration features to support app use.

HUBzero was created by Purdue University and the NSF-funded NCN to power its web site at
nanoHUB.org [62,63]. Today, the same HUBzero software powers 30 similar gateways covering a
wide variety of disciplines in engineering and science. Here are three examples:

* GlobalHUB.org 29,000 active users, online since December 2007 Leverages the group
functionality within HUBzero to support engineering education on a global scale. Teams of
students work together in groups on a variety of engineering projects.

* cceHUB.org 2,400 active users, online since June 2008 Approaches cancer care from an
“engineering” perspective by gathering a database of blood samples from patients, extracting
proteomic/metabolomic data, mining the data to find biomarker patterns, and modeling the
efficacy of cancer treatments.

"HUBzero is a trademark of Purdue University.
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* NEES.org 15,000 users, online since August 2010 Home of the NSF Network for Earthquake
Engineering Simulation, which catalogs experimental data from 14 institutions that are
simulating earthquake conditions in the lab. The site also hosts modeling tools used to visualize
and analyze the data [64a].

5.3.2.1 The HUBzero Architecture

On the surface, each HUBzero-powered gateway is a web site built with the widely used, open
source “LAMP” architecture—a Linux operating system, an Apache web server, a MySQL data-
base, and PHP web scripting. HUBzero adds a scientific content management system, the open
source Rappture toolkit used to create GUIs for simulation programs, and unique middleware for
hosting simulation tools and scientific data, as shown in Figure 5.9.

Each tool description page includes a “launch” button. When a user presses that button, the mid-
dleware allocates a session container on the tool execution host, starts the X11 windowing system
within the container, starts the tool, and connects the session back to the user’s web browser via
Virtual Network Computing (VNC) [65]. To the user, it appears that the tool is running in the brow-
ser, but it actually runs within the hub environment, where it has access to local computation and
visualization clusters and remote computing resources such as TeraGrid, Open Science Grid, and
Purdue’s DiaGrid [66]. Sessions can be shared among users collaborating offline or in real time,
and they are persistent, so the user can close the browser window and revisit the same session later.

Unlike other portals and cyber environments, the tools in a hub are interactive and engaging.
Users can zoom in on a graph, rotate a molecule, and probe the isosurfaces in a 3D volume [67]—
all interactively, without having to wait for a web page to refresh. Users can visualize results
without reserving time on a supercomputer or waiting for a batch job to engage. Each hub can
host an unlimited number of tools uploaded by its community members, and the tools are
deployed without having to rewrite code for the web. The computational demand of these tools
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may vary from seconds on a single core to hours and days on multiple, possibly large numbers of
cores [68,69].

Each session runs in a restricted virtual environment implemented using OpenVZ [70], which
controls access to file systems, networking, and other system resources. Users can see their files
and processes, but cannot see others on the system, cannot launch attacks on other hosts, and can-
not exceed their file quota. If a tool already has a GUI that runs under Linux/X11, it can be
deployed as is in a matter of hours. If not, tool developers can use HUBzero’s Rappture toolkit
(http://rappture.org) to create a GUI with very little effort. Developers start by defining the inputs
and outputs for their tool as a hierarchy of data objects written in an XML format. The data objects
include simple elements, such as integers, Boolean values, numbers with units, and sets of mutually
exclusive choices, as well as more complex objects, such as physical structures, finite element
meshes, and molecules.

Rappture reads the XML description of a tool and generates a standard GUI for the tool automa-
tically. The GUI prompts for values, launches simulation jobs, and loads results for visualization.
The underlying simulation code uses an API to retrieve input values and store output results. Rappture
includes libraries for C/C++, FORTRAN, MATLAB, Java, Python, Perl, Ruby, and Tcl/Tk, so the
underlying simulator is not constrained to a particular language, but can be written in the developer’s
language of choice. The tool shown in Figure 5.9, for example, is a Rappture GUI for a MATLAB
program that simulates carbon nanotubes.

5.3.2.2 Operational Features

Having instant access to a large collection of simulation tools opens up new capabilities, but also
introduces a new set of issues. Users want to know more about the tools and the underlying physics
they encode. They may discover a bug and wish to report it or question whether results are correct.
They want to exchange ideas about new models and new features within the platform. HUBzero
has evolved beyond a simple repository to include many features supporting these sorts of
collaborations.

5.3.2.3 Ratings and Citations

The hub philosophy is not to judge the quality of each resource before it is posted, but rather to
post resources and help the community assess the quality. Registered users are allowed to post
five-star ratings and reviews for each resource. Users can also post citations of each resource in
academic literature. The ratings and citations for each resource are combined with web analytics
(measuring popularity) to produce a single number on a scale of 0 to 10, called the ranking, to
represent the quality of the resource.

5.3.2.4 Content Tagging

Items on a hub are categorized by a series of tags, in much the same way that photos are tagged on
a photo sharing site. This makes it easy to browse categories of resources, or to find resources that
intersect two or more categories.

5.3.2.5 User Support Area
From time to time, users will have problems with logins, have questions about tools, and may
otherwise need assistance. The HUBzero software comes with a built-in user support area. Users
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can click on the Help or Support link near the top of any page and fill out a form to file a support
ticket. Tickets can be handled by the staff managing the hub, or forwarded to the researchers sup-
porting various simulation tools. Some questions are beyond the understanding of the hub staff, or
even beyond the knowledge of a single researcher.

HUBzero includes a question-and-answer forum patterned after Askville on Amazon.com that
can engage the whole community. Any registered user can post a question, and other users can pro-
vide answers. At some point, the best answer is chosen as the “final” answer by the person who
asked the question, and participants earn points as a reward for their effort. Points can be used as
bragging rights, or as currency to purchase t-shirts and other merchandise in a hub store. The list of
past questions/answers forms a knowledge base upon which a community can draw for immediate
help with a similar problem.

Other issues are beyond software problems and physics questions, but really entail requests for
tool improvements and new features. Such requests are tracked on a “wish list” for each tool and also
on a wish list for the entire hub. All tickets, questions, and wishes are managed by the HUBzero soft-
ware. Various administrators, software developers, and community members are given access to these
facilities to help address the community support issues.

5.3.2.6 Wikis and Blogs

Each hub supports the creation of “topic” pages, which are wiki pages with a specific list of
authors. Other users can add comments to a topic page and may suggest changes, which the original
authors can choose to approve. Users can be added as coauthors for a page, so they can make
further changes without approval. Ownership of a page can also be given to the entire community,
so anyone can make changes without approval, in a wiki-like manner.

5.3.2.7 Usage Metrics

Each hub reports extensive metrics about how its resources are being used, just a few of which
include the total number of users in a given period, the number of web hits, the number of simulation
jobs launched, and CPU hours used. Metrics are reported down to the level of each individual
resource, so everyone can see how many users have accessed a particular tool, or how many times a
seminar has been viewed. Usage numbers are rolled up to provide an overview of usage for interest-
ing categories, such as the total number of users that have accessed all resources published by a parti-
cular author. These usage metrics provide an incentive to use HUBzero-powered science gateways.

5.3.2.8 Future Directions

The development of HUBzero is driven largely by the projects using it. Although HUBzero started
with a strong emphasis on simulation and modeling, it is evolving to include data management cap-
abilities as well. Projects such as the cancer care engineering cceHUB.org and the earthquake engi-
neering NEES.org are creating mechanisms for users to define, upload, publish, annotate, and
analyze various types of structured data sets. Projects such as GlobalHUB.org are improving the
group spaces where people exchange files and work together in a private context.

As hubs gather more tools, researchers see the need for stringing tools together in a workflow to
tackle larger questions. A pill dissolution profile generated by one tool on pharmaHUB.org, for
example, could be fed into a model of a patient’s digestive track, and those results could be used to
compute the amount of active ingredient in the patient’s bloodstream over time. That chain of tools
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may need to be run hundreds of times to perform an overall sensitivity analysis, to optimize a
design goal, or to quantify uncertainty in the output. A hub should not only catalog tools, but
connect them one to another, to grid computing resources, and ultimately, to the researcher with a
question to answer.

Open Gateway Computing Environments (0GCE)

The OGCE project [71] is a provider of open source gateway software that is used in several colla-
borating gateways [72]. OGCE consists of components that can be either used individually or inte-
grated together to provide more comprehensive solutions for remote scientific application
management. OGCE component tools include the following:

* OGCE Gadget container [73], a Google tool for integrating user interface components

* XRegistry, a registry service for storing information about other online services and workflows

* XBaya [74], a workflow composer and enactment engine

* GFAC [75], a factory service that can be used to wrap command-line-driven science
applications and make them into robust, network-accessible services

* OGCE Messaging Service supports events and notifications across multiple cooperating
services

OGCE’s strategy is based on the toolkit model. This strategy has been shaped by the TeraGrid
science gateway program and its wide variety of gateways. There are obviously many frame-
works, programming languages, and tools for building web-based gateways and providing
advanced capabilities. It has been our experience that many gateways benefit from lightly
coupled tools that can be taken collectively or in part. In the toolkit model, gateways can take a
specific tool or tools and integrate them into the gateway’s existing infrastructure. For example, a
gateway such as UltraScan benefits from a reliable job submission tool that hides differences
between Globus GRAM versions; GFAC is a candidate tool. GridChem and ParamChem want to
extend their job submission capabilities to include scientific workflows; XBaya and its supporting
tools can be used.

The OGCE tools focus on scientific application and workflow management and defer issues
such as data and metadata management to other projects. There is significant variation in the char-
acteristics exhibited by the scientific applications, so intermediate, application-specific services
between the user interfaces and the generic grid middleware are desirable. The gateway software
layer (Tier 3 of Figure 5.8) must accommodate the complexities of a particular domain and provide
a software infrastructure that bridges the gap between the user interface layer and the grid
middleware.

Consequently, many science gateways use scientific web services along with workflow systems to
build the gateway software. Application-specific web services provide the bridge between generic
grid middleware and the specific needs of a gateway. Workflows go a step further by assembling mul-
tiple services and steps into scientific use cases. Workflows may be implicit in the design of the gate-
way or they may be explicitly exposed to users. Registries are services that can be used to look up
other services and workflows. Finally, messaging systems are used for different distributed compo-
nents to communicate. For example, users need a mechanism for monitoring a long-running
workflow.
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5.3.3.1 Workflows

The OGCE scientific workflow system [74,76,77] provides a programming model that allows the
scientist to program experiments using application web services developed with the GFAC service
that abstract the complexities of the underlying middleware. The workflow system enables scientists
to author experiments that can be stored, replayed, and shared with others. The workflow suite
is bundled with interfaces for composition, execution, and monitoring of the workflows. Salient
features include support for long-running applications and steering/dynamic user interactions.

OGCE’s software stack is designed to be flexible in its coupling of various components to har-
ness end-to-end, multiscale gateway infrastructures. Individual OGCE tools can be integrated into
gateway deployments; likewise, other standard specification-based tools can be swapped within
OGCE’s software stack. As a specific example, the OGCE workflow system provides (with its
XBaya frontend) a graphical interface to browse various application service registries (such as the
OGCE’s XRegistry).

From these registries, users can construct task graphs as workflows. The representation is captured
as an abstract, high-level, workflow-neutral format, which can be translated into workflow execution
specific syntax. Currently, integrations of BPEL [78], Jython, Taverna SCUFL [79], and Pegasus
DAX [80] have all been demonstrated and exist at various levels of support. By default, the workflow
enactment is facilitated by an open source BPEL implementation, the Apache Orchestration and
Director Engine (ODE) [81], that OGCE developers have enhanced to support long-running scientific
workflows on computational grids.

5.3.3.2 Scientific Application Management

Wrapping scientific applications as remotely accessible services is a common task for science gate-
ways. Gateways that wish to offer many application services need a simple way to quickly wrap these
applications. Task wrapping is only one step, however, in making an application available through a
gateway. Grid middleware solutions (Tier 2 of Figure 5.8) abstract heterogeneous resources and offer
a single unified job management interface to queuing systems. However, both the resources and grid
middleware are still highly complex, so it is a difficult task to provide production-quality scientific
application services that have the reliability and scalability (in number of users) needed by successful
gateways. Gateways have often reinvented solutions for all of these problems.

The OGCE’s GFAC tool is designed to wrap command-line-driven executables and make them
available as external services. The primary goal of GFAC is to provide a general solution to the
application-wrapping problem that can be reused by gateways as a plug-in service in their deployed
infrastructure. GFAC generates web services that can be accessed through clients written in Java,
Perl, PHP, Python, and other languages. GFAC-wrapped services can be run as stand-alone tools,
or they can be registered with XRegistry for later incorporation into workflows. GFAC supports
both persistent and dynamically created services.

Gateways adopting GFAC can outsource reliability and scalability issues and devote more
resources to their domain-specific problems. The OGCE gateway suite has improved fault tolerance
of computational jobs and data movement thanks to extensive efforts by the Linked Environments for
Atmospheric Discovery (LEAD) Science Gateway [82]. The OGCE team has also leveraged large-
scale coordinated gateway debugging efforts and applied the improvements to the advanced support
requested gateways. Generic reliability and fault tolerance will not cover all problems: Codes will fail
to run for reasons outside the gateway developer’s control, so error detection, logging, and resolution
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strategies must be specialized to the application. Providing extensibility for gateways to address their
application-specific error conditions is an upcoming effort for GFAC development.

5.3.3.3 Gadget Container

Workflows, registries, and service wrappers have both client- and server-side pieces. The OGCE
builds most of its default user interfaces as gadgets. Gadgets are client-side web components (Tier 4
of Figure 5.8) that rely on HTML, CSS, and JavaScript rather than on specific server-side devel-
opment frameworks. Gadgets for science gateways need to communicate with server-side compo-
nents (Tier 3 of Figure 5.8). This can be done using REST services. Greater interactivity, simpler
development, and the freedom to use a wide range of server-side tools make gadgets an interesting
component model for science gateways.

The OGCE Gadget Container is an Open Social-compatible tool for aggregating web gadgets.
Gadgets are mostly self-contained web applications that comply with Google gadget or Open Social
standards. The gadget container provides an operating context for a particular gadget, which may
reside on a completely separate web server. The OGCE Gadget Container provides layout and skin
management and user-level customization. The container supports an OpenID authentication option
for registered users and OAuth authorization for gadgets. The container runs under HTTPS security
and also supports secure (HTTPS) connections between the container and gadgets.

The gadget container is built on top of Apache Shindig, the reference implementation for the
Open Social standard. This allows the container to create Open Social-compatible social networks.
The container also supports Google FriendConnect, which provides a simplified programming inter-
face for social networks.

5.3.3.4 Packaging

OGCE software is open source and available for download through SourceForge, and plans are
underway to start an Apache Incubator project for GFAC, XBaya, and supporting components. The
preferred download mechanism is by SVN client checkouts and updates of tagged releases. The cur-
rent OGCE release bridges several component projects. Each subproject can be built separately
using Apache Maven; a master Maven POM is used to build all subprojects. This approach simpli-
fies both development and deployment. Subprojects can be added when they mature, replaced with
major upgrades, and discarded. Updates can be applied to specific components without rebuilding
the entire software stack or developing a specific patching system. The OGCE software stack is
designed to be portable and to compile on many platforms.

Building a science gateway requires to match end-user requirements, that is, the scientific use cases
to be supported, to the capabilities of the gateway stack. Furthermore, developing the underlying work-
flows of the gateway is itself a lengthy scientific task, apart from the implementation issues. There are
always components that can be used as is (security credential management and file browsers, for exam-
ple), but OGCE software is intended to be extended and modified by gateway developers.

This requires a close collaboration between science domain experts and cyberinfrastructure specia-
lists. Long-term sustainability is an important challenge facing all gateways; particularly those that
depend on external resource providers such as the TeraGrid and Open Science Grid (see Figure 5.8
Tiers 1 and 2). These resources and their middleware evolve; gateways with Tier 3 and 4 components
that are not actively maintained will decay. The challenge for many gateways is to maintain their
middleware with reduced funding as the gateway matures from active development to stable usage.
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DISCOVERY, REGISTRIES, METADATA, AND DATABASES

Distributed applications need to discover resources that suit their needs and manage them. In SOA,
business services need to discover appropriate services to use and to integrate with. Registries are
sophisticated naming and directory services that facilitate service resource discovery both at design
and dynamically at runtime by classifying and categorizing services or metadata information about
services. A registry requires a set of data structure specifications for the metadata to be stored in
the registry, and a set of operations such as Create, Read, Update, and Delete (CRUD) for storing,
deleting, and querying the data to store metadata for ownership, containment, and categorization of
services. Registries usually contain three categories of information:

* White pages contain name and general contact information about an entity.

* Yellow pages contain classification information about the types and location of the services the
entry offers.

* Green pages contain information about the details of how to invoke the offered services
(technical data regarding the service).

Apart from registries, metadata, or information about data, can be used to facilitate discovery of
resources and desired services. Metadata can be stored in relational or XML databases as metadata
catalogs or added to web services to enhance service discovery capabilities. Integrating publish/
subscribe patterns into databases can even add discovery capabilities to the static nature of databases,
thus reducing the load on a single database caused by polling of enormous applications.

UDDI and Service Registries

UDDI specifications [83] define a way to describe, publish, and discover information about web
services by creating a platform-independent, open framework. UDDI provides a name service and a
directory service for looking up service descriptions by name or by a specific attribute. It was
initiated in September 2000 as a joint collaboration on B2B integration between IBM, Microsoft,
and Ariba. UDDI version 3.0 has been published as OASIS specifications and it has become an
OASIS standard for public service registries.

The UDDI specification is focused on the definition of a collection of services supporting the
description and discovery of: Businesses, organizations, and other web services providers; the web
services they make available; and the technical interfaces which may be used to access those ser-
vices. Based on a common set of industry standards, including HTTP, XML, XML Schema, and
SOAP, UDDI provides an interoperable, foundational infrastructure for a web service-based soft-
ware environment for both publicly available services and services only exposed internally within
an organization.

There are two primary types of registries. A public registry is a logically centralized distributed
service that replicates data with other public registries on a regular basis. A private registry is only
accessible within a single organization or is shared by a group of business partners for a special
purpose. The latter is also called a semiprivate or shared registry. The UDDI Business Registry con-
sists of replicated registries (initially hosted by IBM and Microsoft) called UDDI operators.

A UDDI registry is an instance of a web service, and its entries can be published and queried
using a SOAP-based interface. UDDI defines data structures and APIs for programmatically
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publishing service descriptions and querying the registry. Data in a UDDI registry is organized as
instance types:

* businessEntity Describes an organization or a business that provides the web services, including
the company name, contact information, industry/product/geographic classification, and so on

* businessService Describes a collection of related instances of web services offered by an
organization, such as the name of the service, a description, and so forth

* bindingTemplate Describes the technical information necessary to use a particular web service,
such as the URL address to access the web service instance and references to its description

* tModel A generic container for specification of WSDL documents in general web services

* publisherAssertion Defines a relationship between two or more businessEntity elements

* subscription A standing request to keep track of changes to the entities in the subscription

The entities businessEntity, businessService, bindingTemplate, and tModel form the core data
structures of UDDI, each of which can be uniquely identified and accessed by a URI, called the
“UDDI key.” These entities and their relationships are depicted in Figure 5.10. A UDDI registry
can be used by service providers, service requestors, or other registries. For such interactions with
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FIGURE 5.10
UDDI entities and their relationship.
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the registry, UDDI provides a set of APIs. Two basic types of API operations are applied to UDDI
components:

* UDDI Inquiry API In order to find the set of registry entries such as business, service, binding,
or tMode, details matching a particular search criterion (find_) or details of an entry
corresponding to a given UDDI key (ger_) operation can be used.

* UDDI Publishers API This enables add, modify, and delete entries by providing save_ and
delete_ operations. In addition to the aforementioned look-up APIs, UDDI also defines general-
purpose operation types, such as the next 4 specialized APIs.

* UDDI Security API Allows users to get and discard authentication tokens (get_autToken,
discard_autToken)

e UDDI Custody and Ownership Transfer API Enables registries to transfer the custody of
information among themselves and to transfer ownership of these structures one another
(transfer_entities, transfer_custody)

* UDDI Subscription API Enables monitoring of changes in a registry by subscribing to
track new, modified, and deleted entries (delete_subscription, get_subscriptionResults,
get_subscriptions, save_subscriptions)

* UDDI Replication API Supports replication of information between registries so that different
registries can be kept synchronized

Although UDDI is an open standard, it has never gained much popularity among various enter-
prise and scientific communities, as there has been no global registry for registering enterprise,
e-science, or grid services following the UDDI specification after the closure of the public nodes of
the Universal Business Registry operated by IBM, Microsoft, and SAP in January 2006. However,
several public registries have been launched for public use by various communities providing a
categorized list of a variety of services and related APIs. One of them is ProgrammableWeb.com [84].

ProgrammableWeb.com is a registry of a variety of Web 2.0 applications, such as mashups
and APIs organized by category, date, or popularity. It has similar goals to UDDI, but does not
use the detailed UDDI specifications. Mashups are composite Web 2.0 applications which com-
bine capabilities from existing web-based applications, typically RESTful web services. Mashups
can be compared to workflows, as they both implement distributed programming at the service
level. Content used in mashups is typically sourced from a third party via a public interface or
API. According to data released by the ProgrammableWeb.com register [84], most mashup and
APIs are applied in mapping, search, travel, social, instant messaging, shopping, video streaming
areas.

Other methods of sourcing content for mashups include web feeds (such as RSS) and JavaScript.
web developers are able to programmatically search and retrieve APIs, mashups, member pro-
files, and other data from the ProgrammableWeb.com catalog, integrate on-demand registry and
repository functionality into any service, and dynamically add new content as well as comment
on existing entries, using the provided API, based on open standards including XML, RSS,
OpenSearch, and Arom Publishing Protocol (APP) [85]. Among the most popular mashups
frequently used on the web site are those provided for Google Maps, Flickr, Facebook, Twitter, and
YouTube.
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Databases and Publish-Subscribe

Publish-subscribe is a design pattern that enables asynchronous interaction among distributed applica-
tions and was discussed in Section 5.2 for middleware. Many high-level applications regularly query
the database in order to adapt their execution according to this information. Such periodic data polling
is not only inefficient and unscalable, but also resource-demanding on both sides, especially when the
interval between calls to the database is very small, or in cases when there is more than one consumer
application, it may increase the amount of network traffic and CPU usage dramatically. The publish-
subscribe mechanism, already largely adopted in the implementation of today’s applications, solves
this issue. In a publish-subscribe interaction, event subscribers register to particular event types and
receive notifications from the event publishers when they generate such events.

There is a dynamic, many-to-many relationship between event publishers and event subscribers, as
there can be any number of publishers/subscribers for any type of event which can vary at any time.
Publish-subscription adds dynamicity to static the nature of databases. While the publish-subscribe
pattern was first implemented in centralized client/server systems, current research focuses mainly on
distributed versions. The key benefit of the distributed publish-subscribe mechanism is the natural
decoupling of publishers and subscribers. Since the publishers are unconcerned with the potential
consumers of their data, and the subscribers are unconcerned with the locations of the potential produ-
cers of interesting data, the client interface of the publish-subscribe system is simple and intuitive.

Publish-subscribe systems are classified as either topic-based or content-based. In topic-based
systems, publishers generate events with respect to a topic or subject. Subscribers then specify their
interest in a particular topic, and receive all events published on that topic. Defining events in terms
of topic names only is inflexible and requires subscribers to filter events belonging to general
topics. Content-based systems solve this problem by introducing a subscription scheme based on
the contents of events. Content-based systems are preferable as they give users the ability to express
their interest by specifying predicates over the values of a number of well-defined attributes. The
matching of publications (events) to subscriptions (interest) is done based on the content. Distribu-
ted solutions are mainly focused on topic-based publish-subscribe systems

Database systems provide many features that a messaging-based architecture can exploit, such as
reliable storage, transactions, and triggers. On the other hand, integrated publish-subscribe capabil-
ities in the database account for information-sharing systems that are simpler to deploy and main-
tain. However, since publish-subscribe and database technology have evolved independently,
designing and implementing database-publish-subscribe-aware systems requires bringing together
concepts and functionality from two separate worlds.

Jean Bacon, et al. [86] have extended the PostgreSQL open source database system to include
publish-subscribe middleware functionality. It is based on the integration of active databases and
the publish-subscribe communication model to form a global event-based system: Databases define
and advertise change events, and clients subscribe to events of interest, and can refine their sub-
scriptions through content-based filter expressions. This allows a database system in the local
domain to function as an event broker (broker), reliably routing events among publishers, subscri-
bers, and other brokers. This integration simplifies information management by grouping security,
configuration (e.g., type schema), and recovery tasks for database and pub/sub operations under the
same interface. Aktas has described use of publish-subscribe in grid information systems [87-89].
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Oracle publish-subscribe model.

Message queuing and publish-subscribe are tightly intertwined: Oracle introduced a publish-
subscribe solution for enterprise information delivery and messaging, shown in Figure 5.11, and
based on Advanced Queuing—an implementation based on JMS and fully integrated in the Oracle
database—to publish data changes and to automate business process workflows for distributed
applications. Ontologies and other semantic mechanisms can be used to make events in the system
more “context-aware.” Advanced Queuing was introduced in Oracle 8 and extended in Oracle 9i to
support publish-subscription. In Oracle release 10.1, Advanced Queuing was integrated into Oracle
Streams, called Oracle Streams Advanced Queuing.

A combination of features are introduced to allow a publish-subscribe style of messaging
between applications. These features include rule-based subscribers, message propagation, the listen
feature, and notification capabilities. Oracle Streams Advanced Queuing is built on top of Oracle
Streams and leverages the functionality of Oracle Database so that messages can be stored persis-
tently, propagated between queues on different computers and databases, and transmitted using Ora-
cle Net Services and HTTP(S). As Oracle Streams Advanced Queuing is implemented in database
tables, all operational benefits of high availability (HA), scalability, and reliability are also applic-
able to queue data. Standard database features such as recovery, restart, and security are supported
by Oracle Streams Advanced Queuing. Database development and management tools such as Oracle
Enterprise Manager can be applied to monitor queues. Like other database tables, queue tables can
be imported and exported.

Metadata Catalogs

Metadata catalogs play a vital role in distributed heterogeneous environments such as grids by
providing users and applications the means to discover and locate the desired data and services
among lots of sites on such environments. Metadata is information about data. Metadata is impor-
tant, since it adds context to the data, in order to identify, locate, and interpret it. Key metadata
on the grid includes the name and location of the data resource, structure of the data held within
the data resource, data item names and descriptions, and user information (name, address, and
profiles and preferences), or basic listings and simple lookup of available services, relating



5.4 Discovery, Registries, Metadata, and Databases 309

function and location without significant rich context. Metadata catalogs are used by various
groups and communities, ranging from high-energy physics to biomedical, earth observation, and
geological science.

Because of the importance of metadata services for the use of large-scale local or wide area sto-
rage resources, many groups have made efforts to investigate and implement such services. Among
the earliest metadata catalogs is the Metadata Catalog Service (MCAT) [90], which is a part of the
Storage Resource Broker (SRB) [91], which has evolved to the iRODS system [50]. MCAT, devel-
oped by the San Diego Supercomputing Center, aims to provide an abstraction layer over heteroge-
neous storage devices and file systems either inside or across computing centers. MCAT stores the
data hierarchically using a tree of collections and is both a file and metadata catalog. Later versions
of MCAT support replication and federation of data resources.

The MCS developed by the Globus Alliance [92] provides hierarchical organization of metadata
and flexible schemas, and hides the storage backend from the user. The Globus project also contains
the Replica Location Service (RLS) [93], which uses index servers to provide a global list of files
available on different replica catalogs. Several LHC experiments have implemented their own speci-
fic metadata catalogs using a standard relational database backend and providing an intermediate
layer to access the catalog on a distributed environment.

AMGA (the ARDA Metadata for Grid Applications) [94] is the official metadata catalog of the
gLite software stack of the EGEE project. It began as an exploratory project to study the metadata
requirements of the LHC experiments, and has since been deployed by several groups from differ-
ent user communities, including high-energy physics (for LHCb bookkeeping), biomedicine, and
earth observation. AMGA uses a hierarchical file system-like model to structure metadata, stored in
a relational database. It stores entries representing the entities that are being described, such as files.
The entries are grouped into collections, which can have a variant number of user-defined attributes,
called the schema of the collection.

Attributes are represented as key-value pairs with type information, and each entry assigns an
individual value to the attributes of its collection. A schema can be a representation of a directory,
which can contain either entries or other schemas. As an advantage of this tree-like structure, users
can define a hierarchical structure which can help to better organize metadata in subtrees that can
be queried independently. The server supports several storage systems by using modules. AMGA
can manage groups of users with different permissions on directories. In grid environment, file
and metadata catalogs are used by users for discovering and locating data among the hundreds of
grid sites.

Semantic Web and Grid

The grid strives to share and access metadata in order to automate information discovery and inte-
gration of services and resources in a dynamic, large-scale distributed environment. Meanwhile, the
Semantic web is all about automation discovery and integration: adding machine-processable
semantics to data so that computers can understand such information and process it on behalf of
end users, thus enabling more intelligent web searching and linkage based on attaching rich meta-
data to web pages. The Semantic web aims to provide an environment where software agents are
able to dynamically discover, interrogate, and interoperate resources and perform sophisticated tasks
on behalf of humans, which is not far from the ambition of grid computing.
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To achieve this, work has been undertaken to assert the meaning of web resources in a common
data model, the Resource Description Framework (RDF), using agreed ontologies expressed in a
common language, such as the OWL web ontology language, so we can share the metadata and
add in background knowledge. From this basis we should be able to query, filter, integrate, and
aggregate the metadata, and reason over it to infer more metadata by applying rules and policies.

RDF is the first language developed for the Semantic web, using XML to represent information
(including metadata) about resources on the web. RDF uses web identifiers (URIs), and describes
resources in terms of simple properties and property values. OWL is an expressive ontology lan-
guage that extends RDF schema. OWL adds more vocabulary for describing properties and classes:
among others, relations between classes, cardinality, equality, richer typing of properties, character-
istics of properties, and enumerated classes.

Semantic web services describe and annotate various aspects of a web service using explicit,
machine-understandable semantics, facilitating the discovery, execution, monitoring, and aggregation
of resources and web services, which solves interoperability issues and helps bring resources
together to create virtual organizations. The OWL-S ontology enables web services to be described
semantically and their descriptions to be processed and understood by software agents. It provides a
standard vocabulary that can be used together with the other aspects of the OWL description lan-
guage to create service descriptions. The OWL-S ontology defines the top-level concept of a
“Service” and three OWL-S subontologies:

¢ Service profile Expresses what a service does in order to enable service advertisement and
discovery.

¢ Service model Describes how the service works in order to enable service invocation,
composition, monitoring, and recovery.

* Service grounding Specifies the details of how to access the service. A grounding can be
thought of as a mapping from an abstract to a concrete specification, based on WSDL as a
particular specification language.

The “semantic grid” or “grid with semantics” aims to incorporate the advantages of the grid,
Semantic web, and web services. Built on the W3C Semantic Web Initiative, it is an extension of
the current grid in which information and services are given well-defined meanings (ontologies,
annotations, and negotiation processes as studied in the Semantic web and Software Agent para-
digms), better enabling computers and people to work in cooperation. The semantic grid provides a
general semantic-based, computational, and knowledge-based service for enabling the management
and sharing of complex resources and reasoning mechanisms, thus systematically exposing semanti-
cally rich information associated with resources to build more intelligent grid services.

The notion of the semantic grid shown in Figures 5.12 and 5.13 was first articulated in the
context of e-science, which is all about scientific investigation among scientists of various com-
munities such as physicists, biologist, and chemists and their resources performed through distrib-
uted global collaborations such as the grid to solve scientific problems by generating, analyzing,
sharing, and discussing their insights, experiments, and results in an effective manner, and the
computing infrastructure that enables this joint effort. Higher-level services use the information
relating to the resources’ capability and the mechanisms for service fulfillment to automatically
discover interoperable services and select the most appropriate service for the user with minimal
human intervention.
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Semantic grid-related concepts and technologies.

(Courtesy of Goble and Roure, (ECAI-2004), Valencia, Spain, [95])
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Semantic OGSA (S-OGSA) [96] has been proposed as reference architecture for semantic-based
grids. S-OGSA extends OGSA to support the explicit handling of semantics, and defines the asso-
ciated knowledge services to support a set of service capabilities. This is done by introducing
semantic provisioning services that give support to the provision of semantics, by allowing the crea-
tion, storage, update, removal, and access of different forms of knowledge and metadata. This set of
services includes ontology management and reasoning services, metadata services, and annotation
services

S-OGSA has three main aspects: the model (the elements which it is composed of and their
interrelationships), the capabilities (the services needed to deal with such components), and the
mechanisms (the elements that will enable delivery when deploying the architecture in an applica-
tion, grounded to a grid platform). The myGrid [97] Project community as a pioneer of semantic
grid efforts focusing on the challenges of e-science has developed a suite of tools and services to
enable workflow-based composition of diverse biological data and computational resources. Within
the project, Semantic web technologies have been applied to the problems of resource discovery
and workflow results management in a grid environment.

Job Execution Environments and Monitoring

A distributed job execution environment often consists of two components: a job execution
engine and a distributed data management system. The job execution engine mainly deals with
job scheduling, resource allocation, and other issues such as fault tolerance. The data manage-
ment system often provides an abstraction for jobs to access distributed data. In recent years, to
tackle the increasing need for Internet scale information management and processing, many Inter-
net service companies built their own distributed systems for their specific needs. Most of these
systems provide distributed execution engines and support integrated applications. Google
MapReduce [98] and Microsoft Dryad [99] are two examples of this type of system described in
Chapter 6.

MapReduce was primarily designed to support Google applications that use and generate large
data sets. It generalizes a map/reduce abstraction from these applications and provides a simple pro-
gramming model for distributed execution of programs. Communications between programs are
generalized as exchanges of key-value pairs. The storage of these key-value pairs is supported by
Google File System (GFS) [100]. Parallelism is achieved through parallel scheduling of these distri-
butable programs. Dryad has similar scope with MapReduce, but application dependencies can
be arbitrarily constructed by explicitly specifying a DAG (directed acyclic graph). It supports
data flowing along the links from one job’s output to another job’s input in a manner similar to a
UNIX pipe.

The scheduling mechanism in MapReduce considers data locality by using the data location infor-
mation provided by the GFS metadata server. Similar scheduling strategy is exploited in location-
aware request distribution algorithms (LARD) for web server clusters [100], which schedule requests
based on data locations as well as active connections to the servers that host the data. LARD allows
dynamic creation of replicas.

Matchmaking built on the publish-subscribe model is a common approach for scheduling com-
putationally intensive jobs. Grid computing middleware such as Condor [101] uses such a mechan-
ism to distribute jobs. Condor matchmaking allows an agent that handles clients’ job requests and
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resources to publish the job requirements and resource description in a form of semistructured data.
The agents and resources subscribe to a matchmaker, which scans the published data and pairs jobs
with resources according to the preferences and constraints specified in the data. Once a pair is
formed, the matchmaker notifies the matching agent and resource. The agent and resource then
establish contact and execute a job.

Dryad has a similar scheduling mechanism. Each execution of a vertex in a DAG has an execu-
tion record that contains the state of the execution and the versions of the predecessor vertices pro-
viding its input data. A vertex is placed into a scheduling queue when its input data is ready. The
constraints and preferences of running the vertex are attached to its execution record (e.g., the ver-
tex may have a list of computers on which it would like to run, or prefers to be located in a compu-
ter where a data set is stored). The scheduler then does the matchmaking by allocating the vertex to
the resource. The approach has a long history and can be traced back to the Linda programming
model [102] and middleware inspired by Linda, such as JavaSpaces [103] where jobs are published
in a shared space generalizing the messaging queue and consumed by resources subscribed to the
space.

As jobs can be dispatched to different nodes, a job execution environment typically needs the
support of a distributed data management system for a job to access remote data sets and, some-
times, exchange data with other jobs. As mentioned earlier, MapReduce is supported by GFS.
Dryad also has a GFS-like distributed storage system, which can break large data files into
small chunks. These chunks are then distributed and replicated across the disks of nodes in the
system. The communication channels between jobs are often file-based. Through a distributed
storage system, a file can be passed from one job to another transparently. Accessing and
exchanging data with certain structures can be supported through abstractions built on top of the
distributed storage system. Google BigTable [104] and Amazon Dynamo [105] are two
examples.

The data abstraction in BigTable described in Section 6.3 is a multidimensional sorted map and
in Dynamo is key-value pair. With these abstractions, a job can access multidimensional data or
key-value pairs from any node in the system. As a consequence, a job execution environment is
very power