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Preface

ABOUT THE BOOK
Over the past three decades, parallel processing and distributed computing have emerged as a well-
developed field in computer science and information technology. Many universities and colleges are
now offering standard courses in this field. However, the instructors and students are still in search of
a comprehensive textbook that integrates computing theories and information technologies with the
design, programming, and application of distributed systems. This book is designed to meet these
demands. The book can be also used as a major reference for professionals working in this field.

The book addresses the latest advances in hardware and software, system architecture, new program-
ming paradigms, and ecosystems emphasizing both speed performance and energy efficiency. These lat-
est developments explain how to create high-performance clusters, scalable networks, automated data
centers, and high-throughput cloud/grid systems. We also cover programming, and the use of distributed
or cloud systems in innovative Internet applications. The book aims to transform traditional multiproces-
sors and multi-computer clusters into web-scale grids, clouds, and P2P networks for ubiquitous use in
the future Internet, including large-scale social networks and the Internet of things that are emerging
rapidly in recent years.

A GLANCE AT THE CONTENTS
We have included many milestone developments in a single volume. We present the contributions
not only from our own research groups but also from leading research peers in the U.S., China, and
Australia. Collectively, this group of authors and contributors summarize the progress that has been
made in recent years, ranging from parallel processing to distributed computing and the future
Internet.

Starting with an overview of modern distributed models, the text exposes the design principles,
system architectures and innovative applications of parallel, distributed, and cloud computing sys-
tems. This book attempts to integrate parallel processing technologies with the network-based dis-
tributed systems. The book emphasizes scalable physical systems and virtualized data centers and
cloud systems for research, e-commerce, social networking, supercomputing, and more applications,
using concrete examples from open-source and commercial vendors.

The nine chapters are divided into three Parts: Part 1 covers system models and enabling tech-
nologies, including clustering and virtualization. Part 2 presents data center design, cloud computing
platforms, service-oriented architectures, and distributed programming paradigms and software sup-
port. In Part 3, we study computational/data grids, peer-to-peer networks, ubiquitous clouds, the
Internet of Things, and social networks.

Cloud computing material is addressed in six chapters (1, 3, 4, 5, 6, 9). Cloud systems presented
include the public clouds: Google AppEngine, Amazon Web Service, Facebook, SalesForce.com,
and many others. These cloud systems play an increasingly important role in upgrading the web ser-
vices and Internet applications. Computer architects, software engineers, and system designers may
want to explore the cloud technology to build the future computers and Internet-based systems.
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KEY FEATURES
• Coverage of modern distributed computing technology including computer clusters,

virtualization, service-oriented architecture, massively parallel processors, peer-to-peer systems,
cloud computing, social networks, and the Internet of Things.

• Major emphases of the book lie in exploiting the ubiquity, agility, efficiency, scalability,
availability, and programmability of parallel, distributed, and cloud computing systems.

• Latest developments in Hardware, Networks, and System Architecture:
• Multi-core CPUs and Many-Core GPUs (Intel, Nvidia, AMD)
• Virtual Machines and Virtual Clusters (CoD, Violin, Amazon VPC)
• Top-500 Architectures (Tianbhe-1A, Jaguar, Roadrunner, etc.)
• Google AppEngine, Amazon AWS, Microsoft Azure, IBM BlueCloud
• TeraGrid, DataGrid, ChinaGrid, BOINIC, Grid5000 and FutureGrid
• Chord, Napster, BiTorrent, KaZaA, PPlive, JXTA, and .NET
• RFID, Sensor Networks, GPS, CPS, and the Internet of Things
• Facebook, Force.Com, Twitter, SGI Cylone, Nebula, and GoGrid

• Recent advances in paradigms, programming, software and ecosystems:
• MapReduce, Dryad, Hadoop, MPI, Twister, BigTable, DISC, etc
• Cloud Service and Trust Models (SaaS, IaaS, PaaS, and PowerTrust)
• Programming Languages and Protocols (Python, SOAP, UDDI, Pig Latin)
• Virtualization Software (XEN, KVM, VMWare ESX, etc.)
• Cloud OS and Meshups (Eucalyptus, Nimbus, OpenNebula, vShere/4, etc.)
• Service-Oriented Architecture (REST, WS, Web 2.0, OGSA, etc.)
• Distributed Operating Systems (DCE, Amoeba, and MOSIX)
• Middleware and Software Libraries (LSF, Globus, Hadoop, Aneka)

• Over 100 examples are illustrated with 300 figures, designed to meet the need of students taking
a distributed system course. Each chapter includes exercises and further reading.

• Included are case studies from the leading distributed computing vendors: Amazon, Google,
Microsoft, IBM, HP, Sun, Silicon Graphics, Rackspace, SalesForce.com, netSuite, Enomaly, and
many more.

READERSHIP AND SUGGESTIONS TO INSTRUCTORS/STUDENTS
The readership includes students taking a distributed systems or distributed computing class. Profes-
sional system designers and engineers may find this book useful as a reference to the latest distribu-
ted system technologies including clusters, grids, clouds, and the Internet of Things. The book gives
a balanced coverage of all of these topics, looking into the future of Internet and IT evolutions.

The nine chapters are logically sequenced for use in an one-semester (45-hour lectures) course
for seniors and graduate-level students. For use in a tri-semester system, Chapters 1, 2, 3, 4, 6, and 9
are suitable for a 10-week course (30-hour lectures). In addition to solving homework problems, the
students are advised to conduct some parallel and distributed programming experiments on available
clusters, grids, P2P, and cloud platforms. Sample projects and a solutions manual will be made avail-
able to proven instructors from Morgan Kaufmann, Publishers.
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Foreword

Richard Feynman, in his wonderful autobiography Surely You’re Joking, Mr. Feynman, recounts how
at Los Alamos in 1944 he was responsible for supervising the human computers who performed the
long and tedious calculations required by the Manhattan Project. Using the mechanical calculators that
were then the state of the art, the best human computer could achieve only one addition or multiplica-
tion every few seconds. Feynman and his team thus developed methods for decomposing problems
into smaller tasks that could be performed simultaneously by different people (they passed cards with
intermediate results between people operating adders, multipliers, collators, and sorters); for running
multiple computations at once in the same computing complex (they used different color cards); for
prioritizing a more important computation (they eliminated cards of other colors); and for detecting
and recovering efficiently from errors (relevant cards, and their descendants, were removed, and com-
putations restarted).

Seventy years later, computer architects face similar challenges—and have adopted similar solu-
tions. Individual computing devices are far faster, but physical constraints still limit their speed.
Thus, today’s computing landscape is characterized by pervasive parallelism. Individual processors
incorporate pipelining, parallel instructions, speculative execution, and multithreading. Essentially
every computer system, from the humblest desktop to the most powerful supercomputer, incorpo-
rates multiple processors. Designers of future exascale supercomputers, to be capable of 1018 opera-
tions per second, tell us that these computers will need to support 107 concurrent operations.

Parallelism is fundamentally about communication and coordination, and those two activities have
also been transformed over the past seventy years by dramatic technological change. Light is no fas-
ter, at 8 inches or 20 centimeters per nanosecond in fiber, than in Feynman’s time; one can never
expect to send a message in less than 50 milliseconds from Los Angeles to Auckland. But the rate at
which data can be transmitted has changed dramatically, from a few characters per second in 1910
(early telegraphs) to thousands of characters per second in 1960 (ARPANET) to more than 10 billion
characters per second over optical fibers in 2010.

Quasi-ubiquitous high-speed communications not only allows call centers to be relocated to India,
it also allows computation to be moved to centralized facilities that achieve massive economies of
scale, and permits enormous quantities of data to be collected and organized to support decision mak-
ing by people worldwide. Thus, government agencies, research laboratories, and companies who need
to simulate complex phenomena create and operate enormous supercomputers with hundreds of
thousands of processors. Similarly, companies such as Google, Facebook, and Microsoft who need
to process large quantities of data operate numerous massive “cloud” data centers that may each
occupy tens of thousands of square feet and contain tens or hundreds of thousands of computers. Like
Feynman’s Los Alamos team, these computing complexes provide computing as a service for many
people, and must juggle many computations performed for different purposes.

Massive parallelism, ultra-fast communication, and massive centralization are all fundamental to
human decision making today. The computations that are used to forecast tomorrow’s weather,
index the web, recommend movies, suggest social connections, predict the future state of the stock
market, or provide any one of a multitude of other desirable information products are typically dis-
tributed over thousands of processors and depend on data collected from sometimes millions of
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sources worldwide. Indeed, little of the modern world could function as it does without parallel and
distributed computing.

In this pervasively parallel and distributed world, an understanding of distributed computing is
surely an essential part of any undergraduate education in computer science. (Indeed, I would
argue, an understanding of these topics should be an essential part of any undergraduate education.
But I leave that argument for another time.) The most complex computer systems today are no
longer individual microprocessors, but entire data centers. The most complex computer programs
written today are those that manage or run on data-center-scale systems. A student who graduates
with a degree in computer science and does not understand how these systems and programs are
constructed is profoundly unprepared to engage productively in the modern workforce.

Hwang, Fox, and Dongarra’s text is thus especially timely. In its three sections, it covers pro-
gressively the hardware and software architectures that underpin modern massively parallel compu-
ter systems; the concepts and technologies that enable cloud and distributed computing; and
advanced topics in distributed computing, including grid, peer-to-peer, and the Internet of Things.
In each area, the text takes a systems approach, describing not only concepts but also representative
technologies and realistic large-scale distributed computing deployments. Computing is as much an
engineering discipline as a science, and these descriptions of real systems will both prepare students
to use those systems and help them understand how other architects have maneuvered the
constraints associated with large-scale distributed system design.

The text also addresses some of the more challenging issues facing computer science researchers
today. To name just two, computers have emerged as a major consumer of electricity, accounting for
several percent of all electricity used in the US. (In Japan, it is ironic that following the 2011 tsunami,
the large supercomputers that may help prepare for future natural disasters must often be turned off
to conserve power.) And, the fact that 98% of the roughly 10 billion processors sold each year are
for embedded devices, and that these embedded devices are increasingly communication-enabled,
introduces the opportunity and challenge of an “Internet of Things” that will be vastly larger, more
complex, and more capable than today’s Internet of People.

I hope that the appearance of this book will stimulate more teaching of distributed computing in
universities and colleges—and not just as an optional topic, as is too often the case, but as a core
element of the undergraduate curriculum. I hope also that others outside universities will take this
opportunity to learn about distributed computing, and more broadly about what computing looks
like on the cutting edge: sometimes messy; often complex; but above all tremendously exciting.

Ian Foster
Jackson Hole, Wyoming

August, 2011
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PART

1Systems Modeling, Clustering,
and Virtualization

The first three chapters cover systems models and review two enabling technologies. We model
distributed systems and cloud platforms in Chapter 1. The clustering technology is presented in
Chapter 2, and virtualization technology in Chapter 3. These two technologies enable distributed
and cloud computing. The system models include computer clusters, computing grid, P2P networks,
and cloud computing platform. System clustering is supported by hardware, software, and middle-
ware advances. Virtualization creates virtual machines, virtualized clusters, automation of datacen-
ters, and building of elastic cloud platforms.

CHAPTER 1: DISTRIBUTED SYSTEM MODELS AND
ENABLING TECHNOLOGIES
This introductory chapter assesses the evolutional changes in computing and IT trends in the past
30 years. We study both high-performance computing (HPC) for scientific computing and high-
throughput computing (HTC) systems for business computing. We examine clusters/MPP, grids,
P2P networks, and Internet clouds. These systems are distinguished by their platform architectures,
OS platforms, processing algorithms, communication protocols, security demands, and service models
applied. The study emphasizes the scalability, performance, availability, security, energy-efficiency,
workload outsourcing, data center protection, and so on.

This chapter is authored by Kai Hwang with partial contributions by Geoffrey Fox (Section 1.4.1)
and Albert Zomaya (Section 1.5.4), and assisted by Nikzad Babaii Rizvandi, Young-Choon Lee,
Xiaosong Lou, and Lizhong Chen. The final manuscript was edited by Jack Dongarra.

CHAPTER 2: COMPUTER CLUSTERS FOR SCALABLE
PARALLEL COMPUTING
Clustering enables the construction of scalable parallel and distributed systems for both HPC and
HTC applications. Today’s cluster nodes are built with either physical servers or virtual machines.
In this chapter, we study clustered computing systems and massively parallel processors. We focus
on design principles and assess the hardware, software, and middleware support needed. We study
scalability, availability, programmability, single system image, job management, and fault tolerance.
We study the clustering MPP architectures in three top supercomputers reported in recent years,
namely China’s Tiahe-1A, the Cray XT5 Jaguar, and IBM’s RoadRunner.
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This chapter is coauthored by Kai Hwang and Jack Dongarra with partial contributions by
Rajkumar Buyya and Ninghui Sun. Special technical assistances are from Zhiwei Xu, Zhou Zhao,
Xiaosong Lou, and Lizhong Chen.

CHAPTER 3: VIRTUAL MACHINES AND VIRTUALIZATION OF CLUSTERS
AND DATA CENTERS
Virtualization technology was primarily designed for the sharing of expensive hardware resources
by multiplexing virtual machines (VM) on the same set of hardware hosts. The surge of interest in
installing virtual machines has widened the scope of system applications and upgraded computer
performance and efficiency in recent years. We study VMs, live migration of VMs, virtual cluster
construction, resource provisioning, virtual configuration adaptation, and the design of virtualized
data centers for cloud computing applications. We emphasize the roles of using virtual clusters and
virtualized resource management for building dynamic grids and cloud platforms.

This chapter is coauthored by Zhibin Yu and Kai Hwang with technical assistance from Hai Jin,
Xiaofei Liao, Chongyuan Qin, Lizhong Chen, and Zhou Zhao.
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SUMMARY
This chapter presents the evolutionary changes that have occurred in parallel, distributed, and cloud
computing over the past 30 years, driven by applications with variable workloads and large data
sets. We study both high-performance and high-throughput computing systems in parallel computers
appearing as computer clusters, service-oriented architecture, computational grids, peer-to-peer net-
works, Internet clouds, and the Internet of Things. These systems are distinguished by their hard-
ware architectures, OS platforms, processing algorithms, communication protocols, and service
models applied. We also introduce essential issues on the scalability, performance, availability,
security, and energy efficiency in distributed systems.

1.1 SCALABLE COMPUTING OVER THE INTERNET
Over the past 60 years, computing technology has undergone a series of platform and environment
changes. In this section, we assess evolutionary changes in machine architecture, operating system
platform, network connectivity, and application workload. Instead of using a centralized computer
to solve computational problems, a parallel and distributed computing system uses multiple
computers to solve large-scale problems over the Internet. Thus, distributed computing becomes
data-intensive and network-centric. This section identifies the applications of modern computer
systems that practice parallel and distributed computing. These large-scale Internet applications
have significantly enhanced the quality of life and information services in society today.

1.1.1 The Age of Internet Computing
Billions of people use the Internet every day. As a result, supercomputer sites and large data centers
must provide high-performance computing services to huge numbers of Internet users concurrently.
Because of this high demand, the Linpack Benchmark for high-performance computing (HPC)
applications is no longer optimal for measuring system performance. The emergence of computing
clouds instead demands high-throughput computing (HTC) systems built with parallel and distribu-
ted computing technologies [5,6,19,25]. We have to upgrade data centers using fast servers, storage
systems, and high-bandwidth networks. The purpose is to advance network-based computing and
web services with the emerging new technologies.

1.1.1.1 The Platform Evolution
Computer technology has gone through five generations of development, with each generation lasting
from 10 to 20 years. Successive generations are overlapped in about 10 years. For instance, from
1950 to 1970, a handful of mainframes, including the IBM 360 and CDC 6400, were built to satisfy
the demands of large businesses and government organizations. From 1960 to 1980, lower-cost mini-
computers such as the DEC PDP 11 and VAX Series became popular among small businesses and on
college campuses.

From 1970 to 1990, we saw widespread use of personal computers built with VLSI microproces-
sors. From 1980 to 2000, massive numbers of portable computers and pervasive devices appeared in
both wired and wireless applications. Since 1990, the use of both HPC and HTC systems hidden in
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clusters, grids, or Internet clouds has proliferated. These systems are employed by both consumers
and high-end web-scale computing and information services.

The general computing trend is to leverage shared web resources and massive amounts of data
over the Internet. Figure 1.1 illustrates the evolution of HPC and HTC systems. On the HPC side,
supercomputers (massively parallel processors or MPPs) are gradually replaced by clusters of
cooperative computers out of a desire to share computing resources. The cluster is often a collection
of homogeneous compute nodes that are physically connected in close range to one another. We will
discuss clusters, MPPs, and grid systems in more detail in Chapters 2 and 7.

On the HTC side, peer-to-peer (P2P) networks are formed for distributed file sharing and
content delivery applications. A P2P system is built over many client machines (a concept we
will discuss further in Chapter 5). Peer machines are globally distributed in nature. P2P, cloud
computing, and web service platforms are more focused on HTC applications than on HPC appli-
cations. Clustering and P2P technologies lead to the development of computational grids or data
grids.

1.1.1.2 High-Performance Computing
For many years, HPC systems emphasize the raw speed performance. The speed of HPC systems
has increased from Gflops in the early 1990s to now Pflops in 2010. This improvement was driven
mainly by the demands from scientific, engineering, and manufacturing communities. For example,
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Evolutionary trend toward parallel, distributed, and cloud computing with clusters, MPPs, P2P networks, grids,
clouds, web services, and the Internet of Things.
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the Top 500 most powerful computer systems in the world are measured by floating-point speed in
Linpack benchmark results. However, the number of supercomputer users is limited to less than
10% of all computer users. Today, the majority of computer users are using desktop computers or
large servers when they conduct Internet searches and market-driven computing tasks.

1.1.1.3 High-Throughput Computing
The development of market-oriented high-end computing systems is undergoing a strategic change
from an HPC paradigm to an HTC paradigm. This HTC paradigm pays more attention to high-flux
computing. The main application for high-flux computing is in Internet searches and web services
by millions or more users simultaneously. The performance goal thus shifts to measure high
throughput or the number of tasks completed per unit of time. HTC technology needs to not only
improve in terms of batch processing speed, but also address the acute problems of cost, energy
savings, security, and reliability at many data and enterprise computing centers. This book will
address both HPC and HTC systems to meet the demands of all computer users.

1.1.1.4 Three New Computing Paradigms
As Figure 1.1 illustrates, with the introduction of SOA, Web 2.0 services become available. Advances
in virtualization make it possible to see the growth of Internet clouds as a new computing paradigm.
The maturity of radio-frequency identification (RFID), Global Positioning System (GPS), and sensor
technologies has triggered the development of the Internet of Things (IoT). These new paradigms
are only briefly introduced here. We will study the details of SOA in Chapter 5; virtualization in
Chapter 3; cloud computing in Chapters 4, 6, and 9; and the IoT along with cyber-physical systems
(CPS) in Chapter 9.

When the Internet was introduced in 1969, Leonard Klienrock of UCLA declared: “As of now,
computer networks are still in their infancy, but as they grow up and become sophisticated, we will
probably see the spread of computer utilities, which like present electric and telephone utilities,
will service individual homes and offices across the country.” Many people have redefined the term
“computer” since that time. In 1984, John Gage of Sun Microsystems created the slogan, “The net-
work is the computer.” In 2008, David Patterson of UC Berkeley said, “The data center is the compu-
ter. There are dramatic differences between developing software for millions to use as a service
versus distributing software to run on their PCs.” Recently, Rajkumar Buyya of Melbourne University
simply said: “The cloud is the computer.”

This book covers clusters, MPPs, P2P networks, grids, clouds, web services, social networks,
and the IoT. In fact, the differences among clusters, grids, P2P systems, and clouds may blur in the
future. Some people view clouds as grids or clusters with modest changes through virtualization.
Others feel the changes could be major, since clouds are anticipated to process huge data sets gener-
ated by the traditional Internet, social networks, and the future IoT. In subsequent chapters, the
distinctions and dependencies among all distributed and cloud systems models will become clearer
and more transparent.

1.1.1.5 Computing Paradigm Distinctions
The high-technology community has argued for many years about the precise definitions of
centralized computing, parallel computing, distributed computing, and cloud computing. In general,
distributed computing is the opposite of centralized computing. The field of parallel computing
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overlaps with distributed computing to a great extent, and cloud computing overlaps with distributed,
centralized, and parallel computing. The following list defines these terms more clearly; their architec-
tural and operational differences are discussed further in subsequent chapters.

• Centralized computing This is a computing paradigm by which all computer resources are
centralized in one physical system. All resources (processors, memory, and storage) are fully
shared and tightly coupled within one integrated OS. Many data centers and supercomputers are
centralized systems, but they are used in parallel, distributed, and cloud computing applications
[18,26].

• Parallel computing In parallel computing, all processors are either tightly coupled with
centralized shared memory or loosely coupled with distributed memory. Some authors refer to
this discipline as parallel processing [15,27]. Interprocessor communication is accomplished
through shared memory or via message passing. A computer system capable of parallel
computing is commonly known as a parallel computer [28]. Programs running in a parallel
computer are called parallel programs. The process of writing parallel programs is often
referred to as parallel programming [32].

• Distributed computing This is a field of computer science/engineering that studies distributed
systems. A distributed system [8,13,37,46] consists of multiple autonomous computers, each
having its own private memory, communicating through a computer network. Information
exchange in a distributed system is accomplished through message passing. A computer
program that runs in a distributed system is known as a distributed program. The process of
writing distributed programs is referred to as distributed programming.

• Cloud computing An Internet cloud of resources can be either a centralized or a distributed
computing system. The cloud applies parallel or distributed computing, or both. Clouds can be
built with physical or virtualized resources over large data centers that are centralized or
distributed. Some authors consider cloud computing to be a form of utility computing or service
computing [11,19].

As an alternative to the preceding terms, some in the high-tech community prefer the term con-
current computing or concurrent programming. These terms typically refer to the union of parallel
computing and distributing computing, although biased practitioners may interpret them differently.
Ubiquitous computing refers to computing with pervasive devices at any place and time using wired
or wireless communication. The Internet of Things (IoT) is a networked connection of everyday
objects including computers, sensors, humans, etc. The IoT is supported by Internet clouds to
achieve ubiquitous computing with any object at any place and time. Finally, the term Internet
computing is even broader and covers all computing paradigms over the Internet. This book covers
all the aforementioned computing paradigms, placing more emphasis on distributed and cloud com-
puting and their working systems, including the clusters, grids, P2P, and cloud systems.

1.1.1.6 Distributed System Families
Since the mid-1990s, technologies for building P2P networks and networks of clusters have been
consolidated into many national projects designed to establish wide area computing infrastructures,
known as computational grids or data grids. Recently, we have witnessed a surge in interest in
exploring Internet cloud resources for data-intensive applications. Internet clouds are the result of
moving desktop computing to service-oriented computing using server clusters and huge databases
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at data centers. This chapter introduces the basics of various parallel and distributed families. Grids
and clouds are disparity systems that place great emphasis on resource sharing in hardware,
software, and data sets.

Design theory, enabling technologies, and case studies of these massively distributed systems
are also covered in this book. Massively distributed systems are intended to exploit a high degree
of parallelism or concurrency among many machines. In October 2010, the highest performing
cluster machine was built in China with 86016 CPU processor cores and 3,211,264 GPU cores
in a Tianhe-1A system. The largest computational grid connects up to hundreds of server clus-
ters. A typical P2P network may involve millions of client machines working simultaneously.
Experimental cloud computing clusters have been built with thousands of processing nodes. We
devote the material in Chapters 4 through 6 to cloud computing. Case studies of HTC systems
will be examined in Chapters 4 and 9, including data centers, social networks, and virtualized
cloud platforms

In the future, both HPC and HTC systems will demand multicore or many-core processors that
can handle large numbers of computing threads per core. Both HPC and HTC systems emphasize
parallelism and distributed computing. Future HPC and HTC systems must be able to satisfy this
huge demand in computing power in terms of throughput, efficiency, scalability, and reliability. The
system efficiency is decided by speed, programming, and energy factors (i.e., throughput per watt
of energy consumed). Meeting these goals requires to yield the following design objectives:

• Efficiency measures the utilization rate of resources in an execution model by exploiting
massive parallelism in HPC. For HTC, efficiency is more closely related to job throughput, data
access, storage, and power efficiency.

• Dependability measures the reliability and self-management from the chip to the system and
application levels. The purpose is to provide high-throughput service with Quality of Service
(QoS) assurance, even under failure conditions.

• Adaptation in the programming model measures the ability to support billions of job requests
over massive data sets and virtualized cloud resources under various workload and service
models.

• Flexibility in application deployment measures the ability of distributed systems to run well in
both HPC (science and engineering) and HTC (business) applications.

1.1.2 Scalable Computing Trends and New Paradigms
Several predictable trends in technology are known to drive computing applications. In fact,
designers and programmers want to predict the technological capabilities of future systems. For
instance, Jim Gray’s paper, “Rules of Thumb in Data Engineering,” is an excellent example of how
technology affects applications and vice versa. In addition, Moore’s law indicates that processor
speed doubles every 18 months. Although Moore’s law has been proven valid over the last
30 years, it is difficult to say whether it will continue to be true in the future.

Gilder’s law indicates that network bandwidth has doubled each year in the past. Will that trend
continue in the future? The tremendous price/performance ratio of commodity hardware was driven
by the desktop, notebook, and tablet computing markets. This has also driven the adoption and use
of commodity technologies in large-scale computing. We will discuss the future of these computing
trends in more detail in subsequent chapters. For now, it’s important to understand how distributed
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systems emphasize both resource distribution and concurrency or high degree of parallelism (DoP).
Let’s review the degrees of parallelism before we discuss the special requirements for distributed
computing.

1.1.2.1 Degrees of Parallelism
Fifty years ago, when hardware was bulky and expensive, most computers were designed in a
bit-serial fashion. In this scenario, bit-level parallelism (BLP) converts bit-serial processing to
word-level processing gradually. Over the years, users graduated from 4-bit microprocessors to 8-,
16-, 32-, and 64-bit CPUs. This led us to the next wave of improvement, known as instruction-level
parallelism (ILP), in which the processor executes multiple instructions simultaneously rather than
only one instruction at a time. For the past 30 years, we have practiced ILP through pipelining, super-
scalar computing, VLIW (very long instruction word) architectures, and multithreading. ILP requires
branch prediction, dynamic scheduling, speculation, and compiler support to work efficiently.

Data-level parallelism (DLP) was made popular through SIMD (single instruction, multiple
data) and vector machines using vector or array types of instructions. DLP requires even more hard-
ware support and compiler assistance to work properly. Ever since the introduction of multicore
processors and chip multiprocessors (CMPs), we have been exploring task-level parallelism (TLP).
A modern processor explores all of the aforementioned parallelism types. In fact, BLP, ILP, and
DLP are well supported by advances in hardware and compilers. However, TLP is far from being
very successful due to difficulty in programming and compilation of code for efficient execution on
multicore CMPs. As we move from parallel processing to distributed processing, we will see an
increase in computing granularity to job-level parallelism (JLP). It is fair to say that coarse-grain
parallelism is built on top of fine-grain parallelism.

1.1.2.2 Innovative Applications
Both HPC and HTC systems desire transparency in many application aspects. For example, data
access, resource allocation, process location, concurrency in execution, job replication, and failure
recovery should be made transparent to both users and system management. Table 1.1 highlights a
few key applications that have driven the development of parallel and distributed systems over the

Table 1.1 Applications of High-Performance and High-Throughput Systems

Domain Specific Applications

Science and engineering Scientific simulations, genomic analysis, etc.
Earthquake prediction, global warming, weather forecasting, etc.

Business, education, services
industry, and health care

Telecommunication, content delivery, e-commerce, etc.
Banking, stock exchanges, transaction processing, etc.
Air traffic control, electric power grids, distance education, etc.
Health care, hospital automation, telemedicine, etc.

Internet and web services,
and government applications

Internet search, data centers, decision-making systems, etc.
Traffic monitoring, worm containment, cyber security, etc.
Digital government, online tax return processing, social networking, etc.

Mission-critical applications Military command and control, intelligent systems, crisis management, etc.
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years. These applications spread across many important domains in science, engineering, business,
education, health care, traffic control, Internet and web services, military, and government
applications.

Almost all applications demand computing economics, web-scale data collection, system
reliability, and scalable performance. For example, distributed transaction processing is often prac-
ticed in the banking and finance industry. Transactions represent 90 percent of the existing market for
reliable banking systems. Users must deal with multiple database servers in distributed transactions.
Maintaining the consistency of replicated transaction records is crucial in real-time banking services.
Other complications include lack of software support, network saturation, and security threats in these
applications. We will study applications and software support in more detail in subsequent chapters.

1.1.2.3 The Trend toward Utility Computing
Figure 1.2 identifies major computing paradigms to facilitate the study of distributed systems and
their applications. These paradigms share some common characteristics. First, they are all ubiquitous
in daily life. Reliability and scalability are two major design objectives in these computing models.
Second, they are aimed at autonomic operations that can be self-organized to support dynamic dis-
covery. Finally, these paradigms are composable with QoS and SLAs (service-level agreements).
These paradigms and their attributes realize the computer utility vision.

Utility computing focuses on a business model in which customers receive computing resources
from a paid service provider. All grid/cloud platforms are regarded as utility service providers.
However, cloud computing offers a broader concept than utility computing. Distributed cloud
applications run on any available servers in some edge networks. Major technological challenges
include all aspects of computer science and engineering. For example, users demand new network-
efficient processors, scalable memory and storage schemes, distributed OSes, middleware for
machine virtualization, new programming models, effective resource management, and application
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The vision of computer utilities in modern distributed computing systems.
(Modified from presentation slide by Raj Buyya, 2010)
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program development. These hardware and software supports are necessary to build distributed
systems that explore massive parallelism at all processing levels.

1.1.2.4 The Hype Cycle of New Technologies
Any new and emerging computing and information technology may go through a hype cycle, as
illustrated in Figure 1.3. This cycle shows the expectations for the technology at five different
stages. The expectations rise sharply from the trigger period to a high peak of inflated expectations.
Through a short period of disillusionment, the expectation may drop to a valley and then increase
steadily over a long enlightenment period to a plateau of productivity. The number of years for an
emerging technology to reach a certain stage is marked by special symbols. The hollow circles
indicate technologies that will reach mainstream adoption in two years. The gray circles represent
technologies that will reach mainstream adoption in two to five years. The solid circles represent
those that require five to 10 years to reach mainstream adoption, and the triangles denote those that
require more than 10 years. The crossed circles represent technologies that will become obsolete
before they reach the plateau.

The hype cycle in Figure 1.3 shows the technology status as of August 2010. For example, at
that time consumer-generated media was at the disillusionment stage, and it was predicted to take
less than two years to reach its plateau of adoption. Internet micropayment systems were forecast to
take two to five years to move from the enlightenment stage to maturity. It was believed that 3D
printing would take five to 10 years to move from the rising expectation stage to mainstream adop-
tion, and mesh network sensors were expected to take more than 10 years to move from the inflated
expectation stage to a plateau of mainstream adoption.

Also as shown in Figure 1.3, the cloud technology had just crossed the peak of the expectation
stage in 2010, and it was expected to take two to five more years to reach the productivity stage.
However, broadband over power line technology was expected to become obsolete before leaving
the valley of disillusionment stage in 2010. Many additional technologies (denoted by dark circles
in Figure 1.3) were at their peak expectation stage in August 2010, and they were expected to take
five to 10 years to reach their plateau of success. Once a technology begins to climb the slope of
enlightenment, it may reach the productivity plateau within two to five years. Among these promis-
ing technologies are the clouds, biometric authentication, interactive TV, speech recognition, predic-
tive analytics, and media tablets.

1.1.3 The Internet of Things and Cyber-Physical Systems
In this section, we will discuss two Internet development trends: the Internet of Things [48] and
cyber-physical systems. These evolutionary trends emphasize the extension of the Internet to every-
day objects. We will only cover the basics of these concepts here; we will discuss them in more
detail in Chapter 9.

1.1.3.1 The Internet of Things
The traditional Internet connects machines to machines or web pages to web pages. The concept of
the IoT was introduced in 1999 at MIT [40]. The IoT refers to the networked interconnection of
everyday objects, tools, devices, or computers. One can view the IoT as a wireless network of sen-
sors that interconnect all things in our daily life. These things can be large or small and they vary
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with respect to time and place. The idea is to tag every object using RFID or a related sensor or
electronic technology such as GPS.

With the introduction of the IPv6 protocol, 2128 IP addresses are available to distinguish all the
objects on Earth, including all computers and pervasive devices. The IoT researchers have estimated
that every human being will be surrounded by 1,000 to 5,000 objects. The IoT needs to be designed
to track 100 trillion static or moving objects simultaneously. The IoT demands universal addressa-
bility of all of the objects or things. To reduce the complexity of identification, search, and storage,
one can set the threshold to filter out fine-grain objects. The IoT obviously extends the Internet and
is more heavily developed in Asia and European countries.

In the IoT era, all objects and devices are instrumented, interconnected, and interacted with each
other intelligently. This communication can be made between people and things or among the things
themselves. Three communication patterns co-exist: namely H2H (human-to-human), H2T (human-to-
thing), and T2T (thing-to-thing). Here things include machines such as PCs and mobile phones. The idea
here is to connect things (including human and machine objects) at any time and any place intelligently
with low cost. Any place connections include at the PC, indoor (away from PC), outdoors, and on the
move. Any time connections include daytime, night, outdoors and indoors, and on the move as well.

The dynamic connections will grow exponentially into a new dynamic network of networks,
called the Internet of Things (IoT). The IoT is still in its infancy stage of development. Many proto-
type IoTs with restricted areas of coverage are under experimentation at the time of this writing.
Cloud computing researchers expect to use the cloud and future Internet technologies to support
fast, efficient, and intelligent interactions among humans, machines, and any objects on Earth.
A smart Earth should have intelligent cities, clean water, efficient power, convenient transportation,
good food supplies, responsible banks, fast telecommunications, green IT, better schools, good
health care, abundant resources, and so on. This dream living environment may take some time to
reach fruition at different parts of the world.

1.1.3.2 Cyber-Physical Systems
A cyber-physical system (CPS) is the result of interaction between computational processes and the
physical world. A CPS integrates “cyber” (heterogeneous, asynchronous) with “physical” (concur-
rent and information-dense) objects. A CPS merges the “3C” technologies of computation, commu-
nication, and control into an intelligent closed feedback system between the physical world and the
information world, a concept which is actively explored in the United States. The IoT emphasizes
various networking connections among physical objects, while the CPS emphasizes exploration of
virtual reality (VR) applications in the physical world. We may transform how we interact with the
physical world just like the Internet transformed how we interact with the virtual world. We will
study IoT, CPS, and their relationship to cloud computing in Chapter 9.

1.2 TECHNOLOGIES FOR NETWORK-BASED SYSTEMS
With the concept of scalable computing under our belt, it’s time to explore hardware, software, and
network technologies for distributed computing system design and applications. In particular, we
will focus on viable approaches to building distributed operating systems for handling massive par-
allelism in a distributed environment.
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1.2.1 Multicore CPUs and Multithreading Technologies
Consider the growth of component and network technologies over the past 30 years. They are
crucial to the development of HPC and HTC systems. In Figure 1.4, processor speed is measured
in millions of instructions per second (MIPS) and network bandwidth is measured in megabits per
second (Mbps) or gigabits per second (Gbps). The unit GE refers to 1 Gbps Ethernet bandwidth.

1.2.1.1 Advances in CPU Processors
Today, advanced CPUs or microprocessor chips assume a multicore architecture with dual, quad,
six, or more processing cores. These processors exploit parallelism at ILP and TLP levels. Processor
speed growth is plotted in the upper curve in Figure 1.4 across generations of microprocessors or
CMPs. We see growth from 1 MIPS for the VAX 780 in 1978 to 1,800 MIPS for the Intel Pentium
4 in 2002, up to a 22,000 MIPS peak for the Sun Niagara 2 in 2008. As the figure shows, Moore’s
law has proven to be pretty accurate in this case. The clock rate for these processors increased from
10 MHz for the Intel 286 to 4 GHz for the Pentium 4 in 30 years.

However, the clock rate reached its limit on CMOS-based chips due to power limitations. At the
time of this writing, very few CPU chips run with a clock rate exceeding 5 GHz. In other words,
clock rate will not continue to improve unless chip technology matures. This limitation is attributed
primarily to excessive heat generation with high frequency or high voltages. The ILP is highly
exploited in modern CPU processors. ILP mechanisms include multiple-issue superscalar architecture,
dynamic branch prediction, and speculative execution, among others. These ILP techniques demand
hardware and compiler support. In addition, DLP and TLP are highly explored in graphics processing
units (GPUs) that adopt a many-core architecture with hundreds to thousands of simple cores.
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Improvement in processor and network technologies over 33 years.
(Courtesy of Xiaosong Lou and Lizhong Chen of University of Southern California, 2011)
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Both multi-core CPU and many-core GPU processors can handle multiple instruction threads at
different magnitudes today. Figure 1.5 shows the architecture of a typical multicore processor.
Each core is essentially a processor with its own private cache (L1 cache). Multiple cores are
housed in the same chip with an L2 cache that is shared by all cores. In the future, multiple CMPs
could be built on the same CPU chip with even the L3 cache on the chip. Multicore and multi-
threaded CPUs are equipped with many high-end processors, including the Intel i7, Xeon, AMD
Opteron, Sun Niagara, IBM Power 6, and X cell processors. Each core could be also multithreaded.
For example, the Niagara II is built with eight cores with eight threads handled by each core. This
implies that the maximum ILP and TLP that can be exploited in Niagara is 64 (8 × 8 = 64). In
2011, the Intel Core i7 990x has reported 159,000 MIPS execution rate as shown in the upper-
most square in Figure 1.4.

1.2.1.2 Multicore CPU and Many-Core GPU Architectures
Multicore CPUs may increase from the tens of cores to hundreds or more in the future. But the
CPU has reached its limit in terms of exploiting massive DLP due to the aforementioned memory
wall problem. This has triggered the development of many-core GPUs with hundreds or more thin
cores. Both IA-32 and IA-64 instruction set architectures are built into commercial CPUs. Now,
x-86 processors have been extended to serve HPC and HTC systems in some high-end server
processors.

Many RISC processors have been replaced with multicore x-86 processors and many-core GPUs
in the Top 500 systems. This trend indicates that x-86 upgrades will dominate in data centers and
supercomputers. The GPU also has been applied in large clusters to build supercomputers in MPPs.
In the future, the processor industry is also keen to develop asymmetric or heterogeneous chip mul-
tiprocessors that can house both fat CPU cores and thin GPU cores on the same chip.

1.2.1.3 Multithreading Technology
Consider in Figure 1.6 the dispatch of five independent threads of instructions to four pipelined data
paths (functional units) in each of the following five processor categories, from left to right: a
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FIGURE 1.5

Schematic of a modern multicore CPU chip using a hierarchy of caches, where L1 cache is private to each
core, on-chip L2 cache is shared and L3 cache or DRAM Is off the chip.
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four-issue superscalar processor, a fine-grain multithreaded processor, a coarse-grain multi-
threaded processor, a two-core CMP, and a simultaneous multithreaded (SMT) processor. The
superscalar processor is single-threaded with four functional units. Each of the three multithreaded
processors is four-way multithreaded over four functional data paths. In the dual-core processor,
assume two processing cores, each a single-threaded two-way superscalar processor.

Instructions from different threads are distinguished by specific shading patterns for instruc-
tions from five independent threads. Typical instruction scheduling patterns are shown here. Only
instructions from the same thread are executed in a superscalar processor. Fine-grain multithread-
ing switches the execution of instructions from different threads per cycle. Course-grain multi-
threading executes many instructions from the same thread for quite a few cycles before
switching to another thread. The multicore CMP executes instructions from different threads com-
pletely. The SMT allows simultaneous scheduling of instructions from different threads in the
same cycle.

These execution patterns closely mimic an ordinary program. The blank squares correspond to
no available instructions for an instruction data path at a particular processor cycle. More blank
cells imply lower scheduling efficiency. The maximum ILP or maximum TLP is difficult to achieve
at each processor cycle. The point here is to demonstrate your understanding of typical instruction
scheduling patterns in these five different micro-architectures in modern processors.
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Thread 3
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multithreaded

processor
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Dual-core
(2-processor

CMP)

Simultaneous
multithreaded

(SMT) processor

FIGURE 1.6

Five micro-architectures in modern CPU processors, that exploit ILP and TLP supported by multicore and
multithreading technologies.
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1.2.2 GPU Computing to Exascale and Beyond
A GPU is a graphics coprocessor or accelerator mounted on a computer’s graphics card or video
card. A GPU offloads the CPU from tedious graphics tasks in video editing applications. The
world’s first GPU, the GeForce 256, was marketed by NVIDIA in 1999. These GPU chips can pro-
cess a minimum of 10 million polygons per second, and are used in nearly every computer on the
market today. Some GPU features were also integrated into certain CPUs. Traditional CPUs are
structured with only a few cores. For example, the Xeon X5670 CPU has six cores. However, a
modern GPU chip can be built with hundreds of processing cores.

Unlike CPUs, GPUs have a throughput architecture that exploits massive parallelism by
executing many concurrent threads slowly, instead of executing a single long thread in a conven-
tional microprocessor very quickly. Lately, parallel GPUs or GPU clusters have been garnering a
lot of attention against the use of CPUs with limited parallelism. General-purpose computing on
GPUs, known as GPGPUs, have appeared in the HPC field. NVIDIA’s CUDA model was for
HPC using GPGPUs. Chapter 2 will discuss GPU clusters for massively parallel computing in
more detail [15,32].

1.2.2.1 How GPUs Work
Early GPUs functioned as coprocessors attached to the CPU. Today, the NVIDIA GPU has been
upgraded to 128 cores on a single chip. Furthermore, each core on a GPU can handle eight threads
of instructions. This translates to having up to 1,024 threads executed concurrently on a single
GPU. This is true massive parallelism, compared to only a few threads that can be handled by a
conventional CPU. The CPU is optimized for latency caches, while the GPU is optimized to deliver
much higher throughput with explicit management of on-chip memory.

Modern GPUs are not restricted to accelerated graphics or video coding. They are used in HPC
systems to power supercomputers with massive parallelism at multicore and multithreading levels.
GPUs are designed to handle large numbers of floating-point operations in parallel. In a way, the
GPU offloads the CPU from all data-intensive calculations, not just those that are related to video
processing. Conventional GPUs are widely used in mobile phones, game consoles, embedded sys-
tems, PCs, and servers. The NVIDIA CUDA Tesla or Fermi is used in GPU clusters or in HPC sys-
tems for parallel processing of massive floating-pointing data.

1.2.2.2 GPU Programming Model
Figure 1.7 shows the interaction between a CPU and GPU in performing parallel execution of
floating-point operations concurrently. The CPU is the conventional multicore processor with
limited parallelism to exploit. The GPU has a many-core architecture that has hundreds of
simple processing cores organized as multiprocessors. Each core can have one or more
threads. Essentially, the CPU’s floating-point kernel computation role is largely offloaded to
the many-core GPU. The CPU instructs the GPU to perform massive data processing. The
bandwidth must be matched between the on-board main memory and the on-chip GPU memory.
This process is carried out in NVIDIA’s CUDA programming using the GeForce 8800 or Tesla
and Fermi GPUs. We will study the use of CUDA GPUs in large-scale cluster computing in
Chapter 2.
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Example 1.1 The NVIDIA Fermi GPU Chip with 512 CUDA Cores

In November 2010, three of the five fastest supercomputers in the world (the Tianhe-1a, Nebulae, and
Tsubame) used large numbers of GPU chips to accelerate floating-point computations. Figure 1.8 shows
the architecture of the Fermi GPU, a next-generation GPU from NVIDIA. This is a streaming multiprocessor
(SM) module. Multiple SMs can be built on a single GPU chip. The Fermi chip has 16 SMs implemented
with 3 billion transistors. Each SM comprises up to 512 streaming processors (SPs), known as CUDA
cores. The Tesla GPUs used in the Tianhe-1a have a similar architecture, with 448 CUDA cores.

The Fermi GPU is a newer generation of GPU, first appearing in 2011. The Tesla or Fermi GPU can be
used in desktop workstations to accelerate floating-point calculations or for building large-scale data cen-
ters. The architecture shown is based on a 2009 white paper by NVIDIA [36]. There are 32 CUDA cores
per SM. Only one SM is shown in Figure 1.8. Each CUDA core has a simple pipelined integer ALU and an
FPU that can be used in parallel. Each SM has 16 load/store units allowing source and destination
addresses to be calculated for 16 threads per clock. There are four special function units (SFUs) for
executing transcendental instructions.

All functional units and CUDA cores are interconnected by an NoC (network on chip) to a large
number of SRAM banks (L2 caches). Each SM has a 64 KB L1 cache. The 768 KB unified L2 cache is
shared by all SMs and serves all load, store, and texture operations. Memory controllers are used to con-
nect to 6 GB of off-chip DRAMs. The SM schedules threads in groups of 32 parallel threads called warps.
In total, 256/512 FMA (fused multiply and add) operations can be done in parallel to produce 32/64-bit
floating-point results. The 512 CUDA cores in an SM can work in parallel to deliver up to 515 Gflops of
double-precision results, if fully utilized. With 16 SMs, a single GPU has a peak speed of 82.4 Tflops. Only
12 Fermi GPUs have the potential to reach the Pflops performance.

In the future, thousand-core GPUs may appear in Exascale (Eflops or 1018 flops) systems. This
reflects a trend toward building future MPPs with hybrid architectures of both types of processing
chips. In a DARPA report published in September 2008, four challenges are identified for exascale
computing: (1) energy and power, (2) memory and storage, (3) concurrency and locality, and
(4) system resiliency. Here, we see the progress of GPUs along with CPU advances in power
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FIGURE 1.7

The use of a GPU along with a CPU for massively parallel execution in hundreds or thousands of processing
cores.

(Courtesy of B. He, et al., PACT’08 [23] )
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efficiency, performance, and programmability [16]. In Chapter 2, we will discuss the use of GPUs
to build large clusters.

1.2.2.3 Power Efficiency of the GPU
Bill Dally of Stanford University considers power and massive parallelism as the major benefits of
GPUs over CPUs for the future. By extrapolating current technology and computer architecture, it
was estimated that 60 Gflops/watt per core is needed to run an exaflops system (see Figure 1.10).
Power constrains what we can put in a CPU or GPU chip. Dally has estimated that the CPU chip
consumes about 2 nJ/instruction, while the GPU chip requires 200 pJ/instruction, which is 1/10 less
than that of the CPU. The CPU is optimized for latency in caches and memory, while the GPU is
optimized for throughput with explicit management of on-chip memory.

Figure 1.9 compares the CPU and GPU in their performance/power ratio measured in Gflops/
watt per core. In 2010, the GPU had a value of 5 Gflops/watt at the core level, compared with less
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NVIDIA Fermi GPU built with 16 streaming multiprocessors (SMs) of 32 CUDA cores each; only one SM Is
shown. More details can be found also in [49].

(Courtesy of NVIDIA, 2009 [36] 2011)
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than 1 Gflop/watt per CPU core. This may limit the scaling of future supercomputers. However, the
GPUs may close the gap with the CPUs. Data movement dominates power consumption. One needs
to optimize the storage hierarchy and tailor the memory to the applications. We need to promote
self-aware OS and runtime support and build locality-aware compilers and auto-tuners for GPU-
based MPPs. This implies that both power and software are the real challenges in future parallel
and distributed computing systems.

1.2.3 Memory, Storage, and Wide-Area Networking
1.2.3.1 Memory Technology
The upper curve in Figure 1.10 plots the growth of DRAM chip capacity from 16 KB in 1976 to 64 GB
in 2011. This shows that memory chips have experienced a 4x increase in capacity every three years.
Memory access time did not improve much in the past. In fact, the memory wall problem is getting
worse as the processor gets faster. For hard drives, capacity increased from 260 MB in 1981 to 250 GB
in 2004. The Seagate Barracuda XT hard drive reached 3 TB in 2011. This represents an approximately
10x increase in capacity every eight years. The capacity increase of disk arrays will be even greater in
the years to come. Faster processor speed and larger memory capacity result in a wider gap between
processors and memory. The memory wall may become even worse a problem limiting the CPU perfor-
mance in the future.

1.2.3.2 Disks and Storage Technology
Beyond 2011, disks or disk arrays have exceeded 3 TB in capacity. The lower curve in Figure 1.10
shows the disk storage growth in 7 orders of magnitude in 33 years. The rapid growth of flash
memory and solid-state drives (SSDs) also impacts the future of HPC and HTC systems. The mor-
tality rate of SSD is not bad at all. A typical SSD can handle 300,000 to 1 million write cycles per

100

10

G
fl
o
p
s
/W

 (
c
o
re

)

1

0.1
2010 2013

GPU – 5 Gflops/W

2016

GPU

CPU

EF

FIGURE 1.9

The GPU performance (middle line, measured 5 Gflops/W/core in 2011), compared with the lower CPU
performance (lower line measured 0.8 Gflops/W/core in 2011) and the estimated 60 Gflops/W/core
performance in 2011 for the Exascale (EF in upper curve) in the future.

(Courtesy of Bill Dally [15] )
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block. So the SSD can last for several years, even under conditions of heavy write usage. Flash and
SSD will demonstrate impressive speedups in many applications.

Eventually, power consumption, cooling, and packaging will limit large system development.
Power increases linearly with respect to clock frequency and quadratic ally with respect to voltage
applied on chips. Clock rate cannot be increased indefinitely. Lowered voltage supplies are very
much in demand. Jim Gray once said in an invited talk at the University of Southern California,
“Tape units are dead, disks are tape units, flashes are disks, and memory are caches now.” This
clearly paints the future for disk and storage technology. In 2011, the SSDs are still too expensive
to replace stable disk arrays in the storage market.

1.2.3.3 System-Area Interconnects
The nodes in small clusters are mostly interconnected by an Ethernet switch or a local area network
(LAN). As Figure 1.11 shows, a LAN typically is used to connect client hosts to big servers.
A storage area network (SAN) connects servers to network storage such as disk arrays. Network
attached storage (NAS) connects client hosts directly to the disk arrays. All three types of networks
often appear in a large cluster built with commercial network components. If no large distributed
storage is shared, a small cluster could be built with a multiport Gigabit Ethernet switch plus copper
cables to link the end machines. All three types of networks are commercially available.
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Improvement in memory and disk technologies over 33 years. The Seagate Barracuda XT disk has a capacity
of 3 TB in 2011.
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1.2.3.4 Wide-Area Networking
The lower curve in Figure 1.10 plots the rapid growth of Ethernet bandwidth from 10 Mbps in
1979 to 1 Gbps in 1999, and 40 ~ 100 GE in 2011. It has been speculated that 1 Tbps network
links will become available by 2013. According to Berman, Fox, and Hey [6], network links with
1,000, 1,000, 100, 10, and 1 Gbps bandwidths were reported, respectively, for international,
national, organization, optical desktop, and copper desktop connections in 2006.

An increase factor of two per year on network performance was reported, which is faster than
Moore’s law on CPU speed doubling every 18 months. The implication is that more computers will
be used concurrently in the future. High-bandwidth networking increases the capability of building
massively distributed systems. The IDC 2010 report predicted that both InfiniBand and Ethernet
will be the two major interconnect choices in the HPC arena. Most data centers are using Gigabit
Ethernet as the interconnect in their server clusters.

1.2.4 Virtual Machines and Virtualization Middleware
A conventional computer has a single OS image. This offers a rigid architecture that tightly couples
application software to a specific hardware platform. Some software running well on one machine
may not be executable on another platform with a different instruction set under a fixed OS. Virtual
machines (VMs) offer novel solutions to underutilized resources, application inflexibility, software
manageability, and security concerns in existing physical machines.

Today, to build large clusters, grids, and clouds, we need to access large amounts of computing,
storage, and networking resources in a virtualized manner. We need to aggregate those resources,
and hopefully, offer a single system image. In particular, a cloud of provisioned resources must rely
on virtualization of processors, memory, and I/O facilities dynamically. We will cover virtualization
in Chapter 3. However, the basic concepts of virtualized resources, such as VMs, virtual storage,
and virtual networking and their virtualization software or middleware, need to be introduced first.
Figure 1.12 illustrates the architectures of three VM configurations.
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FIGURE 1.11

Three interconnection networks for connecting servers, client hosts, and storage devices; the LAN connects
client hosts and servers, the SAN connects servers with disk arrays, and the NAS connects clients with large
storage systems in the network environment.
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1.2.4.1 Virtual Machines
In Figure 1.12, the host machine is equipped with the physical hardware, as shown at the bottom of
the figure. An example is an x-86 architecture desktop running its installed Windows OS, as shown
in part (a) of the figure. The VM can be provisioned for any hardware system. The VM is built
with virtual resources managed by a guest OS to run a specific application. Between the VMs and
the host platform, one needs to deploy a middleware layer called a virtual machine monitor (VMM).
Figure 1.12(b) shows a native VM installed with the use of a VMM called a hypervisor in privi-
leged mode. For example, the hardware has x-86 architecture running the Windows system.

The guest OS could be a Linux system and the hypervisor is the XEN system developed at
Cambridge University. This hypervisor approach is also called bare-metal VM, because the hypervi-
sor handles the bare hardware (CPU, memory, and I/O) directly. Another architecture is the host VM
shown in Figure 1.12(c). Here the VMM runs in nonprivileged mode. The host OS need not be modi-
fied. The VM can also be implemented with a dual mode, as shown in Figure 1.12(d). Part of the
VMM runs at the user level and another part runs at the supervisor level. In this case, the host OS
may have to be modified to some extent. Multiple VMs can be ported to a given hardware system to
support the virtualization process. The VM approach offers hardware independence of the OS and
applications. The user application running on its dedicated OS could be bundled together as a virtual
appliance that can be ported to any hardware platform. The VM could run on an OS different from
that of the host computer.

1.2.4.2 VM Primitive Operations
The VMM provides the VM abstraction to the guest OS. With full virtualization, the VMM exports
a VM abstraction identical to the physical machine so that a standard OS such as Windows 2000 or
Linux can run just as it would on the physical hardware. Low-level VMM operations are indicated
by Mendel Rosenblum [41] and illustrated in Figure 1.13.
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Three VM architectures in (b), (c), and (d), compared with the traditional physical machine shown in (a).
(Courtesy of M. Abde-Majeed and S. Kulkarni, 2009 USC)

1.2 Technologies for Network-based Systems 23



• First, the VMs can be multiplexed between hardware machines, as shown in Figure 1.13(a).
• Second, a VM can be suspended and stored in stable storage, as shown in Figure 1.13(b).
• Third, a suspended VM can be resumed or provisioned to a new hardware platform, as shown in

Figure 1.13(c).
• Finally, a VM can be migrated from one hardware platform to another, as shown in Figure 1.13(d).

These VM operations enable a VM to be provisioned to any available hardware platform. They
also enable flexibility in porting distributed application executions. Furthermore, the VM approach
will significantly enhance the utilization of server resources. Multiple server functions can be
consolidated on the same hardware platform to achieve higher system efficiency. This will eliminate
server sprawl via deployment of systems as VMs, which move transparency to the shared hardware.
With this approach, VMware claimed that server utilization could be increased from its current
5–15 percent to 60–80 percent.

1.2.4.3 Virtual Infrastructures
Physical resources for compute, storage, and networking at the bottom of Figure 1.14 are mapped to
the needy applications embedded in various VMs at the top. Hardware and software are then sepa-
rated. Virtual infrastructure is what connects resources to distributed applications. It is a dynamic
mapping of system resources to specific applications. The result is decreased costs and increased
efficiency and responsiveness. Virtualization for server consolidation and containment is a good
example of this. We will discuss VMs and virtualization support in Chapter 3. Virtualization support
for clusters, clouds, and grids is covered in Chapters 3, 4, and 7, respectively.
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VM multiplexing, suspension, provision, and migration in a distributed computing environment.
(Courtesy of M. Rosenblum, Keynote address, ACM ASPLOS 2006 [41] )

24 CHAPTER 1 Distributed System Models and Enabling Technologies



1.2.5 Data Center Virtualization for Cloud Computing
In this section, we discuss basic architecture and design considerations of data centers. Cloud architecture
is built with commodity hardware and network devices. Almost all cloud platforms choose the popular
x86 processors. Low-cost terabyte disks and Gigabit Ethernet are used to build data centers. Data center
design emphasizes the performance/price ratio over speed performance alone. In other words, storage
and energy efficiency are more important than shear speed performance. Figure 1.13 shows the server
growth and cost breakdown of data centers over the past 15 years. Worldwide, about 43 million servers
are in use as of 2010. The cost of utilities exceeds the cost of hardware after three years.

1.2.5.1 Data Center Growth and Cost Breakdown
A large data center may be built with thousands of servers. Smaller data centers are typically built
with hundreds of servers. The cost to build and maintain data center servers has increased over the
years. According to a 2009 IDC report (see Figure 1.14), typically only 30 percent of data center
costs goes toward purchasing IT equipment (such as servers and disks), 33 percent is attributed to
the chiller, 18 percent to the uninterruptible power supply (UPS), 9 percent to computer room air
conditioning (CRAC), and the remaining 7 percent to power distribution, lighting, and transformer
costs. Thus, about 60 percent of the cost to run a data center is allocated to management and main-
tenance. The server purchase cost did not increase much with time. The cost of electricity and cool-
ing did increase from 5 percent to 14 percent in 15 years.

1.2.5.2 Low-Cost Design Philosophy
High-end switches or routers may be too cost-prohibitive for building data centers. Thus, using
high-bandwidth networks may not fit the economics of cloud computing. Given a fixed budget,

80
$300

Millions installed serversCustomer spending ($B)

$250

$200

$150

$100

$50

$0
’96 ’97 ’98 ’99 ’00 ’01 ’02 ’03 ’04 ’05 ’06 ’07 ’08 ’09 ’10 ’11 ’12 ’13

60

40

20

0

Server spending
Management cost
Power & cooling expense

Physical server installed base (Millions)
Logical server installed base (Millions)

Virtualization
management

gap

FIGURE 1.14

Growth and cost breakdown of data centers over the years.
(Source: IDC Report, 2009)

1.2 Technologies for Network-based Systems 25



commodity switches and networks are more desirable in data centers. Similarly, using commodity
x86 servers is more desired over expensive mainframes. The software layer handles network traffic
balancing, fault tolerance, and expandability. Currently, nearly all cloud computing data centers use
Ethernet as their fundamental network technology.

1.2.5.3 Convergence of Technologies
Essentially, cloud computing is enabled by the convergence of technologies in four areas: (1) hard-
ware virtualization and multi-core chips, (2) utility and grid computing, (3) SOA, Web 2.0, and WS
mashups, and (4) atonomic computing and data center automation. Hardware virtualization and mul-
ticore chips enable the existence of dynamic configurations in the cloud. Utility and grid computing
technologies lay the necessary foundation for computing clouds. Recent advances in SOA, Web
2.0, and mashups of platforms are pushing the cloud another step forward. Finally, achievements in
autonomic computing and automated data center operations contribute to the rise of cloud
computing.

Jim Gray once posted the following question: “Science faces a data deluge. How to manage and
analyze information?” This implies that science and our society face the same challenge of data
deluge. Data comes from sensors, lab experiments, simulations, individual archives, and the web in
all scales and formats. Preservation, movement, and access of massive data sets require generic
tools supporting high-performance, scalable file systems, databases, algorithms, workflows, and
visualization. With science becoming data-centric, a new paradigm of scientific discovery is becom-
ing based on data-intensive technologies.

On January 11, 2007, the Computer Science and Telecommunication Board (CSTB) recom-
mended fostering tools for data capture, data creation, and data analysis. A cycle of interaction
exists among four technical areas. First, cloud technology is driven by a surge of interest in data
deluge. Also, cloud computing impacts e-science greatly, which explores multicore and parallel
computing technologies. These two hot areas enable the buildup of data deluge. To support data-
intensive computing, one needs to address workflows, databases, algorithms, and virtualization
issues.

By linking computer science and technologies with scientists, a spectrum of e-science or
e-research applications in biology, chemistry, physics, the social sciences, and the humanities has
generated new insights from interdisciplinary activities. Cloud computing is a transformative
approach as it promises much more than a data center model. It fundamentally changes how we
interact with information. The cloud provides services on demand at the infrastructure, platform, or
software level. At the platform level, MapReduce offers a new programming model that transpar-
ently handles data parallelism with natural fault tolerance capability. We will discuss MapReduce in
more detail in Chapter 6.

Iterative MapReduce extends MapReduce to support a broader range of data mining algorithms
commonly used in scientific applications. The cloud runs on an extremely large cluster of commod-
ity computers. Internal to each cluster node, multithreading is practiced with a large number of
cores in many-core GPU clusters. Data-intensive science, cloud computing, and multicore comput-
ing are converging and revolutionizing the next generation of computing in architectural design and
programming challenges. They enable the pipeline: Data becomes information and knowledge, and
in turn becomes machine wisdom as desired in SOA.
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1.3 SYSTEM MODELS FOR DISTRIBUTED AND CLOUD COMPUTING
Distributed and cloud computing systems are built over a large number of autonomous computer
nodes. These node machines are interconnected by SANs, LANs, or WANs in a hierarchical man-
ner. With today’s networking technology, a few LAN switches can easily connect hundreds of
machines as a working cluster. A WAN can connect many local clusters to form a very large cluster
of clusters. In this sense, one can build a massive system with millions of computers connected to
edge networks.

Massive systems are considered highly scalable, and can reach web-scale connectivity, either
physically or logically. In Table 1.2, massive systems are classified into four groups: clusters, P2P
networks, computing grids, and Internet clouds over huge data centers. In terms of node number,
these four system classes may involve hundreds, thousands, or even millions of computers as
participating nodes. These machines work collectively, cooperatively, or collaboratively at various
levels. The table entries characterize these four system classes in various technical and application
aspects.

Table 1.2 Classification of Parallel and Distributed Computing Systems

Functionality,
Applications

Computer
Clusters
[10,28,38]

Peer-to-Peer
Networks
[34,46]

Data/
Computational
Grids [6,18,51]

Cloud Platforms
[1,9,11,12,30]

Architecture,
Network
Connectivity, and
Size

Network of
compute nodes
interconnected by
SAN, LAN, or
WAN
hierarchically

Flexible network
of client machines
logically
connected by an
overlay network

Heterogeneous
clusters
interconnected by
high-speed
network links over
selected resource
sites

Virtualized cluster
of servers over
data centers via
SLA

Control and
Resources
Management

Homogeneous
nodes with
distributed
control, running
UNIX or Linux

Autonomous
client nodes, free
in and out, with
self-organization

Centralized
control, server-
oriented with
authenticated
security

Dynamic resource
provisioning of
servers, storage,
and networks

Applications and
Network-centric
Services

High-performance
computing,
search engines,
and web services,
etc.

Most appealing to
business file
sharing, content
delivery, and
social networking

Distributed
supercomputing,
global problem
solving, and data
center services

Upgraded web
search, utility
computing, and
outsourced
computing
services

Representative
Operational
Systems

Google search
engine, SunBlade,
IBM Road
Runner, Cray
XT4, etc.

Gnutella, eMule,
BitTorrent,
Napster, KaZaA,
Skype, JXTA

TeraGrid,
GriPhyN, UK
EGEE, D-Grid,
ChinaGrid, etc.

Google App
Engine, IBM
Bluecloud, AWS,
and Microsoft
Azure
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From the application perspective, clusters are most popular in supercomputing applications. In
2009, 417 of the Top 500 supercomputers were built with cluster architecture. It is fair to say that
clusters have laid the necessary foundation for building large-scale grids and clouds. P2P networks
appeal most to business applications. However, the content industry was reluctant to accept P2P
technology for lack of copyright protection in ad hoc networks. Many national grids built in the
past decade were underutilized for lack of reliable middleware or well-coded applications. Potential
advantages of cloud computing include its low cost and simplicity for both providers and users.

1.3.1 Clusters of Cooperative Computers
A computing cluster consists of interconnected stand-alone computers which work cooperatively as
a single integrated computing resource. In the past, clustered computer systems have demonstrated
impressive results in handling heavy workloads with large data sets.

1.3.1.1 Cluster Architecture
Figure 1.15 shows the architecture of a typical server cluster built around a low-latency, high-
bandwidth interconnection network. This network can be as simple as a SAN (e.g., Myrinet) or a
LAN (e.g., Ethernet). To build a larger cluster with more nodes, the interconnection network can be
built with multiple levels of Gigabit Ethernet, Myrinet, or InfiniBand switches. Through hierarchical
construction using a SAN, LAN, or WAN, one can build scalable clusters with an increasing
number of nodes. The cluster is connected to the Internet via a virtual private network (VPN)
gateway. The gateway IP address locates the cluster. The system image of a computer is decided by
the way the OS manages the shared cluster resources. Most clusters have loosely coupled node
computers. All resources of a server node are managed by their own OS. Thus, most clusters have
multiple system images as a result of having many autonomous nodes under different OS control.

I/O devices
Disk arrays

Gateway
S2

Sn–1 Sn

S1

S0

A Cluster

Servers The Internet

SAN, LAN, NAS Networks
(Ethernet, Myrinet, InfiniBand, etc.)

FIGURE 1.15

A cluster of servers interconnected by a high-bandwidth SAN or LAN with shared I/O devices and disk arrays;
the cluster acts as a single computer attached to the Internet.
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1.3.1.2 Single-System Image
Greg Pfister [38] has indicated that an ideal cluster should merge multiple system images into
a single-system image (SSI). Cluster designers desire a cluster operating system or some middle-
ware to support SSI at various levels, including the sharing of CPUs, memory, and I/O across all
cluster nodes. An SSI is an illusion created by software or hardware that presents a collection of
resources as one integrated, powerful resource. SSI makes the cluster appear like a single
machine to the user. A cluster with multiple system images is nothing but a collection of inde-
pendent computers.

1.3.1.3 Hardware, Software, and Middleware Support
In Chapter 2, we will discuss cluster design principles for both small and large clusters. Clusters
exploring massive parallelism are commonly known as MPPs. Almost all HPC clusters in the Top
500 list are also MPPs. The building blocks are computer nodes (PCs, workstations, servers, or
SMP), special communication software such as PVM or MPI, and a network interface card in each
computer node. Most clusters run under the Linux OS. The computer nodes are interconnected by a
high-bandwidth network (such as Gigabit Ethernet, Myrinet, InfiniBand, etc.).

Special cluster middleware supports are needed to create SSI or high availability (HA). Both
sequential and parallel applications can run on the cluster, and special parallel environments are
needed to facilitate use of the cluster resources. For example, distributed memory has multiple
images. Users may want all distributed memory to be shared by all servers by forming distribu-
ted shared memory (DSM). Many SSI features are expensive or difficult to achieve at various
cluster operational levels. Instead of achieving SSI, many clusters are loosely coupled machines.
Using virtualization, one can build many virtual clusters dynamically, upon user demand. We
will discuss virtual clusters in Chapter 3 and the use of virtual clusters for cloud computing in
Chapters 4, 5, 6, and 9.

1.3.1.4 Major Cluster Design Issues
Unfortunately, a cluster-wide OS for complete resource sharing is not available yet. Middleware
or OS extensions were developed at the user space to achieve SSI at selected functional levels.
Without this middleware, cluster nodes cannot work together effectively to achieve cooperative
computing. The software environments and applications must rely on the middleware to achieve
high performance. The cluster benefits come from scalable performance, efficient message passing,
high system availability, seamless fault tolerance, and cluster-wide job management, as summarized
in Table 1.3. We will address these issues in Chapter 2.

1.3.2 Grid Computing Infrastructures
In the past 30 years, users have experienced a natural growth path from Internet to web and grid
computing services. Internet services such as the Telnet command enables a local computer to con-
nect to a remote computer. A web service such as HTTP enables remote access of remote web
pages. Grid computing is envisioned to allow close interaction among applications running on dis-
tant computers simultaneously. Forbes Magazine has projected the global growth of the IT-based
economy from $1 trillion in 2001 to $20 trillion by 2015. The evolution from Internet to web and
grid services is certainly playing a major role in this growth.
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1.3.2.1 Computational Grids
Like an electric utility power grid, a computing grid offers an infrastructure that couples computers,
software/middleware, special instruments, and people and sensors together. The grid is often con-
structed across LAN, WAN, or Internet backbone networks at a regional, national, or global scale.
Enterprises or organizations present grids as integrated computing resources. They can also be
viewed as virtual platforms to support virtual organizations. The computers used in a grid are pri-
marily workstations, servers, clusters, and supercomputers. Personal computers, laptops, and PDAs
can be used as access devices to a grid system.

Figure 1.16 shows an example computational grid built over multiple resource sites owned by
different organizations. The resource sites offer complementary computing resources, including
workstations, large servers, a mesh of processors, and Linux clusters to satisfy a chain of computa-
tional needs. The grid is built across various IP broadband networks including LANs and WANs
already used by enterprises or organizations over the Internet. The grid is presented to users as an
integrated resource pool as shown in the upper half of the figure.

Special instruments may be involved such as using the radio telescope in SETI@Home
search of life in the galaxy and the austrophysics@Swineburne for pulsars. At the server end,
the grid is a network. At the client end, we see wired or wireless terminal devices. The grid
integrates the computing, communication, contents, and transactions as rented services. Enter-
prises and consumers form the user base, which then defines the usage trends and service char-
acteristics. Many national and international grids will be reported in Chapter 7, the NSF

Table 1.3 Critical Cluster Design Issues and Feasible Implementations

Features Functional Characterization Feasible Implementations

Availability and Support Hardware and software support for
sustained HA in cluster

Failover, failback, check pointing,
rollback recovery, nonstop OS, etc.

Hardware Fault Tolerance Automated failure management to
eliminate all single points of failure

Component redundancy, hot
swapping, RAID, multiple power
supplies, etc.

Single System Image (SSI) Achieving SSI at functional level with
hardware and software support,
middleware, or OS extensions

Hardware mechanisms or
middleware support to achieve DSM
at coherent cache level

Efficient Communications To reduce message-passing system
overhead and hide latencies

Fast message passing, active
messages, enhanced MPI library, etc.

Cluster-wide Job
Management

Using a global job management
system with better scheduling and
monitoring

Application of single-job
management systems such as LSF,
Codine, etc.

Dynamic Load Balancing Balancing the workload of all
processing nodes along with failure
recovery

Workload monitoring, process
migration, job replication and gang
scheduling, etc.

Scalability and
Programmability

Adding more servers to a cluster or
adding more clusters to a grid as
the workload or data set increases

Use of scalable interconnect,
performance monitoring, distributed
execution environment, and better
software tools
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TeraGrid in US, EGEE in Europe, and ChinaGrid in China for various distributed scientific grid
applications.

1.3.2.2 Grid Families
Grid technology demands new distributed computing models, software/middleware support, network
protocols, and hardware infrastructures. National grid projects are followed by industrial grid plat-
form development by IBM, Microsoft, Sun, HP, Dell, Cisco, EMC, Platform Computing, and
others. New grid service providers (GSPs) and new grid applications have emerged rapidly, similar
to the growth of Internet and web services in the past two decades. In Table 1.4, grid systems are
classified in essentially two categories: computational or data grids and P2P grids. Computing or
data grids are built primarily at the national level. In Chapter 7, we will cover grid applications and
lessons learned.

Expensive
equipment

IP Broadband network

The Internet

Grid

Databases

FIGURE 1.16

Computational grid or data grid providing computing utility, data, and information services through resource
sharing and cooperation among participating organizations.

(Courtesy of Z. Xu, Chinese Academy of Science, 2004)

Table 1.4 Two Grid Computing Infrastructures and Representative Systems

Design Issues
Computational and Data
Grids P2P Grids

Grid Applications Reported Distributed supercomputing,
National Grid initiatives, etc.

Open grid with P2P flexibility, all
resources from client machines

Representative Systems TeraGrid built in US, ChinaGrid in
China, and the e-Science grid
built in UK

JXTA, FightAid@home,
SETI@home

Development Lessons Learned Restricted user groups,
middleware bugs, protocols to
acquire resources

Unreliable user-contributed
resources, limited to a few apps
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1.3.3 Peer-to-Peer Network Families
An example of a well-established distributed system is the client-server architecture. In this sce-
nario, client machines (PCs and workstations) are connected to a central server for compute, e-mail,
file access, and database applications. The P2P architecture offers a distributed model of networked
systems. First, a P2P network is client-oriented instead of server-oriented. In this section, P2P sys-
tems are introduced at the physical level and overlay networks at the logical level.

1.3.3.1 P2P Systems
In a P2P system, every node acts as both a client and a server, providing part of the system
resources. Peer machines are simply client computers connected to the Internet. All client machines
act autonomously to join or leave the system freely. This implies that no master-slave relationship
exists among the peers. No central coordination or central database is needed. In other words, no
peer machine has a global view of the entire P2P system. The system is self-organizing with distrib-
uted control.

Figure 1.17 shows the architecture of a P2P network at two abstraction levels. Initially, the peers
are totally unrelated. Each peer machine joins or leaves the P2P network voluntarily. Only the parti-
cipating peers form the physical network at any time. Unlike the cluster or grid, a P2P network does
not use a dedicated interconnection network. The physical network is simply an ad hoc network
formed at various Internet domains randomly using the TCP/IP and NAI protocols. Thus, the physi-
cal network varies in size and topology dynamically due to the free membership in the P2P
network.

1.3.3.2 Overlay Networks
Data items or files are distributed in the participating peers. Based on communication or file-sharing
needs, the peer IDs form an overlay network at the logical level. This overlay is a virtual network

Overlay network

Virtual
link

Physical
link

AP

IP network

FIGURE 1.17

The structure of a P2P system by mapping a physical IP network to an overlay network built with virtual
links.

(Courtesy of Zhenyu Li, Institute of Computing Technology, Chinese Academy of Sciences, 2010)
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formed by mapping each physical machine with its ID, logically, through a virtual mapping as
shown in Figure 1.17. When a new peer joins the system, its peer ID is added as a node in the
overlay network. When an existing peer leaves the system, its peer ID is removed from the overlay
network automatically. Therefore, it is the P2P overlay network that characterizes the logical con-
nectivity among the peers.

There are two types of overlay networks: unstructured and structured. An unstructured overlay
network is characterized by a random graph. There is no fixed route to send messages or files
among the nodes. Often, flooding is applied to send a query to all nodes in an unstructured overlay,
thus resulting in heavy network traffic and nondeterministic search results. Structured overlay net-
works follow certain connectivity topology and rules for inserting and removing nodes (peer IDs)
from the overlay graph. Routing mechanisms are developed to take advantage of the structured
overlays.

1.3.3.3 P2P Application Families
Based on application, P2P networks are classified into four groups, as shown in Table 1.5. The first
family is for distributed file sharing of digital contents (music, videos, etc.) on the P2P network. This
includes many popular P2P networks such as Gnutella, Napster, and BitTorrent, among others. Colla-
boration P2P networks include MSN or Skype chatting, instant messaging, and collaborative design,
among others. The third family is for distributed P2P computing in specific applications. For example,
SETI@home provides 25 Tflops of distributed computing power, collectively, over 3 million Internet
host machines. Other P2P platforms, such as JXTA, .NET, and FightingAID@home, support naming,
discovery, communication, security, and resource aggregation in some P2P applications. We will dis-
cuss these topics in more detail in Chapters 8 and 9.

1.3.3.4 P2P Computing Challenges
P2P computing faces three types of heterogeneity problems in hardware, software, and network
requirements. There are too many hardware models and architectures to select from; incompat-
ibility exists between software and the OS; and different network connections and protocols

Table 1.5 Major Categories of P2P Network Families [46]

System
Features

Distributed File
Sharing

Collaborative
Platform

Distributed P2P
Computing P2P Platform

Attractive
Applications

Content
distribution of MP3
music, video, open
software, etc.

Instant messaging,
collaborative
design and gaming

Scientific
exploration and
social networking

Open networks for
public resources

Operational
Problems

Loose security and
serious online
copyright violations

Lack of trust,
disturbed by
spam, privacy, and
peer collusion

Security holes,
selfish partners,
and peer collusion

Lack of standards
or protection
protocols

Example
Systems

Gnutella, Napster,
eMule, BitTorrent,
Aimster, KaZaA,
etc.

ICQ, AIM, Groove,
Magi, Multiplayer
Games, Skype,
etc.

SETI@home,
Geonome@home,
etc.

JXTA, .NET,
FightingAid@home,
etc.
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make it too complex to apply in real applications. We need system scalability as the workload
increases. System scaling is directly related to performance and bandwidth. P2P networks do
have these properties. Data location is also important to affect collective performance. Data
locality, network proximity, and interoperability are three design objectives in distributed P2P
applications.

P2P performance is affected by routing efficiency and self-organization by participating peers.
Fault tolerance, failure management, and load balancing are other important issues in using overlay
networks. Lack of trust among peers poses another problem. Peers are strangers to one another.
Security, privacy, and copyright violations are major worries by those in the industry in terms of
applying P2P technology in business applications [35]. In a P2P network, all clients provide resources
including computing power, storage space, and I/O bandwidth. The distributed nature of P2P net-
works also increases robustness, because limited peer failures do not form a single point of failure.

By replicating data in multiple peers, one can easily lose data in failed nodes. On the other hand,
disadvantages of P2P networks do exist. Because the system is not centralized, managing it is difficult.
In addition, the system lacks security. Anyone can log on to the system and cause damage or abuse.
Further, all client computers connected to a P2P network cannot be considered reliable or virus-free. In
summary, P2P networks are reliable for a small number of peer nodes. They are only useful for applica-
tions that require a low level of security and have no concern for data sensitivity. We will discuss P2P
networks in Chapter 8, and extending P2P technology to social networking in Chapter 9.

1.3.4 Cloud Computing over the Internet
Gordon Bell, Jim Gray, and Alex Szalay [5] have advocated: “Computational science is changing to
be data-intensive. Supercomputers must be balanced systems, not just CPU farms but also petascale
I/O and networking arrays.” In the future, working with large data sets will typically mean sending
the computations (programs) to the data, rather than copying the data to the workstations. This
reflects the trend in IT of moving computing and data from desktops to large data centers, where
there is on-demand provision of software, hardware, and data as a service. This data explosion has
promoted the idea of cloud computing.

Cloud computing has been defined differently by many users and designers. For example, IBM, a
major player in cloud computing, has defined it as follows: “A cloud is a pool of virtualized computer
resources. A cloud can host a variety of different workloads, including batch-style backend jobs and
interactive and user-facing applications.” Based on this definition, a cloud allows workloads to be
deployed and scaled out quickly through rapid provisioning of virtual or physical machines. The cloud
supports redundant, self-recovering, highly scalable programming models that allow workloads to
recover from many unavoidable hardware/software failures. Finally, the cloud system should be able to
monitor resource use in real time to enable rebalancing of allocations when needed.

1.3.4.1 Internet Clouds
Cloud computing applies a virtualized platform with elastic resources on demand by provisioning
hardware, software, and data sets dynamically (see Figure 1.18). The idea is to move desktop
computing to a service-oriented platform using server clusters and huge databases at data centers.
Cloud computing leverages its low cost and simplicity to benefit both users and providers. Machine
virtualization has enabled such cost-effectiveness. Cloud computing intends to satisfy many user
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applications simultaneously. The cloud ecosystem must be designed to be secure, trustworthy, and
dependable. Some computer users think of the cloud as a centralized resource pool. Others consider
the cloud to be a server cluster which practices distributed computing over all the servers used.

1.3.4.2 The Cloud Landscape
Traditionally, a distributed computing system tends to be owned and operated by an autonomous
administrative domain (e.g., a research laboratory or company) for on-premises computing needs.
However, these traditional systems have encountered several performance bottlenecks: constant sys-
tem maintenance, poor utilization, and increasing costs associated with hardware/software upgrades.
Cloud computing as an on-demand computing paradigm resolves or relieves us from these problems.
Figure 1.19 depicts the cloud landscape and major cloud players, based on three cloud service mod-
els. Chapters 4, 6, and 9 provide details regarding these cloud service offerings. Chapter 3 covers the
relevant virtualization tools.

• Infrastructure as a Service (IaaS) This model puts together infrastructures demanded by
users—namely servers, storage, networks, and the data center fabric. The user can deploy and
run on multiple VMs running guest OSes on specific applications. The user does not manage or
control the underlying cloud infrastructure, but can specify when to request and release the
needed resources.

• Platform as a Service (PaaS) This model enables the user to deploy user-built applications
onto a virtualized cloud platform. PaaS includes middleware, databases, development tools, and
some runtime support such as Web 2.0 and Java. The platform includes both hardware and
software integrated with specific programming interfaces. The provider supplies the API and
software tools (e.g., Java, Python, Web 2.0, .NET). The user is freed from managing the cloud
infrastructure.

• Software as a Service (SaaS) This refers to browser-initiated application software over
thousands of paid cloud customers. The SaaS model applies to business processes, industry
applications, consumer relationship management (CRM), enterprise resources planning (ERP),
human resources (HR), and collaborative applications. On the customer side, there is no upfront
investment in servers or software licensing. On the provider side, costs are rather low, compared
with conventional hosting of user applications.

Storage

Submit requests

Paid services

User

Service

Internet
cloud Network

SoftwareHardware

FIGURE 1.18

Virtualized resources from data centers to form an Internet cloud, provisioned with hardware, software,
storage, network, and services for paid users to run their applications.
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Internet clouds offer four deployment modes: private, public, managed, and hybrid [11]. These
modes demand different levels of security implications. The different SLAs imply that the security
responsibility is shared among all the cloud providers, the cloud resource consumers, and the third-
party cloud-enabled software providers. Advantages of cloud computing have been advocated by
many IT experts, industry leaders, and computer science researchers.

In Chapter 4, we will describe major cloud platforms that have been built and various cloud
services offerings. The following list highlights eight reasons to adapt the cloud for upgraded
Internet applications and web services:

1. Desired location in areas with protected space and higher energy efficiency
2. Sharing of peak-load capacity among a large pool of users, improving overall utilization
3. Separation of infrastructure maintenance duties from domain-specific application development
4. Significant reduction in cloud computing cost, compared with traditional computing paradigms
5. Cloud computing programming and application development
6. Service and data discovery and content/service distribution
7. Privacy, security, copyright, and reliability issues
8. Service agreements, business models, and pricing policies

1.4 SOFTWARE ENVIRONMENTS FOR DISTRIBUTED SYSTEMS
AND CLOUDS

This section introduces popular software environments for using distributed and cloud computing
systems. Chapters 5 and 6 discuss this subject in more depth.
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of a cloud
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center and a way to
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data
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software from the

cloud to the desktop

FIGURE 1.19

Three cloud service models in a cloud landscape of major providers.
(Courtesy of Dennis Gannon, keynote address at Cloudcom2010 [19] )
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1.4.1 Service-Oriented Architecture (SOA)
In grids/web services, Java, and CORBA, an entity is, respectively, a service, a Java object, and a
CORBA distributed object in a variety of languages. These architectures build on the traditional
seven Open Systems Interconnection (OSI) layers that provide the base networking abstractions. On
top of this we have a base software environment, which would be .NET or Apache Axis for web
services, the Java Virtual Machine for Java, and a broker network for CORBA. On top of this base
environment one would build a higher level environment reflecting the special features of the
distributed computing environment. This starts with entity interfaces and inter-entity communication,
which rebuild the top four OSI layers but at the entity and not the bit level. Figure 1.20 shows the
layered architecture for distributed entities used in web services and grid systems.

1.4.1.1 Layered Architecture for Web Services and Grids
The entity interfaces correspond to the Web Services Description Language (WSDL), Java method, and
CORBA interface definition language (IDL) specifications in these example distributed systems. These
interfaces are linked with customized, high-level communication systems: SOAP, RMI, and IIOP in the
three examples. These communication systems support features including particular message patterns
(such as Remote Procedure Call or RPC), fault recovery, and specialized routing. Often, these commu-
nication systems are built on message-oriented middleware (enterprise bus) infrastructure such as Web-
Sphere MQ or Java Message Service (JMS) which provide rich functionality and support virtualization
of routing, senders, and recipients.

In the case of fault tolerance, the features in the Web Services Reliable Messaging (WSRM)
framework mimic the OSI layer capability (as in TCP fault tolerance) modified to match the differ-
ent abstractions (such as messages versus packets, virtualized addressing) at the entity levels. Secur-
ity is a critical capability that either uses or reimplements the capabilities seen in concepts such as
Internet Protocol Security (IPsec) and secure sockets in the OSI layers. Entity communication is
supported by higher level services for registries, metadata, and management of the entities discussed
in Section 5.4.

Application specific services/grids
Generally useful services and grids
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Service Internet transport     Protocol

Service interfaces
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Presentation XDR ...
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FIGURE 1.20

Layered achitecture for web services and the grids.
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Here, one might get several models with, for example, JNDI (Jini and Java Naming and Directory
Interface) illustrating different approaches within the Java distributed object model. The CORBA Trad-
ing Service, UDDI (Universal Description, Discovery, and Integration), LDAP (Lightweight Directory
Access Protocol), and ebXML (Electronic Business using eXtensible Markup Language) are other
examples of discovery and information services described in Section 5.4. Management services include
service state and lifetime support; examples include the CORBA Life Cycle and Persistent states, the
different Enterprise JavaBeans models, Jini’s lifetime model, and a suite of web services specifications
in Chapter 5. The above language or interface terms form a collection of entity-level capabilities.

The latter can have performance advantages and offers a “shared memory” model allowing more
convenient exchange of information. However, the distributed model has two critical advantages:
namely, higher performance (from multiple CPUs when communication is unimportant) and a
cleaner separation of software functions with clear software reuse and maintenance advantages. The
distributed model is expected to gain popularity as the default approach to software systems. In the
earlier years, CORBA and Java approaches were used in distributed systems rather than today’s
SOAP, XML, or REST (Representational State Transfer).

1.4.1.2 Web Services and Tools
Loose coupling and support of heterogeneous implementations make services more attractive than
distributed objects. Figure 1.20 corresponds to two choices of service architecture: web services
or REST systems (these are further discussed in Chapter 5). Both web services and REST sys-
tems have very distinct approaches to building reliable interoperable systems. In web services,
one aims to fully specify all aspects of the service and its environment. This specification is car-
ried with communicated messages using Simple Object Access Protocol (SOAP). The hosting
environment then becomes a universal distributed operating system with fully distributed capabil-
ity carried by SOAP messages. This approach has mixed success as it has been hard to agree on
key parts of the protocol and even harder to efficiently implement the protocol by software such
as Apache Axis.

In the REST approach, one adopts simplicity as the universal principle and delegates most of
the difficult problems to application (implementation-specific) software. In a web services language,
REST has minimal information in the header, and the message body (that is opaque to generic
message processing) carries all the needed information. REST architectures are clearly more appro-
priate for rapid technology environments. However, the ideas in web services are important and
probably will be required in mature systems at a different level in the stack (as part of the applica-
tion). Note that REST can use XML schemas but not those that are part of SOAP; “XML over
HTTP” is a popular design choice in this regard. Above the communication and management
layers, we have the ability to compose new entities or distributed programs by integrating several
entities together.

In CORBA and Java, the distributed entities are linked with RPCs, and the simplest way to build
composite applications is to view the entities as objects and use the traditional ways of linking them
together. For Java, this could be as simple as writing a Java program with method calls replaced by
Remote Method Invocation (RMI), while CORBA supports a similar model with a syntax reflecting the
C++ style of its entity (object) interfaces. Allowing the term “grid” to refer to a single service or to
represent a collection of services, here sensors represent entities that output data (as messages), and
grids and clouds represent collections of services that have multiple message-based inputs and outputs.
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1.4.1.3 The Evolution of SOA
As shown in Figure 1.21, service-oriented architecture (SOA) has evolved over the years. SOA
applies to building grids, clouds, grids of clouds, clouds of grids, clouds of clouds (also known as
interclouds), and systems of systems in general. A large number of sensors provide data-collection
services, denoted in the figure as SS (sensor service). A sensor can be a ZigBee device, a Bluetooth
device, a WiFi access point, a personal computer, a GPA, or a wireless phone, among other things.
Raw data is collected by sensor services. All the SS devices interact with large or small computers,
many forms of grids, databases, the compute cloud, the storage cloud, the filter cloud, the discovery
cloud, and so on. Filter services ( fs in the figure) are used to eliminate unwanted raw data, in order
to respond to specific requests from the web, the grid, or web services.

A collection of filter services forms a filter cloud. We will cover various clouds for compute,
storage, filter, and discovery in Chapters 4, 5, and 6, and various grids, P2P networks, and the IoT
in Chapters 7, 8, and 9. SOA aims to search for, or sort out, the useful data from the massive
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The evolution of SOA: grids of clouds and grids, where “SS” refers to a sensor service and “fs” to a filter or
transforming service.

1.4 Software Environments for Distributed Systems and Clouds 39



amounts of raw data items. Processing this data will generate useful information, and subsequently,
the knowledge for our daily use. In fact, wisdom or intelligence is sorted out of large knowledge
bases. Finally, we make intelligent decisions based on both biological and machine wisdom. Read-
ers will see these structures more clearly in subsequent chapters.

Most distributed systems require a web interface or portal. For raw data collected by a large
number of sensors to be transformed into useful information or knowledge, the data stream may go
through a sequence of compute, storage, filter, and discovery clouds. Finally, the inter-service mes-
sages converge at the portal, which is accessed by all users. Two example portals, OGFCE and
HUBzero, are described in Section 5.3 using both web service (portlet) and Web 2.0 (gadget) tech-
nologies. Many distributed programming models are also built on top of these basic constructs.

1.4.1.4 Grids versus Clouds
The boundary between grids and clouds are getting blurred in recent years. For web services, work-
flow technologies are used to coordinate or orchestrate services with certain specifications used to
define critical business process models such as two-phase transactions. Section 5.2 discusses the gen-
eral approach used in workflow, the BPEL Web Service standard, and several important workflow
approaches including Pegasus, Taverna, Kepler, Trident, and Swift. In all approaches, one is building
a collection of services which together tackle all or part of a distributed computing problem.

In general, a grid system applies static resources, while a cloud emphasizes elastic resources. For
some researchers, the differences between grids and clouds are limited only in dynamic resource
allocation based on virtualization and autonomic computing. One can build a grid out of multiple
clouds. This type of grid can do a better job than a pure cloud, because it can explicitly support
negotiated resource allocation. Thus one may end up building with a system of systems: such as a
cloud of clouds, a grid of clouds, or a cloud of grids, or inter-clouds as a basic SOA architecture.

1.4.2 Trends toward Distributed Operating Systems
The computers in most distributed systems are loosely coupled. Thus, a distributed system inher-
ently has multiple system images. This is mainly due to the fact that all node machines run with an
independent operating system. To promote resource sharing and fast communication among node
machines, it is best to have a distributed OS that manages all resources coherently and efficiently.
Such a system is most likely to be a closed system, and it will likely rely on message passing and
RPCs for internode communications. It should be pointed out that a distributed OS is crucial for
upgrading the performance, efficiency, and flexibility of distributed applications.

1.4.2.1 Distributed Operating Systems
Tanenbaum [26] identifies three approaches for distributing resource management functions in a
distributed computer system. The first approach is to build a network OS over a large number of
heterogeneous OS platforms. Such an OS offers the lowest transparency to users, and is essentially
a distributed file system, with independent computers relying on file sharing as a means of
communication. The second approach is to develop middleware to offer a limited degree of resource
sharing, similar to the MOSIX/OS developed for clustered systems (see Section 2.4.4). The third
approach is to develop a truly distributed OS to achieve higher use or system transparency.
Table 1.6 compares the functionalities of these three distributed operating systems.
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1.4.2.2 Amoeba versus DCE
DCE is a middleware-based system for distributed computing environments. The Amoeba was
academically developed at Free University in the Netherlands. The Open Software Foundation
(OSF) has pushed the use of DCE for distributed computing. However, the Amoeba, DCE, and
MOSIX2 are still research prototypes that are primarily used in academia. No successful commer-
cial OS products followed these research systems.

We need new web-based operating systems to support virtualization of resources in distributed
environments. This is still a wide-open area of research. To balance the resource management work-
load, the functionalities of such a distributed OS should be distributed to any available server. In
this sense, the conventional OS runs only on a centralized platform. With the distribution of OS
services, the distributed OS design should take a lightweight microkernel approach like the Amoeba
[46], or should extend an existing OS like the DCE [7] by extending UNIX. The trend is to free
users from most resource management duties.

1.4.2.3 MOSIX2 for Linux Clusters
MOSIX2 is a distributed OS [3], which runs with a virtualization layer in the Linux environment.
This layer provides a partial single-system image to user applications. MOSIX2 supports both
sequential and parallel applications, and discovers resources and migrates software processes among
Linux nodes. MOSIX2 can manage a Linux cluster or a grid of multiple clusters. Flexible management

Table 1.6 Feature Comparison of Three Distributed Operating Systems

Distributed OS
Functionality

AMOEBA Developed
at Vrije University [46]

DCE as OSF/1 by
Open Software
Foundation [7]

MOSIX for Linux
Clusters at Hebrew
University [3]

History and Current
System Status

Written in C and tested
in the European
community; version 5.2
released in 1995

Built as a user
extension on top of
UNIX, VMS, Windows,
OS/2, etc.

Developed since 1977,
now called MOSIX2
used in HPC Linux and
GPU clusters

Distributed OS
Architecture

Microkernel-based and
location-transparent,
uses many servers to
handle files, directory,
replication, run, boot,
and TCP/IP services

Middleware OS
providing a platform for
running distributed
applications; The
system supports RPC,
security, and threads

A distributed OS with
resource discovery,
process migration,
runtime support, load
balancing, flood control,
configuration, etc.

OS Kernel, Middleware,
and Virtualization
Support

A special microkernel
that handles low-level
process, memory, I/O,
and communication
functions

DCE packages handle
file,time, directory,
security services, RPC,
and authentication at
middleware or user
space

MOSIX2 runs with
Linux 2.6; extensions
for use in multiple
clusters and clouds
with provisioned VMs

Communication
Mechanisms

Uses a network-layer
FLIP protocol and RPC
to implement point-to-
point and group
communication

RPC supports
authenticated
communication and
other security services
in user programs

Using PVM, MPI in
collective
communications,
priority process control,
and queuing services
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of a grid allows owners of clusters to share their computational resources among multiple cluster
owners. A MOSIX-enabled grid can extend indefinitely as long as trust exists among the cluster owners.
The MOSIX2 is being explored for managing resources in all sorts of clusters, including Linux clusters,
GPU clusters, grids, and even clouds if VMs are used. We will study MOSIX and its applications in
Section 2.4.4.

1.4.2.4 Transparency in Programming Environments
Figure 1.22 shows the concept of a transparent computing infrastructure for future computing
platforms. The user data, applications, OS, and hardware are separated into four levels. Data is
owned by users, independent of the applications. The OS provides clear interfaces, standard
programming interfaces, or system calls to application programmers. In future cloud infrastruc-
ture, the hardware will be separated by standard interfaces from the OS. Thus, users will be
able to choose from different OSes on top of the hardware devices they prefer to use. To sepa-
rate user data from specific application programs, users can enable cloud applications as SaaS.
Thus, users can switch among different services. The data will not be bound to specific
applications.

1.4.3 Parallel and Distributed Programming Models
In this section, we will explore four programming models for distributed computing with expected
scalable performance and application flexibility. Table 1.7 summarizes three of these models, along
with some software tool sets developed in recent years. As we will discuss, MPI is the most popular
programming model for message-passing systems. Google’s MapReduce and BigTable are for

User data Data storage

Standard programming interface for various environment

Standard hardware interface for users to choose different OSes

Data owned by users,
independent of applications.

Application

Operating
systems

Hardware

FIGURE 1.22

A transparent computing environment that separates the user data, application, OS, and hardware in time
and space – an ideal model for cloud computing.
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effective use of resources from Internet clouds and data centers. Service clouds demand extending
Hadoop, EC2, and S3 to facilitate distributed computing over distributed storage systems. Many
other models have also been proposed or developed in the past. In Chapters 5 and 6, we will dis-
cuss parallel and distributed programming in more details.

1.4.3.1 Message-Passing Interface (MPI)
This is the primary programming standard used to develop parallel and concurrent programs to run
on a distributed system. MPI is essentially a library of subprograms that can be called from C or
FORTRAN to write parallel programs running on a distributed system. The idea is to embody
clusters, grid systems, and P2P systems with upgraded web services and utility computing applica-
tions. Besides MPI, distributed programming can be also supported with low-level primitives such
as the Parallel Virtual Machine (PVM). Both MPI and PVM are described in Hwang and Xu [28].

1.4.3.2 MapReduce
This is a web programming model for scalable data processing on large clusters over large data sets
[16]. The model is applied mainly in web-scale search and cloud computing applications. The user
specifies a Map function to generate a set of intermediate key/value pairs. Then the user applies a
Reduce function to merge all intermediate values with the same intermediate key. MapReduce is
highly scalable to explore high degrees of parallelism at different job levels. A typical MapReduce
computation process can handle terabytes of data on tens of thousands or more client machines.
Hundreds of MapReduce programs can be executed simultaneously; in fact, thousands of MapRe-
duce jobs are executed on Google’s clusters every day.

1.4.3.3 Hadoop Library
Hadoop offers a software platform that was originally developed by a Yahoo! group. The pack-
age enables users to write and run applications over vast amounts of distributed data. Users can
easily scale Hadoop to store and process petabytes of data in the web space. Also, Hadoop is
economical in that it comes with an open source version of MapReduce that minimizes overhead

Table 1.7 Parallel and Distributed Programming Models and Tool Sets

Model Description Features

MPI A library of subprograms that can be
called from C or FORTRAN to write
parallel programs running on distributed
computer systems [6,28,42]

Specify synchronous or asynchronous
point-to-point and collective
communication commands and I/O
operations in user programs for
message-passing execution

MapReduce A web programming model for scalable
data processing on large clusters over
large data sets, or in web search
operations [16]

Map function generates a set of
intermediate key/value pairs; Reduce
function merges all intermediate values
with the same key

Hadoop A software library to write and run large
user applications on vast data sets in
business applications (http://hadoop
.apache.org/core)

A scalable, economical, efficient, and
reliable tool for providing users with
easy access of commercial clusters
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in task spawning and massive data communication. It is efficient, as it processes data with a high
degree of parallelism across a large number of commodity nodes, and it is reliable in that it auto-
matically keeps multiple data copies to facilitate redeployment of computing tasks upon unex-
pected system failures.

1.4.3.4 Open Grid Services Architecture (OGSA)
The development of grid infrastructure is driven by large-scale distributed computing applications.
These applications must count on a high degree of resource and data sharing. Table 1.8 introduces
OGSA as a common standard for general public use of grid services. Genesis II is a realization of
OGSA. Key features include a distributed execution environment, Public Key Infrastructure (PKI)
services using a local certificate authority (CA), trust management, and security policies in grid
computing.

1.4.3.5 Globus Toolkits and Extensions
Globus is a middleware library jointly developed by the U.S. Argonne National Laboratory and
USC Information Science Institute over the past decade. This library implements some of the
OGSA standards for resource discovery, allocation, and security enforcement in a grid environment.
The Globus packages support multisite mutual authentication with PKI certificates. The current ver-
sion of Globus, GT 4, has been in use since 2008. In addition, IBM has extended Globus for busi-
ness applications. We will cover Globus and other grid computing middleware in more detail in
Chapter 7.

1.5 PERFORMANCE, SECURITY, AND ENERGY EFFICIENCY
In this section, we will discuss the fundamental design principles along with rules of thumb for
building massively distributed computing systems. Coverage includes scalability, availability, pro-
gramming models, and security issues in clusters, grids, P2P networks, and Internet clouds.

Table 1.8 Grid Standards and Toolkits for Scientific and Engineering Applications [6]

Standards Service Functionalities
Key Features and Security
Infrastructure

OGSA Standard Open Grid Services Architecture; offers
common grid service standards for
general public use

Supports a heterogeneous distributed
environment, bridging CAs, multiple
trusted intermediaries, dynamic policies,
multiple security mechanisms, etc.

Globus Toolkits Resource allocation, Globus security
infrastructure (GSI), and generic
security service API

Sign-in multisite authentication with
PKI, Kerberos, SSL, Proxy, delegation,
and GSS API for message integrity and
confidentiality

IBM Grid Toolbox AIX and Linux grids built on top of
Globus Toolkit, autonomic computing,
replica services

Uses simple CA, grants access, grid
service (ReGS), supports grid
application for Java (GAF4J), GridMap
in IntraGrid for security update
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1.5.1 Performance Metrics and Scalability Analysis
Performance metrics are needed to measure various distributed systems. In this section, we will dis-
cuss various dimensions of scalability and performance laws. Then we will examine system scalabil-
ity against OS images and the limiting factors encountered.

1.5.1.1 Performance Metrics
We discussed CPU speed in MIPS and network bandwidth in Mbps in Section 1.3.1 to estimate pro-
cessor and network performance. In a distributed system, performance is attributed to a large number
of factors. System throughput is often measured in MIPS, Tflops (tera floating-point operations per
second), or TPS (transactions per second). Other measures include job response time and network
latency. An interconnection network that has low latency and high bandwidth is preferred. System
overhead is often attributed to OS boot time, compile time, I/O data rate, and the runtime support sys-
tem used. Other performance-related metrics include the QoS for Internet and web services; system
availability and dependability; and security resilience for system defense against network attacks.

1.5.1.2 Dimensions of Scalability
Users want to have a distributed system that can achieve scalable performance. Any resource upgrade in
a system should be backward compatible with existing hardware and software resources. Overdesign
may not be cost-effective. System scaling can increase or decrease resources depending on many practi-
cal factors. The following dimensions of scalability are characterized in parallel and distributed systems:

• Size scalability This refers to achieving higher performance or more functionality by increasing
the machine size. The word “size” refers to adding processors, cache, memory, storage, or I/O
channels. The most obvious way to determine size scalability is to simply count the number of
processors installed. Not all parallel computer or distributed architectures are equally size-
scalable. For example, the IBM S2 was scaled up to 512 processors in 1997. But in 2008, the
IBM BlueGene/L system scaled up to 65,000 processors.

• Software scalability This refers to upgrades in the OS or compilers, adding mathematical and
engineering libraries, porting new application software, and installing more user-friendly
programming environments. Some software upgrades may not work with large system
configurations. Testing and fine-tuning of new software on larger systems is a nontrivial job.

• Application scalability This refers to matching problem size scalability with machine size
scalability. Problem size affects the size of the data set or the workload increase. Instead of increasing
machine size, users can enlarge the problem size to enhance system efficiency or cost-effectiveness.

• Technology scalability This refers to a system that can adapt to changes in building tech-
nologies, such as the component and networking technologies discussed in Section 3.1. When
scaling a system design with new technology one must consider three aspects: time, space, and
heterogeneity. (1) Time refers to generation scalability. When changing to new-generation pro-
cessors, one must consider the impact to the motherboard, power supply, packaging and cooling,
and so forth. Based on past experience, most systems upgrade their commodity processors every
three to five years. (2) Space is related to packaging and energy concerns. Technology scalabil-
ity demands harmony and portability among suppliers. (3) Heterogeneity refers to the use of
hardware components or software packages from different vendors. Heterogeneity may limit the
scalability.
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1.5.1.3 Scalability versus OS Image Count
In Figure 1.23, scalable performance is estimated against the multiplicity of OS images in distribu-
ted systems deployed up to 2010. Scalable performance implies that the system can achieve higher
speed by adding more processors or servers, enlarging the physical node’s memory size, extending
the disk capacity, or adding more I/O channels. The OS image is counted by the number of inde-
pendent OS images observed in a cluster, grid, P2P network, or the cloud. SMP and NUMA are
included in the comparison. An SMP (symmetric multiprocessor) server has a single system image,
which could be a single node in a large cluster. By 2010 standards, the largest shared-memory
SMP node was limited to a few hundred processors. The scalability of SMP systems is constrained
primarily by packaging and the system interconnect used.

NUMA (nonuniform memory access) machines are often made out of SMP nodes with distribu-
ted, shared memory. A NUMA machine can run with multiple operating systems, and can scale to
a few thousand processors communicating with the MPI library. For example, a NUMA machine
may have 2,048 processors running 32 SMP operating systems, resulting in 32 OS images in the
2,048-processor NUMA system. The cluster nodes can be either SMP servers or high-end machines
that are loosely coupled together. Therefore, clusters have much higher scalability than NUMA
machines. The number of OS images in a cluster is based on the cluster nodes concurrently in use.
The cloud could be a virtualized cluster. As of 2010, the largest cloud was able to scale up to a
few thousand VMs.

Keeping in mind that many cluster nodes are SMP or multicore servers, the total number of pro-
cessors or cores in a cluster system is one or two orders of magnitude greater than the number of
OS images running in the cluster. The grid node could be a server cluster, or a mainframe, or a
supercomputer, or an MPP. Therefore, the number of OS images in a large grid structure could be
hundreds or thousands fewer than the total number of processors in the grid. A P2P network can
easily scale to millions of independent peer nodes, essentially desktop machines. P2P performance
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System scalability versus multiplicity of OS images based on 2010 technology.
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depends on the QoS in a public network. Low-speed P2P networks, Internet clouds, and computer
clusters should be evaluated at the same networking level.

1.5.1.4 Amdahl’s Law
Consider the execution of a given program on a uniprocessor workstation with a total execution
time of T minutes. Now, let’s say the program has been parallelized or partitioned for parallel
execution on a cluster of many processing nodes. Assume that a fraction α of the code must be exe-
cuted sequentially, called the sequential bottleneck. Therefore, (1 − α) of the code can be compiled
for parallel execution by n processors. The total execution time of the program is calculated by
α T + (1 − α)T/n, where the first term is the sequential execution time on a single processor and the
second term is the parallel execution time on n processing nodes.

All system or communication overhead is ignored here. The I/O time or exception handling time
is also not included in the following speedup analysis. Amdahl’s Law states that the speedup factor
of using the n-processor system over the use of a single processor is expressed by:

Speedup= S= T/½αT + ð1− αÞT/n�= 1/½α+ ð1− αÞ/n� (1.1)

The maximum speedup of n is achieved only if the sequential bottleneck α is reduced to zero or
the code is fully parallelizable with α = 0. As the cluster becomes sufficiently large, that is, n →
∞, S approaches 1/α, an upper bound on the speedup S. Surprisingly, this upper bound is indepen-
dent of the cluster size n. The sequential bottleneck is the portion of the code that cannot be paral-
lelized. For example, the maximum speedup achieved is 4, if α = 0.25 or 1− α = 0.75, even if one
uses hundreds of processors. Amdahl’s law teaches us that we should make the sequential bottle-
neck as small as possible. Increasing the cluster size alone may not result in a good speedup in
this case.

1.5.1.5 Problem with Fixed Workload
In Amdahl’s law, we have assumed the same amount of workload for both sequential and parallel
execution of the program with a fixed problem size or data set. This was called fixed-workload
speedup by Hwang and Xu [14]. To execute a fixed workload on n processors, parallel processing
may lead to a system efficiency defined as follows:

E= S/n= 1/½αn+ 1− α� (1.2)

Very often the system efficiency is rather low, especially when the cluster size is very large.
To execute the aforementioned program on a cluster with n = 256 nodes, extremely low efficiency
E = 1/[0.25 × 256 + 0.75] = 1.5% is observed. This is because only a few processors (say, 4) are
kept busy, while the majority of the nodes are left idling.

1.5.1.6 Gustafson’s Law
To achieve higher efficiency when using a large cluster, we must consider scaling the problem size
to match the cluster capability. This leads to the following speedup law proposed by John Gustafson
(1988), referred as scaled-workload speedup in [14]. Let W be the workload in a given program.
When using an n-processor system, the user scales the workload to W′ = αW + (1− α)nW. Note that
only the parallelizable portion of the workload is scaled n times in the second term. This scaled

1.5 Performance, Security, and Energy Efficiency 47



workload W′ is essentially the sequential execution time on a single processor. The parallel
execution time of a scaled workload W′ on n processors is defined by a scaled-workload speedup
as follows:

S′=W′/W = ½αW + ð1− αÞnW �/W = α+ ð1− αÞn (1.3)

This speedup is known as Gustafson’s law. By fixing the parallel execution time at level W, the
following efficiency expression is obtained:

E′= S′/n= α/n+ ð1− αÞ (1.4)

For the preceding program with a scaled workload, we can improve the efficiency of using a
256-node cluster to E′ = 0.25/256 + 0.75 = 0.751. One should apply Amdahl’s law and Gustafson’s
law under different workload conditions. For a fixed workload, users should apply Amdahl’s law.
To solve scaled problems, users should apply Gustafson’s law.

1.5.2 Fault Tolerance and System Availability
In addition to performance, system availability and application flexibility are two other important
design goals in a distributed computing system.

1.5.2.1 System Availability
HA (high availability) is desired in all clusters, grids, P2P networks, and cloud systems. A system is
highly available if it has a long mean time to failure (MTTF) and a short mean time to repair
(MTTR). System availability is formally defined as follows:

System Availability=MTTF/ðMTTF +MTTRÞ (1.5)

System availability is attributed to many factors. All hardware, software, and network compo-
nents may fail. Any failure that will pull down the operation of the entire system is called a single
point of failure. The rule of thumb is to design a dependable computing system with no single
point of failure. Adding hardware redundancy, increasing component reliability, and designing for
testability will help to enhance system availability and dependability. In Figure 1.24, the effects on
system availability are estimated by scaling the system size in terms of the number of processor
cores in the system.

In general, as a distributed system increases in size, availability decreases due to a higher chance
of failure and a difficulty in isolating the failures. Both SMP and MPP are very vulnerable with
centralized resources under one OS. NUMA machines have improved in availability due to the use
of multiple OSes. Most clusters are designed to have HA with failover capability. Meanwhile, pri-
vate clouds are created out of virtualized data centers; hence, a cloud has an estimated availability
similar to that of the hosting cluster. A grid is visualized as a hierarchical cluster of clusters. Grids
have higher availability due to the isolation of faults. Therefore, clusters, clouds, and grids have
decreasing availability as the system increases in size. A P2P file-sharing network has the highest
aggregation of client machines. However, it operates independently with low availability, and even
many peer nodes depart or fail simultaneously.
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1.5.3 Network Threats and Data Integrity
Clusters, grids, P2P networks, and clouds demand security and copyright protection if they are to be
accepted in today’s digital society. This section introduces system vulnerability, network threats,
defense countermeasures, and copyright protection in distributed or cloud computing systems.

1.5.3.1 Threats to Systems and Networks
Network viruses have threatened many users in widespread attacks. These incidents have created a
worm epidemic by pulling down many routers and servers, and are responsible for the loss of bil-
lions of dollars in business, government, and services. Figure 1.25 summarizes various attack types
and their potential damage to users. As the figure shows, information leaks lead to a loss of confi-
dentiality. Loss of data integrity may be caused by user alteration, Trojan horses, and service spoof-
ing attacks. A denial of service (DoS) results in a loss of system operation and Internet connections.

Lack of authentication or authorization leads to attackers’ illegitimate use of computing
resources. Open resources such as data centers, P2P networks, and grid and cloud infrastructures
could become the next targets. Users need to protect clusters, grids, clouds, and P2P systems.
Otherwise, users should not use or trust them for outsourced work. Malicious intrusions to these
systems may destroy valuable hosts, as well as network and storage resources. Internet anomalies
found in routers, gateways, and distributed hosts may hinder the acceptance of these public-resource
computing services.

1.5.3.2 Security Responsibilities
Three security requirements are often considered: confidentiality, integrity, and availability for most
Internet service providers and cloud users. In the order of SaaS, PaaS, and IaaS, the providers gra-
dually release the responsibility of security control to the cloud users. In summary, the SaaS model
relies on the cloud provider to perform all security functions. At the other extreme, the IaaS model
wants the users to assume almost all security functions, but to leave availability in the hands of the
providers. The PaaS model relies on the provider to maintain data integrity and availability, but bur-
dens the user with confidentiality and privacy control.
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Estimated system availability by system size of common configurations in 2010.
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1.5.3.3 Copyright Protection
Collusive piracy is the main source of intellectual property violations within the boundary of a P2P
network. Paid clients (colluders) may illegally share copyrighted content files with unpaid clients
(pirates). Online piracy has hindered the use of open P2P networks for commercial content delivery.
One can develop a proactive content poisoning scheme to stop colluders and pirates from alleged copy-
right infringements in P2P file sharing. Pirates are detected in a timely manner with identity-based
signatures and timestamped tokens. This scheme stops collusive piracy from occurring without hurting
legitimate P2P clients. Chapters 4 and 7 cover grid and cloud security, P2P reputation systems, and
copyright protection.

1.5.3.4 System Defense Technologies
Three generations of network defense technologies have appeared in the past. In the first generation,
tools were designed to prevent or avoid intrusions. These tools usually manifested themselves as
access control policies or tokens, cryptographic systems, and so forth. However, an intruder could
always penetrate a secure system because there is always a weak link in the security provisioning
process. The second generation detected intrusions in a timely manner to exercise remedial actions.
These techniques included firewalls, intrusion detection systems (IDSes), PKI services, reputation
systems, and so on. The third generation provides more intelligent responses to intrusions.

1.5.3.5 Data Protection Infrastructure
Security infrastructure is required to safeguard web and cloud services. At the user level, one
needs to perform trust negotiation and reputation aggregation over all users. At the application
end, we need to establish security precautions in worm containment and intrusion detection
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against virus, worm, and distributed DoS (DDoS) attacks. We also need to deploy mechanisms to
prevent online piracy and copyright violations of digital content. In Chapter 4, we will study
reputation systems for protecting cloud systems and data centers. Security responsibilities are
divided between cloud providers and users differently for the three cloud service models. The
providers are totally responsible for platform availability. The IaaS users are more responsible for
the confidentiality issue. The IaaS providers are more responsible for data integrity. In PaaS and
SaaS services, providers and users are equally responsible for preserving data integrity and
confidentiality.

1.5.4 Energy Efficiency in Distributed Computing
Primary performance goals in conventional parallel and distributed computing systems are high
performance and high throughput, considering some form of performance reliability (e.g., fault tol-
erance and security). However, these systems recently encountered new challenging issues including
energy efficiency, and workload and resource outsourcing. These emerging issues are crucial not
only on their own, but also for the sustainability of large-scale computing systems in general. This
section reviews energy consumption issues in servers and HPC systems, an area known as distribu-
ted power management (DPM).

Protection of data centers demands integrated solutions. Energy consumption in parallel and dis-
tributed computing systems raises various monetary, environmental, and system performance issues.
For example, Earth Simulator and Petaflop are two systems with 12 and 100 megawatts of peak
power, respectively. With an approximate price of $100 per megawatt, their energy costs during
peak operation times are $1,200 and $10,000 per hour; this is beyond the acceptable budget of
many (potential) system operators. In addition to power cost, cooling is another issue that must be
addressed due to negative effects of high temperature on electronic components. The rising tempera-
ture of a circuit not only derails the circuit from its normal range, but also decreases the lifetime of
its components.

1.5.4.1 Energy Consumption of Unused Servers
To run a server farm (data center) a company has to spend a huge amount of money for hardware,
software, operational support, and energy every year. Therefore, companies should thoroughly
identify whether their installed server farm (more specifically, the volume of provisioned resources)
is at an appropriate level, particularly in terms of utilization. It was estimated in the past that, on
average, one-sixth (15 percent) of the full-time servers in a company are left powered on without
being actively used (i.e., they are idling) on a daily basis. This indicates that with 44 million servers
in the world, around 4.7 million servers are not doing any useful work.

The potential savings in turning off these servers are large—$3.8 billion globally in energy costs
alone, and $24.7 billion in the total cost of running nonproductive servers, according to a study
by 1E Company in partnership with the Alliance to Save Energy (ASE). This amount of wasted
energy is equal to 11.8 million tons of carbon dioxide per year, which is equivalent to the CO
pollution of 2.1 million cars. In the United States, this equals 3.17 million tons of carbon dioxide,
or 580,678 cars. Therefore, the first step in IT departments is to analyze their servers to find unused
and/or underutilized servers.
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1.5.4.2 Reducing Energy in Active Servers
In addition to identifying unused/underutilized servers for energy savings, it is also necessary to
apply appropriate techniques to decrease energy consumption in active distributed systems with neg-
ligible influence on their performance. Power management issues in distributed computing platforms
can be categorized into four layers (see Figure 1.26): the application layer, middleware layer,
resource layer, and network layer.

1.5.4.3 Application Layer
Until now, most user applications in science, business, engineering, and financial areas tend to
increase a system’s speed or quality. By introducing energy-aware applications, the challenge is to
design sophisticated multilevel and multi-domain energy management applications without hurting
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FIGURE 1.26

Four operational layers of distributed computing systems.
(Courtesy of Zomaya, Rivandi and Lee of the University of Sydney [33] )
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performance. The first step toward this end is to explore a relationship between performance and
energy consumption. Indeed, an application’s energy consumption depends strongly on the number
of instructions needed to execute the application and the number of transactions with the storage
unit (or memory). These two factors (compute and storage) are correlated and they affect comple-
tion time.

1.5.4.4 Middleware Layer
The middleware layer acts as a bridge between the application layer and the resource layer. This
layer provides resource broker, communication service, task analyzer, task scheduler, security
access, reliability control, and information service capabilities. It is also responsible for applying
energy-efficient techniques, particularly in task scheduling. Until recently, scheduling was aimed at
minimizing makespan, that is, the execution time of a set of tasks. Distributed computing systems
necessitate a new cost function covering both makespan and energy consumption.

1.5.4.5 Resource Layer
The resource layer consists of a wide range of resources including computing nodes and storage
units. This layer generally interacts with hardware devices and the operating system; therefore, it
is responsible for controlling all distributed resources in distributed computing systems. In the
recent past, several mechanisms have been developed for more efficient power management of
hardware and operating systems. The majority of them are hardware approaches particularly for
processors.

Dynamic power management (DPM) and dynamic voltage-frequency scaling (DVFS) are two
popular methods incorporated into recent computer hardware systems [21]. In DPM, hardware
devices, such as the CPU, have the capability to switch from idle mode to one or more lower-
power modes. In DVFS, energy savings are achieved based on the fact that the power consumption
in CMOS circuits has a direct relationship with frequency and the square of the voltage supply.
Execution time and power consumption are controllable by switching among different frequencies
and voltages [31].

1.5.4.6 Network Layer
Routing and transferring packets and enabling network services to the resource layer are the main
responsibility of the network layer in distributed computing systems. The major challenge to build
energy-efficient networks is, again, determining how to measure, predict, and create a balance
between energy consumption and performance. Two major challenges to designing energy-efficient
networks are:

• The models should represent the networks comprehensively as they should give a full
understanding of interactions among time, space, and energy.

• New, energy-efficient routing algorithms need to be developed. New, energy-efficient protocols
should be developed against network attacks.

As information resources drive economic and social development, data centers become increas-
ingly important in terms of where the information items are stored and processed, and where ser-
vices are provided. Data centers become another core infrastructure, just like the power grid and
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transportation systems. Traditional data centers suffer from high construction and operational costs,
complex resource management, poor usability, low security and reliability, and huge energy con-
sumption. It is necessary to adopt new technologies in next-generation data-center designs, a topic
we will discuss in more detail in Chapter 4.

1.5.4.7 DVFS Method for Energy Efficiency
The DVFS method enables the exploitation of the slack time (idle time) typically incurred by inter-
task relationship. Specifically, the slack time associated with a task is utilized to execute the task in
a lower voltage frequency. The relationship between energy and voltage frequency in CMOS
circuits is related by:

E=Ceff fv
2t

f =K
ðv− vtÞ2

v

8<
: (1.6)

where v, Ceff, K, and vt are the voltage, circuit switching capacity, a technology dependent factor,
and threshold voltage, respectively, and the parameter t is the execution time of the task under
clock frequency f. By reducing voltage and frequency, the device’s energy consumption can also be
reduced.

Example 1.2 Energy Efficiency in Distributed Power Management

Figure 1.27 illustrates the DVFS method. This technique as shown on the right saves the energy compared
to traditional practices shown on the left. The idea is to reduce the frequency and/or voltage during work-
load slack time. The transition latencies between lower-power modes are very small. Thus energy is saved
by switching between operational modes. Switching between low-power modes affects performance.
Storage units must interact with the computing nodes to balance power consumption. According to Ge,
Feng, and Cameron [21], the storage devices are responsible for about 27 percent of the total energy con-
sumption in a data center. This figure increases rapidly due to a 60 percent increase in storage needs
annually, making the situation even worse.
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FIGURE 1.27

The DVFS technique (right) saves energy, compared to traditional practices (left) by reducing the
frequency or voltage during slack time.
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1.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
Over the past four decades, parallel processing and distributed computing have been hot topics for
research and development. Earlier work in parallel computing can be found in several classic books
[14,17,27,28]. Recent coverage of distributed systems can be found in [8,13,20,22]. Cluster comput-
ing was covered in [2,10,28,38] and grid computing in [6,18,42,47,51]. P2P networks were intro-
duced in [6,34,46]. Multicore CPUs and many-core GPU processors were discussed in [15,32,36].
Information on the Top 500 supercomputers can be found in [50].

Data centers are introduced in [4,19,26], and recent computer architecture in [24,26]. Cloud
computing is studied in [1,9,11,18,29,30,39,44]. The edited volume [11] on cloud computing by
Buyya, Broberg, and Goscinski serves as a good resource on cloud computing research. Chou’s
book [12] emphasizes business models for cloud services. Virtualization techniques were introduced
in [40–44]. The articles by Bell, Gray, and Szalay [5]; Foster, et al. [18]; and Hey [25] address
critical issues concerning data-intensive grid and cloud computing. Massive data parallelism and
programming are covered in [14,32].

Distributed algorithms and MPI programming are studied in [3,12,15,22,28]. Distributed operat-
ing systems and software tools are covered in [3,7,13,46]. Energy efficiency and power manage-
ment are studied in [21,31,52]. The Internet of Things is studied in [45,48]. The work of Hwang
and Li [30] suggested ways to cope with cloud security and data protection problems. In subsequent
chapters, additional references will be provided. The following list highlights some international
conferences, magazines, and journals that often report on the latest developments in parallelism,
clusters, grids, P2P systems, and cloud and distributed systems:

• IEEE and Related Conference Publications Internet Computing, TPDS (Transactions on
Parallel and Distributed Systems), TC (Transactions on Computers), TON (Transactions on
Networking), ICDCS (International Conference on Distributed Computing Systems), IPDPS
(International Parallel and Distributed Processing Symposium), INFOCOM, GLOBECOM,
CCGrid (Clusters, Clouds and The Grid), P2P Computing, HPDC (High-Performance
Distributed Computing), CloudCom (International Conference on Cloud Computing Technology
and Science), ISCA (International Symposium on Computer Architecture), HPCA (High-
Performance Computer Architecture), Computer Magazine, TDSC (Transactions on Dependable
and Secure Computing), TKDE (Transactions on Knowledge and Data Engineering), HPCC
(High Performance Computing and Communications), ICPADS (International Conference on
Parallel and Distributed Applications and Systems), NAS (Networks, Architectures, and
Storage), and GPC (Grid and Pervasive Computing)

• ACM, Internet Society, IFIP, and Other Relevant Publications Supercomputing Conference,
ACM Transactions on Computing Systems, USENIX Technical Conference, JPDC (Journal of
Parallel and Distributed Computing), Journal of Cloud Computing, Journal of Distributed
Computing, Journal of Cluster Computing, Future Generation Computer Systems, Journal of
Grid Computing, Journal of Parallel Computing, International Conference on Parallel Processing
(ICPP), European Parallel Computing Conference (EuroPAR), Concurrency: Practice and
Experiences (Wiley), NPC (IFIP Network and Parallel Computing), and PDCS (ISCA Parallel
and Distributed Computer Systems)
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HOMEWORK PROBLEMS
Problem 1.1
Briefly define the following basic techniques and technologies that represent recent related advances
in computer architecture, parallel processing, distributed computing, Internet technology, and
information services:

a. High-performance computing (HPC) system
b. High-throughput computing (HTC) system
c. Peer-to-peer (P2P) network
d. Computer cluster versus computational grid
e. Service-oriented architecture (SOA)
f. Pervasive computing versus Internet computing
g. Virtual machine versus virtual infrastructure
h. Public cloud versus private cloud
i. Radio-frequency identifier (RFID)
j. Global positioning system (GPS)
k. Sensor network
l. Internet of Things (IoT)
m. Cyber-physical system (CPS)

Problem 1.2
Circle only one correct answer in each of the following two questions:

1. In the 2009 Top 500 list of the fastest computer systems, which architecture dominates?
a. Symmetric shared-memory multiprocessor systems.
b. Centralized massively parallel processor (MPP) systems.
c. Clusters of cooperative computers.

2. In a cloud formed by a cluster of servers, all servers must be selected as follows:
a. All cloud machines must be built on physical servers.
b. All cloud machines must be built with virtual servers.
c. The cloud machines can be either physical or virtual servers.

Problem 1.3
An increasing number of organizations in industry and business sectors adopt cloud systems.
Answer the following questions regarding cloud computing:

a. List and describe the main characteristics of cloud computing systems.
b. Discuss key enabling technologies in cloud computing systems.
c. Discuss different ways for cloud service providers to maximize their revenues.

Problem 1.4
Match 10 abbreviated terms and system models on the left with their descriptions on the right. Enter
the description label (a, b, c, …, j) in the underlined blanks in front of the terms.
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______Globus (a) A scalable software platform promoted by Apache for web users to write and
run applications over vast amounts of distributed data

______BitTorrent (b) A P2P network for MP3 music delivery with a centralized directory server
______Gnutella (c) The programming model and associated implementation by Google for

distributed mapping and reduction of very large data sets
______EC2 (d) A middleware library jointly developed by USC/ISI and Argonne National Lab for

grid resource management and job scheduling
______TeraGrid (e) A distributed storage program by Google for managing structured data that can

scale to very large sizes
______EGEE (f) A P2P file-sharing network using multiple file index trackers
______Hadoop (g) A critical design goal of clusters of computers to tolerate nodal faults or recovery

from host failures
______SETI@home (h) The service architecture specification as an open grid standard
______Napster (i) An elastic and flexible computing environment that allows web application

developers to acquire cloud resources effectively
______BigTable (j) A P2P grid over 3 million desktops for distributed signal processing in search of

extraterrestrial intelligence

Problem 1.5
Consider a multicore processor with four heterogeneous cores labeled A, B, C, and D. Assume cores A
and D have the same speed. Core B runs twice as fast as core A, and core C runs three times faster than
core A. Assume that all four cores start executing the following application at the same time and no
cache misses are encountered in all core operations. Suppose an application needs to compute the square
of each element of an array of 256 elements. Assume 1 unit time for core A or D to compute the square
of an element. Thus, core B takes 1

2 unit time and core C takes 1
3 unit time to compute the square of an

element. Given the following division of labor in four cores:

Core A 32 elements
Core B 128 elements
Core C 64 elements
Core D 32 elements

a. Compute the total execution time (in time units) for using the four-core processor to compute the
squares of 256 elements in parallel. The four cores have different speeds. Some faster cores finish
the job and may become idle, while others are still busy computing until all squares are computed.

b. Calculate the processor utilization rate, which is the total amount of time the cores are busy (not
idle) divided by the total execution time they are using all cores in the processor to execute the
above application.

Problem 1.6
Consider parallel execution of an MPI-coded C program in SPMD (single program and multiple
data streams) mode on a server cluster consisting of n identical Linux servers. SPMD mode means
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the same MPI program is running simultaneously on all servers but over different data sets of
identical workloads. Assume that 25 percent of the program execution is attributed to the execution
of MPI commands. For simplicity, assume that all MPI commands take the same amount of execu-
tion time. Answer the following questions using Amdahl’s law:

a. Given that the total execution time of the MPI program on a four-server cluster is T minutes,
what is the speedup factor of executing the same MPI program on a 256-server cluster,
compared with using the four-server cluster? Assume that the program execution is deadlock-
free and ignore all other runtime execution overheads in the calculation.

b. Suppose that all MPI commands are now enhanced by a factor of 2 by using active messages
executed by message handlers at the user space. The enhancement can reduce the execution
time of all MPI commands by half. What is the speedup of the 256-server cluster installed
with this MPI enhancement, computed with the old 256-server cluster without MPI
enhancement?

Problem 1.7
Consider a program for multiplying two large-scale N × N matrices, where N is the matrix size. The
sequential multiply time on a single server is T1 = cN3 minutes, where c is a constant determined by
the server used. An MPI-code parallel program requires Tn = cN3/n + dN2/n0.5 minutes to complete
execution on an n-server cluster system, where d is a constant determined by the MPI version used.
Assume the program has a zero sequential bottleneck (α = 0). The second term in Tn accounts for
the total message-passing overhead experienced by n servers.

Answer the following questions for a given cluster configuration with n = 64 servers, c = 0.8,
and d = 0.1. Parts (a, b) have a fixed workload corresponding to the matrix size N = 15,000. Parts
(c, d) have a scaled workload associated with an enlarged matrix size N′ = n1/3 N = 641/3 × 15,000 =
4 × 15,000 = 60,000. Assume the same cluster configuration to process both workloads. Thus, the
system parameters n, c, and d stay unchanged. Running the scaled workload, the overhead also
increases with the enlarged matrix size N′.

a. Using Amdahl’s law, calculate the speedup of the n-server cluster over a single server.
b. What is the efficiency of the cluster system used in Part (a)?
c. Calculate the speedup in executing the scaled workload for an enlarged N′ × N′ matrix on the

same cluster configuration using Gustafson’s law.
d. Calculate the efficiency of running the scaled workload in Part (c) on the 64-processor cluster.
e. Compare the above speedup and efficiency results and comment on their implications.

Problem 1.8
Compare the similarities and differences between traditional computing clusters/grids and the
computing clouds launched in recent years. Consider all technical and economic aspects as listed
below. Answer the following questions against real example systems or platforms built in recent
years. Also discuss the possible convergence of the two computing paradigms in the future.

a. Hardware, software, and networking support
b. Resource allocation and provisioning methods
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c. Infrastructure management and protection
d. Support of utility computing services
e. Operational and cost models applied

Problem 1.9
Answer the following questions regarding PC and HPC systems:

a. Explain why PCs and HPCs were evolutionary rather than revolutionary in the past 30 years.
b. Discuss the drawbacks in disruptive changes in processor architecture. Why is the memory wall

a major problem in achieving scalable changes in performance?
c. Explain why x-86 processors are still dominating the PC and HPC markets.

Problem 1.10
Multicore and many-core processors have appeared in widespread use in both desktop computers
and HPC systems. Answer the following questions regarding advanced processors, memory devices,
and system interconnects:

a. What are the differences between multicore CPUs and GPUs in terms of architecture and usage?
b. Explain why parallel programming cannot match the progress of processor technology.
c. Suggest ideas and defend your argument with some plausible solutions to this mismatch problem

between core scaling and effective programming and use of multicores.
d. Explain why flash memory SSD can deliver better speedups in some HPC or HTC applications.
e. Justify the prediction that InfiniBand and Ethernet will continue to dominate the HPC market.

Problem 1.11
In Figure 1.7, you studied five categories of modern processors. Characterize in Table 1.9 five
micro-architectures for designing these processors. Comment on their advantages/shortcomings
and identify the names of two example commercial processors that are built in each processor
category. Assume a single core in the superscalar processor and the three multithreaded proces-
sors. The last processor category is a multicore CMP and each core is assumed to handle one
thread at a time.

Table 1.9 Comparison of Five Micro-architectures for Modern Processors

Processor Micro-architectures
Architecture
Charcteristics

Advantages/
Shortcomings

Representative
Processors

Single-threaded Superscalar

Fine-grain Multithreading

Coarse-grain Multithreading

Simultaneous Multithreading (SMT)

Multicore Chip Multiprocessor (CMP)
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Problem 1.12
Discuss the major advantages and disadvantages in the following areas:

a. Why are virtual machines and virtual clusters suggested in cloud computing systems?
b. What breakthroughs are required to build virtualized cloud systems cost-effectively?
c. What are the impacts of cloud platforms on the future of the HPC and HTC industry?

Problem 1.13
Characterize the following three cloud computing models:

a. What is an IaaS (Infrastructure-as-a-Service) cloud? Give one example system.
b. What is a PaaS (Platform-as-a-Service) cloud? Give one example system.
c. What is a SaaS (Software-as-a-Service) cloud? Give one example system.

Problem 1.14
Briefly explain each of the following cloud computing services. Identify two cloud providers by
company name in each service category.

a. Application cloud services
b. Platform cloud services
c. Compute and storage services
d. Collocation cloud services
e. Network cloud services

Problem 1.15
Briefly explain the following terms associated with network threats or security defense in a distribu-
ted computing system:

a. Denial of service (DoS)
b. Trojan horse
c. Network worm
d. Service spoofing
e. Authorization
f. Authentication
g. Data integrity
h. Confidentiality

Problem 1.16
Briefly answer the following questions regarding green information technology and energy effi-
ciency in distributed systems:

a. Why is power consumption critical to data-center operations?
b. What constitutes the dynamic voltage frequency scaling (DVFS) technique?
c. Conduct in-depth research on recent progress in green IT research, and write a report on its

applications to data-center design and cloud service applications.
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Problem 1.17
Compare GPU and CPU chips in terms of their strengths and weaknesses. In particular, discuss the
trade-offs between power efficiency, programmability, and performance. Also compare various
MPP architectures in processor selection, performance target, efficiency, and packaging constraints.

Problem 1.18
Compare three distributed operating systems: Amoeba, DCE, and MOSIX. Research their recent
developments and their impact on applications in clusters, grids, and clouds. Discuss the suitability
of each system in its commercial or experimental distributed applications. Also discuss each
system’s limitations and explain why they were not successful as commercial systems.
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SUMMARY
Clustering of computers enables scalable parallel and distributed computing in both science and busi-
ness applications. This chapter is devoted to building cluster-structured massively parallel processors.
We focus on the design principles and assessment of the hardware, software, middleware, and operating
system support to achieve scalability, availability, programmability, single-system images, and fault tol-
erance in clusters. We will examine the cluster architectures of Tianhe-1A, Cray XT5 Jaguar, and IBM
Roadrunner. The study also covers the LSF middleware and MOSIX/OS for job and resource manage-
ment in Linux clusters, GPU clusters and cluster extensions to building grids and clouds. Only physical
clusters are studied in this chapter. Virtual clusters will be studied in Chapters 3 and 4.

2.1 CLUSTERING FOR MASSIVE PARALLELISM
A computer cluster is a collection of interconnected stand-alone computers which can work together
collectively and cooperatively as a single integrated computing resource pool. Clustering explores
massive parallelism at the job level and achieves high availability (HA) through stand-alone opera-
tions. The benefits of computer clusters and massively parallel processors (MPPs) include scalable
performance, HA, fault tolerance, modular growth, and use of commodity components. These fea-
tures can sustain the generation changes experienced in hardware, software, and network compo-
nents. Cluster computing became popular in the mid-1990s as traditional mainframes and vector
supercomputers were proven to be less cost-effective in many high-performance computing (HPC)
applications.

Of the Top 500 supercomputers reported in 2010, 85 percent were computer clusters or MPPs
built with homogeneous nodes. Computer clusters have laid the foundation for today’s supercompu-
ters, computational grids, and Internet clouds built over data centers. We have come a long way
toward becoming addicted to computers. According to a recent IDC prediction, the HPC market
will increase from $8.5 billion in 2010 to $10.5 billion by 2013. A majority of the Top 500 super-
computers are used for HPC applications in science and engineering. Meanwhile, the use of high-
throughput computing (HTC) clusters of servers is growing rapidly in business and web services
applications.

2.1.1 Cluster Development Trends
Support for clustering of computers has moved from interconnecting high-end mainframe computers
to building clusters with massive numbers of x86 engines. Computer clustering started with the link-
ing of large mainframe computers such as the IBM Sysplex and the SGI Origin 3000. Originally,
this was motivated by a demand for cooperative group computing and to provide higher availability
in critical enterprise applications. Subsequently, the clustering trend moved toward the networking
of many minicomputers, such as DEC’s VMS cluster, in which multiple VAXes were intercon-
nected to share the same set of disk/tape controllers. Tandem’s Himalaya was designed as a busi-
ness cluster for fault-tolerant online transaction processing (OLTP) applications.

In the early 1990s, the next move was to build UNIX-based workstation clusters represented by
the Berkeley NOW (Network of Workstations) and IBM SP2 AIX-based server cluster. Beyond
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2000, we see the trend moving to the clustering of RISC or x86 PC engines. Clustered products
now appear as integrated systems, software tools, availability infrastructure, and operating system
extensions. This clustering trend matches the downsizing trend in the computer industry. Supporting
clusters of smaller nodes will increase sales by allowing modular incremental growth in cluster con-
figurations. From IBM, DEC, Sun, and SGI to Compaq and Dell, the computer industry has lever-
aged clustering of low-cost servers or x86 desktops for their cost-effectiveness, scalability, and HA
features.

2.1.1.1 Milestone Cluster Systems
Clustering has been a hot research challenge in computer architecture. Fast communication, job
scheduling, SSI, and HA are active areas in cluster research. Table 2.1 lists some milestone cluster
research projects and commercial cluster products. Details of these old clusters can be found in
[14]. These milestone projects have pioneered clustering hardware and middleware development
over the past two decades. Each cluster project listed has developed some unique features. Modern
clusters are headed toward HPC clusters as studied in Section 2.5.

The NOW project addresses a whole spectrum of cluster computing issues, including architecture,
software support for web servers, single system image, I/O and file system, efficient communication,
and enhanced availability. The Rice University TreadMarks is a good example of software-implemented
shared-memory cluster of workstations. The memory sharing is implemented with a user-space runtime
library. This was a research cluster built over Sun Solaris workstations. Some cluster OS functions were
developed, but were never marketed successfully.

Table 2.1 Milestone Research or Commercial Cluster Computer Systems [14]

Project Special Features That Support Clustering

DEC VAXcluster (1991) A UNIX cluster of symmetric multiprocessing (SMP) servers running
the VMS OS with extensions, mainly used in HA applications

U.C. Berkeley NOW Project (1995) A serverless network of workstations featuring active messaging,
cooperative filing, and GLUnix development

Rice University TreadMarks (1996) Software-implemented distributed shared memory for use in
clusters of UNIX workstations based on page migration

Sun Solaris MC Cluster (1995) A research cluster built over Sun Solaris workstations; some cluster
OS functions were developed but were never marketed
successfully

Tandem Himalaya Cluster (1994) A scalable and fault-tolerant cluster for OLTP and database
processing, built with nonstop operating system support

IBM SP2 Server Cluster (1996) An AIX server cluster built with Power2 nodes and the Omega
network, and supported by IBM LoadLeveler and MPI extensions

Google Search Engine Cluster (2003) A 4,000-node server cluster built for Internet search and web
service applications, supported by a distributed file system and
fault tolerance

MOSIX (2010) www.mosix.org A distributed operating system for use in Linux clusters,
multiclusters, grids, and clouds; used by the research community
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A Unix cluster of SMP servers running VMS/OS with extensions, mainly used in high-
availability applications. An AIX server cluster built with Power2 nodes and Omega network and
supported by IBM Loadleveler and MPI extensions. A scalable and fault-tolerant cluster for OLTP
and database processing built with non-stop operating system support. The Google search engine
was built at Google using commodity components. MOSIX is a distributed operating systems for
use in Linux clusters, multi-clusters, grids, and the clouds, originally developed by Hebrew Univer-
sity in 1999.

2.1.2 Design Objectives of Computer Clusters
Clusters have been classified in various ways in the literature. We classify clusters using six ortho-
gonal attributes: scalability, packaging, control, homogeneity, programmability, and security.

2.1.2.1 Scalability
Clustering of computers is based on the concept of modular growth. To scale a cluster from hundreds
of uniprocessor nodes to a supercluster with 10,000 multicore nodes is a nontrivial task. The scalabil-
ity could be limited by a number of factors, such as the multicore chip technology, cluster topology,
packaging method, power consumption, and cooling scheme applied. The purpose is to achieve scal-
able performance constrained by the aforementioned factors. We have to also consider other limiting
factors such as the memory wall, disk I/O bottlenecks, and latency tolerance, among others.

2.1.2.2 Packaging
Cluster nodes can be packaged in a compact or a slack fashion. In a compact cluster, the nodes are
closely packaged in one or more racks sitting in a room, and the nodes are not attached to periph-
erals (monitors, keyboards, mice, etc.). In a slack cluster, the nodes are attached to their usual peri-
pherals (i.e., they are complete SMPs, workstations, and PCs), and they may be located in different
rooms, different buildings, or even remote regions. Packaging directly affects communication wire
length, and thus the selection of interconnection technology used. While a compact cluster can uti-
lize a high-bandwidth, low-latency communication network that is often proprietary, nodes of a
slack cluster are normally connected through standard LANs or WANs.

2.1.2.3 Control
A cluster can be either controlled or managed in a centralized or decentralized fashion. A compact
cluster normally has centralized control, while a slack cluster can be controlled either way. In a cen-
tralized cluster, all the nodes are owned, controlled, managed, and administered by a central opera-
tor. In a decentralized cluster, the nodes have individual owners. For instance, consider a cluster
comprising an interconnected set of desktop workstations in a department, where each workstation
is individually owned by an employee. The owner can reconfigure, upgrade, or even shut down the
workstation at any time. This lack of a single point of control makes system administration of such
a cluster very difficult. It also calls for special techniques for process scheduling, workload migra-
tion, checkpointing, accounting, and other similar tasks.

2.1.2.4 Homogeneity
A homogeneous cluster uses nodes from the same platform, that is, the same processor architecture
and the same operating system; often, the nodes are from the same vendors. A heterogeneous
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cluster uses nodes of different platforms. Interoperability is an important issue in heterogeneous
clusters. For instance, process migration is often needed for load balancing or availability. In a
homogeneous cluster, a binary process image can migrate to another node and continue execution.
This is not feasible in a heterogeneous cluster, as the binary code will not be executable when the
process migrates to a node of a different platform.

2.1.2.5 Security
Intracluster communication can be either exposed or enclosed. In an exposed cluster, the communi-
cation paths among the nodes are exposed to the outside world. An outside machine can access the
communication paths, and thus individual nodes, using standard protocols (e.g., TCP/IP). Such
exposed clusters are easy to implement, but have several disadvantages:

• Being exposed, intracluster communication is not secure, unless the communication subsystem
performs additional work to ensure privacy and security.

• Outside communications may disrupt intracluster communications in an unpredictable fashion.
For instance, heavy BBS traffic may disrupt production jobs.

• Standard communication protocols tend to have high overhead.

In an enclosed cluster, intracluster communication is shielded from the outside world, which
alleviates the aforementioned problems. A disadvantage is that there is currently no standard for
efficient, enclosed intracluster communication. Consequently, most commercial or academic clusters
realize fast communications through one-of-a-kind protocols.

2.1.2.6 Dedicated versus Enterprise Clusters
A dedicated cluster is typically installed in a deskside rack in a central computer room. It is homo-
geneously configured with the same type of computer nodes and managed by a single administrator
group like a frontend host. Dedicated clusters are used as substitutes for traditional mainframes or
supercomputers. A dedicated cluster is installed, used, and administered as a single machine. Many
users can log in to the cluster to execute both interactive and batch jobs. The cluster offers much
enhanced throughput, as well as reduced response time.

An enterprise cluster is mainly used to utilize idle resources in the nodes. Each node is usually a
full-fledged SMP, workstation, or PC, with all the necessary peripherals attached. The nodes are typi-
cally geographically distributed, and are not necessarily in the same room or even in the same build-
ing. The nodes are individually owned by multiple owners. The cluster administrator has only limited
control over the nodes, as a node can be turned off at any time by its owner. The owner’s “local” jobs
have higher priority than enterprise jobs. The cluster is often configured with heterogeneous computer
nodes. The nodes are often connected through a low-cost Ethernet network. Most data centers are
structured with clusters of low-cost servers. Virtual clusters play a crucial role in upgrading data cen-
ters. We will discuss virtual clusters in Chapter 6 and clouds in Chapters 7, 8, and 9.

2.1.3 Fundamental Cluster Design Issues
In this section, we will classify various cluster and MPP families. Then we will identify the major
design issues of clustered and MPP systems. Both physical and virtual clusters are covered. These
systems are often found in computational grids, national laboratories, business data centers,
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supercomputer sites, and virtualized cloud platforms. A good understanding of how clusters and
MPPs work collectively will pave the way toward understanding the ins and outs of large-scale
grids and Internet clouds in subsequent chapters. Several issues must be considered in developing
and using a cluster. Although much work has been done in this regard, this is still an active
research and development area.

2.1.3.1 Scalable Performance
This refers to the fact that scaling of resources (cluster nodes, memory capacity, I/O bandwidth,
etc.) leads to a proportional increase in performance. Of course, both scale-up and scale-down cap-
abilities are needed, depending on application demand or cost-effectiveness considerations. Cluster-
ing is driven by scalability. One should not ignore this factor in all applications of cluster or MPP
computing systems.

2.1.3.2 Single-System Image (SSI)
A set of workstations connected by an Ethernet network is not necessarily a cluster. A cluster is a
single system. For example, suppose a workstation has a 300 Mflops/second processor, 512 MB of
memory, and a 4 GB disk and can support 50 active users and 1,000 processes. By clustering 100
such workstations, can we get a single system that is equivalent to one huge workstation, or a
megastation, that has a 30 Gflops/second processor, 50 GB of memory, and a 400 GB disk and can
support 5,000 active users and 100,000 processes? This is an appealing goal, but it is very difficult
to achieve. SSI techniques are aimed at achieving this goal.

2.1.3.3 Availability Support
Clusters can provide cost-effective HA capability with lots of redundancy in processors, memory,
disks, I/O devices, networks, and operating system images. However, to realize this potential, avail-
ability techniques are required. We will illustrate these techniques later in the book, when we dis-
cuss how DEC clusters (Section 10.4) and the IBM SP2 (Section 10.3) attempt to achieve HA.

2.1.3.4 Cluster Job Management
Clusters try to achieve high system utilization from traditional workstations or PC nodes that are
normally not highly utilized. Job management software is required to provide batching, load balan-
cing, parallel processing, and other functionality. We will study cluster job management systems in
Section 3.4. Special software tools are needed to manage multiple jobs simultaneously.

2.1.3.5 Internode Communication
Because of their higher node complexity, cluster nodes cannot be packaged as compactly as MPP
nodes. The internode physical wire lengths are longer in a cluster than in an MPP. This is true even
for centralized clusters. A long wire implies greater interconnect network latency. But more impor-
tantly, longer wires have more problems in terms of reliability, clock skew, and cross talking.
These problems call for reliable and secure communication protocols, which increase overhead.
Clusters often use commodity networks (e.g., Ethernet) with standard protocols such as TCP/IP.

2.1.3.6 Fault Tolerance and Recovery
Clusters of machines can be designed to eliminate all single points of failure. Through redundancy,
a cluster can tolerate faulty conditions up to a certain extent. Heartbeat mechanisms can be installed
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to monitor the running condition of all nodes. In case of a node failure, critical jobs running on the
failing nodes can be saved by failing over to the surviving node machines. Rollback recovery
schemes restore the computing results through periodic checkpointing.

2.1.3.7 Cluster Family Classification
Based on application demand, computer clusters are divided into three classes:

• Compute clusters These are clusters designed mainly for collective computation over a single
large job. A good example is a cluster dedicated to numerical simulation of weather conditions.
The compute clusters do not handle many I/O operations, such as database services. When a
single compute job requires frequent communication among the cluster nodes, the cluster must
share a dedicated network, and thus the nodes are mostly homogeneous and tightly coupled.
This type of clusters is also known as a Beowulf cluster.
When the nodes require internode communication over a small number of heavy-duty nodes, they
are essentially known as a computational grid. Tightly coupled compute clusters are designed for
supercomputing applications. Compute clusters apply middleware such as a message-passing
interface (MPI) or Parallel Virtual Machine (PVM) to port programs to a wide variety of clusters.

• High-Availability clusters HA (high-availability) clusters are designed to be fault-tolerant and
achieve HA of services. HA clusters operate with many redundant nodes to sustain faults or
failures. The simplest HA cluster has only two nodes that can fail over to each other. Of course,
high redundancy provides higher availability. HA clusters should be designed to avoid all single
points of failure. Many commercial HA clusters are available for various operating systems.

• Load-balancing clusters These clusters shoot for higher resource utilization through load
balancing among all participating nodes in the cluster. All nodes share the workload or function
as a single virtual machine (VM). Requests initiated from the user are distributed to all node
computers to form a cluster. This results in a balanced workload among different machines, and
thus higher resource utilization or higher performance. Middleware is needed to achieve
dynamic load balancing by job or process migration among all the cluster nodes.

2.1.4 Analysis of the Top 500 Supercomputers
Every six months, the world’s Top 500 supercomputers are evaluated by running the Linpack
Benchmark program over very large data sets. The ranking varies from year to year, similar to a
competition. In this section, we will analyze the historical share in architecture, speed, operating
systems, countries, and applications over time. In addition, we will compare the top five fastest sys-
tems in 2010.

2.1.4.1 Architectural Evolution
It is interesting to observe in Figure 2.1 the architectural evolution of the Top 500 supercomputers
over the years. In 1993, 250 systems assumed the SMP architecture and these SMP systems all disap-
peared in June of 2002. Most SMPs are built with shared memory and shared I/O devices. There
were 120 MPP systems built in 1993, MPPs reached the peak mof 350 systems in mod-200, and
dropped to less than 100 systems in 2010. The single instruction, multiple data (SIMD) machines dis-
appeared in 1997. The cluster architecture appeared in a few systems in 1999. The cluster systems are
now populated in the Top-500 list with more than 400 systems as the dominating architecture class.
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In 2010, the Top 500 architecture is dominated by clusters (420 systems) and MPPs (80 systems).
The basic distinction between these two classes lies in the components they use to build the systems.
Clusters are often built with commodity hardware, software, and network components that are com-
mercially available. MPPs are built with custom-designed compute nodes, boards, modules, and cabi-
nets that are interconnected by special packaging. MPPs demand high bandwidth, low latency, better
power efficiency, and high reliability. Cost-wise, clusters are affordable by allowing modular growth
with scaling capability. The fact that MPPs appear in a much smaller quantity is due to their high
cost. Typically, only a few MPP-based supercomputers are installed in each country.

2.1.4.2 Speed Improvement over Time
Figure 2.2 plots the measured performance of the Top 500 fastest computers from 1993 to 2010.
The y-axis is scaled by the sustained speed performance in terms of Gflops, Tflops, and Pflops.
The middle curve plots the performance of the fastest computers recorded over 17 years; peak per-
formance increases from 58.7 Gflops to 2.566 Pflops. The bottom curve corresponds to the speed
of the 500th computer, which increased from 0.42 Gflops in 1993 to 31.1 Tflops in 2010. The top
curve plots the speed sum of all 500 computers over the same period. In 2010, the total speed sum
of 43.7 Pflops was achieved by all 500 computers, collectively. It is interesting to observe that the
total speed sum increases almost linearly with time.

2.1.4.3 Operating System Trends in the Top 500
The five most popular operating systems have more than a 10 percent share among the Top 500
computers, according to data released by TOP500.org (www.top500.org/stats/list/36/os) in Novem-
ber 2010. According to the data, 410 supercomputers are using Linux with a total processor count
exceeding 4.5 million. This constitutes 82 percent of the systems adopting Linux. The IBM AIX/
OS is in second place with 17 systems (a 3.4 percent share) and more than 94,288 processors.
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Third place is represented by the combined use of the SLEs10 with the SGI ProPack5, with 15 sys-
tems (3 percent) over 135,200 processors. Fourth place goes to the CNK/SLES9 used by 14 systems
(2.8 percent) over 1.13 million processors. Finally, the CNL/OS was used in 10 systems (2 percent)
over 178,577 processors. The remaining 34 systems applied 13 other operating systems with a total
share of only 6.8 percent. In conclusion, the Linux OS dominates the systems in the Top 500 list.

2.1.4.4 The Top Five Systems in 2010
In Table 2.2, we summarize the key architecture features and sustained Linpack Benchmark perfor-
mance of the top five supercomputers reported in November 2010. The Tianhe-1A was ranked as
the fastest MPP in late 2010. This system was built with 86,386 Intel Xeon CPUs and NVIDIA
GPUs by the National University of Defense Technology in China. We will present in Section 2.5
some of the top winners: namely the Tianhe-1A, Cray Jaguar, Nebulae, and IBM Roadrunner that
were ranked among the top systems from 2008 to 2010. All the top five machines in Table 2.3
have achieved a speed higher than 1 Pflops. The sustained speed, Rmax, in Pflops is measured from
the execution of the Linpack Benchmark program corresponding to a maximum matrix size.

The system efficiency reflects the ratio of the sustained speed to the peak speed, Rpeak, when all
computing elements are fully utilized in the system. Among the top five systems, the two U.S.-built
systems, the Jaguar and the Hopper, have the highest efficiency, more than 75 percent. The two sys-
tems built in China, the Tianhe-1A and the Nebulae, and Japan’s TSUBAME 2.0, are all low in
efficiency. In other words, these systems should still have room for improvement in the future. The
average power consumption in these 5 systems is 3.22 MW. This implies that excessive power con-
sumption may post the limit to build even faster supercomputers in the future. These top systems
all emphasize massive parallelism using up to 250,000 processor cores per system.
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2.1.4.5 Country Share and Application Share
In the 2010 Top-500 list, there were 274 supercomputing systems installed in the US, 41 systems in
China, and 103 systems in Japan, France, UK, and Germany. The remaining countries have 82 sys-
tems. This country share roughly reflects the countries’ economic growth over the years. Countries
compete in the Top 500 race every six months. Major increases of supercomputer applications are
in the areas of database, research, finance, and information services.

Table 2.3 Sample Compute Node Architectures for Large Cluster Construction

Node Architecture Major Characteristics Representative Systems

Homogeneous node
using the same
multicore processors

Multicore processors mounted on the
same node with a crossbar connected to
shared memory or local disks

The Cray XT5 uses two six-core
AMD Opteron processors in
each compute node

Hybrid nodes using CPU
plus GPU or FLP
accelerators

General-purpose CPU for integer
operations, with GPUs acting as
coprocessors to speed up FLP operations

China’s Tianhe-1A uses two Intel
Xeon processors plus one
NVIDIA GPU per compute node

Table 2.2 The Top Five Supercomputers Evaluated in November 2010

System Name,
Site, and URL

System Name, Processors, OS,
Topology, and Developer

Linpack
Speed (Rmax),
Power

Efficiency
(Rmax/Rpeak)

1. Tianhe-1A, National
Supercomputing
Center, Tianjin, China,
http://www.nscc-tj.
gov.cn/en/

NUDT TH1A with 14,336 Xeon X5670
CPUs (six cores each) plus 7168 NVIDIA
Tesla M2050 GPUs (448 CUDA cores
each), running Linux, built by National
Univ. of Defense Technology, China

2.57 Pflops,
4.02 MW

54.6% (over
a peak of
4.7 Pflops)

2. Jaguar, DOE/SC/Oak
Ridge National Lab.,
United States, http://
computing.ornl.gov

Cray XT5-HE: MPP with 224,162 x 6
AMD Opteron, 3D torus network, Linux
(CLE), manufactured by Cray, Inc.

1.76 Pflops,
6.95 MW

75.6% (over
a peak of
4.7 Pflops)

3. Nebulae at China’s
National
Supercomputer
Center, ShenZhen,
China http://www.ict
.cas.cas.cn

TC3600 Blade, 120,640 cores in 55,680
Xeon X5650 plus 64,960 NVIDIA Tesla
C2050 GPUs, Linux, InfiniBand, built by
Dawning, Inc.

1.27 Pflops,
2.55 MW

42.6% (over
a peak of
2.98 Pflops)

4. TSUBAME 2.0, GSIC
Center, Tokyo Institute
of Technology, Tokyo,
Japan, http://www.
gsic.titech.ac.jp/

HP cluster, 3000SL, 73,278 x 6 Xeon
X5670 processors, NVIDIA GPU, Linux/
SLES 11, built by NEC/HP

1.19 Pflops,
1.8 MW

52.19% (over
a peak of
2.3 Pflops)

5. Hopper, DOE/SC/
LBNL/ NERSC,
Berkeley, CA. USA,
http//www/nersc.gov/

Cray XE6 150,408 x 12 AMD Opteron,
Linux (CLE), built by Cray, Inc.

1.05 Pflops,
2.8 MW

78.47% (over
a peak of
1.35 Pflops)
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2.1.4.6 Power versus Performance in the Top Five in 2010
In Figure 2.3, the top five supercomputers are ranked by their speed (Gflops) on the left side
and by their power consumption (MW per system) on the right side. The Tiahhe-1A scored the
highest with a 2.57 Pflops speed and 4.01 MW power consumption. In second place, the Jaguar
consumes the highest power of 6.9 MW. In fourth place, the TSUBAME system consumes the
least power, 1.5 MW, and has a speed performance that almost matches that of the Nebulae sys-
tem. One can define a performance/power ratio to see the trade-off between these two metrics.
There is also a Top 500 Green contest that ranks the supercomputers by their power efficiency.
This chart shows that all systems using the hybrid CPU/GPU architecture consume much less
power.

2.2 COMPUTER CLUSTERS AND MPP ARCHITECTURES
Most clusters emphasize higher availability and scalable performance. Clustered systems evolved
from the Microsoft Wolfpack and Berkeley NOW to the SGI Altix Series, IBM SP Series, and
IBM Roadrunner. NOW was a UC Berkeley research project designed to explore new mechan-
isms for clustering of UNIX workstations. Most clusters use commodity networks such as Gigabit
Ethernet, Myrinet switches, or InfiniBand networks to interconnect the compute and storage
nodes. The clustering trend moves from supporting large rack-size, high-end computer systems to
high-volume, desktop or deskside computer systems, matching the downsizing trend in the com-
puter industry.
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Power and performance of the top 5 supercomputers in November 2010.
(Courtesy of www.top500.org [25] and B. Dally [10] )
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2.2.1 Cluster Organization and Resource Sharing
In this section, we will start by discussing basic, small-scale PC or server clusters. We will discuss
how to construct large-scale clusters and MPPs in subsequent sections.

2.2.1.1 A Basic Cluster Architecture
Figure 2.4 shows the basic architecture of a computer cluster over PCs or workstations. The figure
shows a simple cluster of computers built with commodity components and fully supported with
desired SSI features and HA capability. The processing nodes are commodity workstations, PCs, or
servers. These commodity nodes are easy to replace or upgrade with new generations of hardware.
The node operating systems should be designed for multiuser, multitasking, and multithreaded
applications. The nodes are interconnected by one or more fast commodity networks. These net-
works use standard communication protocols and operate at a speed that should be two orders of
magnitude faster than that of the current TCP/IP speed over Ethernet.

The network interface card is connected to the node’s standard I/O bus (e.g., PCI). When the
processor or the operating system is changed, only the driver software needs to change. We desire
to have a platform-independent cluster operating system, sitting on top of the node platforms. But
such a cluster OS is not commercially available. Instead, we can deploy some cluster middleware to
glue together all node platforms at the user space. An availability middleware offers HA services.
An SSI layer provides a single entry point, a single file hierarchy, a single point of control, and a

Cluster interconnection network/switch

Parallel applications

Sequential applications
Sequential applications

Sequential applications
Parallel applications

Parallel programming environment

Cluster middleware

(Single system image and availability infrastructure)

Communications

software

Network interface
hardware

PC/workstation

Communications

software

Network interface
hardware

PC/workstation

Communications

software

Network interface
hardware

PC/workstation

Communications

software

Network interface
hardware

PC/workstation

FIGURE 2.4

The architecture of a computer cluster built with commodity hardware, software, middleware, and network
components supporting HA and SSI.

(Courtesy of M. Baker and R. Buyya, reprinted with Permission [3] )
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single job management system. Single memory may be realized with the help of the compiler or a
runtime library. A single process space is not necessarily supported.

In general, an idealized cluster is supported by three subsystems. First, conventional databases
and OLTP monitors offer users a desktop environment in which to use the cluster. In addition to
running sequential user programs, the cluster supports parallel programming based on standard
languages and communication libraries using PVM, MPI, or OpenMP. The programming environ-
ment also includes tools for debugging, profiling, monitoring, and so forth. A user interface sub-
system is needed to combine the advantages of the web interface and the Windows GUI. It
should also provide user-friendly links to various programming environments, job management
tools, hypertext, and search support so that users can easily get help in programming the compu-
ter cluster.

2.2.1.2 Resource Sharing in Clusters
Supporting clusters of smaller nodes will increase computer sales. Clustering improves both avail-
ability and performance. These two clustering goals are not necessarily in conflict. Some HA clus-
ters use hardware redundancy for scalable performance. The nodes of a cluster can be connected
in one of three ways, as shown in Figure 2.5. The shared-nothing architecture is used in most
clusters, where the nodes are connected through the I/O bus. The shared-disk architecture is in
favor of small-scale availability clusters in business applications. When one node fails, the other
node takes over.

The shared-nothing configuration in Part (a) simply connects two or more autonomous compu-
ters via a LAN such as Ethernet. A shared-disk cluster is shown in Part (b). This is what most busi-
ness clusters desire so that they can enable recovery support in case of node failure. The shared disk
can hold checkpoint files or critical system images to enhance cluster availability. Without shared
disks, checkpointing, rollback recovery, failover, and failback are not possible in a cluster. The
shared-memory cluster in Part (c) is much more difficult to realize. The nodes could be connected
by a scalable coherence interface (SCI) ring, which is connected to the memory bus of each node
through an NIC module. In the other two architectures, the interconnect is attached to the I/O bus.
The memory bus operates at a higher frequency than the I/O bus.

There is no widely accepted standard for the memory bus. But there are such standards for the
I/O buses. One recent, popular standard is the PCI I/O bus standard. So, if you implement an NIC
card to attach a faster Ethernet network to the PCI bus you can be assured that this card can be
used in other systems that use PCI as the I/O bus. The I/O bus evolves at a much slower rate than
the memory bus. Consider a cluster that uses connections through the PCI bus. When the processors
are upgraded, the interconnect and the NIC do not have to change, as long as the new system still
uses PCI. In a shared-memory cluster, changing the processor implies a redesign of the node board
and the NIC card.

2.2.2 Node Architectures and MPP Packaging
In building large-scale clusters or MPP systems, cluster nodes are classified into two categories:
compute nodes and service nodes. Compute nodes appear in larger quantities mainly used for large-
scale searching or parallel floating-point computations. Service nodes could be built with different
processors mainly used to handle I/O, file access, and system monitoring. For MPP clusters, the

2.2 Computer Clusters and MPP Architectures 77



compute nodes dominate in system cost, because we may have 1,000 times more compute nodes
than service nodes in a single large clustered system. Table 2.3 introduces two example compute
node architectures: homogeneous design and hybrid node design.

In the past, most MPPs are built with a homogeneous architecture by interconnecting a large
number of the same compute nodes. In 2010, the Cray XT5 Jaguar system was built with 224,162
AMD Opteron processors with six cores each. The Tiahe-1A adopted a hybrid node design using two
Xeon CPUs plus two AMD GPUs per each compute node. The GPU could be replaced by special
floating-point accelerators. A homogeneous node design makes it easier to program and maintain
the system.

Example 2.1 Modular Packaging of the IBM Blue Gene/L System

The Blue Gene/L is a supercomputer jointly developed by IBM and Lawrence Livermore National Labora-
tory. The system became operational in 2005 with a 136 Tflops performance at the No. 1 position in the
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Three ways to connect cluster nodes (P/C: Processor and Cache; M: Memory; D: Disk; NIC: Network
Interface Circuitry; MIO: Memory-I/O Bridge.)

(Courtesy of Hwang and Xu [14] )
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Top-500 list—toped the Japanese Earth Simulator. The system was upgraded to score a 478 Tflops speed
in 2007. By examining the architecture of the Blue Gene series, we reveal the modular construction of a
scalable MPP system as shown in Figure 2.6. With modular packaging, the Blue Gene/L system is con-
structed hierarchically from processor chips to 64 physical racks. This system was built with a total of
65,536 nodes with two PowerPC 449 FP2 processors per node. The 64 racks are interconnected by a
huge 3D 64 x 32 x 32 torus network.

In the lower-left corner, we see a dual-processor chip. Two chips are mounted on a computer card.
Sixteen computer cards (32 chips or 64 processors) are mounted on a node board. A cabinet houses
32 node boards with an 8 x 8 x 16 torus interconnect. Finally, 64 cabinets (racks) form the total
system at the upper-right corner. This packaging diagram corresponds to the 2005 configuration. Cus-
tomers can order any size to meet their computational needs. The Blue Gene cluster was designed to
achieve scalable performance, reliability through built-in testability, resilience by preserving locality of
failures and checking mechanisms, and serviceability through partitioning and isolation of fault
locations.

Chip
(2 processors)

Node board
(32 chips, 4 × 4 × 2)
16 compute cards

2.8/5.6 GF/s
4 MB

5.6/11.2 GF/s
0.5GB DDR

180/360 TF/s
16TB DDR

90/180 GF/s
8GB DDR

Cabinet
(32 node boards, 

8 × 8 × 16)

System
(64 cabinets, 64 × 32 × 32)

Compute card
(2 chips,
1 × 2 × 1)

2.9/5.7 TF/s
256GB DDR

FIGURE 2.6

The IBM Blue Gene/L architecture built with modular components packaged hierarchically in five levels.
(Courtesy of N. Adiga, et al., IBM Corp., 2005 [1] )
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2.2.3 Cluster System Interconnects
2.2.3.1 High-Bandwidth Interconnects
Table 2.4 compares four families of high-bandwidth system interconnects. In 2007, Ethernet used a
1 Gbps link, while the fastest InfiniBand links ran at 30 Gbps. The Myrinet and Quadrics perform
in between. The MPI latency represents the state of the art in long-distance message passing. All
four technologies can implement any network topology, including crossbar switches, fat trees, and
torus networks. The InfiniBand is the most expensive choice with the fastest link speed.
The Ethernet is still the most cost-effective choice. We consider two example cluster interconnects
over 1,024 nodes in Figure 2.7 and Figure 2.9. The popularity of five cluster interconnects is
compared in Figure 2.8.

Table 2.4 Comparison of Four Cluster Interconnect Technologies Reported in 2007

Feature Myrinet Quadrics InfiniBand Ethernet

Available link
speeds

1.28 Gbps (M-XP)
10 Gbps (M-10G)

2.8 Gbps (QsNet)
7.2 Gbps (QsNetII )

2.5 Gbps (1X )
10 Gbps (4X )
30 Gbps (12X )

1 Gbps

MPI latency ~3 us ~3 us ~4.5 us ~40 us
Network
processor

Yes Yes Yes No

Topologies Any Any Any Any
Network topology Clos Fat tree Fat tree Any
Routing Source-based,

cut-through
Source-based,
cut-through

Destination-based Destination-based

Flow control Stop and go Worm-hole Credit-based 802.3x
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FIGURE 2.7

Google search engine cluster architecture.
(Courtesy of Google, Inc. [6] )

80 CHAPTER 2 Computer Clusters for Scalable Parallel Computing



Example 2.2 Crossbar Switch in Google Search Engine Cluster

Google has many data centers using clusters of low-cost PC engines. These clusters are mainly used to
support Google’s web search business. Figure 2.7 shows a Google cluster interconnect of 40 racks of PC
engines via two racks of 128 x 128 Ethernet switches. Each Ethernet switch can handle 128 one Gbps
Ethernet links. A rack contains 80 PCs. This is an earlier cluster of 3,200 PCs. Google’s search engine
clusters are built with a lot more nodes. Today’s server clusters from Google are installed in data centers
with container trucks.

Two switches are used to enhance cluster availability. The cluster works fine even when one switch
fails to provide the links among the PCs. The front ends of the switches are connected to the Internet via
2.4 Gbps OC 12 links. The 622 Mbps OC 12 links are connected to nearby data-center networks. In case
of failure of the OC 48 links, the cluster is still connected to the outside world via the OC 12 links. Thus,
the Google cluster eliminates all single points of failure.

2.2.3.2 Share of System Interconnects over Time
Figure 2.8 shows the distribution of large-scale system interconnects in the Top 500 systems from
2003 to 2008. Gigabit Ethernet is the most popular interconnect due to its low cost and market
readiness. The InfiniBand network has been chosen in about 150 systems for its high-bandwidth
performance. The Cray interconnect is designed for use in Cray systems only. The use of Myrinet
and Quadrics networks had declined rapidly in the Top 500 list by 2008.
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Distribution of high-bandwidth interconnects in the Top 500 systems from 2003 to 2008.
(Courtesy of www.top500.org [25] )
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Example 2.3 Understanding the InfiniBand Architecture [8]

The InfiniBand has a switch-based point-to-point interconnect architecture. A large InfiniBand has a
layered architecture. The interconnect supports the virtual interface architecture (VIA) for distributed mes-
saging. The InfiniBand switches and links can make up any topology. Popular ones include crossbars, fat
trees, and torus networks. Figure 2.9 shows the layered construction of an InfiniBand network. According
to Table 2.5, the InfiniBand provides the highest speed links and the highest bandwidth in reported large-
scale systems. However, InfiniBand networks cost the most among the four interconnect technologies.

Each end point can be a storage controller, a network interface card (NIC), or an interface to a host system.
A host channel adapter (HCA) connected to the host processor through a standard peripheral component inter-
connect (PCI), PCI extended (PCI-X), or PCI express bus provides the host interface. Each HCA has more than
one InfiniBand port. A target channel adapter (TCA) enables I/O devices to be loaded within the network. The
TCA includes an I/O controller that is specific to its particular device’s protocol such as SCSI, Fibre Channel, or
Ethernet. This architecture can be easily implemented to build very large scale cluster interconnects that con-
nect thousands or more hosts together. Supporting the InfiniBand in cluster applications can be found in [8].
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The InfiniBand system fabric built in a typical high-performance computer cluster.
(Source: O. Celebioglu, et al, “Exploring InfiniBand as an HPC Cluster Interconnect”, Dell Power Solutions,

Oct.2004 © 2011 Dell Inc. All Rights Reserved )
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2.2.4 Hardware, Software, and Middleware Support
Realistically, SSI and HA features in a cluster are not obtained free of charge. They must be sup-
ported by hardware, software, middleware, or OS extensions. Any change in hardware design and
OS extensions must be done by the manufacturer. The hardware and OS support could be cost-
prohibitive to ordinary users. However, programming level is a big burden to cluster users. There-
fore, the middleware support at the application level costs the least to implement. As an example,
we show in Figure 2.10 the middleware, OS extensions, and hardware support needed to achieve
HA in a typical Linux cluster system.

Close to the user application end, middleware packages are needed at the cluster management
level: one for fault management to support failover and failback, to be discussed in Section 2.3.3.
Another desired feature is to achieve HA using failure detection and recovery and packet switching.
In the middle of Figure 2.10, we need to modify the Linux OS to support HA, and we need special
drivers to support HA, I/O, and hardware devices. Toward the bottom, we need special hardware to
support hot-swapped devices and provide router interfaces. We will discuss various supporting
mechanisms in subsequent sections.

2.2.5 GPU Clusters for Massive Parallelism
Commodity GPUs are becoming high-performance accelerators for data-parallel computing. Modern
GPU chips contain hundreds of processor cores per chip. Based on a 2010 report [19], each GPU

IP packet applications

Cluster management middleware

Failback supportFailover support

CPU/GPU
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High-availability interface, hardware drivers
I/O drivers, platform management drivers
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Hot swap devices, router interfaces

Linux

CPU/GPU

Linux

CPU/GPU

Linux

Fault management

Packet switching

Availability management

FIGURE 2.10

Middleware, Linux extensions, and hardware support for achieving massive parallelism and HA in a Linux
cluster system built with CPUs and GPUs.
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chip is capable of achieving up to 1 Tflops for single-precision (SP) arithmetic, and more than
80 Gflops for double-precision (DP) calculations. Recent HPC-optimized GPUs contain up to 4 GB
of on-board memory, and are capable of sustaining memory bandwidths exceeding 100 GB/second.
GPU clusters are built with a large number of GPU chips. GPU clusters have already demonstrated
their capability to achieve Pflops performance in some of the Top 500 systems. Most GPU clusters
are structured with homogeneous GPUs of the same hardware class, make, and model. The software
used in a GPU cluster includes the OS, GPU drivers, and clustering API such as an MPI.

The high performance of a GPU cluster is attributed mainly to its massively parallel multicore
architecture, high throughput in multithreaded floating-point arithmetic, and significantly reduced
time in massive data movement using large on-chip cache memory. In other words, GPU clusters
already are more cost-effective than traditional CPU clusters. GPU clusters result in not only a
quantum jump in speed performance, but also significantly reduced space, power, and cooling
demands. A GPU cluster can operate with a reduced number of operating system images, compared
with CPU-based clusters. These reductions in power, environment, and management complexity
make GPU clusters very attractive for use in future HPC applications.

2.2.5.1 The Echelon GPU Chip Design
Figure 2.11 shows the architecture of a future GPU accelerator that was suggested for use in build-
ing a NVIDIA Echelon GPU cluster for Exascale computing. This Echelong project led by Bill
Dally at NVIDIA is partially funded by DARPA under the Ubiquitous High-Performance Comput-
ing (UHPC) program. This GPU design incorporates 1024 stream cores and 8 latency-optimized
CPU-like cores (called latency processor) on a single chip. Eight stream cores form a stream multi-
processor (SM) and there are 128 SMs in the Echelon GPU chip.

Each SM is designed with 8 processor cores to yield a 160 Gflops peak speed. With 128 SMs,
the chip has a peak speed of 20.48 Tflops. These nodes are interconnected by a NoC (network on
chip) to 1,024 SRAM banks (L2 caches). Each cache band has a 256 KB capacity. The MCs (mem-
ory controllers) are used to connect to off-chip DRAMs and the NI (network interface) is to scale
the size of the GPU cluster hierarchically, as shown in Figure 2.14. At the time of this writing, the
Echelon is only a research project. With permission from Bill Dally, we present the design for
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To off-chip
DRAMs
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... ...
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L21023

FIGURE 2.11

The proposed GPU chip design for 20 Tflops performance and 1.6 TB/s memory bandwidth in the Echelon system.
(Courtesy of Bill Dally, Reprinted with Permission [10] )
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academic interest to illustrate how one can explore the many-core GPU technology to achieve
Exascale computing in the future PU technology to achieve Exascale computing in the future.

2.2.5.2 GPU Cluster Components
A GPU cluster is often built as a heterogeneous system consisting of three major components: the CPU
host nodes, the GPU nodes and the cluster interconnect between them. The GPU nodes are formed with
general-purpose GPUs, known as GPGPUs, to carry out numerical calculations. The host node controls
program execution. The cluster interconnect handles inter-node communications. To guarantee the per-
formance, multiple GPUs must be fully supplied with data streams over high-bandwidth network and
memory. Host memory should be optimized to match with the on-chip cache bandwidths on the GPUs.
Figure 2.12 shows the proposed Echelon GPU clusters using the GPU chips shown in Figure 2.13 as
building blocks interconnected by a hierarchically constructed network.

2.2.5.3 Echelon GPU Cluster Architecture
The Echelon system architecture is shown in Figure 2.11, hierarchically. The entire Echelon system is
built with N cabinets, labeled C0, C1, ... , CN. Each cabinet is built with 16 compute module labeled
as M0, M1, ... , M15. Each compute module is built with 8 GPU nodes labeled as N0, N1, ... , N7.
Each GPU node is the innermost block labeled as PC in Figure 2.12 (also detailed in Figure 2.11).
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FIGURE 2.12

The architecture of NVIDIA Echelon system built with a hierarchical network of GPUs that can deliver
2.6 Pflops per cabinet, and takes at least N = 400 cabinets to achieve the desired Eflops performance.

(Courtesy of Bill Dally, Reprinted with Permission [10] )
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Each compute module features a performance of 160 Tflops and 12.8 TB/s over 2 TB of memory.
Thus, a single cabinet can house 128 GPU nodes or 16,000 processor cores. Each cabinet has the
potential to deliver 2.6 Pflops over 32 TB memory and 205 TB/s bandwidth. The N cabinets are
interconnected by a Dragonfly network with optical fiber.

To achieve Eflops performance, we need to use at least N = 400 cabinets. In total, an Exascale
system needs 327,680 processor cores in 400 cabinets. The Echelon system is supported by a self-
aware OS and runtime system. The Echelon system is also designed to preserve locality with the
support of compiler and autotuner. At present, NVIDIA Fermi (GF110) chip has 512 stream proces-
sors. Thus the Echelon design is about 25 times faster. It is highly likely that the Echelon will
employ post-Maxwell NVIDIA GPU planned to appear in 2013 ~ 2014 time frame.

2.2.5.4 CUDA Parallel Programming
CUDA (Compute Unified Device Architecture) offers a parallel computing architecture developed by
NVIDIA. CUDA is the computing engine in NVIDIA GPUs. This software is accessible to develo-
pers through standard programming languages. Programmers use C for CUDA C with NVIDIA
extensions and certain restrictions. This CUDA C is compiled through a PathScale Open64 C com-
piler for parallel execution on a large number of GPU cores. Example 2.4 shows the advantage of
using CUDA C in parallel processing.

Example 2.4 Parallel SAXPY Execution Using CUDA C Code on GPUs

SAXPY is a kernel operation frequently performed in matrix multiplication. It essentially performs repeated mul-
tiply and add operations to generate the dot product of two long vectors. The following saxpy_serial routine
is written in standard C code. This code is only suitable for sequential execution on a single processor core.

Void saxpy_serial (int n, float a, float*x, float *
{ for (int i = 0; i < n; ++i), y[i] = a*x[i] + y[i] }

// Invoke the serial SAXPY kernel
saxpy_serial (n, 2.0, x, y);

The following saxpy_parallel routine is written in CUDA C code for parallel execution by 256
threads/block on many processing cores on the GPU chip. Note that n blocks are handled by n pro-
cessing cores, where n could be on the order of hundreds of blocks.

_global__void saxpy_parallel (int n, float a, float*x, float *y)
{ Int i = blockIndex.x*blockDim.x + threadIndex.x; if (i < n) y [i] = a*x[i] + y[i] }
// Invoke the parallel SAXPY kernel with 256 threads/block int nblocks = (n + 255)/256;
saxpy_parallel <<< nblocks, 256 >>> (n, 2.0, x, y);

This is a good example of using CUDA C to exploit massive parallelism on a cluster of multi-
core and multithreaded processors using the CODA GPGPUs as building blocks.

2.2.5.5 CUDA Programming Interfaces
CUDA architecture shares a range of computational interfaces with two competitors: the Khronos
Group’s Open Computing Language and Microsoft’s DirectCompute. Third-party wrappers are also
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available for using Python, Perl, FORTRAN, Java, Ruby, Lua, MATLAB, and IDL. CUDA has
been used to accelerate nongraphical applications in computational biology, cryptography, and other
fields by an order of magnitude or more. A good example is the BOINC distributed computing cli-
ent. CUDA provides both a low-level API and a higher-level API. CUDA works with all NVIDIA
GPUs from the G8X series onward, including the GeForce, Quadro, and Tesla lines. NVIDIA states
that programs developed for the GeForce 8 series will also work without modification on all future
NVIDIA video cards due to binary compatibility.

2.2.5.6 Trends in CUDA Usage
Tesla and Fermi are two generations of CUDA architecture released by NVIDIA in 2007 and 2010,
respectively. The CUDA version 3.2 is used for using a single GPU module in 2010. A newer
CUDA version 4.0 will allow multiple GPUs to address use an unified virtual address space of
shared memory. The next NVIDIA GPUs will be Kepler-designed to support C++. The Fermi has
eight times the peak double-precision floating-point performance of the Tesla GPU (5.8 Gflops/W
versus 0.7 Gflops/W). Currently, the Fermi has up to 512 CUDA cores on 3 billion transistors.

Future applications of the CUDA GPUs and the Echelon system may include the following:

• The search for extraterrestrial intelligence (SETI@Home)
• Distributed calculations to predict the native conformation of proteins
• Medical analysis simulations based on CT and MRI scan images
• Physical simulations in fluid dynamics and environment statistics
• Accelerated 3D graphics, cryptography, compression, and interconversion of video file formats
• Building the single-chip cloud computer (SCC) through virtualization in many-core architecture.

2.3 DESIGN PRINCIPLES OF COMPUTER CLUSTERS
Clusters should be designed for scalability and availability. In this section, we will cover the design
principles of SSI, HA, fault tolerance, and rollback recovery in general-purpose computers and clus-
ters of cooperative computers.

2.3.1 Single-System Image Features
SSI does not mean a single copy of an operating system image residing in memory, as in an SMP
or a workstation. Rather, it means the illusion of a single system, single control, symmetry, and
transparency as characterized in the following list:

• Single system The entire cluster is viewed by users as one system that has multiple processors.
The user could say, “Execute my application using five processors.” This is different from a
distributed system.

• Single control Logically, an end user or system user utilizes services from one place with a
single interface. For instance, a user submits batch jobs to one set of queues; a system
administrator configures all the hardware and software components of the cluster from one
control point.
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• Symmetry A user can use a cluster service from any node. In other words, all cluster services
and functionalities are symmetric to all nodes and all users, except those protected by access
rights.

• Location-transparent The user is not aware of the where abouts of the physical device that
eventually provides a service. For instance, the user can use a tape drive attached to any cluster
node as though it were physically attached to the local node.

The main motivation to have SSI is that it allows a cluster to be used, controlled, and main-
tained as a familiar workstation is. The word “single” in “single-system image” is sometimes synon-
ymous with “global” or “central.” For instance, a global file system means a single file hierarchy,
which a user can access from any node. A single point of control allows an operator to monitor and
configure the cluster system. Although there is an illusion of a single system, a cluster service or
functionality is often realized in a distributed manner through the cooperation of multiple compo-
nents. A main requirement (and advantage) of SSI techniques is that they provide both the perfor-
mance benefits of distributed implementation and the usability benefits of a single image.

From the viewpoint of a process P, cluster nodes can be classified into three types. The home
node of a process P is the node where P resided when it was created. The local node of a process
P is the node where P currently resides. All other nodes are remote nodes to P. Cluster nodes can
be configured to suit different needs. A host node serves user logins through Telnet, rlogin, or even
FTP and HTTP. A compute node is one that performs computational jobs. An I/O node is one that
serves file I/O requests. If a cluster has large shared disks and tape units, they are normally physi-
cally attached to I/O nodes.

There is one home node for each process, which is fixed throughout the life of the process. At
any time, there is only one local node, which may or may not be the host node. The local node and
remote nodes of a process may change when the process migrates. A node can be configured to
provide multiple functionalities. For instance, a node can be designated as a host, an I/O node, and
a compute node at the same time. The illusion of an SSI can be obtained at several layers, three of
which are discussed in the following list. Note that these layers may overlap with one another.

• Application software layer Two examples are parallel web servers and various parallel
databases. The user sees an SSI through the application and is not even aware that he is using a
cluster. This approach demands the modification of workstation or SMP applications for clusters.

• Hardware or kernel layer Ideally, SSI should be provided by the operating system or by the
hardware. Unfortunately, this is not a reality yet. Furthermore, it is extremely difficult to provide
an SSI over heterogeneous clusters. With most hardware architectures and operating systems
being proprietary, only the manufacturer can use this approach.

• Middleware layer The most viable approach is to construct an SSI layer just above the OS kernel.
This approach is promising because it is platform-independent and does not require application
modification. Many cluster job management systems have already adopted this approach.

Each computer in a cluster has its own operating system image. Thus, a cluster may display
multiple system images due to the stand-alone operations of all participating node computers. Deter-
mining how to merge the multiple system images in a cluster is as difficult as regulating many indi-
vidual personalities in a community to a single personality. With different degrees of resource
sharing, multiple systems could be integrated to achieve SSI at various operational levels.
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2.3.1.1 Single Entry Point
Single-system image (SSI) is a very rich concept, consisting of single entry point, single file
hierarchy, single I/O space, single networking scheme, single control point, single job manage-
ment system, single memory space, and single process space. The single entry point enables users
to log in (e.g., through Telnet, rlogin, or HTTP) to a cluster as one virtual host, although the clus-
ter may have multiple physical host nodes to serve the login sessions. The system transparently
distributes the user’s login and connection requests to different physical hosts to balance the load.
Clusters could substitute for mainframes and supercomputers. Also, in an Internet cluster server,
thousands of HTTP or FTP requests may come simultaneously. Establishing a single entry point
with multiple hosts is not a trivial matter. Many issues must be resolved. The following is just a
partial list:

• Home directory Where do you put the user’s home directory?
• Authentication How do you authenticate user logins?
• Multiple connections What if the same user opens several sessions to the same user account?
• Host failure How do you deal with the failure of one or more hosts?

Example 2.5 Realizing a Single Entry Point in a Cluster of Computers

Figure 2.13 illustrates how to realize a single entry point. Four nodes of a cluster are used as host nodes to
receive users’ login requests. Although only one user is shown, thousands of users can connect to the
cluster in the same fashion. When a user logs into the cluster, he issues a standard UNIX command such
as telnet cluster.cs.hku.hk, using the symbolic name of the cluster system.

The DNS translates the symbolic name and returns the IP address 159.226.41.150 of the least-
loaded node, which happens to be node Host1. The user then logs in using this IP address. The
DNS periodically receives load information from the host nodes to make load-balancing translation
decisions. In the ideal case, if 200 users simultaneously log in, the login sessions are evenly distrib-
uted among our hosts with 50 users each. This allows a single host to be four times more
powerful.

Connect using
159.226.41.150

User terminal
cluster.cs.hku.hk

Load
information

159.226.41.150

Host2Host1 Host3 Host4

Cluster nodes

Domain name
server (DNS)

FIGURE 2.13

Realizing a single entry point using a load-balancing domain name system (DNS).
(Courtesy of Hwang and Xu [14] )
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2.3.1.2 Single File Hierarchy
We use the term “single file hierarchy” in this book to mean the illusion of a single, huge file sys-
tem image that transparently integrates local and global disks and other file devices (e.g., tapes). In
other words, all files a user needs are stored in some subdirectories of the root directory /, and they
can be accessed through ordinary UNIX calls such as open, read, and so on. This should not be
confused with the fact that multiple file systems can exist in a workstation as subdirectories of the
root directory.

The functionalities of a single file hierarchy have already been partially provided by existing distrib-
uted file systems such as Network File System (NFS) and Andrew File System (AFS). From the view-
point of any process, files can reside on three types of locations in a cluster, as shown in Figure 2.14.

Local storage is the disk on the local node of a process. The disks on remote nodes are remote
storage. A stable storage requires two aspects: It is persistent, which means data, once written to the
stable storage, will stay there for a sufficiently long time (e.g., a week), even after the cluster shuts
down; and it is fault-tolerant to some degree, by using redundancy and periodic backup to tapes.

Figure 2.14 uses stable storage. Files in stable storage are called global files, those in local sto-
rage local files, and those in remote storage remote files. Stable storage could be implemented as
one centralized, large RAID disk. But it could also be distributed using local disks of cluster nodes.
The first approach uses a large disk, which is a single point of failure and a potential performance
bottleneck. The latter approach is more difficult to implement, but it is potentially more economical,
more efficient, and more available. On many cluster systems, it is customary for the system to make
visible to the user processes the following directories in a single file hierarchy: the usual system
directories as in a traditional UNIX workstation, such as /usr and /usr/local; and the user’s home
directory ~/ that has a small disk quota (1–20 MB). The user stores his code files and other files
here. But large data files must be stored elsewhere.

• A global directory is shared by all users and all processes. This directory has a large disk space
of multiple gigabytes. Users can store their large data files here.

• On a cluster system, a process can access a special directory on the local disk. This directory
has medium capacity and is faster to access than the global directory.

Node 1
Node N

Remote storageLocal storage

Process P

Stable storage (also known as
persistent storage, global storage)

FIGURE 2.14

Three types of storage in a single file hierarchy. Solid lines show what process P can access and the
dashed line shows what P may be able to access.

(Courtesy of Hwang and Xu [14] )
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2.3.1.3 Visibility of Files
The term “visibility” here means a process can use traditional UNIX system or library calls such as
fopen, fread, and fwrite to access files. Note that there are multiple local scratch directories in a
cluster. The local scratch directories in remote nodes are not in the single file hierarchy, and are not
directly visible to the process. A user process can still access them with commands such as rcp or
some special library functions, by specifying both the node name and the filename.

The name “scratch” indicates that the storage is meant to act as a scratch pad for temporary
information storage. Information in the local scratch space could be lost once the user logs out.
Files in the global scratch space will normally persist even after the user logs out, but will be
deleted by the system if not accessed in a predetermined time period. This is to free disk space for
other users. The length of the period can be set by the system administrator, and usually ranges
from one day to several weeks. Some systems back up the global scratch space to tapes periodically
or before deleting any files.

2.3.1.4 Support of Single-File Hierarchy
It is desired that a single file hierarchy have the SSI properties discussed, which are reiterated for
file systems as follows:

• Single system There is just one file hierarchy from the user’s viewpoint.
• Symmetry A user can access the global storage (e.g., /scratch) using a cluster service from any

node. In other words, all file services and functionalities are symmetric to all nodes and all
users, except those protected by access rights.

• Location-transparent The user is not aware of the whereabouts of the physical device that
eventually provides a service. For instance, the user can use a RAID attached to any cluster
node as though it were physically attached to the local node. There may be some performance
differences, though.

A cluster file system should maintain UNIX semantics: Every file operation (fopen, fread, fwrite,
fclose, etc.) is a transaction. When an fread accesses a file after an fwrite modifies the same file,
the fread should get the updated value. However, existing distributed file systems do not completely
follow UNIX semantics. Some of them update a file only at close or flush. A number of alternatives
have been suggested to organize the global storage in a cluster. One extreme is to use a single file
server that hosts a big RAID. This solution is simple and can be easily implemented with current
software (e.g., NFS). But the file server becomes both a performance bottleneck and a single point
of failure. Another extreme is to utilize the local disks in all nodes to form global storage. This
could solve the performance and availability problems of a single file server.

2.3.1.5 Single I/O, Networking, and Memory Space
To achieve SSI, we desire a single control point, a single address space, a single job management
system, a single user interface, and a single process control, as depicted in Figure 2.17. In this
example, each node has exactly one network connection. Two of the four nodes each have two I/O
devices attached.

Single Networking: A properly designed cluster should behave as one system (the shaded area).
In other words, it is like a big workstation with four network connections and four I/O devices
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attached. Any process on any node can use any network and I/O device as though it were attached
to the local node. Single networking means any node can access any network connection.
Single Point of Control: The system administrator should be able to configure, monitor, test,
and control the entire cluster and each individual node from a single point. Many clusters help
with this through a system console that is connected to all nodes of the cluster. The system
console is normally connected to an external LAN (not shown in Figure 2.15) so that the
administrator can log in remotely to the system console from anywhere in the LAN to perform
administration work.

Note that single point of control does not mean all system administration work should be
carried out solely by the system console. In reality, many administrative functions are
distributed across the cluster. It means that controlling a cluster should be no more difficult than
administering an SMP or a mainframe. It implies that administration-related system information
(such as various configuration files) should be kept in one logical place. The administrator
monitors the cluster with one graphics tool, which shows the entire picture of the cluster, and
the administrator can zoom in and out at will.

Single point of control (or single point of management) is one of the most challenging issues
in constructing a cluster system. Techniques from distributed and networked system
management can be transferred to clusters. Several de facto standards have already been
developed for network management. An example is Simple Network Management Protocol
(SNMP). It demands an efficient cluster management package that integrates with the availability
support system, the file system, and the job management system.
Single Memory Space: Single memory space gives users the illusion of a big, centralized main
memory, which in reality may be a set of distributed local memory spaces. PVPs, SMPs, and DSMs
have an edge over MPPs and clusters in this respect, because they allow a program to utilize all
global or local memory space. A good way to test if a cluster has a single memory space is to run a
sequential program that needs a memory space larger than any single node can provide.

Suppose each node in Figure 2.15 has 2 GB of memory available to users. An ideal single
memory image would allow the cluster to execute a sequential program that needs 8 GB of
memory. This would enable a cluster to operate like an SMP system. Several approaches have

CD-ROM RAIDTape unitRAID
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Ethernet

Node 1 Node 2 FDDI

System
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Node 4Node 3
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Memory 2Memory 1

Memory 3 Memory 4

FIGURE 2.15

A cluster with single networking, single I/O space, single memory, and single point of control.
(Courtesy of Hwang and Xu [14] )
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been attempted to achieve a single memory space on clusters. Another approach is to let the
compiler distribute the data structures of an application across multiple nodes. It is still a
challenging task to develop a single memory scheme that is efficient, platform-independent, and
able to support sequential binary codes.
Single I/O Address Space: Assume the cluster is used as a web server. The web information
database is distributed between the two RAIDs. An HTTP daemon is started on each node to
handle web requests, which come from all four network connections. A single I/O space implies
that any node can access the two RAIDs. Suppose most requests come from the ATM network.
It would be beneficial if the functions of the HTTP on node 3 could be distributed to all four
nodes. The following example shows a distributed RAID-x architecture for I/O-centric cluster
computing [9].

Example 2.6 Single I/O Space over Distributed RAID for I/O-Centric Clusters

A distributed disk array architecture was proposed by Hwang, et al. [9] for establishing a single I/O space
in I/O-centric cluster applications. Figure 2.16 shows the architecture for a four-node Linux PC cluster, in
which three disks are attached to the SCSI bus of each host node. All 12 disks form an integrated RAID-x
with a single address space. In other words, all PCs can access both local and remote disks. The addres-
sing scheme for all disk blocks is interleaved horizontally. Orthogonal stripping and mirroring make it possi-
ble to have a RAID-1 equivalent capability in the system.

The shaded blocks are images of the blank blocks. A disk block and its image will be mapped on dif-
ferent physical disks in an orthogonal manner. For example, the block B0 is located on disk D0. The
image block Mo of block B0 is located on disk D3. The four disks D0, D1, D2, and D3 are attached to four
servers, and thus can be accessed in parallel. Any single disk failure will not lose the data block, because
its image is available in recovery. All disk blocks are labeled to show image mapping. Benchmark experi-
ments show that this RAID-x is scalable and can restore data after any single disk failure. The distributed
RAID-x has improved aggregate I/O bandwidth in both parallel read and write operations over all physical
disks in the cluster.

2.3.1.6 Other Desired SSI Features
The ultimate goal of SSI is for a cluster to be as easy to use as a desktop computer. Here are addi-
tional types of SSI, which are present in SMP servers:

• Single job management system All cluster jobs can be submitted from any node to a single
job management system.

• Single user interface The users use the cluster through a single graphical interface. Such an
interface is available for workstations and PCs. A good direction to take in developing a cluster
GUI is to utilize web technology.

• Single process space All user processes created on various nodes form a single process space
and share a uniform process identification scheme. A process on any node can create
(e.g., through a UNIX fork) or communicate with (e.g., through signals, pipes, etc.) processes
on remote nodes.
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• Middleware support for SSI clustering As shown in Figure 2.17, various SSI features are
supported by middleware developed at three cluster application levels:

• Management level This level handles user applications and provides a job management system
such as GLUnix, MOSIX, Load Sharing Facility (LSF), or Codine.

• Programming level This level provides single file hierarchy (NFS, xFS, AFS, Proxy) and
distributed shared memory (TreadMark, Wind Tunnel).
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FIGURE 2.16

Distributed RAID architecture with a single I/O space over 12 distributed disks attached to 4 host computers
in the cluster (Di stands for Disk i, Bj for disk block j, Mj an image for blocks Bj, P/M for processor/memory
node, and CDD for cooperative disk driver.)

(Courtesy of Hwang, Jin, and Ho [13] )
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• Implementation level This level supports a single process space, checkpointing, process
migration, and a single I/O space. These features must interface with the cluster hardware and
OS platform. The distributed disk array, RAID-x, in Example 2.6 implements a single I/O space.

2.3.2 High Availability through Redundancy
When designing robust, highly available systems three terms are often used together: reliability,
availability, and serviceability (RAS). Availability is the most interesting measure since it combines
the concepts of reliability and serviceability as defined here:

• Reliability measures how long a system can operate without a breakdown.
• Availability indicates the percentage of time that a system is available to the user, that is, the

percentage of system uptime.
• Serviceability refers to how easy it is to service the system, including hardware and software

maintenance, repair, upgrades, and so on.

The demand for RAS is driven by practical market needs. A recent Find/SVP survey found the
following figures among Fortune 1000 companies: An average computer is down nine times per
year with an average downtime of four hours. The average loss of revenue per hour of downtime is
$82,500. With such a hefty penalty for downtime, many companies are striving for systems that
offer 24/365 availability, meaning the system is available 24 hours per day, 365 days per year.

2.3.2.1 Availability and Failure Rate
As Figure 2.18 shows, a computer system operates normally for a period of time before it fails. The
failed system is then repaired, and the system returns to normal operation. This operate-repair cycle

User applications

Management level Job management system
(GLUnix, MOSIX, LSF, PBC)

Programming level

Distributed shared memory
(treadmark, wind tunnel)

Implementation level

Single I/O space

Cluster hardware and OS platform

Checkpoint and
process migrationSingle process space

Single file hierarchy
(NFS, AFS, xFS, Proxy)

FIGURE 2.17

Relationship among clustering middleware at the job management, programming, and implementation levels.
(Courtesy of K. Hwang, H. Jin, C.L. Wang and Z. Xu [16] )
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then repeats. A system’s reliability is measured by the mean time to failure (MTTF), which is the
average time of normal operation before the system (or a component of the system) fails. The metric
for serviceability is the mean time to repair (MTTR), which is the average time it takes to repair the
system and restore it to working condition after it fails. The availability of a system is defined by:

Availability = MTTF/ðMTTF+MTTRÞ (2.1)

2.3.2.2 Planned versus Unplanned Failure
When studying RAS, we call any event that prevents the system from normal operation a failure.
This includes:

• Unplanned failures The system breaks, due to an operating system crash, a hardware failure, a
network disconnection, human operation errors, a power outage, and so on. All these are simply
called failures. The system must be repaired to correct the failure.

• Planned shutdowns The system is not broken, but is periodically taken off normal operation
for upgrades, reconfiguration, and maintenance. A system may also be shut down for weekends
or holidays. The MTTR in Figure 2.18 for this type of failure is the planned downtime.

Table 2.5 shows the availability values of several representative systems. For instance, a conven-
tional workstation has an availability of 99 percent, meaning it is up and running 99 percent of
the time or it has a downtime of 3.6 days per year. An optimistic definition of availability does
not consider planned downtime, which may be significant. For instance, many supercomputer
installations have a planned downtime of several hours per week, while a telephone system cannot
tolerate a downtime of a few minutes per year.

2.3.2.3 Transient versus Permanent Failures
A lot of failures are transient in that they occur temporarily and then disappear. They can be dealt
with without replacing any components. A standard approach is to roll back the system to a known

OK

Normal operation

Fail (fault occurs) OK

TimeBeing repaired

Mean time to repair (MTTR)Mean time to fail (MTTF)

FIGURE 2.18

The operate-repair cycle of a computer system.

Table 2.5 Availability of Computer System Types

System Type Availability (%) Downtime in a Year

Conventional workstation 99 3.6 days
HA system 99.9 8.5 hours
Fault-resilient system 99.99 1 hour
Fault-tolerant system 99.999 5 minutes
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state and start over. For instance, we all have rebooted our PC to take care of transient failures such
as a frozen keyboard or window. Permanent failures cannot be corrected by rebooting. Some hard-
ware or software component must be repaired or replaced. For instance, rebooting will not work if
the system hard disk is broken.

2.3.2.4 Partial versus Total Failures
A failure that renders the entire system unusable is called a total failure. A failure that only affects
part of the system is called a partial failure if the system is still usable, even at a reduced capacity.
A key approach to enhancing availability is to make as many failures as possible partial failures, by
systematically removing single points of failure, which are hardware or software components whose
failure will bring down the entire system.

Example 2.7 Single Points of Failure in an SMP and in Clusters of Computers

In an SMP (Figure 2.19(a)), the shared memory, the OS image, and the memory bus are all single points
of failure. On the other hand, the processors are not forming a single point of failure. In a cluster of work-
stations (Figure 2.19(b)), interconnected by Ethernet, there are multiple OS images, each residing in a
workstation. This avoids the single point of failure caused by the OS as in the SMP case. However, the
Ethernet network now becomes a single point of failure, which is eliminated in Figure 2.21(c), where a
high-speed network is added to provide two paths for communication.

When a node fails in the clusters in Figure 2.19(b) and Figure 2.19(c), not only will the node
applications all fail, but also all node data cannot be used until the node is repaired. The shared
disk cluster in Figure 2.19(d) provides a remedy. The system stores persistent data on the shared
disk, and periodically checkpoints to save intermediate results. When one WS node fails, the data
will not be lost in this shared-disk cluster.
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Single points of failure (SPF) in an SMP and in three clusters, where greater redundancy eliminates more
SPFs in systems from (a) to (d).

(Courtesy of Hwang and Xu [14] )
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2.3.2.5 Redundancy Techniques
Consider the cluster in Figure 2.19(d). Assume only the nodes can fail. The rest of the system (e.g.,
interconnect and the shared RAID disk) is 100 percent available. Also assume that when a node fails,
its workload is switched over to the other node in zero time. We ask, what is the availability of the
cluster if planned downtime is ignored? What is the availability if the cluster needs one hour/week for
maintenance? What is the availability if it is shut down one hour/week, one node at a time?

According to Table 2.4, a workstation is available 99 percent of the time. The time both nodes
are down is only 0.01 percent. Thus, the availability is 99.99 percent. It is now a fault-resilient sys-
tem, with only one hour of downtime per year. The planned downtime is 52 hours per year, that is,
52 / (365 × 24) = 0.0059. The total downtime is now 0.59 percent + 0.01 percent = 0.6 percent.
The availability of the cluster becomes 99.4 percent. Suppose we ignore the unlikely situation in
which the other node fails while one node is maintained. Then the availability is 99.99 percent.

There are basically two ways to increase the availability of a system: increasing MTTF or redu-
cing MTTR. Increasing MTTF amounts to increasing the reliability of the system. The computer
industry has strived to make reliable systems, and today’s workstations have MTTFs in the range of
hundreds to thousands of hours. However, to further improve MTTF is very difficult and costly. Clus-
ters offer an HA solution based on reducing the MTTR of the system. A multinode cluster has a lower
MTTF (thus lower reliability) than a workstation. However, the failures are taken care of quickly to
deliver higher availability. We consider several redundancy techniques used in cluster design.

2.3.2.6 Isolated Redundancy
A key technique to improve availability in any system is to use redundant components. When a
component (the primary component) fails, the service it provided is taken over by another compo-
nent (the backup component). Furthermore, the primary and the backup components should be iso-
lated from each other, meaning they should not be subject to the same cause of failure. Clusters
provide HA with redundancy in power supplies, fans, processors, memories, disks, I/O devices, net-
works, operating system images, and so on. In a carefully designed cluster, redundancy is also iso-
lated. Isolated redundancy provides several benefits:

• First, a component designed with isolated redundancy is not a single point of failure, and the
failure of that component will not cause a total system failure.

• Second, the failed component can be repaired while the rest of the system is still working.
• Third, the primary and the backup components can mutually test and debug each other.

The IBM SP2 communication subsystem is a good example of isolated-redundancy design. All
nodes are connected by two networks: an Ethernet network and a high-performance switch. Each
node uses two separate interface cards to connect to these networks. There are two communication
protocols: a standard IP and a user-space (US) protocol; each can run on either network. If either
network or protocol fails, the other network or protocol can take over.

2.3.2.7 N-Version Programming to Enhance Software Reliability
A common isolated-redundancy approach to constructing a mission-critical software system is called
N-version programming. The software is implemented by N isolated teams who may not even know
the others exist. Different teams are asked to implement the software using different algorithms,
programming languages, environment tools, and even platforms. In a fault-tolerant system, the
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N versions all run simultaneously and their results are constantly compared. If the results differ, the
system is notified that a fault has occurred. But because of isolated redundancy, it is extremely unli-
kely that the fault will cause a majority of the N versions to fail at the same time. So the system
continues working, with the correct result generated by majority voting. In a highly available but
less mission-critical system, only one version needs to run at a time. Each version has a built-in
self-test capability. When one version fails, another version can take over.

2.3.3 Fault-Tolerant Cluster Configurations
The cluster solution was targeted to provide availability support for two server nodes with three
ascending levels of availability: hot standby, active takeover, and fault-tolerant. In this section, we
will consider the recovery time, failback feature, and node activeness. The level of availability
increases from standby to active and fault-tolerant cluster configurations. The shorter is the recovery
time, the higher is the cluster availability. Failback refers to the ability of a recovered node return-
ing to normal operation after repair or maintenance. Activeness refers to whether the node is used in
active work during normal operation.

• Hot standby server clusters In a hot standby cluster, only the primary node is actively doing
all the useful work normally. The standby node is powered on (hot) and running some
monitoring programs to communicate heartbeat signals to check the status of the primary node,
but is not actively running other useful workloads. The primary node must mirror any data to
shared disk storage, which is accessible by the standby node. The standby node requires a
second copy of data.

• Active-takeover clusters In this case, the architecture is symmetric among multiple server
nodes. Both servers are primary, doing useful work normally. Both failover and failback are
often supported on both server nodes. When a node fails, the user applications fail over to
the available node in the cluster. Depending on the time required to implement the failover,
users may experience some delays or may lose some data that was not saved in the last
checkpoint.

• Failover cluster This is probably the most important feature demanded in current clusters for
commercial applications. When a component fails, this technique allows the remaining system to
take over the services originally provided by the failed component. A failover mechanism must
provide several functions, such as failure diagnosis, failure notification, and failure recovery.
Failure diagnosis refers to the detection of a failure and the location of the failed component
that caused the failure. A commonly used technique is heartbeat, whereby the cluster nodes
send out a stream of heartbeat messages to one another. If the system does not receive the
stream of heartbeat messages from a node, it can conclude that either the node or the network
connection has failed.

Example 2.8 Failure Diagnosis and Recovery in a Dual-Network Cluster

A cluster uses two networks to connect its nodes. One node is designated as the master node. Each node
has a heartbeat daemon that periodically (every 10 seconds) sends a heartbeat message to the master
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node through both networks. The master node will detect a failure if it does not receive messages for a
beat (10 seconds) from a node and will make the following diagnoses:

• A node’s connection to one of the two networks failed if the master receives a heartbeat from the node
through one network but not the other.

• The node failed if the master does not receive a heartbeat through either network. It is assumed that
the chance of both networks failing at the same time is negligible.

The failure diagnosis in this example is simple, but it has several pitfalls. What if the master node fails? Is
the 10-second heartbeat period too long or too short? What if the heartbeat messages are dropped by the net-
work (e.g., due to network congestion)? Can this scheme accommodate hundreds of nodes? Practical HA sys-
tems must address these issues. A popular trick is to use the heartbeat messages to carry load information so
that when the master receives the heartbeat from a node, it knows not only that the node is alive, but also the
resource utilization status of the node. Such load information is useful for load balancing and job management.

Once a failure is diagnosed, the system notifies the components that need to know the failure event.
Failure notification is needed because the master node is not the only one that needs to have this informa-
tion. For instance, in case of the failure of a node, the DNS needs to be told so that it will not connect
more users to that node. The resource manager needs to reassign the workload and to take over the
remaining workload on that node. The system administrator needs to be alerted so that she can initiate
proper actions to repair the node.

2.3.3.1 Recovery Schemes
Failure recovery refers to the actions needed to take over the workload of a failed component. There
are two types of recovery techniques. In backward recovery, the processes running on a cluster per-
iodically save a consistent state (called a checkpoint) to a stable storage. After a failure, the system
is reconfigured to isolate the failed component, restores the previous checkpoint, and resumes nor-
mal operation. This is called rollback.

Backward recovery is relatively easy to implement in an application-independent, portable fashion,
and has been widely used. However, rollback implies wasted execution. If execution time is crucial,
such as in real-time systems where the rollback time cannot be tolerated, a forward recovery scheme
should be used. With such a scheme, the system is not rolled back to the previous checkpoint upon a
failure. Instead, the system utilizes the failure diagnosis information to reconstruct a valid system state
and continues execution. Forward recovery is application-dependent and may need extra hardware.

Example 2.9 MTTF, MTTR, and Failure Cost Analysis

Consider a cluster that has little availability support. Upon a node failure, the following sequence of events
takes place:

1. The entire system is shut down and powered off.
2. The faulty node is replaced if the failure is in hardware.
3. The system is powered on and rebooted.
4. The user application is reloaded and rerun from the start.
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Assume one of the cluster nodes fails every 100 hours. Other parts of the cluster never fail. Steps 1
through 3 take two hours. On average, the mean time for step 4 is two hours. What is the availability of
the cluster? What is the yearly failure cost if each one-hour downtime costs $82,500?

Solution: The cluster’s MTTF is 100 hours; the MTTR is 2 + 2 = 4 hours. According to Table 2.5, the
availability is 100/104 = 96.15 percent. This corresponds to 337 hours of downtime in a year, and the
failure cost is $82500 × 337, that is, more than $27 million.

Example 2.10 Availability and Cost Analysis of a Cluster of Computers

Repeat Example 2.9, but assume that the cluster now has much increased availability support. Upon a
node failure, its workload automatically fails over to other nodes. The failover time is only six minutes.
Meanwhile, the cluster has hot swap capability: The faulty node is taken off the cluster, repaired,
replugged, and rebooted, and it rejoins the cluster, all without impacting the rest of the cluster. What is
the availability of this ideal cluster, and what is the yearly failure cost?

Solution: The cluster’s MTTF is still 100 hours, but the MTTR is reduced to 0.1 hours, as the cluster
is available while the failed node is being repaired. From to Table 2.5, the availability is 100/100.5 =
99.9 percent. This corresponds to 8.75 hours of downtime per year, and the failure cost is $82,500,
a 27M/722K = 38 times reduction in failure cost from the design in Example 3.8.

2.3.4 Checkpointing and Recovery Techniques
Checkpointing and recovery are two techniques that must be developed hand in hand to enhance the
availability of a cluster system. We will start with the basic concept of checkpointing. This is
the process of periodically saving the state of an executing program to stable storage, from which
the system can recover after a failure. Each program state saved is called a checkpoint. The disk file
that contains the saved state is called the checkpoint file. Although all current checkpointing soft-
ware saves program states in a disk, research is underway to use node memories in place of stable
storage in order to improve performance.

Checkpointing techniques are useful not only for availability, but also for program debugging,
process migration, and load balancing. Many job management systems and some operating systems
support checkpointing to a certain degree. The Web Resource contains pointers to numerous check-
point-related web sites, including some public domain software such as Condor and Libckpt. Here
we will present the important issues for the designer and the user of checkpoint software. We will
first consider the issues that are common to both sequential and parallel programs, and then we will
discuss the issues pertaining to parallel programs.

2.3.4.1 Kernel, Library, and Application Levels
Checkpointing can be realized by the operating system at the kernel level, where the OS transpar-
ently checkpoints and restarts processes. This is ideal for users. However, checkpointing is not sup-
ported in most operating systems, especially for parallel programs. A less transparent approach links
the user code with a checkpointing library in the user space. Checkpointing and restarting are
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handled by this runtime support. This approach is used widely because it has the advantage that
user applications do not have to be modified.

A main problem is that most current checkpointing libraries are static, meaning the application
source code (or at least the object code) must be available. It does not work if the application is in
the form of executable code. A third approach requires the user (or the compiler) to insert check-
pointing functions in the application; thus, the application has to be modified, and the transparency
is lost. However, it has the advantage that the user can specify where to checkpoint. This is helpful
to reduce checkpointing overhead. Checkpointing incurs both time and storage overheads.

2.3.4.2 Checkpoint Overheads
During a program’s execution, its states may be saved many times. This is denoted by the time con-
sumed to save one checkpoint. The storage overhead is the extra memory and disk space required
for checkpointing. Both time and storage overheads depend on the size of the checkpoint file. The
overheads can be substantial, especially for applications that require a large memory space. A num-
ber of techniques have been suggested to reduce these overheads.

2.3.4.3 Choosing an Optimal Checkpoint Interval
The time period between two checkpoints is called the checkpoint interval. Making the interval
larger can reduce checkpoint time overhead. However, this implies a longer computation time after
a failure. Wong and Franklin [28] derived an expression for optimal checkpoint interval as illu-
strated in Figure 2.20.

Optimal checkpoint interval = Square root ðMTTF x tcÞ/h (2.2)

Here, MTTF is the system’s mean time to failure. This MTTF accounts the time consumed to
save one checkpoint, and h is the average percentage of normal computation performed in a check-
point interval before the system fails. The parameter h is always in the range. After a system is
restored, it needs to spend h × (checkpoint interval) time to recompute.

2.3.4.4 Incremental Checkpoint
Instead of saving the full state at each checkpoint, an incremental checkpoint scheme saves only the
portion of the state that is changed from the previous checkpoint. However, care must be taken
regarding old checkpoint files. In full-state checkpointing, only one checkpoint file needs to be kept
on disk. Subsequent checkpoints simply overwrite this file. With incremental checkpointing, old files
needed to be kept, because a state may span many files. Thus, the total storage requirement is larger.
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Fail
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FIGURE 2.20

Time parameters between two checkpoints.
(Courtesy of Hwang and Xu [14] )
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2.3.4.5 Forked Checkpointing
Most checkpoint schemes are blocking in that the normal computation is stopped while checkpoint-
ing is in progress. With enough memory, checkpoint overhead can be reduced by making a copy of
the program state in memory and invoking another asynchronous thread to perform the checkpoint-
ing concurrently. A simple way to overlap checkpointing with computation is to use the UNIX
fork( ) system call. The forked child process duplicates the parent process’s address space and
checkpoints it. Meanwhile, the parent process continues execution. Overlapping is achieved since
checkpointing is disk-I/O intensive. A further optimization is to use the copy-on-write mechanism.

2.3.4.6 User-Directed Checkpointing
The checkpoint overheads can sometimes be substantially reduced if the user inserts code (e.g.,
library or system calls) to tell the system when to save, what to save, and what not to save. What
should be the exact contents of a checkpoint? It should contain just enough information to allow a
system to recover. The state of a process includes its data state and control state. For a UNIX process,
these states are stored in its address space, including the text (code), the data, the stack segments, and
the process descriptor. Saving and restoring the full state is expensive and sometimes impossible.

For instance, the process ID and the parent process ID are not restorable, nor do they need to be
saved in many applications. Most checkpointing systems save a partial state. For instance, the code seg-
ment is usually not saved, as it does not change in most applications. What kinds of applications can be
checkpointed? Current checkpoint schemes require programs to be well behaved, the exact meaning of
which differs in different schemes. At a minimum, a well-behaved program should not need the exact
contents of state information that is not restorable, such as the numeric value of a process ID.

2.3.4.7 Checkpointing Parallel Programs
We now turn to checkpointing parallel programs. The state of a parallel program is usually much larger
than that of a sequential program, as it consists of the set of the states of individual processes, plus the
state of the communication network. Parallelism also introduces various timing and consistency problems.

Example 2.11 Checkpointing a Parallel Program

Figure 2.21 illustrates checkpointing of a three-process parallel program. The arrows labeled x, y, and z
represent point-to-point communication among the processes. The three thick lines labeled a, b, and c
represent three global snapshots (or simply snapshots), where a global snapshot is a set of checkpoints
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FIGURE 2.21

Consistent and inconsistent checkpoints in a parallel program.
(Courtesy of Hwang and Xu [14] )
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(represented by dots), one from every process. In addition, some communication states may need to be
saved. The intersection of a snapshot line with a process’s time line indicates where the process should
take a (local) checkpoint. Thus, the program’s snapshot c consists of three local checkpoints: s, t, u for
processes P, Q, and R, respectively, plus saving the communication y.

2.3.4.8 Consistent Snapshot
A global snapshot is called consistent if there is no message that is received by the checkpoint of
one process, but not yet sent by another process. Graphically, this corresponds to the case that no
arrow crosses a snapshot line from right to left. Thus, snapshot a is consistent, because arrow x is
from left to right. But snapshot c is inconsistent, as y goes from right to left. To be consistent, there
should not be any zigzag path between two checkpoints [20]. For instance, checkpoints u and s can-
not belong to a consistent global snapshot. A stronger consistency requires that no arrows cross the
snapshot. Thus, only snapshot b is consistent in Figure 2.23.

2.3.4.9 Coordinated versus Independent Checkpointing
Checkpointing schemes for parallel programs can be classified into two types. In coordinated check-
pointing (also called consistent checkpointing), the parallel program is frozen, and all processes are
checkpointed at the same time. In independent checkpointing, the processes are checkpointed inde-
pendent of one another. These two types can be combined in various ways. Coordinated check-
pointing is difficult to implement and tends to incur a large overhead. Independent checkpointing
has a small overhead and can utilize existing checkpointing schemes for sequential programs.

2.4 CLUSTER JOB AND RESOURCE MANAGEMENT
This section covers various scheduling methods for executing multiple jobs on a clustered system.
The LSF is described as middleware for cluster computing. MOSIX is introduced as a distributed
OS for managing resources in large-scale clusters or in clouds.

2.4.1 Cluster Job Scheduling Methods
Cluster jobs may be scheduled to run at a specific time (calendar scheduling) or when a particular
event happens (event scheduling). Table 2.6 summarizes various schemes to resolve job scheduling
issues on a cluster. Jobs are scheduled according to priorities based on submission time, resource
nodes, execution time, memory, disk, job type, and user identity. With static priority, jobs are
assigned priorities according to a predetermined, fixed scheme. A simple scheme is to schedule jobs
in a first-come, first-serve fashion. Another scheme is to assign different priorities to users. With
dynamic priority, the priority of a job may change over time.

Three schemes are used to share cluster nodes. In the dedicated mode, only one job runs in the clus-
ter at a time, and at most, one process of the job is assigned to a node at a time. The single job runs
until completion before it releases the cluster to run other jobs. Note that even in the dedicated mode,
some nodes may be reserved for system use and not be open to the user job. Other than that, all cluster
resources are devoted to run a single job. This may lead to poor system utilization. The job resource
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requirement can be static or dynamic. Static scheme fixes the number of nodes for a single job for its
entire period. Static scheme may underutilize the cluster resource. It cannot handle the situation when
the needed nodes become unavailable, such as when the workstation owner shuts down the machine.

Dynamic resource allows a job to acquire or release nodes during execution. However, it is
much more difficult to implement, requiring cooperation between a running job and the Java Mes-
sage Service (JMS). The jobs make asynchronous requests to the JMS to add/delete resources. The
JMS needs to notify the job when resources become available. The synchrony means that a job
should not be delayed (blocked) by the request/notification. Cooperation between jobs and the JMS
requires modification of the programming languages/libraries. A primitive mechanism for such
cooperation exists in PVM and MPI.

2.4.1.1 Space Sharing
A common scheme is to assign higher priorities to short, interactive jobs in daytime and during eve-
ning hours using tiling. In this space-sharing mode, multiple jobs can run on disjointed partitions
(groups) of nodes simultaneously. At most, one process is assigned to a node at a time. Although a
partition of nodes is dedicated to a job, the interconnect and the I/O subsystem may be shared by
all jobs. Space sharing must solve the tiling problem and the large-job problem.

Example 2.12 Job Scheduling by Tiling over Cluster Nodes

Figure 2.22 illustrates the tiling technique. In Part (a), the JMS schedules four jobs in a first-come first-serve
fashion on four nodes. Jobs 1 and 2 are small and thus assigned to nodes 1 and 2. Jobs 3 and 4 are paral-
lel; each needs three nodes. When job 3 comes, it cannot run immediately. It must wait until job 2 finishes
to free up the needed nodes. Tiling will increase the utilization of the nodes as shown in Figure 2.22(b). The
overall execution time of the four jobs is reduced after repacking the jobs over the available nodes. This pro-
blem cannot be solved in dedicated or space-sharing modes. However, it can be alleviated by timesharing.

Table 2.6 Job Scheduling Issues and Schemes for Cluster Nodes

Issue Scheme Key Problems

Job priority Nonpreemptive Delay of high-priority jobs
Preemptive Overhead, implementation

Resource required Static Load imbalance
Dynamic Overhead, implementation

Resource sharing Dedicated Poor utilization
Space sharing Tiling, large job

Scheduling Time sharing Process-based job control with context switch
overhead

Independent Severe slowdown
Gang scheduling Implementation difficulty

Competing with foreign
(local) jobs

Stay Local job slowdown
Migrate Migration threshold, migration overhead
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2.4.1.2 Time Sharing
In the dedicated or space-sharing model, only one user process is allocated to a node. However, the sys-
tem processes or daemons are still running on the same node. In the time-sharing mode, multiple user pro-
cesses are assigned to the same node. Time sharing introduces the following parallel scheduling policies:

1. Independent scheduling The most straightforward implementation of time sharing is to use the
operating system of each cluster node to schedule different processes as in a traditional
workstation. This is called local scheduling or independent scheduling. However, the
performance of parallel jobs could be significantly degraded. Processes of a parallel job need to
interact. For instance, when one process wants to barrier-synchronize with another, the latter
may be scheduled out. So the first process has to wait. As the second process is rescheduled,
the first process may be swapped out.

2. Gang scheduling The gang scheduling scheme schedules all processes of a parallel job
together. When one process is active, all processes are active. The cluster nodes are not
perfectly clock-synchronized. In fact, most clusters are asynchronous systems, and are not driven
by the same clock. Although we say, “All processes are scheduled to run at the same time,” they
do not start exactly at the same time. Gang-scheduling skew is the maximum difference between
the time the first process starts and the time the last process starts. The execution time of a
parallel job increases as the gang-scheduling skew becomes larger, leading to longer execution
time. We should use a homogeneous cluster, where gang scheduling is more effective. However,
gang scheduling is not yet realized in most clusters, because of implementation difficulties.

3. Competition with foreign (local) jobs Scheduling becomes more complicated when both
cluster jobs and local jobs are running. Local jobs should have priority over cluster jobs. With
one keystroke, the owner wants command of all workstation resources. There are basically two
ways to deal with this situation: The cluster job can either stay in the workstation node or
migrate to another idle node. A stay scheme has the advantage of avoiding migration cost. The
cluster process can be run at the lowest priority. The workstation’s cycles can be divided into
three portions, for kernel processes, local processes, and cluster processes. However, to stay
slows down both the local and the cluster jobs, especially when the cluster job is a load-
balanced parallel job that needs frequent synchronization and communication. This leads to the
migration approach to flow the jobs around available nodes, mainly for balancing the workload.
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FIGURE 2.22

The tiling technique for scheduling more jobs to cluster nodes to shorten the total makespan and thus
increase the job throughput.

(Courtesy of Hwang and Xu [14] )
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2.4.2 Cluster Job Management Systems
Job management is also known as workload management, load sharing, or load management. We
will first discuss the basic issues facing a job management system and summarize the available soft-
ware packages. A Job Management System (JMS) should have three parts:

• A user server lets the user submit jobs to one or more queues, specify resource requirements for
each job, delete a job from a queue, and inquire about the status of a job or a queue.

• A job scheduler performs job scheduling and queuing according to job types, resource
requirements, resource availability, and scheduling policies.

• A resource manager allocates and monitors resources, enforces scheduling policies, and collects
accounting information.

2.4.2.1 JMS Administration
The functionality of a JMS is often distributed. For instance, a user server may reside in each host
node, and the resource manager may span all cluster nodes. However, the administration of a JMS
should be centralized. All configuration and log files should be maintained in one location. There
should be a single user interface to use the JMS. It is undesirable to force the user to run PVM jobs
through one software package, MPI jobs through another, and HPF jobs through yet another.

The JMS should be able to dynamically reconfigure the cluster with minimal impact on the running
jobs. The administrator’s prologue and epilogue scripts should be able to run before and after each job
for security checking, accounting, and cleanup. Users should be able to cleanly kill their own jobs. The
administrator or the JMS should be able to cleanly suspend or kill any job. Clean means that when a
job is suspended or killed, all its processes must be included. Otherwise, some “orphan” processes are
left in the system, which wastes cluster resources and may eventually render the system unusable.

2.4.2.2 Cluster Job Types
Several types of jobs execute on a cluster. Serial jobs run on a single node. Parallel jobs use multi-
ple nodes. Interactive jobs are those that require fast turnaround time, and their input/output is
directed to a terminal. These jobs do not need large resources, and users expect them to execute
immediately, not to wait in a queue. Batch jobs normally need more resources, such as large mem-
ory space and long CPU time. But they do not need immediate responses. They are submitted to a
job queue to be scheduled to run when the resource becomes available (e.g., during off hours).

While both interactive and batch jobs are managed by the JMS, foreign jobs are created outside
the JMS. For instance, when a network of workstations is used as a cluster, users can submit inter-
active or batch jobs to the JMS. Meanwhile, the owner of a workstation can start a foreign job at
any time, which is not submitted through the JMS. Such a job is also called a local job, as opposed
to cluster jobs (interactive or batch, parallel or serial) that are submitted through the JMS of the
cluster. The characteristic of a local job is fast response time. The owner wants all resources to exe-
cute his job, as though the cluster jobs did not exist.

2.4.2.3 Characteristics of a Cluster Workload
To realistically address job management issues, we must understand the workload behavior of clus-
ters. It may seem ideal to characterize workload based on long-time operation data on real clusters.
The parallel workload traces include both development and production jobs. These traces are then
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fed to a simulator to generate various statistical and performance results, based on different sequen-
tial and parallel workload combinations, resource allocations, and scheduling policies. The following
workload characteristics are based on a NAS benchmark experiment. Of course, different workloads
may have variable statistics.

• Roughly half of parallel jobs are submitted during regular working hours. Almost 80 percent of
parallel jobs run for three minutes or less. Parallel jobs running longer than 90 minutes account
for 50 percent of the total time.

• The sequential workload shows that 60 percent to 70 percent of workstations are available to
execute parallel jobs at any time, even during peak daytime hours.

• On a workstation, 53 percent of all idle periods are three minutes or less, but 95 percent of idle
time is spent in periods of time that are 10 minutes or longer.

• A 2:1 rule applies, which says that a network of 64 workstations, with proper JMS software, can
sustain a 32-node parallel workload in addition to the original sequential workload. In other
words, clustering gives a supercomputer half of the cluster size for free!

2.4.2.4 Migration Schemes
A migration scheme must consider the following three issues:

• Node availability This refers to node availability for job migration. The Berkeley NOW project
has reported such opportunity does exist in university campus environment. Even during peak
hours, 60 percent of workstations in a cluster are available at Berkeley campus.

• Migration overhead What is the effect of the migration overhead? The migration time can
significantly slow down a parallel job. It is important to reduce the migration overhead (e.g., by
improving the communication subsystem) or to migrate only rarely. The slowdown is
significantly reduced if a parallel job is run on a cluster of twice the size. For instance, for a
32-node parallel job run on a 60-node cluster, the slowdown caused by migration is no more
than 20 percent, even when the migration time is as long as three minutes. This is because more
nodes are available, and thus the migration demand is less frequent.

• Recruitment threshold What should be the recruitment threshold? In the worst scenario, right
after a process migrates to a node, the node is immediately claimed by its owner. Thus, the
process has to migrate again, and the cycle continues. The recruitment threshold is the amount
of time a workstation stays unused before the cluster considers it an idle node.

2.4.2.5 Desired Features in A JMS
Here are some features that have been built in some commercial JMSes in cluster computing
applications:

• Most support heterogeneous Linux clusters. All support parallel and batch jobs. However,
Connect:Queue does not support interactive jobs.

• Enterprise cluster jobs are managed by the JMS. They will impact the owner of a workstation in
running local jobs. However, NQE and PBS allow the impact to be adjusted. In DQS, the
impact can be configured to be minimal.

• All packages offer some kind of load-balancing mechanism to efficiently utilize cluster
resources. Some packages support checkpointing.

• Most packages cannot support dynamic process migration. They support static migration: A
process can be dispatched to execute on a remote node when the process is first created.
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However, once it starts execution, it stays in that node. A package that does support dynamic
process migration is Condor.

• All packages allow dynamic suspension and resumption of a user job by the user or by the
administrator. All packages allow resources (e.g., nodes) to be dynamically added to or deleted.

• Most packages provide both a command-line interface and a graphical user interface. Besides
UNIX security mechanisms, most packages use the Kerberos authentication system.

2.4.3 Load Sharing Facility (LSF) for Cluster Computing
LSF is a commercial workload management system from Platform Computing [29]. LSF empha-
sizes job management and load sharing on both parallel and sequential jobs. In addition, it supports
checkpointing, availability, load migration, and SSI. LSF is highly scalable and can support a clus-
ter of thousands of nodes. LSF has been implemented for various UNIX and Windows/NT plat-
forms. Currently, LSF is being used not only in clusters but also in grids and clouds.

2.4.3.1 LSF Architecture
LSF supports most UNIX platforms and uses the standard IP for JMS communication. Because of
this, it can convert a heterogeneous network of UNIX computers into a cluster. There is no need to
change the underlying OS kernel. The end user utilizes the LSF functionalities through a set of uti-
lity commands. PVM and MPI are supported. Both a command-line interface and a GUI are pro-
vided. LSF also offers skilled users an API that is a runtime library called LSLIB (load sharing
library). Using LSLIB explicitly requires the user to modify the application code, whereas using the
utility commands does not. Two LSF daemons are used on each server in the cluster. The load
information managers (LIMs) periodically exchange load information. The remote execution server
(RES) executes remote tasks.

2.4.3.2 LSF Utility Commands
A cluster node may be a single-processor host or an SMP node with multiple processors, but always
runs with only a single copy of the operating system on the node. Here are interesting features built
into the LSF facilities:

• LSF supports all four combinations of interactive, batch, sequential, and parallel jobs. A job that
is not executed through LSF is called a foreign job. A server node is one which can execute
LSF jobs. A client node is one that can initiate or submit LSF jobs but cannot execute them.
Only the resources on the server nodes can be shared. Server nodes can also initiate or submit
LSF jobs.

• LSF offers a set of tools (lstools) to get information from LSF and to run jobs remotely. For
instance, lshosts lists the static resources (discussed shortly) of every server node in the cluster.
The command lsrun executes a program on a remote node.

• When a user types the command line %lsrun-R ‘swp>100’ myjob at a client node, the
application myjob will be automatically executed on the most lightly loaded server node that has
an available swap space greater than 100 MB.

• The lsbatch utility allows users to submit, monitor, and execute batch jobs through LSF. This
utility is a load-sharing version of the popular UNIX command interpreter tcsh. Once a user
enters the lstcsh shell, every command issued will be automatically executed on a suitable node.
This is done transparently: The user sees a shell exactly like a tcsh running on the local node.
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• The lsmake utility is a parallel version of the UNIX make utility, allowing a makefile to be
processed in multiple nodes simultaneously.

Example 2.13 Application of the LSF on a Cluster of Computers

Suppose a cluster consists of eight expensive server nodes and 100 inexpensive client nodes (workstations
or PCs). The server nodes are expensive due to better hardware and software, including application soft-
ware. A license is available to install a FORTRAN compiler and a CAD simulation package, both valid for
up to four users. Using a JMS such as LSF, all the hardware and software resources of the server nodes
are made available to the clients transparently.

A user sitting in front of a client’s terminal feels as though the client node has all the software and
speed of the servers locally. By typing lsmake my.makefile, the user can compile his source code on up to
four servers. LSF selects the nodes with the least amount of load. Using LSF also benefits resource utiliza-
tion. For instance, a user wanting to run a CAD simulation can submit a batch job. LSF will schedule the
job as soon as the software becomes available.

2.4.4 MOSIX: An OS for Linux Clusters and Clouds
MOSIX is a distributed operating system that was developed at Hebrew University in 1977. Initi-
ally, the system extended BSD/OS system calls for resource sharing in Pentium clusters. In 1999,
the system was redesigned to run on Linux clusters built with x86 platforms. The MOSIX project is
still active as of 2011, with 10 versions released over the years. The latest version, MOSIX2, is
compatible with Linux 2.6.

2.4.4.1 MOXIS2 for Linux Clusters
MOSIX2 runs as a virtualization layer in the Linux environment. This layer provides SSI to users
and applications along with runtime Linux support. The system runs applications in remote nodes
as though they were run locally. It supports both sequential and parallel applications, and can dis-
cover resources and migrate software processes transparently and automatically among Linux nodes.
MOSIX2 can also manage a Linux cluster or a grid of multiple clusters.

Flexible management of a grid allows owners of clusters to share their computational resources
among multiple cluster owners. Each cluster can still preserve its autonomy over its own clusters
and its ability to disconnect its nodes from the grid at any time. This can be done without disrupt-
ing the running programs. A MOSIX-enabled grid can extend indefinitely as long as trust exists
among the cluster owners. The condition is to guarantee that guest applications cannot be modified
while running in remote clusters. Hostile computers are not allowed to connect to the local
network.

2.4.4.2 SSI Features in MOSIX2
The system can run in native mode or as a VM. In native mode, the performance is better, but it
requires that you modify the base Linux kernel, whereas a VM can run on top of any unmodified
OS that supports virtualization, including Microsoft Windows, Linux, and Mac OS X. The system
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is most suitable for running compute-intensive applications with low to moderate amounts of I/O.
Tests of MOSIX2 show that the performance of several such applications over a 1 GB/second
campus grid is nearly identical to that of a single cluster. Here are some interesting features of
MOSIX2:

• Users can log in on any node and do not need to know where their programs run.
• There is no need to modify or link applications with special libraries.
• There is no need to copy files to remote nodes, thanks to automatic resource discovery and

workload distribution by process migration.
• Users can load-balance and migrate processes from slower to faster nodes and from nodes that

run out of free memory.
• Sockets are migratable for direct communication among migrated processes.
• The system features a secure runtime environment (sandbox) for guest processes.
• The system can run batch jobs with checkpoint recovery along with tools for automatic

installation and configuration scripts.

2.4.4.3 Applications of MOSIX for HPC
The MOSIX is a research OS for HPC cluster, grid, and cloud computing. The system’s designers
claim that MOSIX offers efficient utilization of wide-area grid resources through automatic resource
discovery and load balancing. The system can run applications with unpredictable resource require-
ments or runtimes by running long processes, which are automatically sent to grid nodes. The sys-
tem can also combine nodes of different capacities by migrating processes among nodes based on
their load index and available memory.

MOSIX became proprietary software in 2001. Application examples include scientific computa-
tions for genomic sequence analysis, molecular dynamics, quantum dynamics, nanotechnology and
other parallel HPC applications; engineering applications including CFD, weather forecasting, crash
simulations, oil industry simulations, ASIC design, and pharmaceutical design; and cloud applica-
tions such as for financial modeling, rendering farms, and compilation farms.

Example 2.14 Memory-Ushering Algorithm Using MOSIX versus PVM

Memory ushering is practiced to borrow the main memory of a remote cluster node, when the main mem-
ory on a local node is exhausted. The remote memory access is done by process migration instead of
paging or swapping to local disks. The ushering process can be implemented with PVM commands or it
can use MOSIX process migration. In each execution, an average memory chunk can be assigned to the
nodes using PVM. Figure 2.23 shows the execution time of the memory algorithm using PVM compared
with the use of the MOSIX routine.

For a small cluster of eight nodes, the execution times are closer. When the cluster scales to 32 nodes, the
MOSIX routine shows a 60 percent reduction in ushering time. Furthermore, MOSIX performs almost the same
when the cluster size increases. The PVM ushering time increases monotonically by an average of 3.8 percent
per node increase, while MOSIX consistently decreases by 0.4 percent per node increase. The reduction in
time results from the fact that the memory and load-balancing algorithms of MOSIX are more scalable than
PVM.
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2.5 CASE STUDIES OF TOP SUPERCOMPUTER SYSTEMS
This section reviews three top supercomputers that have been singled out as winners in the Top 500 List
for the years 2008–2010. The IBM Roadrunner was the world’s first petaflops computer, ranked No. 1
in 2008. Subsequently, the Cray XT5 Jaguar became the top system in 2009. In November 2010, Chi-
na’s Tianhe-1A became the fastest system in the world. All three systems are Linux cluster-structured
with massive parallelism in term of large number of compute nodes that can execute concurrently.

2.5.1 Tianhe-1A: The World Fastest Supercomputer in 2010
In November 2010, the Tianhe-1A was unveiled as a hybrid supercomputer at the 2010 ACM Supercom-
puting Conference. This system demonstrated a sustained speed of 2.507 Pflops in Linpack Benchmark
testing runs and thus became the No. 1 supercomputer in the 2010 Top 500 list. The system was built by
the National University of Defense Technology (NUDT) and was installed in August 2010 at the National
Supercomputer Center (NSC), Tianjin, in northern China (www.nscc.tj.gov.cn). The system is intended
as an open platform for research and education. Figure 2.24 shows the Tianh-1A system installed at NSC.

2.5.1.1 Architecture of Tianhe-1A
Figure 2.25 shows the abstract architecture of the Tianhe-1A system. The system consists of five
major components. The compute subsystem houses all the CPUs and GPUs on 7,168 compute nodes.
The service subsystem comprises eight operation nodes. The storage subsystem has a large number of
shared disks. The monitoring and diagnosis subsystem is used for control and I/O operations. The
communication subsystem is composed of switches for connecting to all functional subsystems.

2.5.1.2 Hardware Implementation
This system is equipped with 14,336 six-core Xeon E5540/E5450 processors running 2.93 GHz
with 7,168 NVIDIA Tesla M2050s. It has 7,168 compute nodes, each composed of two Intel Xeon
X5670 (Westmere) processors at 2.93 GHz, six cores per socket, and one NVIDIA M2050 GPU
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Performance of the memory-ushering algorithm using MOSIX versus PVM.
(Courtesy of A. Barak and O. La’adan [5] )
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connected via PCI-E. A blade has two nodes and is 2U in height (Figure 2.25). The complete sys-
tem has 14,336 Intel sockets (Westmere) plus 7,168 NVIDIA Fermi boards plus 2,048 Galaxy sock-
ets (the Galaxy processor-based nodes are used as frontend processing for the system). A compute
node has two Intel sockets plus a Fermi board plus 32 GB of memory.
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Abstract architecture of the Tianhe-1A system.

FIGURE 2.24

The Tianhe-1A system built by the National University of Defense Technology and installed at the National
Supercomputer Center, Tianjin, China, in 2010 [11].
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The total system has a theoretical peak of 4.7 Pflops/second as calculated in Figure 2.26. Note
that there are 448 CUDA cores in each GPU node. The peak speed is achieved through 14,236
Xeon CPUs (with 380,064 cores) and 7,168 Tesla GPUs (with 448 CUDA cores per node and
3,496,884 CUDA cores in total). There are 3,876,948 processing cores in both the CPU and GPU
chips. An operational node has two eight-core Galaxy chips (1 GHz, SPARC architecture) plus
32 GB of memory. The Tianhe-1A system is packaged in 112 compute cabinets, 12 storage cabinets,
six communications cabinets, and eight I/O cabinets.

The operation nodes are composed of two eight-core Galaxy FT-1000 chips. These processors
were designed by NUDT and run at 1 GHz. The theoretical peak for the eight-core chip is
8 Gflops/second. The complete system has 1,024 of these operational nodes with each having
32 GB of memory. These operational nodes are intended to function as service nodes for job crea-
tion and submission. They are not intended as general-purpose computational nodes. Their speed is
excluded from the calculation of the peak or sustained speed. The peak speed of the Tianhe-1A is
calculated as 3.692 Pflops [11]. It uses 7,168 compute nodes (with 448 CUDA cores/GPU/compute
node) in parallel with 14,236 CPUs with six cores in four subsystems.

The system has total disk storage of 2 petabytes implemented with a Lustre clustered file sys-
tem. There are 262 terabytes of main memory distributed in the cluster system. The Tianhe-1A epi-
tomizes modern heterogeneous CPU/GPU computing, enabling significant achievements in
performance, size, and power. The system would require more than 50,000 CPUs and twice as
much floor space to deliver the same performance using CPUs alone. A 2.507-petaflop system built
entirely with CPUs would consume at least 12 megawatts, which is three times more power than
what the Tianhe-1A consumes.

2.5.1.3 ARCH Fat-Tree Interconnect
The high performance of the Tianhe-1A is attributed to a customed-designed ARCH interconnect by
the NUDT builder. This ARCH is built with the InfiniBand DDR 4X and 98 TB of memory. It
assumes a fat-tree architecture as shown in Figure 2.27. The bidirectional bandwidth is 160 Gbps,
about twice the bandwidth of the QDR InfiniBand network over the same number of nodes. The
ARCH has a latency for a node hop of 1.57 microseconds, and an aggregated bandwidth of 61 Tb/
second. At the first stage of the ARCH fat tree, 16 nodes are connected by a 16-port switching
board. At the second stage, all parts are connects to eleven 384-port switches. The router and net-
work interface chips are designed by the NUDT team.

7168(nodes) × 2(CPU) × 2.93(GHz) × 6(Cores) × 4
= 1.008PFlops

+

7168(nodes) × 1(GPU) × 1.15(GHz)*448(CUDA Cores)
= 3.692PFlops

Total:
4,701,061GFlops

FIGURE 2.26

Calculation of the theoretical peak speed of Tianhe-1A system.
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2.5.1.4 Software Stack
The software stack on the Tianhe-1A is typical of any high-performance system. It uses Kylin Linux, an
operating system developed by NUDT and successfully approved by China’s 863 Hi-tech Research and
Development Program office in 2006. Kylin is based on Mach and FreeBSD, is compatible with other
mainstream operating systems, and supports multiple microprocessors and computers of different struc-
tures. Kylin packages include standard open source and public packages, which have been brought onto
one system for easy installation. Figure 2.28 depicts the Tianhe-1A software architecture.

The system features FORTRAN, C, C++, and Java compilers from Intel (icc 11.1), CUDA, OpenMP,
and MPI based on MPICH2 with custom GLEX (Galaxy Express) Channel support. The NUDT builder
developed a mathematics library, which is based on Intel’s MKL 10.3.1.048 and BLAS for the GPU
based on NVIDIA and optimized by NUDT. In addition, a High Productive Parallel Running Environ-
ment (HPPRE) was installed. This provides a parallel toolkit based on Eclipse, which is intended to inte-
grate all the tools for editing, debugging, and performance analysis. In addition, the designers provide
workflow support for Quality of Service (QoS) negotiations and resource reservations.

2.5.1.5 Power Consumption, Space, and Cost
The power consumption of the Tianhe-1A under load is 4.04 MWatt. The system has a footprint of
700 square meters and is cooled by a closed-coupled chilled water-cooling system with forced air.
The hybrid architecture consumes less power—about one-third of the 12 MW that is needed to run
the system entirely with the multicore CPUs. The budget for the system is 600 million RMB
(approximately $90 million); 200 million RMB comes from the Ministry of Science and Technol-
ogy (MOST) and 400 million RMB is from the Tianjin local government. It takes about $20 million
annually to run, maintain, and keep the system cool in normal operations.

2.5.1.6 Linpack Benchmark Results and Planned Applications
The performance of the Linpack Benchmark on October 30, 2010 was 2.566 Pflops/second on a
matrix of 3,600,000 and a N1/2 = 1,000,000. The total time for the run was 3 hours and 22 minutes.

Switches

FIGURE 2.27

The ARCH fat-tree interconnect in two stages of high-bandwidth switches [11].
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The system has an efficiency of 54.58 percent, which is much lower than the 75 percent efficiency
achieved by Jaguar and Roadrunner. Listed below are some applications of Tianhe-1A. Most of
them are specially tailored to satisfy China’s national needs.

• Parallel AMR (Adaptive Mesh Refinement) method
• Parallel eigenvalue problems
• Parallel fast multipole methods
• Parallel computing models
• Gridmol computational chemistry
• ScGrid middleware, grid portal
• PSEPS parallel symmetric eigenvalue package solvers
• FMM-radar fast multipole methods on radar cross sections
• Transplant many open source software programs
• Sandstorm prediction, climate modeling, EM scattering, or cosmology
• CAD/CAE for automotive industry

2.5.2 Cray XT5 Jaguar: The Top Supercomputer in 2009
The Cray XT5 Jaguar was ranked the world’s fastest supercomputer in the Top 500 list released at
the ACM Supercomputing Conference in June 2010. This system became the second fastest super-
computer in the Top 500 list released in November 2010, when China’s Tianhe-1A replaced the
Jaguar as the No. 1 machine. This is a scalable MPP system built by Cray, Inc. The Jaguar belongs
to Cray’s system model XT5-HE. The system is installed at the Oak Ridge National Laboratory,
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Software architecture of the Tianhe-1A supercomputer [11].
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Department of Energy, in the United States. The entire Jaguar system is built with 86 cabinets. The
following are some interesting architectural and operational features of the Jaguar system:

• Built with AMD six-core Opteron processors running Linux at a 2.6 GHz clock rate
• Has a total of 224,162 cores on more than 37,360 processors in 88 cabinets in four rows (there

are 1,536 or 2,304 processor cores per cabinet)
• Features 8,256 compute nodes and 96 service nodes interconnected by a 3D torus network, built

with Cray SeaStar2+ chips
• Attained a sustained speed, Rmax, from the Linpack Benchmark test of 1.759 Pflops
• Largest Linpack matrix size tested recorded as Nmax = 5,474,272 unknowns

The basic building blocks are the compute blades. The interconnect router in the SeaStar+ chip
(Figure 2.29) provides six high-speed links to six neighbors in the 3D torus, as seen in Figure 2.30.
The system is scalable by design from small to large configurations. The entire system has 129 TB
of compute memory. In theory, the system was designed with a peak speed of Rpeak = 2.331 Pflops.
In other words, only 75 percent (=1.759/2.331) efficiency was achieved in Linpack experiments.
The external I/O interface uses 10 Gbps Ethernet and InfiniBand links. MPI 2.1 was applied in mes-
sage-passing programming. The system consumes 32–43 KW per cabinet. With 160 cabinets, the
entire system consumes up to 6.950 MW. The system is cooled with forced cool air, which con-
sumes a lot of electricity.

2.5.2.1 3D Torus Interconnect
Figure 2.30 shows the system’s interconnect architecture. The Cray XT5 system incorporates a
high-bandwidth, low-latency interconnect using the Cray SeaStar2+ router chips. The system is con-
figured with XT5 compute blades with eight sockets supporting dual or quad-core Opterons. The
XT5 applies a 3D torus network topology. This SeaStar2+ chip provides six high-speed network
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The interconnect SeaStar router chip design in the Cray XT5 Jaguar supercomputer.
(Courtesy of Cray, Inc. [9] and Oak Ridge National Laboratory, United States, 2009 )
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links which connect to six neighbors in the 3D torus. The peak bidirectional bandwidth of each link
is 9.6 GB/second with sustained bandwidth in excess of 6 GB/second. Each port is configured with
an independent router table, ensuring contention-free access for packets.

The router is designed with a reliable link-level protocol with error correction and retransmis-
sion, ensuring that message-passing traffic reliably reaches its destination without the costly timeout
and retry mechanism used in typical clusters. The torus interconnect directly connects all the nodes
in the Cray XT5 system, eliminating the cost and complexity of external switches and allowing for
easy expandability. This allows systems to economically scale to tens of thousands of nodes—
well beyond the capacity of fat-tree switches. The interconnect carries all message-passing and I/O
traffic to the global file system.

2.5.2.2 Hardware Packaging
The Cray XT5 family employs an energy-efficient packaging technology, which reduces power use
and thus lowers maintenance costs. The system’s compute blades are packaged with only the neces-
sary components for building an MPP with processors, memory, and interconnect. In a Cray XT5
cabinet, vertical cooling takes cold air straight from its source—the floor—and efficiently cools the
processors on the blades, which are uniquely positioned for optimal airflow. Each processor also
has a custom-designed heat sink depending on its position within the cabinet. Each Cray XT5 sys-
tem cabinet is cooled with a single, high-efficiency ducted turbine fan. It takes 400/480VAC
directly from the power grid without transformer and PDU loss.
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The 3D torus interconnect in the Cray XT5 Jaguar supercomputer.
(Courtesy of Cray, Inc. [9] and Oak Ridge National Laboratory, United States, 2009 )
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The Cray XT5 3D torus architecture is designed for superior MPI performance in HPC applica-
tions. This is accomplished by incorporating dedicated compute nodes and service nodes. Compute
nodes are designed to run MPI tasks efficiently and reliably to completion. Each compute node is
composed of one or two AMD Opteron microprocessors (dual or quad core) and direct attached
memory, coupled with a dedicated communications resource. Service nodes are designed to provide
system and I/O connectivity and also serve as login nodes from which jobs are compiled and
launched. The I/O bandwidth of each compute node is designed for 25.6 GB/second performance.

2.5.3 IBM Roadrunner: The Top Supercomputer in 2008
In 2008, the IBM Roadrunner was the first general-purpose computer system in the world to
reach petaflops performance. The system has a Linpack performance of 1.456 Pflops and is
installed at the Los Alamos National Laboratory (LANL) in New Mexico. Subsequently, Cray’s
Jaguar topped the Roadrunner in late 2009. The system was used mainly to assess the decay of
the U.S. nuclear arsenal. The system has a hybrid design with 12,960 IBM 3.2 GHz PowerXcell
8i CPUs (Figure 2.26) and 6,480 AMD 1.8 GHz Opteron 2210 dual-core processors. In total, the
system has 122,400 cores. Roadrunner is an Opteron cluster accelerated by IBM Cell processors
with eight floating-point cores.

2.5.3.1 Processor Chip and Compute Blade Design
The Cell/B.E. processors provide extraordinary compute power that can be harnessed from a single
multicore chip. As shown in Figure 2.31, the Cell/B.E. architecture supports a very broad range of
applications. The first implementation is a single-chip multiprocessor with nine processor elements
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operating on a shared memory model. The rack is built with TriBlade servers, which are connected by
an InfiniBand network. In order to sustain this compute power, the connectivity within each node con-
sists of four PCI Express x8 links, each capable of 2 GB/s transfer rates, with a 2 μs latency. The
expansion slot also contains the InfiniBand interconnect, which allows communications to the rest of
the cluster. The capability of the InfiniBand interconnect is rated at 2 GB/s with a 2 μs latency.

2.5.3.2 InfiniBand Interconnect
The Roadrunner cluster was constructed hierarchically. The InfiniBand switches cluster together 18
connected units in 270 racks. In total, the cluster connects 12,960 IBM Power XCell 8i processors
and 6,480 Opteron 2210 processors together with a total of 103.6 TB of RAM. This cluster com-
plex delivers approximately 1.3 Pflops. In addition, the system’s 18 Com/Service nodes deliver 4.5
Tflops using 18 InfiniBand switches. The second storage units are connected with eight InfiniBand
switches. In total, 296 racks are installed in the system. The tiered architecture is constructed in two
levels. The system consumes 2.35 MW power, and was the fourth most energy-efficient supercom-
puter built in 2009.

2.5.3.3 Message-Passing Performance
The Roadrunner uses MPI APIs to communicate with the other Opteron processors the application is
running on in a typical single-program, multiple-data (SPMD) fashion. The number of compute nodes
used to run the application is determined at program launch. The MPI implementation of Roadrunner is
based on the open source Open MPI Project, and therefore is standard MPI. In this regard, Roadrunner
applications are similar to other typical MPI applications such as those that run on the IBM Blue Gene
solution. Where Roadrunner differs in the sphere of application architecture is how its Cell/B.E. accel-
erators are employed. At any point in the application flow, the MPI application running on each
Opteron can offload computationally complex logic to its subordinate Cell/B.E. processor.

2.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
Cluster computing has been a hot research area since 1990. Cluster computing was pioneered by
DEC and IBM as reported in Pfister [26]. His book provides a good introduction of several key
concepts, including SSI and HA. Historically, milestone computer clusters include the VAXcluster
running the VMS/OS in 1984, the Tandem Himalaya HA cluster (1994), and the IBM SP2 cluster
in 1996. These earlier clusters were covered in [3,7,14,23,26]. In recent years, more than 85 percent
of the Top 500 systems are built with cluster configurations [9,11,20,25,28,29].

Annually, IEEE and ACM hold several international conferences related to this topic. They
include Cluster Computing (Cluster); Supercomputing Conference (SC); International Symposium
on Parallel and Distributed Systems (IPDPS); International Conferences on Distributed Computing
Systems (ICDCS); High-Performance Distributed Computing (HPDC); and Clusters, Clouds, and
The Grids (CCGrid). There are also several journals related to this topic, including the Journal of
Cluster Computing, Journal of Parallel and Distributed Computing (JPDC), and IEEE Transactions
on Parallel and Distributed Systems (TPDS).

Cluster applications are assessed in Bader and Pennington [2]. Some figures and examples in
this chapter are modified from the earlier book by Hwang and Xu [14]. Buyya has treated cluster
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computing in two edited volumes [7]. Two books on Linux clusters are [20,23]. HA clusters are
treated in [24]. Recent assessment of HPC interconnects can be found in [6,8,12,22]. The Google
cluster interconnect was reported by Barroso, et al. [6]. GPUs for supercomputing was discussed in
[10]. GPU clusters were studied in [19]. CUDA parallel programming for GPUs is treated in [31].
MOSIX/OS for cluster or grid computing is treated in [4,5,30].

Hwang, Jin, and Ho developed a distributed RAID system for achieving a single I/O space in a
cluster of PCs or workstations [13–17]. More details of LSF can be found in Zhou [35]. The Top 500
list was cited from the release in June and November 2010 [25]. The material on the Tianhe-1A can
be found in Dongarra [11] and on Wikipedia [29]. The IBM Blue Gene/L architecture was reported
by Adiga, et al. [1] and subsequently upgraded to a newer model called the Blue Gene/P solution.
The IBM Roadrunner was reported by Kevin, et al. [18] and also in Wikipedia [28]. The Cray XT5
and Jaguar systems are described in [9]. China’s Nebulae supercomputer was reported in [27]. Speci-
fic cluster applications and checkpointing techniques can be found in [12,16,17,24,32,34]. Cluster
applications can be found in [7,15,18,21,26,27,33,34].
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HOMEWORK PROBLEMS
Problem 2.1
Differentiate and exemplify the following terms related to clusters:

a. Compact versus slack clusters
b. Centralized versus decentralized clusters
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c. Homogeneous versus heterogeneous clusters
d. Enclosed versus exposed clusters
e. Dedicated versus enterprise clusters

Problem 2.2
This problem refers to the redundancy technique. Assume that when a node fails, it takes 10 seconds
to diagnose the fault and another 30 seconds for the workload to be switched over.

a. What is the availability of the cluster if planned downtime is ignored?
b. What is the availability of the cluster if the cluster is taken down one hour per week for

maintenance, but one node at a time?

Problem 2.3
This is a research project to evaluate the cluster architectures of four supercomputers built in recent
years. Study the details of the No. 1 supercomputer, the Tianhe-1A, which was announced in the
Top 500 list released in November 2010. Your study should include the following:

a. Conduct an in-depth evaluation of the Tianhe-1A architecture, hardware components, operating
system, software support, parallelizing compilers, packaging, cooling, and new applications.

b. Compare the relative strengths and limitations of the Tianhe-1A with respect to the three case-
study systems: the Jaguar, Nebulae, and Roadrunner, studied in Section 2.5. Use tabulations or
plot curves, if you find enough benchmark data to conduction the comparison study.

Problem 2.4
This problem consists of two parts related to cluster computing:

1. Define and distinguish among the following terms on scalability:
a. Scalability over machine size
b. Scalability over problem size
c. Resource scalability
d. Generation scalability

2. Explain the architectural and functional differences among three availability cluster
configurations: hot standby, active takeover, and fault-tolerant clusters. Give two example
commercial cluster systems in each availability cluster configuration. Comment on their relative
strengths and weaknesses in commercial applications.

Problem 2.5
Distinguish between multiprocessors and multicomputers based on their structures, resource sharing,
and interprocessor communications.

a. Explain the differences among UMA, NUMA, COMA, DSM, and NORMA memory models.
b. What are the additional functional features of a cluster that are not found in a conventional

network of autonomous computers?
c. What are the advantages of a clustered system over a traditional SMP server?
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Problem 2.6
Study the five research virtual cluster projects listed in Table 2.6 and answer the following ques-
tions regarding the coverage on COD and Violin experience given in Sections 2.5.3 and 2.5.4:

a. From the viewpoints of dynamic resource provisioning, evaluate the five virtual clusters and
discuss their relative strengths and weaknesses based on the open literature.

b. Report on the unique contribution from each of the five virtual cluster projects in terms of the
hardware setting, software tools, and experimental environments developed and performance
results reported.

Problem 2.7
This problem is related to the use of high-end x86 processors in HPC system construction. Answer
the following questions:

a. Referring to the latest Top 500 list of supercomputing systems, list all systems that have used
x86 processors. Identify the processor models and key processor characteristics such as number
of cores, clock frequency, and projected performance.

b. Some have used GPUs to complement the x86 CPUs. Identify those systems that have
procured substantial GPUs. Discuss the roles of GPUs to provide peak or sustained flops per
dollar.

Problem 2.8
Assume a sequential computer has 512 MB of main memory and enough disk space. The disk read/
write bandwidth for a large data block is 1 MB/second. The following code needs to apply
checkpointing:

do 1000 iterations
A = foo (C from last iteration) /* this statement takes 10 minutes */
B = goo (A) /* this statement takes 10 minutes */
C = hoo (B) /* this statement takes 10 minutes */
end do

A, B, and C are arrays of 120 MB each. All other parts of the code, operating system, libraries
take, at most, 16 MB of memory. Assume the computer fails exactly once, and the time to restore
the computer is ignored.

a. What is the worst-case execution time for the successful completion of the code if checkpointing
is performed?

b. What is the worst-case execution time for the successful completion of the code if plain
transparent checkpointing is performed?

c. Is it beneficial to use forked checkpointing with (b)?
d. What is the worst-case execution time for the code if user-directed checkpointing is performed?

Show the code where user directives are added.
e. What is the worst-case execution time of the code if forked checkpointing is used with (d)?
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Problem 2.9
Compare the latest Top 500 list with the Top 500 Green List of HPC systems. Discuss a few top
winners and losers in terms of energy efficiency in power and cooling costs. Reveal the green-
energy winners’ stories and report their special design features, packaging, cooling, and manage-
ment policies that make them the winners. How different are the ranking orders in the two lists?
Discuss their causes and implications based on publicly reported data.

Problem 2.10
This problem is related to processor selection and system interconnects used in building the top
three clustered systems with commercial interconnects in the latest Top 500 list.

a. Compare the processors used in these clusters and identify their strengths and weaknesses in
terms of potential peak floating-point performance.

b. Compare the commercial interconnects of these three clusters. Discuss their potential performance
in terms of their topological properties, network latency, bisection bandwidth, and hardware used.

Problem 2.11
Study Example 2.6 and the original paper [14] reporting the distributed RAID-x architecture and
performance results. Answer the following questions with technical justifications or evidence:

a. Explain how the RAID-x system achieved a single I/O address space across distributed disks
attached to cluster nodes.

b. Explain the functionality of the cooperative disk drivers (CCDs) implemented in the RAID-x
system. Comment on its application requirements and scalability based on current PC
architecture, SCSI bus, and SCSI disk technology.

c. Explain why RAID-x has a fault-tolerance capability equal to that of the RAID-5 architecture.
d. Explain the strengths and limitations of RAID-x, compared with other RAID architectures.

Problem 2.12
Study the relevant material in Sections 2.2 and 2.5 and compare the system interconnects of the IBM
Blue Gene/L, IBM Roadrunner, and Cray XT5 supercomputers released in the November 2009 Top
500 evaluation. Dig deeper to reveal the details of these systems. These systems may use custom-
designed routers in interconnects. Some also use some commercial interconnects and components.

a. Compare the basic routers or switches used in the three system interconnects in terms of
technology, chip design, routing scheme, and claimed message-passing performance.

b. Compare the topological properties, network latency, bisection bandwidth, and hardware
packaging of the three system interconnects.

Problem 2.13
Study the latest and largest commercial HPC clustered system built by SGI, and report on the clus-
ter architecture in the following technical and benchmark aspects:

a. What is the SGI system model and its specification? Illustrate the cluster architecture with a
block diagram and describe the functionality of each building block.
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b. Discuss the claimed peak performance and reported sustained performance from SGI.
c. What are the unique hardware, software, networking, or design features that contribute to the

claimed performance in Part (b)? Describe or illustrate those system features.

Problem 2.14
Consider in Figure 2.32 a server-client cluster with an active-takeover configuration between two
identical servers. The servers share a disk via a SCSI bus. The clients (PCs or workstations) and the
Ethernet are fail-free. When a server fails, its workload is switched to the surviving server.

a. Assume that each server has an MTTF of 200 days and an MTTR of five days. The disk has an
MTTF of 800 days and an MTTR of 20 days. In addition, each server is shut down for
maintenance for one day every week, during which time that server is considered unavailable.
Only one server is shut down for maintenance at a time. The failure rates cover both natural
failures and scheduled maintenance. The SCSI bus has a failure rate of 2 percent. The servers
and the disk fail independently. The disk and SCSI bus have no scheduled shutdown. The client
machine will never fail.

1. The servers are considered available if at least one server is available. What is the combined
availability of the two servers?

2. In normal operation, the cluster must have the SCSI bus, the disk, and at least one server
available simultaneously. What are the possible single points of failure in this cluster?

b. The cluster is considered unacceptable if both servers fail at the same time. Furthermore, the
cluster is declared unavailable when either the SCSI bus or the disk is down. Based on the
aforementioned conditions, what is the system availability of the entire cluster?

c. Under the aforementioned failure and maintenance conditions, propose an improved architecture
to eliminate all single points of failure identified in Part (a).

Client

Server 1

Client Client• • •

Server 2

Ethernet

SCSI bus

Disk array

FIGURE 2.32

An HA cluster with redundant hardware components.
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Problem 2.15
Study various cluster job scheduling policies in Table 2.6 and answer the following questions. You
may need to gather more information from Wikipedia, Google, or other sources if any of the sche-
duling policies are new to you.

a. Explain the advantages and disadvantages of nonpreemptive and preemptive scheduling policies
and suggest methods to amend the problems.

b. Repeat Part (a) for static and dynamic scheduling policies.
c. Repeat Part (a) for dedicated and space-sharing scheduling policies.
d. Compare the relative performance of time-sharing, independent, and gang scheduling policies.
e. Compare the relative performance in stay and migrating policies on local jobs against remote jobs.

Problem 2.16
Study various SSI features and HA support for clusters in Section 2.3 and answer the following
questions, providing reasons for your answers. Identify some example cluster systems that are
equipped with these features. Comment on their implementation requirements and discuss the opera-
tional obstacles to establish each SSI feature in a cluster system.

a. Single entry point in a cluster environment
b. Single memory space in a cluster system
c. Single file hierarchy in a cluster system
d. Single I/O space in a cluster system
e. Single network space in a cluster system
f. Single networking in a cluster system
g. Single point of control in a cluster system
h. Single job management in a cluster system
i. Single user interface in a cluster system
j. Single process space in a cluster system

Problem 2.17
Use examples to explain the following terms on cluster job management systems.

a. Serial jobs versus parallel jobs
b. Batch jobs versus interactive jobs
c. Cluster jobs versus foreign (local) jobs
d. Cluster processes, local processes, and kernel processes
e. Dedicated mode, space-sharing mode, and timesharing mode
f. Independent scheduling versus gang scheduling

Problem 2.18
This problem focuses on the concept of LSF:

a. Give an example of each of the four types of LSF jobs.
b. For a 1,000-server cluster, give two reasons why the LSF load-sharing policy is better if (1) the

entire cluster has one master LIM or (2) all LIMs are masters.
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c. In the LSF master-election scheme, a node in the “no master” state waits for a time period
proportional to the node number before becoming a new master. Why is the wait time
proportional to the node number?

Problem 2.19
This problem is related to the use of MOSIX for cluster computing. Check with the open literature
on current features that have been claimed by designers and developers in supporting Linux clus-
ters, GPU clusters, multiclusters, and even virtualized clouds. Discuss the advantages and shortcom-
ings from the user’s perspective.

Problem 2.20
Compare China’s Tianhe-1A with the Cray Jaguar in terms of their relative strengths and weak-
nesses in architecture design, resource management, software environment, and reported applica-
tions. You may need to conduct some research to find the latest developments regarding these
systems. Justify your assessment with reasoning and evidential information.
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SUMMARY
The reincarnation of virtual machines (VMs) presents a great opportunity for parallel, cluster, grid,
cloud, and distributed computing. Virtualization technology benefits the computer and IT industries
by enabling users to share expensive hardware resources by multiplexing VMs on the same set of
hardware hosts. This chapter covers virtualization levels, VM architectures, virtual networking,
virtual cluster construction, and virtualized data-center design and automation in cloud computing.
In particular, the designs of dynamically structured clusters, grids, and clouds are presented with
VMs and virtual clusters.

3.1 IMPLEMENTATION LEVELS OF VIRTUALIZATION
Virtualization is a computer architecture technology by which multiple virtual machines (VMs) are
multiplexed in the same hardware machine. The idea of VMs can be dated back to the 1960s [53].
The purpose of a VM is to enhance resource sharing by many users and improve computer perfor-
mance in terms of resource utilization and application flexibility. Hardware resources (CPU, mem-
ory, I/O devices, etc.) or software resources (operating system and software libraries) can be
virtualized in various functional layers. This virtualization technology has been revitalized as the
demand for distributed and cloud computing increased sharply in recent years [41].

The idea is to separate the hardware from the software to yield better system efficiency. For
example, computer users gained access to much enlarged memory space when the concept of virtual
memory was introduced. Similarly, virtualization techniques can be applied to enhance the use of
compute engines, networks, and storage. In this chapter we will discuss VMs and their applications
for building distributed systems. According to a 2009 Gartner Report, virtualization was the top
strategic technology poised to change the computer industry. With sufficient storage, any computer
platform can be installed in another host computer, even if they use processors with different
instruction sets and run with distinct operating systems on the same hardware.

3.1.1 Levels of Virtualization Implementation
A traditional computer runs with a host operating system specially tailored for its hardware architec-
ture, as shown in Figure 3.1(a). After virtualization, different user applications managed by their
own operating systems (guest OS) can run on the same hardware, independent of the host OS. This
is often done by adding additional software, called a virtualization layer as shown in Figure 3.1(b).
This virtualization layer is known as hypervisor or virtual machine monitor (VMM) [54]. The VMs
are shown in the upper boxes, where applications run with their own guest OS over the virtualized
CPU, memory, and I/O resources.

The main function of the software layer for virtualization is to virtualize the physical hardware
of a host machine into virtual resources to be used by the VMs, exclusively. This can be implemen-
ted at various operational levels, as we will discuss shortly. The virtualization software creates the
abstraction of VMs by interposing a virtualization layer at various levels of a computer system.
Common virtualization layers include the instruction set architecture (ISA) level, hardware level,
operating system level, library support level, and application level (see Figure 3.2).
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Application level

JVM / .NET CLR / Panot

WINE/ WABI/ LxRun / Visual MainWin / vCUDA

Jail / Virtual Environment / Ensim’s VPS / FVM

VMware / Virtual PC / Denali / Xen / L4 /
Plex 86 / User mode Linux / Cooperative Linux

Bochs / Crusoe / QEMU / BIRD / Dynamo

Operating system level

Library (user-level API) level

Hardware abstraction layer (HAL) level

Instruction set architecture (ISA) level

FIGURE 3.2

Virtualization ranging from hardware to applications in five abstraction levels.

Application

Host operating system

Hardware

Hardware running the Host OS

(a) Traditional computer (b) After virtualization
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Virtualization layer (Hypervisor or VMM)
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3.1.1.1 Instruction Set Architecture Level
At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the host
machine. For example, MIPS binary code can run on an x86-based host machine with the help of
ISA emulation. With this approach, it is possible to run a large amount of legacy binary code writ-
ten for various processors on any given new hardware host machine. Instruction set emulation leads
to virtual ISAs created on any hardware machine.

The basic emulation method is through code interpretation. An interpreter program interprets the
source instructions to target instructions one by one. One source instruction may require tens or
hundreds of native target instructions to perform its function. Obviously, this process is relatively
slow. For better performance, dynamic binary translation is desired. This approach translates basic
blocks of dynamic source instructions to target instructions. The basic blocks can also be extended
to program traces or super blocks to increase translation efficiency. Instruction set emulation
requires binary translation and optimization. A virtual instruction set architecture (V-ISA) thus
requires adding a processor-specific software translation layer to the compiler.

3.1.1.2 Hardware Abstraction Level
Hardware-level virtualization is performed right on top of the bare hardware. On the one hand, this
approach generates a virtual hardware environment for a VM. On the other hand, the process manages
the underlying hardware through virtualization. The idea is to virtualize a computer’s resources, such as
its processors, memory, and I/O devices. The intention is to upgrade the hardware utilization rate by
multiple users concurrently. The idea was implemented in the IBM VM/370 in the 1960s. More
recently, the Xen hypervisor has been applied to virtualize x86-based machines to run Linux or other
guest OS applications. We will discuss hardware virtualization approaches in more detail in Section 3.3.

3.1.1.3 Operating System Level
This refers to an abstraction layer between traditional OS and user applications. OS-level virtualiza-
tion creates isolated containers on a single physical server and the OS instances to utilize the hard-
ware and software in data centers. The containers behave like real servers. OS-level virtualization is
commonly used in creating virtual hosting environments to allocate hardware resources among a
large number of mutually distrusting users. It is also used, to a lesser extent, in consolidating server
hardware by moving services on separate hosts into containers or VMs on one server. OS-level
virtualization is depicted in Section 3.1.3.

3.1.1.4 Library Support Level
Most applications use APIs exported by user-level libraries rather than using lengthy system calls
by the OS. Since most systems provide well-documented APIs, such an interface becomes another
candidate for virtualization. Virtualization with library interfaces is possible by controlling the com-
munication link between applications and the rest of a system through API hooks. The software
tool WINE has implemented this approach to support Windows applications on top of UNIX hosts.
Another example is the vCUDA which allows applications executing within VMs to leverage GPU
hardware acceleration. This approach is detailed in Section 3.1.4.

3.1.1.5 User-Application Level
Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an
application often runs as a process. Therefore, application-level virtualization is also known as
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process-level virtualization. The most popular approach is to deploy high level language (HLL)
VMs. In this scenario, the virtualization layer sits as an application program on top of the operating
system, and the layer exports an abstraction of a VM that can run programs written and compiled
to a particular abstract machine definition. Any program written in the HLL and compiled for this
VM will be able to run on it. The Microsoft .NET CLR and Java Virtual Machine (JVM) are two
good examples of this class of VM.

Other forms of application-level virtualization are known as application isolation, application
sandboxing, or application streaming. The process involves wrapping the application in a layer that
is isolated from the host OS and other applications. The result is an application that is much easier
to distribute and remove from user workstations. An example is the LANDesk application virtuali-
zation platform which deploys software applications as self-contained, executable files in an isolated
environment without requiring installation, system modifications, or elevated security privileges.

3.1.1.6 Relative Merits of Different Approaches
Table 3.1 compares the relative merits of implementing virtualization at various levels. The column
headings correspond to four technical merits. “Higher Performance” and “Application Flexibility”
are self-explanatory. “Implementation Complexity” implies the cost to implement that particular vir-
tualization level. “Application Isolation” refers to the effort required to isolate resources committed
to different VMs. Each row corresponds to a particular level of virtualization.

The number of X’s in the table cells reflects the advantage points of each implementation level.
Five X’s implies the best case and one X implies the worst case. Overall, hardware and OS support
will yield the highest performance. However, the hardware and application levels are also the most
expensive to implement. User isolation is the most difficult to achieve. ISA implementation offers
the best application flexibility.

3.1.2 VMM Design Requirements and Providers
As mentioned earlier, hardware-level virtualization inserts a layer between real hardware and tradi-
tional operating systems. This layer is commonly called the Virtual Machine Monitor (VMM) and it
manages the hardware resources of a computing system. Each time programs access the hardware the
VMM captures the process. In this sense, the VMM acts as a traditional OS. One hardware compo-
nent, such as the CPU, can be virtualized as several virtual copies. Therefore, several traditional oper-
ating systems which are the same or different can sit on the same set of hardware simultaneously.

Table 3.1 Relative Merits of Virtualization at Various Levels (More “X”’s Means Higher Merit, with a
Maximum of 5 X’s)

Level of Implementation
Higher
Performance

Application
Flexibility

Implementation
Complexity

Application
Isolation

ISA X XXXXX XXX XXX
Hardware-level virtualization XXXXX XXX XXXXX XXXX
OS-level virtualization XXXXX XX XXX XX
Runtime library support XXX XX XX XX
User application level XX XX XXXXX XXXXX
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There are three requirements for a VMM. First, a VMM should provide an environment for pro-
grams which is essentially identical to the original machine. Second, programs run in this environ-
ment should show, at worst, only minor decreases in speed. Third, a VMM should be in complete
control of the system resources. Any program run under a VMM should exhibit a function identical
to that which it runs on the original machine directly. Two possible exceptions in terms of differ-
ences are permitted with this requirement: differences caused by the availability of system resources
and differences caused by timing dependencies. The former arises when more than one VM is run-
ning on the same machine.

The hardware resource requirements, such as memory, of each VM are reduced, but the sum of
them is greater than that of the real machine installed. The latter qualification is required because of
the intervening level of software and the effect of any other VMs concurrently existing on the same
hardware. Obviously, these two differences pertain to performance, while the function a VMM pro-
vides stays the same as that of a real machine. However, the identical environment requirement
excludes the behavior of the usual time-sharing operating system from being classed as a VMM.

A VMM should demonstrate efficiency in using the VMs. Compared with a physical machine,
no one prefers a VMM if its efficiency is too low. Traditional emulators and complete software
interpreters (simulators) emulate each instruction by means of functions or macros. Such a method
provides the most flexible solutions for VMMs. However, emulators or simulators are too slow to
be used as real machines. To guarantee the efficiency of a VMM, a statistically dominant subset
of the virtual processor’s instructions needs to be executed directly by the real processor, with no
software intervention by the VMM. Table 3.2 compares four hypervisors and VMMs that are in
use today.

Complete control of these resources by a VMM includes the following aspects: (1) The VMM is
responsible for allocating hardware resources for programs; (2) it is not possible for a program to
access any resource not explicitly allocated to it; and (3) it is possible under certain circumstances
for a VMM to regain control of resources already allocated. Not all processors satisfy these require-
ments for a VMM. A VMM is tightly related to the architectures of processors. It is difficult to

Table 3.2 Comparison of Four VMM and Hypervisor Software Packages

Provider and
References Host CPU Host OS Guest OS Architecture

VMware
Workstation [71]

x86, x86-64 Windows,
Linux

Windows, Linux,
Solaris, FreeBSD,
Netware, OS/2, SCO,
BeOS, Darwin

Full Virtualization

VMware ESX
Server [71]

x86, x86-64 No host OS The same as VMware
Workstation

Para-Virtualization

Xen [7,13,42] x86, x86-64, IA-64 NetBSD,
Linux,
Solaris

FreeBSD, NetBSD,
Linux, Solaris,
Windows XP and
2003 Server

Hypervisor

KVM [31] x86, x86-64, IA-64,
S390, PowerPC

Linux Linux, Windows,
FreeBSD, Solaris

Para-Virtualization
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implement a VMM for some types of processors, such as the x86. Specific limitations include the
inability to trap on some privileged instructions. If a processor is not designed to support virtualiza-
tion primarily, it is necessary to modify the hardware to satisfy the three requirements for a VMM.
This is known as hardware-assisted virtualization.

3.1.3 Virtualization Support at the OS Level
With the help of VM technology, a new computing mode known as cloud computing is emerging.
Cloud computing is transforming the computing landscape by shifting the hardware and staffing costs
of managing a computational center to third parties, just like banks. However, cloud computing has at
least two challenges. The first is the ability to use a variable number of physical machines and VM
instances depending on the needs of a problem. For example, a task may need only a single CPU dur-
ing some phases of execution but may need hundreds of CPUs at other times. The second challenge
concerns the slow operation of instantiating new VMs. Currently, new VMs originate either as fresh
boots or as replicates of a template VM, unaware of the current application state. Therefore, to better
support cloud computing, a large amount of research and development should be done.

3.1.3.1 Why OS-Level Virtualization?
As mentioned earlier, it is slow to initialize a hardware-level VM because each VM creates its own
image from scratch. In a cloud computing environment, perhaps thousands of VMs need to be initi-
alized simultaneously. Besides slow operation, storing the VM images also becomes an issue. As a
matter of fact, there is considerable repeated content among VM images. Moreover, full virtualiza-
tion at the hardware level also has the disadvantages of slow performance and low density, and the
need for para-virtualization to modify the guest OS. To reduce the performance overhead of
hardware-level virtualization, even hardware modification is needed. OS-level virtualization provides
a feasible solution for these hardware-level virtualization issues.

Operating system virtualization inserts a virtualization layer inside an operating system to
partition a machine’s physical resources. It enables multiple isolated VMs within a single operating
system kernel. This kind of VM is often called a virtual execution environment (VE), Virtual
Private System (VPS), or simply container. From the user’s point of view, VEs look like real ser-
vers. This means a VE has its own set of processes, file system, user accounts, network interfaces
with IP addresses, routing tables, firewall rules, and other personal settings. Although VEs can be
customized for different people, they share the same operating system kernel. Therefore, OS-level
virtualization is also called single-OS image virtualization. Figure 3.3 illustrates operating system
virtualization from the point of view of a machine stack.

3.1.3.2 Advantages of OS Extensions
Compared to hardware-level virtualization, the benefits of OS extensions are twofold: (1) VMs at the
operating system level have minimal startup/shutdown costs, low resource requirements, and high
scalability; and (2) for an OS-level VM, it is possible for a VM and its host environment to synchro-
nize state changes when necessary. These benefits can be achieved via two mechanisms of OS-level
virtualization: (1) All OS-level VMs on the same physical machine share a single operating system
kernel; and (2) the virtualization layer can be designed in a way that allows processes in VMs to
access as many resources of the host machine as possible, but never to modify them. In cloud
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computing, the first and second benefits can be used to overcome the defects of slow initialization of
VMs at the hardware level, and being unaware of the current application state, respectively.

3.1.3.3 Disadvantages of OS Extensions
The main disadvantage of OS extensions is that all the VMs at operating system level on a single
container must have the same kind of guest operating system. That is, although different OS-level
VMs may have different operating system distributions, they must pertain to the same operating
system family. For example, a Windows distribution such as Windows XP cannot run on a
Linux-based container. However, users of cloud computing have various preferences. Some prefer
Windows and others prefer Linux or other operating systems. Therefore, there is a challenge for
OS-level virtualization in such cases.

Figure 3.3 illustrates the concept of OS-level virtualization. The virtualization layer is inserted
inside the OS to partition the hardware resources for multiple VMs to run their applications in
multiple virtual environments. To implement OS-level virtualization, isolated execution environ-
ments (VMs) should be created based on a single OS kernel. Furthermore, the access requests from
a VM need to be redirected to the VM’s local resource partition on the physical machine. For
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The OpenVZ virtualization layer inside the host OS, which provides some OS images to create VMs quickly.
(Courtesy of OpenVZ User’s Guide [65] )
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example, the chroot command in a UNIX system can create several virtual root directories within a
host OS. These virtual root directories are the root directories of all VMs created.

There are two ways to implement virtual root directories: duplicating common resources to each
VM partition; or sharing most resources with the host environment and only creating private
resource copies on the VM on demand. The first way incurs significant resource costs and overhead
on a physical machine. This issue neutralizes the benefits of OS-level virtualization, compared with
hardware-assisted virtualization. Therefore, OS-level virtualization is often a second choice.

3.1.3.4 Virtualization on Linux or Windows Platforms
By far, most reported OS-level virtualization systems are Linux-based. Virtualization support on the
Windows-based platform is still in the research stage. The Linux kernel offers an abstraction layer
to allow software processes to work with and operate on resources without knowing the hardware
details. New hardware may need a new Linux kernel to support. Therefore, different Linux plat-
forms use patched kernels to provide special support for extended functionality.

However, most Linux platforms are not tied to a special kernel. In such a case, a host can run
several VMs simultaneously on the same hardware. Table 3.3 summarizes several examples of OS-
level virtualization tools that have been developed in recent years. Two OS tools (Linux vServer
and OpenVZ) support Linux platforms to run other platform-based applications through virtualiza-
tion. These two OS-level tools are illustrated in Example 3.1. The third tool, FVM, is an attempt
specifically developed for virtualization on the Windows NT platform.

Example 3.1 Virtualization Support for the Linux Platform

OpenVZ is an OS-level tool designed to support Linux platforms to create virtual environments for running
VMs under different guest OSes. OpenVZ is an open source container-based virtualization solution built on
Linux. To support virtualization and isolation of various subsystems, limited resource management, and
checkpointing, OpenVZ modifies the Linux kernel. The overall picture of the OpenVZ system is illustrated
in Figure 3.3. Several VPSes can run simultaneously on a physical machine. These VPSes look like normal

Table 3.3 Virtualization Support for Linux and Windows NT Platforms

Virtualization Support and Source of
Information

Brief Introduction on Functionality and
Application Platforms

Linux vServer for Linux platforms (http://linux-
vserver.org/)

Extends Linux kernels to implement a security
mechanism to help build VMs by setting resource
limits and file attributes and changing the root
environment for VM isolation

OpenVZ for Linux platforms [65]; http://ftp.openvz
.org/doc/OpenVZ-Users-Guide.pdf)

Supports virtualization by creating virtual private
servers (VPSes); the VPS has its own files, users,
process tree, and virtual devices, which can be
isolated from other VPSes, and checkpointing and
live migration are supported

FVM (Feather-Weight Virtual Machines) for
virtualizing the Windows NT platforms [78])

Uses system call interfaces to create VMs at the NY
kernel space; multiple VMs are supported by
virtualized namespace and copy-on-write
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Linux servers. Each VPS has its own files, users and groups, process tree, virtual network, virtual devices,
and IPC through semaphores and messages.

The resource management subsystem of OpenVZ consists of three components: two-level disk alloca-
tion, a two-level CPU scheduler, and a resource controller. The amount of disk space a VM can use is set
by the OpenVZ server administrator. This is the first level of disk allocation. Each VM acts as a standard
Linux system. Hence, the VM administrator is responsible for allocating disk space for each user and
group. This is the second-level disk quota. The first-level CPU scheduler of OpenVZ decides which VM to
give the time slice to, taking into account the virtual CPU priority and limit settings.

The second-level CPU scheduler is the same as that of Linux. OpenVZ has a set of about 20 parameters
which are carefully chosen to cover all aspects of VM operation. Therefore, the resources that a VM can use
are well controlled. OpenVZ also supports checkpointing and live migration. The complete state of a VM can
quickly be saved to a disk file. This file can then be transferred to another physical machine and the VM can
be restored there. It only takes a few seconds to complete the whole process. However, there is still a delay
in processing because the established network connections are also migrated.

3.1.4 Middleware Support for Virtualization
Library-level virtualization is also known as user-level Application Binary Interface (ABI) or API
emulation. This type of virtualization can create execution environments for running alien programs
on a platform rather than creating a VM to run the entire operating system. API call interception
and remapping are the key functions performed. This section provides an overview of several
library-level virtualization systems: namely the Windows Application Binary Interface (WABI),
lxrun, WINE, Visual MainWin, and vCUDA, which are summarized in Table 3.4.

Table 3.4 Middleware and Library Support for Virtualization

Middleware or Runtime Library and References or
Web Link Brief Introduction and Application Platforms

WABI (http://docs.sun.com/app/docs/doc/802-6306) Middleware that converts Windows system calls
running on x86 PCs to Solaris system calls
running on SPARC workstations

Lxrun (Linux Run) (http://www.ugcs.caltech.edu/
~steven/lxrun/)

A system call emulator that enables Linux
applications written for x86 hosts to run on UNIX
systems such as the SCO OpenServer

WINE (http://www.winehq.org/) A library support system for virtualizing x86
processors to run Windows applications under
Linux, FreeBSD, and Solaris

Visual MainWin (http://www.mainsoft.com/) A compiler support system to develop Windows
applications using Visual Studio to run on Solaris,
Linux, and AIX hosts

vCUDA (Example 3.2) (IEEE IPDPS 2009 [57]) Virtualization support for using general-purpose
GPUs to run data-intensive applications under a
special guest OS
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The WABI offers middleware to convert Windows system calls to Solaris system calls. Lxrun is
really a system call emulator that enables Linux applications written for x86 hosts to run on UNIX
systems. Similarly, Wine offers library support for virtualizing x86 processors to run Windows appli-
cations on UNIX hosts. Visual MainWin offers a compiler support system to develop Windows appli-
cations using Visual Studio to run on some UNIX hosts. The vCUDA is explained in Example 3.2
with a graphical illustration in Figure 3.4.

Example 3.2 The vCUDA for Virtualization of General-Purpose GPUs

CUDA is a programming model and library for general-purpose GPUs. It leverages the high performance of
GPUs to run compute-intensive applications on host operating systems. However, it is difficult to run CUDA
applications on hardware-level VMs directly. vCUDA virtualizes the CUDA library and can be installed on
guest OSes. When CUDA applications run on a guest OS and issue a call to the CUDA API, vCUDA
intercepts the call and redirects it to the CUDA API running on the host OS. Figure 3.4 shows the basic
concept of the vCUDA architecture [57].

The vCUDA employs a client-server model to implement CUDA virtualization. It consists of three user
space components: the vCUDA library, a virtual GPU in the guest OS (which acts as a client), and the
vCUDA stub in the host OS (which acts as a server). The vCUDA library resides in the guest OS as a
substitute for the standard CUDA library. It is responsible for intercepting and redirecting API calls from
the client to the stub. Besides these tasks, vCUDA also creates vGPUs and manages them.

The functionality of a vGPU is threefold: It abstracts the GPU structure and gives applications a uni-
form view of the underlying hardware; when a CUDA application in the guest OS allocates a device’s mem-
ory the vGPU can return a local virtual address to the application and notify the remote stub to allocate the
real device memory, and the vGPU is responsible for storing the CUDA API flow. The vCUDA stub receives

Host OS Guest OS

vCUDA stub CUDA application

vCUDA library vGPUCUDA library

Device driver

VMM

Device (GPU, Hard disk, Network card)

.........

FIGURE 3.4

Basic concept of the vCUDA architecture.
(Courtesy of Lin Shi, et al. © IEEE [57] )
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and interprets remote requests and creates a corresponding execution context for the API calls from the
guest OS, then returns the results to the guest OS. The vCUDA stub also manages actual physical resource
allocation.

3.2 VIRTUALIZATION STRUCTURES/TOOLS AND MECHANISMS
In general, there are three typical classes of VM architecture. Figure 3.1 showed the architectures of
a machine before and after virtualization. Before virtualization, the operating system manages the
hardware. After virtualization, a virtualization layer is inserted between the hardware and the operat-
ing system. In such a case, the virtualization layer is responsible for converting portions of the real
hardware into virtual hardware. Therefore, different operating systems such as Linux and Windows
can run on the same physical machine, simultaneously. Depending on the position of the virtualiza-
tion layer, there are several classes of VM architectures, namely the hypervisor architecture, para-
virtualization, and host-based virtualization. The hypervisor is also known as the VMM (Virtual
Machine Monitor). They both perform the same virtualization operations.

3.2.1 Hypervisor and Xen Architecture
The hypervisor supports hardware-level virtualization (see Figure 3.1(b)) on bare metal devices like
CPU, memory, disk and network interfaces. The hypervisor software sits directly between the physi-
cal hardware and its OS. This virtualization layer is referred to as either the VMM or the hypervisor.
The hypervisor provides hypercalls for the guest OSes and applications. Depending on the functional-
ity, a hypervisor can assume a micro-kernel architecture like the Microsoft Hyper-V. Or it can
assume a monolithic hypervisor architecture like the VMware ESX for server virtualization.

A micro-kernel hypervisor includes only the basic and unchanging functions (such as physical
memory management and processor scheduling). The device drivers and other changeable components
are outside the hypervisor. A monolithic hypervisor implements all the aforementioned functions,
including those of the device drivers. Therefore, the size of the hypervisor code of a micro-kernel hyper-
visor is smaller than that of a monolithic hypervisor. Essentially, a hypervisor must be able to convert
physical devices into virtual resources dedicated for the deployed VM to use.

3.2.1.1 The Xen Architecture
Xen is an open source hypervisor program developed by Cambridge University. Xen is a micro-
kernel hypervisor, which separates the policy from the mechanism. The Xen hypervisor implements
all the mechanisms, leaving the policy to be handled by Domain 0, as shown in Figure 3.5. Xen
does not include any device drivers natively [7]. It just provides a mechanism by which a guest OS
can have direct access to the physical devices. As a result, the size of the Xen hypervisor is kept
rather small. Xen provides a virtual environment located between the hardware and the OS.
A number of vendors are in the process of developing commercial Xen hypervisors, among them
are Citrix XenServer [62] and Oracle VM [42].

The core components of a Xen system are the hypervisor, kernel, and applications. The organi-
zation of the three components is important. Like other virtualization systems, many guest OSes
can run on top of the hypervisor. However, not all guest OSes are created equal, and one in
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particular controls the others. The guest OS, which has control ability, is called Domain 0, and the
others are called Domain U. Domain 0 is a privileged guest OS of Xen. It is first loaded when Xen
boots without any file system drivers being available. Domain 0 is designed to access hardware
directly and manage devices. Therefore, one of the responsibilities of Domain 0 is to allocate and
map hardware resources for the guest domains (the Domain U domains).

For example, Xen is based on Linux and its security level is C2. Its management VM is named
Domain 0, which has the privilege to manage other VMs implemented on the same host. If Domain
0 is compromised, the hacker can control the entire system. So, in the VM system, security policies
are needed to improve the security of Domain 0. Domain 0, behaving as a VMM, allows users to
create, copy, save, read, modify, share, migrate, and roll back VMs as easily as manipulating a file,
which flexibly provides tremendous benefits for users. Unfortunately, it also brings a series of
security problems during the software life cycle and data lifetime.

Traditionally, a machine’s lifetime can be envisioned as a straight line where the current state of
the machine is a point that progresses monotonically as the software executes. During this time, con-
figuration changes are made, software is installed, and patches are applied. In such an environment,
the VM state is akin to a tree: At any point, execution can go into N different branches where multiple
instances of a VM can exist at any point in this tree at any given time. VMs are allowed to roll back
to previous states in their execution (e.g., to fix configuration errors) or rerun from the same point
many times (e.g., as a means of distributing dynamic content or circulating a “live” system image).

3.2.2 Binary Translation with Full Virtualization
Depending on implementation technologies, hardware virtualization can be classified into two cate-
gories: full virtualization and host-based virtualization. Full virtualization does not need to modify
the host OS. It relies on binary translation to trap and to virtualize the execution of certain
sensitive, nonvirtualizable instructions. The guest OSes and their applications consist of noncritical
and critical instructions. In a host-based system, both a host OS and a guest OS are used. A virtuali-
zation software layer is built between the host OS and guest OS. These two classes of VM architec-
ture are introduced next.
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The Xen architecture’s special domain 0 for control and I/O, and several guest domains for user applications.
(Courtesy of P. Barham, et al. [7] )
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3.2.2.1 Full Virtualization
With full virtualization, noncritical instructions run on the hardware directly while critical
instructions are discovered and replaced with traps into the VMM to be emulated by software. Both
the hypervisor and VMM approaches are considered full virtualization. Why are only critical
instructions trapped into the VMM? This is because binary translation can incur a large performance
overhead. Noncritical instructions do not control hardware or threaten the security of the system, but
critical instructions do. Therefore, running noncritical instructions on hardware not only can
promote efficiency, but also can ensure system security.

3.2.2.2 Binary Translation of Guest OS Requests Using a VMM
This approach was implemented by VMware and many other software companies. As shown in
Figure 3.6, VMware puts the VMM at Ring 0 and the guest OS at Ring 1. The VMM scans the
instruction stream and identifies the privileged, control- and behavior-sensitive instructions. When
these instructions are identified, they are trapped into the VMM, which emulates the behavior of
these instructions. The method used in this emulation is called binary translation. Therefore, full vir-
tualization combines binary translation and direct execution. The guest OS is completely decoupled
from the underlying hardware. Consequently, the guest OS is unaware that it is being virtualized.

The performance of full virtualization may not be ideal, because it involves binary translation
which is rather time-consuming. In particular, the full virtualization of I/O-intensive applications is
a really a big challenge. Binary translation employs a code cache to store translated hot instructions
to improve performance, but it increases the cost of memory usage. At the time of this writing, the
performance of full virtualization on the x86 architecture is typically 80 percent to 97 percent that
of the host machine.

3.2.2.3 Host-Based Virtualization
An alternative VM architecture is to install a virtualization layer on top of the host OS. This host OS
is still responsible for managing the hardware. The guest OSes are installed and run on top of the
virtualization layer. Dedicated applications may run on the VMs. Certainly, some other applications

can also run with the host OS directly. This host-
based architecture has some distinct advantages,
as enumerated next. First, the user can install this
VM architecture without modifying the host OS.
The virtualizing software can rely on the host OS
to provide device drivers and other low-level ser-
vices. This will simplify the VM design and ease
its deployment.

Second, the host-based approach appeals to
many host machine configurations. Compared to
the hypervisor/VMM architecture, the perfor-
mance of the host-based architecture may also be
low. When an application requests hardware
access, it involves four layers of mapping which
downgrades performance significantly. When the
ISA of a guest OS is different from the ISA of
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Indirect execution of complex instructions via binary
translation of guest OS requests using the VMM plus
direct execution of simple instructions on the same host.

(Courtesy of VM Ware [71] )
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the underlying hardware, binary translation must be adopted. Although the host-based architecture has
flexibility, the performance is too low to be useful in practice.

3.2.3 Para-Virtualization with Compiler Support
Para-virtualization needs to modify the guest operating systems. A para-virtualized VM provides
special APIs requiring substantial OS modifications in user applications. Performance degradation is
a critical issue of a virtualized system. No one wants to use a VM if it is much slower than using a
physical machine. The virtualization layer can be inserted at different positions in a machine soft-
ware stack. However, para-virtualization attempts to reduce the virtualization overhead, and thus
improve performance by modifying only the guest OS kernel.

Figure 3.7 illustrates the concept of a para-virtualized VM architecture. The guest operating sys-
tems are para-virtualized. They are assisted by an intelligent compiler to replace the nonvirtualizable
OS instructions by hypercalls as illustrated in Figure 3.8. The traditional x86 processor offers four
instruction execution rings: Rings 0, 1, 2, and 3. The lower the ring number, the higher the privi-
lege of instruction being executed. The OS is responsible for managing the hardware and the privi-
leged instructions to execute at Ring 0, while user-level applications run at Ring 3. The best
example of para-virtualization is the KVM to be described below.

3.2.3.1 Para-Virtualization Architecture
When the x86 processor is virtualized, a virtualization layer is inserted between the hardware and
the OS. According to the x86 ring definition, the virtualization layer should also be installed at
Ring 0. Different instructions at Ring 0 may cause some problems. In Figure 3.8, we show that
para-virtualization replaces nonvirtualizable instructions with hypercalls that communicate directly
with the hypervisor or VMM. However, when the guest OS kernel is modified for virtualization, it
can no longer run on the hardware directly.
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guest operating
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Hardware

Para-virtualized
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system

FIGURE 3.7

Para-virtualized VM architecture, which involves
modifying the guest OS kernel to replace
nonvirtualizable instructions with hypercalls for the
hypervisor or the VMM to carry out the virtualization
process (See Figure 3.8 for more details.)

Ring 3

Ring 2

Ring 1
‘Hypercalls’ to the
virtualization
layer replace
nonvirtualizable
OS instructions

Direct
execution
of user
requests

Ring 0

User apps

Host computer
system hardware

Virtualization layer

Para-virtualized

guest OS

FIGURE 3.8

The use of a para-virtualized guest OS assisted by
an intelligent compiler to replace nonvirtualizable OS
instructions by hypercalls.

(Courtesy of VMWare [71] )

3.2 Virtualization Structures/Tools and Mechanisms 143



Although para-virtualization reduces the overhead, it has incurred other problems. First, its
compatibility and portability may be in doubt, because it must support the unmodified OS as
well. Second, the cost of maintaining para-virtualized OSes is high, because they may require
deep OS kernel modifications. Finally, the performance advantage of para-virtualization varies
greatly due to workload variations. Compared with full virtualization, para-virtualization is
relatively easy and more practical. The main problem in full virtualization is its low performance
in binary translation. To speed up binary translation is difficult. Therefore, many virtualization
products employ the para-virtualization architecture. The popular Xen, KVM, and VMware ESX
are good examples.

3.2.3.2 KVM (Kernel-Based VM)
This is a Linux para-virtualization system—a part of the Linux version 2.6.20 kernel. Memory
management and scheduling activities are carried out by the existing Linux kernel. The KVM does
the rest, which makes it simpler than the hypervisor that controls the entire machine. KVM is a
hardware-assisted para-virtualization tool, which improves performance and supports unmodified
guest OSes such as Windows, Linux, Solaris, and other UNIX variants.

3.2.3.3 Para-Virtualization with Compiler Support
Unlike the full virtualization architecture which intercepts and emulates privileged and sensitive
instructions at runtime, para-virtualization handles these instructions at compile time. The guest OS
kernel is modified to replace the privileged and sensitive instructions with hypercalls to the hypervi-
sor or VMM. Xen assumes such a para-virtualization architecture.

The guest OS running in a guest domain may run at Ring 1 instead of at Ring 0. This implies
that the guest OS may not be able to execute some privileged and sensitive instructions. The
privileged instructions are implemented by hypercalls to the hypervisor. After replacing the instructions
with hypercalls, the modified guest OS emulates the behavior of the original guest OS. On an UNIX
system, a system call involves an interrupt or service routine. The hypercalls apply a dedicated service
routine in Xen.

Example 3.3 VMware ESX Server for Para-Virtualization

VMware pioneered the software market for virtualization. The company has developed virtualization tools
for desktop systems and servers as well as virtual infrastructure for large data centers. ESX is a VMM or
a hypervisor for bare-metal x86 symmetric multiprocessing (SMP) servers. It accesses hardware
resources such as I/O directly and has complete resource management control. An ESX-enabled server
consists of four components: a virtualization layer, a resource manager, hardware interface components,
and a service console, as shown in Figure 3.9. To improve performance, the ESX server employs
a para-virtualization architecture in which the VM kernel interacts directly with the hardware without
involving the host OS.

The VMM layer virtualizes the physical hardware resources such as CPU, memory, network and disk
controllers, and human interface devices. Every VM has its own set of virtual hardware resources. The
resource manager allocates CPU, memory disk, and network bandwidth and maps them to the virtual
hardware resource set of each VM created. Hardware interface components are the device drivers and the
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VMware ESX Server File System. The service console is responsible for booting the system, initiating the
execution of the VMM and resource manager, and relinquishing control to those layers. It also facilitates
the process for system administrators.

3.3 VIRTUALIZATION OF CPU, MEMORY, AND I/O DEVICES
To support virtualization, processors such as the x86 employ a special running mode and instructions,
known as hardware-assisted virtualization. In this way, the VMM and guest OS run in different
modes and all sensitive instructions of the guest OS and its applications are trapped in the VMM. To
save processor states, mode switching is completed by hardware. For the x86 architecture, Intel and
AMD have proprietary technologies for hardware-assisted virtualization.

3.3.1 Hardware Support for Virtualization
Modern operating systems and processors permit multiple processes to run simultaneously. If there
is no protection mechanism in a processor, all instructions from different processes will access the
hardware directly and cause a system crash. Therefore, all processors have at least two modes, user
mode and supervisor mode, to ensure controlled access of critical hardware. Instructions running in
supervisor mode are called privileged instructions. Other instructions are unprivileged instructions.
In a virtualized environment, it is more difficult to make OSes and applications run correctly
because there are more layers in the machine stack. Example 3.4 discusses Intel’s hardware support
approach.
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The VMware ESX server architecture using para-virtualization.
(Courtesy of VMware [71] )
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At the time of this writing, many hardware virtualization products were available. The VMware
Workstation is a VM software suite for x86 and x86-64 computers. This software suite allows users
to set up multiple x86 and x86-64 virtual computers and to use one or more of these VMs simulta-
neously with the host operating system. The VMware Workstation assumes the host-based virtuali-
zation. Xen is a hypervisor for use in IA-32, x86-64, Itanium, and PowerPC 970 hosts. Actually,
Xen modifies Linux as the lowest and most privileged layer, or a hypervisor.

One or more guest OS can run on top of the hypervisor. KVM (Kernel-based Virtual Machine)
is a Linux kernel virtualization infrastructure. KVM can support hardware-assisted virtualization and
paravirtualization by using the Intel VT-x or AMD-v and VirtIO framework, respectively. The
VirtIO framework includes a paravirtual Ethernet card, a disk I/O controller, a balloon device for
adjusting guest memory usage, and a VGA graphics interface using VMware drivers.

Example 3.4 Hardware Support for Virtualization in the Intel x86 Processor

Since software-based virtualization techniques are complicated and incur performance overhead,
Intel provides a hardware-assist technique to make virtualization easy and improve performance.
Figure 3.10 provides an overview of Intel’s full virtualization techniques. For processor virtualization,
Intel offers the VT-x or VT-i technique. VT-x adds a privileged mode (VMX Root Mode) and some
instructions to processors. This enhancement traps all sensitive instructions in the VMM automatically.
For memory virtualization, Intel offers the EPT, which translates the virtual address to the machine’s
physical addresses to improve performance. For I/O virtualization, Intel implements VT-d and VT-c to
support this.
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Intel hardware support for virtualization of processor, memory, and I/O devices.
(Modified from [68], Courtesy of Lizhong Chen, USC)

146 CHAPTER 3 Virtual Machines and Virtualization of Clusters and Data Centers



3.3.2 CPU Virtualization
A VM is a duplicate of an existing computer system in which a majority of the VM instructions are
executed on the host processor in native mode. Thus, unprivileged instructions of VMs run directly on the
host machine for higher efficiency. Other critical instructions should be handled carefully for correctness
and stability. The critical instructions are divided into three categories: privileged instructions, control-
sensitive instructions, and behavior-sensitive instructions. Privileged instructions execute in a privileged
mode and will be trapped if executed outside this mode. Control-sensitive instructions attempt to change
the configuration of resources used. Behavior-sensitive instructions have different behaviors depending
on the configuration of resources, including the load and store operations over the virtual memory.

A CPU architecture is virtualizable if it supports the ability to run the VM’s privileged and
unprivileged instructions in the CPU’s user mode while the VMM runs in supervisor mode. When
the privileged instructions including control- and behavior-sensitive instructions of a VM are exe-
cuted, they are trapped in the VMM. In this case, the VMM acts as a unified mediator for hardware
access from different VMs to guarantee the correctness and stability of the whole system. However,
not all CPU architectures are virtualizable. RISC CPU architectures can be naturally virtualized
because all control- and behavior-sensitive instructions are privileged instructions. On the contrary,
x86 CPU architectures are not primarily designed to support virtualization. This is because about 10
sensitive instructions, such as SGDT and SMSW, are not privileged instructions. When these instruc-
tions execute in virtualization, they cannot be trapped in the VMM.

On a native UNIX-like system, a system call triggers the 80h interrupt and passes control to the
OS kernel. The interrupt handler in the kernel is then invoked to process the system call. On a para-
virtualization system such as Xen, a system call in the guest OS first triggers the 80h interrupt nor-
mally. Almost at the same time, the 82h interrupt in the hypervisor is triggered. Incidentally,
control is passed on to the hypervisor as well. When the hypervisor completes its task for the guest
OS system call, it passes control back to the guest OS kernel. Certainly, the guest OS kernel may
also invoke the hypercall while it’s running. Although paravirtualization of a CPU lets unmodified
applications run in the VM, it causes a small performance penalty.

3.3.2.1 Hardware-Assisted CPU Virtualization
This technique attempts to simplify virtualization because full or paravirtualization is complicated.
Intel and AMD add an additional mode called privilege mode level (some people call it Ring-1) to
x86 processors. Therefore, operating systems can still run at Ring 0 and the hypervisor can run at
Ring -1. All the privileged and sensitive instructions are trapped in the hypervisor automatically.
This technique removes the difficulty of implementing binary translation of full virtualization. It
also lets the operating system run in VMs without modification.

Example 3.5 Intel Hardware-Assisted CPU Virtualization

Although x86 processors are not virtualizable primarily, great effort is taken to virtualize them. They are used
widely in comparing RISC processors that the bulk of x86-based legacy systems cannot discard easily. Virtuali-
zation of x86 processors is detailed in the following sections. Intel’s VT-x technology is an example of
hardware-assisted virtualization, as shown in Figure 3.11. Intel calls the privilege level of x86 processors the
VMX Root Mode. In order to control the start and stop of a VM and allocate a memory page to maintain the
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CPU state for VMs, a set of additional instructions is added. At the time of this writing, Xen, VMware, and the
Microsoft Virtual PC all implement their hypervisors by using the VT-x technology.

Generally, hardware-assisted virtualization should have high efficiency. However, since the transition from
the hypervisor to the guest OS incurs high overhead switches between processor modes, it sometimes
cannot outperform binary translation. Hence, virtualization systems such as VMware now use a hybrid
approach, in which a few tasks are offloaded to the hardware but the rest is still done in software. In addition,
para-virtualization and hardware-assisted virtualization can be combined to improve the performance further.

3.3.3 Memory Virtualization
Virtual memory virtualization is similar to the virtual memory support provided by modern operat-
ing systems. In a traditional execution environment, the operating system maintains mappings of
virtual memory to machine memory using page tables, which is a one-stage mapping from virtual
memory to machine memory. All modern x86 CPUs include a memory management unit (MMU)
and a translation lookaside buffer (TLB) to optimize virtual memory performance. However, in a
virtual execution environment, virtual memory virtualization involves sharing the physical system
memory in RAM and dynamically allocating it to the physical memory of the VMs.

That means a two-stage mapping process should be maintained by the guest OS and the VMM,
respectively: virtual memory to physical memory and physical memory to machine memory.
Furthermore, MMU virtualization should be supported, which is transparent to the guest OS.
The guest OS continues to control the mapping of virtual addresses to the physical memory
addresses of VMs. But the guest OS cannot directly access the actual machine memory. The VMM
is responsible for mapping the guest physical memory to the actual machine memory. Figure 3.12
shows the two-level memory mapping procedure.
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Intel hardware-assisted CPU virtualization.
(Modified from [68], Courtesy of Lizhong Chen, USC)
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Since each page table of the guest OSes has a separate page table in the VMM corresponding to
it, the VMM page table is called the shadow page table. Nested page tables add another layer of
indirection to virtual memory. The MMU already handles virtual-to-physical translations as defined
by the OS. Then the physical memory addresses are translated to machine addresses using another
set of page tables defined by the hypervisor. Since modern operating systems maintain a set of
page tables for every process, the shadow page tables will get flooded. Consequently, the perfor-
mance overhead and cost of memory will be very high.

VMware uses shadow page tables to perform virtual-memory-to-machine-memory address trans-
lation. Processors use TLB hardware to map the virtual memory directly to the machine memory to
avoid the two levels of translation on every access. When the guest OS changes the virtual memory
to a physical memory mapping, the VMM updates the shadow page tables to enable a direct
lookup. The AMD Barcelona processor has featured hardware-assisted memory virtualization since
2007. It provides hardware assistance to the two-stage address translation in a virtual execution
environment by using a technology called nested paging.

Example 3.6 Extended Page Table by Intel for Memory Virtualization

Since the efficiency of the software shadow page table technique was too low, Intel developed a hardware-
based EPT technique to improve it, as illustrated in Figure 3.13. In addition, Intel offers a Virtual Processor
ID (VPID) to improve use of the TLB. Therefore, the performance of memory virtualization is greatly
improved. In Figure 3.13, the page tables of the guest OS and EPT are all four-level.

When a virtual address needs to be translated, the CPU will first look for the L4 page table pointed to by
Guest CR3. Since the address in Guest CR3 is a physical address in the guest OS, the CPU needs to convert
the Guest CR3 GPA to the host physical address (HPA) using EPT. In this procedure, the CPU will check the
EPT TLB to see if the translation is there. If there is no required translation in the EPT TLB, the CPU will look
for it in the EPT. If the CPU cannot find the translation in the EPT, an EPT violation exception will be raised.

When the GPA of the L4 page table is obtained, the CPU will calculate the GPA of the L3 page table
by using the GVA and the content of the L4 page table. If the entry corresponding to the GVA in the L4
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Two-level memory mapping procedure.
(Courtesy of R. Rblig, et al. [68] )
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page table is a page fault, the CPU will generate a page fault interrupt and will let the guest OS kernel
handle the interrupt. When the PGA of the L3 page table is obtained, the CPU will look for the EPT to get
the HPA of the L3 page table, as described earlier. To get the HPA corresponding to a GVA, the CPU
needs to look for the EPT five times, and each time, the memory needs to be accessed four times. There-
fore, there are 20 memory accesses in the worst case, which is still very slow. To overcome this short-
coming, Intel increased the size of the EPT TLB to decrease the number of memory accesses.

3.3.4 I/O Virtualization
I/O virtualization involves managing the routing of I/O requests between virtual devices and
the shared physical hardware. At the time of this writing, there are three ways to implement I/O vir-
tualization: full device emulation, para-virtualization, and direct I/O. Full device emulation is the first
approach for I/O virtualization. Generally, this approach emulates well-known, real-world devices.
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Memory virtualization using EPT by Intel (the EPT is also known as the shadow page table [68]).
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All the functions of a device or bus infrastructure, such as device enumeration, identification,
interrupts, and DMA, are replicated in software. This software is located in the VMM and acts as a
virtual device. The I/O access requests of the guest OS are trapped in the VMM which interacts with
the I/O devices. The full device emulation approach is shown in Figure 3.14.

A single hardware device can be shared by multiple VMs that run concurrently. However, software
emulation runs much slower than the hardware it emulates [10,15]. The para-virtualization method of
I/O virtualization is typically used in Xen. It is also known as the split driver model consisting of a
frontend driver and a backend driver. The frontend driver is running in Domain U and the backend dri-
ver is running in Domain 0. They interact with each other via a block of shared memory. The frontend
driver manages the I/O requests of the guest OSes and the backend driver is responsible for managing
the real I/O devices and multiplexing the I/O data of different VMs. Although para-I/O-virtualization
achieves better device performance than full device emulation, it comes with a higher CPU overhead.

Direct I/O virtualization lets the VM access devices directly. It can achieve close-to-native per-
formance without high CPU costs. However, current direct I/O virtualization implementations focus
on networking for mainframes. There are a lot of challenges for commodity hardware devices. For
example, when a physical device is reclaimed (required by workload migration) for later reassign-
ment, it may have been set to an arbitrary state (e.g., DMA to some arbitrary memory locations)
that can function incorrectly or even crash the whole system. Since software-based I/O virtualization
requires a very high overhead of device emulation, hardware-assisted I/O virtualization is critical.
Intel VT-d supports the remapping of I/O DMA transfers and device-generated interrupts. The archi-
tecture of VT-d provides the flexibility to support multiple usage models that may run unmodified,
special-purpose, or “virtualization-aware” guest OSes.

Another way to help I/O virtualization is via self-virtualized I/O (SV-IO) [47]. The key idea of
SV-IO is to harness the rich resources of a multicore processor. All tasks associated with virtualizing an
I/O device are encapsulated in SV-IO. It provides virtual devices and an associated access API to VMs
and a management API to the VMM. SV-IO defines one virtual interface (VIF) for every kind of virtua-
lized I/O device, such as virtual network interfaces, virtual block devices (disk), virtual camera devices,
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Device emulation for I/O virtualization implemented inside the middle layer that maps real I/O devices into the
virtual devices for the guest device driver to use.
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and others. The guest OS interacts with the VIFs via VIF device drivers. Each VIF consists of two mes-
sage queues. One is for outgoing messages to the devices and the other is for incoming messages from
the devices. In addition, each VIF has a unique ID for identifying it in SV-IO.

Example 3.7 VMware Workstation for I/O Virtualization

The VMware Workstation runs as an application. It leverages the I/O device support in guest OSes, host OSes,
and VMM to implement I/O virtualization. The application portion (VMApp) uses a driver loaded into the host
operating system (VMDriver) to establish the privileged VMM, which runs directly on the hardware. A given
physical processor is executed in either the host world or the VMM world, with the VMDriver facilitating the
transfer of control between the two worlds. The VMware Workstation employs full device emulation to
implement I/O virtualization. Figure 3.15 shows the functional blocks used in sending and receiving packets
via the emulated virtual NIC.
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Functional blocks involved in sending and receiving network packets.
(Courtesy of VMWare [71] )
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The virtual NIC models an AMD Lance Am79C970A controller. The device driver for a Lance controller
in the guest OS initiates packet transmissions by reading and writing a sequence of virtual I/O ports; each
read or write switches back to the VMApp to emulate the Lance port accesses. When the last OUT instruc-
tion of the sequence is encountered, the Lance emulator calls a normal write() to the VMNet driver. The
VMNet driver then passes the packet onto the network via a host NIC and then the VMApp switches back
to the VMM. The switch raises a virtual interrupt to notify the guest device driver that the packet was sent.
Packet receives occur in reverse.

3.3.5 Virtualization in Multi-Core Processors
Virtualizing a multi-core processor is relatively more complicated than virtualizing a uni-core processor.
Though multicore processors are claimed to have higher performance by integrating multiple processor
cores in a single chip, muti-core virtualiuzation has raised some new challenges to computer architects,
compiler constructors, system designers, and application programmers. There are mainly two difficul-
ties: Application programs must be parallelized to use all cores fully, and software must explicitly
assign tasks to the cores, which is a very complex problem.

Concerning the first challenge, new programming models, languages, and libraries are needed to
make parallel programming easier. The second challenge has spawned research involving scheduling
algorithms and resource management policies. Yet these efforts cannot balance well among perfor-
mance, complexity, and other issues. What is worse, as technology scales, a new challenge called
dynamic heterogeneity is emerging to mix the fat CPU core and thin GPU cores on the same chip,
which further complicates the multi-core or many-core resource management. The dynamic hetero-
geneity of hardware infrastructure mainly comes from less reliable transistors and increased complexity
in using the transistors [33,66].

3.3.5.1 Physical versus Virtual Processor Cores
Wells, et al. [74] proposed a multicore virtualization method to allow hardware designers to get an
abstraction of the low-level details of the processor cores. This technique alleviates the burden and
inefficiency of managing hardware resources by software. It is located under the ISA and remains
unmodified by the operating system or VMM (hypervisor). Figure 3.16 illustrates the technique of a
software-visible VCPU moving from one core to another and temporarily suspending execution of a
VCPU when there are no appropriate cores on which it can run.

3.3.5.2 Virtual Hierarchy
The emerging many-core chip multiprocessors (CMPs) provides a new computing landscape.
Instead of supporting time-sharing jobs on one or a few cores, we can use the abundant cores in a
space-sharing, where single-threaded or multithreaded jobs are simultaneously assigned to separate
groups of cores for long time intervals. This idea was originally suggested by Marty and Hill [39].
To optimize for space-shared workloads, they propose using virtual hierarchies to overlay a coher-
ence and caching hierarchy onto a physical processor. Unlike a fixed physical hierarchy, a virtual
hierarchy can adapt to fit how the work is space shared for improved performance and performance
isolation.

3.3 Virtualization of CPU, Memory, and I/O Devices 153



Today’s many-core CMPs use a physical hierarchy of two or more cache levels that stati-
cally determine the cache allocation and mapping. A virtual hierarchy is a cache hierarchy
that can adapt to fit the workload or mix of workloads [39]. The hierarchy’s first level locates
data blocks close to the cores needing them for faster access, establishes a shared-cache domain,
and establishes a point of coherence for faster communication. When a miss leaves a tile, it
first attempts to locate the block (or sharers) within the first level. The first level can also pro-
vide isolation between independent workloads. A miss at the L1 cache can invoke the L2
access.

The idea is illustrated in Figure 3.17(a). Space sharing is applied to assign three workloads to
three clusters of virtual cores: namely VM0 and VM3 for database workload, VM1 and VM2 for
web server workload, and VM4–VM7 for middleware workload. The basic assumption is that each
workload runs in its own VM. However, space sharing applies equally within a single operating
system. Statically distributing the directory among tiles can do much better, provided operating sys-
tems or hypervisors carefully map virtual pages to physical frames. Marty and Hill suggested a
two-level virtual coherence and caching hierarchy that harmonizes with the assignment of tiles to
the virtual clusters of VMs.

Figure 3.17(b) illustrates a logical view of such a virtual cluster hierarchy in two levels. Each
VM operates in a isolated fashion at the first level. This will minimize both miss access time and
performance interference with other workloads or VMs. Moreover, the shared resources of cache
capacity, inter-connect links, and miss handling are mostly isolated between VMs. The second level
maintains a globally shared memory. This facilitates dynamically repartitioning resources without
costly cache flushes. Furthermore, maintaining globally shared memory minimizes changes to
existing system software and allows virtualization features such as content-based page sharing.
A virtual hierarchy adapts to space-shared workloads like multiprogramming and server consolida-
tion. Figure 3.17 shows a case study focused on consolidated server workloads in a tiled architecture.
This many-core mapping scheme can also optimize for space-shared multiprogrammed workloads in
a single-OS environment.
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3.4 VIRTUAL CLUSTERS AND RESOURCE MANAGEMENT
A physical cluster is a collection of servers (physical machines) interconnected by a physical network
such as a LAN. In Chapter 2, we studied various clustering techniques on physical machines. Here,
we introduce virtual clusters and study its properties as well as explore their potential applications.
In this section, we will study three critical design issues of virtual clusters: live migration of VMs,
memory and file migrations, and dynamic deployment of virtual clusters.
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FIGURE 3.17

CMP server consolidation by space-sharing of VMs into many cores forming multiple virtual clusters to
execute various workloads.

(Courtesy of Marty and Hill [39] )
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When a traditional VM is initialized, the administrator needs to manually write configuration
information or specify the configuration sources. When more VMs join a network, an inefficient
configuration always causes problems with overloading or underutilization. Amazon’s Elastic
Compute Cloud (EC2) is a good example of a web service that provides elastic computing power in
a cloud. EC2 permits customers to create VMs and to manage user accounts over the time of their
use. Most virtualization platforms, including XenServer and VMware ESX Server, support a brid-
ging mode which allows all domains to appear on the network as individual hosts. By using this
mode, VMs can communicate with one another freely through the virtual network interface card
and configure the network automatically.

3.4.1 Physical versus Virtual Clusters
Virtual clusters are built with VMs installed at distributed servers from one or more physical clus-
ters. The VMs in a virtual cluster are interconnected logically by a virtual network across several
physical networks. Figure 3.18 illustrates the concepts of virtual clusters and physical clusters. Each
virtual cluster is formed with physical machines or a VM hosted by multiple physical clusters. The
virtual cluster boundaries are shown as distinct boundaries.

The provisioning of VMs to a virtual cluster is done dynamically to have the following interest-
ing properties:

• The virtual cluster nodes can be either physical or virtual machines. Multiple VMs running with
different OSes can be deployed on the same physical node.

• A VM runs with a guest OS, which is often different from the host OS, that manages the
resources in the physical machine, where the VM is implemented.

• The purpose of using VMs is to consolidate multiple functionalities on the same server. This
will greatly enhance server utilization and application flexibility.

Physical
cluster 1

Physical
cluster 2

Physical
cluster 3

Virtual
machines

Virtual
Cluster 1

Virtual
cluster 2

Virtual
cluster 4

Virtual
cluster 3

Virtual
cluster 1

FIGURE 3.18

A cloud platform with four virtual clusters over three physical clusters shaded differently.
(Courtesy of Fan Zhang, Tsinghua University )
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• VMs can be colonized (replicated) in multiple servers for the purpose of promoting distributed
parallelism, fault tolerance, and disaster recovery.

• The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similar to the
way an overlay network varies in size in a peer-to-peer (P2P) network.

• The failure of any physical nodes may disable some VMs installed on the failing nodes. But the
failure of VMs will not pull down the host system.

Since system virtualization has been widely used, it is necessary to effectively manage VMs
running on a mass of physical computing nodes (also called virtual clusters) and consequently build
a high-performance virtualized computing environment. This involves virtual cluster deployment,
monitoring and management over large-scale clusters, as well as resource scheduling, load
balancing, server consolidation, fault tolerance, and other techniques. The different node colors in
Figure 3.18 refer to different virtual clusters. In a virtual cluster system, it is quite important to
store the large number of VM images efficiently.

Figure 3.19 shows the concept of a virtual cluster based on application partitioning or customi-
zation. The different colors in the figure represent the nodes in different virtual clusters. As a large
number of VM images might be present, the most important thing is to determine how to store
those images in the system efficiently. There are common installations for most users or applica-
tions, such as operating systems or user-level programming libraries. These software packages can
be preinstalled as templates (called template VMs). With these templates, users can build their own
software stacks. New OS instances can be copied from the template VM. User-specific components
such as programming libraries and applications can be installed to those instances.

Three physical clusters are shown on the left side of Figure 3.18. Four virtual clusters are created
on the right, over the physical clusters. The physical machines are also called host systems. In
contrast, the VMs are guest systems. The host and guest systems may run with different operating
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The concept of a virtual cluster based on application partitioning.
(Courtesy of Kang Chen, Tsinghua University 2008)
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systems. Each VM can be installed on a remote server or replicated on multiple servers belonging to
the same or different physical clusters. The boundary of a virtual cluster can change as VM nodes are
added, removed, or migrated dynamically over time.

3.4.1.1 Fast Deployment and Effective Scheduling
The system should have the capability of fast deployment. Here, deployment means two things:
to construct and distribute software stacks (OS, libraries, applications) to a physical node inside clus-
ters as fast as possible, and to quickly switch runtime environments from one user’s virtual cluster to
another user’s virtual cluster. If one user finishes using his system, the corresponding virtual cluster
should shut down or suspend quickly to save the resources to run other VMs for other users.

The concept of “green computing” has attracted much attention recently. However, previous
approaches have focused on saving the energy cost of components in a single workstation without a
global vision. Consequently, they do not necessarily reduce the power consumption of the whole clus-
ter. Other cluster-wide energy-efficient techniques can only be applied to homogeneous workstations
and specific applications. The live migration of VMs allows workloads of one node to transfer to
another node. However, it does not guarantee that VMs can randomly migrate among themselves. In
fact, the potential overhead caused by live migrations of VMs cannot be ignored.

The overhead may have serious negative effects on cluster utilization, throughput, and QoS
issues. Therefore, the challenge is to determine how to design migration strategies to implement
green computing without influencing the performance of clusters. Another advantage of virtualiza-
tion is load balancing of applications in a virtual cluster. Load balancing can be achieved using the
load index and frequency of user logins. The automatic scale-up and scale-down mechanism of a
virtual cluster can be implemented based on this model. Consequently, we can increase the resource
utilization of nodes and shorten the response time of systems. Mapping VMs onto the most appro-
priate physical node should promote performance. Dynamically adjusting loads among nodes by
live migration of VMs is desired, when the loads on cluster nodes become quite unbalanced.

3.4.1.2 High-Performance Virtual Storage
The template VM can be distributed to several physical hosts in the cluster to customize the VMs. In
addition, existing software packages reduce the time for customization as well as switching virtual
environments. It is important to efficiently manage the disk spaces occupied by template software
packages. Some storage architecture design can be applied to reduce duplicated blocks in a distributed
file system of virtual clusters. Hash values are used to compare the contents of data blocks. Users
have their own profiles which store the identification of the data blocks for corresponding VMs in a
user-specific virtual cluster. New blocks are created when users modify the corresponding data.
Newly created blocks are identified in the users’ profiles.

Basically, there are four steps to deploy a group of VMs onto a target cluster: preparing the disk
image, configuring the VMs, choosing the destination nodes, and executing the VM deployment command
on every host. Many systems use templates to simplify the disk image preparation process. A template is
a disk image that includes a preinstalled operating system with or without certain application software.
Users choose a proper template according to their requirements and make a duplicate of it as their own
disk image. Templates could implement the COW (Copy on Write) format. A new COW backup file is
very small and easy to create and transfer. Therefore, it definitely reduces disk space consumption. In
addition, VM deployment time is much shorter than that of copying the whole raw image file.
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Every VM is configured with a name, disk image, network setting, and allocated CPU and
memory. One needs to record each VM configuration into a file. However, this method is inefficient
when managing a large group of VMs. VMs with the same configurations could use preedited profiles
to simplify the process. In this scenario, the system configures the VMs according to the chosen pro-
file. Most configuration items use the same settings, while some of them, such as UUID, VM name,
and IP address, are assigned with automatically calculated values. Normally, users do not care which
host is running their VM. A strategy to choose the proper destination host for any VM is needed. The
deployment principle is to fulfill the VM requirement and to balance workloads among the whole
host network.

3.4.2 Live VM Migration Steps and Performance Effects
In a cluster built with mixed nodes of host and guest systems, the normal method of operation is to
run everything on the physical machine. When a VM fails, its role could be replaced by another VM
on a different node, as long as they both run with the same guest OS. In other words, a physical node
can fail over to a VM on another host. This is different from physical-to-physical failover in a tradi-
tional physical cluster. The advantage is enhanced failover flexibility. The potential drawback is that
a VM must stop playing its role if its residing host node fails. However, this problem can be mitigated
with VM life migration. Figure 3.20 shows the process of life migration of a VM from host A to host
B. The migration copies the VM state file from the storage area to the host machine.

There are four ways to manage a virtual cluster. First, you can use a guest-based manager, by which
the cluster manager resides on a guest system. In this case, multiple VMs form a virtual cluster. For
example, openMosix is an open source Linux cluster running different guest systems on top of the Xen
hypervisor. Another example is Sun’s cluster Oasis, an experimental Solaris cluster of VMs supported
by a VMware VMM. Second, you can build a cluster manager on the host systems. The host-based
manager supervises the guest systems and can restart the guest system on another physical machine.
A good example is the VMware HA system that can restart a guest system after failure.

These two cluster management systems are either guest-only or host-only, but they do not mix. A
third way to manage a virtual cluster is to use an independent cluster manager on both the host and
guest systems. This will make infrastructure management more complex, however. Finally, you can
use an integrated cluster on the guest and host systems. This means the manager must be designed to
distinguish between virtualized resources and physical resources. Various cluster management
schemes can be greatly enhanced when VM life migration is enabled with minimal overhead.

VMs can be live-migrated from one physical machine to another; in case of failure, one VM can be
replaced by another VM. Virtual clusters can be applied in computational grids, cloud platforms, and
high-performance computing (HPC) systems. The major attraction of this scenario is that virtual cluster-
ing provides dynamic resources that can be quickly put together upon user demand or after a node
failure. In particular, virtual clustering plays a key role in cloud computing. When a VM runs a live ser-
vice, it is necessary to make a trade-off to ensure that the migration occurs in a manner that minimizes
all three metrics. The motivation is to design a live VM migration scheme with negligible downtime,
the lowest network bandwidth consumption possible, and a reasonable total migration time.

Furthermore, we should ensure that the migration will not disrupt other active services residing
in the same host through resource contention (e.g., CPU, network bandwidth). A VM can be in one
of the following four states. An inactive state is defined by the virtualization platform, under which
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the VM is not enabled. An active state refers to a VM that has been instantiated at the virtualization
platform to perform a real task. A paused state corresponds to a VM that has been instantiated but
disabled to process a task or paused in a waiting state. A VM enters the suspended state if its
machine file and virtual resources are stored back to the disk. As shown in Figure 3.20, live migra-
tion of a VM consists of the following six steps:

Steps 0 and 1: Start migration. This step makes preparations for the migration, including
determining the migrating VM and the destination host. Although users could manually make a
VM migrate to an appointed host, in most circumstances, the migration is automatically started
by strategies such as load balancing and server consolidation.
Steps 2: Transfer memory. Since the whole execution state of the VM is stored in memory,
sending the VM’s memory to the destination node ensures continuity of the service provided by
the VM. All of the memory data is transferred in the first round, and then the migration controller
recopies the memory data which is changed in the last round. These steps keep iterating until the
dirty portion of the memory is small enough to handle the final copy. Although precopying
memory is performed iteratively, the execution of programs is not obviously interrupted.

Stage 0: Pre-Migration
  Active VM on Host A
  Alternate physical host may be preselected for migration
  Block devices mirrored and free resources maintained

Stage 1: Reservation
  Initialize a container on the target host

Stage 2: Iterative pre-copy
  Enable shadow paging
  Copy dirty pages in successive rounds.

Stage 3: Stop and copy
  Suspend VM on host A
  Generate ARP to redirect traffic to Host B
  Synchronize all remaining VM state to Host B

Stage 4: Commitment
  VM state on Host A is released

Stage 5: Activation
  VM starts on Host B
  Connects to local devices
  Resumes normal operation

VM running normally on
Host A

Downtime
(VM out of  service)

Overhead due to copying

VM running normally on
Host B

FIGURE 3.20

Live migration process of a VM from one host to another.
(Courtesy of C. Clark, et al. [14] )
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Step 3: Suspend the VM and copy the last portion of the data. The migrating VM’s
execution is suspended when the last round’s memory data is transferred. Other nonmemory data
such as CPU and network states should be sent as well. During this step, the VM is stopped and
its applications will no longer run. This “service unavailable” time is called the “downtime” of
migration, which should be as short as possible so that it can be negligible to users.
Steps 4 and 5: Commit and activate the new host. After all the needed data is copied, on the
destination host, the VM reloads the states and recovers the execution of programs in it, and the
service provided by this VM continues. Then the network connection is redirected to the new
VM and the dependency to the source host is cleared. The whole migration process finishes by
removing the original VM from the source host.

Figure 3.21 shows the effect on the data transmission rate (Mbit/second) of live migration of a
VM from one host to another. Before copying the VM with 512 KB files for 100 clients, the data
throughput was 870 MB/second. The first precopy takes 63 seconds, during which the rate is
reduced to 765 MB/second. Then the data rate reduces to 694 MB/second in 9.8 seconds for more
iterations of the copying process. The system experiences only 165 ms of downtime, before the
VM is restored at the destination host. This experimental result shows a very small migration
overhead in live transfer of a VM between host nodes. This is critical to achieve dynamic cluster
reconfiguration and disaster recovery as needed in cloud computing. We will study these techniques
in more detail in Chapter 4.

With the emergence of widespread cluster computing more than a decade ago, many cluster con-
figuration and management systems have been developed to achieve a range of goals. These goals
naturally influence individual approaches to cluster management. VM technology has become a
popular method for simplifying management and sharing of physical computing resources. Platforms
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Effect on data transmission rate of a VM migrated from one failing web server to another.
(Courtesy of C. Clark, et al. [14] )
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such as VMware and Xen allow multiple VMs with different operating systems and configurations
to coexist on the same physical host in mutual isolation. Clustering inexpensive computers is an
effective way to obtain reliable, scalable computing power for network services and compute-
intensive applications

3.4.3 Migration of Memory, Files, and Network Resources
Since clusters have a high initial cost of ownership, including space, power conditioning, and cool-
ing equipment, leasing or sharing access to a common cluster is an attractive solution when
demands vary over time. Shared clusters offer economies of scale and more effective utilization of
resources by multiplexing. Early configuration and management systems focus on expressive and
scalable mechanisms for defining clusters for specific types of service, and physically partition
cluster nodes among those types. When one system migrates to another physical node, we should
consider the following issues.

3.4.3.1 Memory Migration
This is one of the most important aspects of VM migration. Moving the memory instance of a VM
from one physical host to another can be approached in any number of ways. But traditionally, the
concepts behind the techniques tend to share common implementation paradigms. The techniques
employed for this purpose depend upon the characteristics of application/workloads supported by
the guest OS.

Memory migration can be in a range of hundreds of megabytes to a few gigabytes in a typical
system today, and it needs to be done in an efficient manner. The Internet Suspend-Resume (ISR)
technique exploits temporal locality as memory states are likely to have considerable overlap in the
suspended and the resumed instances of a VM. Temporal locality refers to the fact that the memory
states differ only by the amount of work done since a VM was last suspended before being initiated
for migration.

To exploit temporal locality, each file in the file system is represented as a tree of small subfiles.
A copy of this tree exists in both the suspended and resumed VM instances. The advantage of using
a tree-based representation of files is that the caching ensures the transmission of only those files
which have been changed. The ISR technique deals with situations where the migration of live
machines is not a necessity. Predictably, the downtime (the period during which the service is
unavailable due to there being no currently executing instance of a VM) is high, compared to some
of the other techniques discussed later.

3.4.3.2 File System Migration
To support VM migration, a system must provide each VM with a consistent, location-independent
view of the file system that is available on all hosts. A simple way to achieve this is to provide
each VM with its own virtual disk which the file system is mapped to and transport the contents of
this virtual disk along with the other states of the VM. However, due to the current trend of high-
capacity disks, migration of the contents of an entire disk over a network is not a viable solution.
Another way is to have a global file system across all machines where a VM could be located. This
way removes the need to copy files from one machine to another because all files are network-
accessible.
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A distributed file system is used in ISR serving as a transport mechanism for propagating a
suspended VM state. The actual file systems themselves are not mapped onto the distributed file
system. Instead, the VMM only accesses its local file system. The relevant VM files are explicitly
copied into the local file system for a resume operation and taken out of the local file system for a
suspend operation. This approach relieves developers from the complexities of implementing several
different file system calls for different distributed file systems. It also essentially disassociates the
VMM from any particular distributed file system semantics. However, this decoupling means that
the VMM has to store the contents of each VM’s virtual disks in its local files, which have to be
moved around with the other state information of that VM.

In smart copying, the VMM exploits spatial locality. Typically, people often move between the
same small number of locations, such as their home and office. In these conditions, it is possible to
transmit only the difference between the two file systems at suspending and resuming locations. This
technique significantly reduces the amount of actual physical data that has to be moved. In situations
where there is no locality to exploit, a different approach is to synthesize much of the state at the resum-
ing site. On many systems, user files only form a small fraction of the actual data on disk. Operating
system and application software account for the majority of storage space. The proactive state transfer
solution works in those cases where the resuming site can be predicted with reasonable confidence.

3.4.3.3 Network Migration
A migrating VM should maintain all open network connections without relying on forwarding
mechanisms on the original host or on support from mobility or redirection mechanisms. To enable
remote systems to locate and communicate with a VM, each VM must be assigned a virtual IP
address known to other entities. This address can be distinct from the IP address of the host machine
where the VM is currently located. Each VM can also have its own distinct virtual MAC address.
The VMM maintains a mapping of the virtual IP and MAC addresses to their corresponding VMs. In
general, a migrating VM includes all the protocol states and carries its IP address with it.

If the source and destination machines of a VM migration are typically connected to a single
switched LAN, an unsolicited ARP reply from the migrating host is provided advertising that the IP
has moved to a new location. This solves the open network connection problem by reconfiguring
all the peers to send future packets to a new location. Although a few packets that have already
been transmitted might be lost, there are no other problems with this mechanism. Alternatively, on
a switched network, the migrating OS can keep its original Ethernet MAC address and rely on the
network switch to detect its move to a new port.

Live migration means moving a VM from one physical node to another while keeping its OS
environment and applications unbroken. This capability is being increasingly utilized in today’s enter-
prise environments to provide efficient online system maintenance, reconfiguration, load balancing,
and proactive fault tolerance. It provides desirable features to satisfy requirements for computing
resources in modern computing systems, including server consolidation, performance isolation, and
ease of management. As a result, many implementations are available which support the feature using
disparate functionalities. Traditional migration suspends VMs before the transportation and then
resumes them at the end of the process. By importing the precopy mechanism, a VM could be live-
migrated without stopping the VM and keep the applications running during the migration.

Live migration is a key feature of system virtualization technologies. Here, we focus on VM
migration within a cluster environment where a network-accessible storage system, such as storage
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area network (SAN) or network attached storage (NAS), is employed. Only memory and CPU status
needs to be transferred from the source node to the target node. Live migration techniques mainly
use the precopy approach, which first transfers all memory pages, and then only copies modified pages
during the last round iteratively. The VM service downtime is expected to be minimal by using iterative
copy operations. When applications’ writable working set becomes small, the VM is suspended and
only the CPU state and dirty pages in the last round are sent out to the destination.

In the precopy phase, although a VM service is still available, much performance degradation will
occur because the migration daemon continually consumes network bandwidth to transfer dirty pages in
each round. An adaptive rate limiting approach is employed to mitigate this issue, but total migration time
is prolonged by nearly 10 times. Moreover, the maximum number of iterations must be set because not all
applications’ dirty pages are ensured to converge to a small writable working set over multiple rounds.

In fact, these issues with the precopy approach are caused by the large amount of transferred
data during the whole migration process. A checkpointing/recovery and trace/replay approach (CR/
TR-Motion) is proposed to provide fast VM migration. This approach transfers the execution trace
file in iterations rather than dirty pages, which is logged by a trace daemon. Apparently, the total
size of all log files is much less than that of dirty pages. So, total migration time and downtime of
migration are drastically reduced. However, CR/TR-Motion is valid only when the log replay rate is
larger than the log growth rate. The inequality between source and target nodes limits the applica-
tion scope of live migration in clusters.

Another strategy of postcopy is introduced for live migration of VMs. Here, all memory pages are
transferred only once during the whole migration process and the baseline total migration time is
reduced. But the downtime is much higher than that of precopy due to the latency of fetching pages
from the source node before the VM can be resumed on the target. With the advent of multicore or
many-core machines, abundant CPU resources are available. Even if several VMs reside on a same mul-
ticore machine, CPU resources are still rich because physical CPUs are frequently amenable to multi-
plexing. We can exploit these copious CPU resources to compress page frames and the amount of
transferred data can be significantly reduced. Memory compression algorithms typically have little
memory overhead. Decompression is simple and very fast and requires no memory for decompression.

3.4.3.4 Live Migration of VM Using Xen
In Section 3.2.1, we studied Xen as a VMM or hypervisor, which allows multiple commodity OSes to
share x86 hardware in a safe and orderly fashion. The following example explains how to perform live
migration of a VM between two Xen-enabled host machines. Domain 0 (or Dom0) performs tasks to
create, terminate, or migrate to another host. Xen uses a send/recv model to transfer states across VMs.

Example 3.8 Live Migration of VMs between Two Xen-Enabled Hosts

Xen supports live migration. It is a useful feature and natural extension to virtualization platforms that
allows for the transfer of a VM from one physical machine to another with little or no downtime of the
services hosted by the VM. Live migration transfers the working state and memory of a VM across a net-
work when it is running. Xen also supports VM migration by using a mechanism called Remote Direct
Memory Access (RDMA).

RDMA speeds up VM migration by avoiding TCP/IP stack processing overhead. RDMA implements a
different transfer protocol whose origin and destination VM buffers must be registered before any transfer
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operations occur, reducing it to a “one-sided” interface. Data communication over RDMA does not need to
involve the CPU, caches, or context switches. This allows migration to be carried out with minimal impact
on guest operating systems and hosted applications. Figure 3.22 shows the a compression scheme for VM
migration.

This design requires that we make trade-offs between two factors. If an algorithm embodies expecta-
tions about the kinds of regularities in the memory footprint, it must be very fast and effective. A single
compression algorithm for all memory data is difficult to achieve the win-win status that we expect.
Therefore, it is necessary to provide compression algorithms to pages with different kinds of regularities.
The structure of this live migration system is presented in Dom0.

Migration daemons running in the management VMs are responsible for performing migration. Shadow
page tables in the VMM layer trace modifications to the memory page in migrated VMs during the precopy
phase. Corresponding flags are set in a dirty bitmap. At the start of each precopy round, the bitmap is
sent to the migration daemon. Then, the bitmap is cleared and the shadow page tables are destroyed and
re-created in the next round. The system resides in Xen’s management VM. Memory pages denoted by
bitmap are extracted and compressed before they are sent to the destination. The compressed data is
then decompressed on the target.

3.4.4 Dynamic Deployment of Virtual Clusters
Table 3.5 summarizes four virtual cluster research projects. We briefly introduce them here just
to identify their design objectives and reported results. The Cellular Disco at Stanford is a virtual
cluster built in a shared-memory multiprocessor system. The INRIA virtual cluster was built to test
parallel algorithm performance. The COD and VIOLIN clusters are studied in forthcoming examples.
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FIGURE 3.22

Live migration of VM from the Dom0 domain to a Xen-enabled target host.
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Example 3.9 The Cluster-on-Demand (COD) Project at Duke University

Developed by researchers at Duke University, the COD (Cluster-on-Demand) project is a virtual cluster
management system for dynamic allocation of servers from a computing pool to multiple virtual clusters
[12]. The idea is illustrated by the prototype implementation of the COD shown in Figure 3.23. The COD

Table 3.5 Experimental Results on Four Research Virtual Clusters

Project Name Design Objectives
Reported Results and
References

Cluster-on-Demand at Duke
Univ.

Dynamic resource allocation with a
virtual cluster management system

Sharing of VMs by multiple virtual
clusters using Sun GridEngine [12]

Cellular Disco at Stanford Univ. To deploy a virtual cluster on a
shared-memory multiprocessor

VMs deployed on multiple
processors under a VMM called
Cellular Disco [8]

VIOLIN at Purdue Univ. Multiple VM clustering to prove the
advantage of dynamic adaptation

Reduce execution time of
applications running VIOLIN with
adaptation [25,55]

GRAAL Project at INRIA in
France

Performance of parallel algorithms
in Xen-enabled virtual clusters

75% of max. performance
achieved with 30% resource
slacks over VM clusters

Physical cluster
COD servers backed by configuration database

Resource
policies

Template
definitions

vCluster
requests

Energy-managed
reserve pool

Web service
vCluster

VCMVCM

Network boot
automatic configuration

resource negotiation

Database-driven
network install
controlled by
trampoline

Batch pool
vCluster

Dynamic
virtual clusters

Resource
manager

DHCP Confd NIS MyDNS

MySQL

Image upload

Web interface

ACPI
Wake-on-LAN

FIGURE 3.23

COD partitioning a physical cluster into multiple virtual clusters.
(Courtesy of Jeff Chase, et al., HPDC-2003 © IEEE [12] )
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partitions a physical cluster into multiple virtual clusters (vClusters). vCluster owners specify the operating
systems and software for their clusters through an XML-RPC interface. The vClusters run a batch schedule
from Sun’s GridEngine on a web server cluster. The COD system can respond to load changes in restruc-
turing the virtual clusters dynamically.

The Duke researchers used the Sun GridEngine scheduler to demonstrate that dynamic virtual clusters
are an enabling abstraction for advanced resource management in computing utilities such as grids. The
system supports dynamic, policy-based cluster sharing between local users and hosted grid services.
Attractive features include resource reservation, adaptive provisioning, scavenging of idle resources, and
dynamic instantiation of grid services. The COD servers are backed by a configuration database. This
system provides resource policies and template definition in response to user requests.

Figure 3.24 shows the variation in the number of nodes in each of three virtual clusters during
eight days of a live deployment. Three application workloads requested by three user groups are labeled
“Systems,” “Architecture,” and “BioGeometry” in the trace plot. The experiments were performed with
multiple SGE batch pools on a test bed of 80 rack-mounted IBM xSeries-335 servers within the Duke clus-
ter. This trace plot clearly shows the sharp variation in cluster size (number of nodes) over the eight days.
Dynamic provisioning and deprovisioning of virtual clusters are needed in real-life cluster applications.

Example 3.10 The VIOLIN Project at Purdue University

The Purdue VIOLIN Project applies live VM migration to reconfigure a virtual cluster environment. Its
purpose is to achieve better resource utilization in executing multiple cluster jobs on multiple cluster
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Cluster size variations in COD over eight days at Duke University.
(Courtesy of Jeff Chase, et al., HPDC-2003 © IEEE [12] )

3.4 Virtual Clusters and Resource Management 167



domains. The project leverages the maturity of VM migration and environment adaptation technology.
The approach is to enable mutually isolated virtual environments for executing parallel applications on
top of a shared physical infrastructure consisting of multiple domains. Figure 3.25 illustrates the idea
with five concurrent virtual environments, labeled as VIOLIN 1–5, sharing two physical clusters.

The squares of various shadings represent the VMs deployed in the physical server nodes. The
major contribution by the Purdue group is to achieve autonomic adaptation of the virtual computation
environments as active, integrated entities. A virtual execution environment is able to relocate itself
across the infrastructure, and can scale its share of infrastructural resources. The adaptation is
transparent to both users of virtual environments and administrations of infrastructures. The adaptation
overhead is maintained at 20 sec out of 1,200 sec in solving a large NEMO3D problem of 1 million
particles.

The message being conveyed here is that the virtual environment adaptation can enhance resource
utilization significantly at the expense of less than 1 percent of an increase in total execution time. The
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VIOLIN adaptation scenario of five virtual environments sharing two hosted clusters. Note that there are
more idle squares (blank nodes) before and after the adaptation.

(Courtesy of P. Ruth, et al. [55] )
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migration of VIOLIN environments does pay off. Of course, the gain in shared resource utilization will bene-
fit many users, and the performance gain varies with different adaptation scenarios. We leave readers to
trace the execution of another scenario in Problem 3.17 at the end of this chapter to tell the differences.
Virtual networking is a fundamental component of the VIOLIN system.

3.5 VIRTUALIZATION FOR DATA-CENTER AUTOMATION
Data centers have grown rapidly in recent years, and all major IT companies are pouring their
resources into building new data centers. In addition, Google, Yahoo!, Amazon, Microsoft, HP,
Apple, and IBM are all in the game. All these companies have invested billions of dollars in data-
center construction and automation. Data-center automation means that huge volumes of hardware,
software, and database resources in these data centers can be allocated dynamically to millions of
Internet users simultaneously, with guaranteed QoS and cost-effectiveness.

This automation process is triggered by the growth of virtualization products and cloud com-
puting services. From 2006 to 2011, according to an IDC 2007 report on the growth of virtuali-
zation and its market distribution in major IT sectors. In 2006, virtualization has a market share
of $1,044 million in business and enterprise opportunities. The majority was dominated by pro-
duction consolidation and software development. Virtualization is moving towards enhancing
mobility, reducing planned downtime (for maintenance), and increasing the number of virtual
clients.

The latest virtualization development highlights high availability (HA), backup services,
workload balancing, and further increases in client bases. IDC projected that automation, service
orientation, policy-based, and variable costs in the virtualization market. The total business
opportunities may increase to $3.2 billion by 2011. The major market share moves to the areas
of HA, utility computing, production consolidation, and client bases. In what follows, we will
discuss server consolidation, virtual storage, OS support, and trust management in automated
data-center designs.

3.5.1 Server Consolidation in Data Centers
In data centers, a large number of heterogeneous workloads can run on servers at various times. These
heterogeneous workloads can be roughly divided into two categories: chatty workloads and noninter-
active workloads. Chatty workloads may burst at some point and return to a silent state at some other
point. A web video service is an example of this, whereby a lot of people use it at night and few peo-
ple use it during the day. Noninteractive workloads do not require people’s efforts to make progress
after they are submitted. High-performance computing is a typical example of this. At various stages,
the requirements for resources of these workloads are dramatically different. However, to guarantee
that a workload will always be able to cope with all demand levels, the workload is statically allo-
cated enough resources so that peak demand is satisfied. Figure 3.29 illustrates server virtualization in
a data center. In this case, the granularity of resource optimization is focused on the CPU, memory,
and network interfaces.
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Therefore, it is common that most servers in data centers are underutilized. A large amount of
hardware, space, power, and management cost of these servers is wasted. Server consolidation is an
approach to improve the low utility ratio of hardware resources by reducing the number of physical
servers. Among several server consolidation techniques such as centralized and physical consolida-
tion, virtualization-based server consolidation is the most powerful. Data centers need to optimize
their resource management. Yet these techniques are performed with the granularity of a full server
machine, which makes resource management far from well optimized. Server virtualization enables
smaller resource allocation than a physical machine.

In general, the use of VMs increases resource management complexity. This causes a challenge
in terms of how to improve resource utilization as well as guarantee QoS in data centers. In detail,
server virtualization has the following side effects:

• Consolidation enhances hardware utilization. Many underutilized servers are consolidated into
fewer servers to enhance resource utilization. Consolidation also facilitates backup services and
disaster recovery.

• This approach enables more agile provisioning and deployment of resources. In a virtual
environment, the images of the guest OSes and their applications are readily cloned and reused.

• The total cost of ownership is reduced. In this sense, server virtualization causes deferred
purchases of new servers, a smaller data-center footprint, lower maintenance costs, and lower
power, cooling, and cabling requirements.

• This approach improves availability and business continuity. The crash of a guest OS has no
effect on the host OS or any other guest OS. It becomes easier to transfer a VM from one
server to another, because virtual servers are unaware of the underlying hardware.

To automate data-center operations, one must consider resource scheduling, architectural support,
power management, automatic or autonomic resource management, performance of analytical mod-
els, and so on. In virtualized data centers, an efficient, on-demand, fine-grained scheduler is one of
the key factors to improve resource utilization. Scheduling and reallocations can be done in a wide
range of levels in a set of data centers. The levels match at least at the VM level, server level,
and data-center level. Ideally, scheduling and resource reallocations should be done at all levels.
However, due to the complexity of this, current techniques only focus on a single level or, at most,
two levels.

Dynamic CPU allocation is based on VM utilization and application-level QoS metrics. One
method considers both CPU and memory flowing as well as automatically adjusting resource over-
head based on varying workloads in hosted services. Another scheme uses a two-level resource
management system to handle the complexity involved. A local controller at the VM level and a
global controller at the server level are designed. They implement autonomic resource allocation via
the interaction of the local and global controllers. Multicore and virtualization are two cutting tech-
niques that can enhance each other.

However, the use of CMP is far from well optimized. The memory system of CMP is a typical
example. One can design a virtual hierarchy on a CMP in data centers. One can consider protocols
that minimize the memory access time, inter-VM interferences, facilitating VM reassignment, and
supporting inter-VM sharing. One can also consider a VM-aware power budgeting scheme using
multiple managers integrated to achieve better power management. The power budgeting policies
cannot ignore the heterogeneity problems. Consequently, one must address the trade-off of power
saving and data-center performance.
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3.5.2 Virtual Storage Management
The term “storage virtualization” was widely used before the renaissance of system virtualization. Yet
the term has a different meaning in a system virtualization environment. Previously, storage virtualiza-
tion was largely used to describe the aggregation and repartitioning of disks at very coarse time scales
for use by physical machines. In system virtualization, virtual storage includes the storage managed by
VMMs and guest OSes. Generally, the data stored in this environment can be classified into two cate-
gories: VM images and application data. The VM images are special to the virtual environment, while
application data includes all other data which is the same as the data in traditional OS environments.

The most important aspects of system virtualization are encapsulation and isolation. Traditional
operating systems and applications running on them can be encapsulated in VMs. Only one operating
system runs in a virtualization while many applications run in the operating system. System virtuali-
zation allows multiple VMs to run on a physical machine and the VMs are completely isolated. To
achieve encapsulation and isolation, both the system software and the hardware platform, such as
CPUs and chipsets, are rapidly updated. However, storage is lagging. The storage systems become
the main bottleneck of VM deployment.

In virtualization environments, a virtualization layer is inserted between the hardware and tradi-
tional operating systems or a traditional operating system is modified to support virtualization. This
procedure complicates storage operations. On the one hand, storage management of the guest OS per-
forms as though it is operating in a real hard disk while the guest OSes cannot access the hard disk
directly. On the other hand, many guest OSes contest the hard disk when many VMs are running on a
single physical machine. Therefore, storage management of the underlying VMM is much more com-
plex than that of guest OSes (traditional OSes).

In addition, the storage primitives used by VMs are not nimble. Hence, operations such as remap-
ping volumes across hosts and checkpointing disks are frequently clumsy and esoteric, and sometimes
simply unavailable. In data centers, there are often thousands of VMs, which cause the VM images to
become flooded. Many researchers tried to solve these problems in virtual storage management. The
main purposes of their research are to make management easy while enhancing performance and redu-
cing the amount of storage occupied by the VM images. Parallax is a distributed storage system custo-
mized for virtualization environments. Content Addressable Storage (CAS) is a solution to reduce the
total size of VM images, and therefore supports a large set of VM-based systems in data centers.

Since traditional storage management techniques do not consider the features of storage in virtualization
environments, Parallax designs a novel architecture in which storage features that have traditionally been
implemented directly on high-end storage arrays and switchers are relocated into a federation of storage
VMs. These storage VMs share the same physical hosts as the VMs that they serve. Figure 3.30 provides
an overview of the Parallax system architecture. It supports all popular system virtualization techniques,
such as paravirtualization and full virtualization. For each physical machine, Parallax customizes a special
storage appliance VM. The storage appliance VM acts as a block virtualization layer between individual
VMs and the physical storage device. It provides a virtual disk for each VM on the same physical machine.

Example 3.11 Parallax Providing Virtual Disks to Client VMs from a Large Common

Shared Physical Disk

The architecture of Parallax is scalable and especially suitable for use in cluster-based environments.
Figure 3.26 shows a high-level view of the structure of a Parallax-based cluster. A cluster-wide administrative
domain manages all storage appliance VMs, which makes storage management easy. The storage appliance
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VM also allows functionality that is currently implemented within data-center hardware to be pushed out and
implemented on individual hosts. This mechanism enables advanced storage features such as snapshot
facilities to be implemented in software and delivered above commodity network storage targets.

Parallax itself runs as a user-level application in the storage appliance VM. It provides virtual disk images
(VDIs) to VMs. A VDI is a single-writer virtual disk which may be accessed in a location-transparent manner
from any of the physical hosts in the Parallax cluster. The VDIs are the core abstraction provided by Parallax.
Parallax uses Xen’s block tap driver to handle block requests and it is implemented as a tapdisk library. This
library acts as a single block virtualization service for all client VMs on the same physical host. In the Parallax
system, it is the storage appliance VM that connects the physical hardware device for block and network
access. As shown in Figure 3.30, physical device drivers are included in the storage appliance VM. This imple-
mentation enables a storage administrator to live-upgrade the block device drivers in an active cluster.

3.5.3 Cloud OS for Virtualized Data Centers
Data centers must be virtualized to serve as cloud providers. Table 3.6 summarizes four virtual
infrastructure (VI) managers and OSes. These VI managers and OSes are specially tailored for
virtualizing data centers which often own a large number of servers in clusters. Nimbus, Eucalyptus,
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Parallax is a set of per-host storage appliances that share access to a common block device and presents
virtual disks to client VMs.
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and OpenNebula are all open source software available to the general public. Only vSphere 4 is a
proprietary OS for cloud resource virtualization and management over data centers.

These VI managers are used to create VMs and aggregate them into virtual clusters as elastic
resources. Nimbus and Eucalyptus support essentially virtual networks. OpenNebula has additional
features to provision dynamic resources and make advance reservations. All three public VI
managers apply Xen and KVM for virtualization. vSphere 4 uses the hypervisors ESX and ESXi
from VMware. Only vSphere 4 supports virtual storage in addition to virtual networking and data
protection. We will study Eucalyptus and vSphere 4 in the next two examples.

Example 3.12 Eucalyptus for Virtual Networking of Private Cloud

Eucalyptus is an open source software system (Figure 3.27) intended mainly for supporting Infrastructure
as a Service (IaaS) clouds. The system primarily supports virtual networking and the management of VMs;
virtual storage is not supported. Its purpose is to build private clouds that can interact with end users
through Ethernet or the Internet. The system also supports interaction with other private clouds or public
clouds over the Internet. The system is short on security and other desired features for general-purpose
grid or cloud applications.

The designers of Eucalyptus [45] implemented each high-level system component as a stand-alone
web service. Each web service exposes a well-defined language-agnostic API in the form of a WSDL
document containing both operations that the service can perform and input/output data structures.

Table 3.6 VI Managers and Operating Systems for Virtualizing Data Centers [9]
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Hypervisors
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Furthermore, the designers leverage existing web-service features such as WS-Security policies for
secure communication between components. The three resource managers in Figure 3.27 are specified
below:

• Instance Manager controls the execution, inspection, and terminating of VM instances on the host
where it runs.

• Group Manager gathers information about and schedules VM execution on specific instance managers,
as well as manages virtual instance network.

• Cloud Manager is the entry-point into the cloud for users and administrators. It queries node managers
for information about resources, makes scheduling decisions, and implements them by making
requests to group managers.

In terms of functionality, Eucalyptus works like AWS APIs. Therefore, it can interact with EC2. It does
provide a storage API to emulate the Amazon S3 API for storing user data and VM images. It is installed
on Linux-based platforms, is compatible with EC2 with SOAP and Query, and is S3-compatible with SOAP
and REST. CLI and web portal services can be applied with Eucalyptus.

Example 3.13 VMware vSphere 4 as a Commercial Cloud OS [66]

The vSphere 4 offers a hardware and software ecosystem developed by VMware and released in April
2009. vSphere extends earlier virtualization software products by VMware, namely the VMware Workstation,
ESX for server virtualization, and Virtual Infrastructure for server clusters. Figure 3.28 shows vSphere’s
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Eucalyptus for building private clouds by establishing virtual networks over the VMs linking through
Ethernet and the Internet.

(Courtesy of D. Nurmi, et al. [45] )
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overall architecture. The system interacts with user applications via an interface layer, called vCenter.
vSphere is primarily intended to offer virtualization support and resource management of data-center
resources in building private clouds. VMware claims the system is the first cloud OS that supports
availability, security, and scalability in providing cloud computing services.

The vSphere 4 is built with two functional software suites: infrastructure services and application
services. It also has three component packages intended mainly for virtualization purposes: vCompute is
supported by ESX, ESXi, and DRS virtualization libraries from VMware; vStorage is supported by VMS and
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FIGURE 3.28

vSphere/4, a cloud operating system that manages compute, storage, and network resources over
virtualized data centers.

(Courtesy of VMware, April 2010 [72] )
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thin provisioning libraries; and vNetwork offers distributed switching and networking functions. These
packages interact with the hardware servers, disks, and networks in the data center. These infrastructure
functions also communicate with other external clouds.

The application services are also divided into three groups: availability, security, and scalability.
Availability support includes VMotion, Storage VMotion, HA, Fault Tolerance, and Data Recovery from
VMware. The security package supports vShield Zones and VMsafe. The scalability package was built with
DRS and Hot Add. Interested readers should refer to the vSphere 4 web site for more details regarding
these component software functions. To fully understand the use of vSphere 4, users must also learn how
to use the vCenter interfaces in order to link with existing applications or to develop new applications.

3.5.4 Trust Management in Virtualized Data Centers
A VMM changes the computer architecture. It provides a layer of software between the operating
systems and system hardware to create one or more VMs on a single physical platform. A VM
entirely encapsulates the state of the guest operating system running inside it. Encapsulated machine
state can be copied and shared over the network and removed like a normal file, which proposes a
challenge to VM security. In general, a VMM can provide secure isolation and a VM accesses hard-
ware resources through the control of the VMM, so the VMM is the base of the security of a virtual
system. Normally, one VM is taken as a management VM to have some privileges such as creating,
suspending, resuming, or deleting a VM.

Once a hacker successfully enters the VMM or management VM, the whole system is in danger.
A subtler problem arises in protocols that rely on the “freshness” of their random number source for
generating session keys. Considering a VM, rolling back to a point after a random number has been
chosen, but before it has been used, resumes execution; the random number, which must be “fresh”
for security purposes, is reused. With a stream cipher, two different plaintexts could be encrypted
under the same key stream, which could, in turn, expose both plaintexts if the plaintexts have suffi-
cient redundancy. Noncryptographic protocols that rely on freshness are also at risk. For example,
the reuse of TCP initial sequence numbers can raise TCP hijacking attacks.

3.5.4.1 VM-Based Intrusion Detection
Intrusions are unauthorized access to a certain computer from local or network users and intrusion
detection is used to recognize the unauthorized access. An intrusion detection system (IDS) is built
on operating systems, and is based on the characteristics of intrusion actions. A typical IDS can be
classified as a host-based IDS (HIDS) or a network-based IDS (NIDS), depending on the data
source. A HIDS can be implemented on the monitored system. When the monitored system is
attacked by hackers, the HIDS also faces the risk of being attacked. A NIDS is based on the flow
of network traffic which can’t detect fake actions.

Virtualization-based intrusion detection can isolate guest VMs on the same hardware platform.
Even some VMs can be invaded successfully; they never influence other VMs, which is similar to
the way in which a NIDS operates. Furthermore, a VMM monitors and audits access requests for
hardware and system software. This can avoid fake actions and possess the merit of a HIDS. There
are two different methods for implementing a VM-based IDS: Either the IDS is an independent
process in each VM or a high-privileged VM on the VMM; or the IDS is integrated into the VMM
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and has the same privilege to access the hardware as well as the VMM. Garfinkel and Rosenblum
[17] have proposed an IDS to run on a VMM as a high-privileged VM. Figure 3.29 illustrates
the concept.

The VM-based IDS contains a policy engine and a policy module. The policy framework can
monitor events in different guest VMs by operating system interface library and PTrace indicates
trace to secure policy of monitored host. It’s difficult to predict and prevent all intrusions without
delay. Therefore, an analysis of the intrusion action is extremely important after an intrusion occurs.
At the time of this writing, most computer systems use logs to analyze attack actions, but it is hard to
ensure the credibility and integrity of a log. The IDS log service is based on the operating system ker-
nel. Thus, when an operating system is invaded by attackers, the log service should be unaffected.

Besides IDS, honeypots and honeynets are also prevalent in intrusion detection. They attract and
provide a fake system view to attackers in order to protect the real system. In addition, the attack
action can be analyzed, and a secure IDS can be built. A honeypot is a purposely defective system
that simulates an operating system to cheat and monitor the actions of an attacker. A honeypot can
be divided into physical and virtual forms. A guest operating system and the applications running
on it constitute a VM. The host operating system and VMM must be guaranteed to prevent attacks
from the VM in a virtual honeypot.

Example 3.14 EMC Establishment of Trusted Zones for Protection of Virtual Clusters

Provided to Multiple Tenants

EMC and VMware have joined forces in building security middleware for trust management in distribu-
ted systems and private clouds. The concept of trusted zones was established as part of the virtual
infrastructure. Figure 3.30 illustrates the concept of creating trusted zones for virtual clusters (multiple
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The architecture of livewire for intrusion detection using a dedicated VM.
(Courtesy of Garfinkel and Rosenblum, 2002 [17] )
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applications and OSes for each tenant) provisioned in separate virtual environments. The physical
infrastructure is shown at the bottom, and marked as a cloud provider. The virtual clusters or infrastruc-
tures are shown in the upper boxes for two tenants. The public cloud is associated with the global user
communities at the top.

The arrowed boxes on the left and the brief description between the arrows and the zoning boxes are
security functions and actions taken at the four levels from the users to the providers. The small circles
between the four boxes refer to interactions between users and providers and among the users
themselves. The arrowed boxes on the right are those functions and actions applied between the tenant
environments, the provider, and the global communities.

Almost all available countermeasures, such as anti-virus, worm containment, intrusion detection,
encryption and decryption mechanisms, are applied here to insulate the trusted zones and isolate the
VMs for private tenants. The main innovation here is to establish the trust zones among the virtual clusters.
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Techniques for establishing trusted zones for virtual cluster insulation and VM isolation.
(Courtesy of L. Nick, EMC [40] )
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The end result is to enable an end-to-end view of security events and compliance across the virtual
clusters dedicated to different tenants. We will discuss security and trust issues in Chapter 7 when we
study clouds in more detail.

3.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
Good reviews on virtualization technology can be found in Rosenblum, et al. [53,54] and in Smith
and Nair [58,59]. White papers at [71,72] report on virtualization products at VMware, including
the vSphere 4 cloud operating system. The Xen hypervisor was introduced in [7,13,42] and KVM
in [31]. Qian, et al. [50] have given some theoretical treatment of the subject. ISA-level virtualiza-
tion and binary translation techniques are treated in [3] and in Smith and Nair [58]. Some compari-
son of virtualizing software environments can be found in Buyya, et al. [9]. Hardware-level
virtualization is treated in [1,7,8,13,37,43,54,67]. Intel’s support of hardware-level virtualization is
treated in [62]. Some entries in Table 3.5 are taken from Buyya, et al. [9].

For GPU computing on VMs, the readers are referred to [57]. The x86 host virtualization
is treated in [2]. Pentium virtualization is treated in [53]. treated in [11,24,26,52]. I/O virtualization is

Sun Microsystems reports on OS-level virtualization in [64]. OpenVZ is introduced in its user’s
guide [65]. Virtualization in Windows NT machines is described in [77,78]. For GPU computing on
VMs, readers are referred to [53]. The x86 host virtualization is treated in [2]. Pentium virtualization
is treated in [53]. The book [24] have a good coverage of hardware support for virtualization. Virtual
clusters are treated in [8,12,20,25,49,55,56]. In particular, Duke’s COD is reported in [12] and
Purdue’s Violin in [25,55]. Memory virtualization is treated in [1,10,13,51,58,68].

Hardware-level virtualization is treated in [1,7,8,13,41,47,58,73]. Intel’s support of hardware-level
virtualization is treated in [68]. Wells, et al. [74] have studied multi-core virtualization.
The integration of multi-core and virtualization on future CPU/GPU chips posts a very hot research
area, called asymmetric CMP as reported in [33,39,63,66,74]. Architectural supports for virtualized
chip multiprocessors have been also studied in [17,28,30,39,66]. The maturity of this co-design CMP
approach will greatly impact the future development of HPC and HTC systems.

Server consolidation in virtualized data centers is treated in [29,39,75]. Power consumption in virtua-
lized data centers is treated in [44,46]. Literatures [46,60,61,62] discussed the virtual resource management
in data centers. Kochut gives an analytical model for virtualized data centers [32]. Security protection and
trust management for virtualized data centers are treated in [18,45]. For virtual storage, readers are referred
to the literature [27,36,43,48,76,79]. Specific references for the examples are identified in the figure cap-
tions or in the text description of the example. The Eucalyptus was reported in [45], vSphere in [72], Par-
allax in [43]. The vCUDA was reported in [57] for CUDA programming on the VMs.
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HOMEWORK PROBLEMS
Problem 3.1
Briefly answer the following questions on virtualization levels. Highlight the key points and identify
the distinctions in different approaches. Discuss their relative advantages, shortcomings and limita-
tions. Also identify example systems implemented at each level.
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Problem 3.2
Explain the differences between hypervisor and para-virtualization and give one example VMM
(virtual machine monitor), that was built in each of the two categories.

Problem 3.3
Install the VMware Workstation on a Windows XP or Vista personal computer or laptop, and then
install Red Hat Linux and Windows XP in the VMware Workstation. Configure the network settings
of Red Hat Linux and Windows XP to get on the Internet. Write an installation and configuration
guide for the VMware Workstation, Red Hat Linux, and Windows XP systems. Include any trouble-
shooting tips in the guide.

Problem 3.4
Download a new kernel package from www.kernel.org/. Compile it in Red Hat Linux in the VMware
Workstation installed in Problem 3.3 with Red Hat Linux on a real computer. Compare the time required
for the two compilations. Which one takes longer to compile? What are their major differences?

Problem 3.5
Install Xen on a Red Hat Linux machine in two methods from the binary code or from the source
code. Compile installation guides for the two methods used. Describe the dependencies of utilities
and packages along with troubleshooting tips.

Problem 3.6
Install Red Hat Linux on the Xen you installed in Problem 3.5. Download nbench from www.tux
.org/~mayer/linux/bmark.html. Run the nbench on the VM using Xen and on a real machine. Com-
pare the performance of the programs on the two platforms.

Problem 3.7
Use the utilities for easing deployment of Google enterprise applications in VMs. The Google-vm-
deployment tool can be downloaded from http://code.google.com/p/google-vm-deployment/.

Problem 3.8
Describe the approaches used to exchange data among the domains of Xen and design experiments
to compare the performance of data communication between the domains. This is designed to famil-
iarize you with the Xen programming environment. It may require a longer period of time to port
the Xen code, implement the application code, perform the experiments, collect the performance
data, and interpret the results.

Problem 3.9
Build your own LAN by using the VMware Workstation. The topological structure of the LAN is
specified in Figure 3.31. Machine A is required to install Red Hat Linux while machine B is
required to install Windows XP.
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Problem 3.10
Study the relevant papers [33,63,74] on asymmetric or heterogeneous chip multitprocessors (CMP).
Write a study report to survey the area, identify the key research issues, review the current develop-
ment and open research challenges lying ahead.

Problem 3.11
Study the relevant papers [17,28,30,66] on network on chip (NoC) and virtualization of NoC
resources for multi-core CMP design and applications. Repeat Problem 3.10 with a survey report
after the research study.

Problem 3.12
Hardware and software resource deployment are 4 often complicated and time-consuming.
Automatic VM deployment can significantly reduce the time to instantiate new services or
reallocate resources depending on user needs. Visit the following web site for more informa-
tion. http://wiki.systemimager.org/index.php/Automating_Xen_VM_deployment_with_SystemI-
mager. Report your experience with automatic deployment using the SystemImager and
Xen-tools.

Problem 3.13
Design an experiment to analyze the performance of Xen live migration for I/O read-intensive appli-
cations. The performance merits include the time consumed by the precopy phase, the downtime,
the time used by the pull phase, and the total migration time.

Problem 3.14
Design an experiment to test the performance of Xen live migration for I/O write-intensive applica-
tions. The performance metrics include the time consumed by the precopy phase, the downtime,
the time used by the pull phase, and the total migration time. Compare the results with those from
Problem 3.13.

192.168.203.2

Machine A

192.168.204.2

Machine B
LAN 1

External gate way: 192.168.204.1
Internal gate way: 192.168.203.1

LAN 2The router

FIGURE 3.31

The topological structure of the virtual LAN.

Homework Problems 185

http://wiki.systemimager.org/index.php/Automating_Xen_VM_deployment_with_SystemImager
http://wiki.systemimager.org/index.php/Automating_Xen_VM_deployment_with_SystemImager


Problem 3.15
Design and implement a VM execution environment for grid computing based on VMware Server.
The environment should enable grid users and resource providers to use services that are unique to
a VM-based approach to distributed computing. Users can define customized execution environ-
ments which can then be archived, copied, shared, and instantiated as multiple runtime clones.

Problem 3.16
Design a large-scale virtual cluster system. This problem may require three students to work together for
a semester. Assume that users can create multiple VMs at one time. Users can also manipulate and
configure multiple VMs at the same time. Common software such as OS or libraries are preinstalled as
templates. These templates enable users to create a new execution environment rapidly. Finally, you
can assume that users have their own profiles which store the identification of data blocks.

Problem 3.17
Figure 3.32 shows another VIOLIN adaptation scenario for changes in virtual environments. There
are four VIOLIN applications running in two cluster domains. Trace the three steps of VIOLIN job
execution and discuss the gains in resource utilization after live migration of the virtual execution

Domain 1 Domain 2
Without adaptation

Ti
m

e

With adaptation

VIOLIN 2

VIOLIN 1

VIOLIN 4

VIOLIN 3

Domain 1 Domain 2

1, 2, 3, 4 are computing.
1. Initially VIOLIN

2. VIOLIN 3 is finished.
    VIOLIN 1 runs less CPU
    demanding application.

3. After adaptation

FIGURE 3.32

An adaptation scenario with four VIOLINs running in two cluster domains in the VIOLIN Virtual clustering
experiments.

(Courtesy of P. Ruth, et al. [55] )
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environment in the two cluster domains. You can check your results against the cited paper to
compare your observations.

Problem 3.18
After studying the material presented in Section 3.3.5, plus reading the papers by Wells, et al. [74]
and by Marty and Hill in [39] answer the following two questions:

a. Distinguish virtual cores from physical cores and discuss the mapping technique in Wells’s
paper on upgrading resource utilization and fault tolerance in using virtualized multicore
processors.

b. Study the cache coherence protocol presented in the Marty and Hill paper and discuss its
feasibility and advantages to implement on many-core CMP in the future.
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PART

2Computing Clouds,
Service-Oriented Architecture,
and Programming

Three chapters in Part 2 are devoted to cloud computing, including various cloud platforms for IaaS
(infrastructure as a service), PaaS (platform as a service), and SaaS (software as a service) applica-
tions. We present service-oriented architectures developed in recent years. Parallel and distributed
computing paradigms and their software support, language tools, and programming environments
are covered for various cloud computing services.

CHAPTER 4: CLOUD PLATFORM ARCHITECTURE OVER VIRTUALIZED
DATA CENTERS
This chapter covers the design principles and enabling technologies for cloud architecture and data
center design. We start with data center design and management. Then we present the design princi-
ples of cloud platforms. We cover layered platform designs from infrastructure clouds including
compute clouds, storage clouds, and application clouds. In particular, we study the center automa-
tion technology and interconnection networks. We apply virtualization support in resource provi-
sioning and infrastructure management. Major public cloud platforms covered include Google
AppEngine (GAE), Amazon Web Service (AWS), and Microsoft Windows Azure. The cloud secur-
ity and trust management issues are studied.

This chapter is authored by Kai Hwang with partial contributions by Rajkumar Buyya and Kang
Chen and the final manuscript was edited by Geoffrey Fox.

CHAPTER 5: SERVICE-ORIENTED ARCHITECTURES FOR
DISTRIBUTED COMPUTING
We cover two major forms of distributed services—REST and web services—and the extension of
the latter in Grid systems. Workflow is used to orchestrate or integrate multiple services and we
describe the general approach used in workflow, the BPEL Web Service standard including
Pegasus, Taverna, Kepler, Trident, and Swift. Example web interfaces or portals are described using
Web Service (portlet) and Web 2.0 (gadget). We handle data and metadata in distributed systems
using service registries and semantic web/grid.

This chapter is authored by Geoffrey Fox and Albert Zomaya with partial contributions by
Rajkumar Buyya and technical assistance from Ali Javadzadeh Boloori, Chen Wang, Shrideep
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Pallickara, Marlon Pierce, Suresh Marru, Michael McLennan, George Adams, III, Gerhard Klimeck,
and Michael Wilde. The final manuscript was edited by Kai Hwang.

CHAPTER 6: CLOUD PROGRAMMING AND SOFTWARE ENVIRONMENTS
We introduce major cloud programming paradigms: MapReduce, BigTable, Twister, Dryad,
DryadLINQ, Hadoop, Sawzall, and Pig Latin. We use concrete service examples to explain the imple-
mentation and application requirements in the cloud. We review core service models and access tech-
nologies. Cloud services provided by Google App Engine, Amazon Web Service, and Microsoft
Windows Azure are illustrated by example applications. In particular, we illustrate how-to program-
ming the GAE, AWS EC2, S3, EBS, and others. We review the open-source Eucalyptus, Nimbus,
and OpenNebula and the startup Manjrasoft Aneka system for cloud computing.

This chapter is authored by Geoffrey Fox and Albert Zomaya with partial contributions by
Rajkumar Buyya (Section 6.5.3) and Judy Qiu (Section 6.2.6). Special technical assistances are
from Gregor von Laszewski, Javier Diaz, Archit Kulshrestha, Andrew Younge, Reza Moravaeji,
Javid Teheri, and Renato Figueiredo. The final manuscript was edited by Kai Hwang.
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SUMMARY
This chapter covers design principles, architectures, and enabling technologies of cloud platforms.
We begin with a discussion of data-center design and management. Next, we present design choices
for building compute and storage cloud platforms. We cover layered platform structure, virtualiza-
tion support, resource provisioning, and infrastructure management. Several public cloud platforms
are also studied, including Amazon Web Services, the Google App Engine, and Microsoft Azure.
Subsequent chapters are devoted to service-oriented architectures, cloud computing paradigms, pro-
gramming environments, and future cloud extensions.

4.1 CLOUD COMPUTING AND SERVICE MODELS
Over the past two decades, the world economy has rapidly moved from manufacturing to more
service-oriented. In 2010, 80 percent of the U.S. economy was driven by the service industry, leav-
ing only 15 percent in manufacturing and 5 percent in agriculture and other areas. Cloud computing
benefits the service industry most and advances business computing with a new paradigm. In 2009,
the global cloud service marketplace reached $17.4 billion. IDC predicted in 2010 that the cloud-
based economy may increase to $44.2 billion by 2013. Developers of innovative cloud applications
no longer acquire large capital equipment in advance. They just rent the resources from some large
data centers that have been automated for this purpose.

In this and the next two chapters, we will study the cloud platform architecture, service models,
and programming environments. Users can access and deploy cloud applications from anywhere in
the world at very competitive costs. Virtualized cloud platforms are often built on top of large data
centers. With that in mind, we examine first the server cluster in a data center and its interconnec-
tion issues. In other words, clouds aim to power the next generation of data centers by architecting
them as virtual resources over automated hardware, databases, user interfaces, and application envir-
onments. In this sense, clouds grow out of the desire to build better data centers through automated
resource provisioning.

4.1.1 Public, Private, and Hybrid Clouds
The concept of cloud computing has evolved from cluster, grid, and utility computing. Cluster and
grid computing leverage the use of many computers in parallel to solve problems of any size. Utility
and Software as a Service (SaaS) provide computing resources as a service with the notion of pay per
use. Cloud computing leverages dynamic resources to deliver large numbers of services to end users.
Cloud computing is a high-throughput computing (HTC) paradigm whereby the infrastructure pro-
vides the services through a large data center or server farms. The cloud computing model enables
users to share access to resources from anywhere at any time through their connected devices.
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Recall the introduction in Chapter 1 in which we said that the cloud will free users to focus on
user application development and create business value by outsourcing job execution to cloud provi-
ders. In this scenario, the computations (programs) are sent to where the data is located, rather than
copying the data to millions of desktops as in the traditional approach. Cloud computing avoids
large data movement, resulting in much better network bandwidth utilization. Furthermore, machine
virtualization has enhanced resource utilization, increased application flexibility, and reduced the
total cost of using virtualized data-center resources.

The cloud offers significant benefit to IT companies by freeing them from the low-level task of
setting up the hardware (servers) and managing the system software. Cloud computing applies a vir-
tual platform with elastic resources put together by on-demand provisioning of hardware, software,
and data sets, dynamically. The main idea is to move desktop computing to a service-oriented plat-
form using server clusters and huge databases at data centers. Cloud computing leverages its low
cost and simplicity to both providers and users. According to Ian Foster [25], cloud computing
intends to leverage multitasking to achieve higher throughput by serving many heterogeneous appli-
cations, large or small, simultaneously.

4.1.1.1 Centralized versus Distributed Computing
Some people argue that cloud computing is centralized computing at data centers. Others claim that
cloud computing is the practice of distributed parallel computing over data-center resources. These
represent two opposite views of cloud computing. All computations in cloud applications are distributed
to servers in a data center. These are mainly virtual machines (VMs) in virtual clusters created out of
data-center resources. In this sense, cloud platforms are systems distributed through virtualization.

As Figure 4.1 shows, both public clouds and private clouds are developed in the Internet. As many
clouds are generated by commmercial providers or by enterprises in a distributed manner, they will be
interconnected over the Internet to achieve scalable and efficient computing services. Commercial cloud
providers such as Amazon, Google, and Microsoft created their platforms to be distributed geographi-
cally. This distribution is partially attributed to fault tolerance, response latency reduction, and even
legal reasons. Intranet-based private clouds are linked to public clouds to get additional resources.
Nevertheless, users in Europe may not feel comfortable using clouds in the United States, and vice
versa, until extensive service-level agreements (SLAs) are developed between the two user communities.

4.1.1.2 Public Clouds
A public cloud is built over the Internet and can be accessed by any user who has paid for the service.
Public clouds are owned by service providers and are accessible through a subscription. The callout
box in top of Figure 4.1 shows the architecture of a typical public cloud. Many public clouds are
available, including Google App Engine (GAE), Amazon Web Services (AWS), Microsoft Azure,
IBM Blue Cloud, and Salesforce.com’s Force.com. The providers of the aforementioned clouds are
commercial providers that offer a publicly accessible remote interface for creating and managing VM
instances within their proprietary infrastructure. A public cloud delivers a selected set of business pro-
cesses. The application and infrastructure services are offered on a flexible price-per-use basis.

4.1.1.3 Private Clouds
A private cloud is built within the domain of an intranet owned by a single organization. Therefore,
it is client owned and managed, and its access is limited to the owning clients and their partners. Its
deployment was not meant to sell capacity over the Internet through publicly accessible interfaces.
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Private clouds give local users a flexible and agile private infrastructure to run service workloads
within their administrative domains. A private cloud is supposed to deliver more efficient and con-
venient cloud services. It may impact the cloud standardization, while retaining greater customiza-
tion and organizational control.

4.1.1.4 Hybrid Clouds
A hybrid cloud is built with both public and private clouds, as shown at the lower-left corner of
Figure 4.1. Private clouds can also support a hybrid cloud model by supplementing local infrastruc-
ture with computing capacity from an external public cloud. For example, the Research Compute
Cloud (RC2) is a private cloud, built by IBM, that interconnects the computing and IT resources at
eight IBM Research Centers scattered throughout the United States, Europe, and Asia. A hybrid
cloud provides access to clients, the partner network, and third parties. In summary, public clouds
promote standardization, preserve capital investment, and offer application flexibility. Private clouds
attempt to achieve customization and offer higher efficiency, resiliency, security, and privacy.
Hybrid clouds operate in the middle, with many compromises in terms of resource sharing.

4.1.1.5 Data-Center Networking Structure
The core of a cloud is the server cluster (or VM cluster). Cluster nodes are used as compute nodes.
A few control nodes are used to manage and monitor cloud activities. The scheduling of user jobs

Microsoft
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Amazon
AWS

IBM Blue Cloud

Google
App Engine

Cloud users

Salesforce
Force.com

The Internet

An
Intranet

Private cloud
(IBM RC2)

A hybrid
cloud

To users or other public
clouds over the Internet

A typical public cloud

Cloud service
queues

Server cluster (VMs)

Data center

Cloud storagePlatform frontend
(web service API)

Public

FIGURE 4.1

Public, private, and hybrid clouds illustrated by functional architecture and connectivity of representative
clouds available by 2011.
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requires that you assign work to virtual clusters created for users. The gateway nodes provide the
access points of the service from the outside world. These gateway nodes can be also used for secur-
ity control of the entire cloud platform. In physical clusters and traditional grids, users expect static
demand of resources. Clouds are designed to handle fluctuating workloads, and thus demand variable
resources dynamically. Private clouds will satisfy this demand if properly designed and managed.

Data centers and supercomputers have some similarities as well as fundamental differences.
We discussed supercomputers in Chapter 2. In the case of data centers, scaling is a fundamental
requirement. Data-center server clusters are typically built with large number of servers, ranging
from thousands to millions of servers (nodes). For example, Microsoft has a data center in the
Chicago area that has 100,000 eight-core servers, housed in 50 containers. In supercomputers, a
separate data farm is used, while a data center uses disks on server nodes plus memory cache and
databases.

Data centers and supercomputers also differ in networking requirements, as illustrated in
Figure 4.2. Supercomputers use custom-designed high-bandwidth networks such as fat trees or 3D
torus networks (which we discussed in Chapter 2). Data-center networks are mostly IP-based
commodity networks, such as the 10 Gbps Ethernet network, which is optimized for Internet
access. Figure 4.2 shows a multilayer structure for accessing the Internet. The server racks are at
the bottom Layer 2, and they are connected through fast switches (S) as the hardware core. The
data center is connected to the Internet at Layer 3 with many access routers (ARs) and border
routers (BRs).

Internet Internet

Data center
Layer 3

Layer 2

BR

AR AR

S

S SS

A A A

A single layer 2 domain

LBLB S

S

...

... A A A...

...

AR AR

BR

Key:
• BR=L3 border router
• AR=L3 access router
• S=L2 switch
• LB=Load balancer
• A=Rack of servers

FIGURE 4.2

Standard data-center networking for the cloud to access the Internet.
(Courtesy of Dennis Gannon, 2010 [26] )
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An example of a private cloud is the one the U.S. National Aeronautics and Space Administra-
tion (NASA) is building to enable researchers to run climate models on remote systems it provides.
This can save users the capital expense of HPC machines at local sites. Furthermore, NASA can
build the complex weather models around its data centers, which is more cost-effective. Another
good example is the cloud built by the European Council for Nuclear Research (CERN). This is a
very big private cloud designed to distribute data, applications, and computing resources to thou-
sands of scientists around the world.

These cloud models demand different levels of performance, data protection, and security enfor-
cement. In this case, different SLAs may be applied to satisfy both providers and paid users. Cloud
computing exploits many existing technologies. For example, grid computing is the backbone of
cloud computing in that the grid has the same goals of resource sharing with better utilization of
research facilities. Grids are more focused on delivering storage and computing resources while
cloud computing aims to achieve economies of scale with abstracted services and resources.

4.1.1.6 Cloud Development Trends
Although most clouds built in 2010 are large public clouds, the authors believe private clouds will
grow much faster than public clouds in the future. Private clouds are easier to secure and more
trustworthy within a company or organization. Once private clouds become mature and better
secured, they could be open or converted to public clouds. Therefore, the boundary between public
and private clouds could be blurred in the future. Most likely, most future clouds will be hybrid in
nature.

For example, an e-mail application can run in the service-access nodes and provide the user
interface for outside users; the application can get the service from the internal cloud computing ser-
vices (e.g., the e-mail storage service). There are also some service nodes designed to support the
proper functioning of cloud computing clusters. These nodes are called runtime supporting service
nodes. For example, there might be distributed locking services for supporting specific applications.
Finally, it is possible that there will be some independent service nodes. Those nodes would provide
independent services for other nodes in the cluster. For example, a news service need geographical
information under service-access nodes.

With cost-effective performance as the key concept of clouds, we will consider the public cloud
in this chapter, unless otherwise specified. Many executable application codes are much smaller
than the web-scale data sets they process. Cloud computing avoids large data movement during
execution. This will result in less traffic on the Internet and better network utilization. Clouds also
alleviate the petascale I/O problem. Cloud performance and its Quality of Service (QoS) are yet to
be proven in more real-life applications. We will model the performance of cloud computing in
Chapter 9, along with data protection, security measures, service availability, fault tolerance, and
operating cost.

4.1.2 Cloud Ecosystem and Enabling Technologies
Cloud computing platforms differ from conventional computing platforms in many aspects. In this
section, we will identify their differences in computing paradigms and cost models applied. The tra-
ditional computing model is specified below by the process on the left, which involves buying the
hardware, acquiring the necessary system software, installing the system, testing the configuration,
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and executing the application code and management of resources. What is even worse is that this
cycle repeats itself in about every 18 months, meaning the machine we bought becomes obsolete
every 18 months.

The cloud computing paradigm is shown on the right. This computing model follows a pay-
as-you-go model. Therefore the cost is significantly reduced, because we simply rent computer
resources without buying the computer in advance. All hardware and software resources are leased
from the cloud provider without capital investment on the part of the users. Only the execution
phase costs some money. The experts at IBM have estimated that an 80 percent to 95 percent
saving results from cloud computing, compared with the conventional computing paradigm. This is
very much desired, especially for small businesses, which requires limited computing power and
thus avoid the purchase of expensive computers or servers repeatedly every few years.

Classical Computing Cloud Computing
(Repeat the following cycle every 18 months) (Pay as you go per each service provided)
Buy and own Subscribe
Hardware, system software, applications to meet
peak needs

- - - -

Install, configure, test, verify, evaluate, manage Use (Save about 80-95% of the total cost)
- - - - - - - -
Use (Finally)
- - - - $ - Pay for what you use
Pay $$$$$ (High cost) based on the QoS

For example, IBM has estimated that the worldwide cloud service market may reach $126 billion
by 2012, including components, infrastructure services, and business services. Internet clouds work
as service factories built around multiple data centers. To formalize the above cloud computing
model, we characterize the cloud cost model, the cloud ecosystems, and enabling technologies. These
topics help our readers understand the motivations behind cloud computing. The intention is to
remove the barriers of cloud computing

4.1.2.1 Cloud Design Objectives
Despite the controversy surrounding the replacement of desktop or deskside computing by centra-
lized computing and storage services at data centers or big IT companies, the cloud computing com-
munity has reached some consensus on what has to be done to make cloud computing universally
acceptable. The following list highlights six design objectives for cloud computing:

• Shifting computing from desktops to data centers Computer processing, storage, and software
delivery is shifted away from desktops and local servers and toward data centers over the
Internet.

• Service provisioning and cloud economics Providers supply cloud services by signing SLAs
with consumers and end users. The services must be efficient in terms of computing, storage,
and power consumption. Pricing is based on a pay-as-you-go policy.

• Scalability in performance The cloud platforms and software and infrastructure services must
be able to scale in performance as the number of users increases.
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• Data privacy protection Can you trust data centers to handle your private data and records?
This concern must be addressed to make clouds successful as trusted services.

• High quality of cloud services The QoS of cloud computing must be standardized to make
clouds interoperable among multiple providers.

• New standards and interfaces This refers to solving the data lock-in problem associated with
data centers or cloud providers. Universally accepted APIs and access protocols are needed to
provide high portability and flexibility of virtualized applications.

4.1.2.2 Cost Model
In traditional IT computing, users must acquire their own computer and peripheral equipment as
capital expenses. In addition, they have to face operational expenditures in operating and maintain-
ing the computer systems, including personnel and service costs. Figure 4.3(a) shows the addition
of variable operational costs on top of fixed capital investments in traditional IT. Note that the
fixed cost is the main cost, and that it could be reduced slightly as the number of users increases.
However, the operational costs may increase sharply with a larger number of users. Therefore, the
total cost escalates quickly with massive numbers of users. On the other hand, cloud computing
applies a pay-per-use business model, in which user jobs are outsourced to data centers. To use the
cloud, one has no up-front cost in hardware acquisitions. Only variable costs are experienced by
cloud users, as demonstrated in Figure 4.3(b).

Overall, cloud computing will reduce computing costs significantly for both small users and
large enterprises. Computing economics does show a big gap between traditional IT users and
cloud users. The savings in acquiring expensive computers up front releases a lot of burden for
startup companies. The fact that cloud users only pay for operational expenses and do not have to
invest in permanent equipment is especially attractive to massive numbers of small users. This is a
major driving force for cloud computing to become appealing to most enterprises and heavy compu-
ter users. In fact, any IT users whose capital expenses are under more pressure than their opera-
tional expenses should consider sending their overflow work to utility computing or cloud service
providers.

Number of users

(a) Traditional IT cost model

Variable costs in
operational expenses

C
os

ts

(b) Cloud computing cost model

Number of users

Variable costs in
operational expenses

C
os

ts

Fixed costs in capital
equipment

FIGURE 4.3

Computing economics between traditional IT users and cloud users.
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4.1.2.3 Cloud Ecosystems
With the emergence of various Internet clouds, an ecosystem of providers, users, and technologies
has appeared. This ecosystem has evolved around public clouds. Strong interest is growing in open
source cloud computing tools that let organizations build their own IaaS clouds using their internal
infrastructures. Private and hybrid clouds are not exclusive, since public clouds are involved in both
cloud types. A private/hybrid cloud allows remote access to its resources over the Internet using
remote web service interfaces such as that used in Amazon EC2.

An ecosystem was suggested by Sotomayor, et al. [39] (Figure 4.4) for building private clouds.
They suggested four levels of ecosystem development in a private cloud. At the user end, consu-
mers demand a flexible platform. At the cloud management level, the cloud manager provides vir-
tualized resources over an IaaS platform. At the virtual infrastructure (VI) management level, the
manager allocates VMs over multiple server clusters. Finally, at the VM management level, the VM
managers handle VMs installed on individual host machines. An ecosystem of cloud tools attempts
to span both cloud management and VI management. Integrating these two layers is complicated by
the lack of open and standard interfaces between them.

An increasing number of startup companies are now basing their IT strategies on cloud
resources, spending little or no capital to manage their own IT infrastructures. We desire a flexible
and open architecture that enables organizations to build private/hybrid clouds. VI management is
aimed at this goal. Example VI tools include oVirt (https://fedorahosted.org/ovirt/), vSphere/4

Individual users Other clouds
Platform-as-a-

service
Cloud consumers

(a)

(b)

(c)

(d)

Cloud
management

VI management

VM managers

OpenNebula

Amazon EC2
and other

public clouds

Eucalyptus Globus
nimbus

VMwareKVMXen

VMware vSphere
and others

Need raw
infrastructure

Need to outsource
excess workloads

Cloud interfaces (Amazon EC2WS,
Nimbus WSRF, ElasticHosts REST)

Need resources on which to instantiate
services (web, databases, and so on) for their users

Cloud toolkits currently do not use
virtual infrastructure managers and,
instead, manage VMs themselves

directly, without providing the full set
of features of VI managers

...

FIGURE 4.4

Cloud ecosystem for building private clouds: (a) Consumers demand a flexible platform; (b) Cloud manager
provides virtualized resources over an IaaS platform; (c) VI manager allocates VMs; (d) VM managers handle
VMs installed on servers.

(Courtesy of Sotomayor, et al. © IEEE [68] )
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(www.vmware.com/products/vsphere/) from VMWare, and VM Orchestrator (www.platform.com/
Products/platform-vm-orchestrator) from Platfom Computing.

These tools support dynamic placement and VM management on a pool of physical resources, auto-
matic load balancing, server consolidation, and dynamic infrastructure resizing and partitioning. In addi-
tion to public clouds such as Amazon EC2, Eucalyptus and Globus Nimbus are open source tools for
virtualization of cloud infrastructure. To access these cloud management tools, one can use the Amazon
EC2WS, Nimbus WSRF, and ElasticHost REST cloud interfaces. For VI management, OpenNebula and
VMware vSphere can be used to manage all VM generation including Xen, KVM, and VMware tools.

4.1.2.4 Surge of Private Clouds
In general, private clouds leverage existing IT infrastructure and personnel within an enterprise
or government organization. Both public and private clouds handle workloads dynamically. However,
public clouds should be designed to handle workloads without communication dependency. Both
types of clouds distribute data and VM resources. However, private clouds can balance workloads
to exploit IT resources more efficiently within the same intranet. Private clouds can also provide pre-
production testing and enforce data privacy and security policies more effectively. In a public cloud,
the surge workload is often offloaded. The major advantage of public clouds lies in the avoidance of
capital expenses by users in IT investments in hardware, software, and personnel.

Most companies start with virtualization of their computing machines to lower the operating
costs. Companies such as Microsoft, Oracle, and SAP may want to establish policy-driven manage-
ment of their computing resources, mainly to improve QoS to their employees and customers. By
integrating virtualized data centers and company IT resources, they offer IT as a service to improve
the agility of their company operations. This approach avoids replacement of a large number of
servers every 18 months. As a result, these companies can upgrade their IT efficiency significantly.

4.1.3 Infrastructure-as-a-Service (IaaS)
Cloud computing delivers infrastructure, platform, and software (application) as services, which are
made available as subscription-based services in a pay-as-you-go model to consumers. The services
provided over the cloud can be generally categorized into three different service models: namely
IaaS, Platform as a Service (PaaS), and Software as a Service (SaaS). These form the three pillars on
top of which cloud computing solutions are delivered to end users. All three models allow users to
access services over the Internet, relying entirely on the infrastructures of cloud service providers.

These models are offered based on various SLAs between providers and users. In a broad sense,
the SLA for cloud computing is addressed in terms of service availability, performance, and data
protection and security. Figure 4.5 illustrates three cloud models at different service levels of the
cloud. SaaS is applied at the application end using special interfaces by users or clients. At the
PaaS layer, the cloud platform must perform billing services and handle job queuing, launching,
and monitoring services. At the bottom layer of the IaaS services, databases, compute instances, the
file system, and storage must be provisioned to satisfy user demands.

4.1.3.1 Infrastructure as a Service
This model allows users to use virtualized IT resources for computing, storage, and networking. In
short, the service is performed by rented cloud infrastructure. The user can deploy and run his
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applications over his chosen OS environment. The user does not manage or control the underlying
cloud infrastructure, but has control over the OS, storage, deployed applications, and possibly select
networking components. This IaaS model encompasses storage as a service, compute instances as
a service, and communication as a service. The Virtual Private Cloud (VPC) in Example 4.1 shows
how to provide Amazon EC2 clusters and S3 storage to multiple users. Many startup cloud provi-
ders have appeared in recent years. GoGrid, FlexiScale, and Aneka are good examples. Table 4.1
summarizes the IaaS offerings by five public cloud providers. Interested readers can visit the
companies’ web sites for updated information. More examples can be also found in two recent
cloud books [10,18].

Example 4.1 Amazon VPC for Multiple Tenants

A user can use a private facility for basic computations. When he must meet a specific workload require-
ment, he can use the Amazon VPC to provide additional EC2 instances or more storage (S3) to handle
urgent applications. Figure 4.6 shows VPC which is essentially a private cloud designed to address the priv-
acy concerns of public clouds that hamper their application when sensitive data and software are involved.

Amazon EC2 provides the following services: resources from multiple data centers globally distributed,
CL1, web services (SOAP and Query), web-based console user interfaces, access to VM instances via

Users

SaaS

Billing Q Billing
servicePaaS

laaS

laaS
DaaS

Client interface

Launch
ctrlr

Monitor Q
Monitor 

ctrlrLaunch Q

Status DB
Master

Worker

Distributed
file system

FIGURE 4.5

The IaaS, PaaS, and SaaS cloud service models at different service levels..
(Courtesy of J. Suh and S. Kang, USC )
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Table 4.1 Public Cloud Offerings of IaaS [10,18]

Cloud Name VM Instance Capacity
API and Access
Tools

Hypervisor,
Guest OS

Amazon EC2 Each instance has 1–20 EC2 processors,
1.7–15 GB of memory, and 160–1.69 TB of
storage.

CLI or web Service
(WS) portal

Xen, Linux,
Windows

GoGrid Each instance has 1–6 CPUs, 0.5–8 GB of
memory, and 30–480 GB of storage.

REST, Java, PHP,
Python, Ruby

Xen, Linux,
Windows

Rackspace
Cloud

Each instance has a four-core CPU,
0.25–16 GB of memory, and 10–620 GB of
storage.

REST, Python, PHP,
Java, C#, .NET

Xen, Linux

FlexiScale in
the UK

Each instance has 1–4 CPUs, 0.5–16 GB of
memory, and 20–270 GB of storage.

web console Xen, Linux,
Windows

Joyent Cloud Each instance has up to eight CPUs,
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Amazon VPC (virtual private cloud).
(Courtesy of VMWare, http://aws.amazon.com/vpc/ )
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SSH and Windows, 99.5 percent available agreements, per-hour pricing, Linux and Windows OSes, and
automatic scaling and load balancing. We will illustrate the use of EC2 in more detail in Chapter 6. VPC
allows the user to isolate provisioned AWS processors, memory, and storage from interference by other
users. Both auto-scaling and elastic load balancing services can support related demands. Auto-scaling
enables users to automatically scale their VM instance capacity up or down. With auto-scaling, one
can ensure that a sufficient number of Amazon EC2 instances are provisioned to meet desired
performance. Or one can scale down the VM instance capacity to reduce costs, when the workload
is reduced.

4.1.4 Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS)
In this section, we will introduce the PaaS and SaaS models for cloud computing. SaaS is often
built on top of the PaaS, which is in turn built on top of the IaaS.

4.1.4.1 Platform as a Service (PaaS)
To be able to develop, deploy, and manage the execution of applications using provisioned resources
demands a cloud platform with the proper software environment. Such a platform includes operating
system and runtime library support. This has triggered the creation of the PaaS model to enable users
to develop and deploy their user applications. Table 4.2 highlights cloud platform services offered by
five PaaS services. Further details of some of these PaaS offerings are provided in Section 4.4 and in
Chapter 6. Some illustrative examples and case studies can be found in [10,18].

The platform cloud is an integrated computer system consisting of both hardware and software
infrastructure. The user application can be developed on this virtualized cloud platform using some pro-
gramming languages and software tools supported by the provider (e.g., Java, Python, .NET). The user
does not manage the underlying cloud infrastructure. The cloud provider supports user application
development and testing on a well-defined service platform. This PaaS model enables a collaborated

Table 4.2 Five Public Cloud Offerings of PaaS [10,18]

Cloud Name
Languages and
Developer Tools

Programming Models
Supported by Provider

Target Applications
and Storage Option

Google App
Engine

Python, Java, and
Eclipse-based IDE

MapReduce, web
programming on demand

Web applications and
BigTable storage

Salesforce.com’s
Force.com

Apex, Eclipse-based
IDE, web-based Wizard

Workflow, Excel-like formula,
Web programming on demand

Business applications
such as CRM

Microsoft Azure .NET, Azure tools for
MS Visual Studio

Unrestricted model Enterprise and web
applications

Amazon Elastic
MapReduce

Hive, Pig, Cascading,
Java, Ruby, Perl,
Python, PHP, R, C++

MapReduce Data processing and
e-commerce

Aneka .NET, stand-alone SDK Threads, task, MapReduce .NET enterprise
applications, HPC
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software development platform for users from different parts of the world. This model also encourages
third parties to provide software management, integration, and service monitoring solutions.

Example 4.2 Google App Engine for PaaS Applications

As web applications are running on Google’s server clusters, they share the same capability with many
other users. The applications have features such as automatic scaling and load balancing which
are very convenient while building web applications. The distributed scheduler mechanism can also
schedule tasks for triggering events at specified times and regular intervals. Figure 4.7 shows the
operational model for GAE. To develop applications using GAE, a development environment must be
provided.

Google provides a fully featured local development environment that simulates GAE on the develo-
per’s computer. All the functions and application logic can be implemented locally which is quite simi-
lar to traditional software development. The coding and debugging stages can be performed locally as
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FIGURE 4.7

Google App Engine platform for PaaS operations.
(Courtesy of Yangting Wu, USC )
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well. After these steps are finished, the SDK provided provides a tool for uploading the user’s applica-
tion to Google’s infrastructure where the applications are actually deployed. Many additional third-party
capabilities, including software management, integration, and service monitoring solutions, are also
provided.

Here are some useful links when logging on to the GAE system:

• Google App Engine home page: http://code.google.com/appengine/
• Sign up for an account or use your Gmail account name: https://appengine.google.com/
• Download GAE SDK: http://code.google.com/appengine/downloads.html
• Python Getting Started Guide: http://code.google.com/appengine/docs/python/gettingstarted/
• Java Getting Started Guide: http://code.google.com/appengine/docs/java/gettingstarted/
• Quota page for free service: http://code.google.com/appengine/docs/quotas.html#Resources
• Billing page if you go over the quota: http://code.google.com/appengine/docs/billing.

html#Billable_Quota_Unit_Cost

4.1.4.2 Software as a Service (SaaS)
This refers to browser-initiated application software over thousands of cloud customers. Services
and tools offered by PaaS are utilized in construction of applications and management of their
deployment on resources offered by IaaS providers. The SaaS model provides software applications
as a service. As a result, on the customer side, there is no upfront investment in servers or software
licensing. On the provider side, costs are kept rather low, compared with conventional hosting of
user applications. Customer data is stored in the cloud that is either vendor proprietary or publicly
hosted to support PaaS and IaaS.

The best examples of SaaS services include Google Gmail and docs, Microsoft SharePoint, and
the CRM software from Salesforce.com. They are all very successful in promoting their own busi-
ness or are used by thousands of small businesses in their day-to-day operations. Providers such as
Google and Microsoft offer integrated IaaS and PaaS services, whereas others such as Amazon and
GoGrid offer pure IaaS services and expect third-party PaaS providers such as Manjrasoft to offer
application development and deployment services on top of their infrastructure services. To identify
important cloud applications in enterprises, the success stories of three real-life cloud applications
are presented in Example 4.3 for HTC, news media, and business transactions. The benefits of
using cloud services are evident in these SaaS applications.

Example 4.3 Three Success Stories on SaaS Applications

1. To discover new drugs through DNA sequence analysis, Eli Lily Company has used Amazon’s AWS
platform with provisioned server and storage clusters to conduct high-performance biological sequence
analysis without using an expensive supercomputer. The benefit of this IaaS application is reduced
drug deployment time with much lower costs.

2. The New York Times has applied Amazon’s EC2 and S3 services to retrieve useful pictorial information
quickly from millions of archival articles and newspapers. The New York Times has significantly
reduced the time and cost in getting the job done.
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3. Pitney Bowes, an e-commerce company, offers clients the opportunity to perform B2B transactions
using the Microsoft Azure platform, along with .NET and SQL services. These offerings have signifi-
cantly increased the company’s client base.

4.1.4.3 Mashup of Cloud Services
At the time of this writing, public clouds are in use by a growing number of users. Due to the lack
of trust in leaking sensitive data in the business world, more and more enterprises, organizations,
and communities are developing private clouds that demand deep customization. An enterprise
cloud is used by multiple users within an organization. Each user may build some strategic applica-
tions on the cloud, and demands customized partitioning of the data, logic, and database in the
metadata representation. More private clouds may appear in the future.

Based on a 2010 Google search survey, interest in grid computing is declining rapidly. Cloud
mashups have resulted from the need to use multiple clouds simultaneously or in sequence. For
example, an industrial supply chain may involve the use of different cloud resources or services at
different stages of the chain. Some public repository provides thousands of service APIs and mash-
ups for web commerce services. Popular APIs are provided by Google Maps, Twitter, YouTube,
Amazon eCommerce, Salesforce.com, etc.

4.2 DATA-CENTER DESIGN AND INTERCONNECTION NETWORKS
A data center is often built with a large number of servers through a huge interconnection network.
In this section, we will study the design of large-scale data centers and small modular data centers
that can be housed in a 40-ft truck container. Then we will take a look at interconnection of modu-
lar data centers and their management issues and solutions.

4.2.1 Warehouse-Scale Data-Center Design
Dennis Gannon claims: “The cloud is built on massive datacenters” [26]. Figure 4.8 shows a data
center that is as large as a shopping mall (11 times the size of a football field) under one roof. Such a
data center can house 400,000 to 1 million servers. The data centers are built economics of scale—
meaning lower unit cost for larger data centers. A small data center could have 1,000 servers. The
larger the data center, the lower the operational cost. The approximate monthly cost to operate a huge
400-server data center is estimated by network cost $13/Mbps; storage cost $0.4/GB; and administra-
tion costs. These unit costs are greater than those of a 1,000-server data center. The network cost to
operate a small data center is about seven times greater and the storage cost is 5.7 times greater.
Microsoft has about 100 data centers, large or small, which are distributed around the globe.

4.2.1.1 Data-Center Construction Requirements
Most data centers are built with commercially available components. An off-the-shelf server consists
of a number of processor sockets, each with a multicore CPU and its internal cache hierarchy, local
shared and coherent DRAM, and a number of directly attached disk drives. The DRAM and disk
resources within the rack are accessible through first-level rack switches and all resources in all
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racks are accessible via a cluster-level switch. Consider a data center built with 2,000 servers, each
with 8 GB of DRAM and four 1 TB disk drives. Each group of 40 servers is connected through a
1 Gbps link to a rack-level switch that has an additional eight 1 Gbps ports used for connecting the
rack to the cluster-level switch.

It was estimated [9] that the bandwidth available from local disks is 200 MB/s, whereas the band-
width from off-rack disks is 25 MB/s via shared rack uplinks. The total disk storage in the cluster is
almost 10 million times larger than local DRAM. A large application must deal with large discrepancies
in latency, bandwidth, and capacity. In a very large-scale data center, components are relatively cheaper.
The components used in data centers are very different from those in building supercomputer systems.

With a scale of thousands of servers, concurrent failure, either hardware failure or software
failure, of 1 percent of nodes is common. Many failures can happen in hardware; for example, CPU
failure, disk I/O failure, and network failure. It is even quite possible that the whole data center
does not work in the case of a power crash. Also, some failures are brought on by software. The
service and data should not be lost in a failure situation. Reliability can be achieved by redundant
hardware. The software must keep multiple copies of data in different locations and keep the data
accessible while facing hardware or software errors.

4.2.1.2 Cooling System of a Data-Center Room
Figure 4.9 shows the layout and cooling facility of a warehouse in a data center. The data-center
room has raised floors for hiding cables, power lines, and cooling supplies. The cooling system is
somewhat simpler than the power system. The raised floor has a steel grid resting on stanchions

FIGURE 4.8

A huge data center that is 11 times the size of a football field, housing 400,000 to 1 million servers.
(Courtesy of Dennis Gannon [26] )
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about 2–4 ft above the concrete floor. The under-floor area is often used to route power cables to
racks, but its primary use is to distribute cool air to the server rack. The CRAC (computer room air
conditioning) unit pressurizes the raised floor plenum by blowing cold air into the plenum.

The cold air escapes from the plenum through perforated tiles that are placed in front of server
racks. Racks are arranged in long aisles that alternate between cold aisles and hot aisles to avoid
mixing hot and cold air. The hot air produced by the servers circulates back to the intakes of the
CRAC units that cool it and then exhaust the cool air into the raised floor plenum again. Typically,
the incoming coolant is at 12–14°C and the warm coolant returns to a chiller. Newer data centers
often insert a cooling tower to pre-cool the condenser water loop fluid. Water-based free cooling
uses cooling towers to dissipate heat. The cooling towers use a separate cooling loop in which
water absorbs the coolant’s heat in a heat exchanger.

4.2.2 Data-Center Interconnection Networks
A critical core design of a data center is the interconnection network among all servers in the data-
center cluster. This network design must meet five special requirements: low latency, high band-
width, low cost, message-passing interface (MPI) communication support, and fault tolerance. The
design of an inter-server network must satisfy both point-to-point and collective communication
patterns among all server nodes. Specific design considerations are given in the following sections.

4.2.2.1 Application Traffic Support
The network topology should support all MPI communication patterns. Both point-to-point and col-
lective MPI communications must be supported. The network should have high bisection bandwidth
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Floor tiles
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Liquid supply
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Floor tiles
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FIGURE 4.9

The cooling system in a raised-floor data center with hot-cold air circulation supporting water heat exchange
facilities.

(Courtesy of DLB Associates, D. Dyer [22] )
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to meet this requirement. For example, one-to-many communications are used for supporting distrib-
uted file access. One can use one or a few servers as metadata master servers which need to com-
municate with slave server nodes in the cluster. To support the MapReduce programming paradigm,
the network must be designed to perform the map and reduce functions (to be treated in Chapter 7)
at a high speed. In other words, the underlying network structure should support various network
traffic patterns demanded by user applications.

4.2.2.2 Network Expandability
The interconnection network should be expandable. With thousands or even hundreds of thousands
of server nodes, the cluster network interconnection should be allowed to expand once more servers
are added to the data center. The network topology should be restructured while facing such
expected growth in the future. Also, the network should be designed to support load balancing and
data movement among the servers. None of the links should become a bottleneck that slows down
application performance. The topology of the interconnection should avoid such bottlenecks.

The fat-tree and crossbar networks studied in Chapter 2 could be implemented with low-cost
Ethernet switches. However, the design could be very challenging when the number of servers
increases sharply. The most critical issue regarding expandability is support of modular network
growth for building data-center containers, as discussed in Section 4.2.3. One single data-center
container contains hundreds of servers and is considered to be the building block of large-scale data
centers. The network interconnection among many containers will be explained in Section 4.2.4.
Cluster networks need to be designed for data-center containers. Cable connections are then needed
among multiple data-center containers.

Data centers are not built by piling up servers in multiple racks today. Instead, data-center owners
buy server containers while each container contains several hundred or even thousands of server nodes.
The owners can just plug in the power supply, outside connection link, and cooling water, and the whole
system will just work. This is quite efficient and reduces the cost of purchasing and maintaining servers.
One approach is to establish the connection backbone first and then extend the backbone links to reach
the end servers. One can also connect multiple containers through external switching and cabling.

4.2.2.3 Fault Tolerance and Graceful Degradation
The interconnection network should provide some mechanism to tolerate link or switch failures. In
addition, multiple paths should be established between any two server nodes in a data center. Fault
tolerance of servers is achieved by replicating data and computing among redundant servers. Similar
redundancy technology should apply to the network structure. Both software and hardware network
redundancy apply to cope with potential failures. One the software side, the software layer should
be aware of network failures. Packet forwarding should avoid using broken links. The network
support software drivers should handle this transparently without affecting cloud operations.

In case of failures, the network structure should degrade gracefully amid limited node failures.
Hot-swappable components are desired. There should be no critical paths or critical points which may
become a single point of failure that pulls down the entire system. Most design innovations are in the
topology structure of the network. The network structure is often divided into two layers. The lower
layer is close to the end servers, and the upper layer establishes the backbone connections among the
server groups or sub-clusters. This hierarchical interconnection approach appeals to building data
centers with modular containers.
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4.2.2.4 Switch-centric Data-Center Design
At the time of this writing, there are two approaches to building data-center-scale networks: One is switch-
centric and the other is server-centric. In a switch-centric network, the switches are used to connect the
server nodes. The switch-centric design does not affect the server side. No modifications to the servers are
needed. The server-centric design does modify the operating system running on the servers. Special
drivers are designed for relaying the traffic. Switches still have to be organized to achieve the connections.

Example 4.4 A Fat-Tree Interconnection Network for Data Centers

Figure 4.10 shows a fat-tree switch network design for data-center construction. The fat-tree topology is
applied to interconnect the server nodes. The topology is organized into two layers. Server nodes are in the
bottom layer, and edge switches are used to connect the nodes in the bottom layer. The upper layer
aggregates the lower-layer edge switches. A group of aggregation switches, edge switches, and their leaf
nodes form a pod. Core switches provide paths among different pods. The fat-tree structure provides multi-
ple paths between any two server nodes. This provides fault-tolerant capability with an alternate path in
case of some isolated link failures.

The failure of an aggregation switch and core switch will not affect the connectivity of the whole net-
work. The failure of any edge switch can only affect a small number of end server nodes. The extra
switches in a pod provide higher bandwidth to support cloud applications in massive data movement. The
building blocks used are the low-cost Ethernet switches. This reduces the cost quite a bit. The routing
table provides extra routing paths in case of failure. The routing algorithms are built inside the switches.
The end server nodes in the data center are not affected during a switch failure, as long as the alternate
routing path does not fail at the same time.
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FIGURE 4.10

A fat-tree interconnection topology for scalable data-center construction.
(Courtesy of M. Al-Fares, et al. [2] )
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4.2.3 Modular Data Center in Shipping Containers
A modern data center is structured as a shipyard of server clusters housed in truck-towed containers.
Figure 4.11 shows the housing of multiple sever racks in a truck-towed container in the SGI ICE
Cube modular data center. Inside the container, hundreds of blade servers are housed in racks sur-
rounding the container walls. An array of fans forces the heated air generated by the server racks to
go through a heat exchanger, which cools the air for the next rack (detail in callout) on a continu-
ous loop. The SGI ICE Cube container can house 46,080 processing cores or 30 PB of storage per
container.

Large-scale data center built with modular containers appear as a big shipping yard of container
trucks. This container-based data center was motivated by demand for lower power consumption,
higher computer density, and mobility to relocate data centers to better locations with lower electricity
costs, better cooling water supplies, and cheaper housing for maintenance engineers. Sophisticated
cooling technology enables up to 80% reduction in cooling costs compared with traditional warehouse
data centers. Both chilled air circulation and cold water are flowing through the heat exchange pipes
to keep the server racks cool and easy to repair.

Data centers usually are built at a site where leases and utilities for electricity are cheaper,
and cooling is more efficient. Both warehouse-scale and modular data centers in containers are
needed. In fact, the modular truck containers can be used to put together a large-scale data center
like a container shipping yard. In addition to location selection and power savings in data-center
operations, one must consider data integrity, server monitoring, and security management in data
centers. These problems are easier to handle if the data center is centralized in a single large
building.

4.2.3.1 Container Data-Center Construction
The data-center module is housed in a truck-towable container. The modular container design includes
the network, computer, storage, and cooling gear. One needs to increase cooling efficiency by
varying the water and airflow with better airflow management. Another concern is to meet seasonal
load requirements. The construction of a container-based data center may start with one system (ser-
ver), then move to a rack system design, and finally to a container system. This staged development
may take different amounts of time and demand increasing costs. Building a rack of 40 servers may

FIGURE 4.11

A modular data center built in a truck-towed ICE Cube container, that can be cooled by chilled air circulation
with cold-water heat exchanges.

(Courtesy of SGI, Inc., http://www.sgi.com/icecube )
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take half a day. Extending this to a whole container system with multiple racks for 1,000 servers
requires the layout of the floor space with power, networking, cooling, and complete testing.

The container must be designed to be weatherproof and easy to transport. Modular data-center
construction and testing may take a few days to complete if all components are available and power
and water supplies are handy. The modular data-center approach supports many cloud service appli-
cations. For example, the health care industry will benefit by installing a data center at all clinic
sites. However, how to exchange information with the central database and maintain periodic con-
sistency becomes a rather challenging design issue in a hierarchically structured data center. The
security of collocation cloud services may involve multiple data centers.

4.2.4 Interconnection of Modular Data Centers
Container-based data-center modules are meant for construction of even larger data centers using a
farm of container modules. Some proposed designs of container modules are presented in this sec-
tion. Their interconnections are shown for building scalable data centers. The following example is
a server-centric design of the data-center module.

Example 4.5 A Server-Centric Network for a Modular Data Center

Guo, et al. [30] have developed a server-centric BCube network (Figure 4.12) for interconnecting modular
data centers. The servers are represented by circles, and switches by rectangles. The BCube provides a
layered structure. The bottom layer contains all the server nodes and they form Level 0. Level 1 switches
form the top layer of BCube0. BCube is a recursively constructed structure. The BCube0 consists of n
servers connecting to an n-port switch. The BCubek (k ≥ 1) is structured from n BCubek−1 with nk n-port
switches. The example of BCube1 is illustrated in Figure 4.12, where the connection rule is that the i-th
server in the j-th BCube0 connects to the j-th port of the i-th Level 1 switch. The servers in the BCube
have multiple ports attached. This allows extra devices to be used in the server.

Level 0

Level 1

00 01

<0,0>

02 03

<1,0> <1,1> <1,2> <1,3>

10 11 12 13 20 21

<0,2>

22 23 30 31

<0,3>

32 33

<0,1>

FIGURE 4.12

BCube, a high-performance, server-centric network for building modular data centers.
(Courtesy of C. Guo, et al. [30] )
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The BCube provides multiple paths between any two nodes. Multiple paths provide extra bandwidth to
support communication patterns in different cloud applications. The BCube provides a kernel module in
the server OS to perform routing operations. The kernel module supports packet forwarding while the
incoming packets are not destined to the current node. Such modification of the kernel will not influence
the upper layer applications. Thus, the cloud application can still run on top of the BCube network
structure without any modification.

4.2.4.1 Inter-Module Connection Networks
The BCube is commonly used inside a server container. The containers are considered the building
blocks for data centers. Thus, despite the design of the inner container network, one needs another
level of networking among multiple containers. In Figure 4.13, Wu, et al. [82] have proposed a net-
work topology for intercontainer connection using the aforementioned BCube network as building
blocks. The proposed network was named MDCube (for Modularized Datacenter Cube). This net-
work connects multiple BCube containers by using high-speed switches in the BCube. Similarly,
the MDCube is constructed by shuffling networks with multiple containers. Figure 4.13 shows how
a 2D MDCube is constructed from nine BCube1 containers.

The architecture builds a virtual hypercube at the container level, in addition to the cube structure
inside the container (BCube). With the server container built with the BCube network, the MDCube
is used to build a large-scale data center for supporting cloud application communication patterns.
Readers are referred to the article at [45] for detailed implementation and simulation results of this
interconnection network over multiple modular data centers built in containers. In fact, there are
many other ways to use MDCube to build the network. Essentially, this network architecture builds a
virtual hypercube at the container level, in addition to the cube structure inside the container
(BCube). With the server container built with the BCube network, the MDCube is used to build a
large-scale data center for supporting cloud application communication patterns [82].

4.2.5 Data-Center Management Issues
Here are basic requirements for managing the resources of a data center. These suggestions have
resulted from the design and operational experiences of many data centers in the IT and service
industries.

• Making common users happy The data center should be designed to provide quality service to
the majority of users for at least 30 years.

• Controlled information flow Information flow should be streamlined. Sustained services and
high availability (HA) are the primary goals.

• Multiuser manageability The system must be managed to support all functions of a data center,
including traffic flow, database updating, and server maintenance.

• Scalability to prepare for database growth The system should allow growth as workload
increases. The storage, processing, I/O, power, and cooling subsystems should be scalable.

• Reliability in virtualized infrastructure Failover, fault tolerance, and VM live migration
should be integrated to enable recovery of critical applications from failures or disasters.
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• Low cost to both users and providers The cost to users and providers of the cloud system
built over the data centers should be reduced, including all operational costs.

• Security enforcement and data protection Data privacy and security defense mechanisms must
be deployed to protect the data center against network attacks and system interrupts and to
maintain data integrity from user abuses or network attacks.

• Green information technology Saving power consumption and upgrading energy efficiency are
in high demand when designing and operating current and future data centers.
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A 2D MDCube constructed from nine BCube containers.
(Courtesy of Wu, et al. [82] )
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4.2.5.1 Marketplaces in Cloud Computing Services
Container-based data-center implementation can be done more efficiently with factory racking,
stacking, and packing. One should avoid layers of packaging at the customer site. However, the
data centers are still custom-crafted rather than prefab units. The modular approach is more space-
efficient with power densities in excess of 1250 W/sq ft. Rooftop or parking lot installation is
acceptable. One should leave sufficient redundancy to allow upgrades over time.

4.3 ARCHITECTURAL DESIGN OF COMPUTE AND STORAGE CLOUDS
This section presents basic cloud design principles. We start with basic cloud architecture to process
massive amounts of data with a high degree of parallelism. Then we study virtualization support,
resource provisioning, infrastructure management, and performance modeling.

4.3.1 A Generic Cloud Architecture Design
An Internet cloud is envisioned as a public cluster of servers provisioned on demand to perform
collective web services or distributed applications using data-center resources. In this section, we
will discuss cloud design objectives and then present a basic cloud architecture design.

4.3.1.1 Cloud Platform Design Goals
Scalability, virtualization, efficiency, and reliability are four major design goals of a cloud
computing platform. Clouds support Web 2.0 applications. Cloud management receives the user
request, finds the correct resources, and then calls the provisioning services which invoke the
resources in the cloud. The cloud management software needs to support both physical and vir-
tual machines. Security in shared resources and shared access of data centers also pose another
design challenge.

The platform needs to establish a very large-scale HPC infrastructure. The hardware and
software systems are combined to make it easy and efficient to operate. System scalability can
benefit from cluster architecture. If one service takes a lot of processing power, storage capacity,
or network traffic, it is simple to add more servers and bandwidth. System reliability can benefit
from this architecture. Data can be put into multiple locations. For example, user e-mail can be
put in three disks which expand to different geographically separate data centers. In such a situa-
tion, even if one of the data centers crashes, the user data is still accessible. The scale of the
cloud architecture can be easily expanded by adding more servers and enlarging the network con-
nectivity accordingly.

4.3.1.2 Enabling Technologies for Clouds
The key driving forces behind cloud computing are the ubiquity of broadband and wireless
networking, falling storage costs, and progressive improvements in Internet computing software.
Cloud users are able to demand more capacity at peak demand, reduce costs, experiment with new
services, and remove unneeded capacity, whereas service providers can increase system utilization
via multiplexing, virtualization, and dynamic resource provisioning. Clouds are enabled by the
progress in hardware, software, and networking technologies summarized in Table 4.3.
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These technologies play instrumental roles in making cloud computing a reality. Most of these
technologies are mature today to meet increasing demand. In the hardware area, the rapid progress
in multicore CPUs, memory chips, and disk arrays has made it possible to build faster data centers
with huge amounts of storage space. Resource virtualization enables rapid cloud deployment and
disaster recovery. Service-oriented architecture (SOA) also plays a vital role.

Progress in providing SaaS, Web 2.0 standards, and Internet performance have all contributed to
the emergence of cloud services. Today’s clouds are designed to serve a large number of tenants
over massive volumes of data. The availability of large-scale, distributed storage systems is the
foundation of today’s data centers. Of course, cloud computing is greatly benefitted by the progress
made in license management and automatic billing techniques in recent years.

4.3.1.3 A Generic Cloud Architecture
Figure 4.14 shows a security-aware cloud architecture. The Internet cloud is envisioned as a
massive cluster of servers. These servers are provisioned on demand to perform collective web
services or distributed applications using data-center resources. The cloud platform is formed
dynamically by provisioning or deprovisioning servers, software, and database resources. Servers in
the cloud can be physical machines or VMs. User interfaces are applied to request services. The
provisioning tool carves out the cloud system to deliver the requested service.

In addition to building the server cluster, the cloud platform demands distributed storage and
accompanying services. The cloud computing resources are built into the data centers, which are
typically owned and operated by a third-party provider. Consumers do not need to know the under-
lying technologies. In a cloud, software becomes a service. The cloud demands a high degree of
trust of massive amounts of data retrieved from large data centers. We need to build a framework
to process large-scale data stored in the storage system. This demands a distributed file system over
the database system. Other cloud resources are added into a cloud platform, including storage area
networks (SANs), database systems, firewalls, and security devices. Web service providers offer

Table 4.3 Cloud-Enabling Technologies in Hardware, Software, and Networking

Technology Requirements and Benefits

Fast platform deployment Fast, efficient, and flexible deployment of cloud resources to provide
dynamic computing environment to users

Virtual clusters on demand Virtualized cluster of VMs provisioned to satisfy user demand and virtual
cluster reconfigured as workload changes

Multitenant techniques SaaS for distributing software to a large number of users for their
simultaneous use and resource sharing if so desired

Massive data processing Internet search and web services which often require massive data
processing, especially to support personalized services

Web-scale communication Support for e-commerce, distance education, telemedicine, social
networking, digital government, and digital entertainment applications

Distributed storage Large-scale storage of personal records and public archive information
which demands distributed storage over the clouds

Licensing and billing services License management and billing services which greatly benefit all types
of cloud services in utility computing
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special APIs that enable developers to exploit Internet clouds. Monitoring and metering units are
used to track the usage and performance of provisioned resources.

The software infrastructure of a cloud platform must handle all resource management and do most of
the maintenance automatically. Software must detect the status of each node server joining and leaving,
and perform relevant tasks accordingly. Cloud computing providers, such as Google and Microsoft,
have built a large number of data centers all over the world. Each data center may have thousands of
servers. The location of the data center is chosen to reduce power and cooling costs. Thus, the data cen-
ters are often built around hydroelectric power. The cloud physical platform builder is more concerned
about the performance/price ratio and reliability issues than shear speed performance.

In general, private clouds are easier to manage, and public clouds are easier to access. The
trends in cloud development are that more and more clouds will be hybrid. This is because many
cloud applications must go beyond the boundary of an intranet. One must learn how to create a pri-
vate cloud and how to interact with public clouds in the open Internet. Security becomes a critical
issue in safeguarding the operation of all cloud types. We will study cloud security and privacy
issues at the end of this chapter.

A public
cloud

Data centers

Services catalogs

Resource provisioning, virtualization,
management, and user interfaces

Clients

Trust delegation, reputation
systems, and data coloring for

protecting cloud resources
provisioned from data centers

Security and performance
monitoring

Cloud platform provisioning of virtualized compute, storage,
and network resources plus software and datasets from multiple
data centers to satisfy the demands of multitenant applications

FIGURE 4.14

A security-aware cloud platform built with a virtual cluster of VMs, storage, and networking resources
over the data-center servers operated by providers.

(Courtesy of K. Hwang and D. Li, 2010 [36] )

4.3 Architectural Design of Compute and Storage Clouds 217



4.3.2 Layered Cloud Architectural Development
The architecture of a cloud is developed at three layers: infrastructure, platform, and application, as
demonstrated in Figure 4.15. These three development layers are implemented with virtualization
and standardization of hardware and software resources provisioned in the cloud. The services to
public, private, and hybrid clouds are conveyed to users through networking support over the Inter-
net and intranets involved. It is clear that the infrastructure layer is deployed first to support IaaS
services. This infrastructure layer serves as the foundation for building the platform layer of the
cloud for supporting PaaS services. In turn, the platform layer is a foundation for implementing the
application layer for SaaS applications. Different types of cloud services demand application of
these resources separately.

The infrastructure layer is built with virtualized compute, storage, and network resources. The
abstraction of these hardware resources is meant to provide the flexibility demanded by users. Intern-
ally, virtualization realizes automated provisioning of resources and optimizes the infrastructure man-
agement process. The platform layer is for general-purpose and repeated usage of the collection of
software resources. This layer provides users with an environment to develop their applications, to
test operation flows, and to monitor execution results and performance. The platform should be able
to assure users that they have scalability, dependability, and security protection. In a way, the virtua-
lized cloud platform serves as a “system middleware” between the infrastructure and application layers
of the cloud.

The Internet

Public clouds
(over Internet)

Hybrid clouds
(over Internet/Internets)

Private clouds
(over Internets)

Application layer (SaaS)

Platform layer (PaaS)

Infrastructure layer (IaaS, HaaS, DaaS, etc.)

Provisioning of both physical and virtualized cloud resources

FIGURE 4.15

Layered architectural development of the cloud platform for IaaS, PaaS, and SaaS applications over the
Internet.
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The application layer is formed with a collection of all needed software modules for SaaS
applications. Service applications in this layer include daily office management work, such as
information retrieval, document processing, and calendar and authentication services. The applica-
tion layer is also heavily used by enterprises in business marketing and sales, consumer relation-
ship management (CRM), financial transactions, and supply chain management. It should be
noted that not all cloud services are restricted to a single layer. Many applications may apply
resources at mixed layers. After all, the three layers are built from the bottom up with a depen-
dence relationship.

From the provider’s perspective, the services at various layers demand different amounts of
functionality support and resource management by providers. In general, SaaS demands the most
work from the provider, PaaS is in the middle, and IaaS demands the least. For example, Amazon
EC2 provides not only virtualized CPU resources to users, but also management of these provi-
sioned resources. Services at the application layer demand more work from providers. The best
example of this is the Salesforce.com CRM service, in which the provider supplies not only the
hardware at the bottom layer and the software at the top layer, but also the platform and software
tools for user application development and monitoring.

4.3.2.1 Market-Oriented Cloud Architecture
As consumers rely on cloud providers to meet more of their computing needs, they will require a
specific level of QoS to be maintained by their providers, in order to meet their objectives and sustain
their operations. Cloud providers consider and meet the different QoS parameters of each individual
consumer as negotiated in specific SLAs. To achieve this, the providers cannot deploy traditional
system-centric resource management architecture. Instead, market-oriented resource management is
necessary to regulate the supply and demand of cloud resources to achieve market equilibrium
between supply and demand.

The designer needs to provide feedback on economic incentives for both consumers and providers.
The purpose is to promote QoS-based resource allocation mechanisms. In addition, clients can benefit
from the potential cost reduction of providers, which could lead to a more competitive market, and
thus lower prices. Figure 4.16 shows the high-level architecture for supporting market-oriented
resource allocation in a cloud computing environment. This cloud is basically built with the following
entities:

Users or brokers acting on user’s behalf submit service requests from anywhere in the world to
the data center and cloud to be processed. The SLA resource allocator acts as the interface between
the data center/cloud service provider and external users/brokers. It requires the interaction of the
following mechanisms to support SLA-oriented resource management. When a service request is
first submitted the service request examiner interprets the submitted request for QoS requirements
before determining whether to accept or reject the request.

The request examiner ensures that there is no overloading of resources whereby many service
requests cannot be fulfilled successfully due to limited resources. It also needs the latest status infor-
mation regarding resource availability (from the VM Monitor mechanism) and workload processing
(from the Service Request Monitor mechanism) in order to make resource allocation decisions effec-
tively. Then it assigns requests to VMs and determines resource entitlements for allocated VMs.

The Pricing mechanism decides how service requests are charged. For instance, requests can be
charged based on submission time (peak/off-peak), pricing rates (fixed/changing), or availability of
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resources (supply/demand). Pricing serves as a basis for managing the supply and demand of computing
resources within the data center and facilitates in prioritizing resource allocations effectively. The Account-
ing mechanism maintains the actual usage of resources by requests so that the final cost can be computed
and charged to users. In addition, the maintained historical usage information can be utilized by the Ser-
vice Request Examiner and Admission Control mechanism to improve resource allocation decisions.

The VM Monitor mechanism keeps track of the availability of VMs and their resource entitle-
ments. The Dispatcher mechanism starts the execution of accepted service requests on allocated
VMs. The Service Request Monitor mechanism keeps track of the execution progress of service
requests. Multiple VMs can be started and stopped on demand on a single physical machine to
meet accepted service requests, hence providing maximum flexibility to configure various partitions
of resources on the same physical machine to different specific requirements of service requests. In
addition, multiple VMs can concurrently run applications based on different operating system envir-
onments on a single physical machine since the VMs are isolated from one another on the same
physical machine.

4.3.2.2 Quality of Service Factors
The data center comprises multiple computing servers that provide resources to meet service
demands. In the case of a cloud as a commercial offering to enable crucial business operations of
companies, there are critical QoS parameters to consider in a service request, such as time, cost, relia-
bility, and trust/security. In particular, QoS requirements cannot be static and may change over time
due to continuing changes in business operations and operating environments. In short, there should
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FIGURE 4.16

Market-oriented cloud architecture to expand/shrink leasing of resources with variation in QoS/demand from users.
(Courtesy of Raj Buyya, et al. [11] )
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be greater importance on customers since they pay to access services in clouds. In addition, the state
of the art in cloud computing has no or limited support for dynamic negotiation of SLAs between par-
ticipants and mechanisms for automatic allocation of resources to multiple competing requests. Nego-
tiation mechanisms are needed to respond to alternate offers protocol for establishing SLAs [72].

Commercial cloud offerings must be able to support customer-driven service management based
on customer profiles and requested service requirements. Commercial clouds define computational
risk management tactics to identify, assess, and manage risks involved in the execution of applica-
tions with regard to service requirements and customer needs. The cloud also derives appropriate
market-based resource management strategies that encompass both customer-driven service manage-
ment and computational risk management to sustain SLA-oriented resource allocation. The system
incorporates autonomic resource management models that effectively self-manage changes in service
requirements to satisfy both new service demands and existing service obligations, and leverage VM
technology to dynamically assign resource shares according to service requirements.

4.3.3 Virtualization Support and Disaster Recovery
One very distinguishing feature of cloud computing infrastructure is the use of system virtualization
and the modification to provisioning tools. Virtualization of servers on a shared cluster can consoli-
date web services. As the VMs are the containers of cloud services, the provisioning tools will first
find the corresponding physical machines and deploy the VMs to those nodes before scheduling the
service to run on the virtual nodes.

In addition, in cloud computing, virtualization also means the resources and fundamental
infrastructure are virtualized. The user will not care about the computing resources that are used for pro-
viding the services. Cloud users do not need to know and have no way to discover physical resources
that are involved while processing a service request. Also, application developers do not care about
some infrastructure issues such as scalability and fault tolerance (i.e., they are virtualized). Application
developers focus on service logic. Figure 4.17 shows the infrastructure needed to virtualize the servers
in a data center for implementing specific cloud applications.

4.3.3.1 Hardware Virtualization
In many cloud computing systems, virtualization software is used to virtualize the hardware. System vir-
tualization software is a special kind of software which simulates the execution of hardware and runs
even unmodified operating systems. Cloud computing systems use virtualization software as the running
environment for legacy software such as old operating systems and unusual applications. Virtualization
software is also used as the platform for developing new cloud applications that enable developers to
use any operating systems and programming environments they like. The development environment
and deployment environment can now be the same, which eliminates some runtime problems.

Some cloud computing providers have used virtualization technology to provide this service for
developers. As mentioned before, system virtualization software is considered the hardware analog
mechanism to run an unmodified operating system, usually on bare hardware directly, on top of
software. Table 4.4 lists some of the system virtualization software in wide use at the time of this
writing. Currently, the VMs installed on a cloud computing platform are mainly used for hosting
third-party programs. VMs provide flexible runtime services to free users from worrying about the
system environment.
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Using VMs in a cloud computing platform ensures extreme flexibility for users. As the comput-
ing resources are shared by many users, a method is required to maximize the users’ privileges and
still keep them separated safely. Traditional sharing of cluster resources depends on the user and
group mechanism on a system. Such sharing is not flexible. Users cannot customize the system
for their special purposes. Operating systems cannot be changed. The separation is not complete.
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Virtualized servers, storage, and network for cloud platform construction.
(Courtesy of Zhong-Yuan Qin, SouthEast University, China )
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An environment that meets one user’s requirements often cannot satisfy another user. Virtualization
allows users to have full privileges while keeping them separate.

Users have full access to their own VMs, which are completely separate from other users’ VMs.
Multiple VMs can be mounted on the same physical server. Different VMs may run with different
OSes. We also need to establish the virtual disk storage and virtual networks needed by the VMs.
The virtualized resources form a resource pool. The virtualization is carried out by special servers
dedicated to generating the virtualized resource pool. The virtualized infrastructure (black box in
the middle) is built with many virtualizing integration managers. These managers handle loads,
resources, security, data, and provisioning functions. Figure 4.18 shows two VM platforms. Each
platform carries out a virtual solution to a user job. All cloud services are managed in the boxes at
the top.

Table 4.4 Virtualized Resources in Compute, Storage, and Network Clouds [4]

Provider AWS Microsoft Azure GAE

Compute
cloud with
virtual
cluster of
servers

x86 instruction set, Xen VMs,
resource elasticity allows
scalability through virtual
cluster, or a third party such
as RightScale must provide
the cluster

Common language
runtime VMs
provisioned by
declarative descriptions

Predefined application
framework handlers written
in Python, automatic
scaling up and down,
server failover inconsistent
with the web applications

Storage
cloud with
virtual
storage

Models for block store (EBS)
and augmented key/blob
store (SimpleDB), automatic
scaling varies from EBS to
fully automatic (SimpleDB, S3)

SQL Data Services
(restricted view of SQL
Server), Azure storage
service

MegaStore/BigTable

Network
cloud
services

Declarative IP-level topology;
placement details hidden,
security groups restricting
communication, availability
zones isolate network failure,
elastic IP applied

Automatic with user’s
declarative descriptions
or roles of app.
components

Fixed topology to
accommodate three-tier
web app. structure,
scaling up and down is
automatic and
programmer-invisible
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“Start single-step
automatic recovery”

FIGURE 4.18

Recovery overhead of a conventional disaster recovery scheme, compared with that required to recover from
live migration of VMs.
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4.3.3.2 Virtualization Support in Public Clouds
Armbrust, et al. [4] have assessed in Table 4.4 three public clouds in the context of virtualization
support: AWS, Microsoft Azure, and GAE. AWS provides extreme flexibility (VMs) for users to
execute their own applications. GAE provides limited application-level virtualization for users to
build applications only based on the services that are created by Google. Microsoft provides
programming-level virtualization (.NET virtualization) for users to build their applications.

The VMware tools apply to workstations, servers, and virtual infrastructure. The Microsoft tools
are used on PCs and some special servers. The XenEnterprise tool applies only to Xen-based ser-
vers. Everyone is interested in the cloud; the entire IT industry is moving toward the vision of the
cloud. Virtualization leads to HA, disaster recovery, dynamic load leveling, and rich provisioning
support. Both cloud computing and utility computing leverage the benefits of virtualization to
provide a scalable and autonomous computing environment.

4.3.3.3 Storage Virtualization for Green Data Centers
IT power consumption in the United States has more than doubled to 3 percent of the total energy
consumed in the country. The large number of data centers in the country has contributed to this
energy crisis to a great extent. More than half of the companies in the Fortune 500 are actively
implementing new corporate energy policies. Recent surveys from both IDC and Gartner confirm
the fact that virtualization had a great impact on cost reduction from reduced power consumption in
physical computing systems. This alarming situation has made the IT industry become more
energy-aware. With little evolution of alternate energy resources, there is an imminent need to con-
serve power in all computers. Virtualization and server consolidation have already proven handy
in this aspect. Green data centers and benefits of storage virtualization are considered to further
strengthen the synergy of green computing.

4.3.3.4 Virtualization for IaaS
VM technology has increased in ubiquity. This has enabled users to create customized environments
atop physical infrastructure for cloud computing. Use of VMs in clouds has the following distinct
benefits: (1) System administrators consolidate workloads of underutilized servers in fewer servers;
(2) VMs have the ability to run legacy code without interfering with other APIs; (3) VMs can be
used to improve security through creation of sandboxes for running applications with questionable
reliability; And (4) virtualized cloud platforms can apply performance isolation, letting providers
offer some guarantees and better QoS to customer applications.

4.3.3.5 VM Cloning for Disaster Recovery
VM technology requires an advanced disaster recovery scheme. One scheme is to recover one
physical machine by another physical machine. The second scheme is to recover one VM by
another VM. As shown in the top timeline of Figure 4.18, traditional disaster recovery from one
physical machine to another is rather slow, complex, and expensive. Total recovery time is attribu-
ted to the hardware configuration, installing and configuring the OS, installing the backup agents,
and the long time to restart the physical machine. To recover a VM platform, the installation
and configuration times for the OS and backup agents are eliminated. Therefore, we end up with
a much shorter disaster recovery time, about 40 percent of that to recover the physical machines.
Virtualization aids in fast disaster recovery by VM encapsulation.
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We discussed disaster recovery in Chapters 2 and 3. The cloning of VMs offers an effective
solution. The idea is to make a clone VM on a remote server for every running VM on a local server.
Among all the clone VMs, only one needs to be active. The remote VM should be in a suspended
mode. A cloud control center should be able to activate this clone VM in case of failure of the origi-
nal VM, taking a snapshot of the VM to enable live migration in a minimal amount of time. The
migrated VM can run on a shared Internet connection. Only updated data and modified states are sent
to the suspended VM to update its state. The Recovery Property Objective (RPO) and Recovery Time
Objective (RTO) are affected by the number of snapshots taken. Security of the VMs should be
enforced during live migration of VMs.

4.3.4 Architectural Design Challenges
In this section, we will identify six open challenges in cloud architecture development. Armbrust,
et al. [4] have observed some of these topics as both obstacles and opportunities. Plausible solutions
to meet these challenges are discussed shortly.

4.3.4.1 Challenge 1—Service Availability and Data Lock-in Problem
The management of a cloud service by a single company is often the source of single points of fail-
ure. To achieve HA, one can consider using multiple cloud providers. Even if a company has multi-
ple data centers located in different geographic regions, it may have common software infrastructure
and accounting systems. Therefore, using multiple cloud providers may provide more protection
from failures. Another availability obstacle is distributed denial of service (DDoS) attacks. Criminals
threaten to cut off the incomes of SaaS providers by making their services unavailable. Some utility
computing services offer SaaS providers the opportunity to defend against DDoS attacks by using
quick scale-ups.

Software stacks have improved interoperability among different cloud platforms, but the APIs
itself are still proprietary. Thus, customers cannot easily extract their data and programs from one
site to run on another. The obvious solution is to standardize the APIs so that a SaaS developer can
deploy services and data across multiple cloud providers. This will rescue the loss of all data due to
the failure of a single company. In addition to mitigating data lock-in concerns, standardization of
APIs enables a new usage model in which the same software infrastructure can be used in both
public and private clouds. Such an option could enable “surge computing,” in which the public
cloud is used to capture the extra tasks that cannot be easily run in the data center of a private
cloud.

4.3.4.2 Challenge 2—Data Privacy and Security Concerns
Current cloud offerings are essentially public (rather than private) networks, exposing the system to
more attacks. Many obstacles can be overcome immediately with well-understood technologies such
as encrypted storage, virtual LANs, and network middleboxes (e.g., firewalls, packet filters). For
example, you could encrypt your data before placing it in a cloud. Many nations have laws requir-
ing SaaS providers to keep customer data and copyrighted material within national boundaries.

Traditional network attacks include buffer overflows, DoS attacks, spyware, malware, rootkits,
Trojan horses, and worms. In a cloud environment, newer attacks may result from hypervisor mal-
ware, guest hopping and hijacking, or VM rootkits. Another type of attack is the man-in-the-middle
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attack for VM migrations. In general, passive attacks steal sensitive data or passwords. Active
attacks may manipulate kernel data structures which will cause major damage to cloud servers. We
will study all of these security and privacy problems on clouds in Section 4.5.

4.3.4.3 Challenge 3—Unpredictable Performance and Bottlenecks
Multiple VMs can share CPUs and main memory in cloud computing, but I/O sharing is problematic.
For example, to run 75 EC2 instances with the STREAM benchmark requires a mean bandwidth of
1,355 MB/second. However, for each of the 75 EC2 instances to write 1 GB files to the local disk
requires a mean disk write bandwidth of only 55 MB/second. This demonstrates the problem of I/O
interference between VMs. One solution is to improve I/O architectures and operating systems to
efficiently virtualize interrupts and I/O channels.

Internet applications continue to become more data-intensive. If we assume applications to be
“pulled apart” across the boundaries of clouds, this may complicate data placement and transport.
Cloud users and providers have to think about the implications of placement and traffic at every
level of the system, if they want to minimize costs. This kind of reasoning can be seen in Amazon’s
development of its new CloudFront service. Therefore, data transfer bottlenecks must be removed,
bottleneck links must be widened, and weak servers should be removed. We will study performance
issues in Chapter 8.

4.3.4.4 Challenge 4—Distributed Storage and Widespread Software Bugs
The database is always growing in cloud applications. The opportunity is to create a storage system
that will not only meet this growth, but also combine it with the cloud advantage of scaling arbitra-
rily up and down on demand. This demands the design of efficient distributed SANs. Data centers
must meet programmers’ expectations in terms of scalability, data durability, and HA. Data consis-
tence checking in SAN-connected data centers is a major challenge in cloud computing.

Large-scale distributed bugs cannot be reproduced, so the debugging must occur at a scale in the
production data centers. No data center will provide such a convenience. One solution may be a
reliance on using VMs in cloud computing. The level of virtualization may make it possible to cap-
ture valuable information in ways that are impossible without using VMs. Debugging over simula-
tors is another approach to attacking the problem, if the simulator is well designed.

4.3.4.5 Challenge 5—Cloud Scalability, Interoperability, and Standardization
The pay-as-you-go model applies to storage and network bandwidth; both are counted in terms of
the number of bytes used. Computation is different depending on virtualization level. GAE automa-
tically scales in response to load increases and decreases; users are charged by the cycles used.
AWS charges by the hour for the number of VM instances used, even if the machine is idle. The
opportunity here is to scale quickly up and down in response to load variation, in order to save
money, but without violating SLAs.

Open Virtualization Format (OVF) describes an open, secure, portable, efficient, and extensible
format for the packaging and distribution of VMs. It also defines a format for distributing software
to be deployed in VMs. This VM format does not rely on the use of a specific host platform, vir-
tualization platform, or guest operating system. The approach is to address virtual platform-agnostic
packaging with certification and integrity of packaged software. The package supports virtual
appliances to span more than one VM.
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OVF also defines a transport mechanism for VM templates, and can apply to different virtualiza-
tion platforms with different levels of virtualization. In terms of cloud standardization, we suggest
the ability for virtual appliances to run on any virtual platform. We also need to enable VMs to run
on heterogeneous hardware platform hypervisors. This requires hypervisor-agnostic VMs. We also
need to realize cross-platform live migration between x86 Intel and AMD technologies and support
legacy hardware for load balancing. All these issue are wide open for further research.

4.3.4.6 Challenge 6—Software Licensing and Reputation Sharing
Many cloud computing providers originally relied on open source software because the licensing
model for commercial software is not ideal for utility computing. The primary opportunity is either
for open source to remain popular or simply for commercial software companies to change their
licensing structure to better fit cloud computing. One can consider using both pay-for-use and
bulk-use licensing schemes to widen the business coverage.

One customer’s bad behavior can affect the reputation of the entire cloud. For instance, black-
listing of EC2 IP addresses by spam-prevention services may limit smooth VM installation. An
opportunity would be to create reputation-guarding services similar to the “trusted e-mail” services
currently offered (for a fee) to services hosted on smaller ISPs. Another legal issue concerns the
transfer of legal liability. Cloud providers want legal liability to remain with the customer, and vice
versa. This problem must be solved at the SLA level. We will study reputation systems for protect-
ing data centers in the next section.

4.4 PUBLIC CLOUD PLATFORMS: GAE, AWS, AND AZURE
In this section, we will review the system architectures of four commercially available cloud
platforms. These case studies will prepare readers for subsequent sections and chapters.

4.4.1 Public Clouds and Service Offerings
Cloud services are demanded by computing and IT administrators, software vendors, and end users.
Figure 4.19 introduces five levels of cloud players. At the top level, individual users and organiza-
tional users demand very different services. The application providers at the SaaS level serve mainly
individual users. Most business organizations are serviced by IaaS and PaaS providers. The infra-
structure services (IaaS) provide compute, storage, and communication resources to both applica-
tions and organizational users. The cloud environment is defined by the PaaS or platform providers.
Note that the platform providers support both infrastructure services and organizational users
directly.

Cloud services rely on new advances in machine virtualization, SOA, grid infrastructure manage-
ment, and power efficiency. Consumers purchase such services in the form of IaaS, PaaS, or SaaS as
described earlier. Also, many cloud entrepreneurs are selling value-added utility services to massive
numbers of users. The cloud industry leverages the growing demand by many enterprises and
business users to outsource their computing and storage jobs to professional providers. The provider
service charges are often much lower than the cost for users to replace their obsolete servers
frequently. Table 4.5 summarizes the profiles of five major cloud providers by 2010 standards.
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FIGURE 4.19

Roles of individual and organizational users and their interaction with cloud providers under various cloud
service models.

Table 4.5 Five Major Cloud Platforms and Their Service Offerings [36]

Model IBM Amazon Google Microsoft Salesforce

PaaS BlueCloud,
WCA, RC2

App Engine
(GAE)

Windows
Azure

Force.com

IaaS Ensembles AWS Windows
Azure

SaaS Lotus Live Gmail, Docs .NET service,
Dynamic CRM

Online CRM,
Gifttag

Virtualization OS and Xen Application
Container

OS level/
Hypel-V

Service
Offerings

SOA, B2,
TSAM, RAD,
Web 2.0

EC2, S3,
SQS,
SimpleDB

GFS, Chubby,
BigTable,
MapReduce

Live, SQL
Hotmail

Apex, visual
force, record
security

Security
Features

WebSphere2
and PowerVM
tuned for
protection

PKI, VPN,
EBS to
recover from
failure

Chubby locks
for security
enforcement

Replicated
data, rule-
based access
control

Admin./record
security, uses
metadata API

User
Interfaces

EC2
command-line
tools

Web-based
admin.
console

Windows
Azure portal

Web API Yes Yes Yes Yes Yes

Programming
Support

AMI Python .NET
Framework

Note: WCA: WebSphere CloudBurst Appliance; RC2: Research Compute Cloud; RAD: Rational Application Developer;
SOA: Service-Oriented Architecture; TSAM: Tivoli Service Automation Manager; EC2: Elastic Compute Cloud; S3: Simple
Storage Service; SQS: Simple Queue Service; GAE: Google App Engine; AWS: Amazon Web Services; SQL: Structured
Query Language; EBS: Elastic Block Store; CRM: Consumer Relationship Management.
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Amazon pioneered the IaaS business in supporting e-commerce and cloud applications by
millions of customers simultaneously. The elasticity in the Amazon cloud comes from the flexibi-
lity provided by the hardware and software services. EC2 provides an environment for running
virtual servers on demand. S3 provides unlimited online storage space. Both EC2 and S3 are sup-
ported in the AWS platform. Microsoft offers the Azure platform for cloud applications. It has also
supported the .NET service, dynamic CRM, Hotmail, and SQL applications. Salsforce.com offers
extensive SaaS applications for online CRM applications using its Force.com platforms.

As Table 4.5 shows, all IaaS, PaaS, and SaaS models allow users to access services over the
Internet, relying entirely on the infrastructures of the cloud service providers. These models are
offered based on various SLAs between the providers and the users. SLAs are more common in net-
work services as they account for the QoS characteristics of network services. For cloud computing
services, it is difficult to find a reasonable precedent for negotiating an SLA. In a broader sense, the
SLAs for cloud computing address service availability, data integrity, privacy, and security protection.
Blank spaces in the table refer to unknown or underdeveloped features.

4.4.2 Google App Engine (GAE)
Google has the world’s largest search engine facilities. The company has extensive experience in
massive data processing that has led to new insights into data-center design (see Chapter 3) and novel
programming models that scale to incredible sizes. The Google platform is based on its search engine
expertise, but as discussed earlier with MapReduce, this infrastructure is applicable to many other
areas. Google has hundreds of data centers and has installed more than 460,000 servers worldwide.
For example, 200 Google data centers are used at one time for a number of cloud applications.
Data items are stored in text, images, and video and are replicated to tolerate faults or failures. Here
we discuss Google’s App Engine (GAE) which offers a PaaS platform supporting various cloud and
web applications.

4.4.2.1 Google Cloud Infrastructure
Google has pioneered cloud development by leveraging the large number of data centers it operates.
For example, Google pioneered cloud services in Gmail, Google Docs, and Google Earth, among
other applications. These applications can support a large number of users simultaneously with HA.
Notable technology achievements include the Google File System (GFS), MapReduce, BigTable,
and Chubby. In 2008, Google announced the GAE web application platform which is becoming a
common platform for many small cloud service providers. This platform specializes in supporting
scalable (elastic) web applications. GAE enables users to run their applications on a large number
of data centers associated with Google’s search engine operations.

4.4.2.2 GAE Architecture
Figure 4.20 shows the major building blocks of the Google cloud platform which has been used to
deliver the cloud services highlighted earlier. GFS is used for storing large amounts of data.
MapReduce is for use in application program development. Chubby is used for distributed applica-
tion lock services. BigTable offers a storage service for accessing structured data. These technolo-
gies are described in more detail in Chapter 8. Users can interact with Google applications via the
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web interface provided by each application. Third-party application providers can use GAE to
build cloud applications for providing services. The applications all run in data centers under tight
management by Google engineers. Inside each data center, there are thousands of servers forming
different clusters.

Google is one of the larger cloud application providers, although its fundamental service pro-
gram is private and outside people cannot use the Google infrastructure to build their own service.
The building blocks of Google’s cloud computing application include the Google File System for
storing large amounts of data, the MapReduce programming framework for application developers,
Chubby for distributed application lock services, and BigTable as a storage service for accessing
structural or semistructural data. With these building blocks, Google has built many cloud applica-
tions. Figure 4.20 shows the overall architecture of the Google cloud infrastructure. A typical cluster
configuration can run the Google File System, MapReduce jobs, and BigTable servers for structure
data. Extra services such as Chubby for distributed locks can also run in the clusters.

GAE runs the user program on Google’s infrastructure. As it is a platform running third-party
programs, application developers now do not need to worry about the maintenance of servers. GAE
can be thought of as the combination of several software components. The frontend is an application
framework which is similar to other web application frameworks such as ASP, J2EE, and JSP. At the
time of this writing, GAE supports Python and Java programming environments. The applications can
run similar to web application containers. The frontend can be used as the dynamic web serving
infrastructure which can provide the full support of common technologies.

4.4.2.3 Functional Modules of GAE
The GAE platform comprises the following five major components. The GAE is not an infrastruc-
ture platform, but rather an application development platform for users. We describe the component
functionalities separately.

BigTable
server

Node

GFS master

Chubby

Scheduler

Application

Node

Google cloud
infrastructure

Node

User

Node

MapReduce
job

Scheduler
slave

GFS
chunkserver

Linux

FIGURE 4.20

Google cloud platform and major building blocks, the blocks shown are large clusters of low-cost servers.
(Courtesy of Kang Chen, Tsinghua University, China )
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a. The datastore offers object-oriented, distributed, structured data storage services based on
BigTable techniques. The datastore secures data management operations.

b. The application runtime environment offers a platform for scalable web programming and
execution. It supports two development languages: Python and Java.

c. The software development kit (SDK) is used for local application development. The SDK allows
users to execute test runs of local applications and upload application code.

d. The administration console is used for easy management of user application development cycles,
instead of for physical resource management.

e. The GAE web service infrastructure provides special interfaces to guarantee flexible use and
management of storage and network resources by GAE.

Google offers essentially free GAE services to all Gmail account owners. You can register for a
GAE account or use your Gmail account name to sign up for the service. The service is free within
a quota. If you exceed the quota, the page instructs you on how to pay for the service. Then you
download the SDK and read the Python or Java guide to get started. Note that GAE only accepts
Python, Ruby, and Java programming languages. The platform does not provide any IaaS services,
unlike Amazon, which offers Iaas and PaaS. This model allows the user to deploy user-built appli-
cations on top of the cloud infrastructure that are built using the programming languages and soft-
ware tools supported by the provider (e.g., Java, Python). Azure does this similarly for .NET. The
user does not manage the underlying cloud infrastructure. The cloud provider facilitates support of
application development, testing, and operation support on a well-defined service platform.

4.4.2.4 GAE Applications
Well-known GAE applications include the Google Search Engine, Google Docs, Google Earth, and
Gmail. These applications can support large numbers of users simultaneously. Users can interact
with Google applications via the web interface provided by each application. Third-party application
providers can use GAE to build cloud applications for providing services. The applications are all
run in the Google data centers. Inside each data center, there might be thousands of server nodes to
form different clusters. (See the previous section.) Each cluster can run multipurpose servers.

GAE supports many web applications. One is a storage service to store application-specific data
in the Google infrastructure. The data can be persistently stored in the backend storage server while
still providing the facility for queries, sorting, and even transactions similar to traditional database
systems. GAE also provides Google-specific services, such as the Gmail account service (which is
the login service, that is, applications can use the Gmail account directly). This can eliminate the
tedious work of building customized user management components in web applications. Thus, web
applications built on top of GAE can use the APIs authenticating users and sending e-mail using
Google accounts.

4.4.3 Amazon Web Services (AWS)
VMs can be used to share computing resources both flexibly and safely. Amazon has been a leader
in providing public cloud services (http://aws.amazon.com/). Amazon applies the IaaS model in pro-
viding its services. Figure 4.21 shows the AWS architecture. EC2 provides the virtualized platforms
to the host VMs where the cloud application can run. S3 (Simple Storage Service) provides the
object-oriented storage service for users. EBS (Elastic Block Service) provides the block storage
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interface which can be used to support traditional applications. SQS stands for Simple Queue
Service, and its job is to ensure a reliable message service between two processes. The message can
be kept reliably even when the receiver processes are not running. Users can access their objects
through SOAP with either browsers or other client programs which support the SOAP standard.

Table 4.6 summarizes the service offerings by AWS in 12 application tracks. Details of EC2,
S3, and EBS are available in Chapter 6 where we discuss programming examples. Amazon offers
queuing and notification services (SQS and SNS), which are implemented in the AWS cloud. Note
brokering systems run very efficiently in clouds and offer a striking model for controlling sensors
and providing office support of smartphones and tablets. Different from Google, Amazon provides
a more flexible cloud computing platform for developers to build cloud applications. Small and
medium-size companies can put their business on the Amazon cloud platform. Using the AWS plat-
form, they can service large numbers of Internet users and make profits through those paid services.

ELB automatically distributes incoming application traffic across multiple Amazon EC2 instances
and allows user to avoid nonoperating nodes and to equalize load on functioning images. Both auto-
scaling and ELB are enabled by CloudWatch which monitors running instances. CloudWatch is a
web service that provides monitoring for AWS cloud resources, starting with Amazon EC2. It pro-
vides customers with visibility into resource utilization, operational performance, and overall demand
patterns, including metrics such as CPU utilization, disk reads and writes, and network traffic.

Amazon (like Azure) offers a Relational Database Service (RDS) with a messaging interface to
be covered in Section 4.1. The Elastic MapReduce capability is equivalent to Hadoop running on
the basic EC2 offering. AWS Import/Export allows one to ship large volumes of data to and from
EC2 by shipping physical disks; it is well known that this is often the highest bandwidth connection
between geographically distant systems. Amazon CloudFront implements a content distribution

User
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EC2

EBS

EBS

EC2

EBS

Amazon S3

EC2SQS

S3

SimpleDB
Developer

EBS

FIGURE 4.21

Amazon cloud computing infrastructure (Key services are identified here; many more are listed in Table 4.6).
(Courtesy of Kang Chen, Tsinghua University, China )
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network. Amazon DevPay is a simple-to-use online billing and account management service that
makes it easy for businesses to sell applications that are built into or run on top of AWS.

FPS provides developers of commercial systems on AWS with a convenient way to charge Amazon’s
customers that use such services built on AWS. Customers can pay using the same login credentials,
shipping address, and payment information they already have on file with Amazon. The FWS allows
merchants to access Amazon’s fulfillment capabilities through a simple web service interface.
Merchants can send order information to Amazon to fulfill customer orders on their behalf. In July 2010,
Amazon offered MPI clusters and cluster compute instances. The AWS cluster compute instances use
hardware-assisted virtualization instead of the para-virtualization used by other instance types and
requires booting from the EBS. Users are freed to create a new AMI as needed.

4.4.4 Microsoft Windows Azure
In 2008, Microsoft launched a Windows Azure platform to meet the challenges in cloud computing.
This platform is built over Microsoft data centers. Figure 4.22 shows the overall architecture of
Microsoft’s cloud platform. The platform is divided into three major component platforms. Windows
Azure offers a cloud platform built on Windows OS and based on Microsoft virtualization technol-
ogy. Applications are installed on VMs deployed on the data-center servers. Azure manages all
servers, storage, and network resources of the data center. On top of the infrastructure are the var-
ious services for building different cloud applications. Cloud-level services provided by the Azure
platform are introduced below. More details on Azure services are given in Chapter 6.

• Live service Users can visit Microsoft Live applications and apply the data involved across
multiple machines concurrently.

• .NET service This package supports application development on local hosts and execution on
cloud machines.

Table 4.6 AWS Offerings in 2011

Service Area Service Modules and Abbreviated Names

Compute Elastic Compute Cloud (EC2), Elastic MapReduce, Auto Scaling
Messaging Simple Queue Service (SQS), Simple Notification Service (SNS)
Storage Simple Storage Service (S3), Elastic Block Storage (EBS), AWS Import/Export
Content Delivery Amazon CloudFront
Monitoring Amazon CloudWatch
Support AWS Premium Support
Database Amazon SimpleDB, Relational Database Service (RDS)
Networking Virtual Private Cloud (VPC) (Example 4.1, Figure 4.6), Elastic Load Balancing
Web Traffic Alexa Web Information Service, Alexa Web Sites
E-Commerce Fulfillment Web Service (FWS)
Payments and Billing Flexible Payments Service (FPS), Amazon DevPay
Workforce Amazon Mechanical Turk

(Courtesy of Amazon, http://aws.amazon.com [3] )
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• SQL Azure This function makes it easier for users to visit and use the relational database
associated with the SQL server in the cloud.

• SharePoint service This provides a scalable and manageable platform for users to develop their
special business applications in upgraded web services.

• Dynamic CRM service This provides software developers a business platform in managing
CRM applications in financing, marketing, and sales and promotions.

All these cloud services in Azure can interact with traditional Microsoft software applications,
such as Windows Live, Office Live, Exchange online, SharePoint online, and dynamic CRM
online. The Azure platform applies the standard web communication protocols SOAP and REST.
The Azure service applications allow users to integrate the cloud application with other platforms
or third-party clouds. You can download the Azure development kit to run a local version
of Azure. The powerful SDK allows Azure applications to be developed and debugged on the
Windows hosts.

4.5 INTER-CLOUD RESOURCE MANAGEMENT
This section characterizes the various cloud service models and their extensions. The cloud service
trends are outlined. Cloud resource management and intercloud resource exchange schemes are
reviewed. We will discuss the defense of cloud resources against network threats in Section 4.6.

Windows
live

Office
live

Exchange
online

User applications

SharePoint
online 

SharePoint
service 

Dynamic
CRM online

Dynamic CRM 
service

SQL
service

Azure service platform

.NET
service

Live service
on-line

Compute service Storage service Development environment

Hardware platform (Server and storage, and networking)

Windows Azure controller

Windows Azure

FIGURE 4.22

Microsoft Windows Azure platform for cloud computing.
(Courtesy of Microsoft, 2010, http://www.microsoft.com/windowsazure )
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4.5.1 Extended Cloud Computing Services
Figure 4.23 shows six layers of cloud services, ranging from hardware, network, and collocation to
infrastructure, platform, and software applications. We already introduced the top three service
layers as SaaS, PaaS, and IaaS, respectively. The cloud platform provides PaaS, which sits on top
of the IaaS infrastructure. The top layer offers SaaS. These must be implemented on the cloud plat-
forms provided. Although the three basic models are dissimilar in usage, as shown in Table 4.7,
they are built one on top of another. The implication is that one cannot launch SaaS applications
with a cloud platform. The cloud platform cannot be built if compute and storage infrastructures are
not there.

The bottom three layers are more related to physical requirements. The bottommost layer
provides Hardware as a Service (HaaS). The next layer is for interconnecting all the hardware com-
ponents, and is simply called Network as a Service (NaaS). Virtual LANs fall within the scope of
NaaS. The next layer up offers Location as a Service (LaaS), which provides a collocation service
to house, power, and secure all the physical hardware and network resources. Some authors say this
layer provides Security as a Service (“SaaS”). The cloud infrastructure layer can be further subdi-
vided as Data as a Service (DaaS) and Communication as a Service (CaaS) in addition to compute
and storage in IaaS.

We will examine commercial trends in cloud services in subsequent sections. Here we will mainly
cover the top three layers with some success stories of cloud computing. As shown in Table 4.7,
cloud players are divided into three classes: (1) cloud service providers and IT administrators, (2) soft-
ware developers or vendors, and (3) end users or business users. These cloud players vary in their
roles under the IaaS, PaaS, and SaaS models. The table entries distinguish the three cloud models as
viewed by different players. From the software vendors’ perspective, application performance on a
given cloud platform is most important. From the providers’ perspective, cloud infrastructure
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FIGURE 4.23

A stack of six layers of cloud services and their providers.
(Courtesy of T. Chou, Active Book Express, 2010 [16] )
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performance is the primary concern. From the end users’ perspective, the quality of services, including
security, is the most important.

4.5.1.1 Cloud Service Tasks and Trends
Cloud services are introduced in five layers. The top layer is for SaaS applications, as further subdi-
vided into the five application areas in Figure 4.23, mostly for business applications. For example,
CRM is heavily practiced in business promotion, direct sales, and marketing services. CRM offered
the first SaaS on the cloud successfully. The approach is to widen market coverage by investigating
customer behaviors and revealing opportunities by statistical analysis. SaaS tools also apply to dis-
tributed collaboration, and financial and human resources management. These cloud services have
been growing rapidly in recent years.

PaaS is provided by Google, Salesforce.com, and Facebook, among others. IaaS is provided by
Amazon, Windows Azure, and RackRack, among others. Collocation services require multiple
cloud providers to work together to support supply chains in manufacturing. Network cloud services
provide communications such as those by AT&T, Qwest, and AboveNet. Details can be found in
Clou’s introductory book on business clouds [18]. The vertical cloud services in Figure 4.25 refer
to a sequence of cloud services that are mutually supportive. Often, cloud mashup is practiced in
vertical cloud applications.

4.5.1.2 Software Stack for Cloud Computing
Despite the various types of nodes in the cloud computing cluster, the overall software stacks are
built from scratch to meet rigorous goals (see Table 4.7). Developers have to consider how to
design the system to meet critical requirements such as high throughput, HA, and fault tolerance.
Even the operating system might be modified to meet the special requirement of cloud data
processing. Based on the observations of some typical cloud computing instances, such as Google,
Microsoft, and Yahoo!, the overall software stack structure of cloud computing software can be
viewed as layers. Each layer has its own purpose and provides the interface for the upper layers
just as the traditional software stack does. However, the lower layers are not completely transparent
to the upper layers.

The platform for running cloud computing services can be either physical servers or virtual
servers. By using VMs, the platform can be flexible, that is, the running services are not bound to
specific hardware platforms. This brings flexibility to cloud computing platforms. The software
layer on top of the platform is the layer for storing massive amounts of data. This layer acts like

Table 4.7 Cloud Differences in Perspectives of Providers, Vendors, and Users

Cloud Players IaaS PaaS SaaS

IT administrators/cloud
providers

Monitor SLAs Monitor SLAs and enable
service platforms

Monitor SLAs and
deploy software

Software developers
(vendors)

To deploy and store
data

Enabling platforms via
configurators and APIs

Develop and deploy
software

End users or business
users

To deploy and store
data

To develop and test web
software

Use business software
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the file system in a traditional single machine. Other layers running on top of the file system are the
layers for executing cloud computing applications. They include the database storage system, program-
ming for large-scale clusters, and data query language support. The next layers are the components in
the software stack.

4.5.1.3 Runtime Support Services
As in a cluster environment, there are also some runtime supporting services in the cloud computing
environment. Cluster monitoring is used to collect the runtime status of the entire cluster. One of
the most important facilities is the cluster job management system introduced in Chapter 2. The
scheduler queues the tasks submitted to the whole cluster and assigns the tasks to the processing
nodes according to node availability. The distributed scheduler for the cloud application has special
characteristics that can support cloud applications, such as scheduling the programs written in
MapReduce style. The runtime support system keeps the cloud cluster working properly with high
efficiency.

Runtime support is software needed in browser-initiated applications applied by thousands of
cloud customers. The SaaS model provides the software applications as a service, rather than letting
users purchase the software. As a result, on the customer side, there is no upfront investment in ser-
vers or software licensing. On the provider side, costs are rather low, compared with conventional
hosting of user applications. The customer data is stored in the cloud that is either vendor proprietary
or a publicly hosted cloud supporting PaaS and IaaS.

4.5.2 Resource Provisioning and Platform Deployment
The emergence of computing clouds suggests fundamental changes in software and hardware architec-
ture. Cloud architecture puts more emphasis on the number of processor cores or VM instances. Paral-
lelism is exploited at the cluster node level. In this section, we will discuss techniques to provision
computer resources or VMs. Then we will talk about storage allocation schemes to interconnect
distributed computing infrastructures by harnessing the VMs dynamically.

4.5.2.1 Provisioning of Compute Resources (VMs)
Providers supply cloud services by signing SLAs with end users. The SLAs must commit sufficient
resources such as CPU, memory, and bandwidth that the user can use for a preset period. Underpro-
visioning of resources will lead to broken SLAs and penalties. Overprovisioning of resources will
lead to resource underutilization, and consequently, a decrease in revenue for the provider. Deploy-
ing an autonomous system to efficiently provision resources to users is a challenging problem. The
difficulty comes from the unpredictability of consumer demand, software and hardware failures, het-
erogeneity of services, power management, and conflicts in signed SLAs between consumers and
service providers.

Efficient VM provisioning depends on the cloud architecture and management of cloud
infrastructures. Resource provisioning schemes also demand fast discovery of services and data in
cloud computing infrastructures. In a virtualized cluster of servers, this demands efficient installation
of VMs, live VM migration, and fast recovery from failures. To deploy VMs, users treat them as phy-
sical hosts with customized operating systems for specific applications. For example, Amazon’s EC2
uses Xen as the virtual machine monitor (VMM). The same VMM is used in IBM’s Blue Cloud.
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In the EC2 platform, some predefined VM templates are also provided. Users can choose different
kinds of VMs from the templates. IBM’s Blue Cloud does not provide any VM templates. In general,
any type of VM can run on top of Xen. Microsoft also applies virtualization in its Azure cloud platform.
The provider should offer resource-economic services. Power-efficient schemes for caching, query pro-
cessing, and thermal management are mandatory due to increasing energy waste by heat dissipation
from data centers. Public or private clouds promise to streamline the on-demand provisioning of soft-
ware, hardware, and data as a service, achieving economies of scale in IT deployment and operation.

4.5.2.2 Resource Provisioning Methods
Figure 4.24 shows three cases of static cloud resource provisioning policies. In case (a), overprovi-
sioning with the peak load causes heavy resource waste (shaded area). In case (b), underprovision-
ing (along the capacity line) of resources results in losses by both user and provider in that paid
demand by the users (the shaded area above the capacity) is not served and wasted resources still
exist for those demanded areas below the provisioned capacity. In case (c), the constant provision-
ing of resources with fixed capacity to a declining user demand could result in even worse
resource waste. The user may give up the service by canceling the demand, resulting in reduced
revenue for the provider. Both the user and provider may be losers in resource provisioning
without elasticity.

Three resource-provisioning methods are presented in the following sections. The demand-driven
method provides static resources and has been used in grid computing for many years. The event-
driven method is based on predicted workload by time. The popularity-driven method is based
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Three cases of cloud resource provisioning without elasticity: (a) heavy waste due to overprovisioning,
(b) underprovisioning and (c) under- and then overprovisioning.

(Courtesy of Armbrust, et al., UC Berkeley, 2009 [4] )
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on Internet traffic monitored. We characterize these resource provisioning methods as follows
(see Figure 4.25).

4.5.2.3 Demand-Driven Resource Provisioning
This method adds or removes computing instances based on the current utilization level of the allo-
cated resources. The demand-driven method automatically allocates two Xeon processors for the
user application, when the user was using one Xeon processor more than 60 percent of the time for
an extended period. In general, when a resource has surpassed a threshold for a certain amount of
time, the scheme increases that resource based on demand. When a resource is below a threshold
for a certain amount of time, that resource could be decreased accordingly. Amazon implements
such an auto-scale feature in its EC2 platform. This method is easy to implement. The scheme does
not work out right if the workload changes abruptly.

The x-axis in Figure 4.25 is the time scale in milliseconds. In the beginning, heavy fluctuations of
CPU load are encountered. All three methods have demanded a few VM instances initially. Gradu-
ally, the utilization rate becomes more stabilized with a maximum of 20 VMs (100 percent utilization)
provided for demand-driven provisioning in Figure 4.25(a). However, the event-driven method
reaches a stable peak of 17 VMs toward the end of the event and drops quickly in Figure 4.25(b).
The popularity provisioning shown in Figure 4.25(c) leads to a similar fluctuation with peak VM
utilization in the middle of the plot.

4.5.2.4 Event-Driven Resource Provisioning
This scheme adds or removes machine instances based on a specific time event. The scheme works
better for seasonal or predicted events such as Christmastime in the West and the Lunar New Year
in the East. During these events, the number of users grows before the event period and then
decreases during the event period. This scheme anticipates peak traffic before it happens. The
method results in a minimal loss of QoS, if the event is predicted correctly. Otherwise, wasted
resources are even greater due to events that do not follow a fixed pattern.

4.5.2.5 Popularity-Driven Resource Provisioning
In this method, the Internet searches for popularity of certain applications and creates the instances by
popularity demand. The scheme anticipates increased traffic with popularity. Again, the scheme has a
minimal loss of QoS, if the predicted popularity is correct. Resources may be wasted if traffic does
not occur as expected. In Figure 4.25(c), EC2 performance by CPU utilization rate (the dark curve
with the percentage scale shown on the left) is plotted against the number of VMs provisioned (the
light curves with scale shown on the right, with a maximum of 20 VMs provisioned).

4.5.2.6 Dynamic Resource Deployment
The cloud uses VMs as building blocks to create an execution environment across multiple resource
sites. The InterGrid-managed infrastructure was developed by a Melbourne University group [19].
Dynamic resource deployment can be implemented to achieve scalability in performance. The Inter-
Grid is a Java-implemented software system that lets users create execution cloud environments on
top of all participating grid resources. Peering arrangements established between gateways enable the
allocation of resources from multiple grids to establish the execution environment. In Figure 4.26, a
scenario is illustrated by which an intergrid gateway (IGG) allocates resources from a local cluster to
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EC2 performance results on the AWS EC2 platform, collected from experiments at the University of Southern
California using three resource provisioning methods.

(Courtesy of Ken Wu, USC )
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deploy applications in three steps: (1) requesting the VMs, (2) enacting the leases, and (3) deploying
the VMs as requested. Under peak demand, this IGG interacts with another IGG that can allocate
resources from a cloud computing provider.

A grid has predefined peering arrangements with other grids, which the IGG manages.
Through multiple IGGs, the system coordinates the use of InterGrid resources. An IGG is aware
of the peering terms with other grids, selects suitable grids that can provide the required
resources, and replies to requests from other IGGs. Request redirection policies determine which
peering grid InterGrid selects to process a request and a price for which that grid will perform
the task. An IGG can also allocate resources from a cloud provider. The cloud system creates a
virtual environment to help users deploy their applications. These applications use the distributed
grid resources.

The InterGrid allocates and provides a distributed virtual environment (DVE). This is a virtual
cluster of VMs that runs isolated from other virtual clusters. A component called the DVE manager
performs resource allocation and management on behalf of specific user applications. The core com-
ponent of the IGG is a scheduler for implementing provisioning policies and peering with other
gateways. The communication component provides an asynchronous message-passing mechanism.
Received messages are handled in parallel by a thread pool.

Peering
arrangement

Request
for VMs

User
application Enactment of leases

Application deployment

VIE
(cloud APIs)

Virtual
infrastructure
engine (VIE)

Organization’s site

Physical resources

Cloud provider

1
2

3

IGG

IGG

FIGURE 4.26

Cloud resource deployment using an IGG (intergrid gateway) to allocate the VMs from a Local cluster to
interact with the IGG of a public cloud provider.

(Courtesy of Constanzo, et al. © IEEE [21] )
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4.5.2.7 Provisioning of Storage Resources
The data storage layer is built on top of the physical or virtual servers. As the cloud computing
applications often provide service to users, it is unavoidable that the data is stored in the clusters of
the cloud provider. The service can be accessed anywhere in the world. One example is e-mail sys-
tems. A typical large e-mail system might have millions of users and each user can have thousands of
e-mails and consume multiple gigabytes of disk space. Another example is a web searching applica-
tion. In storage technologies, hard disk drives may be augmented with solid-state drives in the future.
This will provide reliable and high-performance data storage. The biggest barriers to adopting flash
memory in data centers have been price, capacity, and, to some extent, a lack of sophisticated query-
processing techniques. However, this is about to change as the I/O bandwidth of solid-state drives
becomes too impressive to ignore.

A distributed file system is very important for storing large-scale data. However, other forms of
data storage also exist. Some data does not need the namespace of a tree structure file system, and
instead, databases are built with stored data files. In cloud computing, another form of data storage
is (Key, Value) pairs. Amazon S3 service uses SOAP to access the objects stored in the cloud.
Table 4.8 outlines three cloud storage services provided by Google, Hadoop, and Amazon.

Many cloud computing companies have developed large-scale data storage systems to keep huge
amount of data collected every day. For example, Google’s GFS stores web data and some other
data, such as geographic data for Google Earth. A similar system from the open source community
is the Hadoop Distributed File System (HDFS) for Apache. Hadoop is the open source implementa-
tion of Google’s cloud computing infrastructure. Similar systems include Microsoft’s Cosmos file
system for the cloud.

Despite the fact that the storage service or distributed file system can be accessed directly,
similar to traditional databases, cloud computing does provide some forms of structure or semistruc-
ture database processing capability. For example, applications might want to process the information
contained in a web page. Web pages are an example of semistructural data in HTML format.
If some forms of database capability can be used, application developers will construct their appli-
cation logic more easily. Another reason to build a database-like service in cloud computing is that
it will be quite convenient for traditional application developers to code for the cloud platform.
Databases are quite common as the underlying storage device for many applications.

Thus, such developers can think in the same way they do for traditional software development.
Hence, in cloud computing, it is necessary to build databases like large-scale systems based on data

Table 4.8 Storage Services in Three Cloud Computing Systems

Storage System Features

GFS: Google File System Very large sustainable reading and writing bandwidth, mostly
continuous accessing instead of random accessing. The programming
interface is similar to that of the POSIX file system accessing interface.

HDFS: Hadoop Distributed File
System

The open source clone of GFS. Written in Java. The programming
interfaces are similar to POSIX but not identical.

Amazon S3 and EBS S3 is used for retrieving and storing data from/to remote servers. EBS
is built on top of S3 for using virtual disks in running EC2 instances.
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storage or distributed file systems. The scale of such a database might be quite large for processing
huge amounts of data. The main purpose is to store the data in structural or semi-structural ways
so that application developers can use it easily and build their applications rapidly. Traditional data-
bases will meet the performance bottleneck while the system is expanded to a larger scale. How-
ever, some real applications do not need such strong consistency. The scale of such databases can
be quite large. Typical cloud databases include BigTable from Google, SimpleDB from Amazon,
and the SQL service from Microsoft Azure.

4.5.3 Virtual Machine Creation and Management
In this section, we will consider several issues for cloud infrastructure management. First, we will
consider the resource management of independent service jobs. Then we will consider how to exe-
cute third-party cloud applications. Cloud-loading experiments are used by a Melbourne research
group on the French Grid’5000 system. This experimental setting illustrates VM creation and
management. This case study example reveals major VM management issues and suggests some
plausible solutions for workload-balanced execution. Figure 4.27 shows the interactions among VM
managers for cloud creation and management. The managers provide a public API for users to sub-
mit and control the VMs.

Template directory

ubuntu; 1 core; 128 Mbytes

fedora; 2 cores; 256 Mbytes

opensuse; 1 core; 512 Mbytes

...

Convert the generic template
to the virtual infrastructure

engine format

VM VM

VMVM

Amazon
EC2

Local physical
infrastructure Grid’5000

VMInstance vm = vmms.submit(vmTemplate, host) vmInstance.shutdown()

VM manager service

Public API

Interface

IaaS
OpenNebula

VM VM
OAR/Kadeploy

Emulator

FIGURE 4.27

Interactions among VM managers for cloud creation and management; the manager provides a public
API for users to submit and control the VMs.

(Courtesy of Constanzo, et al. © IEEE [21] )
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4.5.3.1 Independent Service Management
Independent services request facilities to execute many unrelated tasks. Commonly, the APIs provided
are some web services that the developer can use conveniently. In Amazon cloud computing infra-
structure, SQS is constructed for providing a reliable communication service between different provi-
ders. Even the endpoint does not run while another entity has posted a message in SQS. By using
independent service providers, the cloud applications can run different services at the same time.
Some other services are used for providing data other than the compute or storage services.

4.5.3.2 Running Third-Party Applications
Cloud platforms have to provide support for building applications that are constructed by third-party
application providers or programmers. As current web applications are often provided by using Web
2.0 forms (interactive applications with Ajax), the programming interfaces are different from the tra-
ditional programming interfaces such as functions in runtime libraries. The APIs are often in the
form of services. Web service application engines are often used by programmers for building appli-
cations. The web browsers are the user interface for end users.

In addition to gateway applications, the cloud computing platform provides the extra capabilities
of accessing backend services or underlying data. As examples, GAE and Microsoft Azure apply
their own cloud APIs to get special cloud services. The WebSphere application engine is deployed
by IBM for Blue Cloud. It can be used to develop any kind of web application written in Java. In
EC2, users can use any kind of application engine that can run in VM instances.

4.5.3.3 Virtual Machine Manager
The VM manager is the link between the gateway and resources. The gateway doesn’t share physi-
cal resources directly, but relies on virtualization technology for abstracting them. Hence, the actual
resources it uses are VMs. The manager manage VMs deployed on a set of physical resources. The
VM manager implementation is generic so that it can connect with different VIEs. Typically, VIEs
can create and stop VMs on a physical cluster. The Melbourne group has developed managers for
OpenNebula, Amazon EC2, and French Grid’5000. The manager using the OpenNebula OS (www
.opennebula.org) to deploy VMs on local clusters.

OpenNebula runs as a daemon service on a master node, so the VMM works as a remote user.
Users submit VMs on physical machines using different kinds of hypervisors, such as Xen (www
.xen.org), which enables the running of several operating systems on the same host concurrently.
The VMM also manages VM deployment on grids and IaaS providers. The InterGrid supports
Amazon EC2. The connector is a wrapper for the command-line tool Amazon provides. The VM
manager for Grid’5000 is also a wrapper for its command-line tools. To deploy a VM, the manager
needs to use its template.

4.5.3.4 Virtual Machine Templates
A VM template is analogous to a computer’s configuration and contains a description for a VM
with the following static information:

• The number of cores or processors to be assigned to the VM
• The amount of memory the VM requires
• The kernel used to boot the VM’s operating system
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• The disk image containing the VM’s file system
• The price per hour of using a VM

The gateway administrator provides the VM template information when the infrastructure is set up.
The administrator can update, add, and delete templates at any time. In addition, each gateway in
the InterGrid network must agree on the templates to provide the same configuration on each site.
To deploy an instance of a given VM, the VMM generates a descriptor from the template. This
descriptor contains the same fields as the template and additional information related to a specific VM
instance. Typically the additional information includes:

• The disk image that contains the VM’s file system
• The address of the physical machine hosting the VM
• The VM’s network configuration
• The required information for deployment on an IaaS provider

Before starting an instance, the scheduler gives the network configuration and the host’s address;
it then allocates MAC and IP addresses for that instance. The template specifies the disk image
field. To deploy several instances of the same VM template in parallel, each instance uses a tempor-
ary copy of the disk image. Hence, the descriptor contains the path to the copied disk image. The
descriptor’s fields are different for deploying a VM on an IaaS provider. Network information is
not needed, because Amazon EC2 automatically assigns a public IP to the instances. The IGG
works with a repository of VM templates, called the VM template directory.

4.5.3.5 Distributed VM Management
Figure 4.30 illustrates the interactions between InterGrid’s components. A distributed VM manager
makes requests for VMs and queries their status. This manager requests VMs from the gateway on
behalf of the user application. The manager obtains the list of requested VMs from the gateway.
This list contains a tuple of public IP/private IP addresses for each VM with Secure Shell (SSH)
tunnels. Users must specify which VM template they want to use and the number of VM instances
needed, the deadline, the wall time, and the address for an alternative gateway.

The local gateway tries to obtain resources from the underlying VIEs. When this is impossible, the
local gateway starts a negotiation with any remote gateways to fulfill the request. When a gateway
schedules the VMs, it sends the VM access information to the requester gateway. Finally, the man-
ager configures the VM, sets up SSH tunnels, and executes the tasks on the VM. Under the peering
policy, each gateway’s scheduler uses conservative backfilling to schedule requests. When the sche-
duler can’t start a request immediately using local resources, a redirection algorithm will be initiated.

Example 4.6 Experiments on an InterGrid Test Bed over the Grid’5000

The Melbourne group conducted two experiments to evaluate the InterGrid architecture. The first one eval-
uates the performance of allocation decisions by measuring how the IGG manages load via peering
arrangements. The second considers its effectiveness in deploying a bag-of-tasks application. The experi-
ment was conducted on the French experimental grid platform Grid’5000. Grid’5000 comprises 4,792 pro-
cessor cores on nine grid sites across France. Each gateway represents one Grid’5000 site, as shown in
Figure 4.28.
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To prevent the gateways from interfering with real Grid’5000 users, emulated VM managers were
implemented to instantiate fictitious VMs. The number of emulated hosts is limited by the core number at
each site. A balanced workload was configured among the sites. The maximum number of VMs requested
does not exceed the number of cores in any site. The load characteristics are shown in Figure 4.29 under
a four-gateway scenario. The teal bars indicate each grid site’s load. The magenta bars show the load
when gateways redirect requests to one another. The green bars correspond to the amount of load each
gateway accepts from other gateways. The brown bars represent the amount of load that is redirected.
The results show that the loading policy can balance the load across the nine sites. Rennes, a site with a
heavy load, benefits from peering with other gateways as the gateway redirects a great share of its load to
other sites.

4.5.4 Global Exchange of Cloud Resources
In order to support a large number of application service consumers from around the world, cloud
infrastructure providers (i.e., IaaS providers) have established data centers in multiple geographical
locations to provide redundancy and ensure reliability in case of site failures. For example, Amazon
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The InterGrid test bed over the French Grid’5000 located in nine cities across France.
(Courtesy of Constanzo, et al. © IEEE [21] )
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has data centers in the United States (e.g., one on the East Coast and another on the West Coast)
and Europe. However, currently Amazon expects its cloud customers (i.e., SaaS providers) to
express a preference regarding where they want their application services to be hosted. Amazon
does not provide seamless/automatic mechanisms for scaling its hosted services across multiple
geographically distributed data centers.

This approach has many shortcomings. First, it is difficult for cloud customers to determine in
advance the best location for hosting their services as they may not know the origin of consumers
of their services. Second, SaaS providers may not be able to meet the QoS expectations of their ser-
vice consumers originating from multiple geographical locations. This necessitates building mechan-
isms for seamless federation of data centers of a cloud provider or providers supporting dynamic
scaling of applications across multiple domains in order to meet QoS targets of cloud customers.
Figure 4.30 shows the high-level components of the Melbourne group’s proposed InterCloud
architecture.

In addition, no single cloud infrastructure provider will be able to establish its data centers
at all possible locations throughout the world. As a result, cloud application service (SaaS) pro-
viders will have difficulty in meeting QoS expectations for all their consumers. Hence, they
would like to make use of services of multiple cloud infrastructure service providers who can
provide better support for their specific consumer needs. This kind of requirement often arises
in enterprises with global operations and applications such as Internet services, media hosting,
and Web 2.0 applications. This necessitates federation of cloud infrastructure service providers
for seamless provisioning of services across different cloud providers. To realize this, the
Cloudbus Project at the University of Melbourne has proposed InterCloud architecture [12] sup-
porting brokering and exchange of cloud resources for scaling applications across multiple
clouds.

By realizing InterCloud architectural principles in mechanisms in their offering, cloud providers
will be able to dynamically expand or resize their provisioning capability based on sudden spikes
in workload demands by leasing available computational and storage capabilities from other cloud
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Cloud loading results at four gateways at resource sites in the Grid’5000 system.
(Courtesy of Constanzo, et al. © IEEE [21] )
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service providers; operate as part of a market-driven resource leasing federation, where application
service providers such as Salesforce.com host their services based on negotiated SLA contracts dri-
ven by competitive market prices; and deliver on-demand, reliable, cost-effective, and QoS-aware
services based on virtualization technologies while ensuring high QoS standards and minimizing
service costs. They need to be able to utilize market-based utility models as the basis for provi-
sioning of virtualized software services and federated hardware infrastructure among users with
heterogeneous applications.

They consist of client brokering and coordinator services that support utility-driven federation of
clouds: application scheduling, resource allocation, and migration of workloads. The architecture
cohesively couples the administratively and topologically distributed storage and compute capabil-
ities of clouds as part of a single resource leasing abstraction. The system will ease the cross-
domain capability integration for on-demand, flexible, energy-efficient, and reliable access to the
infrastructure based on virtualization technology [6,75].

The Cloud Exchange (CEx) acts as a market maker for bringing together service producers and
consumers. It aggregates the infrastructure demands from application brokers and evaluates them
against the available supply currently published by the cloud coordinators. It supports trading of
cloud services based on competitive economic models such as commodity markets and auctions.
CEx allows participants to locate providers and consumers with fitting offers. Such markets enable
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Inter-cloud exchange of cloud resources through brokering.
(Courtesy of R. Buyya, et al., University of Melbourne [12] )
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services to be commoditized, and thus will pave the way for creation of dynamic market infrastruc-
ture for trading based on SLAs. An SLA specifies the details of the service to be provided in terms
of metrics agreed upon by all parties, and incentives and penalties for meeting and violating the
expectations, respectively. The availability of a banking system within the market ensures that
financial transactions pertaining to SLAs between participants are carried out in a secure and
dependable environment.

4.6 CLOUD SECURITY AND TRUST MANAGEMENT
Lacking trust between service providers and cloud users has hindered the universal acceptance of
cloud computing as a service on demand. In the past, trust models have been developed to protect
mainly e-commerce and online shopping provided by eBay and Amazon. For web and cloud ser-
vices, trust and security become even more demanding, because leaving user applications comple-
tely to the cloud providers has faced strong resistance by most PC and server users. Cloud
platforms become worrisome to some users for lack of privacy protection, security assurance, and
copyright protection. Trust is a social problem, not a pure technical issue. However, the social
problem can be solved with a technical approach.

Common sense dictates that technology can enhance trust, justice, reputation, credit, and assurance
in Internet applications. As a virtual environment, the cloud poses new security threats that are more
difficult to contain than traditional client and server configurations. To solve these trust problems, a
new data-protection model is presented in this section. In many cases, one can extend the trust models
for P2P networks and grid systems to protect clouds and data centers.

4.6.1 Cloud Security Defense Strategies
A healthy cloud ecosystem is desired to free users from abuses, violence, cheating, hacking, viruses,
rumors, pornography, spam, and privacy and copyright violations. The security demands of three
cloud service models, IaaS, PaaS, and SaaS, are described in this section. These security models are
based on various SLAs between providers and users.

4.6.1.1 Basic Cloud Security
Three basic cloud security enforcements are expected. First, facility security in data centers
demands on-site security year round. Biometric readers, CCTV (close-circuit TV), motion detection,
and man traps are often deployed. Also, network security demands fault-tolerant external firewalls,
intrusion detection systems (IDSes), and third-party vulnerability assessment. Finally, platform
security demands SSL and data decryption, strict password policies, and system trust certification.
Figure 4.31 shows the mapping of cloud models, where special security measures are deployed at
various cloud operating levels.

Servers in the cloud can be physical machines or VMs. User interfaces are applied to request
services. The provisioning tool carves out the systems from the cloud to satisfy the requested ser-
vice. A security-aware cloud architecture demands security enforcement. Malware-based attacks
such as network worms, viruses, and DDoS attacks exploit system vulnerabilities. These attacks
compromise system functionality or provide intruders unauthorized access to critical information.
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Thus, security defenses are needed to protect all cluster servers and data centers. Here are some
cloud components that demand special security protection:

• Protection of servers from malicious software attacks such as worms, viruses, and malware
• Protection of hypervisors or VM monitors from software-based attacks and vulnerabilities
• Protection of VMs and monitors from service disruption and DoS attacks
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Binary analysis, scanners, WebApp firewalls,
transactional security, copyright protection

Data loss protection, common log file,
database activity, monitoring, encryption,
data coloring (watermarking)

Government risk management and compliance,
identity and access management, virtual
machines (VMs), patch management

Network IDS/IPS, firewalls, data processing
information, Anti-DDoS, QoS, DNSSEC

Hardware and software RoT and APIs,
trust-overlay and reputation systems

IDS/IPS, host-based firewalls, integrity and
fire/log management, encryption, masking

Acronyms:
IPS:
RoT:
DDoS:
DNSSEC:
QoS:

Intrusion-prevention system
Root of trust
Distributed denial of service
Domain Name System Security Extensions
Quality of service

Data/information

Management

Networking

Trusted
computing

Compute and
storage

APIs

Data Content Metadata

Integration OS and
middleware

APIs

Connectivity and
delivery

Virtualization

Hardware

IaaS

PaaS

SaaS
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FIGURE 4.31

Cloud service models on the left (a) and corresponding security measures on the right (b); the IaaS is at the
innermost level, PaaS is at the middle level, and SaaS is at the outermost level, including all hardware,
software, datasets, and networking resources.

(Courtesy of Hwang and Li [36] )
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• Protection of data and information from theft, corruption, and natural disasters
• Providing authenticated and authorized access to critical data and services

4.6.1.2 Security Challenges in VMs
As we discussed earlier in this chapter, traditional network attacks include buffer overflows, DoS
attacks, spyware, malware, rootkits, Trojan horses, and worms. In a cloud environment, newer attacks
may result from hypervisor malware, guest hopping and hijacking, or VM rootkits. Another type of
attack is the man-in-the-middle attack for VM migrations. In general, passive attacks steal sensitive data
or passwords. Active attacks may manipulate kernel data structures which will cause major damage to
cloud servers. An IDS can be a NIDS or a HIDS. Program shepherding can be applied to control and
verify code execution. Other defense technologies include using the RIO dynamic optimization infra-
structure, or VMware’s vSafe and vShield tools, security compliance for hypervisors, and Intel vPro
technology. Others apply a hardened OS environment or use isolated execution and sandboxing.

4.6.1.3 Cloud Defense Methods
Virtualization enhances cloud security. But VMs add an additional layer of software that could
become a single point of failure. With virtualization, a single physical machine can be divided or
partitioned into multiple VMs (e.g., server consolidation). This provides each VM with better secur-
ity isolation and each partition is protected from DoS attacks by other partitions. Security attacks in
one VM are isolated and contained from affecting the other VMs. Table 4.9 lists eight protection
schemes to secure public clouds and data centers. VM failures do not propagate to other VMs. The

Table 4.9 Physical and Cyber Security Protection at Cloud/Data Centers

Protection
Schemes Brief Description and Deployment Suggestions

Secure data centers
and computer
buildings

Choose hazard-free location, enforce building safety. Avoid windows, keep buffer
zone around the site, bomb detection, camera surveillance, earthquake-proof, etc.

Use redundant utilities
at multiple sites

Multiple power and supplies, alternate network connections, multiple databases at
separate sites, data consistency, data watermarking, user authentication, etc.

Trust delegation and
negotiation

Cross certificates to delegate trust across PKI domains for various data centers,
trust negotiation among certificate authorities (CAs) to resolve policy conflicts

Worm containment
and DDoS defense

Internet worm containment and distributed defense against DDoS attacks to
secure all data centers and cloud platforms

Reputation system for
data centers

Reputation system could be built with P2P technology; one can build a hierarchy
of reputation systems from data centers to distributed file systems

Fine-grained file
access control

Fine-grained access control at the file or object level; this adds to security
protection beyond firewalls and IDSes

Copyright protection
and piracy prevention

Piracy prevention achieved with peer collusion prevention, filtering of poisoned
content, nondestructive read, alteration detection, etc.

Privacy protection Uses double authentication, biometric identification, intrusion detection and disaster
recovery, privacy enforcement by data watermarking, data classification, etc.
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hypervisor provides visibility of the guest OS, with complete guest isolation. Fault containment and
failure isolation of VMs provide a more secure and robust environment. Malicious intrusions may
destroy valuable hosts, networks, and storage resources. Internet anomalies found in routers, gate-
ways, and distributed hosts may stop cloud services. Trust negotiation is often done at the SLA
level. Public Key Infrastructure (PKI) services could be augmented with data-center reputation sys-
tems. Worm and DDoS attacks must be contained. It is harder to establish security in the cloud
because all data and software are shared by default.

4.6.1.4 Defense with Virtualization
The VM is decoupled from the physical hardware. The entire VM can be represented as a software
component and can be regarded as binary or digital data. The VM can be saved, cloned, encrypted,
moved, or restored with ease. VMs enable HA and faster disaster recovery. Live migration of VMs
was suggested by many researchers [36] for building distributed intrusion detection systems
(DIDSes). Multiple IDS VMs can be deployed at various resource sites including data centers.
DIDS design demands trust negation among PKI domains. Security policy conflicts must be
resolved at design time and updated periodically.

4.6.1.5 Privacy and Copyright Protection
The user gets a predictable configuration before actual system integration. Yahoo!’s Pipes is a good
example of a lightweight cloud platform. With shared files and data sets, privacy, security, and copy-
right data could be compromised in a cloud computing environment. Users desire to work in a software
environment that provides many useful tools to build cloud applications over large data sets. Google’s
platform essentially applies in-house software to protect resources. The Amazon EC2 applies HMEC
and X.509 certificates in securing resources. It is necessary to protect browser-initiated application
software in the cloud environment. Here are several security features desired in a secure cloud:

• Dynamic web services with full support from secure web technologies
• Established trust between users and providers through SLAs and reputation systems
• Effective user identity management and data-access management
• Single sign-on and single sign-off to reduce security enforcement overhead
• Auditing and copyright compliance through proactive enforcement
• Shifting of control of data operations from the client environment to cloud providers
• Protection of sensitive and regulated information in a shared environment

Example 4.7 Cloud Security Safeguarded by Gateway and Firewalls

Figure 4.32 shows a security defense system for a typical private cloud environment. The gateway is fully
secured to protect access to commercial clouds that are wide open to the general public. The firewall provides
an external shield. The gateway secures the application server, message queue, database, web service client,
and browser with HTTP, JMS, SQL, XML, and SSL security protocols, etc. The defense scheme is needed to
protect user data from server attacks. A user’s private data must not be leaked to other users without
permission.
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4.6.2 Distributed Intrusion/Anomaly Detection
Data security is the weakest link in all cloud models. We need new cloud security standards to
apply common API tools to cope with the data lock-in problem and network attacks or abuses.
The IaaS model represented by Amazon is most sensitive to external attacks. Role-based interface
tools alleviate the complexity of the provisioning system. For example, IBM’s Blue Cloud provi-
sions through a role-based web portal. A SaaS bureau may order secretarial services from a com-
mon cloud platform. Many IT companies are now offering cloud services with no guaranteed
security.

Security threats may be aimed at VMs, guest OSes, and software running on top of the cloud.
IDSes attempt to stop these attacks before they take effect. Both signature matching and anomaly
detection can be implemented on VMs dedicated to building IDSes. Signature-matching IDS
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FIGURE 4.32

The typical security structure coordinated by a secured gateway plus external firewalls to safeguard the
access of public or private clouds.

(Courtesy of Vordel Company )
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technology is more mature, but require frequent updates of the signature databases. Network anom-
aly detection reveals abnormal traffic patterns, such as unauthorized episodes of TCP connection
sequences, against normal traffic patterns. Distributed IDSes are needed to combat both types of
intrusions.

4.6.2.1 Distributed Defense against DDoS Flooding Attacks
A DDoS defense system must be designed to cover multiple network domains spanned by a given
cloud platform. These network domains cover the edge networks where cloud resources are con-
nected. DDoS attacks come with widespread worms. The flooding traffic is large enough to crash the
victim server by buffer overflow, disk exhaustion, or connection saturation. Figure 4.33(a) shows a
flooding attack pattern. Here, the hidden attacker launched the attack from many zombies toward a
victim server at the bottom router R0.

The flooding traffic flows essentially with a tree pattern shown in Figure 4.33(b). Successive
attack-transit routers along the tree reveal the abnormal surge in traffic. This DDoS defense system
is based on change-point detection by all routers. Based on the anomaly pattern detected in covered
network domains, the scheme detects a DDoS attack before the victim is overwhelmed. The

(a) Traffic flow pattern of a DDoS attack (b) The attack traffic flow tree over 10 routers
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FIGURE 4.33

DDoS attacks and defense by change-point detection at all routers on the flooding tree.
(Courtesy of Chen, Hwang, and Ku [15] )
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detection scheme is suitable for protecting cloud core networks. The provider-level cooperation
eliminates the need for intervention by edge networks.

Example 4.8 Man-in-the-Middle Attacks

Figure 4.34 shows VM migration from host machine VMM A to host machine VMM B, via a security vulner-
able network. In a man-in-the-middle attack, the attacker can view the VM contents being migrated, steal
sensitive data, or even modify the VM-specific contents including the OS and application states. An
attacker posing this attack can launch an active attack to insert a VM-based rootkit into the migrating VM,
which can subvert the entire operation of the migration process without the knowledge of the guest OS
and embedded application.

4.6.3 Data and Software Protection Techniques
In this section, we will introduce a data coloring technique to preserve data integrity and user
privacy. Then we will discuss a watermarking scheme to protect software files from being widely
distributed in a cloud environment.

4.6.3.1 Data Integrity and Privacy Protection
Users desire a software environment that provides many useful tools to build cloud applications over
large data sets. In addition to application software for MapReduce, BigTable, EC2, 3S, Hadoop,
AWS, GAE, and WebSphere2, users need some security and privacy protection software for using
the cloud. Such software should offer the following features:

• Special APIs for authenticating users and sending e-mail using commercial accounts
• Fine-grained access control to protect data integrity and deter intruders or hackers
• Shared data sets protected from malicious alteration, deletion, or copyright violation

Host A
migrates VM

to Host B

Network

Can modify arbitrary VM
OS/application state

Man-in-the-middle attack
Unencrypted

VM instance

Host VMM B

VM instance

Host VMM A

FIGURE 4.34

A VM migrating from host A to host B through a vulnerable network threatened by a man-in-the-middle attack
to modify the VM template and OS state.
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• Ability to secure the ISP or cloud service provider from invading users’ privacy
• Personal firewalls at user ends to keep shared data sets from Java, JavaScript, and ActiveX

applets
• A privacy policy consistent with the cloud service provider’s policy, to protect against identity

theft, spyware, and web bugs
• VPN channels between resource sites to secure transmission of critical data objects

4.6.3.2 Data Coloring and Cloud Watermarking
With shared files and data sets, privacy, security, and copyright information could be compromised
in a cloud computing environment. Users desire to work in a trusted software environment that pro-
vides useful tools to build cloud applications over protected data sets. In the past, watermarking
was mainly used for digital copyright management. As shown in Figure 4.35, the system generates
special colors for each data object. Data coloring means labeling each data object by a unique
color. Differently colored data objects are thus distinguishable.

The user identification is also colored to be matched with the data colors. This color matching
process can be applied to implement different trust management events. Cloud storage provides
a process for the generation, embedding, and extraction of the watermarks in colored objects.
Interested readers may refer to the articles by Hwang and Li [36] for details on the data coloring
and matching process. In general, data protection was done by encryption or decryption which is
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FIGURE 4.35

Data coloring with cloud watermarking for trust management at various security clearance levels in data
centers.

(Courtesy of Hwang and Li [36] )
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computationally expensive. The data coloring takes a minimal number of calculations to color or
decolor the data objects. Cryptography and watermarking or coloring can be used jointly in a cloud
environment.

4.6.3.3 Data Lock-in Problem and Proactive Solutions
Cloud computing moves both the computation and the data to the server clusters maintained by
cloud service providers. Once the data is moved into the cloud, users cannot easily extract their
data and programs from cloud servers to run on another platform. This leads to a data lock-in pro-
blem. This has hindered the use of cloud computing. Data lock-in is attributed to two causes: lack
of interoperability, whereby each cloud vendor has its proprietary API that limits users to extract
data once submitted; and lack of application compatibility, in that most computing clouds expect
users to write new applications from scratch, when they switch cloud platforms.

One possible solution to data lock-in is the use of standardized cloud APIs. This requires building
standardized virtual platforms that adhere to OVF, a platform-independent, efficient, extensible, and
open format for VMs. This will enable efficient, secure software distribution, facilitating the mobility
of VMs. Using OVF one can move data from one application to another. This will enhance QoS, and
thus enable cross-cloud applications, allowing workload migration among data centers to user-specific
storage. By deploying applications, users can access and intermix applications across different cloud
services.

4.6.4 Reputation-Guided Protection of Data Centers
Trust is a personal opinion, which is very subjective and often biased. Trust can be transitive but
not necessarily symmetric between two parties. Reputation is a public opinion, which is more objec-
tive and often relies on a large opinion aggregation process to evaluate. Reputation may change or
decay over time. Recent reputation should be given more preference than past reputation. In this
section, we review the reputation systems for protecting data centers or cloud user communities.

4.6.4.1 Reputation System Design Options
Figure 4.36 provides an overview of reputation system design options. Public opinion on the char-
acter or standing (such as honest behavior or reliability) of an entity could be the reputation of a
person, an agent, a product, or a service. It represents a collective evaluation by a group of people/
agents and resource owners. Many reputation systems have been proposed in the past mainly for
P2P, multiagent, or e-commerce systems.

To address reputation systems for cloud services, a systematic approach is based on the design
criteria and administration of the reputation systems. Figure 4.36 shows a two-tier classification of
existing reputation systems that have been proposed in recent years. Most of them were designed
for P2P or social networks. These reputation systems can be converted for protecting cloud comput-
ing applications. In general, the reputation systems are classified as centralized or distributed
depending on how they are implemented. In a centralized system, a single central authority is
responsible for managing the reputation system, while the distributed model involves multiple con-
trol centers working collectively. Reputation-based trust management and techniques for securing
P2P and social networks could be merged to defend data centers and cloud platforms against attacks
from the open network.
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A centralized reputation system is easier to implement, but demands more powerful and reliable
server resources; a distributed reputation system is much more complex to build. Distributed systems
are more scalable and reliable in terms of handling failures. At the second tier, reputation systems are
further classified by the scope of reputation evaluation. User-oriented reputation systems focus on
individual users or agents. Most P2P reputation systems belong to this category. In data centers, repu-
tation is modeled for the resource site as a whole. This reputation applies to products or services
offered by the cloud. Commercial reputation systems have been built by eBay, Google, and Amazon
in connection with the services they provide. These are centralized reputation systems.

Distributed reputation systems are mostly developed by academic research communities. Aberer and
Despotovic have proposed a model to manage trust in P2P systems. The Eigentrust reputation system
was developed at Stanford University using a trust matrix approach. The PeerTrust system was devel-
oped at Georgia Institute of Technology for supporting e-commerce applications. The PowerTrust sys-
tem was developed at the University of Southern California based on Power law characteristics of
Internet traffic for P2P applications. Vu, et al. proposed a QoS-based ranking system for P2P
transactions.

4.6.4.2 Reputation Systems for Clouds
Redesigning the aforementioned reputation systems for protecting data centers offers new opportu-
nities for expanded applications beyond P2P networks. Data consistency is checked across multiple
databases. Copyright protection secures wide-area content distributions. To separate user data from
specific SaaS programs, providers take the most responsibility in maintaining data integrity and con-
sistency. Users can switch among different services using their own data. Only the users have the
keys to access the requested data.

The data objects must be uniquely named to ensure global consistency. To ensure data consis-
tency, unauthorized updates of data objects by other cloud users are prohibited. The reputation system
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FIGURE 4.36

Design options of reputation systems for social networks and cloud platforms.
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can be implemented with a trust overlay network. A hierarchy of P2P reputation systems is suggested
to protect cloud resources at the site level and data objects at the file level. This demands both
coarse-grained and fine-grained access control of shared resources. These reputation systems keep
track of security breaches at all levels.

The reputation system must be designed to benefit both cloud users and data centers. Data objects
used in cloud computing reside in multiple data centers over a SAN. In the past, most reputation
systems were designed for P2P social networking or for online shopping services. These reputation
systems can be converted to protect cloud platform resources or user applications in the cloud. A cen-
tralized reputation system is easier to implement, but demands more powerful and reliable server
resources. Distributed reputation systems are more scalable and reliable in terms of handling failures.
The five security mechanisms presented earlier can be greatly assisted by using a reputation system
specifically designed for data centers.

However, it is possible to add social tools such as reputation systems to support safe cloning of
VMs. Snapshot control is based on the defined RPO. Users demand new security mechanisms to
protect the cloud. For example, one can apply secured information logging, migrate over secured
virtual LANs, and apply ECC-based encryption for secure migration. Sandboxes provide a safe
execution platform for running programs. Further, sandboxes can provide a tightly controlled set of
resources for guest operating systems, which allows a security test bed to test the application code
from third-party vendors.

4.6.4.3 Trust Overlay Networks
Reputation represents a collective evaluation by users and resource owners. Many reputation
systems have been proposed in the past for P2P, multiagent, or e-commerce systems. To sup-
port trusted cloud services, Hwang and Li [36] have suggested building a trust overlay network
to model trust relationships among data-center modules. This trust overlay could be structured
with a distributed hash table (DHT) to achieve fast aggregation of global reputations from a
large number of local reputation scores. This trust overlay design was first introduced in [12].
Here, the designer needs to have two layers for fast reputation aggregation, updating, and disse-
mination to all users. Figure 4.37 shows construction of the two layers of the trust overlay
network.

At the bottom layer is the trust overlay for distributed trust negotiation and reputation aggrega-
tion over multiple resource sites. This layer handles user/server authentication, access authorization,
trust delegation, and data integrity control. At the top layer is an overlay for fast virus/worm signa-
ture generation and dissemination and for piracy detection. This overlay facilitates worm contain-
ment and IDSes against viruses, worms, and DDoS attacks. The content poisoning technique [6] is
reputation-based. This protection scheme can stop copyright violations in a cloud environment over
multiple data centers.

The reputation system enables trusted interactions between cloud users and data-center owners.
Privacy is enforced by matching colored user identifications with the colored data objects. The use
of content poisoning was suggested to protect copyright of digital content [46]. The security-aware
cloud architecture (see Figure 4.14) is specially tailored to protect virtualized cloud infrastructure.
The trust of provided cloud platforms comes from not only SLAs, but also from effective enforce-
ment of security policies and deployment of countermeasures to defend against network attacks. By
varying security control standards, one can cope with the dynamic variation of cloud operating
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conditions. The design is aimed at a trusted cloud environment to ensure high-quality services,
including security.

The cloud security trend is to apply virtualization support for security enforcement in data centers.
Both reputation systems and data watermarking mechanisms can protect data-center access at the
coarse-grained level and to limit data access at the fine-grained file level. In the long run, a new Security
as a Service is desired. This “SaaS” is crucial to the universal acceptance of web-scale cloud computing
in personal, business, community, and government applications. Internet clouds are certainly in line
with IT globalization and efficient computer outsourcing. However, interoperability among different
clouds relies on a common operational standard by building a healthy cloud ecosystem.
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Distributed reputation aggregation and probing of  piracy colluders
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Trust integration/negotiation over distributed cloud resource sites
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FIGURE 4.37

DHT-based trust overlay networks built over cloud resources provisioned from multiple data centers for trust
management and distributed security enforcement.

(Courtesy of Hwang and Li [36] )
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4.7 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
Tutorials and an introduction to cloud computing can be found in [18,32] and Wikipedia [79].
Data centers are introduced in Wikipedia [81]. Four recent books on cloud computing by Buyya,
Broberg, and Goscinski [10], Linthicum [47], Rittinghouse and Ransome [62], and Velte, et al.
[71] address cloud principles, paradigms, architecture, technologies, and implementations. Ware-
house-scale data centers are covered by Barroso and Holzle [8]. Articles related to data-center
architecture and implementations can be found in Al-Fares, et al. [2], Greenberg, et al. [29], Guo,
et al. [30], Nelson, et al. [53], and Wu, et al. [82]. Green IT is studied in [22,28,60]. Articles
arguing about cloud definitions can be found in [25,32,49,86]. Benefits and opportunities of
cloud computing are found in [31,32,44,52,61]. Grid extensions for cloud computing can be
traced to [66,83].

Pros and cons of cloud computing coexist in the service industry. Others think the cloud offers
efficiency and flexibility in making desktop computing centralized. Cloud computing can consoli-
date the advantages from both centralized and distributed computing [56]. Barham, et al. [6] review
Xen [84] and its use in clouds. VMware recovery schemes are given in [74]. Cloud computing
infrastructures are reported by both academia [4,21,40,52,62,68] and IT industry or enterprises
[3,5,9,26,38,43,65,70]. Cloud technology for HPC or HTC was studied in [33,56,63,87]. Virtualiza-
tion support for cloud computing is studied in [14,21,41,42,67,76]. Live VM migration and disaster
recovery have been studied in [17,54,57,75,78]. Cloud security is covered by Hwang and Li [36]
and by Mather, et al. [51].

Business clouds are introduced by Chou in a 2010 book [16] with a lot of case studies of suc-
cesses and failures. Reputation systems studied in [23,58,73,80,85,89] could be modified for protect-
ing data centers and cloud resource sites. Data coloring and cloud watermarking are studied in
[20,36,45,46,84]. Trust models are proposed in [1,23,34,36,50,67] for cloud, pervasive computing,
and e-commerce applications. Security and privacy issues are discussed in [13,15,19,35,36,37,
48,59,85,89]. A global cloud computing test bed, called Open Circus, was recently reported in [5].
A cloud simulator, CloudSim, is available from the University of Melbourne [64]. Buyya, et al. [11]
and Stuer, et al. [69] have discussed issues concerning market-oriented cloud computing.
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HOMEWORK PROBLEMS
Problem 4.1
Compile a table to compare public clouds and private clouds in each of the following four aspects.
Also identify their differences, advantages, and shortcomings in terms of design technologies and
application flexibility. Give several example platforms that you know of under each cloud class.

a. Technology leveraging and IT resource ownership
b. Provisioning methods of resources including data and VMs, and their management
c. Workload distribution methods and loading policies
d. Security precautions and data privacy enforcement

Problem 4.2
Describe the following techniques or terminologies used in cloud computing and cloud services.
Use a concrete example cloud or case study to explain the addressed technology.

a. Virtualized data center
b. Green information technology
c. Multitenant technique
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Problem 4.3
You have read a number of success or failure stories on cloud computing applications by startup
entrepreneurs or established IT companies. In Chou’s introductory book on business computing
[18], six categories of cloud services are identified, as listed here and shown below and also in
Figure 4.23.

Software Applications (SaaS): Concur, RightNOW, Teleo, Kenexa, Webex, Blackbaud,
Salesforce.com, Netsuite, Omniture, Kenexa, Vocus
Platform Services (PaaS): Force.com, App Engine, Postini, Facebook, MS Azure, NetSuite, IBM
RC2, IBM BlueCloud, SGI Cyclone, eBay, Pitney Bowes
Infrastructure Services (SaaS): Amazon AWS, OpSource Cloud, IBM Ensembles, Eli Lily,
Rackspace cloud, Windows Azure, HP, Bank North, New York Times
Collocation Services(LaaS): Savvis, Internap, NTTCommunications, Digital Realty Trust, 365
Main
Network Cloud Services (NaaS): Owest, AT&T, AboveNet
Hardware/Virtualization Services (HaaS): VMware, Intel, IBM, XenEnterprise

Pick one company from each of the six cloud service categories. Dig into the company services in
detail, contact the company directly, or visit their web sites. The purpose is to report on their inno-
vations in cloud technology, good business ideas implemented, software application development,
business models they have developed, and success/failure lessons learned.

Problem 4.4
Check the AWS cloud web site. Plan a real computing application using EC2, or S3, or SQS, separately.
You must specify the resources requested and figure out the costs charged by Amazon. Carry out the
EC2, S3, or SQS experiments on the AWS platform and report and analyze the performance results
measured.

Problem 4.5
Consider two cloud service systems: Google File System and Amazon S3. Explain how they
achieve their design goals to secure data integrity and to maintain data consistency while facing the
problems of hardware failure, especially concurrent hardware failures.

Problem 4.6
Read the articles by Buyya and associates [10–14] on market-oriented cloud architecture and
intercloud resource exchanges:

a. Discuss the reasons for scaling applications across multiple clouds. Suggest ways to leverage the
ideas in cloud mashup applications.

b. Identify key architectural elements that need to be added to realize market-oriented clouds within
commercial cloud systems supported by companies such as IBM and Microsoft.
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Problem 4.7
Suggest two hardware mechanisms and software schemes to secure the application cloud (SaaS), the
infrastructure cloud (IaaS), and the platform cloud (PaaS). Discuss their specific requirements and
difficulties and limitations that may be encountered.

Problem 4.8
Identify infrastructure components of IaaS services offered by Amazon EC2 and Google, and use
CloudSim from the University of Melbourne to model and simulate these infrastructures. Develop
an algorithm for scheduling applications across an InterCloud or federation of these simulated
infrastructures. In this evaluation, carry out experiments by modeling applications that are short-
lived such as web applications and long-lived such as high-performance computing.

Problem 4.9
Explain the following terminologies associated with data-center design and managements:

a. Differences in warehouse-scale data centers and modular data centers
b. Study three data center architecture papers in [2,24,25,45,68] and report on their contributions to

advance data-center performance and dependability
c. Discuss the scalability of those data-center architectures you studied in Part (b)

Problem 4.10
Explain the differences in the following two machine recovery schemes. Comment on their imple-
mentation requirements, advantages and shortcomings, and application potential.

a. Recovery of a physical machine failure by another physical machine
b. Recovery of a VM failure by another VM

Problem 4.11
Elaborate on four major advantages of using virtualized resources in cloud computing applications.
Your discussion should address resource management issues from the provider’s perspective and
the application flexibility, cost-effectiveness, and dependability concerns by cloud users.

Problem 4.12
Answer the following questions on the InterGrid Gateway (IGG) experiments. Read the original
paper [5] for details beyond Sections 6.3.3 and 6.3.4 on cloud creation and load peering experi-
ments in a distributed virtualized cloud infrastructure built on top of the French Grid’5000 system.

a. Study the details of the IGG software components and their usage to link resource sites
b. Repeat the IGG experiments in a local small-scale network or grid environment by getting the

IGG software from the University of Melbourne
c. Use the CloudSim simulator from the University of Melbourne or write your own simulator to

repeat the experiments in Part (b).

Homework Problems 267



Problem 4.13
Map the following 14 names or abbreviated terms on the left column with the best-match definitions
or descriptions on the right column. Just enter the description label (a, b, c, ….) in the blank spaces in
front of the terms being matched to. This is a 1-to-1 correspondence.

Term Description to Be Mapped with the Terms on the Left Column

_____ GAE a) The agreement signed between users and providers in cloud computing
_____ CRM b) A public cloud that must run from Windows 7 based host
_____ AWS c) A public cloud used mainly for PaaS applications
_____ SLA d) A public compute cloud used in scalable business computing application
_____ Azure e) A cloud platform built by SalesForce.com
_____ EC2 f) A commercial cloud OS for transforming a data center to a cloud platform
_____ S3 g) One of the most frequently used SaaS applications used in the business world
_____ Force.com h) A cloud platform built mainly for IaaS applications
_____ vSphere/4 i) A storage cloud service for distributed storage applications
_____ EBS j) An open-source hypervisor developed at Cambridge University
_____ SQL k) The distributed file system used in Google search engines and in App Engine
_____ Chubby l) An Amazon block lock inteface for saving and restoring the VM instances
_____ XEN m) An Azure service module for users to visit and use of relational database
_____ GFS n) A distributed block lock service module in Google App Engine

Problem 4.14
This is an extended research problem on an efficient data-center network by Al-Fare, et al. [18] that
you studied in Section 4.2.2. The scalable data-center architecture was proposed to extend the fat-
tree concept. You are asked to perform the following tasks:

a. Study these two papers and justify the claimed network features on scalability, efficient routing,
and compatibility with the Ethernet, IP, and TCP protocols

b. Suggest a means to improve the network in fault tolerance, cross-section bandwidth, and
implementation efficiency based on today’s technology.

Problem 4.15
You have studied the basic concepts of live migration of VMs and disaster recovery in Section
3.5.2 and Section 4.3.3. Read the related articles in [16,19,52,55,72] and answer the following
questions based on your research findings:

a. What virtualization support is needed to achieve fast cloning of VMs? Explain how VM cloning
can enable fast recovery.

b. What are the RPO and RTO in the design of a disaster recovery scheme? Explain the role of
snapshots in disaster recovery schemes.
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Problem 4.16
Investigate the differences among encryption, watermarking, and coloring for protecting data sets
and software in cloud environments. Discuss their relative strengths and limitations.

Problem 4.17
This is an extended research problem on efficient data-center networks. In the papers by Guo, et al.
[25] and Wu, et al. [68], the MDCube networks module was proposed for building mega data cen-
ters as shown in Figure 4.13 in Section 4.2.4.

a. Discuss the advantages of using this network to improve the intercontainer bandwidth, reduce
the cost of the interconnection structure, and reduce the cabling complexity.

b. Justify the claimed low diameter, high capacity, and fault tolerance of the MDCube network
design for interconnecting data-center containers.

Problem 4.18
Read the articles [15,17,21,35,37,46,49,57] on cloud security and data protection. Can you suggest
any way to upgrade the cloud infrastructure for protection of data, privacy, and security in a cloud
platform or data-center environment? Evaluate the trust models reported in [1,25,34,36,48,64] for
securing cloud service applications.

Problem 4.19
Draw a layered diagram to relate the construction of IaaS, PaaS, and SaaS clouds from bare
machine hardware to the users applications. Briefly list the representative cloud service offerings at
each cloud layer from the major cloud providers that you know of.

Problem 4.20
Discuss the enabling technologies for building the cloud platforms from virtulized and automated
data centers to provide IaaS, PaaS, or SaaS services. Identify hardware, software, and networking
mechanisms or business models that enable multitenant services.
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SUMMARY
In this chapter, we cover two major service-oriented architecture styles, namely REST (REpresenta-
tional State Transfer) and WS (Web Services) and their extensions. We discuss message-oriented
middleware and enterprise bus infrastructure with a publish-subscribe infrastructure. Two application
interfaces (OGCE and HUBzero) are described using web service (portlet) and Web 2.0 (gadget)
technologies. We handle data and metadata in distributed systems using service registries and
semantic web/grid. Finally, we describe a general workflow approach illustrating it with the BPEL
web service standard, Pegasus, Taverna, Kepler, Trident, and Swift.

5.1 SERVICES AND SERVICE-ORIENTED ARCHITECTURE
Technology has advanced at breakneck speeds over the past decade, and many changes are still
occurring. However, in this chaos, the value of building systems in terms of services has grown in
acceptance and it has become a core idea of most distributed systems. Loose coupling and support
of heterogeneous implementations makes services more attractive than distributed objects. Web
services move beyond helping various types of applications to exchanging information. The techno-
logy also plays an increasingly important role in accessing, programming on, and integrating a set
of new and existing applications.

We have introduced service-oriented architecture (SOA) in Section 1.4.1. In general, SOA is
about how to design a software system that makes use of services of new or legacy applications
through their published or discoverable interfaces. These applications are often distributed over the
networks. SOA also aims to make service interoperability extensible and effective. It prompts archi-
tecture styles such as loose coupling, published interfaces, and a standard communication model in
order to support this goal. The World Wide Web Consortium (W3C) defines SOA as a form of dis-
tributed systems architecture characterized by the following properties [1]:

Logical view: The SOA is an abstracted, logical view of actual programs, databases, business
processes, and so on, defined in terms of what it does, typically carrying out a business-level
operation. The service is formally defined in terms of the messages exchanged between provider
agents and requester agents.
Message orientation: The internal structure of providers and requesters include the
implementation language, process structure, and even database structure. These features are
deliberately abstracted away in the SOA: Using the SOA discipline one does not and should not
need to know how an agent implementing a service is constructed. A key benefit of this
concerns legacy systems. By avoiding any knowledge of the internal structure of an agent, one
can incorporate any software component or application to adhere to the formal service definition.
Description orientation: A service is described by machine-executable metadata. The
description supports the public nature of the SOA: Only those details that are exposed to
the public and are important for the use of the service should be included in the description.
The semantics of a service should be documented, either directly or indirectly, by its description.
• Granularity Services tend to use a small number of operations with relatively large and

complex messages.
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• Network orientation Services tend to be oriented toward use over a network, though this is
not an absolute requirement.

• Platform-neutral Messages are sent in a platform-neutral, standardized format delivered
through the interfaces. XML is the most obvious format that meets this constraint.

Unlike the component-based model, which is based on design and development of tightly
coupled components for processes within an enterprise, using different protocols and technologies
such as CORBA and DCOM, SOA focuses on loosely coupled software applications running across
different administrative domains, based on common protocols and technologies, such as HTTP and
XML. SOA is related to early efforts on the architecture style of large-scale distributed systems,
particularly Representational State Transfer (REST). Nowadays, REST still provides an alternative
to the complex standard-driven web services technology and is used in many Web 2.0 services. In
the following subsections, we introduce REST and standard-based SOA in distributed systems.

5.1.1 REST and Systems of Systems
REST is a software architecture style for distributed systems, particularly distributed hypermedia
systems, such as the World Wide Web. It has recently gained popularity among enterprises such as
Google, Amazon, Yahoo!, and especially social networks such as Facebook and Twitter because of
its simplicity, and its ease of being published and consumed by clients. REST, shown in Figure 5.1,
was introduced and explained by Roy Thomas Fielding, one of the principal authors of the HTTP
specification, in his doctoral dissertation [2] in 2000 and was developed in parallel with the
HTTP/1.1 protocol. The REST architectural style is based on four principles:

Resource Identification through URIs: The RESTful web service exposes a set of resources
which identify targets of interaction with its clients. The key abstraction of information in REST

HTTP packet

HTTP verb

POST | GET | PUT | DELETE

HTTP/S HTTP/SHTTP-REST 

client

REST aware 

application

HTTP server

SSL

authenticationREST payload

HTML, XML, JPEG, 

JSON, etc

FIGURE 5.1

A simple REST interaction between user and server in HTTP specification.
(Courtesy of Thomas Fielding [2] )
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is a resource. Any information that can be named can be a resource, such as a document or
image or a temporal service. A resource is a conceptual mapping to a set of entities. Each
particular resource is identified by a unique name, or more precisely, a Uniform Resource
Identifier (URI) which is of type URL, providing a global addressing space for resources
involved in an interaction between components as well as facilitating service discovery. The
URIs can be bookmarked or exchanged via hyperlinks, providing more readability and the
potential for advertisement.
Uniform, Constrained Interface: Interaction with RESTful web services is done via the HTTP
standard, client/server cacheable protocol. Resources are manipulated using a fixed set of four
CRUD (create, read, update, delete) verbs or operations: PUT, GET, POST, and DELETE. PUT
creates a new resource, which can then be destroyed by using DELETE. GET retrieves the
current state of a resource. POST transfers a new state onto a resource.
Self-Descriptive Message: A REST message includes enough information to describe how to
process the message. This enables intermediaries to do more with the message without parsing
the message contents. In REST, resources are decoupled from their representation so that their
content can be accessed in a variety of standard formats (e.g., HTML, XML, MIME, plain text,
PDF, JPEG, JSON, etc.). REST provides multiple/alternate representations of each resource.
Metadata about the resource is available and can be used for various purposes, such as cache
control, transmission error detection, authentication or authorization, and access control.
Stateless Interactions: The REST interactions are “stateless” in the sense that the meaning of a
message does not depend on the state of the conversation. Stateless communications improve
visibility, since a monitoring system does not have to look beyond a single request data field in
order to determine the full nature of the request reliability as it facilitates the task of recovering
from partial failures, and increases scalability as discarding state between requests allows the
server component to quickly free resources. However, stateless interactions may decrease network
performance by increasing the repetitive data (per-interaction overhead). Stateful interactions are
based on the concept of explicit state transfer. Several techniques exist to exchange state, such as
URI rewriting, cookies, and hidden form fields. State can be embedded in response messages to
point to valid future states of the interaction.

Such lightweight infrastructure, where services can be built with minimal development tools, is
inexpensive and easy to adopt. The effort required to build a client to interact with a RESTful ser-
vice is rather small as developers can begin testing such services from an ordinary web browser,
without having to develop custom client-side software. From an operational point of view, a state-
less RESTful web service is scalable to serve a very large number of clients, as a result of REST
support for caching, clustering, and load balancing.

RESTful web services can be considered an alternative to SOAP stack or “big web services,”
described in the next section, because of their simplicity, lightweight nature, and integration with
HTTP. With the help of URIs and hyperlinks, REST has shown that it is possible to discover web
resources without an approach based on registration to a centralized repository. Recently, the web
Application Description Language (WADL) [3] has been proposed as an XML vocabulary to
describe RESTful web services, enabling them to be discovered and accessed immediately by poten-
tial clients. However, there are not a variety of toolkits for developing RESTful applications. Also,
restrictions on GET length, which does not allow encoding of more than 4 KB of data in the
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resource URI, can create problems because the server would reject such malformed URIs, or may
even be subject to crashes. REST is not a standard. It is a design and architectural style for large-
scale distributed systems.

Table 5.1 lists the REST architectural elements. Several Java frameworks have emerged to help
with building RESTful web services. Restlet [4], a lightweight framework, implements REST archi-
tectural elements such as resources, representation, connector, and media type for any kind of
RESTful system, including web services. In the Restlet framework, both the client and the server
are components. Components communicate with each other via connectors.

JSR-311 (JAX-RS) [5], a specification provided by Sun Microsystems, defines a set of Java
APIs for the development of RESTful web services. The specification provides a set of annotations
with associated classes and interfaces that can be used to expose Java objects as web resources.
JSR-311 provides clear mappings between the URI and corresponding resources, and mappings
between HTTP methods with the methods in Java objects, by using annotations. The API supports
a wide range of HTTP entity content types including HTML, XML, JSON, GIF, JPG, and so on.
Jersey [6] is a reference implementation of the JSR-311 specification for building RESTful web ser-
vices. It also provides an API for developers to extend Jersey based on their needs.

Example 5.1 RESTful Web Service in Amazon S3 Interface

A good example of RESTful web service application in high-performance computing systems is the
Amazon Simple Storage Service (S3) interface. Amazon S3 is data storage for Internet applications. It
provides simple web services to store and retrieve data from anywhere at any time via the web. S3 keeps
fundamental entities, “objects,” which are named pieces of data accompanied by some metadata to be

Table 5.1 REST Architectural Elements (Adapted from [2])

REST Elements Elements Example

Data elements Resource The intended conceptual target of a hypertext reference
Resource identifier URL
Representation HTML document, JPEG image, XML, etc.
Representation metadata Media type, last-modified time
Resource metadata Source link, alternates, vary
Control data If-modified-since, cache-control

Connectors Client libwww, libwww-perl
Server libwww, Apache API, NSAPI
Cache Browser cache, Akamai cache network
Resolver Bind (DNS lookup library)
Tunnel SSL after HTTP CONNECT

Components Origin server Apache httpd, Microsoft IIS
Gateway Squid, CGI, Reverse Proxy
Proxy CERN Proxy, Netscape Proxy, Gauntlet
User agent Netscape Navigator, Lynx, MOMspider
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stored in containers called “buckets,” each identified by a unique key. Buckets serve several purposes:
They organize the Amazon S3 namespace at the highest level, identify the account responsible for storage
and data transfer charges, play a role in access control, and serve as the unit of aggregation for usage
reporting. Amazon S3 provides three types of resources: a list of user buckets, a particular bucket, and a
particular S3 object, accessible through https://s3.amazonaws.com/{name-of-bucket}/{name-of-object}.

These resources are retrieved, created, or manipulated by basic HTTP standard operations: GET,
HEAD, PUT, and DELETE. GET can be used to list buckets created by the user, objects kept inside a
bucket, or an object’s value and its related metadata. PUT can be used for creating a bucket or setting an
object’s value or metadata, DELETE for removing a particular bucket or object, and HEAD for getting a
specific object’s metadata. The Amazon S3 API supports the ability to find buckets, objects, and their
related metadata; create new buckets; upload objects; and delete existing buckets and objects for the
aforementioned operations. Table 5.2 shows some sample REST request-response message syntax for
creating an S3 bucket.

Amazon S3 REST operations are HTTP requests to create, fetch, and delete buckets and objects.
A typical REST operation consists of sending a single HTTP request to Amazon S3, followed by waiting for
an HTTP response. Like any HTTP request, a request to Amazon S3 contains a request method, a URI,
request headers which contain basic information about the request, and sometimes a query string and
request body. The response contains a status code, response headers, and sometimes a response body.

The request consists of a PUT command followed by the bucket name created on S3. The Amazon S3
REST API uses the standard HTTP header to pass authentication information. The authorization header
consists of an AWS Access Key ID and AWS SecretAccess Key, issued by the developers when they regis-
ter to S3 Web Services, followed by a signature. To authenticate, the AWSAccessKeyId element identifies
the secret key to compute the signature upon request from the developer. If the request signature matches
the signature included, the requester is authorized and subsequently, the request is processed.

The composition of RESTful web services has been the main focus of composite Web 2.0 appli-
cations, such as mashups, to be discussed in Sections 5.4 and 9.1.3. A mashup application combines
capabilities from existing web-based applications. A good example of a mashup is taking images
from an online repository such as Flickr and overlaying them on Google Maps. Mashups differ
from all-in-one software products in that instead of developing a new feature into an existing tool,

Table 5.2 Sample REST Request-Response for Creating an S3 Bucket

REST Request REST Response

PUT/[bucket-name] HTTP/1.0
Date: Wed, 15 Mar 2011 14:45:15 GMT
Authorization:AWS [aws-access-key-id]:
[header-signature]
Host: s3.amazonaws.com

HTTP/1.1 200 OK
x-amz-id-2: VjzdTviQorQtSjcgLshzCZSzN+7CnewvHA
+6sNxR3VRcUPyO5fmSmo8bWnIS52qa
x-amz-request-id: 91A8CC60F9FC49E7
Date: Wed, 15 Mar 2010 14:45:20 GMT
Location: /[bucket-name]
Content-Length: 0
Connection: keep-alive
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they combine the existing tool with another tool that already has the desired feature. All tools work
independently, but create a uniquely customized experience when used together in harmony.

5.1.2 Services and Web Services
In an SOA paradigm, software capabilities are delivered and consumed via loosely coupled, reusa-
ble, coarse-grained, discoverable, and self-contained services interacting via a message-based com-
munication model. The web has becomes a medium for connecting remote clients with applications
for years, and more recently, integrating applications across the Internet has gained in popularity.
The term “web service” is often referred to a self-contained, self-describing, modular application
designed to be used and accessible by other software applications across the web. Once a web ser-
vice is deployed, other applications and other web services can discover and invoke the deployed
service (Figure 5.2).

In fact, a web service is one of the most common instances of an SOA implementation. The
W3C working group [1] defines a web service as a software system designed to support interoper-
able machine-to-machine interaction over a network. According to this definition, a web service has
an interface described in a machine-executable format (specifically Web Services Description Lan-
guage or WSDL). Other systems interact with the web service in a manner prescribed by its
description using SOAP messages, typically conveyed using HTTP with an XML serialization in
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A simple web service interaction among provider, user, and the UDDI registry.
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conjunction with other web-related standards. The technologies that make up the core of today’s
web services are as follows:

Simple Object Access Protocol (SOAP) SOAP provides a standard packaging structure for
transmission of XML documents over various Internet protocols, such as SMTP, HTTP, and
FTP. By having such a standard message format, heterogeneous middleware systems can
achieve interoperability. A SOAP message consists of a root element called envelope, which
contains a header: a container that can be extended by intermediaries with additional
application-level elements such as routing information, authentication, transaction management,
message parsing instructions, and Quality of Service (QoS) configurations, as well as a body
element that carries the payload of the message. The content of the payload will be marshaled
by the sender’s SOAP engine and unmarshaled at the receiver side, based on the XML schema
that describes the structure of the SOAP message.
Web Services Description Language (WSDL) WSDL describes the interface, a set of
operations supported by a web service in a standard format. It standardizes the representation of
input and output parameters of its operations as well as the service’s protocol binding, the way
in which the messages will be transferred on the wire. Using WSDL enables disparate clients to
automatically understand how to interact with a web service.
Universal Description, Discovery, and Integration (UDDI) UDDI provides a global registry
for advertising and discovery of web services, by searching for names, identifiers, categories, or
the specification implemented by the web service. UDDI is explained in detail in Section 5.4.

SOAP is an extension, and an evolved version of XML-RPC, a simple and effective remote pro-
cedure call protocol which uses XML for encoding its calls and HTTP as a transport mechanism,
introduced in 1999 [7]. According to its conventions, a procedure executed on the server and the
value it returns was a formatted in XML. However, XML-RPC was not fully aligned with the latest
XML standardization. Moreover, it did not allow developers to extend the request or response for-
mat of an XML-RPC call. As the XML schema became a W3C recommendation in 2001, SOAP
mainly describes the protocols between interacting parties and leaves the data format of exchanging
messages to XML schema to handle.

The major difference between web service technology and other technologies such as J2EE,
CORBA, and CGI scripting is its standardization, since it is based on standardized XML, providing a
language-neutral representation of data. Most web services transmit messages over HTTP, making
them available as Internet-scale applications. In addition, unlike CORBA and J2EE, using HTTP as
the tunneling protocol by web services enables remote communication through firewalls and proxies.

SOAP-based web services are also referred to as “big web services” [7]. As we saw earlier in
this chapter, RESTful [8] services can also be considered a web service, in an HTTP context.
SOAP-based web services interaction can be either synchronous or asynchronous, making them sui-
table for both request-response and one-way exchange patterns, thus increasing web service avail-
ability in case of failure.

5.1.2.1 WS-I Protocol Stack
Unlike RESTful web services that do not cover QoS and contractual properties, several optional
specifications have been proposed for SOAP-based web services to define nonfunctional require-
ments and to guarantee a certain level of quality in message communication as well as reliable,
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transactional policies, such as WS-Security [9], WS-Agreement [10], WS-ReliableMessaging [11],
WS-Transaction [12], and WS-Coordination [13] as shown in Figure 5.3.

As mentioned, SOAP messages are encoded using XML, which requires that all self-described
data be sent as ASCII strings. The description takes the form of start and end tags which often con-
stitute half or more of the message’s bytes. Transmitting data using XML leads to a considerable
transmission overhead, increasing the amount of transferred data by a factor 4 to 10 [14]. Moreover,
XML processing is compute and memory intensive and grows with both the total size of the data
and the number of data fields, making web services inappropriate for use by limited-profile devices,
such as handheld PDAs and mobile phones.

Web services provide on-the-fly software composition, described further in Section 5.5, through the
use of loosely coupled, reusable software components. By using Business Process Execution Language
for Web Services (BPEL4WS), a standard executable language for specifying interactions between web
services recommended by OASIS, web services can be composed together to make more complex web
services and workflows. BPEL4WS is an XML-based language, built on top of web service specifica-
tions, which is used to define and manage long-lived service orchestrations or processes.

In BPEL, a business process is a large-grained stateful service, which executes steps to complete
a business goal. That goal can be the completion of a business transaction, or fulfillment of the job
of a service. The steps in the BPEL process execute activities (represented by BPEL language ele-
ments) to accomplish work. Those activities are centered on invoking partner services to perform
tasks (their job) and return results back to the process. BPEL enables organizations to automate
their business processes by orchestrating services. Workflow in a grid context is defined [15] as
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WS-I protocol stack and its related specifications.
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“The automation of the processes, which involves the orchestration of a set of Grid services, agents
and actors that must be combined together to solve a problem or to define a new service.”

The JBPM [16] Project, built for the JBoss [17] open source middleware platform, is an example
of a workflow management and business process execution system. Another workflow system,
Taverna [18], has been extensively used in life science applications. There are a variety of tools for
developing and deploying web services in different languages, among them SOAP engines such as
Apache Axis for Java, gSOAP [19] for C++, the Zolera Soap Infrastructure (ZSI) [20] for Python,
and Axis2/Java and Axis2/C. These toolkits, consisting of a SOAP engine and WSDL tools for gen-
erating client stubs, considerably hide the complexity of web service application development and
integration. As there is no standard SOAP mapping for any of the aforementioned languages, two
different implementations of SOAP may produce different encodings for the same objects.

Since SOAP can combine the strengths of XML and HTTP, as a standard transmission protocol
for data, it is an attractive technology for heterogeneous distributed computing environments, such
as grids and clouds, to ensure interoperability. As we discussed in Section 7.4, Open Grid Services
Architecture (OGSA) grid services are extensions of web services and in new grid middleware,
such as Globus Toolkit 4 and its latest released version GT5, pure standard web services. Amazon
S3 as a cloud-based persistent storage service is accessible through both a SOAP and a REST inter-
face. However, REST is the preferred mechanism for communicating with S3 due to the difficulties
of processing large binary objects in the SOAP API, and in particular, the limitation that SOAP
puts on the object size to be managed and processed. Table 5.3 depicts a sample SOAP request-
response to get a user object from S3.

A SOAP message consists of an envelope used by the applications to enclose information that
need to be sent. An envelope contains a header and a body block. The EncodingStyle element refers

Table 5.3 Sample SOAP Request-Response for Creating an S3 Bucket

SOAP Request SOAP Response

<soap:Envelope
xmlns:soap=“http://www.w3.org/2003/05/soap-
envelope”
soap:encodingStyle=
“http://www.w3.org/2001/12/soap-encoding”>
<soap:Body>
<CreateBucket xmlns=“http://doc.s3.amazonaws
.com/2010-03-15”>
<Bucket>SampleBucket</Bucket>
<AWSAccessKeyId>
1B9FVRAYCP1VJEXAMPLE=
</AWSAccessKeyId>
<Timestamp>2010-03-15T14:40:00.165Z
</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE
=</Signature>
</CreateBucket>
</soap:Body>
</soap:Envelope>

<soap:Envelope
xmlns:soap=“http://www.w3.org/2003/05/soap-
envelope”
soap:encodingStyle=
“http://www.w3.org/2001/12/soap-encoding”>
<soap:Body>
<CreateBucket xmlns=“http://doc.s3.amazonaws
.com/2010-03-15”>
<Bucket>SampleBucket</Bucket>
<AWSAccessKeyId>1B9FVRAYCP1VJEXAMPLE=
</AWSAccessKeyId>
<Timestamp>2010-03-15T14:40:00.165Z
</Timestamp>
<Signature>Iuyz3d3P0aTou39dzbqaEXAMPLE
=</Signature>
</CreateBucket>
</soap:Body>
</soap:Envelope>
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to the URI address of an XML schema for encoding elements of the message. Each element of a
SOAP message may have a different encoding, but unless specified, the encoding of the whole mes-
sage is as defined in the XML schema of the root element. The header is an optional part of a
SOAP message that may contain auxiliary information as mentioned earlier, which does not exist in
this example.

The body of a SOAP request-response message contains the main information of the conversa-
tion, formatted in one or more XML blocks. In this example, the client is calling CreateBucket of
the Amazon S3 web service interface. In case of an error in service invocation, a SOAP message
including a Fault element in the body will be forwarded to the service client as a response, as an
indicator of a protocol-level error.

5.1.2.2 WS-* Core SOAP Header Standards
Table 5.4 summarizes some of the many (around 100) core SOAP header specifications. There are
many categories and several overlapping standards in each category. Many are expanded in this
chapter with XML, WSDL, SOAP, BPEL, WS-Security, UDDI, WSRF, and WSRP. The number
and complexity of the WS-* standards have contributed to the growing trend of using REST and
not web services. It was a brilliant idea to achieve interoperability through self-describing messages,
but experience showed that it was too hard to build the required tooling with the required perfor-
mance and short implementation time.

Example 5.2 WS-RM or WS-Reliable Messaging

WS-RM is one of the best developed of the so-called WS-* core web service specifications. WS-RM uses
message instance counts to allow destination services to recognize message delivery faults (either missing or
out-of-order messages). WS-RM somewhat duplicates the capabilities of TCP-IP in this regard, but operates
at a different level—namely at the level of user messages and not TCP packets, and from source to destina-
tion independent of TCP routing in between. This idea was not fully developed (e.g., multicast messaging is
not properly supported). Details can be found at http://en.wikipedia.org/wiki/WS-ReliableMessaging.

Table 5.4 The 10 Areas Covered by the Core WS-* Specifications

WS-* Specification Area Examples

1. Core Service Model XML, WSDL, SOAP
2. Service Internet WS-Addressing, WS-MessageDelivery, Reliable WSRM, Efficient MOTM
3. Notification WS-Notification, WS-Eventing (Publish-Subscribe)
4. Workflow and Transactions BPEL, WS-Choreography, WS-Coordination
5. Security WS-Security, WS-Trust, WS-Federation, SAML, WS-SecureConversation
6. Service Discovery UDDI, WS-Discovery
7. System Metadata and State WSRF, WS-MetadataExchange, WS-Context
8. Management WSDM, WS-Management, WS-Transfer
9. Policy and Agreements WS-Policy, WS-Agreement

10. Portals and User Interfaces WSRP (Remote Portlets)
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5.1.3 Enterprise Multitier Architecture
Enterprise applications often use multitier architecture to encapsulate and integrate various functional-
ities. Multitier architecture is a kind of client/server architecture in which the presentation, the applica-
tion processing, and the data management are logically separate processes. The simplest known
multilayer architecture is a two-tier or client/server system. This traditional two-tier, client/server model
requires clustering and disaster recovery to ensure resiliency. While the use of fewer nodes in an enter-
prise simplifies manageability, change management is difficult as it requires servers to be taken offline
for repair, upgrading, and new application deployments. Moreover, the deployment of new applications
and enhancements is complex and time-consuming in fat-client environments, resulting in reduced
availability. A three-tier information system consists of the following layers (Figure 5.4):

• Presentation layer Presents information to external entities and allows them to interact with the
system by submitting operations and getting responses.

Information system

Data storage

Database serverFile server

Application server

Application logic (middleware)

Presentation layer

Web serverWeb services

Web browser
Client

FIGURE 5.4

Three-tier system architecture.
(Gustavo Alonso, et al, Web Services: Concepts, Architectures and Applications (Data-Centric Systems and Applications).

Springer Verlag, 2010. With kind permission from Springer Science+Business Media B.V.)
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• Business/application logic layer or middleware Programs that implement the actual operations
requested by the client through the presentation layer. The middle tier can also control user
authentication and access to resources, as well as performing some of the query processing for
the client, thus removing some of the load from the database servers.

• Resource management layer Also known as the data layer, deals with and implements the
different data sources of an information system.

In fact, a three-tier system is an extension of two-tier architecture where the application logic is
separated from the resource management layer [21]. By the late 1990s, as the Internet became an
important part of many applications, the industry extended the three-tier model to an N-tier
approach. SOAP-based and RESTful web services have become more integrated into applications.
As a consequence, the data tier split into a data storage tier and a data access tier. In very sophisti-
cated systems, an additional wrapper tier can be added to unify data access to both databases and
web services. Web services can benefit from the separation of concerns inherent in multitier archi-
tecture in almost the same way as most dynamic web applications [22].

The business logic and data can be shared by both automated and GUI clients. The only differ-
ences are the nature of the client and the presentation layer of the middle tier. Moreover, separating
business logic from data access enables database independence. N-tier architecture is characterized
by the functional decomposition of applications, service components, and their distributed deployment.
Such an architecture for both web services and dynamic web applications leads to reusability,
simplicity, extensibility, and clear separation of component functionalities.

Web services can be seen as another tier on top of the middleware and application integration
infrastructure [23], allowing systems to interact with a standard protocol across the Internet. Because
each tier can be managed or scaled independently, flexibility is increased in the IT infrastructure that
employs N-tier architecture. In the next section, we will describe OGSA, as multitier, service-oriented
architecture for middleware which describes the capabilities of a grid computing environment and
embodies web services to make computing resources accessible in large-scale heterogeneous
environments.

5.1.4 Grid Services and OGSA
The OGSA [24], developed within the OGSA Working Group of the Global Grid Forum (recently
renamed to Open Grid Forum or OGF and being merged with the Enterprise Grid Alliance or EGA
in June 2006), is a service-oriented architecture that aims to define a common, standard, and open
architecture for grid-based applications. “Open” refers to both the process to develop standards and
the standards themselves. In OGSA, everything from registries, to computational tasks, to data
resources is considered a service. These extensible set of services are the building blocks of an
OGSA-based grid. OGSA is intended to:

• Facilitate use and management of resources across distributed, heterogeneous environments
• Deliver seamless QoS
• Define open, published interfaces in order to provide interoperability of diverse resources
• Exploit industry-standard integration technologies
• Develop standards that achieve interoperability
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• Integrate, virtualize, and manage services and resources in a distributed, heterogeneous
environment

• Deliver functionality as loosely coupled, interacting services aligned with industry-accepted web
service standards

Based on OGSA, a grid is built from a small number of standards-based components, called grid
services. [25] defines a grid service as “a web service that provides a set of well-defined interfaces,
following specific conventions (expressed using WSDL).” OGSA gives a high-level architectural
view of grid services and doesn’t go into much detail when describing grid services. It basically
outlines what a grid service should have. A grid service implements one or more interfaces, where
each interface defines a set of operations that are invoked by exchanging a defined sequence of
messages, based on the Open Grid Services Infrastructure (OGSI) [26]. OGSI, also developed by
the Global Grid Forum, gives a formal and technical specification of a grid service.

Grid service interfaces correspond to portTypes in WSDL. The set of portTypes supported by a
grid service, along with some additional information relating to versioning, are specified in the grid
service’s serviceType, a WSDL extensibility element defined by OGSA. The interfaces address dis-
covery, dynamic service creation, lifetime management, notification, and manageability; whereas the
conventions address naming and upgradeability. Grid service implementations can target native plat-
form facilities for integration with, and of, existing IT infrastructures.

According to [25], OGSA services fall into seven broad areas, defined in terms of capabilities
frequently required in a grid scenario. Figure 5.5 shows the OGSA architecture. These services are
summarized as follows:

• Infrastructure Services Refer to a set of common functionalities, such as naming, typically
required by higher level services.

• Execution Management Services Concerned with issues such as starting and managing tasks,
including placement, provisioning, and life-cycle management. Tasks may range from simple
jobs to complex workflows or composite services.

• Data Management Services Provide functionality to move data to where it is needed, maintain
replicated copies, run queries and updates, and transform data into new formats. These services
must handle issues such as data consistency, persistency, and integrity. An OGSA data service is
a web service that implements one or more of the base data interfaces to enable access to, and
management of, data resources in a distributed environment. The three base interfaces, Data
Access, Data Factory, and Data Management, define basic operations for representing, accessing,
creating, and managing data.

• Resource Management Services Provide management capabilities for grid resources:
management of the resources themselves, management of the resources as grid components, and
management of the OGSA infrastructure. For example, resources can be monitored, reserved,
deployed, and configured as needed to meet application QoS requirements. It also requires an
information model (semantics) and data model (representation) of the grid resources and services.

• Security Services Facilitate the enforcement of security-related policies within a (virtual)
organization, and supports safe resource sharing. Authentication, authorization, and integrity
assurance are essential functionalities provided by these services.

• Information Services Provide efficient production of, and access to, information about the grid
and its constituent resources. The term “information” refers to dynamic data or events used for
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status monitoring; relatively static data used for discovery; and any data that is logged.
Troubleshooting is just one of the possible uses for information provided by these services.

• Self-Management Services Support service-level attainment for a set of services (or resources),
with as much automation as possible, to reduce the costs and complexity of managing the system.
These services are essential in addressing the increasing complexity of owning and operating an
IT infrastructure.

OGSA has been adopted as reference grid architecture by a number of grid projects. The first
prototype grid service implementation was demonstrated January 29, 2002, at a Globus Toolkit
tutorial held at Argonne National Laboratory. Since then, the Globus Toolkit 3.0 and 3.2 have
offered an OGSA implementation based on OGSI. Two key properties of a grid service are transi-
ence and statefulness. Creation and destruction of a transient grid service can be done dynamically.
The creation and lifetime of OGSA grid services are handled following the “factory pattern,” to be
explained in Section 7.3.1. Web service technologies are designed to support loosely coupled,
coarse-grained dynamic systems, and hence do not meet all grid requirements, such as keeping state
information, and thus they are unable to fully address the wide range of distributed systems OGSA
is designed to support.
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The OGSA architecture.
(Courtesy of Foster, et al. [24], http://www.ogf.org/documents/GFD.80.pdf.)
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OGSA applies a set of WSDL extensions to represent the identifiers necessary to implement a
grid service instance across any system. These extensions were defined by OGSI. A key extension
is the grid service reference: a network-wide pointer to a specific grid service instance, which
makes that instance accessible to remote client applications. These extensions, including the Grid
Service Handle (GSH) and Grid Service Reference (GSR), will be described in Chapter 7. These
extensions include stateful grid services and the shortcomings of OGSI with its dense and long spe-
cifications. Further problems concern incompatibility with some current web service tools and the
fact that it takes a lot of concepts from object orientation.

Unlike the nature of web services, this has led to close cooperation between the grid and web service
communities. As a result of these joint efforts, the Web Services Resource Framework (WSRF) [27],
WS-Addressing [28], and WS-Notification (WSN) specifications have been proposed to OASIS. Conse-
quently, OGSI extensions to web services have been deprecated in favor of new web service standards,
and in particular, WSRF. WSRF is a collection of five different specifications. Of course, they all relate
to the management of WS-Resources. Table 5.5 depicts WSRF-related interface operations.

Plain web services are usually stateless. This means the web service can’t “remember” informa-
tion, or keep state, from one invocation to another. However, since a web service is stateless, the
following invocations have no idea of what was done in the previous invocations. Grid applications
generally require web services to keep state information as they interact with the clients or other
web services. The purpose of WSRF is to define a generic framework for modeling and accessing

Table 5.5 WSRF and Its Related Specifications

Specification Description

WSRF
Specifications

WS-ResourceProperties Standardizes the definition of the resource
properties, its association with the WS interface,
and the messages defining the query and
update capability against resource properties

WS-ResourceLifetime Provides standard mechanisms to manage the
life cycle of WS-resources (e.g., setting
termination time)

WS-ServiceGroup Standard expression of aggregating web
services and WS-Resources

WS-Basefault Provides a standard way of reporting faults
WSRF-
Related
Specifications

WS-Notification WS-Base
Notification

Proposes a standard way of expressing the
basic roles involved in web service publish and
subscribe for notification message exchange

WS-
BrokeredNotification

Standardizes message exchanges involved in
web service publish and subscribe of a
message broker

WS-Topics Defines a mechanism to organize and
categorize items of interest for a subscription
known as “topics”

WS-Addressing Transport-neutral mechanisms to address
web service and messages
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persistent resources using web services in order to facilitate the definition and implementation of a
service and the integration and management of multiple services. Note that “stateless” services can,
in fact, remember state if that is carried in messages they receive. These could contain a token
remembered in a cookie on the client side and a database or cache accessed by the service. Again,
the user accessing a stateless service can establish state for the session through the user login that
references permanent information stored in a database.

The state information of a web service is kept in a separate entity called a resource. A service
may have more than one (singleton) resource, distinguished by assigning a unique key to each
resource. Resources can be either in memory or persistent, stored in secondary storage such as a
file or database. The pairing of a web service with a resource is called a WS-Resource. The
preferred way of addressing a specific WS-Resource is to use the qualified endpoint reference
(EPR) construct, proposed by the WS-Addressing specification. Resources store actual data items,
referred to as resource properties. Resource properties are usually used to keep service data
values, providing information on the current state of the service, or metadata about such values,
or they may contain information required to manage the state, such as the time when the resource
must be destroyed. Currently, the Globus Toolkit 4.0 provides a set of OGSA capabilities based
on WSRF.

5.1.5 Other Service-Oriented Architectures and Systems
A survey of services and how they are used can be found in [29]. Here we give two examples: one
of a system and one of a small grid.

Example 5.3 U.S. DoD Net-Centric Services

The U.S. military has introduced a set of so-called Net-Centric services that are to be used in Department
of Defense (DoD) software systems to be used on the GiG – Global Information Grid. As shown in
Table 5.6, these make different choices of services from OGSA. This is not a radically different architec-
ture, but rather a different layering. Messaging is present in Table 5.6 but viewed as part of WS-* or a

Table 5.6 Core Global Information Grid Net-Centric Services

Service or Feature Examples

Enterprise services management Life-cycle management
Security; information assurance (IA) Confidentiality, integrity, availability, reliability
Messaging Publish-subscribe important
Discovery Data and services
Mediation Agents, brokering, transformation, aggregation
Collaboration Synchronous and asynchronous
User assistance Optimize Global Information Grid user experience
Storage Retention, organization, and disposition of all forms of data
Application Provisioning, operations, and maintenance
Environmental control services Policy
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higher application layer in OGSA. (see more details in http://www.ogf.org/gf/group_info/view.php?group=
infod-wg for the INFOD standard) [29].

Example 5.4 Services in CICC—The Chemical Informatics Grid

The goal of this project is to support cluster analysis, data mining, and quantum simulation/first principles
calculations on experimentally obtained data on small molecules with potential use in drug development.
Small molecule data is gathered from NIH PubChem and DTP databases, with additional large molecule
data available from service-wrapped databases such as the Varuna, Protein Data Bank, PDBBind, and
MODB. NIH-funded High Throughput Screening centers are expected to deluge the PubChem database
with assays of the next several years, making the automated organization and analysis of data essential.

Data analysis applications are interestingly combined with text analysis applications applied to journal
and technical articles to make a comprehensive scientific environment. Workflow is a key part of this pro-
ject as it encodes scientific use cases. Many CICC services are based on Cambridge University’s WWMM
project (www-pmr.ch.cam.ac.uk/wiki/Main_Page) led by Peter Rust. Table 5.7 shows the mix of system
and application services used in CICC. This is a small project and larger grids would have many more ser-
vices. Details can be found at the web site: http://www.chembiogrid.org.

Table 5.7 Services and Standards Used in CICC

Service Name Description

Workflow/Monitoring/
Management Services

Uses Taverna from the UK e-Science Program/OMII or mashups written in
scripting languages.

Authentication/
Authorization

Currently all services are openly available.

Registry and Discovery Will inherit registry services from other grids.
Portal and Portlets Use a JSR 168-based portal.
File Services No specialized service. URLs are used for naming files and simple remote

download. Services developed previously for other grids can be used for
uploads.

NIH DTP Database
Services

Access to the NIH Developmental Therapeutics Program (DTP)’s database of
molecular screens against 60 cancer cell lines. This is a free service provided
by the NIH and used by Chembiogrid.

PubMed Search Service Searchable online database of medical journal articles. CICC develops
harvesting services of the abstracts that can be combined with text analysis
applications such as OSCAR3.

SPRESI Services Clients/service proxies to the commercial SPRESI service (www.spresi.com/).
This scientific database houses molecular and reaction data and references and
patents.

Varuna Database Service Molecular structure and more detailed information (such as force fields).
VOTables Data Tables
Web Service

CICC-developed web service based on the National Virtual Observatory’s
VOTables XML format for tabular data.
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5.2 MESSAGE-ORIENTED MIDDLEWARE
This section introduces message-oriented middleware for supporting distributed computing. The
study included enterprise bus, publish-subscribe model, queuing, and messaging systems.

5.2.1 Enterprise Bus
In the previous section, we described services and service architectures. These services, by defini-
tion, interact with messages with a variety of different formats (APIs), wire protocols, and transport
mechanisms. It is attractive to abstract the communication mechanism so that services can be
defined that communicate independent of details of the implementation. For example, the author of
a service should not need to worry that a special port is to be used to avoid firewall difficulties or
that we need to use UDP and special fault tolerance approaches to achieve satisfactory latency on a
long-distance communication. Further, one may wish to introduce a wrapper so that services expecting

Table 5.7 Services and Standards Used in CICC—cont’d

Service Name Description

Specific Applications:
BCI, OpenEye, Varuna,
AutoGEFF

CICC inherits job management services from other grids (including one based
on Apache Ant) for managing the execution of both commercial and in-house
developed high-performance computing applications.

Condor and BirdBath Examine the use of Condor and its SOAP interface (BirdBath) as a super-
scheduler for Varuna applications on the TeraGrid.

ToxTree Service Wraps an algorithm for estimating toxic hazards in a particular compound.
Useful in combination with other clustering programs in a workflow.

OSCAR3 Service Based on OSCAR3 by the WWMM group, performs text analysis on journal
articles and other documents to extract (in XML) the chemistry-specific
information. SMILES assigned to well-known compounds. Works with
traditional database and clustering algorithms.

CDK Services CICC has developed a number of simple services based on the Chemistry
Development Kit (CDK). These include similarity calculations, molecular
descriptor calculations, fingerprint generators, 2D image generators, and 3D
coordinate molecular generators.

OpenBabel Service Converts between various chemical formats (such as between InChI and
SMILES).

InChIGoogle For a given InChI (a string specification of a molecular structure), performs a
Google search to return a page-ranked list of matches.

Key Interfaces/Standards/
Software Used

WSDL, SOAP (with Axis 1.x). CML, InChI, SMILES, Taverna SCUFl, JSR-168
JDBC Servlets, VOTables

Unused Interfaces/
Software

WS-Security, JSDL, WSRF, BPEL, OGSA-DAI
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messages in different styles (say, SOAP, REST, or Java RMI) can communicate with each other. The
term “enterprise service bus” or ESB [30,31] refers to the case where the bus supports the convenient
integration of many components, often in different styles. These remarks motivate the messaging black
box abstraction shown in Figure 5.6.

One does not open a channel between source and destination, but rather injects a message into the
bus with enough information to allow it to be delivered correctly. This injection is performed by code
loaded into each service and represented by the filled ovals as client interfaces in Figure 5.6(a). The
message bus is shown linking services in this figure, but it can work with any software or hardware
entity sending and receiving messages. A simple example could be desktops or smart phones as the
clients. Further, such buses can be implemented internally to an application, or in a distributed fashion.
In the latter case, the message bus is typically implemented as a set of “brokers” shown in Figure 5.6(b).

The use of multiple brokers allows the bus to scale to many clients (services) and large mes-
sage traffic. Note that the brokers of Figure 5.6(b) are “just” special servers/services that receive
messages and perform needed transformations and routing on them and send out new messages.
There is a special (simple) case of message buses where the brokers shown in Figure 5.6(b) are
not separate servers but are included in the client software. Note that such buses support not
just point-to-point messaging but broadcast or selective multicast to many recipient clients
(services).

Often, one implements brokers as managers of queues, and software in this area often has MQ
or “Message Queue” in its description. An early important example is MQSeries [32] from IBM
which is now marketed as the more recent WebSphereMQ [32,33]. Later, when we study cloud
platforms in Chapter 8, we will find that both Azure and Amazon offer basic queuing software.
A typical use of a message queue is to relate the master and workers in the “farm” model of parallel
computing where the “master” defines separate work items that are placed in a queue which is
accessed by multiple workers that select the next available item. This provides a simple dynamically
load-balanced parallel execution model. If necessary, the multiple brokers of Figure 5.6(b) can be
used to achieve scalability.

Clients Clients

Broker 1

Broker 2

Broker M

Service 1 Service 1’

Service 2’

Service N’

Service 2

Message bus

Communication
and routing
abstraction

Service N

......

......

(a) Implemented between services (b) As a network of distributed brokers

FIGURE 5.6

Two message bus implementations between services or using a broker network.
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5.2.2 Publish-Subscribe Model and Notification
An important concept here is “publish-subscribe” [34] which describes a particular model for link-
ing source and destination for a message bus. Here the producer of the message (publisher) labels
the message in some fashion; often this is done by associating one or more topic names from a
(controlled) vocabulary. Then the receivers of the message (subscriber) will specify the topics for
which they wish to receive associated messages. Alternatively, one can use content-based delivery
systems where the content is queried in some format such as SQL.

The use of topic or content-based message selection is termed message filtering. Note that in
each of these cases, we find a many-to-many relationship between publishers and subscribers.
Publish-subscribe messaging middleware allows straightforward implementation of notification or
event-based programming models. The messages could, for example, be labeled by the desired noti-
fying topic (e.g., an error or completion code) and contain content elaborating the notification [34].

5.2.3 Queuing and Messaging Systems
There are several useful standards in this field. The best known is the Java Message Service (JMS)
[35] which specifies a set of interfaces outlining the communication semantics in pub/sub and queu-
ing systems. Advanced Message Queuing Protocol (AMQP) [36] specifies the set of wire formats
for communications; unlike APIs, wire formats are cross-platform. In the web service arena, there
are competing standards, WS-Eventing and WS-Notification, but neither has developed a strong fol-
lowing. Table 5.8 compares a few common messaging and queuing systems. We selected two cloud
systems: Amazon Simple Queue and Azure Queue.

We also list MuleMQ [37], which is the messaging framework underlying the ESB [30,31] system
Mule, developed in Java, of which there are 2,500 product deployments as of 2010. The focus of Mule
is to simplify the integration of existing systems developed using JMS, Web Services, SOAP, JDBC,
and traditional HTTP. Protocols supported within Mule include POP, IMAP, FTP, RMI, SOAP, SSL,
and SMTP. ActiveMQ [38] is a popular Apache open source message broker while WebSphereMQ [33]
is IBM’s enterprise message bus offering. Finally, we list the open source NaradaBrokering [39] that is
notable for its broad range of supported transports and was successfully used to support a software Mul-
tipoint Control Unit (MCU) for multipoint video conferencing and other collaboration capabilities.

Note that the four noncloud systems support JMS. Also, some key features of messaging systems
are listed in the table but are not discussed in this brief section. These are security approach and guar-
antees and mechanisms for message delivery. Time-decoupled delivery refers to situations where the
producer and consumer do not have to be present at the same time to exchange messages. Fault toler-
ance is also an important property: Some messaging systems can back up messages and provide defi-
nitive guarantees. This table is only illustrative and there are many other important messaging
systems. For example, RabbitMQ [40] is a new impressive system based on the AMQP standard.

5.2.4 Cloud or Grid Middleware Applications
Three examples are given here to illustrate the use of the NaradaBrokering middleware service with
distributed computing. The first example is related to environmental protection. The second is for
Internet conferencing and the third is for earthquake science applications.
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Table 5.8 Comparison of Selected Messaging and Queuing Systems

System
Features

Amazon Simple
Queue [41]

Azure Queue
[42] ActiveMQ MuleMQ WebSphere MQ

Narada
Brokering

AMQP compliant No No No, uses
OpenWire and
Stomp

No No No

JMS compliant No No Yes Yes Yes Yes
Distributed broker No No Yes Yes Yes Yes
Delivery
guarantees

Message retained
in queue for four
days

Message
accessible for
seven days

Based on
journaling and
JDBC drivers to
databases

Disk store uses
one file/channel,
TTL purges
messages

Exactly-once
delivery
supported

Guaranteed and
exactly-once

Ordering
guarantees

Best effort, once
delivery, duplicate
messages exist

No ordering,
message returns
more than once

Publisher order
guarantee

Not clear Publisher order
guarantee

Publisher- or
time-order by
Network Time
Protocol

Access model SOAP,
HTTP-based
GET/POST

HTTP REST
interfaces

Using JMS
classes

JMS, Adm. API,
and JNDI

Message Queue
Interface, JMS

JMS,
WS-Eventing

Max. message 8 KB 8 KB N/A N/A N/A N/A
Buffering N/A Yes Yes Yes Yes Yes
Time decoupled
delivery

Up to four days;
supports
timeouts

Up to seven days Yes Yes Yes Yes

Security scheme Based on HMAC-
SHA1 signature,
Support for
WS-Security 1.0

Access to
queues by HMAC
SHA256
signature

Authorization
based on JAAS
for authentication

Access control,
authentication,
SSL for
communication

SSL, end-to-end
application-level
data security

SSL, end-to-end
application-level
data security, and
ACLs

Support for web
services

SOAP-based
interactions

REST interfaces REST REST REST, SOAP
interactions

WS-Eventing

Transports HTTP/HTTPS,
SSL

HTTP/HTTPS TCP, UDP, SSL,
HTTP/S,
Multicast, in-VM,
JXTA

Mule ESB
supports TCP,
UDP, RMI, SSL,
SMTP, and FTP

TCP, UDP,
Multicast, SSL,
HTTP/S

TCP, Parallel
TCP, UDP,
Multicast, SSL,
HTTP/S, IPsec

Subscription
formats

Access is to
individual queues

Access is to
individual queues

JMS spec allows
for SQL
selectors; also
access to
individual queues

JMS spec allows
for SQL
selectors; also
access to
individual queues

JMS spec allows
SQL selectors;
access to
individual queues

SQL selectors,
regular
expressions,
<tag, value>
pairs, XQuery
and XPath

2
9
2



Example 5.5 Environmental Monitoring and Internet Conference Using NaradaBrokering

The GOAT project at Clemson University is part of the Program of Integrated Study for Coastal Environmen-
tal Sustainability (PISCES), which addresses environmental sustainability issues that can accompany
coastal development. The current study incorporates groundwater monitoring, surface water quality and
quantity monitoring, weather, and a variety of ecological measurements. The project utilizes the publish-
subscribe messaging system, NaradaBrokering, to provide a flexible and reliable layer to move observation
data from a wide variety of sensor sources to users that have diverse data management and processing
requirements. NaradaBrokering can display environmental sensors.

The commercial Internet Meeting software Anabas (www.anabas.com) incorporates support for
sharing applications besides incorporating support for shared whiteboards, and chat tools. Anabas uses
NaradaBrokering for its content dissemination and messaging requirements. On a daily basis, Anabas sup-
ports several online meetings in the United States, Hong Kong, and mainland China. Note NaradaBroker-
ing supports audio-video conferencing (using UDP) as well as other collaborative applications using TCP.
Dynamic screen display published to NaradaBrokering can be displayed on collaborating clients.

Example 5.6 QuakeSim Project for Earthquake Science

The NASA-funded QuakeSim project uses NaradaBrokering to manage workflows that connect distributed
services, and to support GPS filters delivering real-time GPS data to both human and application consu-
mers as shown in Figure 5.7 (http://quakesim.jpl.nasa.gov/). The GPS application is an important
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Display of GPS sensors managed by NaradaBrokering in Southern California; the map displays the
time series produced by one of the GPS stations. (http://quakesim.jpl.nasa.gov/).

5.2 Message-Oriented Middleware 293

http://www.anabas.com
http://quakesim.jpl.nasa.gov/
http://quakesim.jpl.nasa.gov/


application similar to Example 5.4 where publish-subscribe systems manage sensor networks. In fact, one
can consider webcams as sensors (as they produce real-time streams) and so Example 5.5 is also of this
type. Clouds are an important implementation for this type of application as brokers can be added on
demand to support myriad dynamic sensors from cell phones to military or civil sensors responding to an
extreme event. The display of GPS sensors is managed by NaradaBrokering. The map displays the time
series produced by GPS stations.

5.3 PORTALS AND SCIENCE GATEWAYS
Science gateways [43,44] are tools that enable interactive, web-based science, education, and colla-
boration. Gateways provide user-centric environments for interacting with remote computational
resources through user interfaces that are typically (but not exclusively) built with web technologies.
Although they have superficial similarities to web sites and may leverage tools such as content
management systems for their presentation layers, gateways are much more complicated entities.
Science gateways are also termed portals. This section describes the general architecture of gate-
ways, surveys several prominent examples, and discusses example gateway-building software.

We can categorize gateway software as “turnkey” solutions, exemplified by HUBzero; and “tool-
box” solutions, exemplified by the Open Gateway Computing Environments project. Turnkey gate-
way software provides an end-to-end solution for building gateways, including hosting. Toolbox
gateway software provides tools that solve specific problems and can be integrated into customized
software stacks. The SimpleGrid project [45] is another toolkit example. HUBzero and OGCE soft-
ware will be described in more detail shortly.

Figure 5.8 provides a high-level overview of the grouping of components that make up a gate-
way. The bottom tier is the resource layer, which may include campus computing clusters and
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A gateway component software stack for scientific applications.
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storage systems, national-scale grid resources such as the TeraGrid [46] and the Open Science Grid
[47], and computational cloud resources. The second tier consists of middleware for interacting with
these resources. Common middleware examples include Globus [48] (providing job execution and
remote file management), Condor [49] (providing job scheduling), and iRods [50] (providing data
and metadata movement and management). Middleware systems typically expose secure, network-
accessible APIs and developer libraries as well as providing numerous command-line tools.

Tier 2 software and services run on the resources of Tier 1. The next two tiers are not tied to these
resources and can run on separate host machines. Tier 3 is the gateway software layer and consists of
service components that manage the execution of scientific applications and data on the Tier 1
resources through the Tier 2 interfaces. Execution management for both data and science applications
can be decoupled into several components: the initial invocation, monitoring, fault tolerance, and task
coupling as workflows. Security considerations [51,52] (such as authentication and authorization)
permeate all tiers, but we locate the component in Tier 3 since the user’s identity is established here.

We also place user and group management (including social networking) in this tier, along with
third-party information services [53]. Finally, the top tier (Tier 4) is the user presentation layer. Pre-
sentation layers may be built with a number of different tools, including content management sys-
tems, Open Social gadgets, and desktop applications, as described in more detail shortly. Figure 5.8
is flexible enough to describe most gateways. We next make the description more concrete by
reviewing two example science gateways: GridChem and UltraScan. Both gateways have been used
for significant scientific research.

5.3.1 Science Gateway Exemplars
Three examples are given here to illustrate the gateway concept in scientific applications using com-
putational grids or Internet clouds.

Example 5.7 Computational Chemistry Grid (CCG)

The CCG is also known as GridChem (www.gridchem.org) [54,55], which is one of the most heavily used
Science Gateways in TeraGrid. GridChem provides a grid-enabled desktop interface that enables users to
set up, launch, and manage computational chemistry simulations on the TeraGrid. Applications supported
by GridChem include Gaussian, CHARMM, and GAMESS.

These are computationally demanding parallel applications that require supercomputers, although sup-
porting applications—input validation and visualization tools—can run on the user’s desktop. GridChem
pioneered gateway concepts such as “community users,” which allow users to access resources through a
shared allocation, that are now commonplace in many Science Gateways. GridChem has delivered signifi-
cant scientific accomplishments in the form of scientific publications that acknowledge and highlight the
GridChem cyber-infrastructure’s utility for computational chemistry [56].

Example 5.8 UltraScan Biophysics Gateway

UltraScan [57,58] has developed a TeraGrid Science Gateway for the high-resolution analysis and model-
ing of hydrodynamic data from an analytical ultracentrifuge (AUC). This application is used for the
solution-based study of biological macromolecules and synthetic polymers by biochemists, biophysicists,
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and material scientists for fitting experimental data to finite element solutions of flow equations. More than
700 biochemists, biophysicists, biologists, and material scientists worldwide rely on UltraScan software for
analysis of their experimental data. The software has assisted in understanding an array of disease pro-
cesses, including cancer, neurodegenerative diseases, HIV/AIDS, diabetes, Huntington’s disease, and
aging studies. By conservative estimates, UltraScan has contributed to more than 250 peer-reviewed publi-
cations including 23 known publications from 2009 [59].

UltraScan makes its core experimental analysis software available as an online service to scientific
users through its Science Gateway. This analysis software is computationally demanding and must be run
on clusters and supercomputers. UltraScan job management services (Tier 3) hide complexities and pro-
vide fault tolerance for the experimental scientists using the portal. Although it uses TeraGrid for some of
its computing power, UltraScan needs to span multiple resource providers: It also uses university clusters
and would like to extend its resources to include international grids in Germany and Australia. The key to
UltraScan’s success and growth over the next three years is to provide the ability to manage jobs across
multiple cyberinfrastructure resources that are not collectively part of a single, managed grid.

Gateways such as UltraScan provide an example where code optimization and efficient use of compute
resources are done by experts in the field and shared with hundreds of end users. The gateways lower the
entry barrier for analyzing the data on high-end resources. As an example, the UltraScan gateway provides
an optimal solution for solving large non-negative least squares problems that arise in data analysis
[60,61]. Solving these problems requires significant compute resources. The procedure improves compute
resource utilization targeting the inverse problem involved in modeling analytical ultracentrifugation experi-
mental data. Solving large non-negatively constrained least squares systems is frequently used in the phy-
sical sciences to estimate model parameters which best fit experimental data.

AUC is an important hydrodynamic experimental technique used in biophysics to characterize macro-
molecules and to determine parameters such as molecular weight and shape. Newer AUC instruments
equipped with multi-wavelength (MWL) detectors have recently increased the data sizes by three orders of
magnitude. Analyzing the MWL data requires significant compute resources. UltraScan gateway bridges
these requirements for end users by providing both the procedures and the capabilities to execute them
on supercomputing resources.

Example 5.9 The nanoHUB.org Gateway

The nanoHUB.org gateway is operated by the National Science Foundation (NSF)-funded Network
for Computational Nanotechnology (NCN) to support the National Nanotechnology Initiative in the
United States and worldwide and to accelerate the transformation of nanoscience into nanotechnology.
Since 2002, the community using nanoHUB.org has grown from 1,000 users mostly at Purdue University
to more than 290,000 visitors each year from 172 countries worldwide. From August 2009 to July 2010,
some 8,600 users accessed more than 170 nanotechnology simulation tools and launched 340,000 simu-
lation runs.

Today nanoHUB.org hosts more than 2,000 content items such as 170 online simulation tools and 43
complete courses, plus tutorials, research seminars, and teaching materials. All of nanoHUB.org’s services
are free of charge to the user. All resources on nanoHUB.org are presented in scholarly form with title,
authors, abstract, and archival citation information. To date, there are more than 560 citations in academic
literature to nanoHUB.org and the tools, seminars, and other resources published there. Also to date, 379
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courses at 131 institutions of higher education have used nanoHUB.org resources. The journal citations
and the documented use in classrooms is evidence that nanoHUB.org resources aid both research and
education.

5.3.2 HUBzero Platform for Scientific Collaboration
HUBzero is an open source software platform used to create web sites or “hubs” for scientific colla-
boration, research, and education.1 It has a unique combination of capabilities that appeals to many
people engaged in research and educational activities. Like YouTube.com, HUBzero allows people
to upload content and “publish” to a wide audience, but instead of being restricted to short video
clips, it handles many different kinds of scientific content. In that respect, HUBzero resembles
MIT’s OpenCourseWare [64], but it also integrates the content with collaboration capabilities. Like
Google Groups, HUBzero lets people work together in a private space where they can share docu-
ments and send messages to one another. Like Askville on Amazon.com, HUBzero lets people ask
questions and post responses, but about scientific concepts instead of products.

Perhaps the most interesting feature of HUBzero is the way it handles simulation and modeling
programs, or “tools.” Like SourceForge.net, HUBzero allows researchers to work collaboratively on
the source code of their simulation programs and share those programs with the community. But
instead of sharing only by offering source code bundles to download, HUBzero also offers live pub-
lished programs available for use instantly and entirely within an ordinary web browser. The simu-
lation engines run start to finish on computational resources selected for that hub.

Computationally demanding runs can be dispatched to remote resources in a way that is comple-
tely transparent to users. Tools are driven by friendly GUIs that enable end-to-end operation of the
simulation process encompassing setup, execution, and data visualization. Many GUIs are built
using HUBzero’s Rappture toolkit, which lets researchers compare simulation results from multiple
runs and ask “What if?” questions. In effect, each hub powered by HUBzero is an “app store” for a
scientific community connected to a cloud of resources for app execution, complete with a library
of training materials and other collaboration features to support app use.

HUBzero was created by Purdue University and the NSF-funded NCN to power its web site at
nanoHUB.org [62,63]. Today, the same HUBzero software powers 30 similar gateways covering a
wide variety of disciplines in engineering and science. Here are three examples:

• GlobalHUB.org 29,000 active users, online since December 2007 Leverages the group
functionality within HUBzero to support engineering education on a global scale. Teams of
students work together in groups on a variety of engineering projects.

• cceHUB.org 2,400 active users, online since June 2008 Approaches cancer care from an
“engineering” perspective by gathering a database of blood samples from patients, extracting
proteomic/metabolomic data, mining the data to find biomarker patterns, and modeling the
efficacy of cancer treatments.

1HUBzero is a trademark of Purdue University.
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• NEES.org 15,000 users, online since August 2010 Home of the NSF Network for Earthquake
Engineering Simulation, which catalogs experimental data from 14 institutions that are
simulating earthquake conditions in the lab. The site also hosts modeling tools used to visualize
and analyze the data [64a].

5.3.2.1 The HUBzero Architecture
On the surface, each HUBzero-powered gateway is a web site built with the widely used, open
source “LAMP” architecture—a Linux operating system, an Apache web server, a MySQL data-
base, and PHP web scripting. HUBzero adds a scientific content management system, the open
source Rappture toolkit used to create GUIs for simulation programs, and unique middleware for
hosting simulation tools and scientific data, as shown in Figure 5.9.

Each tool description page includes a “launch” button. When a user presses that button, the mid-
dleware allocates a session container on the tool execution host, starts the X11 windowing system
within the container, starts the tool, and connects the session back to the user’s web browser via
Virtual Network Computing (VNC) [65]. To the user, it appears that the tool is running in the brow-
ser, but it actually runs within the hub environment, where it has access to local computation and
visualization clusters and remote computing resources such as TeraGrid, Open Science Grid, and
Purdue’s DiaGrid [66]. Sessions can be shared among users collaborating offline or in real time,
and they are persistent, so the user can close the browser window and revisit the same session later.

Unlike other portals and cyber environments, the tools in a hub are interactive and engaging.
Users can zoom in on a graph, rotate a molecule, and probe the isosurfaces in a 3D volume [67]—
all interactively, without having to wait for a web page to refresh. Users can visualize results
without reserving time on a supercomputer or waiting for a batch job to engage. Each hub can
host an unlimited number of tools uploaded by its community members, and the tools are
deployed without having to rewrite code for the web. The computational demand of these tools

LAMP web server

HUBzero content management system

HUBzero middleware

Database

Grid computing

Tool execution
cluster

Visualization
cluster

Created with HUBzero’s Rappture toolkit

FIGURE 5.9

The HUBzero architecture and its major functional components.
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may vary from seconds on a single core to hours and days on multiple, possibly large numbers of
cores [68,69].

Each session runs in a restricted virtual environment implemented using OpenVZ [70], which
controls access to file systems, networking, and other system resources. Users can see their files
and processes, but cannot see others on the system, cannot launch attacks on other hosts, and can-
not exceed their file quota. If a tool already has a GUI that runs under Linux/X11, it can be
deployed as is in a matter of hours. If not, tool developers can use HUBzero’s Rappture toolkit
(http://rappture.org) to create a GUI with very little effort. Developers start by defining the inputs
and outputs for their tool as a hierarchy of data objects written in an XML format. The data objects
include simple elements, such as integers, Boolean values, numbers with units, and sets of mutually
exclusive choices, as well as more complex objects, such as physical structures, finite element
meshes, and molecules.

Rappture reads the XML description of a tool and generates a standard GUI for the tool automa-
tically. The GUI prompts for values, launches simulation jobs, and loads results for visualization.
The underlying simulation code uses an API to retrieve input values and store output results. Rappture
includes libraries for C/C++, FORTRAN, MATLAB, Java, Python, Perl, Ruby, and Tcl/Tk, so the
underlying simulator is not constrained to a particular language, but can be written in the developer’s
language of choice. The tool shown in Figure 5.9, for example, is a Rappture GUI for a MATLAB
program that simulates carbon nanotubes.

5.3.2.2 Operational Features
Having instant access to a large collection of simulation tools opens up new capabilities, but also
introduces a new set of issues. Users want to know more about the tools and the underlying physics
they encode. They may discover a bug and wish to report it or question whether results are correct.
They want to exchange ideas about new models and new features within the platform. HUBzero
has evolved beyond a simple repository to include many features supporting these sorts of
collaborations.

5.3.2.3 Ratings and Citations
The hub philosophy is not to judge the quality of each resource before it is posted, but rather to
post resources and help the community assess the quality. Registered users are allowed to post
five-star ratings and reviews for each resource. Users can also post citations of each resource in
academic literature. The ratings and citations for each resource are combined with web analytics
(measuring popularity) to produce a single number on a scale of 0 to 10, called the ranking, to
represent the quality of the resource.

5.3.2.4 Content Tagging
Items on a hub are categorized by a series of tags, in much the same way that photos are tagged on
a photo sharing site. This makes it easy to browse categories of resources, or to find resources that
intersect two or more categories.

5.3.2.5 User Support Area
From time to time, users will have problems with logins, have questions about tools, and may
otherwise need assistance. The HUBzero software comes with a built-in user support area. Users
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can click on the Help or Support link near the top of any page and fill out a form to file a support
ticket. Tickets can be handled by the staff managing the hub, or forwarded to the researchers sup-
porting various simulation tools. Some questions are beyond the understanding of the hub staff, or
even beyond the knowledge of a single researcher.

HUBzero includes a question-and-answer forum patterned after Askville on Amazon.com that
can engage the whole community. Any registered user can post a question, and other users can pro-
vide answers. At some point, the best answer is chosen as the “final” answer by the person who
asked the question, and participants earn points as a reward for their effort. Points can be used as
bragging rights, or as currency to purchase t-shirts and other merchandise in a hub store. The list of
past questions/answers forms a knowledge base upon which a community can draw for immediate
help with a similar problem.

Other issues are beyond software problems and physics questions, but really entail requests for
tool improvements and new features. Such requests are tracked on a “wish list” for each tool and also
on a wish list for the entire hub. All tickets, questions, and wishes are managed by the HUBzero soft-
ware. Various administrators, software developers, and community members are given access to these
facilities to help address the community support issues.

5.3.2.6 Wikis and Blogs
Each hub supports the creation of “topic” pages, which are wiki pages with a specific list of
authors. Other users can add comments to a topic page and may suggest changes, which the original
authors can choose to approve. Users can be added as coauthors for a page, so they can make
further changes without approval. Ownership of a page can also be given to the entire community,
so anyone can make changes without approval, in a wiki-like manner.

5.3.2.7 Usage Metrics
Each hub reports extensive metrics about how its resources are being used, just a few of which
include the total number of users in a given period, the number of web hits, the number of simulation
jobs launched, and CPU hours used. Metrics are reported down to the level of each individual
resource, so everyone can see how many users have accessed a particular tool, or how many times a
seminar has been viewed. Usage numbers are rolled up to provide an overview of usage for interest-
ing categories, such as the total number of users that have accessed all resources published by a parti-
cular author. These usage metrics provide an incentive to use HUBzero-powered science gateways.

5.3.2.8 Future Directions
The development of HUBzero is driven largely by the projects using it. Although HUBzero started
with a strong emphasis on simulation and modeling, it is evolving to include data management cap-
abilities as well. Projects such as the cancer care engineering cceHUB.org and the earthquake engi-
neering NEES.org are creating mechanisms for users to define, upload, publish, annotate, and
analyze various types of structured data sets. Projects such as GlobalHUB.org are improving the
group spaces where people exchange files and work together in a private context.

As hubs gather more tools, researchers see the need for stringing tools together in a workflow to
tackle larger questions. A pill dissolution profile generated by one tool on pharmaHUB.org, for
example, could be fed into a model of a patient’s digestive track, and those results could be used to
compute the amount of active ingredient in the patient’s bloodstream over time. That chain of tools
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may need to be run hundreds of times to perform an overall sensitivity analysis, to optimize a
design goal, or to quantify uncertainty in the output. A hub should not only catalog tools, but
connect them one to another, to grid computing resources, and ultimately, to the researcher with a
question to answer.

5.3.3 Open Gateway Computing Environments (OGCE)
The OGCE project [71] is a provider of open source gateway software that is used in several colla-
borating gateways [72]. OGCE consists of components that can be either used individually or inte-
grated together to provide more comprehensive solutions for remote scientific application
management. OGCE component tools include the following:

• OGCE Gadget container [73], a Google tool for integrating user interface components
• XRegistry, a registry service for storing information about other online services and workflows
• XBaya [74], a workflow composer and enactment engine
• GFAC [75], a factory service that can be used to wrap command-line-driven science

applications and make them into robust, network-accessible services
• OGCE Messaging Service supports events and notifications across multiple cooperating

services

OGCE’s strategy is based on the toolkit model. This strategy has been shaped by the TeraGrid
science gateway program and its wide variety of gateways. There are obviously many frame-
works, programming languages, and tools for building web-based gateways and providing
advanced capabilities. It has been our experience that many gateways benefit from lightly
coupled tools that can be taken collectively or in part. In the toolkit model, gateways can take a
specific tool or tools and integrate them into the gateway’s existing infrastructure. For example, a
gateway such as UltraScan benefits from a reliable job submission tool that hides differences
between Globus GRAM versions; GFAC is a candidate tool. GridChem and ParamChem want to
extend their job submission capabilities to include scientific workflows; XBaya and its supporting
tools can be used.

The OGCE tools focus on scientific application and workflow management and defer issues
such as data and metadata management to other projects. There is significant variation in the char-
acteristics exhibited by the scientific applications, so intermediate, application-specific services
between the user interfaces and the generic grid middleware are desirable. The gateway software
layer (Tier 3 of Figure 5.8) must accommodate the complexities of a particular domain and provide
a software infrastructure that bridges the gap between the user interface layer and the grid
middleware.

Consequently, many science gateways use scientific web services along with workflow systems to
build the gateway software. Application-specific web services provide the bridge between generic
grid middleware and the specific needs of a gateway. Workflows go a step further by assembling mul-
tiple services and steps into scientific use cases. Workflows may be implicit in the design of the gate-
way or they may be explicitly exposed to users. Registries are services that can be used to look up
other services and workflows. Finally, messaging systems are used for different distributed compo-
nents to communicate. For example, users need a mechanism for monitoring a long-running
workflow.
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5.3.3.1 Workflows
The OGCE scientific workflow system [74,76,77] provides a programming model that allows the
scientist to program experiments using application web services developed with the GFAC service
that abstract the complexities of the underlying middleware. The workflow system enables scientists
to author experiments that can be stored, replayed, and shared with others. The workflow suite
is bundled with interfaces for composition, execution, and monitoring of the workflows. Salient
features include support for long-running applications and steering/dynamic user interactions.

OGCE’s software stack is designed to be flexible in its coupling of various components to har-
ness end-to-end, multiscale gateway infrastructures. Individual OGCE tools can be integrated into
gateway deployments; likewise, other standard specification-based tools can be swapped within
OGCE’s software stack. As a specific example, the OGCE workflow system provides (with its
XBaya frontend) a graphical interface to browse various application service registries (such as the
OGCE’s XRegistry).

From these registries, users can construct task graphs as workflows. The representation is captured
as an abstract, high-level, workflow-neutral format, which can be translated into workflow execution
specific syntax. Currently, integrations of BPEL [78], Jython, Taverna SCUFL [79], and Pegasus
DAX [80] have all been demonstrated and exist at various levels of support. By default, the workflow
enactment is facilitated by an open source BPEL implementation, the Apache Orchestration and
Director Engine (ODE) [81], that OGCE developers have enhanced to support long-running scientific
workflows on computational grids.

5.3.3.2 Scientific Application Management
Wrapping scientific applications as remotely accessible services is a common task for science gate-
ways. Gateways that wish to offer many application services need a simple way to quickly wrap these
applications. Task wrapping is only one step, however, in making an application available through a
gateway. Grid middleware solutions (Tier 2 of Figure 5.8) abstract heterogeneous resources and offer
a single unified job management interface to queuing systems. However, both the resources and grid
middleware are still highly complex, so it is a difficult task to provide production-quality scientific
application services that have the reliability and scalability (in number of users) needed by successful
gateways. Gateways have often reinvented solutions for all of these problems.

The OGCE’s GFAC tool is designed to wrap command-line-driven executables and make them
available as external services. The primary goal of GFAC is to provide a general solution to the
application-wrapping problem that can be reused by gateways as a plug-in service in their deployed
infrastructure. GFAC generates web services that can be accessed through clients written in Java,
Perl, PHP, Python, and other languages. GFAC-wrapped services can be run as stand-alone tools,
or they can be registered with XRegistry for later incorporation into workflows. GFAC supports
both persistent and dynamically created services.

Gateways adopting GFAC can outsource reliability and scalability issues and devote more
resources to their domain-specific problems. The OGCE gateway suite has improved fault tolerance
of computational jobs and data movement thanks to extensive efforts by the Linked Environments for
Atmospheric Discovery (LEAD) Science Gateway [82]. The OGCE team has also leveraged large-
scale coordinated gateway debugging efforts and applied the improvements to the advanced support
requested gateways. Generic reliability and fault tolerance will not cover all problems: Codes will fail
to run for reasons outside the gateway developer’s control, so error detection, logging, and resolution
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strategies must be specialized to the application. Providing extensibility for gateways to address their
application-specific error conditions is an upcoming effort for GFAC development.

5.3.3.3 Gadget Container
Workflows, registries, and service wrappers have both client- and server-side pieces. The OGCE
builds most of its default user interfaces as gadgets. Gadgets are client-side web components (Tier 4
of Figure 5.8) that rely on HTML, CSS, and JavaScript rather than on specific server-side devel-
opment frameworks. Gadgets for science gateways need to communicate with server-side compo-
nents (Tier 3 of Figure 5.8). This can be done using REST services. Greater interactivity, simpler
development, and the freedom to use a wide range of server-side tools make gadgets an interesting
component model for science gateways.

The OGCE Gadget Container is an Open Social-compatible tool for aggregating web gadgets.
Gadgets are mostly self-contained web applications that comply with Google gadget or Open Social
standards. The gadget container provides an operating context for a particular gadget, which may
reside on a completely separate web server. The OGCE Gadget Container provides layout and skin
management and user-level customization. The container supports an OpenID authentication option
for registered users and OAuth authorization for gadgets. The container runs under HTTPS security
and also supports secure (HTTPS) connections between the container and gadgets.

The gadget container is built on top of Apache Shindig, the reference implementation for the
Open Social standard. This allows the container to create Open Social-compatible social networks.
The container also supports Google FriendConnect, which provides a simplified programming inter-
face for social networks.

5.3.3.4 Packaging
OGCE software is open source and available for download through SourceForge, and plans are
underway to start an Apache Incubator project for GFAC, XBaya, and supporting components. The
preferred download mechanism is by SVN client checkouts and updates of tagged releases. The cur-
rent OGCE release bridges several component projects. Each subproject can be built separately
using Apache Maven; a master Maven POM is used to build all subprojects. This approach simpli-
fies both development and deployment. Subprojects can be added when they mature, replaced with
major upgrades, and discarded. Updates can be applied to specific components without rebuilding
the entire software stack or developing a specific patching system. The OGCE software stack is
designed to be portable and to compile on many platforms.

Building a science gateway requires to match end-user requirements, that is, the scientific use cases
to be supported, to the capabilities of the gateway stack. Furthermore, developing the underlying work-
flows of the gateway is itself a lengthy scientific task, apart from the implementation issues. There are
always components that can be used as is (security credential management and file browsers, for exam-
ple), but OGCE software is intended to be extended and modified by gateway developers.

This requires a close collaboration between science domain experts and cyberinfrastructure specia-
lists. Long-term sustainability is an important challenge facing all gateways; particularly those that
depend on external resource providers such as the TeraGrid and Open Science Grid (see Figure 5.8
Tiers 1 and 2). These resources and their middleware evolve; gateways with Tier 3 and 4 components
that are not actively maintained will decay. The challenge for many gateways is to maintain their
middleware with reduced funding as the gateway matures from active development to stable usage.
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5.4 DISCOVERY, REGISTRIES, METADATA, AND DATABASES
Distributed applications need to discover resources that suit their needs and manage them. In SOA,
business services need to discover appropriate services to use and to integrate with. Registries are
sophisticated naming and directory services that facilitate service resource discovery both at design
and dynamically at runtime by classifying and categorizing services or metadata information about
services. A registry requires a set of data structure specifications for the metadata to be stored in
the registry, and a set of operations such as Create, Read, Update, and Delete (CRUD) for storing,
deleting, and querying the data to store metadata for ownership, containment, and categorization of
services. Registries usually contain three categories of information:

• White pages contain name and general contact information about an entity.
• Yellow pages contain classification information about the types and location of the services the

entry offers.
• Green pages contain information about the details of how to invoke the offered services

(technical data regarding the service).

Apart from registries, metadata, or information about data, can be used to facilitate discovery of
resources and desired services. Metadata can be stored in relational or XML databases as metadata
catalogs or added to web services to enhance service discovery capabilities. Integrating publish/
subscribe patterns into databases can even add discovery capabilities to the static nature of databases,
thus reducing the load on a single database caused by polling of enormous applications.

5.4.1 UDDI and Service Registries
UDDI specifications [83] define a way to describe, publish, and discover information about web
services by creating a platform-independent, open framework. UDDI provides a name service and a
directory service for looking up service descriptions by name or by a specific attribute. It was
initiated in September 2000 as a joint collaboration on B2B integration between IBM, Microsoft,
and Ariba. UDDI version 3.0 has been published as OASIS specifications and it has become an
OASIS standard for public service registries.

The UDDI specification is focused on the definition of a collection of services supporting the
description and discovery of: Businesses, organizations, and other web services providers; the web
services they make available; and the technical interfaces which may be used to access those ser-
vices. Based on a common set of industry standards, including HTTP, XML, XML Schema, and
SOAP, UDDI provides an interoperable, foundational infrastructure for a web service-based soft-
ware environment for both publicly available services and services only exposed internally within
an organization.

There are two primary types of registries. A public registry is a logically centralized distributed
service that replicates data with other public registries on a regular basis. A private registry is only
accessible within a single organization or is shared by a group of business partners for a special
purpose. The latter is also called a semiprivate or shared registry. The UDDI Business Registry con-
sists of replicated registries (initially hosted by IBM and Microsoft) called UDDI operators.

A UDDI registry is an instance of a web service, and its entries can be published and queried
using a SOAP-based interface. UDDI defines data structures and APIs for programmatically
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publishing service descriptions and querying the registry. Data in a UDDI registry is organized as
instance types:

• businessEntity Describes an organization or a business that provides the web services, including
the company name, contact information, industry/product/geographic classification, and so on

• businessService Describes a collection of related instances of web services offered by an
organization, such as the name of the service, a description, and so forth

• bindingTemplate Describes the technical information necessary to use a particular web service,
such as the URL address to access the web service instance and references to its description

• tModel A generic container for specification of WSDL documents in general web services
• publisherAssertion Defines a relationship between two or more businessEntity elements
• subscription A standing request to keep track of changes to the entities in the subscription

The entities businessEntity, businessService, bindingTemplate, and tModel form the core data
structures of UDDI, each of which can be uniquely identified and accessed by a URI, called the
“UDDI key.” These entities and their relationships are depicted in Figure 5.10. A UDDI registry
can be used by service providers, service requestors, or other registries. For such interactions with
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UDDI entities and their relationship.
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the registry, UDDI provides a set of APIs. Two basic types of API operations are applied to UDDI
components:

• UDDI Inquiry API In order to find the set of registry entries such as business, service, binding,
or tMode, details matching a particular search criterion (find_) or details of an entry
corresponding to a given UDDI key (get_) operation can be used.

• UDDI Publishers API This enables add, modify, and delete entries by providing save_ and
delete_ operations. In addition to the aforementioned look-up APIs, UDDI also defines general-
purpose operation types, such as the next 4 specialized APIs.

• UDDI Security API Allows users to get and discard authentication tokens (get_autToken,
discard_autToken)

• UDDI Custody and Ownership Transfer API Enables registries to transfer the custody of
information among themselves and to transfer ownership of these structures one another
(transfer_entities, transfer_custody)

• UDDI Subscription API Enables monitoring of changes in a registry by subscribing to
track new, modified, and deleted entries (delete_subscription, get_subscriptionResults,
get_subscriptions, save_subscriptions)

• UDDI Replication API Supports replication of information between registries so that different
registries can be kept synchronized

Although UDDI is an open standard, it has never gained much popularity among various enter-
prise and scientific communities, as there has been no global registry for registering enterprise,
e-science, or grid services following the UDDI specification after the closure of the public nodes of
the Universal Business Registry operated by IBM, Microsoft, and SAP in January 2006. However,
several public registries have been launched for public use by various communities providing a
categorized list of a variety of services and related APIs. One of them is ProgrammableWeb.com [84].

ProgrammableWeb.com is a registry of a variety of Web 2.0 applications, such as mashups
and APIs organized by category, date, or popularity. It has similar goals to UDDI, but does not
use the detailed UDDI specifications. Mashups are composite Web 2.0 applications which com-
bine capabilities from existing web-based applications, typically RESTful web services. Mashups
can be compared to workflows, as they both implement distributed programming at the service
level. Content used in mashups is typically sourced from a third party via a public interface or
API. According to data released by the ProgrammableWeb.com register [84], most mashup and
APIs are applied in mapping, search, travel, social, instant messaging, shopping, video streaming
areas.

Other methods of sourcing content for mashups include web feeds (such as RSS) and JavaScript.
web developers are able to programmatically search and retrieve APIs, mashups, member pro-
files, and other data from the ProgrammableWeb.com catalog, integrate on-demand registry and
repository functionality into any service, and dynamically add new content as well as comment
on existing entries, using the provided API, based on open standards including XML, RSS,
OpenSearch, and Atom Publishing Protocol (APP) [85]. Among the most popular mashups
frequently used on the web site are those provided for Google Maps, Flickr, Facebook, Twitter, and
YouTube.
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5.4.2 Databases and Publish-Subscribe
Publish-subscribe is a design pattern that enables asynchronous interaction among distributed applica-
tions and was discussed in Section 5.2 for middleware. Many high-level applications regularly query
the database in order to adapt their execution according to this information. Such periodic data polling
is not only inefficient and unscalable, but also resource-demanding on both sides, especially when the
interval between calls to the database is very small, or in cases when there is more than one consumer
application, it may increase the amount of network traffic and CPU usage dramatically. The publish-
subscribe mechanism, already largely adopted in the implementation of today’s applications, solves
this issue. In a publish-subscribe interaction, event subscribers register to particular event types and
receive notifications from the event publishers when they generate such events.

There is a dynamic, many-to-many relationship between event publishers and event subscribers, as
there can be any number of publishers/subscribers for any type of event which can vary at any time.
Publish-subscription adds dynamicity to static the nature of databases. While the publish-subscribe
pattern was first implemented in centralized client/server systems, current research focuses mainly on
distributed versions. The key benefit of the distributed publish-subscribe mechanism is the natural
decoupling of publishers and subscribers. Since the publishers are unconcerned with the potential
consumers of their data, and the subscribers are unconcerned with the locations of the potential produ-
cers of interesting data, the client interface of the publish-subscribe system is simple and intuitive.

Publish-subscribe systems are classified as either topic-based or content-based. In topic-based
systems, publishers generate events with respect to a topic or subject. Subscribers then specify their
interest in a particular topic, and receive all events published on that topic. Defining events in terms
of topic names only is inflexible and requires subscribers to filter events belonging to general
topics. Content-based systems solve this problem by introducing a subscription scheme based on
the contents of events. Content-based systems are preferable as they give users the ability to express
their interest by specifying predicates over the values of a number of well-defined attributes. The
matching of publications (events) to subscriptions (interest) is done based on the content. Distribu-
ted solutions are mainly focused on topic-based publish-subscribe systems

Database systems provide many features that a messaging-based architecture can exploit, such as
reliable storage, transactions, and triggers. On the other hand, integrated publish-subscribe capabil-
ities in the database account for information-sharing systems that are simpler to deploy and main-
tain. However, since publish-subscribe and database technology have evolved independently,
designing and implementing database-publish-subscribe-aware systems requires bringing together
concepts and functionality from two separate worlds.

Jean Bacon, et al. [86] have extended the PostgreSQL open source database system to include
publish-subscribe middleware functionality. It is based on the integration of active databases and
the publish-subscribe communication model to form a global event-based system: Databases define
and advertise change events, and clients subscribe to events of interest, and can refine their sub-
scriptions through content-based filter expressions. This allows a database system in the local
domain to function as an event broker (broker), reliably routing events among publishers, subscri-
bers, and other brokers. This integration simplifies information management by grouping security,
configuration (e.g., type schema), and recovery tasks for database and pub/sub operations under the
same interface. Aktas has described use of publish-subscribe in grid information systems [87–89].
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Message queuing and publish-subscribe are tightly intertwined: Oracle introduced a publish-
subscribe solution for enterprise information delivery and messaging, shown in Figure 5.11, and
based on Advanced Queuing—an implementation based on JMS and fully integrated in the Oracle
database—to publish data changes and to automate business process workflows for distributed
applications. Ontologies and other semantic mechanisms can be used to make events in the system
more “context-aware.” Advanced Queuing was introduced in Oracle 8 and extended in Oracle 9i to
support publish-subscription. In Oracle release 10.1, Advanced Queuing was integrated into Oracle
Streams, called Oracle Streams Advanced Queuing.

A combination of features are introduced to allow a publish-subscribe style of messaging
between applications. These features include rule-based subscribers, message propagation, the listen
feature, and notification capabilities. Oracle Streams Advanced Queuing is built on top of Oracle
Streams and leverages the functionality of Oracle Database so that messages can be stored persis-
tently, propagated between queues on different computers and databases, and transmitted using Ora-
cle Net Services and HTTP(S). As Oracle Streams Advanced Queuing is implemented in database
tables, all operational benefits of high availability (HA), scalability, and reliability are also applic-
able to queue data. Standard database features such as recovery, restart, and security are supported
by Oracle Streams Advanced Queuing. Database development and management tools such as Oracle
Enterprise Manager can be applied to monitor queues. Like other database tables, queue tables can
be imported and exported.

5.4.3 Metadata Catalogs
Metadata catalogs play a vital role in distributed heterogeneous environments such as grids by
providing users and applications the means to discover and locate the desired data and services
among lots of sites on such environments. Metadata is information about data. Metadata is impor-
tant, since it adds context to the data, in order to identify, locate, and interpret it. Key metadata
on the grid includes the name and location of the data resource, structure of the data held within
the data resource, data item names and descriptions, and user information (name, address, and
profiles and preferences), or basic listings and simple lookup of available services, relating
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Oracle publish-subscribe model.
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function and location without significant rich context. Metadata catalogs are used by various
groups and communities, ranging from high-energy physics to biomedical, earth observation, and
geological science.

Because of the importance of metadata services for the use of large-scale local or wide area sto-
rage resources, many groups have made efforts to investigate and implement such services. Among
the earliest metadata catalogs is the Metadata Catalog Service (MCAT) [90], which is a part of the
Storage Resource Broker (SRB) [91], which has evolved to the iRODS system [50]. MCAT, devel-
oped by the San Diego Supercomputing Center, aims to provide an abstraction layer over heteroge-
neous storage devices and file systems either inside or across computing centers. MCAT stores the
data hierarchically using a tree of collections and is both a file and metadata catalog. Later versions
of MCAT support replication and federation of data resources.

The MCS developed by the Globus Alliance [92] provides hierarchical organization of metadata
and flexible schemas, and hides the storage backend from the user. The Globus project also contains
the Replica Location Service (RLS) [93], which uses index servers to provide a global list of files
available on different replica catalogs. Several LHC experiments have implemented their own speci-
fic metadata catalogs using a standard relational database backend and providing an intermediate
layer to access the catalog on a distributed environment.

AMGA (the ARDA Metadata for Grid Applications) [94] is the official metadata catalog of the
gLite software stack of the EGEE project. It began as an exploratory project to study the metadata
requirements of the LHC experiments, and has since been deployed by several groups from differ-
ent user communities, including high-energy physics (for LHCb bookkeeping), biomedicine, and
earth observation. AMGA uses a hierarchical file system-like model to structure metadata, stored in
a relational database. It stores entries representing the entities that are being described, such as files.
The entries are grouped into collections, which can have a variant number of user-defined attributes,
called the schema of the collection.

Attributes are represented as key-value pairs with type information, and each entry assigns an
individual value to the attributes of its collection. A schema can be a representation of a directory,
which can contain either entries or other schemas. As an advantage of this tree-like structure, users
can define a hierarchical structure which can help to better organize metadata in subtrees that can
be queried independently. The server supports several storage systems by using modules. AMGA
can manage groups of users with different permissions on directories. In grid environment, file
and metadata catalogs are used by users for discovering and locating data among the hundreds of
grid sites.

5.4.4 Semantic Web and Grid
The grid strives to share and access metadata in order to automate information discovery and inte-
gration of services and resources in a dynamic, large-scale distributed environment. Meanwhile, the
Semantic web is all about automation discovery and integration: adding machine-processable
semantics to data so that computers can understand such information and process it on behalf of
end users, thus enabling more intelligent web searching and linkage based on attaching rich meta-
data to web pages. The Semantic web aims to provide an environment where software agents are
able to dynamically discover, interrogate, and interoperate resources and perform sophisticated tasks
on behalf of humans, which is not far from the ambition of grid computing.
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To achieve this, work has been undertaken to assert the meaning of web resources in a common
data model, the Resource Description Framework (RDF), using agreed ontologies expressed in a
common language, such as the OWL web ontology language, so we can share the metadata and
add in background knowledge. From this basis we should be able to query, filter, integrate, and
aggregate the metadata, and reason over it to infer more metadata by applying rules and policies.

RDF is the first language developed for the Semantic web, using XML to represent information
(including metadata) about resources on the web. RDF uses web identifiers (URIs), and describes
resources in terms of simple properties and property values. OWL is an expressive ontology lan-
guage that extends RDF schema. OWL adds more vocabulary for describing properties and classes:
among others, relations between classes, cardinality, equality, richer typing of properties, character-
istics of properties, and enumerated classes.

Semantic web services describe and annotate various aspects of a web service using explicit,
machine-understandable semantics, facilitating the discovery, execution, monitoring, and aggregation
of resources and web services, which solves interoperability issues and helps bring resources
together to create virtual organizations. The OWL-S ontology enables web services to be described
semantically and their descriptions to be processed and understood by software agents. It provides a
standard vocabulary that can be used together with the other aspects of the OWL description lan-
guage to create service descriptions. The OWL-S ontology defines the top-level concept of a
“Service” and three OWL-S subontologies:

• Service profile Expresses what a service does in order to enable service advertisement and
discovery.

• Service model Describes how the service works in order to enable service invocation,
composition, monitoring, and recovery.

• Service grounding Specifies the details of how to access the service. A grounding can be
thought of as a mapping from an abstract to a concrete specification, based on WSDL as a
particular specification language.

The “semantic grid” or “grid with semantics” aims to incorporate the advantages of the grid,
Semantic web, and web services. Built on the W3C Semantic Web Initiative, it is an extension of
the current grid in which information and services are given well-defined meanings (ontologies,
annotations, and negotiation processes as studied in the Semantic web and Software Agent para-
digms), better enabling computers and people to work in cooperation. The semantic grid provides a
general semantic-based, computational, and knowledge-based service for enabling the management
and sharing of complex resources and reasoning mechanisms, thus systematically exposing semanti-
cally rich information associated with resources to build more intelligent grid services.

The notion of the semantic grid shown in Figures 5.12 and 5.13 was first articulated in the
context of e-science, which is all about scientific investigation among scientists of various com-
munities such as physicists, biologist, and chemists and their resources performed through distrib-
uted global collaborations such as the grid to solve scientific problems by generating, analyzing,
sharing, and discussing their insights, experiments, and results in an effective manner, and the
computing infrastructure that enables this joint effort. Higher-level services use the information
relating to the resources’ capability and the mechanisms for service fulfillment to automatically
discover interoperable services and select the most appropriate service for the user with minimal
human intervention.
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Semantic OGSA (S-OGSA) [96] has been proposed as reference architecture for semantic-based
grids. S-OGSA extends OGSA to support the explicit handling of semantics, and defines the asso-
ciated knowledge services to support a set of service capabilities. This is done by introducing
semantic provisioning services that give support to the provision of semantics, by allowing the crea-
tion, storage, update, removal, and access of different forms of knowledge and metadata. This set of
services includes ontology management and reasoning services, metadata services, and annotation
services

S-OGSA has three main aspects: the model (the elements which it is composed of and their
interrelationships), the capabilities (the services needed to deal with such components), and the
mechanisms (the elements that will enable delivery when deploying the architecture in an applica-
tion, grounded to a grid platform). The myGrid [97] Project community as a pioneer of semantic
grid efforts focusing on the challenges of e-science has developed a suite of tools and services to
enable workflow-based composition of diverse biological data and computational resources. Within
the project, Semantic web technologies have been applied to the problems of resource discovery
and workflow results management in a grid environment.

5.4.5 Job Execution Environments and Monitoring
A distributed job execution environment often consists of two components: a job execution
engine and a distributed data management system. The job execution engine mainly deals with
job scheduling, resource allocation, and other issues such as fault tolerance. The data manage-
ment system often provides an abstraction for jobs to access distributed data. In recent years, to
tackle the increasing need for Internet scale information management and processing, many Inter-
net service companies built their own distributed systems for their specific needs. Most of these
systems provide distributed execution engines and support integrated applications. Google
MapReduce [98] and Microsoft Dryad [99] are two examples of this type of system described in
Chapter 6.

MapReduce was primarily designed to support Google applications that use and generate large
data sets. It generalizes a map/reduce abstraction from these applications and provides a simple pro-
gramming model for distributed execution of programs. Communications between programs are
generalized as exchanges of key-value pairs. The storage of these key-value pairs is supported by
Google File System (GFS) [100]. Parallelism is achieved through parallel scheduling of these distri-
butable programs. Dryad has similar scope with MapReduce, but application dependencies can
be arbitrarily constructed by explicitly specifying a DAG (directed acyclic graph). It supports
data flowing along the links from one job’s output to another job’s input in a manner similar to a
UNIX pipe.

The scheduling mechanism in MapReduce considers data locality by using the data location infor-
mation provided by the GFS metadata server. Similar scheduling strategy is exploited in location-
aware request distribution algorithms (LARD) for web server clusters [100], which schedule requests
based on data locations as well as active connections to the servers that host the data. LARD allows
dynamic creation of replicas.

Matchmaking built on the publish-subscribe model is a common approach for scheduling com-
putationally intensive jobs. Grid computing middleware such as Condor [101] uses such a mechan-
ism to distribute jobs. Condor matchmaking allows an agent that handles clients’ job requests and
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resources to publish the job requirements and resource description in a form of semistructured data.
The agents and resources subscribe to a matchmaker, which scans the published data and pairs jobs
with resources according to the preferences and constraints specified in the data. Once a pair is
formed, the matchmaker notifies the matching agent and resource. The agent and resource then
establish contact and execute a job.

Dryad has a similar scheduling mechanism. Each execution of a vertex in a DAG has an execu-
tion record that contains the state of the execution and the versions of the predecessor vertices pro-
viding its input data. A vertex is placed into a scheduling queue when its input data is ready. The
constraints and preferences of running the vertex are attached to its execution record (e.g., the ver-
tex may have a list of computers on which it would like to run, or prefers to be located in a compu-
ter where a data set is stored). The scheduler then does the matchmaking by allocating the vertex to
the resource. The approach has a long history and can be traced back to the Linda programming
model [102] and middleware inspired by Linda, such as JavaSpaces [103] where jobs are published
in a shared space generalizing the messaging queue and consumed by resources subscribed to the
space.

As jobs can be dispatched to different nodes, a job execution environment typically needs the
support of a distributed data management system for a job to access remote data sets and, some-
times, exchange data with other jobs. As mentioned earlier, MapReduce is supported by GFS.
Dryad also has a GFS-like distributed storage system, which can break large data files into
small chunks. These chunks are then distributed and replicated across the disks of nodes in the
system. The communication channels between jobs are often file-based. Through a distributed
storage system, a file can be passed from one job to another transparently. Accessing and
exchanging data with certain structures can be supported through abstractions built on top of the
distributed storage system. Google BigTable [104] and Amazon Dynamo [105] are two
examples.

The data abstraction in BigTable described in Section 6.3 is a multidimensional sorted map and
in Dynamo is key-value pair. With these abstractions, a job can access multidimensional data or
key-value pairs from any node in the system. As a consequence, a job execution environment is
very powerful nowadays. It is capable of running not only computational jobs, but also a variety of
data-intensive jobs. However, as maintaining data consistency comes with a high cost in a distribu-
ted environment, such a job execution environment has limitations for running applications with
strong consistency requirements. At the time of this writing, BigTable and Dynamo only support
relaxed consistency.

In a large-scale distributed system where applications are dynamically placed onto any compu-
ters to run, the capability of collecting information regarding the application and resource status
becomes crucial for the system to achieve efficiency, detect failures or risks, and track system
states. A contemporary distributed system often has a complex monitoring subsystem. Astrolabe
[106], used in Amazon, is such an example. Astrolabe monitors the state of a collection of distribu-
ted resources and is capable of continuously computing summaries of the data in the system
through aggregation. Its aggregation mechanism is driven by SQL queries (e.g., the query SELECT
MIN(load) AS load returns the minimal load in the system).

Aggregating such information dynamically from a large number of nodes is challenging. Tradi-
tional monitoring systems in clusters do not scale beyond a few dozen nodes [106]. Astrolabe
adopts a decentralized approach to achieve scalability. It runs an agent on each node. The agents
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talk with one another using a gossip protocol. Information managed by Astrolabe is organized
hierarchically. Each agent maintains a data structure that contains a subset of the hierarchy. The
local information is updated directly in an agent. An agent that needs the information of an internal
node of the hierarchy can aggregate the information of the children in the hierarchy from agents
that are responsible for them. Information of sibling nodes in the hierarchy can be obtained from
relevant agents through the gossip protocol. The gossip protocol is simple: Periodically, each agent
randomly selects some other agent and exchanges information with it. The information exchanged
is the least common ancestor of the two agents.

Through this mechanism, Astrolabe is capable of taking snapshots of the distributed state. The
state is aggregated dynamically without a central agent storing all the information. However, the
aggregated information is replicated among all the agents involved in the process and it raises con-
sistency issues. Two users retrieving the same data attribute may get different results. Astrolabe
only supports a relaxed consistency called eventual consistency, that is, given an aggregate attribute
X that depends on some other attribute Y, Astrolabe guarantees that an update made to Y is even-
tually reflected in X. Such a monitoring system is important to a job execution environment, parti-
cularly when the underlying system scales.

5.5 WORKFLOW IN SERVICE-ORIENTED ARCHITECTURES
In Section 5.1, we described services as the basic unit for constructing distributed systems. However
a “real system” consists of multiple interacting (generalized) services as shown in Figure 5.14 and
introduced in Section 5.1.2.1. In particular, both a simple sensor (perhaps only an output data
stream) and a complete grid (a collection of services with multiple input and output message ports)
were shown in Figure 1.22 as example collections of services. Thus, the prototypical complete sys-
tem could be a “grid of services,” but we also talk about a “grid of grids” or even a “grid of clouds.”
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The concept of the grid of grids of services.

314 CHAPTER 5 Service-Oriented Architectures for Distributed Computing



In Figure 5.14, we show multiple application grids in different areas of “critical infrastructure.”
Component grids (subgrids) are invoked for collaboration, visualization, sensor fusion, computing,
and GIS applications. This builds on core grid capabilities in areas covered in Sections 5.2, 5.3, and
5.4. By adding application-specific services, one builds a distributed system to support the study of
flood, gas, or electrical infrastructure. Workflow is used to integrate component grids and services.
Note that this discussion is phrased in terms of grids, but is equally applicable to clouds. We will
discuss grid computing in more detail in Chapter 7.

5.5.1 Basic Workflow Concepts
In Section 5.2, we described approaches for managing the messages between services and compo-
nent grids, but here we focus on workflow which is the approach to “programming the interaction
between services.” As well as saying that workflow describes “programming the web or grid,” one
can also use terms such as “software coordination,” “service orchestration,” “service or process
coordination,” “service conversation,” “web or grid scripting,” “application integration,” or “soft-
ware bus.”

It is an area of active research with different approaches emphasizing control flow, scheduling,
and/or data flow. Some recent reviews of workflow are [15,107–110]. Note that workflow implies a
two-level programming model for distributed systems. The basic services are programmed in traditional
languages—C, C++, FORTRAN, Java, and Python—while workflow describes the coarser-grained pro-
gramming of services interacting with one another. Each service is programmed in traditional languages
while their interaction is described by workflow.

Note that the multilevel programming concept is familiar from elementary shell programming
where pipes are often used to link executing programs. In fact, scripting (as in shell scripts) is
one popular approach to workflow with distributed programming constructs replacing the familiar
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UNIX primitives. For example, TCP channels or publish-subscribe messaging replaces pipes.
In Figure 5.15, we show that multilevel architectures are very common—not just in programming
as in workflow, but also in computing, databases, and sensors.

The concept of workflow was first developed by the Workflow Management Coalition [111]
which has existed for almost 20 years and generated standard reference models, documents, and a
substantial industry of tools and workflow management support products. However, this coalition is
largely concerned with business process management, with steps in a workflow often involving
human and not computer steps. For example, Allen defined business workflow as the automation of
a business process, in whole or in part, during which documents, information, or tasks are passed
from one participant to another for action, according to a set of procedural rules [112]. Thus, work-
flow in this chapter addresses very different issues from those described by the Workflow Manage-
ment Coalition.

We can identify the development of workflow concepts and systems as a major achievement
of the grid and distributed system community. Note that services are, of course, equally critical,
but the essence of that idea came from business systems. Historically, workflow concepts evolved
from distributed programming using systems such as Linda [113], HeNCE [114], AVS [115], and
Khoros [116] as well as complex Shell (Perl) scripts. Petri Nets also can be considered one of the
early ideas important for workflow. Although several good workflow systems have been built on
Petri Nets [117–119], the most popular systems today are not based on Petri Nets. There are
important commercial areas using environments very similar to scientific workflow. These
include systems to analyze experimental (laboratory) data, termed Laboratory Information Sys-
tems or LIMS as exemplified by [120,121] or the general resource [122]. The chemical infor-
matics and business intelligence areas have several workflow-like systems including InforSense
[123] and Pipeline Pilot [124].

5.5.2 Workflow Standards
As with other web service-related concepts, there was substantial standards activity among OASIS,
OMG, and W3C, often with overlapping goals, as summarized in Table 5.9. This work largely
stemmed from the 2000 to 2005 when standards were viewed as essential to enable the web service
dream that interoperability was achieved by complete specification of service features. Recently,
there has been a realization that this goal produced heavyweight architectures where the tooling
could not keep up with the support of the many standards. Today we see greater emphasis on light-
weight systems where interoperability is achieved by ad hoc transformations where necessary.
Another problem of the standardization work was that it largely preceded the deployment of sys-
tems, and so one found premature standardization that missed key points. This background explains
the many unfinished standard activities in Table 5.9.

The successful activities have a business process flavor, and for scientific workflow, the most
relevant standard is BPEL [125–128], which was based on the earlier proposals WSFL and
XLANG. Note that XML is not well suited to specifying programming constructs; although XML
can express data structures well, it is possible but not natural to express loops and conditionals that
are essential to any language and the control of a workflow. It may turn out that expressing work-
flow in a modern scripting language is preferable to XML-based standards.
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5.5.3 Workflow Architecture and Specification
Most workflow systems have two key components corresponding to the language and runtime com-
ponents of any programming environment. We can call these components the workflow specification
and workflow execution engine. They are linked by interfaces which could be specified by documents
using, for example, the BPEL standard introduced earlier.

Table 5.9 Workflow Standards, Links, and Status

Standard Link Status

BPEL Business Process Execution
Language for Web Services (OASIS)
V 2.0

http://docs.oasis-open.org/wsbpel/
2.0/wsbpel-v2.0.html; http://en
.wikipedia.org/wiki/BPEL

April 2007

WS-CDL Web Service Choreography
Description Language (W3C)

http://www.w3.org/TR/ws-cdl-10/ November 2005, not
final

WSCI Web Service Choreography
Interface V 1.0 (W3C)

http://www.w3.org/TR/wsci/ August 2002, note only

WSCL Web Services Conversation
Language (W3C)

http://www.w3.org/TR/wscl10/ March 2002, note only

WSFL Web Services Flow Language http://www.ibm.com/
developerworks/webservices/
library/ws-wsfl2/

Replaced by BPEL

XLANG Web Services for Business
Process Design (Microsoft)

http://xml.coverpages.org/
XLANG-C-200106.html

June 2001, replaced by
BPEL

WS-CAF Web Services Composite
Application Framework including
WS-CTX, WS-CF, and WS-TXM

http://en.wikipedia.org/wiki/
WS-CAF

Unfinished

WS-CTX Web Services Context (OASIS
Web Services Composite Application
Framework TC)

http://docs.oasis-open.org/ws-caf/
ws-context/v1.0/OS/wsctx.html

April 2007

WS-Coordination Web Services
Coordination (BEA, IBM, Microsoft at
OASIS)

http://docs.oasis-open.org/ws-tx/
wscoor/2006/06

February 2009

WS-AtomicTransaction Web Services
Atomic Transaction (BEA, IBM, Microsoft
at OASIS)

http://docs.oasis-open.org/ws-tx/
wsat/2006/06

February 2009

WS-BusinessActivity Framework
(BEA, IBM, Microsoft at OASIS)

http://docs.oasis-open.org/ws-tx/
wsba/2006/06

February 2009

BPMN Business Process Modeling
Notation (Object Management Group,
OMG)

http://en.wikipedia.org/wiki/BPMN;
http://www.bpmn.org/

Active

BPSS Business Process Specification
Schema (OASIS)

http://www.ebxml.org/; http://
www.ebxml.org/specs/ebBPSS.pdf

May 2001

BTP Business Transaction Protocol
(OASIS)

http://www.oasis-open.org/
committees/download.php/12449/
business_transaction-btp-1.1-spec-
cd-01.doc

Unfinished
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5.5.3.1 Workflow Specification
Scripting-based workflow systems can specify workflow in traditional language syntax similar to
Python, JavaScript, or Perl. One can also directly specify the (XML) interface document driving the
execution engine, although that is pretty low-level. However, most workflow systems use a graphi-
cal interface as illustrated in Figure 5.16. These capture scenarios illustrated by those of following
examples.

Example 5.10 Pan-STARRS Workflow

Each step in Figure 5.16 is a “large” activity (i.e., a service) illustrating that workflow is a programming sys-
tem at a very different granularity from familiar languages such as C++. Note that scripting languages are
often used for specifying coarse-grained operations, which “explains” why scripting is a popular approach
to specifying workflows. However, a key feature of workflows involves a “few” steps, whereas a full program
for a service is often thousands to perhaps millions of lines of code. This observation supports the use of a
visual interface so that functional specifications are directly mapped into the programming model. Two
visual interfaces are Microsoft’s Trident system [130,131] and Taverna, originally developed at the Univer-
sity of Manchester [18,132].

Figure 5.17 shows a typical workflow specified by the Taverna system [132]. There are menus specify-
ing components (activities, services) that are chosen by the user and represented by “boxes” in the com-
position window. The user specifies the workflow logic through the linkage of the “boxes.” Each box has
substantial metadata that can be specified and inspected by the user. The system allows specification of
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Two typical (Load and Merge) workflows from the Pan-STARRS astronomy data processing area.
(Courtesy of Barga, et al. [129] )
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nontrivial control constructs such as looping over regions of workflow and conditional decisions. Note that
each box can be a sequential or parallel component.

The need for the above operations is seen in the tornado tracking workflow [131] of LEAD
II [133] which involves data processing services linked to traditional (MPI) parallel weather
simulations. The concurrency expressed in workflow is often termed “functional” parallelism
distinguishing it from “data” parallelism. Typically functional parallelism (corresponding to dif-
ferent services in application) is absolute and is determined in size and nature by the problem.
On the other hand, data parallelism is achieved by dividing a large data set into parts. The
degree of data parallelism is determined by the number of available cores. Different parts corre-
spond to using a parallel computing technology (MPI, threading, MapReduce) to implement the
services.

5.5.4 Workflow Execution Engine
There are many different workflow systems. Workflow does not have strong performance con-
straints. We mentioned in the previous section that the typically large execution times of nodes

hsapiens_gene_ensembl

GetUniqueHomolog

getMMsequence getRNsequence getHSsequence

CreateFasta

seqret

emma

plot

FlattenImageList

OutputPlot HSapIDs MMusIDs RNorIDs

Workflow outputs

FIGURE 5.17

The workflow in the Taverna system.
(Courtesy of C. Goble, 2008 [132] )
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made overhead less important than, say, for MPI. This same feature typically allows workflow to be
executed in a distributed fashion—the network latency of long communication hops is often not
important. The classification in [139] is of workflows used in domains from meteorology and ocean
modeling, bioinformatics and biomedical workflows, astronomy and neutron science. These are
examined according to their size, resource use, graph pattern, data pattern, and usage scenario.
BPEL specifies the control and not the data flow of a workflow. Of course, the control structure
implies the data flow structure for a given set of nodes.

Figure 5.18 shows a pipeline as seen for the astronomy workflows of Figure 5.16. A more gen-
eral workflow structure is that of the DAG, which is a collection of vertices and directed edges,
each edge connecting one vertex to another such that there are no cycles. That is, there is no way
to start at some vertex V and follow a sequence of edges that eventually loops back to that vertex V
again. In spite of sophisticated specialized workflow systems, scripting using traditional languages
and toolkits is perhaps the dominant technique used to build workflows. Often this is done in an
informal fashion using any environment with distributed computing (Internet) support; PHP may be
the most popular environment for building mashups, but Python and JavaScript are also well used.
Figure 5.18 shows a simple cyclic graph. Dagman [159] used in Condor [160] a sophisticated DAG
processing engine. This leads to a class of workflow systems such as Pegasus [146] aimed at sche-
duling the nodes of DAG-based workflows. Karajan [161] and Ant [162] can also easily represent
DAGs. Note that most sophisticated workflow systems support hierarchical specifications—namely
the nodes of a workflow can be either services or collections of services (subworkflows). This is
consistent with the Grid of Grids concept.

The issues that need to be addressed by a workflow engine are well understood in the active
research community but are not well described in an integrated fashion [15,107–110]. Clearly,
many and perhaps all of the execution issues discussed in this book for distributed systems, clouds,
and grids are implicitly or explicitly relevant for workflow execution engines. Figure 5.19 speci-
fies the interaction between the constituent services or activities. One important technology
choice is the mechanism for transferring information between the nodes of the graph. The sim-
plest choice is that each node reads from and writes to disk and this allows one to treat the
execution of each node as an independent job invoked when all its needed input data is available
on disk.

Pipeline

Loop

FIGURE 5.18

A workflow graph that includes subgraphs illustrating pipelines and loops.
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This could seem inefficient, but we are not operating in a region for which MPI and parallel
computing technologies are designed. There, low latency (microseconds) is often essential, but in a
workflow, we have a different communication pattern: long-running jobs inputting and outputting
substantial data sets. The cost of reading and writing is often quite acceptable and allows simpler
fault tolerant implementations. Of course, one can use the messaging systems described in Section
5.2 to manage data transfer in a workflow, and in extreme cases, simple models where all communi-
cation is handled by a single central “control node.”

Obviously, this latter solution could lead to poor performance that does not properly scale as
workflow size increases. Distributed object technology such as CORBA can also be used for com-
munication, as it is in the Discover Middleware [136]. In fact, there are often two communication
systems in workflow environments corresponding to “control” and “data,” respectively. Obviously,
the control communication would usually have small messages and very different requirements
from the data network. In this regard, one should mention the “proxy model” which is often used
in grid architectures and workflow.

Suppose one of the nodes in Figure 5.18 corresponds to the execution of a large simulation
job—say, the chemistry code Amber or Gaussian. Then one could consider the node as the Amber
code with links corresponding directly to data used by this code. However, this is not normal.
Rather, the node is a service that contains the metadata and mechanisms to invoke Amber on a
(remote) machine and also to determine when it is complete. Then the information flowing between
proxy nodes is all essentially control information. This proxy model can also be considered an
agent framework [137].

5.5.5 Scripting Workflow System Swift
Swift is a parallel scripting language in which application programs are represented as functions and
variables can be mapped to files. Structure and array abstractions are used to manipulate sets of files
in parallel. Swift has a functional data-flow-based execution model in which all statements are
implicitly parallel. Parallel looping constructs explicitly specify large-scale parallel processing.
Figure 5.19 shows the architecture of the Swift workflow system.

Example 5.11 Bioinformatics Workflow in Swift

The Swift command, a Java application, runs on any user-accessible computer (e.g., a workstation or
login server). It compiles and executes Swift scripts, coordinates remote data transfers, and executes
applications on local and distributed parallel resources. The application of Swift to bioinformatics is illu-
strated in Figure 5.20. This problem is perfect for MapReduce. Based on Swift’s implicit data flow
model, the foreach loop starts automatically when the members of the array splitseqs become
available.

The Swift system processes a set of protein sequences of unknown function through the BLAST
search program, matching each sequence against proteins of known functions in the standard database
“NR.” Given, for example, 100 processors, the script can execute 100 invocations of BLAST in parallel
to rapidly search the NR database. The purpose is to search for clues to the nature of the unknown
proteins.
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Swift workflow system architecture.
(Courtesy of www.ci.uchicago.edu/swift/ [138] )

5.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
We recommend the book [164] on key WS-* web service technologies. The book [23] by Alonso pro-
vides detailed coverage of services and SOA, while Fox and Gannon review in detail services used in
many grid applications [15,108]. [29] and [165] discuss issues differentiating web and grid services.
The important RESTful approaches are described in [8] or the original thesis in [2]. Wikipedia is often
a good source of information with strong coverage of messaging, as covered in Section 5.2.

Messaging is particularly well served with quality open source systems discussed in that section.
There are several good collections of papers on portals and gateways [43,44]. The semantic web is
well covered with [166]. The semantic grid is covered in [167]. iRods [50] is an important grid
data system while the contribution of industry to this area is very important with many seminal
papers from Google and Microsoft: for example, MapReduce [98], Dryad [99], the Google File Sys-
tem [100], and Fusion Tables [168]. Workflow is well covered in several reviews [15,107, 108,110].

Important workflow systems based on data flow technologies are the Kepler [140–142] and
Triana [143–145] projects; Kepler is still actively being developed. Pegasus is an active system
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implementing the scheduling style of workflow [146]. Taverna [18,147] from the myGrid project
[148] is very popular in the bioinformatics community and substantial effort has been made by the
UK OMII effort [149] into making the system robust. An innovative extension of this project is the
myExperiment scientific social networking site [150], which enables sharing of workflows. Other
key aspects of workflow are security [163] and fault tolerance [110].

The HPSearch project [50,151,152] at Indiana University supported workflow efficiently from
JavaScript focusing on control of the messaging system, NaradaBrokering [39], used to control
streaming workflows (i.e., those where data is streamed between nodes of workflow and not written
to disk). There are a few other workflow systems aimed at streaming data [153]. The new scripting
environment, Swift [138] supports the Many Task programming model where innumerable jobs
need to be executed [154].

There are very many approaches to workflow which are largely successful in prototype one-
off situations. However, experience has found that most are not really robust enough for produc-
tion use outside the development team. This observation motivated Microsoft to put its Trident
workflow environment [129,130] into open source for science. Trident is built on the commercial
quality Windows Workflow Foundation. Note that in most cases one would use Trident in a
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FIGURE 5.20

Application of the Swift to bioinformatics.
(Courtesy of Wikipedia, http://en.wikipedia.org/wiki/Many-task_computing, [154] )
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“proxy” fashion with workflow agents running on Windows controlling remote components that
largely run on Linux machines [131,133]. Some workflow systems are built around the data flow
concept with this being the original model [115,116,155] and the direct opposite of the proxy
concept.

Today’s mashups are typically data flow systems with the interaction scripted in languages such as
JavaScript or PHP. ProgrammableWeb.com has, for example, more than 2,000 APIs and 5,000 mash-
ups recorded as of September 2010 [84]. Commercial mashup approaches include Yahoo! Pipes
(http://pipes.yahoo.com/pipes/), Microsoft Popfly (http://en.wikipedia.org/wiki/Microsoft_Popfly),
and IBM’s sMash enhanced BPEL Web 2.0 [156] workflow environment. There is some disagree-
ment as to whether MapReduce is a workflow environment (http://yahoo.github.com/oozie/) as it and
workflow can execute similar problems. Other workflow approaches extend the “remote method invo-
cation” model. This model underlies the Common Component Architecture (CCA) [157,158].
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HOMEWORK PROBLEMS
Problem 5.1
Discuss the strengths and drawbacks of WS-* and RESTful web services. Compare their architec-
tural principles. Which one is the preferred mechanism for communicating with Amazon S3? Why?

Problem 5.2
Discuss advantages and shortcomings of stateless web services. How can we keep the state in REST
and standard web services?

Problem 5.3
This assignment requires you to combine the queuing and publish-subscribe paradigms within a
single application. Organizations A and B are two businesses that use queuing for B2B transac-
tions. Every transaction is stored (prior to forwarding) and has a 128-bit UUID identifier asso-
ciated with it. Within the organization, messages are delivered using publish-subscribe. Create
five subscribers (sales, marketing, audit, packaging, and finance) within each organization; these
subscribers do not have to log the messages again since there is a copy of that message already
available. If the assignment is done in Java it is prescribed that the Java Message Service
be used.

Problem 5.4
Develop an application that uses publish-subscribe to communicate between entities developed in
different languages. Producers should be written in C++, and consumers should be in Java. Distrib-
uted components communicate with one another using the AMQP wire format.

Problem 5.5
Map the terms and abbreviations on the left to the best suited descriptions on the right.
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1. _____ S-OGSA (a) A set of specifications defining a way to describe, publish, and discover
information about web services

2. _____ REST (b) The first language developed for the Semantic web, using XML to represent
information about resources on the web

3. _____ UDDI (c) An XML vocabulary to describe RESTful web services
4. _____ MCS (d) A family of OASIS-published specifications which provide a set of operations that

web services may implement to become stateful
5. _____ WSDL (e) A catalog service developed by the Globus Alliance providing hierarchical

organization of the metadata
6. _____ RDF (f) Composite Web 2.0 applications which combine capabilities from existing

web-based applications
7. _____ WADL (g) A software architecture for distributed hypermedia systems based on HTTP
8. _____ WSRF (h) An expressive ontology language that extends RDF schema
9. _____ Mashups (i) A reference architecture for semantic-based grids by extending Open Grid

Services Architecture
10. _____ OWL-S (j) An XML-based language to describe the set of operations and messages

supported by a web service

Problem 5.6
Combine the two assignments 5.3 and 5.4 above, where organization A is developed in Java, while
organization B is developed in C++. Use AMQP format in these communications.

Problem 5.7
Describe possible uses of enterprise buses in grid architectures.

Problem 5.8
Run NaradaBrokering or an equivalent system selected from Table 5.8 in an available cloud. Use it
to connect two Android smartphones exchanging messages and pictures snapped by the phone.

Problem 5.9
Install the OGCE toolkit using instructions at the web site: www.collabogce.org/ogce/index.php/
Portal_download. Then select one or more from the range of projects given at another web site:
www.collab-ogce.org/ogce/index.php/Tutorials#Screen_Capture_Demos.

Problem 5.10
Compare Google App Engine, Drupal, HUBzero, and OGCE approaches to science gateways.
Discuss in the context of portals you are familiar with.

Problem 5.11
What are the three main categories of information that a service registry contains? Which entities
map these categories of information in UDDI?
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Problem 5.12
Outline the main components of a real-life parallel or distributed job execution environment. You
can choose any example platforms such as clusters in Chapter 2, clouds in Chapter 4, grids in
Chapter 7, and P2P networks in Chapter 8.

Problem 5.13
Describe the role of a distributed file system in a job execution environment such as MapReduce in
a large-scale cloud system.

Problem 5.14
Resource Description Framework (RDF) and the OWL web ontology language are two technologies
for the Semantic web. Describe the relationship between them.

Problem 5.15
Why are grids popular in academic applications while clouds dominate commercial use? Use case
studies to compare their strengths and weaknesses.

Problem 5.16
Study more details from [138,154]. Implement the Swift application shown in Figure 5.20 on an
available cloud platform.

Problem 5.17
Use Swift to implement the word count problem described in MapReduce (Details of MapReduce
are given in Section 6.2.2).

Problem 5.18
Use Taverna to build a workflow linking a module to extract comments on grids and clouds (or
your favorite topic) from Twitter, Flickr, or Facebook. The social networking APIs can be found at
www.programmableweb.com.
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SUMMARY
This chapter is devoted to programming real cloud platforms. MapReduce, BigTable, Twister,
Dryad, DryadLINQ, Hadoop, Sawzall, and Pig Latin are introduced and assessed. We use concrete
examples to explain the implementation and application requirements in the cloud. We review core
service models and access technologies. Cloud services provided by Google App Engine (GAE),
Amazon Web Service (AWS), and Microsoft Windows Azure are illustrated by example applications.
In particular, we illustrate how to programming the GAE, AWS EC2, S3, and EBS. We review the
open-source Eucalyptus, Nimbus, and OpenNebula and the startup Manjrasoft Aneka system for
cloud computing.

6.1 FEATURES OF CLOUD AND GRID PLATFORMS
In this section, we summarize important features in real cloud and grid platforms. In four tables, we
cover the capabilities, traditional features, data features, and features for programmers and runtime
systems to use. The entries in these tables are source references for anyone who wants to program
the cloud efficiently. To get the most from this chapter, readers should refresh their familiarity with
and understanding of the languages and software tools for service-oriented architecture (SOA) and
web services introduced in Chapter 5.

6.1.1 Cloud Capabilities and Platform Features
Commercial clouds need broad capabilities, as summarized in Table 6.1. These capabilities offer
cost-effective utility computing with the elasticity to scale up and down in power. However, as well as
this key distinguishing feature, commercial clouds offer a growing number of additional capabilities
commonly termed “Platform as a Service” (PaaS). For Azure, current platform features include Azure
Table, queues, blobs, Database SQL, and web and Worker roles. Amazon is often viewed as offering
“just” Infrastructure as a Service (IaaS), but it continues to add platform features including SimpleDB
(similar to Azure Table), queues, notification, monitoring, content delivery network, relational database,
and MapReduce (Hadoop). Google does not currently offer a broad-based cloud service, but the Google
App Engine (GAE) offers a powerful web application development environment.

Table 6.2 lists some low-level infrastructure features. Table 6.3 lists traditional programming
environments for parallel and distributed systems that need to be supported in Cloud environments.
They can be supplied as part of system (Cloud Platform) or user environment. Table 6.4 presents
features emphasized by clouds and by some grids. Note that some of the features in Table 6.4 have
only recently been offered in a major way. In particular, these features are not offered on academic
cloud infrastructures such as Eucalyptus, Nimbus, OpenNebula, or Sector/Sphere (although Sector is
a data parallel file system or DPFS classified in Table 6.4). We will cover these emerging cloud
programming environments in Section 6.5.

6.1.2 Traditional Features Common to Grids and Clouds
In this section, we concentrate on features related to workflow, data transport, security, and availability
concerns that are common to today’s computing grids and clouds.
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6.1.2.1 Workflow
As introduced in Section 5.5, workflow has spawned many projects in the United States and Eur-
ope. Pegasus, Taverna, and Kepler are popular, but no choice has gained wide acceptance. There
are commercial systems such as Pipeline Pilot, AVS (dated), and the LIMS environments. A recent
entry is Trident [2] from Microsoft Research which is built on top of Windows Workflow Founda-
tion. If Trident runs on Azure or just any old Windows machine, it will run workflow proxy ser-
vices on external (Linux) environments. Workflow links multiple cloud and noncloud services in
real applications on demand.

6.1.2.2 Data Transport
The cost (in time and money) of data transport in (and to a lesser extent, out of) commercial clouds is
often discussed as a difficulty in using clouds. If commercial clouds become an important component of

Table 6.1 Important Cloud Platform Capabilities

Capability Description

Physical or virtual
computing platform

The cloud environment consists of some physical or virtual platforms. Virtual
platforms have unique capabilities to provide isolated environments for different
applications and users.

Massive data storage
service, distributed
file system

With large data sets, cloud data storage services provide large disk capacity and
the service interfaces that allow users to put and get data. The distributed file
system offers massive data storage service. It can provide similar interfaces as
local file systems.

Massive database
storage service

Some distributed file systems are sufficient to provide the underlying storage
service application developers need to save data in a more semantic way. Just like
DBMS in the traditional software stack, massive database storage services are
needed in the cloud.

Massive data
processing method
and programming
model

Cloud infrastructure provides thousands of computing nodes for even a very simple
application. Programmers need to be able to harness the power of these machines
without considering tedious infrastructure management issues such as handling
network failure or scaling the running code to use all the computing facilities
provided by the platforms.

Workflow and data
query language
support

The programming model offers abstraction of the cloud infrastructure. Similar to
the SQL language used for database systems, in cloud computing, providers have
built some workflow language as well as data query language to support better
application logic.

Programming
interface and service
deployment

Web interfaces or special APIs are required for cloud applications: J2EE, PHP,
ASP, or Rails. Cloud applications can use Ajax technologies to improve the user
experience while using web browsers to access the functions provided. Each cloud
provider opens its programming interface for accessing the data stored in massive
storage.

Runtime support Runtime support is transparent to users and their applications. Support includes
distributed monitoring services, a distributed task scheduler, as well as distributed
locking and other services. They are critical in running cloud applications.

Support services Important support services include data and computing services. For example, clouds
offer rich data services and interesting data parallel execution models like MapReduce.
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Table 6.2 Infrastructure Cloud Features

Accounting: Includes economies; clearly an active area for commercial clouds
Appliances: Preconfigured virtual machine (VM) image supporting multifaceted tasks such as message-
passing interface (MPI) clusters
Authentication and authorization: Could need single sign-on to multiple systems
Data transport: Transports data between job components both between and within grids and clouds;
exploits custom storage patterns as in BitTorrent
Operating systems: Apple, Android, Linux, Windows
Program library: Stores images and other program material
Registry: Information resource for system (system version of metadata management)
Security: Security features other than basic authentication and authorization; includes higher level concepts
such as trust
Scheduling: Basic staple of Condor, Platform, Oracle Grid Engine, etc.; clouds have this implicitly as is
especially clear with Azure Worker Role
Gang scheduling: Assigns multiple (data-parallel) tasks in a scalable fashion; note that this is provided
automatically by MapReduce
Software as a Service (SaaS): Shared between clouds and grids, and can be supported without special
attention; Note use of services and corresponding service oriented architectures are very successful and are
used in clouds very similarly to previous distributed systems.
Virtualization: Basic feature of clouds supporting “elastic” feature highlighted by Berkeley as characteristic of
what defines a (public) cloud; includes virtual networking as in ViNe from University of Florida

Table 6.3 Traditional Features in Cluster, Grid, and Parallel Computing Environments

Cluster management: ROCKS and packages offering a range of tools to make it easy to bring up
clusters
Data management: Included metadata support such as RDF triple stores (Semantic web success and can
be built on MapReduce as in SHARD); SQL and NOSQL included in
Grid programming environment: Varies from link-together services as in Open Grid Services Architecture
(OGSA) to GridRPC (Ninf, GridSolve) and SAGA
OpenMP/threading: Can include parallel compilers such as Cilk; roughly shared memory technologies. Even
transactional memory and fine-grained data flow come here
Portals: Can be called (science) gateways and see an interesting change in technology from portlets to
HUBzero and now in the cloud: Azure Web Roles and GAE
Scalable parallel computing environments: MPI and associated higher level concepts including
ill-fated HP FORTRAN, PGAS (not successful but not disgraced), HPCS languages (X-10, Fortress,
Chapel), patterns (including Berkeley dwarves), and functional languages such as F# for distributed
memory
Virtual organizations: From specialized grid solutions to popular Web 2.0 capabilities such as Facebook
Workflow: Supports workflows that link job components either within or between grids and clouds; relate to
LIMS Laboratory Information Management Systems.
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the national cyberinfrastructure we can expect that high-bandwidth links will be made available between
clouds and TeraGrid. The special structure of cloud data with blocks (in Azure blobs) and tables could
allow high-performance parallel algorithms, but initially, simple HTTP mechanisms are used to
transport data [3–5] on academic systems/TeraGrid and commercial clouds.

6.1.2.3 Security, Privacy, and Availability
The following techniques are related to security, privacy, and availability requirements for develop-
ing a healthy and dependable cloud programming environment. We summarize these techniques
here. Some of these issues have been discussed in Section 4.4.6 with plausible solutions.

• Use virtual clustering to achieve dynamic resource provisioning with minimum overhead cost.
• Use stable and persistent data storage with fast queries for information retrieval.
• Use special APIs for authenticating users and sending e-mail using commercial accounts.
• Cloud resources are accessed with security protocols such as HTTPS and SSL.
• Fine-grained access control is desired to protect data integrity and deter intruders or hackers.
• Shared data sets are protected from malicious alteration, deletion, or copyright violations.
• Features are included for availability enhancement and disaster recovery with life migration

of VMs.
• Use a reputation system to protect data centers. This system only authorizes trusted clients and

stops pirates.

Table 6.4 Platform Features Supported by Clouds and (Sometimes) Grids

Blob: Basic storage concept typified by Azure Blob and Amazon S3
DPFS: Support of file systems such as Google (MapReduce), HDFS (Hadoop), and Cosmos (Dryad) with
compute-data affinity optimized for data processing
Fault tolerance: As reviewed in [1] this was largely ignored in grids, but is a major feature of clouds
MapReduce: Support MapReduce programming model including Hadoop on Linux, Dryad on Windows
HPCS, and Twister on Windows and Linux. Include new associated languages such as Sawzall, Pregel,
Pig Latin, and LINQ
Monitoring: Many grid solutions such as Inca. Can be based on publish-subscribe
Notification: Basic function of publish-subscribe systems
Programming model: Cloud programming models are built with other platform features and are related to
familiar web and grid models
Queues: Queuing system possibly based on publish-subscribe
Scalable synchronization: Apache Zookeeper or Google Chubby. Supports distributed locks and used by
BigTable. Not clear if (effectively) used in Azure Table or Amazon SimpleDB
SQL: Relational database
Table: Support of table data structures modeled on Apache Hbase or Amazon SimpleDB/Azure Table.
Part of NOSQL movement
Web role: Used in Azure to describe important link to user and can be supported otherwise with a portal
framework. This is the main purpose of GAE
Worker role: Implicitly used in both Amazon and grids but was first introduced as a high-level construct
by Azure
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6.1.3 Data Features and Databases
In the following paragraphs, we review interesting programming features related to the program
library, blobs, drives, DPFS, tables, and various types of databases including SQL, NOSQL, and
nonrelational databases and special queuing services.

6.1.3.1 Program Library
Many efforts have been made to design a VM image library to manage images used in academic and
commercial clouds. The basic cloud environments described in this chapter also include many manage-
ment features allowing convenient deployment and configuring of images (i.e., they support IaaS).

6.1.3.2 Blobs and Drives
The basic storage concept in clouds is blobs for Azure and S3 for Amazon. These can be organized
(approximately, as in directories) by containers in Azure. In addition to a service interface for blobs
and S3, one can attach “directly” to compute instances as Azure drives and the Elastic Block Store
for Amazon. This concept is similar to shared file systems such as Lustre used in TeraGrid. The
cloud storage is intrinsically fault-tolerant while that on TeraGrid needs backup storage. However,
the architecture ideas are similar between clouds and TeraGrid, and the Simple Cloud File Storage
API [6] could become important here.

6.1.3.3 DPFS
This covers the support of file systems such as Google File System (MapReduce), HDFS (Hadoop), and
Cosmos (Dryad) with compute-data affinity optimized for data processing. It could be possible to link
DPFS to basic blob and drive-based architecture, but it’s simpler to use DPFS as an application-centric
storage model with compute-data affinity and blobs and drives as the repository-centric view.

In general, data transport will be needed to link these two data views. It seems important to consider
this carefully, as DPFS file systems are precisely designed for efficient execution of data-intensive
applications. However, the importance of DPFS for linkage with Amazon and Azure is not clear, as
these clouds do not currently offer fine-grained support for compute-data affinity. We note here that
Azure Affinity Groups are one interesting capability [7]. We expect that initially blobs, drives, tables,
and queues will be the areas where academic systems will most usefully provide a platform similar to
Azure (and Amazon). Note the HDFS (Apache) and Sector (UIC) projects in this area.

6.1.3.4 SQL and Relational Databases
Both Amazon and Azure clouds offer relational databases and it is straightforward for academic systems
to offer a similar capability unless there are issues of huge scale where, in fact, approaches based on
tables and/or MapReduce might be more appropriate [8]. As one early user, we are developing on
FutureGrid a new private cloud computing model for the Observational Medical Outcomes Partnership
(OMOP) for patient-related medical data which uses Oracle and SAS where FutureGrid is adding
Hadoop for scaling to many different analysis methods.

Note that databases can be used to illustrate two approaches to deploying capabilities.
Traditionally, one would add database software to that found on computer disks. This software is
executed, providing your database instance. However, on Azure and Amazon, the database is installed
on a separate VM independent from your job (worker roles in Azure). This implements “SQL as a
Service.” It may have some performance issues from the messaging interface, but the “aaS”
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deployment clearly simplifies one’s system. For N platform features, one only needs N services,
whereas number of possible images with alternative approaches is a prohibitive 2N.

6.1.3.5 Table and NOSQL Nonrelational Databases
A substantial number of important developments have occurred regarding simplified database
structures—termed “NOSQL” [9,10]—typically emphasizing distribution and scalability. These are
present in the three major clouds: BigTable [11] in Google, SimpleDB [12] in Amazon, and Azure
Table [13] for Azure. Tables are clearly important in science as illustrated by the VOTable standard
in astronomy [14] and the popularity of Excel. However, there does not appear to be substantial
experience in using tables outside clouds.

There are, of course, many important uses of nonrelational databases, especially in terms of
triple stores for metadata storage and access. Recently, there has been interest in building scalable
RDF triple stores based on MapReduce and tables or the Hadoop File System [8,15], with early
success reported on very large stores. The current cloud tables fall into two groups: Azure Table
and Amazon SimpleDB are quite similar [16] and support lightweight storage for “document
stores,” while BigTable aims to manage large distributed data sets without size limitations.

All these tables are schema-free (each record can have different properties), although BigTable
has a schema for column (property) families. It seems likely that tables will grow in importance for
scientific computing, and academic systems could support this using two Apache projects: Hbase
[17] for BigTable and CouchDB [18] for a document store. Another possibility is the open source
SimpleDB implementation M/DB [19]. The new Simple Cloud APIs [6] for file storage, document
storage services, and simple queues could help in providing a common environment between
academic and commercial clouds.

6.1.3.6 Queuing Services
Both Amazon and Azure offer similar scalable, robust queuing services that are used to communi-
cate between the components of an application. The messages are short (less than 8 KB) and have a
Representational State Transfer (REST) service interface with “deliver at least once” semantics.
They are controlled by timeouts for posting the length of time allowed for a client to process. One
can build a similar approach (on the typically smaller and less challenging academic environments),
basing it on publish-subscribe systems such as ActiveMQ [20] or NaradaBrokering [21,22] with
which we have substantial experience.

6.1.4 Programming and Runtime Support
Programming and runtime support are desired to facilitate parallel programming and provide run-
time support of important functions in today’s grids and clouds. Various MapReduce systems are
reviewed in this section.

6.1.4.1 Worker and Web Roles
The roles introduced by Azure provide nontrivial functionality, while preserving the better affinity
support that is possible in a nonvirtualized environment. Worker roles are basic schedulable
processes and are automatically launched. Note that explicit scheduling is unnecessary in clouds for
individual worker roles and for the “gang scheduling” supported transparently in MapReduce.
Queues are a critical concept here, as they provide a natural way to manage task assignment in a
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fault–tolerant, distributed fashion. Web roles provide an interesting approach to portals. GAE is
largely aimed at web applications, whereas science gateways are successful in TeraGrid.

6.1.4.2 MapReduce
There has been substantial interest in “data parallel” languages largely aimed at loosely coupled
computations which execute over different data samples. The language and runtime generate
and provide efficient execution of “many task” problems that are well known as successful grid
applications. However, MapReduce, summarized in Table 6.5, has several advantages over

Table 6.5 Comparison of MapReduce Type Systems

Google
MapReduce
[28]

Apache
Hadoop [23]

Microsoft
Dryad [26] Twister [29]

Azure
Twister [30]

Programming
Model

MapReduce MapReduce DAG
execution,
extensible to
MapReduce
and other
patterns

Iterative
MapReduce

Currently just
MapReduce;
will extend to
Iterative
MapReduce

Data
Handling

GFS (Google
File System)

HDFS (Hadoop
Distributed File
System)

Shared
directories and
local disks

Local disks
and data
management
tools

Azure blob
storage

Scheduling Data locality Data locality;
rack-aware,
dynamic task
scheduling using
global queue

Data locality;
network
topology
optimized at
runtime; static
task partitions

Data locality;
static task
partitions

Dynamic task
scheduling
through
global queue

Failure
Handling

Reexecution
of failed
tasks;
duplicated
execution of
slow tasks

Reexecution of
failed tasks;
duplicated
execution of slow
tasks

Reexecution of
failed tasks;
duplicated
execution of
slow tasks

Reexecution
of iterations

Reexecution
of failed
tasks;
duplicated
execution of
slow tasks

HLL Support Sawzall [31] Pig Latin [32,33] DryadLINQ [27] Pregel [34]
has related
features

N/A

Environment Linux cluster Linux clusters,
Amazon Elastic
MapReduce on
EC2

Windows
HPCS cluster

Linux cluster,
EC2

Windows
Azure, Azure
Local
Development
Fabric

Intermediate
Data Transfer

File File, HTTP File, TCP
pipes, shared-
memory FIFOs

Publish-
subscribe
messaging

Files, TCP
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traditional implementations for many task problems, as it supports dynamic execution, strong
fault tolerance, and an easy-to-use high-level interface. The major open source/commercial
MapReduce implementations are Hadoop [23] and Dryad [24–27] with execution possible with
or without VMs.

Hadoop is currently offered by Amazon, and we expect Dryad to be available on Azure.
A prototype Azure MapReduce was built at Indiana University, which we will discuss shortly. On
FutureGrid, we already intend to support Hadoop, Dryad, and other MapReduce approaches, includ-
ing Twister [29] support for iterative computations seen in many data-mining and linear algebra
applications. Note that this approach has some similarities with Cloudera [35] which offers a variety
of Hadoop distributions including Amazon and Linux. MapReduce is closer to broad deployment
than other cloud platform features, as there is quite a bit of experience with Hadoop and Dryad out-
side clouds.

6.1.4.3 Cloud Programming Models
In many ways, most of the previous sections describe programming model features, but these are
“macroscopic” constructs and do not address, for example, the coding (language and libraries).
Both the GAE and Manjrasoft Aneka environments represent programming models; both are applied
to clouds, but are really not specific to this architecture. Iterative MapReduce is an interesting
programming model that offers portability between cloud, HPC and cluster environments.

6.1.4.4 SaaS
Services are used in a similar fashion in commercial clouds and most modern distributed systems.
We expect users to package their programs wherever possible, so no special support is needed to
enable SaaS. We already discussed in Section 6.1.3 why “Systems software as a service” was an
interesting idea in the context of a database service. We desire a SaaS environment that provides
many useful tools to develop cloud applications over large data sets. In addition to the technical
features, such as MapReduce, BigTable, EC2, S3, Hadoop, AWS, GAE, and WebSphere2, we need
protection features that may help us to achieve scalability, security, privacy, and availability.

6.2 PARALLEL AND DISTRIBUTED PROGRAMMING PARADIGMS
We define a parallel and distributed program as a parallel program running on a set of computing
engines or a distributed computing system. The term carries the notion of two fundamental terms in
computer science: distributed computing system and parallel computing. A distributed computing
system is a set of computational engines connected by a network to achieve a common goal of
running a job or an application. A computer cluster or network of workstations is an example of a
distributed computing system. Parallel computing is the simultaneous use of more than one computa-
tional engine (not necessarily connected via a network) to run a job or an application. For instance,
parallel computing may use either a distributed or a nondistributed computing system such as a multi-
processor platform.

Running a parallel program on a distributed computing system (parallel and distributed pro-
gramming) has several advantages for both users and distributed computing systems. From the
users’ perspective, it decreases application response time; from the distributed computing systems’
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standpoint, it increases throughput and resource utilization. Running a parallel program on a distributed
computing system, however, could be a very complicated process. Therefore, to place the complexity in
perspective, data flow of running a typical parallel program on a distributed system is further explained
in this chapter.

6.2.1 Parallel Computing and Programming Paradigms
Consider a distributed computing system consisting of a set of networked nodes or workers. The
system issues for running a typical parallel program in either a parallel or a distributed manner
would include the following [36–39]:

• Partitioning This is applicable to both computation and data as follows:
• Computation partitioning This splits a given job or a program into smaller tasks. Partitioning

greatly depends on correctly identifying portions of the job or program that can be performed
concurrently. In other words, upon identifying parallelism in the structure of the program, it can
be divided into parts to be run on different workers. Different parts may process different data
or a copy of the same data.

• Data partitioning This splits the input or intermediate data into smaller pieces. Similarly, upon
identification of parallelism in the input data, it can also be divided into pieces to be processed
on different workers. Data pieces may be processed by different parts of a program or a copy of
the same program.

• Mapping This assigns the either smaller parts of a program or the smaller pieces of data to
underlying resources. This process aims to appropriately assign such parts or pieces to be run
simultaneously on different workers and is usually handled by resource allocators in the system.

• Synchronization Because different workers may perform different tasks, synchronization and
coordination among workers is necessary so that race conditions are prevented and data
dependency among different workers is properly managed. Multiple accesses to a shared
resource by different workers may raise race conditions, whereas data dependency happens
when a worker needs the processed data of other workers.

• Communication Because data dependency is one of the main reasons for communication among
workers, communication is always triggered when the intermediate data is sent to workers.

• Scheduling For a job or program, when the number of computation parts (tasks) or data pieces
is more than the number of available workers, a scheduler selects a sequence of tasks or data
pieces to be assigned to the workers. It is worth noting that the resource allocator performs the
actual mapping of the computation or data pieces to workers, while the scheduler only picks the
next part from the queue of unassigned tasks based on a set of rules called the scheduling
policy. For multiple jobs or programs, a scheduler selects a sequence of jobs or programs to be
run on the distributed computing system. In this case, scheduling is also necessary when system
resources are not sufficient to simultaneously run multiple jobs or programs.

6.2.1.1 Motivation for Programming Paradigms
Because handling the whole data flow of parallel and distributed programming is very time-
consuming and requires specialized knowledge of programming, dealing with these issues may affect
the productivity of the programmer and may even result in affecting the program’s time to market.
Furthermore, it may detract the programmer from concentrating on the logic of the program itself.

344 CHAPTER 6 Cloud Programming and Software Environments



Therefore, parallel and distributed programming paradigms or models are offered to abstract many
parts of the data flow from users.

In other words, these models aim to provide users with an abstraction layer to hide implementa-
tion details of the data flow which users formerly ought to write codes for. Therefore, simplicity of
writing parallel programs is an important metric for parallel and distributed programming para-
digms. Other motivations behind parallel and distributed programming models are (1) to improve
productivity of programmers, (2) to decrease programs’ time to market, (3) to leverage underlying
resources more efficiently, (4) to increase system throughput, and (5) to support higher levels of
abstraction [40].

MapReduce, Hadoop, and Dryad are three of the most recently proposed parallel and distributed
programming models. They were developed for information retrieval applications but have been
shown to be applicable for a variety of important applications [41]. Further, the loose coupling of
components in these paradigms makes them suitable for VM implementation and leads to much bet-
ter fault tolerance and scalability for some applications than traditional parallel computing models
such as MPI [42–44].

6.2.2 MapReduce, Twister, and Iterative MapReduce
MapReduce, as introduced in Section 6.1.4, is a software framework which supports parallel and
distributed computing on large data sets [27,37,45,46]. This software framework abstracts the data
flow of running a parallel program on a distributed computing system by providing users with two
interfaces in the form of two functions: Map and Reduce. Users can override these two functions to
interact with and manipulate the data flow of running their programs. Figure 6.1 illustrates the logi-
cal data flow from the Map to the Reduce function in MapReduce frameworks. In this framework,
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MapReduce
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framework
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MapReduce Library

Controller

Flow of data

Input
files
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files

Reduce
function
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FIGURE 6.1

MapReduce framework: Input data flows through the Map and Reduce functions to generate the output result
under the control flow using MapReduce software library. Special user interfaces are used to access the Map
and Reduce resources.
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the “value” part of the data, (key, value), is the actual data, and the “key” part is only used by the
MapReduce controller to control the data flow [37].

6.2.2.1 Formal Definition of MapReduce
The MapReduce software framework provides an abstraction layer with the data flow and flow of con-
trol to users, and hides the implementation of all data flow steps such as data partitioning, mapping,
synchronization, communication, and scheduling. Here, although the data flow in such frameworks is
predefined, the abstraction layer provides two well-defined interfaces in the form of two functions: Map
and Reduce [47]. These two main functions can be overridden by the user to achieve specific objectives.
Figure 6.1 shows the MapReduce framework with data flow and control flow.

Therefore, the user overrides the Map and Reduce functions first and then invokes the provided
MapReduce (Spec, & Results) function from the library to start the flow of data. The MapReduce
function, MapReduce (Spec, & Results), takes an important parameter which is a specification
object, the Spec. This object is first initialized inside the user’s program, and then the user writes
code to fill it with the names of input and output files, as well as other optional tuning parameters.
This object is also filled with the name of the Map and Reduce functions to identify these user-
defined functions to the MapReduce library.

The overall structure of a user’s program containing the Map, Reduce, and the Main functions is
given below. The Map and Reduce are two major subroutines. They will be called to implement the
desired function performed in the main program.

Map Function (... . )
{

... ...
}

Reduce Function (... . )
{

... ...
}

Main Function (... . )
{

Initialize Spec object
... ...
MapReduce (Spec, & Results)

}

6.2.2.2 MapReduce Logical Data Flow
The input data to both the Map and the Reduce functions has a particular structure. This also pertains
for the output data. The input data to the Map function is in the form of a (key, value) pair. For exam-
ple, the key is the line offset within the input file and the value is the content of the line. The output
data from the Map function is structured as (key, value) pairs called intermediate (key, value) pairs.
In other words, the user-defined Map function processes each input (key, value) pair and produces a
number of (zero, one, or more) intermediate (key, value) pairs. Here, the goal is to process all input
(key, value) pairs to the Map function in parallel (Figure 6.2).

In turn, the Reduce function receives the intermediate (key, value) pairs in the form of a group of
intermediate values associated with one intermediate key, (key, [set of values]). In fact, the
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MapReduce framework forms these groups by first sorting the intermediate (key, value) pairs and
then grouping values with the same key. It should be noted that the data is sorted to simplify the
grouping process. The Reduce function processes each (key, [set of values]) group and produces a set
of (key, value) pairs as output.

To clarify the data flow in a sample MapReduce application, one of the well-known MapReduce
problems, namely word count, to count the number of occurrences of each word in a collection of
documents is presented here. Figure 6.3 demonstrates the data flow of the word-count problem for
a simple input file containing only two lines as follows: (1) “most people ignore most poetry” and
(2) “most poetry ignores most people.” In this case, the Map function simultaneously produces a
number of intermediate (key, value) pairs for each line of content so that each word is the inter-
mediate key with 1 as its intermediate value; for example, (ignore, 1). Then the MapReduce library

Intermediate (key, val) pairs

Unique keys

Key

Line offset   Line content

Key

Key

Value

Value

Value

Input
Output

Map Reduce

MapReduce
library

S
or

t

G
ro

up

(key1, val)
(key1, val)
(key1, val)

(key1, [val, val...])

(key8, [val, val...])

(key, value)

(key2, val)

(key8, val)
(key2, val)

(key8, val)

(key8, val)

(key8, val)

(key5, val)
(key1, val)

˙
˙
˙

˙

˙
˙̇

˙
˙̇

˙
˙̇

˙
˙̇

˙
˙

˙
˙
˙

˙
˙
˙

FIGURE 6.2

MapReduce logical data flow in 5 processing stages over successive (key, value) pairs.
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cascade operations.
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collects all the generated intermediate (key, value) pairs and sorts them to group the 1’s for identical
words; for example, (people, [1,1]). Groups are then sent to the Reduce function in parallel so that
it can sum up the 1 values for each word and generate the actual number of occurrence for each
word in the file; for example, (people, 2).

6.2.2.3 Formal Notation of MapReduce Data Flow
The Map function is applied in parallel to every input (key, value) pair, and produces new set of
intermediate (key, value) pairs [37] as follows:

ðkey1, val1Þ →
MapFunction

List ðkey2, val2Þ (6.1)

Then the MapReduce library collects all the produced intermediate (key, value) pairs from all input
(key, value) pairs, and sorts them based on the “key” part. It then groups the values of all occur-
rences of the same key. Finally, the Reduce function is applied in parallel to each group producing
the collection of values as output as illustrated here:

ðkey2, List ðval2ÞÞ →
Reduce Function

List ðval2Þ (6.2)

6.2.2.4 Strategy to Solve MapReduce Problems
As mentioned earlier, after grouping all the intermediate data, the values of all occurrences of the
same key are sorted and grouped together. As a result, after grouping, each key becomes unique in
all intermediate data. Therefore, finding unique keys is the starting point to solving a typical
MapReduce problem. Then the intermediate (key, value) pairs as the output of the Map function
will be automatically found. The following three examples explain how to define keys and values
in such problems:

Problem 1: Counting the number of occurrences of each word in a collection of documents
Solution: unique “key”: each word, intermediate “value”: number of occurrences
Problem 2: Counting the number of occurrences of words having the same size, or the same
number of letters, in a collection of documents
Solution: unique “key”: each word, intermediate “value”: size of the word
Problem 3: Counting the number of occurrences of anagrams in a collection of documents.
Anagrams are words with the same set of letters but in a different order (e.g., the words “listen”
and “silent”).
Solution: unique “key”: alphabetically sorted sequence of letters for each word (e.g., “eilnst”),
intermediate “value”: number of occurrences

6.2.2.5 MapReduce Actual Data and Control Flow
The main responsibility of the MapReduce framework is to efficiently run a user’s program on a
distributed computing system. Therefore, the MapReduce framework meticulously handles all parti-
tioning, mapping, synchronization, communication, and scheduling details of such data flows
[48,49]. We summarize this in the following distinct steps:

1. Data partitioning The MapReduce library splits the input data (files), already stored in GFS,
into M pieces that also correspond to the number of map tasks.
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2. Computation partitioning This is implicitly handled (in the MapReduce framework) by
obliging users to write their programs in the form of the Map and Reduce functions. Therefore,
the MapReduce library only generates copies of a user program (e.g., by a fork system call)
containing the Map and the Reduce functions, distributes them, and starts them up on a number
of available computation engines.

3. Determining the master and workers The MapReduce architecture is based on a master-
worker model. Therefore, one of the copies of the user program becomes the master and the rest
become workers. The master picks idle workers, and assigns the map and reduce tasks to them.
A map/reduce worker is typically a computation engine such as a cluster node to run map/
reduce tasks by executing Map/Reduce functions. Steps 4–7 describe the map workers.

4. Reading the input data (data distribution) Each map worker reads its corresponding portion
of the input data, namely the input data split, and sends it to its Map function. Although a map
worker may run more than one Map function, which means it has been assigned more than one
input data split, each worker is usually assigned one input split only.

5. Map function Each Map function receives the input data split as a set of (key, value) pairs to
process and produce the intermediated (key, value) pairs.

6. Combiner function This is an optional local function within the map worker which applies to
intermediate (key, value) pairs. The user can invoke the Combiner function inside the user
program. The Combiner function runs the same code written by users for the Reduce function as its
functionality is identical to it. The Combiner function merges the local data of each map worker
before sending it over the network to effectively reduce its communication costs. As mentioned in
our discussion of logical data flow, the MapReduce framework sorts and groups the data before it
is processed by the Reduce function. Similarly, the MapReduce framework will also sort and group
the local data on each map worker if the user invokes the Combiner function.

7. Partitioning function As mentioned in our discussion of the MapReduce data flow, the
intermediate (key, value) pairs with identical keys are grouped together because all values
inside each group should be processed by only one Reduce function to generate the final result.
However, in real implementations, since there are M map and R reduce tasks, intermediate
(key, value) pairs with the same key might be produced by different map tasks, although they
should be grouped and processed together by one Reduce function only.
Therefore, the intermediate (key, value) pairs produced by each map worker are partitioned
into R regions, equal to the number of reduce tasks, by the Partitioning function to guarantee
that all (key, value) pairs with identical keys are stored in the same region. As a result, since
reduce worker i reads the data of region i of all map workers, all (key, value) pairs with the
same key will be gathered by reduce worker i accordingly (see Figure 6.4). To implement
this technique, a Partitioning function could simply be a hash function (e.g., Hash(key) mod
R) that forwards the data into particular regions. It is also worth noting that the locations of
the buffered data in these R partitions are sent to the master for later forwarding of data to
the reduce workers.
Figure 6.5 shows the data flow implementation of all data flow steps. The following are two
networking steps:

8. Synchronization MapReduce applies a simple synchronization policy to coordinate map
workers with reduce workers, in which the communication between them starts when all map
tasks finish.
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9. Communication Reduce worker i, already notified of the location of region i of all map workers,
uses a remote procedure call to read the data from the respective region of all map workers. Since
all reduce workers read the data from all map workers, all-to-all communication among all map
and reduce workers, which incurs network congestion, occurs in the network. This issue is one of
the major bottlenecks in increasing the performance of such systems [50–52]. A data transfer
module was proposed to schedule data transfers independently [55].
Steps 10 and 11 correspond to the reduce worker domain:

10. Sorting and Grouping When the process of reading the input data is finalized by a reduce
worker, the data is initially buffered in the local disk of the reduce worker. Then the reduce
worker groups intermediate (key, value) pairs by sorting the data based on their keys,
followed by grouping all occurrences of identical keys. Note that the buffered data is sorted
and grouped because the number of unique keys produced by a map worker may be more
than R regions in which more than one key exists in each region of a map worker (see
Figure 6.4).

11. Reduce function The reduce worker iterates over the grouped (key, value) pairs, and for each
unique key, it sends the key and corresponding values to the Reduce function. Then this function
processes its input data and stores the output results in predetermined files in the user’s program.

To better clarify the interrelated data control and control flow in the MapReduce framework,
Figure 6.6 shows the exact order of processing control in such a system contrasting with dataflow
in Figure 6.5.

6.2.2.6 Compute-Data Affinity
The MapReduce software framework was first proposed and implemented by Google. The first
implementation was coded in C. The implementation takes advantage of GFS [53] as the underly-
ing layer. MapReduce could perfectly adapt itself to GFS. GFS is a distributed file system where
files are divided into fixed-size blocks (chunks) and blocks are distributed and stored on cluster
nodes.

As stated earlier, the MapReduce library splits the input data (files) into fixed-size blocks, and
ideally performs the Map function in parallel on each block. In this case, as GFS has already stored
files as a set of blocks, the MapReduce framework just needs to send a copy of the user’s program
containing the Map function to the nodes’ already stored data blocks. This is the notion of sending
computation toward data rather than sending data toward computation. Note that the default GFS
block size is 64MB which is identical to that of the MapReduce framework.

6.2.2.7 Twister and Iterative MapReduce
It is important to understand the performance of different runtimes and, in particular, to compare MPI
and MapReduce [43,44,55,56]. The two major sources of parallel overhead are load imbalance and
communication (which is equivalent to synchronization overhead as communication synchronizes
parallel units [threads or processes] in Categories 2 and 6 of Table 6.10). The communication over-
head in MapReduce can be quite high, for two reasons:

• MapReduce reads and writes via files, whereas MPI transfers information directly between nodes
over the network.
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• MPI does not transfer all data from node to node, but just the amount needed to update
information. We can call the MPI flow δ flow and the MapReduce flow full data flow.

The same phenomenon is seen in all “classic parallel” loosely synchronous applications which
typically exhibit an iteration structure over compute phases followed by communication phases. We
can address the performance issues with two important changes:

1. Stream information between steps without writing intermediate steps to disk.
2. Use long-running threads or processors to communicate the δ (between iterations) flow.

These changes will lead to major performance increases at the cost of poorer fault tolerance and
ease to support dynamic changes such as the number of available nodes. This concept [42] has
been investigated in several projects [34,57–59] while the direct idea of using MPI for MapReduce
applications is investigated in [44]. The Twister programming paradigm and its implementation
architecture at run time are illustrated in Figure 6.7(a, b). In Example 6.1, we summarize Twister [60]
whose performance results for K means are shown in Figure 6.8 [55,56], where Twister is much faster
than traditional MapReduce. Twister distinguishes the static data which is never reloaded from the
dynamic δ flow that is communicated.
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(Courtesy of Yahoo! Pig Tutorial [54] )
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Example 6.1 Performance of K Means Clustering in MPI, Twister, Hadoop, and DryadLINQ

The MapReduce approach leads to fault tolerance and flexible scheduling, but for some applications the per-
formance degradation compared to MPI is serious, as illustrated in Figure 6.8 for a simple parallel K means
clustering algorithm. Hadoop and DryadLINQ are more than a factor of 10 slower than MPI for the largest data
set, and perform even more poorly for smaller data sets. One could use many communication mechanisms in
Iterative MapReduce, but Twister chose a publish-subscribe network using a distributed set of brokers, as
described in Section 5.2 with similar performance achieved with ActiveMQ and NaradaBrokering.

The Map-Reduce pair is iteratively executed in long-running threads. We compare in Figure 6.9.
the different thread and process structures of 4 parallel programming paradigms: namely Hadoop,
Dryad, Twister (also called MapReduce++), and MPI. Note that Dryad can use pipes and avoids
costly disk writing according to the original papers [26,27].
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Twister: An iterative MapReduce programming paradigm for repeated MapReduce executions.
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Example 6.2 Performance of Hadoop and Twister on ClueWeb Data Set over 256 Processor

Cores

Important research areas for Iterative MapReduce include fault tolerance and scalable approaches to com-
munication. Figure 6.10 shows [55] that iterative algorithms are found in information retrieval. This figure
shows the famous Page Rank algorithm (with a kernel of iterative matrix vector multiplication) run on the
public ClueWeb data sets, and independent of size, Twister is about 20 times faster than Hadoop as
revealed by the gap between the top and lower curves in Figure 6.10.

6.2.3 Hadoop Library from Apache
Hadoop is an open source implementation of MapReduce coded and released in Java (rather than C)
by Apache. The Hadoop implementation of MapReduce uses the Hadoop Distributed File System
(HDFS) as its underlying layer rather than GFS. The Hadoop core is divided into two fundamental
layers: the MapReduce engine and HDFS. The MapReduce engine is the computation engine run-
ning on top of HDFS as its data storage manager. The following two sections cover the details of
these two fundamental layers.

HDFS: HDFS is a distributed file system inspired by GFS that organizes files and stores their
data on a distributed computing system.
HDFS Architecture: HDFS has a master/slave architecture containing a single NameNode as
the master and a number of DataNodes as workers (slaves). To store a file in this architecture,
HDFS splits the file into fixed-size blocks (e.g., 64 MB) and stores them on workers
(DataNodes). The mapping of blocks to DataNodes is determined by the NameNode. The
NameNode (master) also manages the file system’s metadata and namespace. In such systems,
the namespace is the area maintaining the metadata, and metadata refers to all the information
stored by a file system that is needed for overall management of all files. For example,
NameNode in the metadata stores all information regarding the location of input splits/blocks in
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Performance of Hadoop and Twister on ClueWeb data set using 256 processing cores.
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all DataNodes. Each DataNode, usually one per node in a cluster, manages the storage attached
to the node. Each DataNode is responsible for storing and retrieving its file blocks [61].
HDFS Features: Distributed file systems have special requirements, such as performance,
scalability, concurrency control, fault tolerance, and security requirements [62], to operate
efficiently. However, because HDFS is not a general-purpose file system, as it only executes
specific types of applications, it does not need all the requirements of a general distributed file
system. For example, security has never been supported for HDFS systems. The following
discussion highlights two important characteristics of HDFS to distinguish it from other generic
distributed file systems [63].
HDFS Fault Tolerance: One of the main aspects of HDFS is its fault tolerance characteristic.
Since Hadoop is designed to be deployed on low-cost hardware by default, a hardware failure in
this system is considered to be common rather than an exception. Therefore, Hadoop considers
the following issues to fulfill reliability requirements of the file system [64]:
• Block replication To reliably store data in HDFS, file blocks are replicated in this system.

In other words, HDFS stores a file as a set of blocks and each block is replicated and
distributed across the whole cluster. The replication factor is set by the user and is three by
default.

• Replica placement The placement of replicas is another factor to fulfill the desired fault
tolerance in HDFS. Although storing replicas on different nodes (DataNodes) located in
different racks across the whole cluster provides more reliability, it is sometimes ignored as
the cost of communication between two nodes in different racks is relatively high in
comparison with that of different nodes located in the same rack. Therefore, sometimes
HDFS compromises its reliability to achieve lower communication costs. For example, for
the default replication factor of three, HDFS stores one replica in the same node the original
data is stored, one replica on a different node but in the same rack, and one replica on a
different node in a different rack to provide three copies of the data [65].

• Heartbeat and Blockreport messages Heartbeats and Blockreports are periodic messages
sent to the NameNode by each DataNode in a cluster. Receipt of a Heartbeat implies that the
DataNode is functioning properly, while each Blockreport contains a list of all blocks on a
DataNode [65]. The NameNode receives such messages because it is the sole decision maker
of all replicas in the system.

HDFS High-Throughput Access to Large Data Sets (Files): Because HDFS is primarily
designed for batch processing rather than interactive processing, data access throughput in
HDFS is more important than latency. Also, because applications run on HDFS typically have
large data sets, individual files are broken into large blocks (e.g., 64 MB) to allow HDFS to
decrease the amount of metadata storage required per file. This provides two advantages: The
list of blocks per file will shrink as the size of individual blocks increases, and by keeping
large amounts of data sequentially within a block, HDFS provides fast streaming reads
of data.
HDFS Operation: The control flow of HDFS operations such as write and read can properly
highlight roles of the NameNode and DataNodes in the managing operations. In this section, the
control flow of the main operations of HDFS on files is further described to manifest the
interaction between the user, the NameNode, and the DataNodes in such systems [63].
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• Reading a file To read a file in HDFS, a user sends an “open” request to the NameNode to
get the location of file blocks. For each file block, the NameNode returns the address of a
set of DataNodes containing replica information for the requested file. The number of
addresses depends on the number of block replicas. Upon receiving such information, the
user calls the read function to connect to the closest DataNode containing the first block of
the file. After the first block is streamed from the respective DataNode to the user, the
established connection is terminated and the same process is repeated for all blocks of the
requested file until the whole file is streamed to the user.

• Writing to a file To write a file in HDFS, a user sends a “create” request to the NameNode
to create a new file in the file system namespace. If the file does not exist, the NameNode
notifies the user and allows him to start writing data to the file by calling the write function.
The first block of the file is written to an internal queue termed the data queue while a data
streamer monitors its writing into a DataNode. Since each file block needs to be replicated
by a predefined factor, the data streamer first sends a request to the NameNode to get a list
of suitable DataNodes to store replicas of the first block.

The steamer then stores the block in the first allocated DataNode. Afterward, the block is for-
warded to the second DataNode by the first DataNode. The process continues until all allocated
DataNodes receive a replica of the first block from the previous DataNode. Once this replication
process is finalized, the same process starts for the second block and continues until all blocks of
the file are stored and replicated on the file system.

6.2.3.1 Architecture of MapReduce in Hadoop
The topmost layer of Hadoop is the MapReduce engine that manages the data flow and control
flow of MapReduce jobs over distributed computing systems. Figure 6.11 shows the MapReduce
engine architecture cooperating with HDFS. Similar to HDFS, the MapReduce engine also
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HDFS and MapReduce architecture in Hadoop where boxes with different shadings refer to different
functional nodes applied to different blocks of data.
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has a master/slave architecture consisting of a single JobTracker as the master and a number of
TaskTrackers as the slaves (workers). The JobTracker manages the MapReduce job over a cluster
and is responsible for monitoring jobs and assigning tasks to TaskTrackers. The TaskTracker man-
ages the execution of the map and/or reduce tasks on a single computation node in the cluster.

Each TaskTracker node has a number of simultaneous execution slots, each executing either a
map or a reduce task. Slots are defined as the number of simultaneous threads supported by CPUs
of the TaskTracker node. For example, a TaskTracker node with N CPUs, each supporting M
threads, has M * N simultaneous execution slots [66]. It is worth noting that each data block is pro-
cessed by one map task running on a single slot. Therefore, there is a one-to-one correspondence
between map tasks in a TaskTracker and data blocks in the respective DataNode.

6.2.3.2 Running a Job in Hadoop
Three components contribute in running a job in this system: a user node, a JobTracker, and several
TaskTrackers. The data flow starts by calling the runJob(conf) function inside a user program run-
ning on the user node, in which conf is an object containing some tuning parameters for the
MapReduce framework and HDFS. The runJob(conf) function and conf are comparable to the
MapReduce(Spec, &Results) function and Spec in the first implementation of MapReduce by
Google. Figure 6.12 depicts the data flow of running a MapReduce job in Hadoop [63].

• Job Submission Each job is submitted from a user node to the JobTracker node that might be
situated in a different node within the cluster through the following procedure:

• A user node asks for a new job ID from the JobTracker and computes input file splits.
• The user node copies some resources, such as the job’s JAR file, configuration file, and

computed input splits, to the JobTracker’s file system.
• The user node submits the job to the JobTracker by calling the submitJob() function.
• Task assignment The JobTracker creates one map task for each computed input split by the user

node and assigns the map tasks to the execution slots of the TaskTrackers. The JobTracker considers
the localization of the data when assigning the map tasks to the TaskTrackers. The JobTracker

Submit
job

HeartbeatTask
assignment

TaskTracker

JVMJVMJVMJVM

DataNode DataNode

HMM

Slots

Blocks

TaskTracker

JVM

DataNode

TaskTracker

User JobTracker NameNode

M
ap

M
ap

M
ap

R
ed

uc
e

M
ap

FIGURE 6.12

Data flow in running a MapReduce job at various task trackers using the Hadoop library.

358 CHAPTER 6 Cloud Programming and Software Environments



also creates reduce tasks and assigns them to the TaskTrackers. The number of reduce tasks is
predetermined by the user, and there is no locality consideration in assigning them.

• Task execution The control flow to execute a task (either map or reduce) starts inside the
TaskTracker by copying the job JAR file to its file system. Instructions inside the job JAR file
are executed after launching a Java Virtual Machine (JVM) to run its map or reduce task.

• Task running check A task running check is performed by receiving periodic heartbeat messages
to the JobTracker from the TaskTrackers. Each heartbeat notifies the JobTracker that the sending
TaskTracker is alive, and whether the sending TaskTracker is ready to run a new task.

6.2.4 Dryad and DryadLINQ from Microsoft
Two runtime software environments are reviewed in this section for parallel and distributed comput-
ing, namely the Dryad and DryadLINQ, both developed by Microsoft.

6.2.4.1 Dryad
Dryad is more flexible than MapReduce as the data flow of its applications is not dictated/predeter-
mined and can be easily defined by users. To achieve such flexibility, a Dryad program or job is defined
by a directed acyclic graph (DAG) where vertices are computation engines and edges are communica-
tion channels between vertices. Therefore, users or application developers can easily specify arbitrary
DAGs to specify data flows in jobs.

Given a DAG, Dryad assigns the computational vertices to the underlying computation engines
(cluster nodes) and controls the data flow through edges (communication between cluster nodes).
Data partitioning, scheduling, mapping, synchronization, communication, and fault tolerance are
major implementation details hidden by Dryad to facilitate its programming environment. Because
the data flow of a job is arbitrary for this system, only the control flow of the runtime environment
is further explained here. As shown in Figure 6.13(a), the two main components handling the con-
trol flow of Dryad are the job manager and the name server.

In Dryad, the distributed job is represented as a DAG where each vertex is a program and edges
represent data channels. Thus, the whole job will be constructed by the application programmer
who defines the processing procedures as well as the flow of data. This logical computation graph
will be automatically mapped onto the physical nodes by the Dryad runtime. A Dryad job is con-
trolled by the job manager, which is responsible for deploying the program to the multiple nodes in
the cluster. It runs either within the computing cluster or as a process in the user’s workstation
which can access the cluster. The job manager has the code to construct the DAG as well as the
library to schedule the work running on top of the available resources. Data transfer is done via
channels without involving the job manager. Thus, the job manager should not be the performance
bottleneck. In summary, the job manager

1. Constructs a job’s communication graph (data flow graph) using the application-specific
program provided by the user.

2. Collects the information required to map the data flow graph to the underlying resources
(computation engine) from the name server.

The cluster has a name server which is used to enumerate all the available computing resources
in the cluster. Thus, the job manager can contact the name server to get the topology of the whole
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cluster and make scheduling decisions. A processing daemon runs in each computing node in the
cluster. The binary of the program will be sent to the corresponding processing node directly from
the job manager. The daemon can be viewed as a proxy so that the job manager can communicate
with the remote vertices and monitor the state of the computation. By gathering this information,
the name server provides the job manager with a perfect view of the underlying resources and net-
work topology. Therefore, the job manager is able to:

1. Map the data flow graph to the underlying resources.
2. Schedule all necessary communications and synchronization across the respective resources.
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It also considers data and computation locality when mapping the data flow graph to the underlying
resources [26]. When the data flow graph is mapped on a set of computation engines, a light dae-
mon runs on each cluster node to run the assigned tasks. Each task is defined by the user using an
application-specific program. During runtime, the job manager communicates with each daemon
to monitor the state of the computation of the node and its communication with its preceding and
succeeding nodes. At runtime, the channels are used to transport the structured items between vertices
which represent the processing programs. There are several types of communication mechanisms for
implementing channels such as shared memory, TCP sockets, or even distributed file systems.

The execution of a Dryad job can be considered a 2D distributed set of pipes. Traditional UNIX
pipes are 1D pipes, with each node in the pipe as a single program. Dryad’s 2D distributed pipe sys-
tem has multiple processing programs in each vertex node. In this way, large-scale data can be pro-
cessed simultaneously. Figure 6.13(b) shows the Dryad 2D pipe job structure. During 2D pipe
execution, Dryad defines many operations to construct and change the DAG dynamically. The opera-
tions include creating new vertices, adding graph edges, merging two graphs, as well as handling job
input and output. Dryad also has a fault-tolerant mechanism built in. As it is built on a DAG, there
are typically two types of failures: vertex failures and channel failures, which are handled differently.

As there are many nodes in the cluster, the job manager can choose another node to re-execute the
corresponding job assigned to the failed node. In case of an edge failure, the vertex that created the
channel will be re-executed and a new channel will be created and touch the corresponding nodes
again. Dryad provides other mechanisms in addition to the runtime graph refinements which are used
for improving execution performance. As a general framework, Dryad can be used in many situations,
including scripting language support, map-reduce programming, and SQL service integration.

6.2.4.2 DryadLINQ from Microsoft
DryadLINQ is built on top of Microsoft’s Dryad execution framework (see http://research.microsoft
.com/en-us/projects/DryadLINQ/). Dryad can perform acyclic task scheduling and run on large-scale
servers. The goal of DryadLINQ is to make large-scale, distributed cluster computing available to
ordinary programmers. Actually, DryadLINQ, as the name implies, combines two important
components: the Dryad distributed execution engine and .NET Language Integrated Query (LINQ).
LINQ is particularly for users familiar with a database programming model. Figure 6.14 shows the
flow of execution with DryadLINQ. The execution is divided into nine steps as follows:

1. A .NET user application runs, and creates a DryadLINQ expression object. Because of LINQ’s
deferred evaluation, the actual execution of the expression has not occurred.

2. The application calls ToDryadTable triggering a data-parallel execution. The expression object is
handed to DryadLINQ.

3. DryadLINQ compiles the LINQ expression into a distributed Dryad execution plan. The
expression is decomposed into subexpressions, each to be run in a separate Dryad vertex. Code
and static data for the remote Dryad vertices are generated, followed by the serialization code
for the required data types.

4. DryadLINQ invokes a custom Dryad job manager which is used to manage and monitor the
execution flow of the corresponding task.

5. The job manager creates the job graph using the plan created in step 3. It schedules and spawns
the vertices as resources become available.
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6. Each Dryad vertex executes a vertex-specific program.
7. When the Dryad job completes successfully it writes the data to the out table(s).
8. The job manager process terminates, and it returns control back to DryadLINQ. DryadLINQ

creates the local DryadTable objects encapsulating the output of the execution. The DryadTable
objects here might be the input to the next phase.

9. Control returns to the user application. The iterator interface over a DryadTable allows the user
to read its contents as .NET objects.

Not all programs go through all nine steps. Some programs may go through fewer steps. Based on
the preceding description, DryadLINQ enables users to integrate their current programming language
(C#) with a compiler and a runtime execution engine. The following example shows how to write a
histogram in DryadLINQ.

Example 6.3 A Histogram Written in DryadLINQ

We show a histogram program written in DryadLINQ for counting the frequency of each word in a text file.
The entire program is listed here for readers to trace through to familiarize with the high-level language for
Dryad programming. For details, the reader is referred to the article that introduces by Yu, et al. [27].

[Serializable]
public struct Pair {

string word;
int count;
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public Pair(string w, int c)
{

word = w;
count = c;

}
public override string ToString() {

return word + ":" + count.ToString();
}

}
public static IQueryable<Pair> Histogram(

string directory,
string filename,
int k)

{
DryadDataContext ddc = new DryadDataContext("file://" + directory);
DryadTable<LineRecord> table =

ddc.GetPartitionedTable<LineRecord>(filename);
IQueryable<string> words =

table.SelectMany(x => x.line.Split(' ').AsEnumerable());
IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x);
IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count()));
IQueryable<Pair> ordered = counts.OrderByDescending(x => x.Count);
IQueryable<Pair> top = ordered.Take(k);
return top;

}

Example 6.4 Sample Execution of a Histogram of the Word-Count Problem

The execution flow of such programs is very similar to the word-count program in the MapReduce frame-
work. Table 6.6 shows how this program can be executed on a sample text input. Each row in the table
presents the execution effect of each code line in the program. The execution of the program will go
through all of the steps that a typical DryadLINQ program will involve.

Programmers do not have to worry about parallel execution of the program or consider fault toler-
ance. Scalability, reliability, and some other difficult issues involved in distributed systems are all hidden

Table 6.6 Sample Execution of Histogram

Operator Output

Table “A line of words of wisdom”

SelectMany [“A”, “line”, “of”, “words”, “of”, “wisdom”]
GroupBy [[“A”], [“line”], [“of”, “of”], [“words”], [“wisdom”]]
Select [{“A”, 1}, {“line”, 1}, {“of”, 2}, {“words”, 1}, {“wisdom”, 1}]
OrderByDescending [{“of”, 2}, {“A”, 1}, {“line”, 1}, {“words”, 1}, {“wisdom”, 1}]
Take(3) [{“of”, 2}, {“A”, 1}, {“line”, 1}]
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inside the DryadLINQ framework, and the programs are more concerned with the application program
logic. This can greatly reduce the level of programming skill required for parallel data process
programming.

Example 6.5 Hadoop Implementation of a MapReduce WebVisCounter Program

In this example, we present a practical MapReduce program coded in Hadoop. Called WebVisCounter,
this sample program counts the number of times users connect to or visit a given web site using a
particular operating system (e.g., Windows XP or Linux Ubuntu). The input data is shown here. A single
line of a typical web server log file has eight fields separated by tabs or spaces with the following
meanings:

1. 176.123.143.12 (IP address of the machine connected)
2. – (a separator)
3. [10/Sep/2010:01:11:30-1100] (A timestamp of the visit in the format: DD:Mon:YYYY HH:MM:SS,

and the −11:00 is the offset from Greenwich Mean Time)
4. “GET /gse/apply/int_research_app_form.pdf HTTP/1.0” (GET requests the file, /gse/apply/int_

research_app_form.pdf, using the HTTP/1.0 protocol)
5. 200 (The status code to reflect success of the user’s request)
6. 1363148 (The number of bytes transferred)
7. “http://www.eng.usyd.edu.au” (User starts here before reaching server)
8. “Mozilla/4.7[en](WinXp; U)” (The browser used to get to the web site, the version of the browser, the

language version, and the operating system)

Line offset M1

Map Partitioning

Sort & group

Reduce Output

(Macintosh, 4)

(Macintosh, 1)
(Macintosh, 1)
(Macintosh, 1)
(Macintosh, 1)

(Macintosh, 1,1,1,1)

(WinXP, 1,1,1,1,1)
(Win98, 1,1,1)

(WinXP, 5)
(Win98, 3)

(Macintosh, 1)

(WinXP, 1)

(WinXP, 1)
(Win98, 1)

(Macintosh, 1)
(Macintosh, 1)
(WinXP, 1)

(WinXP, 1)
(Win98, 1)

(Macintosh, 1)

(Macintosh, 1)
(WinXP, 1)

(WinXP,  1)

(Win98, 1)

(Macintosh, 1)

(WinXP, 1)

(Win98, 1)

(Macintosh, 1)

(WinXP, 1)

(Win98, 1)

(WinXP, 1)

(WinXP, 1)
(WinXP, 1)

(WinXP, 1)
(WinXP, 1)

(Win98, 1)

(Win98, 1)

(Win98, 1)

(0, 77.241.136.xx -- [12/Jan/2010...] ... Macintosh; U)
(207, 58.87.64.xx -- ([12/Jan/2010...] ... WinXP; U)
(290, 78.41.226.xx -- [10/Jan/2010...] ... Win98; U)
(310, 213.163.90.xx -- [29/Dec/2009...] ... WinXP; U)

(682, 77.230.60.xx -- [17/Nov/2009...] ... Macintosh; U)
(710, 216.55.163.xx -- [17/Nov/2009...] ... Win98; U)

(612, 77.236.192.xx -- [18/Nov/2009...] ... WinXP; U)

(380, 62.106.0.xx -- [20/Nov/2009...] ... Macintosh; U)
(420, 116.212.64.xx -- [20/Nov/2009...] ... Win98; U)

(459, 80.82.96.xx -- [19/Nov/2009...] ... WinXP; U)
(540, 1212.80.0.xx -- [19/Nov/2009...] ... Macintosh; U)

(320, 110.5.116.xx -- [20/Nov/2009...] ... WinXP; U)

M2

M3

M1

M2

(Macintosh, 1)
(WinXP, 1)
(Win98, 1)
(WinXP, 1)

M3

M1

R1

R2

Local disk of map workers Local disk of reduce workers

M2

M3

FIGURE 6.15

Data flow in WebVisCounter program execution.
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Because the output of interest is the number of times users connect to a given web site using a particular
operating system, the Map function parses each line to extract the type of the operating system used
(e.g.,WinXp) as a key and assigns a value (1 in this case) to it. The Reduce function in turn sums up the
number of 1s for each unique key (operating system type in this case). Figure 6.15 shows the associated
data flow for the WebVisCounter program.

6.2.5 Sawzall and Pig Latin High-Level Languages
Sawzall is a high-level language [31] built on top of Google’s MapReduce framework. Sawzall is
a scripting language that can do parallel data processing. As with MapReduce, Sawzall can do
distributed, fault-tolerant processing of very large-scale data sets, even at the scale of the data
collected from the entire Internet. Sawzall was developed by Rob Pike with an initial goal of
processing Google’s log files. In this regard it was hugely successful and changed a batch day-
long enterprise into an interactive session, enabling new approaches to using such data to be
developed. Figure 6.16 shows the overall model of data flow and processing procedures in the
Sawzall framework. Sawzall has recently been released as an open source project.

First the data is partitioned and processed locally with an on-site processing script. The local
data is filtered to get the necessary information. The aggregator is used to get the final results
based on the emitted data. Many of Google’s applications fit this model. Users write their
applications using the Sawzall scripting language. The Sawzall runtime engine translates the cor-
responding scripts to MapReduce programs running on many nodes. The Sawzall program can
harness the power of cluster computing automatically as well as attain reliability from redundant
servers.

Example 6.6 The File Summary Program in Sawzall

Here is a simple example of using Sawzall for data processing on clusters (the example is from the Sawzall
paper at [31]). Suppose we want to process a set of files with records in each file. Each record contains
one floating-point number. We want to calculate the number of records, the sum of the values, and the
sum of the squares of the values. The relevant code is as follows:

count: table sum of int;
total: table sum of float;

Raw data
Emitted data Sorted results

Filters Aggregator

FIGURE 6.16

The overall flow of filtering, aggregating, and collating in Sawzall.
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sum_of_squares: table sum of float;
x: float = input;
emit count <- 1;
emit total <- x;
emit sum_of_squares <- x * x;

The first three lines declare the aggregators as count, total, and sum_of_squares. table is a keyword
which defines an aggregator type. These particular tables are sum tables and they will automatically add
up the values emitted to them. For each input record, Sawzall initializes the predefined variable input to
the uninterpreted byte string of the input. The line x: float = input; converts the input into a floating-point
number and stores it in local variable x. The three emit statements send the intermediate values to the
aggregators. One can translate the Sawzall scripts into MapReduce programs and run them with multiple
servers.

6.2.5.1 Pig Latin
Pig Latin is a high-level data flow language developed by Yahoo! [33] that has been implemented
on top of Hadoop in the Apache Pig project [67]. Pig Latin, Sawzall and DryadLINQ are different
approaches to building languages on top of MapReduce and its extensions. They are compared in
Table 6.7.

DryadLINQ is building directly on SQL while the other two languages are of NOSQL heritage,
although Pig Latin supports major SQL constructs including Join, which is absent in Sawzall. Each
language automates the parallelism, so you only think about manipulation of individual elements
and then invoke supported collective operations. This is possible, of course, because needed paralle-
lism can be cleanly implemented by independent tasks with “side effects” only presented in

Table 6.7 Comparison of High-Level Data Analysis Languages

Sawzall Pig Latin DryadLINQ

Origin Google Yahoo! Microsoft
Data Model Google protocol buffer

or basic
Atom, Tuple, Bag, Map Partition file

Typing Static Dynamic Static
Category Interpreted Compiled Compiled
Programming Style Imperative Procedural: sequence

of declarative steps
Imperative and
declarative

Similarity to SQL Least Moderate A lot!
Extensibility (User-
Defined Functions)

No Yes Yes

Control Structures Yes No Yes
Execution Model Record operations +

fixed aggregations
Sequence of
MapReduce operations

DAGs

Target Runtime Google MapReduce Hadoop (Pig) Dryad
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supported collective operations. This is an important general approach to parallelism and was seen,
for example, a long time ago in High Performance Fortran [68]. There are several discussions of
Pig and Pig Latin in the literature [69,70], and here we summarize the language features. Table 6.8
lists the four data types in Pig Latin and Table 6.9 the 14 operators.

Example 6.7 Parallel Programming with Sawzall and Pig Latin

First one would read in data with commands such as:

Queries = LOAD 'filewithdata.txt' USING myUDF() AS (userId, queryString, timestamp);

Table 6.8 Pig Latin Data Types

Data Type Description Example

Atom Simple atomic value ‘Clouds’
Tuple Sequence of fields of any Pig Latin type (‘Clouds’, ‘Grids’)

Bag Collection of tuples with each member of
the bag allowed a different schema { }(‘Clouds’, ‘Grids’)

(‘Clouds’, (‘IaaS’, ‘PaaS’)

Map A collection of data items associated with
a set of keys; the keys are a bag
of atomic data [ ‘Microsoft’ { }(‘Windows’)

(‘Azure’)

‘Redhat’       ‘Linux’ 
]

Table 6.9 Pig Latin Operators

Command Description

LOAD Read data from the file system.
STORE Write data to the file system.
FOREACH GENERATE Apply an expression to each record and output one or more records.
FILTER Apply a predicate and remove records that do not return true.
GROUP/COGROUP Collect records with the same key from one or more inputs.
JOIN Join two or more inputs based on a key.
CROSS Cross product two or more inputs.
UNION Merge two or more data sets.
SPLIT Split data into two or more sets, based on filter conditions.
ORDER Sort records based on a key.
DISTINCT Remove duplicate tuples.
STREAM Send all records through a user-provided binary.
DUMP Write output to stdout.
LIMIT Limit the number of records.
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The LOAD command returns a handle to the bag Queries. myUDF() is an optional custom reader
which is an example of a user-defined function. The AS syntax defines the schema of the tuples that
make up the bag Queries. The data can now be processed by commands such as:

Expanded_queries = FOREACH queries GENERATE userID, expandQueryUDF(queryString);

The example maps each tuple in queries as determined by the user-defined function expandQueryUDF.
FOREACH runs over all tuples in the bag. Alternatively, one could use FILTER as in the following example to
remove all tuples with a userID equal to Alice as a string:

Real_queries = FILTER queries BY userID neq 'Alice';

Pig Latin offers the equivalent of a SQL JOIN capability using COGROUP as in

Grouped_data = COGROUP results BY queryString, revenue BY queryString;

Where results and revenue are bags of tuples (either from LOAD or processing of LOADed data)

Results: queryString, url, position)
Revenue: (queryString, adSlot, amount)

COGROUP is more general than JOIN in the sense that COGROUP does not produce a set of tuples
(queryString, url, position, adSlot, amount), but rather a tuple consisting of three fields. The first field is
querystring, the second field is all tuples from Results with the value of querystring, and the third field is
all tuples from Revenue with the value of queryString. FLATTEN can map the result of COGROUP to SQL
Join (queryString, url, position, adSlot, amount) syntax.

Pig Latin operations are performed in the order listed as a data flow pipeline. This is in contrast
to declarative SQL where one just specifies “what” has to be done, not how it is to be done. Pig
Latin supports user-defined functions, as illustrated in the preceding code, as first-class operations
in the language which could be an advantage over SQL. User-defined functions can be placed in
Load, Store, Group, Filter, and Foreach operators, depending on user preference. Note that the rich
set of data flow operations allowed in Pig Latin makes it similar to a scripting approach to work-
flow, as we discussed in Section 5.5.5. The Pig! Apache project [69] maps Pig Latin into a
sequence of MapReduce operations implemented in Hadoop.

6.2.6 Mapping Applications to Parallel and Distributed Systems
In the past, Fox has discussed mapping applications to different hardware and software in terms of
five application architectures [71]. These initial five categories are listed in Table 6.10, followed by
a sixth emerging category to describe data-intensive computing [72,73]. The original classifications
largely described simulations and were not aimed directly at data analysis. It is instructive to briefly
summarize them and then explain the new category. Category 1 was popular 20 years ago, but is
no longer significant. It describes applications that can be parallelized with lock-step operations
controlled by hardware.

Such a configuration would run on SIMD (single-instruction and multiple-data) machines, whereas
category 2 is now much more important and corresponds to a SPMD (single-program and multiple-
data) model running on MIMD (multiple instruction multiple data) machines. Here, each decomposed
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unit executes the same program, but at any given time, there is no requirement that the same instruction
be executed. Category 1 corresponds to regular problems, whereas category 2 includes dynamic irregu-
lar cases with complex geometries for solving partial differential equations or particle dynamics. Note
that synchronous problems are still around, but they are run on MIMD machines with the SPMD
model. Also note that category 2 consists of compute–communicate phases and the computations are
synchronized by communication. No additional synchronization is needed.

Category 3 consists of asynchronously interacting objects and is often considered the people’s
view of a typical parallel problem. It probably does describe the concurrent threads in a modern oper-
ating system, as well as some important applications, such as event-driven simulations and areas such

Table 6.10 Application Classification for Parallel and Distributed Systems

Category Class Description
Machine
Architecture

1 Synchronous The problem class can be implemented with
instruction-level lockstep operation as in SIMD
architectures.

SIMD

2 Loosely
synchronous
(BSP or bulk
synchronous
processing)

These problems exhibit iterative compute-
communication stages with independent compute
(map) operations for each CPU that are synchronized
with a communication step. This problem class covers
many successful MPI applications including partial
differential equation solutions and particle dynamics
applications.

MIMD on MPP
(massively
parallel
processor)

3 Asynchronous Illustrated by Compute Chess and Integer
Programming; combinatorial search is often supported
by dynamic threads. This is rarely important in
scientific computing, but it is at the heart of operating
systems and concurrency in consumer applications
such as Microsoft Word.

Shared
memory

4 Pleasingly
parallel

Each component is independent. In 1988, Fox
estimated this at 20 percent of the total number of
applications, but that percentage has grown with the
use of grids and data analysis applications including,
for example, the Large Hadron Collider analysis for
particle physics.

Grids moving
to clouds

5 Metaproblems These are coarse-grained (asynchronous or data flow)
combinations of categories 1-4 and 6. This area has
also grown in importance and is well supported by
grids and described by workflow in Section 3.5.

Grids of
clusters

6 MapReduce++
(Twister)

This describes file (database) to file (database)
operations which have three subcategories (see also
Table 6.11):
6a) Pleasingly Parallel Map Only (similar to category 4)
6b) Map followed by reductions
6c) Iterative “Map followed by reductions” (extension of

current technologies that supports linear algebra
and data mining)

Data-intensive
clouds
a) Master-

worker or
MapReduce

b) MapReduce
c) Twister
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as search in computer games and graph algorithms. Shared memory is natural due to the low latency
often needed to perform dynamic synchronization. It wasn’t clear in the past, but now it appears that
this category is not very common in large-scale parallel problems of importance.

Category 4 is the simplest algorithmically, with disconnected parallel components. However, the
importance of this category has probably grown since the original 1988 analysis when it was esti-
mated to account for 20 percent of all parallel computing. Both grids and clouds are very natural for
this class, which does not need high-performance communication between different nodes.

Category 5 refers to the coarse-grained linkage of different “atomic” problems, and this was
fully covered in Section 5.5. This area is clearly common and is expected to grow in importance.
Remember the critical observation in Section 5.5 that we use a two-level programming model with
the metaproblem (workflow) linkage specified in one fashion and the component problems with
approaches such as those in this chapter. Grids or clouds are suitable for metaproblems as coarse-
grained decomposition does not usually require stringent performance.

As noted earlier, we added a sixth category to cover data-intensive applications motivated by the
clear importance of MapReduce as a new programming model. We call this category MapReduce++,
and it has three subcategories: “map only” applications similar to pleasingly parallel category 4
[41,43,74,75]; the classic MapReduce with file-to-file operations consisting of parallel maps followed
by parallel reduce operations; and a subcategory that captures the extended MapReduce version cov-
ered in Section 6.2.2. Note that category 6 is a subset of categories 2 and 4 with additional reading
and writing of data and a specialized, loosely synchronous structure compared to that used in data
analysis. This comparison is made clearer in Table 6.11.

6.3 PROGRAMMING SUPPORT OF GOOGLE APP ENGINE
Section 4.4.2 introduced the Google App Engine infrastructure in Figures 4.20. In this section, we
describe the programming model supported by GAE. The access links to the GAE platform are
provided in Chapter 4.

6.3.1 Programming the Google App Engine
Several web resources (e.g., http://code.google.com/appengine/) and specific books and articles (e.g.,
www.byteonic.com/2009/overview-of-java-support-in-google-app-engine/) discuss how to program
GAE. Figure 6.17 summarizes some key features of GAE programming model for two supported
languages: Java and Python. A client environment that includes an Eclipse plug-in for Java allows
you to debug your GAE on your local machine. Also, the GWT Google Web Toolkit is available
for Java web application developers. Developers can use this, or any other language using a JVM-
based interpreter or compiler, such as JavaScript or Ruby. Python is often used with frameworks
such as Django and CherryPy, but Google also supplies a built in webapp Python environment.

There are several powerful constructs for storing and accessing data. The data store is a NOSQL
data management system for entities that can be, at most, 1 MB in size and are labeled by a set of
schema-less properties. Queries can retrieve entities of a given kind filtered and sorted by the values
of the properties. Java offers Java Data Object (JDO) and Java Persistence API (JPA) interfaces
implemented by the open source Data Nucleus Access platform, while Python has a SQL-like query
language called GQL. The data store is strongly consistent and uses optimistic concurrency control.
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Table 6.11 Comparison of MapReduce++ Subcategories along with the Loosely Synchronous Category Used in MPI

Map-Only Classic MapReduce Iterative MapReduce Loosely Synchronous

input

output

map()

input

output

map()

reduce()

input

output

reduce()

map()

j

B

Ai Pl

• Document conversion
(e.g., PDF->HTML)

• Brute force searches in
cryptography

• Parametric sweeps
• Gene assembly
• PolarGrid Matlab data

analysis (www.polargrid.org)

• High-energy physics
(HEP) histograms

• Distributed search
• Distributed sort
• Information retrieval
• Calculation of pairwise

distances for sequences
(BLAST)

• Expectation maximization
algorithms

• Linear algebra
• Data mining including

• Clustering
• K-means
• Deterministic annealing

clustering
• Multidimensional

scaling (MDS)

• Many MPI scientific
applications utilizing a
wide variety of
communication constructs
including local interactions

• Solving differential
equations and particle
dynamics with short-range
forces

➨ ↑ Domain of MapReduce and Iterative Extensions → MPI

3
7
1

http://www.polargrid.org


An update of an entity occurs in a transaction that is retried a fixed number of times if other
processes are trying to update the same entity simultaneously. Your application can execute multiple
data store operations in a single transaction which either all succeed or all fail together. The data
store implements transactions across its distributed network using “entity groups.” A transaction
manipulates entities within a single group. Entities of the same group are stored together for effi-
cient execution of transactions. Your GAE application can assign entities to groups when the enti-
ties are created. The performance of the data store can be enhanced by in-memory caching using
the memcache, which can also be used independently of the data store.

Recently, Google added the blobstore which is suitable for large files as its size limit is 2 GB.
There are several mechanisms for incorporating external resources. The Google SDC Secure Data
Connection can tunnel through the Internet and link your intranet to an external GAE application.
The URL Fetch operation provides the ability for applications to fetch resources and communicate
with other hosts over the Internet using HTTP and HTTPS requests. There is a specialized mail
mechanism to send e-mail from your GAE application.

Applications can access resources on the Internet, such as web services or other data, using
GAE’s URL fetch service. The URL fetch service retrieves web resources using the same high-
speed Google infrastructure that retrieves web pages for many other Google products. There are
dozens of Google “corporate” facilities including maps, sites, groups, calendar, docs, and YouTube,
among others. These support the Google Data API which can be used inside GAE.

Datastore

Memcache

Secure intranet

Tunnel servers

Internet

Your firewall

Google app
secure data

connection SDC

Admin
console

Python or Java application

Google corporate
apps (docs, sites

maps...)

Blobstore Google data API

ImagesCron

MailUsers

URL fetch

FIGURE 6.17

Programming environment for Google AppEngine.
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An application can use Google Accounts for user authentication. Google Accounts handles user
account creation and sign-in, and a user that already has a Google account (such as a Gmail
account) can use that account with your app. GAE provides the ability to manipulate image data
using a dedicated Images service which can resize, rotate, flip, crop, and enhance images. An appli-
cation can perform tasks outside of responding to web requests. Your application can perform these
tasks on a schedule that you configure, such as on a daily or hourly basis using “cron jobs,”
handled by the Cron service.

Alternatively, the application can perform tasks added to a queue by the application itself, such
as a background task created while handling a request. A GAE application is configured to consume
resources up to certain limits or quotas. With quotas, GAE ensures that your application won’t
exceed your budget, and that other applications running on GAE won’t impact the performance of
your app. In particular, GAE use is free up to certain quotas.

6.3.2 Google File System (GFS)
GFS was built primarily as the fundamental storage service for Google’s search engine. As the
size of the web data that was crawled and saved was quite substantial, Google needed a distribu-
ted file system to redundantly store massive amounts of data on cheap and unreliable computers.
None of the traditional distributed file systems can provide such functions and hold such large
amounts of data. In addition, GFS was designed for Google applications, and Google applica-
tions were built for GFS. In traditional file system design, such a philosophy is not attractive, as
there should be a clear interface between applications and the file system, such as a POSIX
interface.

There are several assumptions concerning GFS. One is related to the characteristic of the cloud
computing hardware infrastructure (i.e., the high component failure rate). As servers are composed
of inexpensive commodity components, it is the norm rather than the exception that concurrent fail-
ures will occur all the time. Another concerns the file size in GFS. GFS typically will hold a large
number of huge files, each 100MB or larger, with files that are multiple GB in size quite common.
Thus, Google has chosen its file data block size to be 64 MB instead of the 4 KB in typical tradi-
tional file systems. The I/O pattern in the Google application is also special. Files are typically writ-
ten once, and the write operations are often the appending data blocks to the end of files. Multiple
appending operations might be concurrent. There will be a lot of large streaming reads and only a
little random access. As for large streaming reads, highly sustained throughput is much more impor-
tant than low latency.

Thus, Google made some special decisions regarding the design of GFS. As noted earlier, a
64 MB block size was chosen. Reliability is achieved by using replications (i.e., each chunk or
data block of a file is replicated across more than three chunk servers). A single master
coordinates access as well as keeps the metadata. This decision simplified the design and
management of the whole cluster. Developers do not need to consider many difficult issues in
distributed systems, such as distributed consensus. There is no data cache in GFS as large
streaming reads and writes represent neither time nor space locality. GFS provides a similar, but
not identical, POSIX file system accessing interface. The distinct difference is that the application
can even see the physical location of file blocks. Such a scheme can improve the upper-layer
applications. The customized API can simplify the problem and focus on Google applications.
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The customized API adds snapshot and record append operations to facilitate the building of
Google applications.

Figure 6.18 shows the GFS architecture. It is quite obvious that there is a single master in the
whole cluster. Other nodes act as the chunk servers for storing data, while the single master
stores the metadata. The file system namespace and locking facilities are managed by the master.
The master periodically communicates with the chunk servers to collect management information
as well as give instructions to the chunk servers to do work such as load balancing or fail
recovery.

The master has enough information to keep the
whole cluster in a healthy state. With a single master,
many complicated distributed algorithms can be
avoided and the design of the system can be simplified.
However, this design does have a potential weakness,
as the single GFS master could be the performance bot-
tleneck and the single point of failure. To mitigate this,
Google uses a shadow master to replicate all the data on
the master, and the design guarantees that all the data
operations are performed directly between the client
and the chunk server. The control messages are trans-
ferred between the master and the clients and they can
be cached for future use. With the current quality of
commodity servers, the single master can handle a clus-
ter of more than 1,000 nodes.

Figure 6.19 shows the data mutation (write, append
operations) in GFS. Data blocks must be created for

Legend:

Linux file system

GFS chunkserver

Data messages
Control messages

Linux file system

Instructions to chunkserver

Chunkserver state

Chunk 2ef0
File namespace
GFS master

(Chunk handle,
chunk locations)

Application

GFS client

Chunk data

(Chunk handle, byte range)

(File name, chunk index) /foo/bar

GFS chunkserver

FIGURE 6.18

Architecture of Google File System (GFS).
(Courtesy of S. Ghemawat, et al. [53] )
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Data mutation sequence in GFS.
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all replicas. The goal is to minimize involvement of the master. The mutation takes the following
steps:

1. The client asks the master which chunk server holds the current lease for the chunk and the
locations of the other replicas. If no one has a lease, the master grants one to a replica it chooses
(not shown).

2. The master replies with the identity of the primary and the locations of the other (secondary)
replicas. The client caches this data for future mutations. It needs to contact the master again
only when the primary becomes unreachable or replies that it no longer holds a lease.

3. The client pushes the data to all the replicas. A client can do so in any order. Each chunk server will
store the data in an internal LRU buffer cache until the data is used or aged out. By decoupling the
data flow from the control flow, we can improve performance by scheduling the expensive data
flow based on the network topology regardless of which chunk server is the primary.

4. Once all the replicas have acknowledged receiving the data, the client sends a write request to the
primary. The request identifies the data pushed earlier to all the replicas. The primary assigns
consecutive serial numbers to all the mutations it receives, possibly from multiple clients, which
provides the necessary serialization. It applies the mutation to its own local state in serial order.

5. The primary forwards the write request to all secondary replicas. Each secondary replica applies
mutations in the same serial number order assigned by the primary.

6. The secondaries all reply to the primary indicating that they have completed the operation.
7. The primary replies to the client. Any errors encountered at any replicas are reported to the client.

In case of errors, the write corrects at the primary and an arbitrary subset of the secondary
replicas. The client request is considered to have failed, and the modified region is left in an
inconsistent state. Our client code handles such errors by retrying the failed mutation. It will make
a few attempts at steps 3 through 7 before falling back to a retry from the beginning of the write.

Thus, besides the writing operation provided by GFS, special appending operations can be
used to append the data blocks to the end of the files. The reason for providing such operations
is that some of the Google applications need a lot of append operations. For example, while
crawlers are gathering data from the web, the contents of web pages will be appended to page
files. Thus, the appending operation is provided and optimized. The client specifies data to be
appended and GFS appends it to the file atomically at least once. GFS picks the offset and the
clients cannot decide the offset of the data position. The appending operation works for concur-
rent writers.

GFS was designed for high fault tolerance and adopted some methods to achieve this goal.
Master and chunk servers can be restarted in a few seconds, and with such a fast recovery capabil-
ity, the window of time in which the data is unavailable can be greatly reduced. As we mentioned
before, each chunk is replicated in at least three places and can tolerate at least two data crashes for
a single chunk of data. The shadow master handles the failure of the GFS master. For data integrity,
GFS makes checksums on every 64 KB block in each chunk. With the previously discussed design
and implementation, GFS can achieve the goals of high availability (HA), high performance, and
large scale. GFS demonstrates how to support large-scale processing workloads on commodity hard-
ware designed to tolerate frequent component failures optimized for huge files that are mostly
appended and read.
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6.3.3 BigTable, Google’s NOSQL System
In this section, we continue discussing key technologies in the Google cloud environment.
We already discussed the most well-known Google technology, MapReduce, in Section 6.2.2, and
Sawzall in Section 6.2.5. Here, we focus on another innovative Google technology: BigTable. We
will cover Chubby in Section 6.3.4 and covered GFS in previous section. BigTable was designed to
provide a service for storing and retrieving structured and semistructured data. BigTable applications
include storage of web pages, per-user data, and geographic locations. Here we use web pages
to represent URLs and their associated data, such as contents, crawled metadata, links, anchors,
and page rank values. Per-user data has information for a specific user and includes such data as
user preference settings, recent queries/search results, and the user’s e-mails. Geographic locations
are used in Google’s well-known Google Earth software. Geographic locations include physical
entities (shops, restaurants, etc.), roads, satellite image data, and user annotations.

The scale of such data is incredibly large. There will be billions of URLs, and each URL can have
many versions, with an average page size of about 20 KB per version. The user scale is also huge.
There are hundreds of millions of users and there will be thousands of queries per second. The same
scale occurs in the geographic data, which might consume more than 100 TB of disk space.

It is not possible to solve such a large scale of structured or semistructured data using a commercial
database system. This is one reason to rebuild the data management system; the resultant system can
be applied across many projects for a low incremental cost. The other motivation for rebuilding the
data management system is performance. Low-level storage optimizations help increase performance
significantly, which is much harder to do when running on top of a traditional database layer.

The design and implementation of the BigTable system has the following goals. The applica-
tions want asynchronous processes to be continuously updating different pieces of data and want
access to the most current data at all times. The database needs to support very high read/write
rates and the scale might be millions of operations per second. Also, the database needs to support
efficient scans over all or interesting subsets of data, as well as efficient joins of large one-to-one
and one-to-many data sets. The application may need to examine data changes over time (e.g., con-
tents of a web page over multiple crawls).

Thus, BigTable can be viewed as a distributed multilevel map. It provides a fault-tolerant and
persistent database as in a storage service. The BigTable system is scalable, which means the sys-
tem has thousands of servers, terabytes of in-memory data, petabytes of disk-based data, millions of
reads/writes per second, and efficient scans. Also, BigTable is a self-managing system (i.e., servers
can be added/removed dynamically and it features automatic load balancing). Design/initial imple-
mentation of BigTable began at the beginning of 2004. BigTable is used in many projects, includ-
ing Google Search, Orkut, and Google Maps/Google Earth, among others. One of the largest
BigTable cell manages ~200 TB of data spread over several thousand machines.

The BigTable system is built on top of an existing Google cloud infrastructure. BigTable uses
the following building blocks:

1. GFS: stores persistent state
2. Scheduler: schedules jobs involved in BigTable serving
3. Lock service: master election, location bootstrapping
4. MapReduce: often used to read/write BigTable data
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Example 6.8 BigTable Data Model Used in Mass Media

BigTable provides a simplified data model compared to traditional database systems. Figure 6.20(a)
shows the data model of a sample table, Web Table. Web Table stores the data about a web page.
Each web page can be accessed by the URL. The URL is considered the row index. The column pro-
vides different data related to the corresponding URL—for example, different versions of the contents,
and the anchors appearing in the web page. In this sense, BigTable is a distributed multidimensional
stored sparse map.

The map is indexed by row key, column key, and timestamp—that is, (row: string, column: string, time:
int64) maps to string (cell contents). Rows are ordered in lexicographic order by row key. The row range
for a table is dynamically partitioned and each row range is called “Tablet.” Syntax for columns is shown
as a (family:qualifier) pair. Cells can store multiple versions of data with timestamps.

Such a data model is a good match for most of Google’s (and other organizations’) applications. For
rows, Name is an arbitrary string and access to data in a row is atomic. This is different from the traditional

<html>

(a) BigTable data model
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“Contents”
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(b) BigTable structure
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BigTable data model and system structure.
(Courtesy of Chang, et al. [11] )
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relational database which provides abundant atomic operations (transactions). Row creation is implicit
upon storing data. Rows are ordered lexicographically, that is, close together lexicographically, usually on
one or a small number of machines.

Large tables are broken into tablets at row boundaries. A tablet holds a contiguous range of rows. Clients
can often choose row keys to achieve locality. The system aims for about 100MB to 200MB of data per tablet.
Each serving machine is responsible for about 100 tablets. This can achieve faster recovery times as
100 machines each pick up one tablet from the failed machine. This also results in fine-grained load balan-
cing, that is, migrating tablets away from the overloaded machine. Similar to the design in GFS, a master
machine in BigTable makes load-balancing decisions.

Figure 6.20(b) shows the BigTable system structure. A BigTable master manages and stores the meta-
data of the BigTable system. BigTable clients use the BigTable client programming library to communicate
with the BigTable master and tablet servers. BigTable relies on a highly available and persistent distributed
lock service called Chubby [76] discussed in Section 6.3.4.

6.3.3.1 Tablet Location Hierarchy
Figure 6.21 shows how to locate the BigTable data starting from the file stored in Chubby. The first
level is a file stored in Chubby that contains the location of the root tablet. The root tablet contains
the location of all tablets in a special METADATA table. Each METADATA tablet contains the
location of a set of user tablets. The root tablet is just the first tablet in the METADATA table, but
is treated specially; it is never split to ensure that the tablet location hierarchy has no more than
three levels.

The METADATA table stores the location of a tablet under a row key that is an encoding of the
tablet’s table identifier and its end row. BigTable includes many optimizations and fault-tolerant
features. Chubby can guarantee the availability of the file for finding the root tablet. The BigTable
master can quickly scan the tablet servers to determine the status of all nodes. Tablet servers use
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Tablet location hierarchy in using the BigTable.
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compaction to store data efficiently. Shared logs are used for logging the operations of multiple
tablets so as to reduce the log space as well as keep the system consistent.

6.3.4 Chubby, Google’s Distributed Lock Service
Chubby [76] is intended to provide a coarse-grained locking service. It can store small files inside
Chubby storage which provides a simple namespace as a file system tree. The files stored in Chubby
are quite small compared to the huge files in GFS. Based on the Paxos agreement protocol, the
Chubby system can be quite reliable despite the failure of any member node. Figure 6.22 shows the
overall architecture of the Chubby system.

Each Chubby cell has five servers inside. Each server in the cell has the same file system
namespace. Clients use the Chubby library to talk to the servers in the cell. Client applications
can perform various file operations on any server in the Chubby cell. Servers run the Paxos
protocol to make the whole file system reliable and consistent. Chubby has become Google’s
primary internal name service. GFS and BigTable use Chubby to elect a primary from redundant
replicas.

6.4 PROGRAMMING ON AMAZON AWS AND MICROSOFT AZURE
In this section, we will consider the programming support in the AWS platform. First we will
review the AWS platform and its updated service offerings. Then we will study the EC2, S3, and
Simple DB services with programming examples. Returning to the programming environment
features in Figures 4.22 and 4.23, Amazon (like Azure) offers a Relational Database Service (RDS)
with a messaging interface sketched in Section 6.1.3. The Elastic MapReduce capability is equiva-
lent to Hadoop running on the basic EC2 offering. Amazon has NOSQL support in SimpleDB
introduced in Section 6.1.3 and discussed in Section 6.4.5. However, Amazon does not directly
support BigTable as described in Section 6.3.4.

Now we will highlight a few more capabilities that are listed in Table 4.6. Amazon offers the
Simple Queue Service (SQS) and Simple Notification Service (SNS), which are the cloud implemen-
tations of services discussed in Sections 5.2 and 5.4.5. Note that brokering systems run very effi-
ciently in clouds and offer a striking model for controlling sensors and giving back-office support
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Client
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Client processes

MasterRPCs
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Chubby
library

Chubby
library

. . .

FIGURE 6.22

Structure of Google Chubby for distributed lock service.
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for a growing number of smartphones and tablets [77]. We further note the auto-scaling and elastic
load balancing services which support related capabilities. Auto-scaling enables you to automatically
scale your Amazon EC2 capacity up or down according to conditions that you define. With auto-
scaling, you can ensure that the number of Amazon EC2 instances you’re using scales up seam-
lessly during demand spikes to maintain performance, and scales down automatically during
demand lulls to minimize cost.

Elastic load balancing automatically distributes incoming application traffic across multiple
Amazon EC2 instances and allows you to avoid nonoperating nodes and to equalize load on func-
tioning images. Both auto-scaling and elastic load balancing are enabled by CloudWatch which
monitors running instances. CloudWatch is a web service that provides monitoring for AWS cloud
resources, starting with Amazon EC2. It provides customers with visibility into resource utilization,
operational performance, and overall demand patterns—including metrics such as CPU utilization,
disk reads and writes, and network traffic.

6.4.1 Programming on Amazon EC2
Amazon was the first company to introduce VMs in application hosting. Customers can rent VMs
instead of physical machines to run their own applications. By using VMs, customers can load any
software of their choice. The elastic feature of such a service is that a customer can create, launch,
and terminate server instances as needed, paying by the hour for active servers. Amazon provides
several types of preinstalled VMs. Instances are often called Amazon Machine Images (AMIs)
which are preconfigured with operating systems based on Linux or Windows, and additional
software.

Table 6.12 defines three types of AMI. Figure 6.24 shows an execution environment. AMIs are
the templates for instances, which are running VMs. The workflow to create a VM is

Create anAMI→Create Key Pair→Configure Firewall→Launch (6.3)

This sequence is supported by public, private, and paid AMIs shown in Figure 6.24. The
AMIs are formed from the virtualized compute, storage, and server resources shown at the bottom
of Figure 6.23.

Table 6.12 Three Types of AMI

Image Type AMI Definition

Private AMI Images created by you, which are private by default. You can grant access to other
users to launch your private images.

Public AMI Images created by users and released to the AWS community, so anyone can launch
instances based on them and use them any way they like. AWS lists all public images at
http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=171.

Paid QAMI You can create images providing specific functions that can be launched by anyone
willing to pay you per each hour of usage on top of Amazon’s charges.
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Example 6.9 Use of EC2 Services in the AWS Platform

Table 6.13 defines the IaaS instances available in October 2010 in five broad classes:

1. Standard instances are well suited for most applications.
2. Micro instances provide a small number of consistent CPU resources and allow you to burst CPU

capacity when additional cycles are available. They are well suited for lower throughput applications
and web sites that consume significant compute cycles periodically.

3. High-memory instances offer large memory sizes for high-throughput applications, including database
and memory caching applications.
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FIGURE 6.23

Amazon EC2 execution environment.

Table 6.13 Instance Types Available on Amazon EC2 (October 6, 2010)

Compute Instance Memory GB
ECU or EC2
Units

Virtual
Cores

Storage
GB 32/64 Bit

Standard: small 1.7 1 1 160 32
Standard: large 7.5 4 2 850 64
Standard: extra large 15 8 4 1690 64
Micro 0.613 Up to 2 Only EBS 32 or 64
High-memory 17.1 6.5 2 420 64
High-memory: double 34.2 13 4 850 64
High-memory: quadruple 68.4 26 8 1690 64
High-CPU: medium 1.7 5 2 350 32
High-CPU: extra large 7 20 8 1690 64
Cluster compute 23 33.5 8 1690 64
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4. High-CPU instances have proportionally more CPU resources than memory (RAM) and are well suited
for compute-intensive applications.

5. Cluster compute instances provide proportionally high CPU resources with increased network perfor-
mance and are well suited for high-performance computing (HPC) applications and other demanding
network-bound applications. They use 10 Gigabit Ethernet interconnections.

The cost in the third column is expressed in terms of EC2 Compute Units (ECUs) where one ECU provides
the CPU capacity of a 1.0–1.2 GHz 2007 Opteron or 2007 Xeon processor. This leads to the cost per hour for
CPUs shown in Table 6.14. Note that a real-world use of EC2 must pay for use of many different resources;
the CPU charge in Table 6.14 is just one component and all charges (which naturally change often and so
the reader should get the latest values online) are available on the AWS web site.

6.4.2 Amazon Simple Storage Service (S3)
Amazon S3 provides a simple web services interface that can be used to store and retrieve any
amount of data, at any time, from anywhere on the web. S3 provides the object-oriented storage
service for users. Users can access their objects through Simple Object Access Protocol (SOAP)
with either browsers or other client programs which support SOAP. SQS is responsible for ensuring
a reliable message service between two processes, even if the receiver processes are not running.
Figure 6.24 shows the S3 execution environment.

The fundamental operation unit of S3 is called an object. Each object is stored in a bucket and
retrieved via a unique, developer-assigned key. In other words, the bucket is the container of the
object. Besides unique key attributes, the object has other attributes such as values, metadata, and
access control information. From the programmer’s perspective, the storage provided by S3 can be
viewed as a very coarse-grained key-value pair. Through the key-value programming interface, users
can write, read, and delete objects containing from 1 byte to 5 gigabytes of data each. There are two
types of web service interface for the user to access the data stored in Amazon clouds. One is a REST
(web 2.0) interface, and the other is a SOAP interface. Here are some key features of S3:

• Redundant through geographic dispersion.
• Designed to provide 99.999999999 percent durability and 99.99 percent availability of objects

over a given year with cheaper reduced redundancy storage (RRS).

Table 6.14 Cost of Amazon On-Demand VM Instant Types (October 6, 2010)

VM Instance Type Size Linux/UNIX Usage Windows Usage

Small (default) $0.085 per hour $0.12 per hour

Standard instances Large $0.34 per hour $0.48 per hour
Extra large $0.68 per hour $0.96 per hour

Micro instances Micro $0.02 per hour $0.03 per hour
High-memory instances Extra large $0.50 per hour $0.62 per hour

Double extra large $1.00 per hour $1.24 per hour

Quadruple extra large $2.00 per hour $2.48 per hour

Cluster compute instances Quadruple extra large $1.60 per hour Not available
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• Authentication mechanisms to ensure that data is kept secure from unauthorized access. Objects
can be made private or public, and rights can be granted to specific users.

• Per-object URLs and ACLs (access control lists).
• Default download protocol of HTTP. A BitTorrent protocol interface is provided to lower costs

for high-scale distribution.
• $0.055 (more than 5,000 TB) to 0.15 per GB per month storage (depending on total amount).
• First 1 GB per month input or output free and then $.08 to $0.15 per GB for transfers outside an

S3 region.
• There is no data transfer charge for data transferred between Amazon EC2 and Amazon S3

within the same region or for data transferred between the Amazon EC2 Northern Virginia
region and the Amazon S3 U.S. Standard region (as of October 6, 2010).

6.4.3 Amazon Elastic Block Store (EBS) and SimpleDB
The Elastic Block Store (EBS) provides the volume block interface for saving and restoring the virtual
images of EC2 instances. Traditional EC2 instances will be destroyed after use. The status of EC2 can
now be saved in the EBS system after the machine is shut down. Users can use EBS to save persistent
data and mount to the running instances of EC2. Note that S3 is “Storage as a Service” with a messa-
ging interface. EBS is analogous to a distributed file system accessed by traditional OS disk access
mechanisms. EBS allows you to create storage volumes from 1 GB to 1 TB that can be mounted as
EC2 instances.

Multiple volumes can be mounted to the same instance. These storage volumes behave like raw,
unformatted block devices, with user-supplied device names and a block device interface. You can
create a file system on top of Amazon EBS volumes, or use them in any other way you would use a
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Amazon S3 execution environment.
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block device (like a hard drive). Snapshots are provided so that the data can be saved incrementally.
This can improve performance when saving and restoring data. In terms of pricing, Amazon provides
a similar pay-per-use schema as EC2 and S3. Volume storage charges are based on the amount of
storage users allocate until it is released, and is priced at $0.10 per GB/month. EBS also charges
$0.10 per 1 million I/O requests made to the storage (as of October 6, 2010). The equivalent of EBS
has been offered in open source clouds such Nimbus.

6.4.3.1 Amazon SimpleDB Service
SimpleDB provides a simplified data model based on the relational database data model. Structured
data from users must be organized into domains. Each domain can be considered a table. The items
are the rows in the table. A cell in the table is recognized as the value for a specific attribute (column
name) of the corresponding row. This is similar to a table in a relational database. However, it is
possible to assign multiple values to a single cell in the table. This is not permitted in a traditional
relational database which wants to maintain data consistency.

Many developers simply want to quickly store, access, and query the stored data. SimpleDB
removes the requirement to maintain database schemas with strong consistency. SimpleDB is priced at
$0.140 per Amazon SimpleDB Machine Hour consumed with the first 25 Amazon SimpleDB Machine
Hours consumed per month free (as of October 6, 2010). SimpleDB, like Azure Table, could be called
“LittleTable,” as they are aimed at managing small amounts of information stored in a distributed table;
one could say BigTable is aimed at basic big data, whereas LittleTable is aimed at metadata. Amazon
Dynamo [78] is an early research system along the lines of the production SimpleDB system.

6.4.4 Microsoft Azure Programming Support
Section 4.4.4 has introduced the Azure cloud system. In this section, we describe the programming
model in more detail. Some key programming components, including the client development envir-
onment, SQLAzure, and the rich storage and programming subsystems, are shown in Figure 6.25.
We focus on the features of importance in developing Azure programs. First we have the underly-
ing Azure fabric consisting of virtualized hardware together with a sophisticated control environ-
ment implementing dynamic assignment of resources and fault tolerance. This implements domain
name system (DNS) and monitoring capabilities. Automated service management allows service
models to be defined by an XML template and multiple service copies to be instantiated on request.

When the system is running, services are monitored and one can access event logs, trace/debug data,
performance counters, IIS web server logs, crash dumps, and other log files. This information can be
saved in Azure storage. Note that there is no debugging capability for running cloud applications, but
debugging is done from a trace. One can divide the basic features into storage and compute capabilities.
The Azure application is linked to the Internet through a customized compute VM called a web role
supporting basic Microsoft web hosting. Such configured VMs are often called appliances. The other
important compute class is the worker role reflecting the importance in cloud computing of a pool of
compute resources that are scheduled as needed. The roles support HTTP(S) and TCP. Roles offer the
following methods:

• The OnStart() method which is called by the Fabric on startup, and allows you to perform
initialization tasks. It reports a Busy status to the load balancer until you return true.

• The OnStop() method which is called when the role is to be shut down and gives a graceful exit.
• The Run() method which contains the main logic.
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As discussed in Chapter 4, the Azure concept of roles is an interesting idea that we can expect
to be expanded in terms of role types and use in other cloud environments. Figure 6.25 shows
that compute roles can be load-balanced, similar to what GAE and AWS clouds have done (see
Section 4.1).

6.4.4.1 SQLAzure
Azure offers a very rich set of storage capabilities, as shown in Figure 6.25. The SQLAzure ser-
vice offers SQL Server as a service and is described in detail in Example 6.10. All the storage
modalities are accessed with REST interfaces except for the recently introduced Drives that are
analogous to Amazon EBS discussed in Section 6.4.3, and offer a file system interface as a dur-
able NTFS volume backed by blob storage. The REST interfaces are automatically associated
with URLs and all storage is replicated three times for fault tolerance and is guaranteed to be
consistent in access.

The basic storage system is built from blobs which are analogous to S3 for Amazon. Blobs are
arranged as a three-level hierarchy: Account → Containers → Page or Block Blobs. Containers are
analogous to directories in traditional file systems with the account acting as the root. The block
blob is used for streaming data and each such blob is made up as a sequence of blocks of up
to 4 MB each, while each block has a 64 byte ID. Block blobs can be up to 200 GB in size.
Page blobs are for random read/write access and consist of an array of pages with a maximum blob
size of 1 TB. One can associate metadata with blobs as <name, value> pairs with up to 8 KB
per blob.
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6.4.4.2 Azure Tables
The Azure Table and Queue storage modes are aimed at much smaller data volumes. Queues
provide reliable message delivery and are naturally used to support work spooling between web and
worker roles. Queues consist of an unlimited number of messages which can be retrieved and pro-
cessed at least once with an 8 KB limit on message size. Azure supports PUT, GET, and DELETE
message operations as well as CREATE and DELETE for queues. Each account can have any num-
ber of Azure tables which consist of rows called entities and columns called properties.

There is no limit to the number of entities in a table and the technology is designed to scale well
to a large number of entities stored on distributed computers. All entities can have up to 255
general properties which are <name, type, value> triples. Two extra properties, PartitionKey and
RowKey, must be defined for each entity, but otherwise, there are no constraints on the names of
properties—this table is very flexible! RowKey is designed to give each entity a unique label while
PartitionKey is designed to be shared and entities with the same PartitionKey are stored next to
each other; a good use of PartitionKey can speed up search performance. An entity can have, at
most, 1 MB storage; if you need large value sizes, just store a link to a blob store in the Table prop-
erty value. ADO.NET and LINQ support table queries.

Example 6.10 SQLAzure Data Services

Azure provides a sophisticated database programming interface. (More details can be found in www.microsoft
.com/azure/sql.mspx). The SQLAzure data services can be viewed as more of a traditional relational database.
Built on top of the current mature commercial software packages, SQLAzure can be considered a highly
scalable, on-demand data storage and query processing utility service. The service interface of SQLAzure is
based on standard web protocols and SQLAzure supports both SOAP and REST. As based on the relational
database, the data model provided by SQL Data Services (SDS) is richer than the two NOSQL data manage-
ment services discussed earlier (BigTable and SimpleDB).

The data model in SQLAzure includes the concepts of authority, container, and entity, with a flexible
schema. After a user signs up for the data service, she can create an authority which is represented as a
DNS name such as mydomain.data.database.windows.net. Here, mydomain is an authority created by the
user and data.database.windows.net refers to the service. Users can create multiple authorities at any
time. This DNS name will be resolved to a specific IP address and maps to a specific data center. Thus,
an authority as well as its data will be located at a single data center. Under the highest level “authority”
comes the concept of a container. An authority can have multiple containers (or none at all). A container
has its identifications which can be used as the handle to find the corresponding container in an authority.

Containers are the places where users can put their data. Just like SimpleDB, users can begin to put
data in a container without worrying about the data schema. Entities are the units that are stored in a con-
tainer. An entity can store any number of user-defined properties and associated values (i.e., like the attri-
butes and values in SimpleDB). There are two different kinds of containers: homogeneous and
heterogeneous containers. A homogeneous container has all entities of the same type, like a relational data-
base table. A heterogeneous container does not have such limitations. Figure 6.25 shows these concepts.

SDS is one of the building blocks of the Azure platform for building cloud applications. It does provide
an enterprise-class data platform. Microsoft has built multiple data centers all over the world to host cloud
applications from third parties. Multiple data centers can give the stored data high availability and security.
Users do not need to worry about loss of data. Another key feature that SQLAzure provides is ease of
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development. SDS (in fact, the total Azure Platform SDK) can be integrated with Microsoft’s powerful Visual
Studio development environment. This can greatly improve the effectiveness and efficiency with which
developers can make cloud applications.

6.5 EMERGING CLOUD SOFTWARE ENVIRONMENTS
In this section, we will assess popular cloud operating systems and emerging software environ-
ments. We cover the open source Eucalyptus and Nimbus, then examine OpenNebula, Sector/
Sphere, and Open Stack. These environments were introduced in Chapter 3 from a virtualization
perspective. Here, we provide details regarding programming requirements. We will also cover the
Aneka cloud programming tools recently developed at the University of Melbourne.

6.5.1 Open Source Eucalyptus and Nimbus
Eucalyptus is a product from Eucalyptus Systems (www.eucalyptus.com) that was developed out of
a research project at the University of California, Santa Barbara. Eucalyptus was initially aimed at
bringing the cloud computing paradigm to academic supercomputers and clusters. Eucalyptus pro-
vides an AWS-compliant EC2-based web service interface for interacting with the cloud service.
Additionally, Eucalyptus provides services, such as the AWS-compliant Walrus, and a user interface
for managing users and images.

6.5.1.1 Eucalyptus Architecture
The Eucalyptus system is an open software environment. The architecture was presented in a
Eucalyptus white paper [79,80]. Figure 3.31 introduced Eucalyptus from a virtual clustering point
of view. Figure 6.26 shows the architecture based on the need to manage VM images. The system
supports cloud programmers in VM image management as follows. Essentially, the system has been
extended to support the development of both the computer cloud and storage cloud.

6.5.1.2 VM Image Management
Eucalyptus takes many design queues from Amazon’s EC2, and its image management system is no
different. Eucalyptus stores images in Walrus, the block storage system that is analogous to the Amazon
S3 service. As such, any user can bundle her own root file system, and upload and then register this
image and link it with a particular kernel and ramdisk image. This image is uploaded into a user-defined
bucket within Walrus, and can be retrieved anytime from any availability zone. This allows users to
create specialty virtual appliances (http://en.wikipedia.org/wiki/Virtual_appliance) and deploy them
within Eucalyptus with ease. The Eucalyptus system is available in a commercial proprietary version, as
well as the open source version we just described.

6.5.1.3 Nimbus
Nimbus [81,82] is a set of open source tools that together provide an IaaS cloud computing solu-
tion. Figure 6.27 shows the architecture of Nimbus, which allows a client to lease remote resources
by deploying VMs on those resources and configuring them to represent the environment desired
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The Eucalyptus architecture for VM image management.
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by the user. To this end, Nimbus provides a special web interface known as Nimbus Web [83]. Its
aim is to provide administrative and user functions in a friendly interface. Nimbus Web is centered
around a Python Django [84] web application that is intended to be deployable completely separate
from the Nimbus service.

As shown in Figure 6.27, a storage cloud implementation called Cumulus [83] has been tightly
integrated with the other central services, although it can also be used stand-alone. Cumulus is com-
patible with the Amazon S3 REST API [85], but extends its capabilities by including features such
as quota management. Therefore, clients such as boto [86] and s2cmd [87], that work against the
S3 REST API, work with Cumulus. On the other hand, the Nimbus cloud client uses the Java
Jets3t library [88] to interact with Cumulus.

Nimbus supports two resource management strategies. The first is the default “resource pool”
mode. In this mode, the service has direct control of a pool of VM manager nodes and it assumes it
can start VMs. The other supported mode is called “pilot.” Here, the service makes requests to a
cluster’s Local Resource Management System (LRMS) to get a VM manager available to deploy
VMs. Nimbus also provides an implementation of Amazon’s EC2 interface [89] that allows users to
use clients developed for the real EC2 system against Nimbus-based clouds.

6.5.2 OpenNebula, Sector/Sphere, and OpenStack
OpenNebula [90,91] is an open source toolkit which allows users to transform existing infrastruc-
ture into an IaaS cloud with cloud-like interfaces. Figure 6.28 shows the OpenNebula architecture
and its main components. The architecture of OpenNebula [92] has been designed to be flexible and
modular to allow integration with different storage and network infrastructure configurations, and
hypervisor technologies. Here, the core is a centralized component that manages the VM full
life cycle, including setting up networks dynamically for groups of VMs and managing their sto-
rage requirements, such as VM disk image deployment or on-the-fly software environment
creation.

Another important component is the capacity manager or scheduler. It governs the functional-
ity provided by the core. The default capacity scheduler is a requirement/rank matchmaker. How-
ever, it is also possible to develop more complex scheduling policies, through a lease model and
advance reservations [93]. The last main components are the access drivers. They provide an
abstraction of the underlying infrastructure to expose the basic functionality of the monitoring,
storage, and virtualization services available in the cluster. Therefore, OpenNebula is not tied to
any specific environment and can provide a uniform management layer regardless of the virtuali-
zation platform.

Additionally, OpenNebula offers management interfaces to integrate the core’s functionality
within other data-center management tools, such as accounting or monitoring frameworks. To this
end, OpenNebula implements the libvirt API [94], an open interface for VM management, as well
as a command-line interface (CLI). A subset of this functionality is exposed to external users
through a cloud interface. OpenNebula is able to adapt to organizations with changing resource
needs, including addition or failure of physical resources [95]. Some essential features to support
changing environments are live migration and VM snapshots [90].

Furthermore, when the local resources are insufficient, OpenNebula can support a hybrid cloud
model by using cloud drivers to interface with external clouds. This lets organizations supplement
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their local infrastructure with computing capacity from a public cloud to meet peak demands, or
implement HA strategies. OpenNebula currently includes an EC2 driver, which can submit requests
to Amazon EC2 [89] and Eucalyptus [80], as well as an ElasticHosts driver [96]. Regarding storage,
an Image Repository allows users to easily specify disk images from a catalog without worrying
about low-level disk configuration attributes or block device mapping. Also, image access control is
applied to the images registered in the repository, hence simplifying multiuser environments and
image sharing. Nevertheless, users can also set up their own images.

6.5.2.1 Sector/Sphere
Sector/Sphere is a software platform that supports very large distributed data storage and simplified dis-
tributed data processing over large clusters of commodity computers, either within a data center or
across multiple data centers. The system consists of the Sector distributed file system and the Sphere
parallel data processing framework [97,98]. Sector is a distributed file system (DFS) that can be
deployed over a wide area and allows users to manage large data sets from any location with a high-
speed network connection [99]. The fault tolerance is implemented by replicating data in the file system
and managing the replicas.

Since Sector is aware of the network topology when it places replicas, it also provides better
reliability, availability, and access throughout. The communication is performed using User Data-
gram Protocol (UDP) for message passing and user-defined type (UDT) [100] for data transfer.
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OpenNebula architecture and its main components.
(Courtesy of Sotomayor, et al. [94] )
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Obviously, UDP is faster than TCP for message
passing because it does not require connection
setup, but it could become a problem if Sector
is used over the Internet. Meanwhile, UDT is
a reliable UDP-based application-level data
transport protocol which has been specifically
designed to enable high-speed data transfer over
wide area high-speed networks [100]. Finally,
the Sector client provides a programming API,
tools, and a FUSE [101] user space file system
module.

On the other hand, Sphere is a parallel data
processing engine designed to work with data
managed by Sector. This coupling allows the
system to make accurate decisions about job

scheduling and data location. Sphere provides a programming framework that developers can use to
process data stored in Sector. Thus, it allows UDFs to run on all input data segments in parallel.
Such data segments are processed at their storage locations whenever possible (data locality). Failed
data segments may be restarted on other nodes to achieve fault tolerance. In a Sphere application,
both inputs and outputs are Sector files. Multiple Sphere processing segments can be combined
to support more complicated applications, with inputs/outputs exchanged/shared via the Sector file
system [102].

The Sector/Sphere platform [102] is supported by the architecture shown in Figure 6.29, which
is composed of four components. The first component is the security server, which is responsible
for authenticating master servers, slave nodes, and users. We also have the master servers that can
be considered the infrastructure core. The master server maintains file system metadata, schedules
jobs, and responds to users’ requests. Sector supports multiple active masters that can join and
leave at runtime and can manage the requests. Another component is the slave nodes, where data is
stored and processed. The slave nodes can be located within a single data center or across multiple
data centers with high-speed network connections. The last component is the client component.
This provides tools and programming APIs for accessing and processing Sector data.

Finally, it is worthy to mention that as part of this platform, a new component has been devel-
oped. It is called Space [97] and it consists of a framework to support column-based distributed
data tables. Therefore, tables are stored by columns and are segmented onto multiple slave nodes.
Tables are independent and no relationships between them are supported. A reduced set of SQL
operations is supported, including, but not limited to, table creation and modification, key-value
updates and lookups, and select UDF operations.

6.5.2.2 OpenStack
OpenStack [103] was been introduced by Rackspace and NASA in July 2010. The project is building
an open source community spanning technologists, developers, researchers, and industry to share
resources and technologies with the goal of creating a massively scalable and secure cloud infrastruc-
ture. In the tradition of other open source projects, the software is open source and limited to just
open source APIs such as Amazon.
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The Sector/Sphere system architecture.
(Courtesy of Gu and Grossman [102] )
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Currently, OpenStack focuses on the development of two aspects of cloud computing to address
compute and storage aspects with the OpenStack Compute and OpenStack Storage solutions.
“OpenStack Compute is the internal fabric of the cloud creating and managing large groups of
virtual private servers” and “OpenStack Object Storage is software for creating redundant, scalable
object storage using clusters of commodity servers to store terabytes or even petabytes of data.”
Recently, an image repository was prototyped. The image repository contains an image registration
and discovery service and an image delivery service. Together they deliver images to the compute
service while obtaining them from the storage service. This development gives an indication that
the project is striving to integrate more services into its portfolio.

6.5.2.3 OpenStack Compute
As part of its computing support efforts, OpenStack [103] is developing a cloud computing fabric con-
troller, a component of an IaaS system, known as Nova. The architecture for Nova is built on the con-
cepts of shared-nothing and messaging-based information exchange. Hence, most communication in
Nova is facilitated by message queues. To prevent blocking components while waiting for a response
from others, deferred objects are introduced. Such objects include callbacks that get triggered when a
response is received. This is very similar to established concepts from parallel computing, such as
“futures,” which have been used in the grid community by projects such as the CoG Kit.

To achieve the shared-nothing paradigm, the overall system state is kept in a distributed data
system. State updates are made consistent through atomic transactions. Nova it implemented in
Python while utilizing a number of externally supported libraries and components. This includes
boto, an Amazon API provided in Python, and Tornado, a fast HTTP server used to implement the
S3 capabilities in OpenStack. Figure 6.30 shows the main architecture of Open Stack Compute. In
this architecture, the API Server receives HTTP requests from boto, converts the commands to and
from the API format, and forwards the requests to the cloud controller.

The cloud controller maintains the global state of the system, ensures authorization while inter-
acting with the User Manager via Lightweight Directory Access Protocol (LDAP), interacts with
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OpenStack Nova system architecture. The AMQP (Advanced Messaging Queuing Protocol) was described in
Section 5.2.
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the S3 service, and manages nodes, as well as storage workers through a queue. Additionally, Nova
integrates networking components to manage private networks, public IP addressing, virtual private
network (VPN) connectivity, and firewall rules. It includes the following types:

• NetworkController manages address and virtual LAN (VLAN) allocations
• RoutingNode governs the NAT (network address translation) conversion of public IPs to private

IPs, and enforces firewall rules
• AddressingNode runs Dynamic Host Configuration Protocol (DHCP) services for private

networks
• TunnelingNode provides VPN connectivity

The network state (managed in the distributed object store) consists of the following:

• VLAN assignment to a project
• Private subnet assignment to a security group in a VLAN
• Private IP assignments to running instances
• Public IP allocations to a project
• Public IP associations to a private IP/running instance

6.5.2.4 OpenStack Storage
The OpenStack storage solution is built around a number of interacting components and concepts,
including a proxy server, a ring, an object server, a container server, an account server, replication,
updaters, and auditors. The role of the proxy server is to enable lookups to the accounts, containers,
or objects in OpenStack storage rings and route the requests. Thus, any object is streamed to or
from an object server directly through the proxy server to or from the user. A ring represents a
mapping between the names of entities stored on disk and their physical locations.

Separate rings for accounts, containers, and objects exist. A ring includes the concept of using
zones, devices, partitions, and replicas. Hence, it allows the system to deal with failures, and isola-
tion of zones representing a drive, a server, a cabinet, a switch, or even a data center. Weights can
be used to balance the distribution of partitions on drives across the cluster, allowing users to sup-
port heterogeneous storage resources. According to the documentation, “the Object Server is a very
simple blob storage server that can store, retrieve and delete objects stored on local devices.”

Objects are stored as binary files with metadata stored in the file’s extended attributes. This
requires that the underlying file system is built around object servers, which is often not the case
for standard Linux installations. To list objects, a container server can be utilized. Listing of
containers is handled by the account server. The first release of OpenStack “Austin” Compute and
Object Storage was October 22, 2010. This system has a strong developer community.

6.5.3 Manjrasoft Aneka Cloud and Appliances
Aneka (www.manjrasoft.com/) is a cloud application platform developed by Manjrasoft, based in
Melbourne, Australia. It is designed to support rapid development and deployment of parallel and
distributed applications on private or public clouds. It provides a rich set of APIs for transparently
exploiting distributed resources and expressing the business logic of applications by using preferred
programming abstractions. System administrators can leverage a collection of tools to monitor and
control the deployed infrastructure. It can be deployed on a public cloud such as Amazon EC2
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accessible through the Internet to its subscribers, or a private cloud constituted by a set of nodes
with restricted access as shown in Figure 6.31.

Aneka acts as a workload distribution and management platform for accelerating applications in
both Linux and Microsoft .NET framework environments. Some of the key advantages of Aneka
over other workload distribution solutions include:

• Support of multiple programming and application environments
• Simultaneous support of multiple runtime environments
• Rapid deployment tools and framework
• Ability to harness multiple virtual and/or physical machines for accelerating application

provisioning based on users’ Quality of Service/service-level agreement (QoS/SLA) requirements
• Built on top of the Microsoft .NET framework, with support for Linux environments through Mono
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Architecture and components of Aneka.
(Courtesy of Raj Buyya, Manjrasoft )
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Aneka offers three types of capabilities which are essential for building, accelerating, and managing
clouds and their applications:

1. Build Aneka includes a new SDK which combines APIs and tools to enable users to rapidly
develop applications. Aneka also allows users to build different runtime environments such as
enterprise/private cloud by harnessing compute resources in network or enterprise data centers,
Amazon EC2, and hybrid clouds by combining enterprise private clouds managed by Aneka
with resources from Amazon EC2 or other enterprise clouds built and managed using
XenServer.

2. Accelerate Aneka supports rapid development and deployment of applications in multiple
runtime environments running different operating systems such as Windows or Linux/UNIX.
Aneka uses physical machines as much as possible to achieve maximum utilization in local
environments. Whenever users set QoS parameters such as deadlines, and if the enterprise
resources are insufficient to meet the deadline, Aneka supports dynamic leasing of extra
capabilities from public clouds such as EC2 to complete the task within the deadline (see
Figure 6.32).
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FIGURE 6.32

Aneka using private cloud resources along with dynamically leased public cloud resources.
(Courtesy of Raj Buyya, Manjrasoft, www.manjrasoft.com/ )
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3. Manage Management tools and capabilities supported by Aneka include a GUI and APIs to set
up, monitor, manage, and maintain remote and global Aneka compute clouds. Aneka also has
an accounting mechanism and manages priorities and scalability based on SLA/QoS which
enables dynamic provisioning.

Here are three important programming models supported by Aneka for both cloud and tradi-
tional parallel applications:

1. Thread programming model, best solution to adopt for leveraging the computing capabilities of
multicore nodes in a cloud of computers

2. Task programming model, which allows for quickly prototyping and implementing an
independent bag of task applications

3. MapReduce programming model,as discussed in Section 6.2.2

6.5.3.1 Aneka Architecture
Aneka as a cloud application platform features a homogeneous distributed runtime environment for
applications. This environment is built by aggregating together physical and virtual nodes hosting
the Aneka container. The container is a lightweight layer that interfaces with the hosting environ-
ment and manages the services deployed on a node. The interaction with the hosting platform is
mediated through the Platform Abstraction Layer (PAL), which hides in its implementation all the
heterogeneity of the different operating systems.

By means of the PAL it is possible to perform all the infrastructure-related tasks, such as perfor-
mance and system monitoring. These activities are vital to ensure the desired QoS for applications.
The PAL, together with the container, represents the hosting environment of services which imple-
ment the core capabilities of the middleware and make it a dynamically composable and extensible
system. The available services can be aggregated into three major categories:

Fabric Services: Fabric services implement the fundamental operations of the infrastructure of
the cloud. These services include HA and failover for improved reliability, node membership
and directory, resource provisioning, performance monitoring, and hardware profiling.
Foundation Services: Foundation services constitute the core functionalities of the Aneka
middleware. They provide a basic set of capabilities that enhance application execution in the
cloud. These services provide added value to the infrastructure and are of use to system
administrators and developers. Within this category we can list storage management, resource
reservation, reporting, accounting, billing, services monitoring, and licensing. Services in this
level operate across the range of supported application models.
Application Services: Application services deal directly with the execution of applications and
are in charge of providing the appropriate runtime environment for each application model.
They leverage foundation and fabric services for several tasks of application execution such as
elastic scalability, data transfer, and performance monitoring, accounting, and billing. At this
level, Aneka expresses its true potential in supporting different application models and
distributed programming patterns.

Each supported application model is managed by a different collection of services that interact
with the underlying layers and services to carry out application execution. In general, the middle-
ware counterpart of each application model features at least two different services: scheduling and

396 CHAPTER 6 Cloud Programming and Software Environments



execution. In addition, specific models can require additional services or a different type of support.
Aneka provides support for the most well-known application programming patterns, such as distrib-
uted threads, bags of tasks, and MapReduce.

Additional services can be designed and deployed in the system. This is how the infrastructure is
enriched with additional features and capabilities. The SDK provides straightforward interfaces and
ready-to-use components for rapid service prototyping. Deployment and integration of new services
is painless and immediate: The container leverages the Spring framework and allows for dynamic
integration of new components such as services.

Example 6.11 Aneka Application of Maya Rendering Case Study

Aneka has been used to create several interesting applications in domains such as life sciences,
engineering, and creative media. Applications created using Aneka are able to run on enterprise or pub-
lic clouds unchanged. We will briefly discuss a case study on high-speed rendering of engineering
designs using Aneka software. To reduce this time, GoFront has used Aneka and created an enterprise
cloud (Figure 6.33) within its company by utilizing networked PCs. GoFront Group, a unit of China
Southern Railways, is China’s premier and largest nationwide researcher and manufacturer of rail elec-
tric traction equipment.

Aneka Maya renderer

Use private
Aneka cloud

Setup 2: Aneka
enterpraise cloud

Setup 1: Single server

Using Maya
graphical mode

directly

four-core
server

T
im

e
(in

 h
rs

)

80

60

40

20

0

50

25

10
8

3.3

Go front private Aneka
cloud

LAN network
(Running Maya batch mode on demand)

Single
server

Aneka
cloud

Aneka utilizes idle desktops
(3D) to decrease tasktime

from days to hours

Raw locomotive design files
(using/autodesk Maya)

75
6000 Frames
4000 Frames
2000 Frames

FIGURE 6.33

Rendering images of locomotive design on GoFront’s private cloud using Aneka.
(Courtesy of Raj Buyya, Manjrasoft )

6.5 Emerging Cloud Software Environments 397



The GoFront Group is responsible for designing the high-speed electric locomotive, metro car, urban
transportation vehicle, and motor train. The raw design of the prototypes requires high-quality 3D images
using Autodesk’s Maya rendering software. By examining the 3D images, engineers identify problems in
the original design and make the appropriate design improvements. However, such designs on a single
four-core server took three days to render scenes with 2,000 frames.

To reduce this time, GoFront used Aneka and created an enterprise cloud by utilizing networked PCs.
It used Aneka Design Explorer, a tool for rapid creation of parameter sweep applications in which the
same program is executed many times on different data items (in this case, executing Maya for rendering
different images). A customized Design Explorer (called Maya GUI) has been implemented for Maya
rendering. Maya GUI managed parameters, generated Aneka tasks, monitored submitted Aneka tasks, and
collected final rendered images. The design image used to take three days to render (2,000+ frames, each
frame with more than five different camera angles). Using only a 20-node Aneka cloud, GoFront was able
to reduce the rendering time from three days to three hours.

6.5.3.2 Virtual Appliances
Machine virtualization offers a unique opportunity to break software dependencies between applica-
tions and their hosting environments. In recent years, resource virtualization has been witnessing a
renaissance fueled by efficient, freely available VM monitors for commodity systems (e.g., Xen,
VMware Player, KVM, and VirtualBox) and backed by the microprocessor industry (e.g., Intel and
AMD virtualization extensions). Modern system VMs provide improved flexibility, security, isola-
tion, and resource control, while supporting a wealth of unmodified applications, making a compel-
ling case for their use in grid computing. Grid applications also require network connectivity, and
the increasing use of NAT and IP firewalls breaks the original model of each node in the Internet
being a peer, and is recognized as a hindrance to programming and deploying grid computing
systems.

In Aneka, VMs and P2P network virtualization technologies can be integrated into self-configuring,
prepackaged “virtual appliances” to enable simple deployment of homogeneously configured virtual
clusters across a heterogeneous, wide-area distributed system. Virtual appliances are VM images
that are installed and configured with the entire software stack (including OS, libraries, binaries,
configuration files, and auto-configuration scripts) that is required for a given application to work
“out-of-the-box’’ when the virtual appliance is instantiated. Compared to traditional approaches of
software distribution, virtual appliances have the benefit of significantly reducing software dependence
on the hosting environment.

VM conversion tools exist for most VMMs and standardization efforts that are underway will
further facilitate interoperation across VMMs, such that appliance instantiation across multiple
platforms should be seamless. Wide-area overlays of virtual appliances aggregate the capacity of
commodity hardware and can be programmed and managed as a local area network—even though
nodes may be distributed across multiple network domains. The preconfigured Grid Appliance
image (www.grid-appliance.org) can encapsulate complex distributed system software in a manner
that is transparent to users for easy deployment. Grid appliances run on free VMMs available for
modern commodity servers and desktops.
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6.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
Detailed references for core technologies have been given throughout this chapter, and here we give
some additional useful references. Most of the topics are so new that there are few comprehensive
treatments, and links for major commercial clouds are changing at this time of rapid evolution;
we recommend checking major sites for latest links. A sample is [104–108]. A very good introduction
to cloud computing in business and technology is given in the lecture notes by Chou [109]. Various
cloud services are treated in [110–115]. Arguments about the benefits and opportunities of
cloud computing are treated in [110,116–120]. Cloud technology for HPC was studied in
[28,43,73,121–127]. Distributed programming paradigms for cloud applications are treated in [26,28].
Applications of clouds to data-intensive computing are discussed in [25,41–43,74,75].
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HOMEWORK PROBLEMS
Problem 6.1
Visit the Google App Engine (GAE) web site, download the SDK, and read the Python Guide or
the Java Guide to get started. Note that GAE only accepts Python, Ruby, and Java programming
languages. The platform does not provide any IaaS services.

a. Develop a specific cloud application using available software services such as Gmail, Docs, or
CRM on the GAE platform. Test your applications on the GAE platform.

b. Report your application development experience and experimental results in terms of some
selected performance measures such as job queuing time, execution time, resource utilization
rate, or some QoS attributes such as goal achievement, success rate, fault tolerance, and cost-
effectiveness.

c. Change the problem size or data set size and platform configuration to study the scalability and
efficiency issues in your GAE experiments.

Problem 6.2
Write an application code to run on the GAE platform for backup storage of a large amount of
your personal, family, or company data and records such as photos, video, music, sales receipts,
documents, news media, inventory, market records, financial matters, supply chain information,
human resources, public data sets, and so forth. Note that strict privacy protection is required
here. Minimizing the storage cost is another objective function to achieve. The access path, soft-
ware development tools, and platform information in using GAE can be found in Chapter 4. You
should explain your code development experience and report the results in using the GAE
platform.

Problem 6.3
Get set up to use Amazon Web Services; perhaps use the capability Amazon provides at http://aws.
amazon.com/education/ for instructors to obtain details to arrange free education accounts for their
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students. Test the AWS platform for a SimpleDB application using the relational database service.
This application could be similar to that chosen for Problems 6.1 and 6.2. You should study the
system’s performance, scalability, throughput, efficiency, resource utilization, fault tolerance, and
cost-effectiveness.

Problem 6.4
Design and request an EC2 configuration on the AWS platform for parallel multiplication of two
very large matrices with an order exceeding 50,000.

a. Report your experimental results including execution time, speed performance, VM instances
initiated, compute unit and storage utilization, and service charge experienced.

b. You can also study related issues such as scalability, throughput, efficiency, resource utilization,
fault tolerance, and cost-effectiveness in this scientific cloud experiment.

Problem 6.5
Repeat Problem 6.4 on the AWS platform for an Amazon S3 application. This application could be
similar to that chosen for Problems 6.1–6.2. You can also study the performance, scalability,
throughput, efficiency, resource utilization, fault tolerance, cost-effectiveness, and related issues.

Problem 6.6
Study some reported EC2 or S3 applications on the AWS platform by business or service indus-
try or by large enterprises. Many examples or success stories are told in Chou’s book [109]. For
example, Vertica Systems applies EC2 in DBMS (database management system) applications. Eli
Lilly uses EC2 in drug development. Animoto offers an online service to facilitate personal video
production. Contact a few of those service companies for technical implementation and service
details. Submit a study report with suggestions on improving the selected compute and storage
service applications.

Problem 6.7
Visit the Microsoft Windows Azure Developer Center. You can download the Azure development
kit to run a local version of Azure. Design an application experiment and test it on a local compu-
ter, such as your desktop, or a notebook computer, or a university workstation or server. Report
your experiment experiences in using the Azure platform.

Problem 6.8
In the MapReduce programming model, there is a special case concerning implementing only the
map phase, which is also known as a “map-only” problem. This achievement can enhance existing
applications/binaries to have high throughput by running them in a parallel fashion; in other words,
it helps stand-alone programs to utilize large-scale computing capability. The goal of this exercise is
to write a Hadoop “map-only” program with the bioinformatics application BLAST (NCBI BLAST+;
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ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/2.2.23/) under a Linux/UNIX environment using
Twister.

Basically, the BLAST binary is invoked within the scope of a “map-only” program on each map
task with assigned input. Here, the assigned input is the map task key-value pair. It may include
content of the original input, a path to the input file, or any other metadata regarding the nature of the
binary. Then, each map task passes this input to the external binary during runtime. This “map-only”
program terminates after all the inputs have been processed.

MapOnly (<key, value>) {
input -> keyValueModification (<key, value>);
output -> invokeBlastBinary(input);
return finish }

With the given pseudocode, you need to implement the map() interface within RunnerMap.java
(http://salsahpc.indiana.edu/tutorial/source_code/Hadoop-Blast-sketch.zip), which executes an exter-
nal Java process to run the stand-alone BLAST for each map task with the assigned input query.
The “input.fa” needs to be split into chunks (chunk[1-n].fa) as a set of input queries. This set of
queries is stored on the local disk; you may need to upload them to HDFS before the Hadoop
BLAST program executes. The HDFS directory name is one of the program parameters. Then, the
Hadoop framework assigns an input query, formed as a <key,value> pair such as <filename,file
path on HDFS>, to each worker.

The code of <key,value> generation is done if you use the provided DataFileInputFormat.java
and FileRecordReader.java files as the InputFormatClass. The BLAST binary requires a database
to find matching hits regarding the input queries. This database can be either stored in a shared
file system or located on the local disk using distributed cache; it depends on how you write the
program. Either one of the solutions is acceptable. For the final step, collect the result from each
mapper and merge them into a single output result.fa file. In addition, select a proper version of
the BLAST+ binary (32-bit or 64-bit) regarding the Linux OS version (i686/i386 or x86_64).
For further suggestions, see the SalsaHPC Hadoop BLAST Tutorial with the pseudocode (http://
salsahpc.indiana.edu/tutorials/hadoopblast.html).

Problem 6.9
Visit the Manjrasoft Aneka Software Center at www.manjrasoft.com/. Download the Aneka soft-
ware and create an enterprise cloud using LAN-connected PCs in your university/student laboratory,
and run various example applications that come with Aneka. Write simple parallel programs using
Aneka’s Task, Thread, and MapReduce programming models and carry out their execution on
workers ranging from 2 to 20 in steps of 2.

Problem 6.10
Repeat applications in Problems 6.1–6.5 using the academic/open source packages described in
Section 6.5—namely Eucalyptus, Nimbus, OpenStack, OpenNebula, and Sector/Sphere. This soft-
ware is available on the FutureGrid web site (http://www.futuregrid.org) and includes a growing
number of tutorials.
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Problem 6.11
Test the large-scale matrix multiplication program of Problem 6.4 on two or three cloud performs
(GAE, AWS, and/or Azure). You can also choose a data-intensive application such as a large-scale
search or business processing application. Implement the application on at least two or all three
cloud platforms, separately. The major objective is to minimize the execution time of the applica-
tion. The minor objective is to minimize the user service costs.

a. Run the service on the GAE platform.
b. Run the service on the AWS platform.
c. Run the service on the Windows Azure platform.
d. Compare your compute and storage costs, design experiences, and experimental results on all

three cloud platforms. Report the relative performance and QoS results measured.

Problem 6.12
There are three implementations of the MapReduce engine and its extensions: Google MapReduce,
Apache Hadoop, and Microsoft Dryad. Complete the missing 14 entries to show their similarities
and differences in 6 technical dimensions. 4 entries are already given below as example answers.
You do not have explain the table entries in detail, just enter the names of languages, models, meth-
ods, mechanisms, and platforms applied.

Programming
Environment Google MapReduce

Apache Hadoop
MapReduce Microsoft Dryad

Coding language and
programming model used

Mechanisms for data
handling

Shared directories and
local disks

Failure handling methods Re-execute failed tasks
and duplicated execution
of the slow tasks

High-level language for
data anlysis

OS and cluster environment Windows HPCS cluster
Intermediate data transfer
method

By file transfer or
using the http links

Problem 6.13
Using a MapReduce programming model supported in Aneka, develop a program for image filtering
of hundreds of photos you have taken using a digital camera. Conduct and report the results of your
scalability experiments by varying the number of computing nodes/workers and images of different
resolutions or file size on an Aneka-based enterprise cloud.
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Problem 6.14
Examine the tutorials at http://www.futuregrid.org/tutorials and compare the word count application
on Hadoop using Eucalyptus, Nimbus, and at least one other of OpenStack, OpenNebula, or Sector/
Sphere.

Problem 6.15
Examine the tutorials at http://salsahpc.indiana.edu and http://www.iterativemapreduce.org/samples.
html. Compare Hadoop and Twister on cases specified by the instructor from examples given there.
Discuss their relative strengths and weaknesses.

Problem 6.16
The following program is written in Hadoop, namely WebVisCounter. Trace through the program
or run it on a cloud platform to which you have access. Analyze the programming tasks performed
by this Hadoop program and learn from using Hadoop library.

import java.io.IOException;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
static class OSCountMapper

extends Mapper<LongWritable, Text, Text, IntWritable> {
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
Text UserInfo = new Text();

Text OSversion = new Text();
int StartIndex, EndIndex, i;
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens() && i != 8) {

i++; UserInfo.set(tokenizer.nextToken())}
i = 0;
while (UserInfo.charAt(i) != ';'){

if (UserInfo.charAt(i) != '('){StartIndex = i}
i++ };

EndIndex = i;
OSversion = UserInfo.subtring(StartIndex, EndIndex);
output.collect(OSversion, one) }; };
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static class OSCountReduce
extends Reducer<Text, IntWritable, Text, IntWritable> {
public void reduce(Text key, Iterable<IntWritable> values,
Context context){ int sum = 0;

while (values.hasNext()) { sum += values.next().get() };
output.collect(key, new IntWritable(sum)); );

}
public static void main(String[] args) throws Exception {

JobConf conf = new JobConf(WordCount.class);
conf.setJobName(''OSCount'');
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducerClass(Reduce.class);
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));
JobClient.runJob(conf); };

}

Problem 6.17
Twister K-means extends the MapReduce programming model iteratively. Many data analysis
techniques require iterative computations. For example, K-means clustering is the application where
multiple iterations of MapReduce computations are necessary for overall computation. Twister is an
enhanced MapReduce runtime that supports iterative MapReduce computations efficiently. For this
problem, study the iterative MapReduce programming model and learn how to implement the
K-means algorithm with Twister.

Problem 6.18
DryadLINQ PageRank is a well-known link analysis algorithm. It calculates numerical values to
each element of a hyperlinked set of web pages, which reflects the probability that the random sur-
fer will access that page. Implementing PageRank with MapReduce is of some difficulty in both
efficiency and programmability due to both the iterative structure and the random access model in
large-scale web graphs. DryadLINQ provide the SQL-like queries API that helps programmers
implement PageRank without much effort. In addition, the Dryad infrastructure helps to scale the
application out in an easy way. Learn how to implement a simple PageRank application with
DryadLINQ.
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Problem 6.19
Using a thread programming model supported in Aneka, develop a program for parallel multiplication
of two very large square matrices on an order greater than 500. Conduct and report the results of your
scalability experiments by varying the order of the matrix from 500 to 1,000 in steps of 100 on com-
puting nodes/workers varying from 10 to 50 in steps of 10 in an Aneka-based enterprise cloud.

Problem 6.20
Compare Pig Latin and “bare” Hadoop for implementing data intensive application specified by
your instructor. Discuss their relative advantages and shortcomings.
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PART

3Grids, P2P, and the Future Internet

Three chapters in Part 3 look into the future trends of network-based distributed computing. Chapter 7
covers computational grids and data grids, including major national grids built in the US, Europe, and
China. We study peer-to-peer (P2P) overlay networks and examine real P2P systems built in recent
years. Finally, we present sensor networks and radio-frequency identification (RFID) and global
positioning systems (GPS) for building the Internet of Things (IoT). Social networks are assessed in
web-scale service applications. We examine ubiquitous grids, P2P systems, and clouds for future
Internet applications.

CHAPTER 7: GRID COMPUTING SYSTEMS AND RESOURCE MANAGEMENT
We study the design principles, platform architecture, middleware support, resource management, and
service standards in computing/data grids. A dozen grid architectures and their software environments
are reviewed, including the TeraGrid, EGEE, DataGrid, ChinaGrid, BOINC, and Grid’5000, among
others. Several grid middleware packages: Condor-G, SGE, Globus Toolkit, and CGSP are detailed.
We also assess security infrastructure needed for trusted grid computing. We present an adaptive
method for workload characterization and performance prediction in large-scale grid computing. Past
and current grid projects are assessed against the emerging technologies.

This chapter is authored by Yongwei Wu and Kai Hwang. Rajkumar Buyya has contributed
Section 7.3.4. Technical assistance was extended from Weimin Zheng and Zhiwei Xu.

CHAPTER 8: PEER-TO-PEER COMPUTING AND OVERLAY NETWORKS
P2P overlay networks are built over a large number of client computers through virtual networking
over the Internet. We present unstructured, structured, and hybrid overlay networks. Distributed
hash tables (DHTs) are studied for fast routing and locality preservation operations. Fault tolerance
and churn resilience are studied to improve dependability. P2P networks are used for distributed file
sharing and content distribution applications. Trust management and copyright protection are studied
with reputation systems and content poisoning techniques. Examples illustrate the P2P design
principles and the protocols applied.

This chapter is authored by Zhenyu Li and Kai Hwang with technical assistance from Gaogang
Xie of Chinese Academy of Sciences.
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CHAPTER 9: UBIQUITOUS CLOUDS AND THE INTERNET OF THINGS
The future trends of clouds and Internet computing are assessed in this final chapter. We evaluate
system performance and assure security of open network systems. We examine some public and
private clouds built by IBM, Salesforce, SGI, Manijarsoft, NASA, and CERN. We report some
benchmark results and representative applications of grids and clouds and their variants. We study
the Internet of Things with the enabling technologies in sensing networks, RFID tracking and global
positioning systems. We assess web-scale social networks and their impacts on the future Internet to
be populated with inter-clouds, coordinated data centers, and large-scale social services.

This chapter is primarily authored by Kai Hwang with partial contributions by Judy Qiu
(Sections 9.2.1 and 9.2.5). The material development was also assisted by Vikram Dixit, Zhongyuan
Qin, and Kaikun Dong at the University of Southern California.
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SUMMARY
This chapter is devoted to building grid systems for distributed computing over an integrated
network of supercomputers, server clusters, and data centers. First we examine the open grid service
architecture. We study a dozen grid architectures and their software environments including the
TeraGrid, EGEE, DataGrid, ChinaGrid, BOINC, and Grid’5000, etc. These case studies illustrate
grid design principles, service models, and implementation technologies. Several grid middleware
packages: Condor-G, SGE, Globus Toolkit and CGSP are detailed. Finally, we cover grid trends
and security infrastructure. Past and current grid projects are reviewed against emerging
technologies.

7.1 GRID ARCHITECTURE AND SERVICE MODELING
The grid is a metacomputing infrastructure that brings together computers (PCs, workstations, server
clusters, supercomputers, laptops, notebooks, mobile computers, PDAs, etc.) to form a large collec-
tion of compute, storage, and network resources to solve large-scale computation problems or to
enable fast information retrieval by registered users or user groups. The coupling between hardware
and software with special user applications is achieved by leasing the hardware, software, middle-
ware, databases, instruments, and networks as computing utilities. Good examples include the rent-
ing of expensive special-purpose application software on demand and transparent access to human
genome databases.

The goal of grid computing is to explore fast solutions for large-scale computing problems. This
objective is shared by computer clusters and massively parallel processor (MPP) systems we have
learned about in Chapter 2. However, grid computing takes advantage of the existing computing
resources scattered in a nation or internationally around the globe. In grids, resources owned by dif-
ferent organizations are aggregated together and shared by many users in collective applications.
Grids rely heavy use of LAN/WAN resources across enterprises, organizations, and governments.
The virtual organizations or virtual supercomputers are new concept derived from grid or cloud
computing. These are virtual resources dynamically configured and are not under the full control of
any single user or local administrator.

7.1.1 Grid History and Service Families
Network-based distributed computing becomes more and more popular among the Internet users.
Recall that the Internet was developed in the 1980s to provide computer-to-computer connections
using the telnet:// protocol. The web service was developed in the 1990s to establish direct linkage
between web pages using the http:// protocol. Ever since the 1990s, grids became gradually avail-
able to establish large pools of shared resources. The approach is to link many Internet applications
across machine platforms directly in order to eliminate isolated resource islands. We may invent
upgraded protocols in the future like “grid:// ” and “cloud:// ” to realize this dream of a socialized
cyberspace with greater resource sharing.

The idea of the grid was pioneered by Ian Foster, Carl Kesselman and Steve Tuecke in a 2001
paper [16]. With is ground work, they are often recognized as the fathers of the grids. The Globus

416 CHAPTER 7 Grid Computing Systems and Resource Management



Project supported by DARPA has promoted the maturity of grid technology with a rich collection
of software and middleware tools for grid computing. In 2007, the concept of cloud computing was
thrown out, which in many ways was extending grid computing through virtualized data centers. In
this beginning section, we introduce major grid families and review the grid service evolution over
the past 15 years.

Grids differ from conventional HPC clusters. Cluster nodes are more homogeneous machines
that are better coordinated to work collectively and cooperatively. The grid nodes are heterogeneous
computers that are more loosely coupled together over geographically dispersed sites. In 2001,
Forbes Magazine advocated the emergence of the great global grid (GGG) as a new global infrastruc-
ture. This GGG evolved from the World Wide Web (WWW) technology we have enjoyed for many
years. Four major families of grid computing systems were suggested by the Forbes GGG categori-
zation as summarized in Table 7.1. We will study some of the listed grids in subsequent sections.

7.1.1.1 Four Grid Service Families
Most of today’s grid systems are called computational grids or data grids. Good examples are the
NSF TeraGrid installed in the United States and the DataGrid built in the European Union. Informa-
tion or knowledge grids post another grid class dedicated to knowledge management and distributed
ontology processing. The Semantic web, also known as semantic grids, belongs to this faimly.
Ontology platform falls into information or knowledge grids. Other information/knowledge grids
include the Berkeley BOINC and NASA’s Information Power Grid.

In the business world, we see a family, called business grids, built for business data/information
processing. These are represented by the HP eSpeak, IBM WebSphere, Microsoft .NET, and Sun
One systems. Some business grids are being transformed into Internet clouds. The last grid class
includes several grid extensions such as P2P grids and parasitic grids. This chapter will concentrate
mainly in computational or data grids. Business grids are only briefly introduced. We will further
compare grids with P2P networks and P2P grids in Chapter 8.

7.1.1.2 Grid Service Protocol Stack
To put together the resources needed in a grid platform, a layered grid architecture is shown in
Figure 7.1. The top layer corresponds to user applications to run on the grid system. The user appli-
cations demand collective services including collective computing and communications. The next
layer is formed by the hardware and software resources aggregated to run the user applications
under the collective operations. The connectivity layer provides the interconnection among drafted

Table 7.1 Four Grid Families Identified in the Great Global Grid (GGG) (Forbes, 2001)

Grid Family Representative Grid Systems and References

Computational Grids
or Data Grids

TeraGrid (US), EGEE (EU), DataGrid (EU), Grid’5000 (france), ChinaGrid (China),
NAS (NASA), LCG (Cern), e-Science (UK), D-Grid (Nordic), FutureGrid (US), etc.

Information Grids or
Knowledge Grids

Semantic Grid, Ontology Platform, BOINC (Berkeley), D4Science, Einsten@Home,
Information Power Grid (NASA)

Business Grids BEinGrid (EU), HP eSpeak, IBM WebSphere, Sun Grid Engine, Microsoft .NET, etc.
P2P/Volunteer Grids SETI@Home, Parasic Grid, FightAIDS@Home, Foldong@Home, GIMPS, etc.
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resources. This connectivity could be established directly on physical networks or it could be built
with virtual networking technology.

The connectivity must support the grid fabric, including the network links and virtual private
channels. The fabric layer includes all computational resources, storage systems, catalogs, network
resources, sensors, and their network connections. The connectivity layer enables the exchange of
data between fabric layer resources. The five-layer grid architecture is closely related to the layered
Internet protocol stack shown on the right-hand side of Figure 7.1. The fabric layer corresponds to
the link layer in the Internet stack. The connectivity layer is supported by the network and transport
layers of the Internet stack. The Internet application layer supports the top three layers.

7.1.1.3 Grid Resources
Table 7.2 summarizes typical resources that are required to perform grid computing. Many existing
protocols (IP, TCP, HTTP, FTP, and DNS) or some new communication protocols can be used to

Grid fabric

Grid service protocol stack Internet protocol

Physical links

Network (IP)

Transport (TCP)

Application

Application

Resource services

Connectivity services

Collective services

FIGURE 7.1

The layered grid service protocols and their relationship with the Internet service protocols.
(Courtesy of Foster, Kesselman, and Tuecke [11] )

Table 7.2 Control Operations and Enquiries for Aggregating Grid Resources

Resources Control Operations Enquiries

Compute
resources

Starting, monitoring, and controlling the
execution of resultant processes; control
over resources: advance reservation

Hardware and software characteristics;
relevant load information: current load and
queue state

Storage
resources

Putting and getting files; control over
resources allocated to data transfers:
advance reservation

Hardware and software characteristics;
relevant load information: available space
and bandwidth utilization

Network
resources

Control over resources allocated Network characteristics and load

Code
repositories

Managing versioned source and object
code

Software files and compile support

Service
catalogs

Implementing catalog query and update
operations: a relational database

Service order information and agreements
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route and transfer data. The resource layer is responsible for sharing single resources. An interface
is needed to claim the static structure and dynamic status of local resources. The grid should be
able to accept resource requests, negotiate the Quality of Service (QoS), and perform the operations
specified in user applications.

The collective layer handles the interactions among a collection of resources. This layer
implements functions such as resource discovery, co-allocation, scheduling, brokering, monitoring,
and diagnostics. Other desired features include replication, grid-enabled programming, workload
management, collaboration, software discovery, access authorization, and community accounting
and payment. The application layer comprises mainly user applications. The applications interact
with components in other layers by using well-defined APIs (application programming interfaces)
and SDKs (software development kits).

7.1.2 CPU Scavenging and Virtual Supercomputers
In this section, we characterize the process of grid resource aggregation from local and remote
sources. Then we link the grid to the concept of virtual organizations in a dynamic sense. In fact,
the distinction between grids and clouds becomes blurred in recent years. Traditionally, grids were
formed with allocated resources statically, while clouds were formed with provisioned resources
dynamically. As virtualization is applicable to grid components, some grids involving data centers
become more like clouds.

Foster, et al. [15] have compared the grid problem with the anatomy problem in biology. The
application users expect grids to be designed as flexible, secure, and coordinated resources shared
by individuals, institutions, and virtual organizations. The grid resources could come from two pos-
sible sources. On the one hand, large-scale HPC grids can be formed with computers from
resource-rich supercomputer centers owned by government agencies and research institutions. Alter-
natively, one could form “virtual” grids, casually, out of a large number of small commodity com-
puters owned by ordinary citizens, who volunteer to share their free cycles with other users for a
noble cause.

7.1.2.1 CPU Scavenging and Virtual Supercomputers
Both public and virtual grids can be built over large or small machines, that are loosely coupled
together to satisfy the application need. Grids differ from the conventional supercomputers in many
ways in the context of distributed computing. Supercomputers like MPPs in the Top-500 list are
more homogeneously structured with tightly coupled operations, while the grids are built with het-
erogeneous nodes running non-interactive workloads. These grid workloads may involve a large
number of files and individual users. The geographically dispersed grids are more scalable and
fault-tolerant with significantly lower operational costs than the supercomputers.

The concept of creating a “grid” from the unused resources in a network of computers is known
as CPU scavenging. In reality, virtual grids are built over large number of desktop computers by
using their free cycles at night or during inactive usage periods. The donors are ordinary citizens on
a voluntary participation basis. In practice, these client hosts also donate some disk space, RAM,
and network bandwidth in addition to the raw CPU cycles. At present, many volunteer computing
grids are built using the CPU scavenging model. The most famous example is the SETI@Home
[37], which applied over 3 million computers to achieve 23.37 TFlpos as of Sept. 2001. More
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recent examples include the BOINC [7] and Folding@Home [14], etc. In practice, these virtual
grids can be viewed as virtual supercomputers.

Example 7.1 BOINC: Berkeley Open Infrastructure for Network Computing

BOINC is an open infrastructure for running volunteer computing projects. It is an active grid research
project conducted at the University of California, Berkeley (http://boinc.berkeley.edu/). The BOINC offers
an open-source software for volunteer computing and grid computing. The idea is to use idle times on par-
ticipants’ computers collectively for noble causes or for academic research purposes. These user hosts run
with the popular Windows, Mac, or Linux OS to execute many useful applications to cure diseases, study
global warming, discover pulses and do many other meaningful scientific research projects.

As reported in April 7, 2011, there were 321,471 volunteers in the BOINC project contributing 516,440
computers. With a 24-hour average, 5.634 PFlops was achieved collectively. Grid computing with BOINC may
involve scientists, universities, and companies collectively. At present, the BOINC project covers the following
public grid services: message boards, email lists, papers and talks, help wanted, software development, etc.
As of 2011, over 6.2 million machines running the BOINC platform are members of the World Community
Grid, which exceeded the fastest supercomputer (Tianhe-1A) in 2011. Similarly, the Folding@Home project
has reported 5 PFlops performance over 350,000 machines, as of March 7, 2009 [14].

7.1.2.2 Grid Resource Aggregation
During the resource aggregation process for grids or clouds, several assumptions are made. First, the
compute nodes and other necessary resources for grids do not join or leave the system incidentally,
except when some serious faults occur in the grid. Second, cloud resources are mostly provisioned
from large data centers. Since security and reliability are very tight in these data centers, resource
behavior is not predictable. Third, although resources in P2P systems are casually allocated, we can
build P2P grids for distributed file sharing, content delivery, gaming, and entertainment applications.
The joining or leaving of some peers has little impact on the needed functions of a P2P grid system.

We envision the grid resource aggregation process in a global setting. Hardware, software, data-
base, and network resources are denoted by R’s and are scattered all over the world. The availability
and specification of these open resources is provided by Grid Information Service (GIS) agencies.
The grid resource brokers assist users with fees to allocate available resources. Multiple brokers could
compete to serve users. Also, multiple GISes may overlap in their resource coverage. New grid appli-
cations are enabled after the coupling of computer databases, instruments, and human operators
needed in their specific applications. It should be noted that today’s grid computing applications are
no longer restricted to using HPC systems. HTC systems, like clouds, are even more in demand in
business services.

7.1.2.3 Virtual Organization
The grid is a distributed system integrated from shared resources to form a virtual organization
(VO). The VO offers dynamic cooperation built over multiple physical organizations. The virtual
resources contributed by these real organizations are managed autonomously. The grid must deal
with the trust relationship in a VO. The applications in a grid vary in terms of workload and
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resource demand. A flexible grid system should be designed to adapt to varying workloads.
In reality, physical organizations include a real company, a university, or a branch of government.
These real organizations often share some common objectives.

For example, several research institutes and hospitals may undertake some joint research
challenges together to explore a new cancer drug. Another concrete example is the joint venture
among IBM, Apple, and Motorola to develop PowerPC processors and their supporting software
in the past. The joint venture was based on the VO model. Grids definitely can promote the
concept of VOs. Still, joint ventures demand resources and labor from all participants. The
following example shows how two VOs or grid configurations can be formed out of three physi-
cal organizations.

Example 7.2 Dynamic Formation of Virtual Organizations

A new drug development subject needs the molecular simulation software from a research institute and
the clinic database from a hospital. At the same time, computer scientists need to perform biological
sequence analysis on Linux clusters in a supercomputing center. The members from three organizations
contribute all or part of their hardware or software resources to form a VO, as illustrated in Figure 7.2.
Here we show how two VOs are formed out of three physical organizations labeled “A,” “B,” and “C.”

Each physical organization owns some resources, such as computers, storage, instruments, and data-
bases. The three organizations cooperate with one another to perform in two tasks: new jumbo jet develop-
ment and new drug exploration. Each physical organization contributes some of its resources to form a VO
labeled “X” for drug development and another VO labeled “Y” for aircraft development. Physical organiza-
tions may allocate their resources as available to a VO only under light workload conditions.

The owners can also modify the number of cluster servers to be allocated to a specific VO. The partici-
pants join or leave the VO dynamically under special service agreement. A new physical organization may

Actual organization
A

Virtual organization
X

Actual
organization

C

Actual
organization

Actual
organization

B

Virtual organization
Y

Virtual
organization

FIGURE 7.2

Two VOs (labeled by X and Y) formed from getting specific resources from three physical organizations (A, B, and C).
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also join an existing VO. A participant may leave a VO, once its job is done. The dynamic nature of the
resources in a VO posts a great challenge for grid computing. Resources have to cooperate closely to pro-
duce a rewarding result. Without an effective resource management system, the grid or VO may be ineffi-
cient and waste resources, if poorly managed.

7.1.3 Open Grid Services Architecture (OGSA)
The OGSA is an open source grid service standard jointly developed by academia and the IT indus-
try under coordination of a working group in the Global Grid Forum (GGF). The standard was spe-
cifically developed for the emerging grid and cloud service communities. The OGSA is extended
from web service concepts and technologies. The standard defines a common framework that allows
businesses to build grid platforms across enterprises and business partners. The intent is to define
the standards required for both open source and commercial software to support a global grid
infrastructure.

7.1.3.1 OGSA Framework
The OGSA was built on two basic software technologies: the Globus Toolkit widely adopted as a
grid technology solution for scientific and technical computing, and web services (WS 2.0) as a
popular standards-based framework for business and network applications. The OGSA is intended
to support the creation, termination, management, and invocation of stateful, transient grid services
via standard interfaces and conventions [5]. The OGSA framework specifies the physical environ-
ment, security, infrastructure profile, resource provisioning, virtual domains, and execution environ-
ment for various grid services and API access tools.

Compared with the layered grid architecture in Figure 7.1, the OGSA is service-oriented.
A service is an entity that provides some capability to its client by exchanging messages. We
feel that greater flexibility is needed in grid service discovery and management. The service-
oriented architecture (SOA) presented in Chapter 5 serves as the foundation of grid computing
services. The individual and collective states of resources are specified in this service standard.
The standard also specifies interactions between these services within the particular SOA for
grids. An important point is that the architecture is not layered, where the implementation of one
service is built upon modules that are logically dependent. One may classify this framework as
object-oriented. Many web service standards, semantics, and extensions are applied or modified
in the OGSA.

7.1.3.2 OGSA Interfaces
The OGSA is centered on grid services. These services demand special well-defined application inter-
faces. These interfaces provide resource discovery, dynamic service creation, lifetime management,
notification, and manageability. The conventions must address naming and upgradeability. Table 7.3
summarizes the interfaces proposed by the OGSA working group. While the OGSA defines a variety
of behaviors and associated interfaces, all but one of these interfaces (the grid service) is optional.
Two key properties of a grid service are transience and statefulness. These properties have significant
implications regarding how a grid service is named, discovered, and managed. Being transient means
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the service can be created and destroyed dynamically; statefulness refers to the fact that one can
distinguish one service instance from another.

7.1.3.3 Grid Service Handle
A GSH is a globally unique name that distinguishes a specific grid service instance from all others.
The status of a grid service instance could be that it exists now or that it will exist in the future.
These instances carry no protocol or instance-specific addresses or supported protocol bindings.
Instead, these information items are encapsulated along with all other instance-specific information.
In order to interact with a specific service instance, a single abstraction is defined as a GSR.

Unlike a GSH, which is time-invariant, the GSR for an instance can change over the lifetime of
the service. The OGSA employs a “handle-resolution” mechanism for mapping from a GSH to a
GSR. The GSH must be globally defined for a particular instance. However, the GSH may not
always refer to the same network address. A service instance may be implemented in its own way,
as long as it obeys the associated semantics. For example, the port type on which the service
instance was implemented decides which operation to perform in Table 7.3.

7.1.3.4 Grid Service Migration
This is a mechanism for creating new services and specifying assertions regarding the lifetime of a
service. The OGSA model defines a standard interface, known as a factor, to implement this refer-
ence. Any service that is created must address the former services as the reference of later services.
The factory interface is labeled as a Create Service operation in Table 7.3. This creates a requested
grid service with a specified interface and returns the GSH and initial GSR for the new service
instance. It should also register the new service instance with a handle resolution service. Each
dynamically created grid service instance is associated with a specified lifetime.

Table 7.3 OGSA Grid Service Interfaces Developed by the OGSA Working Group

Port Type Operation Brief Description

Grid service Find service data Query a grid service instance, including the handle, reference,
primary key, home handle map, interface information, and
service-specific information. Extensible support for various
query languages.

Termination time Set (and get) termination time for grid service instance.
Destroy Terminate grid service instance.

Notification source Subscribe to
notification topic

Subscribe to notifications of service events. Allow delivery via
third-party messaging services.

Notification sink Deliver notification Carry out asynchronous delivery of notification messages.
Registry Register service Conduct soft-state registration of Grid Service Handles (GSHs).

Unregister service Unregister a GSH.
Factory Create service Create a new grid service instance.
Handle map Find by handle Return the Grid Service Reference (GSR) associated with the

GSH.
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Example 7.3 Grid Service Migration Using GSH and GSR

Figure 7.3 shows how a service instance may migrate from one location to another during execution.
A GSH resolves to a different GSR for a migrated service instance before (on the left) and after (on the
right) the migration at time T. The handle resolver simply returns different GSRs before and after the
migration. The initial lifetime can be extended by a specified time period by explicitly requesting the client
or another grid service acting on the client’s behalf.

If the time period expires without having received a reaffirmed interest from a client, the service
instance can be terminated on its own and release the associated resources accordingly. The lifetime man-
agement enables robust termination and failure detection. This is done by clearly defining the lifetime
semantics of a service instance. Similarly, a hosting environment is guaranteed to consume bounded
resources under some system failures. If the termination time of a service is reached, the hosting environ-
ment can reclaim all resources allocated.

7.1.3.5 OGSA Security Models
The OGSA supports security enforcement at various levels, as shown in Figure 7.4. The grid works
in a heterogeneous distributed environment, which is essentially open to the general public. We
must be able to detect intrusions or stop viruses from spreading by implementing secure conversa-
tions, single logon, access control, and auditing for nonrepudiation. At the security policy and user
levels, we want to apply a service or endpoint policy, resource mapping rules, authorized access of
critical resources, and privacy protection. At the Public Key Infrastructure (PKI) service level, the
OGSA demands security binding with the security protocol stack and bridging of certificate autho-
rities (CAs), use of multiple trusted intermediaries, and so on. Trust models and secure logging are
often practiced in grid platforms.
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Handle server
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(GSH)
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FIGURE 7.3

A GSH resolving to a different GSR for a migrated service instance before (shown on the left) and after
(on the right) the migration at time T.
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7.1.4 Data-Intensive Grid Service Models
Applications in the grid are normally grouped into two categories: computation-intensive and data-
intensive. For data-intensive applications, we may have to deal with massive amounts of data. For
example, the data produced annually by a Large Hadron Collider may exceed several petabytes
(1015 bytes). The grid system must be specially designed to discover, transfer, and manipulate these
massive data sets. Transferring massive data sets is a time-consuming task. Efficient data manage-
ment demands low-cost storage and high-speed data movement. Listed in the following paragraphs
are several common methods for solving data movement problems.

7.1.4.1 Data Replication and Unified Namespace
This data access method is also known as caching, which is often applied to enhance data efficiency
in a grid environment. By replicating the same data blocks and scattering them in multiple regions
of a grid, users can access the same data with locality of references. Furthermore, the replicas of
the same data set can be a backup for one another. Some key data will not be lost in case of fail-
ures. However, data replication may demand periodic consistency checks. The increase in storage
requirements and network bandwidth may cause additional problems.

Replication strategies determine when and where to create a replica of the data. The factors to
consider include data demand, network conditions, and transfer cost. The strategies of replication
can be classified into method types: dynamic and static. For the static method, the locations and
number of replicas are determined in advance and will not be modified. Although replication
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The OGSA security model implemented at various protection levels.
(Courtesy of I. Foster, et al., http://www.ogf.org/documents/GFD.80.pdf )
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operations require little overhead, static strategies cannot adapt to changes in demand, bandwidth,
and storage vailability. Dynamic strategies can adjust locations and number of data replicas accord-
ing to changes in conditions (e.g., user behavior).

However, frequent data-moving operations can result in much more overhead than in static stra-
tegies. The replication strategy must be optimized with respect to the status of data replicas. For sta-
tic replication, optimization is required to determine the location and number of data replicas. For
dynamic replication, optimization may be determined based on whether the data replica is being cre-
ated, deleted, or moved. The most common replication strategies include preserving locality, mini-
mizing update costs, and maximizing profits.

7.1.4.2 Grid Data Access Models
Multiple participants may want to share the same data collection. To retrieve any piece of data, we
need a grid with a unique global namespace. Similarly, we desire to have unique file names. To
achieve these, we have to resolve inconsistencies among multiple data objects bearing the same
name. Access restrictions may be imposed to avoid confusion. Also, data needs to be protected to
avoid leakage and damage. Users who want to access data have to be authenticated first and then
authorized for access. In general, there are four access models for organizing a data grid, as listed
here and shown in Figure 7.5.

Monadic model: This is a centralized data repository model, shown in Figure 7.5(a). All the
data is saved in a central data repository. When users want to access some data they have to
submit requests directly to the central repository. No data is replicated for preserving data
locality. This model is the simplest to implement for a small grid. For a large grid, this model is
not efficient in terms of performance and reliability. Data replication is permitted in this model
only when fault tolerance is demanded.
Hierarchical model: The hierarchical model, shown in Figure 7.5(b), is suitable for building a
large data grid which has only one large data access directory. The data may be transferred from
the source to a second-level center. Then some data in the regional center is transferred to the
third-level center. After being forwarded several times, specific data objects are accessed directly
by users. Generally speaking, a higher-level data center has a wider coverage area. It provides
higher bandwidth for access than a lower-level data center. PKI security services are easier to
implement in this hierarchical data access model. The European Data Grid (EDG) to be studied
in Section 7.2.3 adopts this data access model.
Federation model: This data access model shown in Figure 7.5(c) is better suited for designing a
data grid with multiple sources of data supplies. Sometimes this model is also known as a mesh
model. The data sources are distributed to many different locations. Although the data is shared,
the data items are still owned and controlled by their original owners. According to predefined
access policies, only authenticated users are authorized to request data from any data source. This
mesh model may cost the most when the number of grid institutions becomes very large.
Hybrid model: This data access model is shown in Figure 7.5(d). The model combines the best
features of the hierarchical and mesh models. Traditional data transfer technology, such as FTP,
applies for networks with lower bandwidth. Network links in a data grid often have fairly high
bandwidth, and other data transfer models are exploited by high-speed data transfer tools such
as GridFTP developed with the Globus library. The cost of the hybrid model can be traded off
between the two extreme models for hierarchical and mesh-connected grids.
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7.1.4.3 Parallel versus Striped Data Transfers
Compared with traditional FTP data transfer, parallel data transfer opens multiple data streams for
passing subdivided segments of a file simultaneously. Although the speed of each stream is the
same as in sequential streaming, the total time to move data in all streams can be significantly
reduced compared to FTP transfer. In striped data transfer, a data object is partitioned into a num-
ber of sections, and each section is placed in an individual site in a data grid. When a user requests
this piece of data, a data stream is created for each site, and all the sections of data objects are
transferred simultaneously. Striped data transfer can utilize the bandwidths of multiple sites more
efficiently to speed up data transfer.

7.2 GRID PROJECTS AND GRID SYSTEMS BUILT
Grid computing provides promising solutions to contemporary users who want to effectively share
and collaborate with one another in distributed and self-governing environments. Apart from volun-
teer grids, most large-scale grids are national or international projects funded by public agencies.
This section reviews the major grid systems developed in recent years. In particular, we describe
three national grid projects that have been installed in the U.S., EU, and China.
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Four architectural models for building a data grid.
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7.2.1 National Grids and International Projects
Like supercomputers, national grids are mainly funded through government sources. These national
grids are developed to promote research discovery, middleware products, and utility computing in
grid-enabled applications.

7.2.1.1 National Grid Projects
Over the past decade, many data, information, or computational grids were built in various parts of the
world. Table 7.4 summarizes five representative grid computing systems built in the United States, Eur-
opean Union, United Kingdom, France, and China. We call these national grids, because they
are essentially government-funded projects pushing for grand challenge applications that demand high-
performance computing and high-bandwidth communication networks. Here treat the EU countries as a
single entity. Most national grids are built by linking supercomputer centers and major computer ensem-
bles together with Internet backbones and high-bandwidth WANs or LANs. These grids are briefly
introduced in Table 7.4. More details can be found in the cited subsequent sections.

7.2.1.2 International Grid Projects
Grid applications cannot be restricted to geographical boundaries. As summarized in Table 7.5,
several global-scale grid projects were launched or are still active in use today. These projects pro-
mote volunteer computing, utility computing, and specific software applications that utilizes grid
infrastructure. International grids involve both government and industrial funding. The European
Union has been a major player in grid computing. The most famous EU grid projects are the
EGEE, DataGrid, and BEinGrid. In the industrial sector, we have seen grid providers including Sun
Microsystems, IBM, HP, etc. International grids are built with fix-term projects. Some of them are
no longer active to provide public services at the end of funding.

Example 7.4 The EGEE Grid for Enabling Grids for E-sciencE

The EGEE grid infrastructure and projects were funded by the Europen Union in 3 stages from 2004 to
2006. EGEE stands for Enabling Grids for E-sciencE. The project is no longer active. However, the

Table 7.4 Some National Grid Projects in Five Countries

Project Sponsor, Launch Distributed Computing Capability and Applications

TeraGrid (USA) NSF, 2002 (Sec. 7.2.2) An open grid infrastructure in 11 resource sites, with
40 Gbps Internet2 backbone links with 2 Pflops computing
power, 50 PB storage, and 100 specific databases.

DataGrid (EU) EU and CERN, 2001
(7.2.3)

Claimed the largest grid on earth for data analysis in high-
energy physics, environment, and bioinformatics, etc.

Grid’5000
(France)

French Gov., 2006,
(Sec. 7.2.1)

An experimental grid comprising 5,000 processor cores in
9 French cities for HPC and research use (Section 7.2.2).

ChinaGrid (China) Education Ministry
2005, (Sec. 7.2.4)

An educational computing grid for research use, linking
HPC systems in 100 Chinese universities.

NAS Grid (USA) NASA Ames Lab, 2008 Running genetic algorithms with the Condor cycle
scavenger on large number of Sun and SGI workstations.
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distributed computing infrastructure built and nurtured by the projects DataGrid (2002-2004), EGEE-I, -II
and -III (2004-2010) is now supported by the European Grid Infrastructure. This long-term organization
coordinates National Grid Initiatives. Transitioning the care of the EGEE infrastructure to EGI is part of the
process for ensuring a vibrant and sustained European research community.

The EGEE grid infrastructure consists of a set of middleware services deployed on a worldwide
collection of computational and storage resources plus the services provided. For production services, a
large multi-science grid infrastructure involves 250 resource centers world-wide, providing some 40,000
CPUs and several petabytes of storage. This infrastructure is used on a daily basis by several thousands of
scientists over 200 virtual organizations on a daily basis. This is a stable, well-supported infrastructure, run-
ning the latest released versions of the gLite middleware. The EDEE also has a pre-production service,
which provides access to grid services to test and evaluate features of the middleware.

In addition, the pre-production extends the middleware certification activity, helping to evaluate
deployment procedures, interoperability, and basic software functionality. Furthermore there is an EGEE
Network Operations Center (ENOC), which caters for the network operational coordination between EGEE
and other network providers such as GEANT2 and NRENs. In the long run, the primary goals of EGEE and
EGI projects are to promote global collaboration for scientific research between academic and industrial
applications. Reported EGEE application challenges include health and medicine, genomics and
bioscience, particle physics and astronomy, environmental science, engineering design, chemistry and
material science, and social sciences. Interested readers are referred to the web site: http://www.eu-egee
.org for details.

Example 7.5 Grid’5000 Built over Nine French Cities

Grid’5000 is an experimental grid testbed platform for providing large-scale computing and research instru-
ments. As a national infrastructure, Grid’5000 connects 4,792 processor cores distributed over nine sites
in France. Figure 7.6 shows the processor core distribution. Grid’5000 is a confined system. PKI and

Table 7.5 International Grid Projects (Past and Current)

Project Description and Operating Region Status

EGEE Enabling Grids for E-sciencE in European Union countries 2004–2010
D4Science Grid-enabled technology for science in Europe, Asia

and the Pacific
2008–2009

Nordic D-Grid Nordic Data grid facility in Scandinavia and Finland 2006–2010
Future Grid High-performance and grid research groups in U.S. universities 2010–present
WorldGrid World community grid has 6.2 million machines running

the BOINC in 2011
2004–present

SETI@Home Volunteer grid with 2.5 machines running radioscope signals in 2001 2001–present
BOINC Berkeley-led volunteer grid projects including the PrimeGrid,

DNETC2Home, MilkyWay@Home, Collatz Conjective, etc.
2002–present

BEinGRID Business Experiments in Grid funded by the European Commission 2006–2009
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X.509 certificates are used to enforce security in Grid’5000. The system uses dedicated private networks to
construct a trustable backbone network.

The Grid’5000 sites are connected via high-bandwidth links. Each user has a universal account. Each
site manages its local user accounts, and each site runs a Lightweight Directory Access Protocol (LDAP)
server, which maintains the same directory tree for all users. The user accounts at the local site are treated
with higher priority to read and write shared files. The user accounts at remote sites are only allowed to
read files locally. The account information of remote sites in the tree is synchronized periodically. From the
user’s point of view, a globally enabled account is installed in the entire grid system.

7.2.2 NSF TeraGrid in the United States
TeraGrid is an open scientific discovery infrastructure combining leadership-class resources at 11
partner sites to create an integrated, persistent computational resource in the USA. Using high-
performance network connections, TeraGrid integrates high-performance computers, data resources
and tools, and high-end experimental facilities around the country. At the time of this writing, Tera-
Grid resources include more than 2 Pflops of computing capability and more than 50 petabytes of
online and archival data storage, with rapid access and retrieval over high-performance networks.
Researchers can also access more than 100 discipline-specific databases.

TeraGrid is coordinated through the Grid Infrastructure Group (GIG) at the University of Chicago,
working in partnership with the 11 resource provider sites: Indiana University, the Louisiana Optical
Network Initiative, the National Center for Supercomputing Applications (NCSA) at UIUC, the
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FIGURE 7.6

Overview of Grid’5000 located at nine resource sites in France.
(Courtesy of https://www.grid5000.fr/mediawiki/index.php/Grid5000:Home )
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National Institute for Computational Sciences, Oak Ridge National Laboratory (ORNL), the Pittsburgh
Supercomputing Center (PSC), Purdue University, the San Diego Supercomputer Center (SDSC),
the Texas Advanced Computing Center (TACC), the University of Chicago/ Argonne National
Laboratory (ANL), and the National Center for Atmospheric Research (NCAR).

When the project started in 2001, TeraGrid had only four resource sites at ANL, SDSC, UCSA,
and Caltech. In 2003, NSF added four sites to TeraGrid as well as established a third network hub,
in Atlanta. These new sites were at ORNL, Purdue University, Indiana University, and TACC.
TeraGrid construction was also made possible through key corporate partnerships with Sun Micro-
systems, IBM, Intel Corporation, Qwest Communications, Juniper, Myricom, Hewlett-Packard Com-
pany, and Oracle Corporation. At the time of this writing, the TeraGrid facility is entering full
production use. The next-generation petascale resources, called XD, may be added into one or two
national grid facilities in the United States from 2011 to 2016.

TeraGrid is a high-performance computing and communication (HPCC) system using the
Globus software/middleware tools to develop grids linking multiteraflop computers together. At the
time of this writing, the Internet backbone networks used to build TeraGrid include Gbps links (four 10
Gigabit Ethernet bundled together). Figure 7.7 shows five TeraGrid resource sites and their backbone
networks. Major resource types at each grid site are identified. A 40 GB/second extensible backplane
network connects two regional gateway hubs in Chicago and Los Angeles.

TeraGrid resources are integrated through SOA. Each resource provides a service in terms of
specific interfaces and operational support. Computational resources run a set of software packages
called Coordinated TeraGrid Software and Services (CTSS). CTSS provides a familiar user environ-
ment on all TeraGrid systems, allowing scientists to port code from one system to another. CTSS
also provides integrative functions such as single sign-on, remote job submission, workflow support,
and data movement tools. CTSS includes the Globus Toolkit, Condor, distributed accounting man-
agement software, verification and validation software, and a set of compilers, programming tools,
and environment variables.

TeraGrid resources are interconnected by a dedicated optical network, with each resource provi-
der site connecting at either 10 Gigabits per second or 30 Gigabits per second. TeraGrid users
access the facility through national research networks such as the Internet2 Abilene backbone and
National LambdaRail. TeraGrid users primarily come from U.S. universities. Academic researchers
in the United States can obtain exploratory, or CPU hours. More extensive allocations involve pro-
posal submissions and awards after a peer-review process. All allocation proposals are handled
through the TeraGrid web site, https://www.teragrid.org/web.

7.2.3 DataGrid in the European Union
The European DataGrid Project (EDG) was funded by the European Union. This grid aims to build
the next-generation, high-throughput, production-quality grid infrastructure to support I/O-intensive
experiments in high-energy physics, earth observation, and bioinformatics. Specific grid middleware
was developed to coherently manage and share petabyte-range information volumes. The goal is to
secure access to massive amounts of data in a universal namespace. The system moves and repli-
cates data at high speeds from one geographical site to another and keeps consistency checking and
synchronization of multiple copies in a global scale.
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7.2.3.1 The EDG Architecture
Figure 7.8 shows the overall architecture of the EDG based on information released by CERN. The
DataGrid project has a multitier hierarchical organization. Data on the order of several petabytes
will be distributed in a hierarchical fashion to multiple sites worldwide. For example, Tier-0 is the
CERN computer center (European Organization for Nuclear Research) based in Geneva. This tier
stores almost all the relevant data. Several Tier-1 regional centers are located in Italy, France,
the United Kingdom, and the United States. The regional centers store smaller amounts of data. The
EDG uses an extensible schema-based resource model with a hierarchical namespace to handle the
creation of and access to all distributed and replicated data items.

Each Tier-1 center is further linked to a large number of Tier-2 data centers, which further link
to many Tier-3 institutes in a hierarchical manner. End users access the data grid at the worksta-
tions. The EDG does not guarantee QoS, and the resource information is based on an LDAP
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Five major TeraGrid resource sites, connected by a 40 GB/s backplane network between the LA and
Chicago hubs.
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network directory. Resource dissemination is batched and periodically pushed to other parts of the
grid. Resource discovery in the EDG is decentralized and query-based. The scheduler uses a hier-
archical organization with an extensible scheduling policy. A special workload distribution facility
balances the analysis of jobs submitted from hundreds of physicists to different entry points in the
grid. Application monitoring and collection of user access patterns can be used to optimize global
access and data distribution.

7.2.3.2 Data Distribution in the EDG
The core middleware used is the Globus Toolkit with hooks for data grids. The physical grid fabric
delivers all the necessary tools to manage a computing center, providing grid services on clusters of
thousands of server nodes. The EDG uses European and national research network infrastructures to
provide virtual private networks (VPNs) between the servers and the storage of resources. The
EDG wide-area test bed interfaces with existing mass storage management systems based on the
core Globus middleware. Grid monitoring enables end users and administrators to check status and
error information in the EDG environment.
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Hierarchical data distribution of the European Data Grid (EDG).
(http://eu-datagrid.web.cern.ch/eu-datagrid © CERN )
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The data accessor and data locator are used to map location-independent identifiers to location-
dependent identifiers. The data accessor is an interface encapsulating the details of the local file system
and mass storage systems such as Castor and HPSS. Several implementations of this generic interface
exist. The data locator makes use of the generic metadata manager, which is responsible for efficient
publishing and management of a distributed and hierarchical set of objects. Query optimization ensures
that for a given query an optimal migration and replication plan is produced. Such plans provide appro-
priate security mechanisms to cover connected resources, independent of organizational boundaries.

7.2.4 The ChinaGrid Design Experiences
ChinaGrid aims to build the largest education and research platform of over 100 universities across
China. The system is used for research, science, and education projects by aggregating existing
dispersed resources throughout the China Education and Research Network (CERNET). In 2002,
ChinaGrid was launched by the Ministry of Education of China among 100 key universities in China.
The goal is to provide a nationwide grid computing platform. This grid service attempts to promote col-
laborative research, and scientific and education projects. ChinaGrid integrates heterogeneous massive
resources distributed based on grid technology.

7.2.4.1 Connectivity of ChinaGrid
As a long-term project, the first phase of ChinaGrid, from 2003 to 2006, focused on various plat-
forms and applications (ranging from life science to computational physics) on a computation grid
(e-Science) and covered many top universities in China, among them Tsinghua University, Huaz-
hong University of Science and Technology, Peking University, Beihang University, South China
University of Technology, Shanghai Jiao Tong University, Southeast University, Xi’an Jiaotong
University, National University of Defense Technology, etc. Details on the connectivity can be
found in (http://grid.hust.edu.cn/platform/project/chinagrid/index.html).

ChinaGrid is built and deployed based on CERNET, which is the second largest nationwide net-
work in China and covers 800 addition universities, colleges, and institutes in China. A high-bandwidth
(2.5 Gbps for the backbone) and rich scientific and education resource provides the fabric environ-
ment for constructing ChinaGrid. At the core of ChinaGrid is its grid middleware, called ChinaGrid
Supporting Platform (CGSP). CGSP integrates all kinds of resources in education and research
environments, makes the heterogeneous and dynamic nature of these resources transparent to users,
and provides a high-performance, highly reliable, secure, convenient, and transparent grid service for
scientific computing and engineering research.

7.2.4.2 Applications of ChinaGrid
CGSP provides the ChinaGrid service portal, a set of core grid services including execution man-
agement, data services, information services, and monitoring services, and various utilities for
deploying various grid applications. Based on CGSP, five application-specific grids are deployed: a
bioinformatics grid, computational fluid dynamics grid, massive information processing grid, dis-
tance education grid for offering higher education courses online, and image processing grid. At the
time of this writing, ChinaGrid’s total computing power had reached 170 teraflops and its total sto-
rage capacity had reached 170 terabytes. ChinaGrid projects support a variety of applications,
including weather forecasting, petroleum reservoir simulation, high-energy physics, numerical wind
tunnel simulation, ship structure analysis, and traffic control and guidance.
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7.3 GRID RESOURCE MANAGEMENT AND BROKERING
In this section, we will discuss the grid resource management middleware, including scheduling,
monitoring, and accounting. We will present two grid resource management technologies, the Glo-
bus Toolkit and the ChinaGrid Support Platform. Grid resource brokering and scheduling are two
kernel functions of grid resource management. We will also cover grid operational flow and intro-
duce the Gridbus resource broker as a brokering example.

7.3.1 Resource Management and Job Scheduling
In a grid system, resources are usually autonomous. Each organization may have its own
resource management policies. It is more reasonable and adaptable to set an individual resource
management system (RMS) for an organization—the RMSes in the upper level can be consid-
ered the resource consumers, and the RMSes in the lower level can be considered the resource
providers. To support such a multi-RMS structure, an abstract model for RMS is introduced.
Figure 7.9 shows the structure of this model. There are four published interfaces in the model.
The resource consumer interface is for access from upper-level RMS or user applications.
The resource discoverer actively searches qualified resources by this interface. The resource
disseminator broadcasts information about local resources to other RMSes. The resource trader
exchanges resources among RMSes for market-based grid systems. The resource resolver routes
jobs to remote RMSes. The resource co-allocator simultaneously allocates multiple resources
to a job.
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Major components of a grid resource management system (RMS) supported by Globus.
(Courtesy of I. Foster [17] )
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7.3.1.1 Hierarchy of RMSes
These RMSes are interconnected with one another. The RMSes are set in a hierarchical structure.
The resource provider interface is for the lower-level RMS or actual resources. Resources and jobs
in the lower-level RMS are managed and controlled through this interface. If it is supported, a
resource reservation agent is also implemented here. A resource manager peer interface is used to
interoperate with other RMSes in the same level. Job requests are accepted from this interface, and
are forwarded to the local scheduler.

7.3.1.2 Grid Job Scheduling Methods
The grid is a new kind of distributed computing technology. Scheduling technology in the grid is
not a completely new research topic. Traditional distributed systems (e.g., clusters) have similar
issues in grid scheduling. These issues may have been explored for decades. Much research has
been conducted on scheduling technology in traditional distributed systems. Two schemas are often
used to classify them: hierarchical classification, which classifies scheduling methods by a multilevel
tree (Figure 7.11) and flat classification based on a single attribute. These include methods based on
adaptive versus nonadaptive, load balancing, bidding, or probabilistic and one-time assignment versus
dynamic reassignment.

The resources in a grid are often heterogeneous. The hardware capacity (e.g., the number of
processors and the amount of memory) and the software configuration may be different for each
site. It is reasonable for traditional scheduling to determine resource allocation without considering
the differences among the sites. But this is unacceptable for a grid. The scheduler has to estimate
the performance of a job for each candidate resource. We need a grid performance model to assess
the cost in terms of time and efficiency in relation to grid applications.

A dynamic performance model is more accurate in estimating real grid applications. Some skills
may be exploited to improve the precision of simulation modeling. The inner structure of the appli-
cation or source code of the program needs to be analyzed. This modeling approach may cut the
makespan of an individual job into several sections, including the queuing time, data transfer time,
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Hierarchical classification of grid job scheduling methods for grids and computer clusters.
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and computation time. Some sample data sets and benchmark programs are needed to collect the
information for training the performance model.

The resources in a grid are dynamically allocated for different applications. For traditional dis-
tributed systems, the system administrator has full control of the resources. (P2P is not considered
here, because job scheduling is not a key issue of it.) There are only two players (the system and
the user). The scheduling technologies can completely focus on performance. The optimization
objective of the scheduling can be system-centric or application-centric. However, the owner of the
resources has the right to determine the number and quality of resources to be shared in the grid.
The grid has three players: the grid system, resource provider, and resource customer.

Without any incentives, the resource providers will be reluctant to share more and better
resources. So the optimization objectives of scheduling in the grid have to take the benefit of
resource providers into account. The most common incentive is to allocate resources for jobs based
on economics principles. In an economic-based grid computing environment, users express their
requirements for QoS, and their preferred cost for different levels QoS. The grid service providers
need to work out a cost model for various services.

7.3.2 Grid Resource Monitoring with CGSP
Generally, when we talk about monitoring in a grid environment to solve a particular problem,
many elements are involved, including target grid resources as well as relevant grid middleware and
application components on top of them.

7.3.2.1 Producer/Consumer Model for Grid Monitoring
The producer/consumer model is shown in Figure 7.11. This model provides a basic framework for grid
resource monitoring to support functionalities required by users, and to improve interoperability among
different grid resources. Grid monitoring data includes short lifetimes, frequent changes, randomness,
and so on. The model should satisfy the requirements of low latency, high transfer rates, low overhead,
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Producer/consumer grid monitoring model implemented in the grid monitoring architecture (GMA).
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security, and scalability. In particular, the discovery and transmission of grid monitoring data should be
handled separately. Related metadata describing the profiles of monitoring data needs to be stored in a
public location.

Example 7.6 ChinaGrid SuperVision (CGSV) for Resource Monitoring

In ChinaGrid, the monitoring system is essential to keep such a complex distributed system efficient. The
CGSP components, including the Job Manager, Storage Manager, and Information Center, provide system
status information for different purposes. The ChinaGrid SuperVision (CGSV) system (Figure 7.12) was
specifically designed for monitoring ChinaGrid performance. In addition to common inventory tracking
tasks, ChinaGrid also requires CGSV to have scalable support to different types of data requests, and an
efficient approach to data processing and transmission.

To cope with these requirements, CGSV is designed to be an adaptable, stream-integrated grid moni-
toring system. A transfer and control protocol was designed to efficiently transfer various types of measure-
ment data and perform modifications over producer behavior in a unified way. Re-publishers are stream-
oriented, in that they are designed to support predicate-based processing over measurement data streams
and SQL-like stream query interfaces.

The CGSV is designed based on the GMA proposed by the Open Grid Forum (OGF). The CGSV is built
with a collection layer, service layer, and presentation layer, as shown in Figure 7.12. In the collection
layer, sensors are deployed to measure data collection. Sensor-I is responsible for collecting hardware
resource information. Other sources of information including network condition and dynamic service infor-
mation or data generated by other monitoring tools are wrapped by an adapter to unify the data format.

Above the data interface, we have the service layer. In each domain of ChinaGrid, this layer is
presented as a logical domain monitoring center, where Domain Registry Service and Monitor Services are
deployed. A Message Gateway Service is provided to alleviate the communication cost of monitoring
services since too many notifications and subscriptions will decrease service performance tremendously.
The top layer is the presentation layer, where data analysis and visualization are performed.
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Architecture of CGSV module deployment.
(Courtesy of Y. Wu, et al. [56] )
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7.3.3 Service Accounting and Economy Model
Economics-based resource trading is an effective way to allocate grid resources. First, resource
providers register their shared resources together with resource information in a grid market. The
resource information may include hardware capacity, software configuration, and price policy. Then
resource customers submit their jobs with special requirements to a resource broker. These require-
ments may include hardware capacity, software configuration, QoS, and budget. Next, the broker
searches and allocates qualified resources in the grid market for each job. When the jobs are
successfully completed, the customers are charged for the resources allocated. Figure 7.13 shows
the framework of an accounting system for distributed grid services. Two accounting services are
introduced in the following paragraphs.

7.3.3.1 Monitoring and Metering Services
This component directly collects raw usage information (e.g., CPU time) from grid services or
resources. Generally speaking, each grid service container or computing node should have a moni-
toring component deployed. The collected raw data is forwarded to the upper-level component, the
metering component. The raw data can be gathered by querying the grid service, analyzing the log
data of the application, or obtaining it directly from the underlying system. The metering service
obtains the raw usage information from the monitoring component, and applies charge policies
based on service usage. The charge policies are the mappings between raw usage events and mone-
tary charge events. The charge policies specify the formulas used to obtain the cost from the appli-
cation, user, and result.

To maintain good grid economy, the accounting system demands a grid economy model. The
usage data collected by the accounting system will be considered as the foundation of charges to
customers. If the usage data is faked or modified by malicious services, incorrect actions will
be operated on customers’ and providers’ accounts. As a result, the order of the grid economy will
be seriously disturbed. Some accounting systems have taken measures to ensure security. GridBank
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Accounting
service

MonitoringMonitoring

Grid service Grid serviceGrid serviceGrid service

FIGURE 7.13

A generic framework of a grid accounting system for billing services.
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[8], the accounting system of Gridbus, uses SOAP over Globus Toolkit sockets. Access from the
remote service is authenticated and authorized with this grid security infrastructure. Grids normally
consist of multiple real organizations. The accounting has to be performed across multiple domains,
so the accounting system must provide the access interface of standard grid services. Globus Toolkit
is the most popular and de facto standard for grid services.

7.3.3.2 Accounting Component
The primary function of an accounting module is to maintain the economic relationship between
resource customers and providers. By receiving and converting charge events from the metering
module, the accounting module records billing events. An accounting event is the action which will
be operated on the account of each grid user. The account of the grid user holds the information on
the balance amount. Some other features are also demanded for accounting in a grid, such as the
security of the accounting system.

Over the past several years, realizing the full promise of the grid has required solutions to funda-
mental issues of authentication, authorization, resource discovery, resource access, and most nota-
bly, incompatibility of resources and policies for managing them. A wide variety of projects and
products offer services intended to address these issues. Several grid middleware libraries have been
developed and deployed, including the popular Globus Toolkit, glite, and CGSP. In this section, we
will focus on Globus Toolkit and CGSP, two of the most important grid middleware libraries that
underlie various systems and that provide the basis for most grid technology deployments.

Example 7.7 An Economy Model for Grid Computing

Figure 7.14 shows a generic economy model for assessing grid computing services in terms of cost-
effectiveness. Besides the users (consumer) and providers, the computational economy needs some other
components. The Trade Manager identifies resource access costs; the Grid Market Directory allows
resource owners to publish their services; the Grid Trade Server negotiates with resource users and
maximizes benefits; Pricing Policies define the price of the resource; and the Grid Bank records resource
usage and bills the user. Co-allocation of resources is a special demand of grid scheduling. Some kinds of
applications (e.g., workflow, multisite applications) in grids usually demand multiple resources from
multiple sites simultaneously.

For example, interactive data analysis may require simultaneous access to several resources, such as a
storage system holding a copy of the data, a supercomputer for analysis, network elements for data
transfer, and a display device for interaction. Two-phase transaction is often used to solve the problem of
co-allocation. To request multiple resources, the first step is to acquire qualified resources. The second step
is to bind the resource for specific applications. If the commission of any resource fails, the commissions of
all resources will be cancelled, and the system will start to find a new solution for the request.

7.3.4 Resource Brokering with Gridbus
Figure 7.15 shows the grid environment from an operations perspective with the components orga-
nized according to their deployment and functionality. To make resources constituents of the grid,
they need to be accessible from different management domains. This can be achieved by installing
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An economy model for assessing grid computing services, developed at the University of Melbourne.
(Courtesy of Buyya, et al. [8] )
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core grid middleware such as Globus in UNIX/Linux environments. Multinode clusters need to be
presented as a single resource to the grid, and this can be achieved by deploying job management
systems such as the Sun Grid Engine on them.

In a grid environment where data needs to be federated for sharing among various interested
parties, data grid technologies such as SRB, Globus RLS, and EU DataGrid need to be deployed.
The user-level middleware needs to be deployed on resources responsible for providing resource
brokering and application execution management services. Users may even access these services via
web portals. Several grid resource brokers have been developed. Some of the more prominent
include Nimrod-G, Condor-G, GridWay, and Gridbus Resource Broker. The following 11 steps are
followed to aggregate the Grid resources:

1. The user composes his application as a distributed application (e.g., parameter sweep) using
visual application development tools.

2. The user specifies his analysis and QoS requirements and submits them to the grid resource
broker.

3. The grid resource broker performs resource discovery using the grid information service.
4. The broker identifies resource service prices by querying the grid market directory.
5. The broker identifies the list of data sources or replicas and selects the optimal ones.
6. The broker identifies computational resources that provide the required services.
7. The broker ensures that the user has necessary credit or an authorized share to utilize the

resources.
8. The broker scheduler analyzes the resources to meet the user’s QoS requirements.
9. The broker agent on a resource executes the job and returns the results.

10. The broker collates the results and passes them to the user.
11. The meter charges the user by passing the resource usage information to the accountant.

Example 7.8 The Gridbus Architecture at the University of Melbourne

The accountant reports resource share allocation or credit utilization to the use. The Gridbus Resource
Broker [9,48] is a market-oriented meta-scheduler for computational and data grids, with support for a
wide range of grid middleware and services. It takes care of many functions that grid applications require,
including discovering the right resources for a particular user application, scheduling jobs to meet dead-
lines, and handling faults that may occur during execution.

In particular, the broker provides capabilities such as resource selection, job scheduling, job manage-
ment, and data access to any application that requires distributed grid resources for execution. The broker
handles communication with the resources running different grid middleware, job failures, varying
resource availability, and different user objectives such as meeting a deadline for execution or limiting
execution within a certain budget. The design of the Gridbus broker follows a layered architecture consist-
ing of interface, core, and execution layers that together provide the capabilities shown in Figure 7.16 for
the market-oriented broker.

The interface layer consists of APIs and parsers for the input files through which external programs and
users communicate with the broker. Resource discovery and negotiation, scheduling, and job monitoring are
carried out in the core layer. Job execution is carried out through the execution layers in which middleware-
specific adapters communicate with the target resources. In the Gridbus broker, middleware-specific
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adapters are implemented as plug-in actuators that support deployment of jobs on resources accessible via
grid middleware such as Globus and enterprise cloud application platforms such as Aneka.

The broker also works with public clouds such as Amazon EC2 and supports remote job execution via
SSH on clusters managed by queuing systems such as PBS, Condor, and SGE. The broker enables
different types of scheduling depending on the objectives of the user and type of resources. At present, the
broker can accommodate compute, storage, network, and information resources with prices based on time
(e.g., 1 Grid Dollar/s) or capacity (e.g., 1 Grid Dollar for 1 MB). It can also accommodate user objectives
such as the fastest computation within the budget (time optimization), or the cheapest computation within
the deadline (cost optimization) for both compute and data-intensive applications. The compute-intensive
algorithms are based on those developed previously in Nimrod/G [10].

7.4 SOFTWARE AND MIDDLEWARE FOR GRID COMPUTING
In this section, we will study the middleware libraries developed for grid computing over the years.
First, we give an overview of open source middleware packages. Then we introduce the Globus
Toolkit based on version GT4. The concept of Globus containers and the grid resource allocation
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Architecture of the Gridbus resource broker and its interaction with many public or private grids/clouds.
(Courtesy of Buyya and Bubendorfer (editors) [9] )
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manager are studied in more detail. Finally, we study the CGSP library specifically developed out
of the ChinaGrid Project.

7.4.1 Open Source Grid Middleware Packages
As reviewed in Berman, Fox, and Hey [5], many software, middleware, and programming environ-
ments have been developed for grid computing over past 15 years. Below we assess their relative
strength and limitations based on recently reported applications. We first introduce some grid stan-
dards and popular APIs. Then we present the desired software support and middleware developed
for grid computing. Table 7.6 summarizes four grid middleware packages.

7.4.1.1 Grid Standards and APIs
Grid standards have been developed over the years. The Open Grid Forum (formally Global Grid
Forum) and Object Management Group are two well-formed organizations behind those standards. We
have already introduced the OGSA (Open Grid Services Architecture) in Chapter 5 and Section 7.1.3.
In Chapter 5, we have also reported some grid standards including the GLUE for resource representa-
tion, SAGA (Simple API for Grid Applications), GSI (Grid Security Infrastructure), OGSI (Open Grid
Service Infrastructure), and WSRE (Web Service Resource Framework).

GSI will be studied in Section 7.5.5. The grid standards have guided the development of several
middleware libraries and API tools for grid computing. They are applied in both research grids and
production grids today. Research grids tested include the EGEE, France Grilles, D-Grid (German),
CNGrid (China), TeraGrid (USA), etc. Production grids built with the standards include the EGEE,
INFN grid (Italian), NorduGrid, Sun Grid, Techila, and Xgrid [52]. We review next the software
environments and middleware implementations based on these standards.

7.4.1.2 Software Support and Middleware
Grid middleware is specifically designed a layer between hardware and the software. The middle-
ware products enable the sharing of heterogeneous resources and managing virtual organizations
created around the grid. Middleware glues the allocated resources with specific user applications.

Table 7.6 Grid Software Support and Middleware Packages

Package Brief Description, References and Coverage in This Book

BOINC Berkeley Open Infrastructure for Network Computing.
UNICORE Middleware developed by the German grid computing community.
Globus (GT4) A middleware library jointly developed by Argonne National Lab., Univ. of

Chicago, and USC Information Science Institute, funded by DARPA, NSF, and
NIH. (Sections 7.4.2, 7.4.3, and 7.5.5).

CGSP in ChinaGrid The CGSP (ChinaGrid Support Platform) is a middleware library developed by 20
top universities in China as part of the ChinaGrid Project (Section 7.4.4).

Condor-G Originally developed at the Univ. of Wisconsin for general distributed computing,
and later extended to Condor-G for grid job management. (Example 7.9).

Sun Grid Engine (SGE) Developed by Sun Microsystems for business grid applications. Applied to
private grids and local clusters within enterprises or campuses. (Example 7.10).
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Popular grid middleware tools include the Globus Toolkits (USA), gLight, UNICORE (German),
BOINC (Berkeley), CGSP (China), Condor-G, and Sun Grid Engine, etc. [52]. Table 7.6 sum-
marizes the grid software support and middleware packages developed for grid systems since 1995.
In subsequent sections, we will describe the features in Condor-G, SGE, GT4, and CGSP.

Example 7.9 introduces the matchmaking capability of Condor and Condor-G developed at
University of Wisconsin. Example 7.10 discusses the features of Sun’s Grid Engine developed at
Sun Microsystems for business grid computing.

Example 7.9 Features in Condor Kernel and Condor-G for Grid Computing

Condor is a software tool for high-throughput distributed batch computing. It was designed to explore the idle
cycles of a network of distributed computers. The major components of Condor are the user agent,
resources, and matchmaker, as shown in Figure 7.17. The ClassAds (classified advertisements) language
was exploited in Condor to express user requests against available resources in a distributed system. Agents
and resources advertise their status and requirements in ClassAds to a central matchmaker. The match-
maker scans the ClassAds and creates pairs of (resources, agents) that match each other’s requirements.

Subsequently, the matched agent negotiates with the available resource to execute the job. Two problem
solvers are provided in Condor: the master-worker and the DAG manager. For specific jobs, Condor records
checkpoints and subsequently resumes program execution from the checkpoints. When running a job
on remote machines without a shared file system, Condor accesses the local execution environment via
remote system calls. Condor-G was designed to match the GRAM protocol (to be covered in Section 7.4.4)
for coupling jobs with resources in the Globus Project. Condor-G adds durability and two-phase commitment
to prevent the loss and repetition of jobs in GRAM. However, Condor-G does not support all the features
in GRAM.

User
Problem solver

(DAGMan)
(Master-worker)

Agent
(schedd)

Shadow
(shadow)

Resource
(startd)

Sandbox
(starter)

Job

Matchmaker
(central manager)

FIGURE 7.17

Major functional components in a Condor system (Condor-specific names are in parentheses).
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Example 7.10 The Sun Grid Engine (SGE) Middleware Package

SGE was developed by Sun Microsystems in response to increasing demands of business grid
applications. SGE features are applied to private grids and local clusters within an enterprise or campus
for intranet-based cluster or grid applications. The system supports batch processing with dynamic
allocation of grid resources. Fault tolerance and failover capability are implemented. Users can specify
resources independent of submission locations. Job status and resource utilization can be monitored
periodically.

Sun offers free and enterprise editions of the SGE package. The system offers centralized management
of all resources allocated to individual jobs. This was meant to enhance efficiency and performance. Sus-
pend and resume tools are provided to allow users to halt a job and restart it later without losing the work
already completed. The SGE workflow follows the following sequence of events:

• Accepts the jobs from users
• Places jobs in a computer area until execution
• Sends the jobs from the holding area to a host where they can be executed
• Manages the jobs during execution
• Logs a record of their execution when they are finished

The SGE system uses reserved ports, Kerberos, DCE, SSL, and authentication in classified hosts to
enforce security at different trust levels and resource access restrictions.

7.4.2 The Globus Toolkit Architecture (GT4)
The Globus Toolkit, started in 1995 with funding from DARPA, is an open middleware library for
the grid computing communities. These open source software libraries support many operational
grids and their applications on an international basis. The toolkit addresses common problems and
issues related to grid resource discovery, management, communication, security, fault detection, and
portability. The software itself provides a variety of components and capabilities. The library
includes a rich set of service implementations.

The implemented software supports grid infrastructure management, provides tools for building
new web services in Java, C, and Python, builds a powerful standard-based security infrastructure
and client APIs (in different languages), and offers comprehensive command-line programs for
accessing various grid services. The Globus Toolkit was initially motivated by a desire to remove
obstacles that prevent seamless collaboration, and thus sharing of resources and services, in
scientific and engineering applications. The shared resources can be computers, storage, data, services,
networks, science instruments (e.g., sensors), and so on. The Globus library version GT4, is concep-
tually shown in Figure 7.18.

7.4.2.1 The GT4 Library
GT4 offers the middle-level core services in grid applications. The high-level services and tools,
such as MPI, Condor-G, and Nirod/G, are developed by third parties for general-purpose distributed
computing applications. The local services, such as LSF, TCP, Linux, and Condor, are at the bot-
tom level and are fundamental tools supplied by other developers. Table 7.7 summarizes GT4’s
core grid services by module name. Essentially, these functional modules help users to discover
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available resources, move data between sites, manage user credentials, and so on. As a de facto
standard in grid middleware, GT4 is based on industry-standard web service technologies.

In Section 7.4.3, we will examine the HTTP-based GRAM and MDS modules. Nexus is used
for collective communications and HBM for heartbeat monitoring of resource nodes. GridFTP is for
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Globus Tookit GT4 supports distributed and cluster computing services.
(Courtesy of I. Foster [17] )

Table 7.7 Functional Modules in Globus GT4 Library

Service Functionality Module Name Functional Description

Global Resource Allocation
Manager

GRAM Grid Resource Access and Management (HTTP-based)

Communication Nexus Unicast and multicast communication
Grid Security Infrastructure GSI Authentication and related security services
Monitory and Discovery
Service

MDS Distributed access to structure and state information

Health and Status HBM Heartbeat monitoring of system components
Global Access of
Secondary Storage

GASS Grid access of data in remote secondary storage

Grid File Transfer GridFTP Inter-node fast file transfer

Courtesy of Ian Foster [17].
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speeding up internode file transfers. The module GASS is used for global access of secondary storage.
GSI (grid security infrastructure) will be covered in Section 7.5. More details of the functional modules
of Globus GT4 and their applications are available at www.globus.org/toolkit/.

7.4.2.2 Globus Job Workflow
Figure 7.19 shows the typical job workflow when using the Globus tools. A typical job execution
sequence proceeds as follows: The user delegates his credentials to a delegation service. The user sub-
mits a job request to GRAM with the delegation identifier as a parameter. GRAM parses the request,
retrieves the user proxy certificate from the delegation service, and then acts on behalf of the user.
GRAM sends a transfer request to the RFT (Reliable File Transfer), which applies GridFTP to bring in
the necessary files. GRAM invokes a local scheduler via a GRAM adapter and the SEG (Scheduler
Event Generator) initiates a set of user jobs. The local scheduler reports the job state to the SEG. Once
the job is complete, GRAM uses RFT and GridFTP to stage out the resultant files. The grid monitors the
progress of these operations and sends the user a notification when they succeed, fail, or are delayed.

7.4.2.3 Client-Globus Interactions
GT4 service programs are designed to support user applications as illustrated in Figure 7.20.
There are strong interactions between provider programs and user code. GT4 makes heavy use of
industry-standard web service protocols and mechanisms in service description, discovery, access,
authentication, authorization, and the like. GT4 makes extensive use of Java, C, and Python
to write user code. Web service mechanisms define specific interfaces for grid computing.
Web services provide flexible, extensible, and widely adopted XML-based interfaces.
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Globus job workflow among interactive functional modules.
(Courtesy of Foster and Kesselman [15] )
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GT4 components do not, in general, address end-user needs directly. Instead, GT4 provides a set
of infrastructure services for accessing, monitoring, managing, and controlling access to infrastruc-
ture elements. The server code in the vertical boxes in Figure 7.22 corresponds to 15 grid services
that are in heavy use in the GT4 library. These demand computational, communication, data, and
storage resources. We must enable a range of end-user tools that provide the higher-level capabilities
needed in specific user applications. Wherever possible, GT4 implements standards to facilitate con-
struction of operable and reusable user code. Developers can use these services and libraries to build
simple and complex systems quickly.

A high-security subsystem addresses message protection, authentication, delegation, and
authorization. Comprising both a set of service implementations (server programs at the bottom
of Figure 7.21) and associated client libraries at the top, GT4 provides both web services and
non-WS applications. The horizontal boxes in the client domain denote custom applications and/
or third-party tools that access GT4 services. The toolkit programs provide a set of useful infrastructure
services.

Three containers are used to host user-developed services written in Java, Python, and C, respec-
tively. These containers provide implementations of security, management, discovery, state manage-
ment, and other mechanisms frequently required when building services. They extend open source
service hosting environments with support for a range of useful web service specifications, includ-
ing WSRF, WS-Notification, and WS-Security.

A set of client libraries allow client programs in Java, C, and Python to invoke operations on both
GT4 and user-developed services. In many cases, multiple interfaces provide different levels of
control: For example, in the case of GridFTP, there is not only a simple command-line client (globus-
url-copy) but also control and data channel libraries for use in programs—and the XIO library allow-
ing for the integration of alternative transports. The use of uniform abstractions and mechanisms
means clients can interact with different services in similar ways, which facilitates construction of
complex, interoperable systems and encourages code reuse.
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represent the user codes.
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7.4.3 Containers and Resources/Data Management
In this section, we introduce the container concept introduced with the GRAM module in the GT4
Toolkit. Then we explain how to use GRAM and MDS in resource and data management in any
open grid. GRAM supports dynamic job execution with coordinated file staging. MDS is used for
monitoring and discovery of available grid resources in a grid execution environment.

7.4.3.1 Resource Management Using GRAM
The GRAM module supports web services for initiating, monitoring, and managing execution of
computational jobs on remote computers in an open grid. GRAM is built atop various local resource
allocation services. A standardized GRAM interface enables access to a variety of local resource
management tools. Some of them are commercially available from cluster and grid computing ven-
dors, such as the Load Sharing Facility introduced in Chapter 2, the Network Queuing Environ-
ment, IBM’s LoadLeveler, and Condor. This interface allows a client to express the resource type
and quantity, data to be staged to and from the execution site, executable code and its arguments,
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Globus container serving as a runtime environment for implementing web services in a grid platform.
(Courtesy of Foster and Kesselman [16] )
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security credentials to be used, and job persistence requirements. Other operations enable clients to
monitor the status of both allocated resources and running tasks and notify users about their status,
as well as guide job execution on the grid.

The heart of GRAM contains a set of web services designed to run the Globus Web Services
Resource Framework (WSRF) core hosting environment. Each submitted job is exposed with a dis-
tinct resource qualifying the requested service. The service provides an interface to monitor the sta-
tus of the job or to terminate the job. Each compute element is accessed through a local scheduler.
The service provides an interface to create the managed job resources to perform a job in that local
scheduler, as illustrated in the job workflow diagram.

7.4.3.2 Globus Container: A Runtime Environment
The Globus Container (also called a web service core or WS container) provides a basic runtime
environment for hosting the web services needed to execute grid jobs. Figure 7.21(a) shows the
container concept. The container is built with heavy use of SOAP engines. The main SOAP func-
tions performed include the transport of incoming job requests and corresponding responses. It is
also common to partition the hosting environment logic for transporting the SOAP message via an
HTTP engine or web server.

Figure 7.21(b) summarizes the capabilities of the containers. All WS containers implement the
SOAP commands over the HTTP engine as a message transport protocol. Both transport-level and
message-level security is enforced in all communications. The WS-addressing, WSRF, and WS-
Notification functions are implemented. The container supports logging using the Jakarta logging
API. The container defines WSRF WS-Resources for grid services deployed in the container. Thus,
any GT4 container can host many services to multiple jobs simultaneously.

The container supports custom web services and host services whose client interfaces make use
of WSRF and related mechanisms. The container also hosts advanced services provided by GT4,
such as GRAM, MDS, and RFT. The application clients use the Globus container registry interfaces
to determine which services are hosted in a particular container. The container administration
interfaces are used to perform routine management functions. At the time of this writing, there are
web service containers written in Java, C, and Python in the GT4 suite.

7.4.3.3 Data Management Using GT4
Grid applications often need to provide access to and/or integrate large quantities of data at multiple
sites. The GT4 tools can be used individually or in conjunction with other tools to develop interest-
ing solutions to efficient data access. The following list briefly introduces these GT4 tools:

1. GridFTP supports reliable, secure, and fast memory-to-memory and disk-to-disk data movement
over high-bandwidth WANs. Based on the popular FTP protocol for Internet file transfer,
GridFTP adds additional features such as parallel data transfer, third-party data transfer, and
striped data transfer. In addition, GridFTP benefits from using the strong Globus Security
Infrastructure (GSI to be studied in Section 7.5.5) for securing data channels with authentication
and reusability. It has been reported that the grid has achieved 27 Gbit/second end-to-end
transfer speeds over some WANs.

2. RFT provides reliable management of multiple GridFTP transfers. It has been used to
orchestrate the transfer of millions of files among many sites simultaneously.
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3. RLS (Replica Location Service) is a scalable system for maintaining and providing access to
information about the location of replicated files and data sets.

4. OGSA-DAI (Globus Data Access and Integration) tools were developed by the UK e-Science
program and provide access to relational and XML databases.

7.4.3.4 The MDS Services
Monitoring and discovery are two vital functions in any distributed system. Both tasks require the
ability to collect information from multiple distributed information sources. GT4 provides monitoring
and discovery support at a fundamental level. Figure 7.22 shows the Globus MDS infrastructure. By
implementing WSRF and WS-Notification specifications, GT4 enables the association of XML-based
resource properties with network entities. Multiple containers are built to carry out MDS indexing,
GridFTP, and other functions needed to conduct monitoring and discovery of available resources.
Grid services can be registered with distributed containers.

Furthermore, GT4 provides two aggregator services that collect data from any information source,
whether XML-based or otherwise. In addition, GT4 provides a range of browser-based interfaces,
command-line tools, and web service interfaces that allow users to query and access the collected
information. In particular, the WebMDS service is configured via XSLT transformations to create
specialized views of the index data. These mechanisms provide a powerful framework for monitoring
diverse collections of distributed components. Details of GRAM, MDS, and other interesting tools
are available at the GT4 web site: http://www.globus.org/.

7.4.4 The ChinaGrid Support Platform (CGSP)
CGSP was developed by 20 universities in China for building ChinaGrid. The package offers the first
step toward multidomain web services. Unlike GT4, CGSP offers a software platform rather than a
toolkit library. CGSP covers everything from user interfaces to the integration of heterogeneous
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GT4 system monitoring and resource discovery infrastructure.
(Courtesy of Ian Foster [17] )
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resources for a given application. It brings the user closer to both grid developers and field experts.
CGSP has been tested in image processing, bioinformatics, distance education, computational fluid
dynamics, and large-scale information processing on ChinaGrid.

Table 7.8 shows the functional blocks built in CGSP. ChinaGrid aims at constructing a public
grid service system for research and higher education in China. CGSP integrates all sorts of hetero-
geneous resources, especially educational and research resources distributed over CERNET in
China. CGSP provides a grid platform for grid construction from the top portal level to the integra-
tion of underlying resources. This system supports uniform management of heterogeneous resources,
portal building, job definitions, service packaging, and grid monitoring. It provides an extensible
grid framework to serve primarily the top 100 universities in China.

The CGSP software platform meets the OGSA standard and the WSRF criteria. All software,
hardware, storage, and network technology becomes virtual resources to the user. Like Globus,
CGSP emphasizes a high degree of resource sharing and cooperation among resources. CGSP com-
prises nine major components, as briefly introduced in Table 7.8. In addition, CGSP provides a set
of APIs and toolkits that enable end users and developers to write grid-enabled programs, and
query and deploy their applications.

7.4.4.1 CGSP Job Execution Flow
Figure 7.24 shows the flow of jobs in CGSP on a single domain. First, the grid service containers
should include the allocated resources. The resources are extracted through a service packaging tool
and are included in the service containers, The three symbols, S1, S2, and S3, represent the com-
mand-line software, legacy program, and service requested, respectively. We need to use a job defi-
nition tool to model the workflow of a job. Because job requests are submitted via SOAP
messages, the job manager is deployed in the service container.

Table 7.8 Functional Components of the CGSP Library

Component Brief Description

Service container Produces a basic environment for the installation, deployment, running, and
monitoring of services, especially CGSP kernel services

Security manager Focuses on user identity authentication, identity mapping, service and resource
authorization, and secure message passing between CGSP nodes

Information center Provides service registration, publishing, metadata management, service querying,
service matching, and resource status collection for the CGSP services in a uniform way

Data manager Shields users from the heterogeneousness of underlying storage resources to
provide a uniform storage resource access mode

Execution manager Accepts users’ job execution requests and invokes relevant services according to the
job description, and manages the job during its lifetime

Domain manager In charge of user management, logging and accounting, and user identity mapping
between different CGSP domains

Grid monitor Named ChinaGrid Super Vision (CGSV), mainly focuses on the monitoring of CGSP
resource load, QoS, user actions, job status, and network, to ensure that the system
is running normally and to enhance grid performance

Portal A web page for learning about CGSP services and providing support for new grid
applications
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The job manager is responsible for job request analysis, service selection, and job scheduling
and execution management. Each domain needs to deploy a service manager which collects service
information from containers to support other software modules. In addition, each domain has to
deploy a domain manager to implement the functions of user management and other issues. Lastly,
one or more grid portals can be deployed to satisfy specific needs of different specialties. A portal
development tool can help users to develop web applications that satisfy interaction requirements
and can be deployed in the portal.

After an application is deployed, the following steps are taking place, as illustrated in Figure 7.24 in
8 steps. More details can be found in [53].

1. The user should register and acquire the certificate signed by ChinaGrid. Then the user logs in
to the grid portal through a certain security protocol (such as HTTPS) and interacts with the
grid system through web applications deployed in the portal.

2. If necessary, the user uploads the input data required by the computing job/request to the
personal data space in the data manager. Then the user can define a job (such as J1) by using
the job defining tool. The job definition is then sent to the job manager.

3. According to the job process rule in J1, which is stored locally, the job manager queries
available services from the information center and helps to complete job J1.

4. The information center collects the service information using a “push/pull” model. It maintains
the resource view so that it can return an available service list sorted by a certain rule. In
principle, the information center will return local available services. If necessary, it will query
other information centers for more available services if it cannot find a service satisfying the
requirement in its own domain.

5. The job manager selects service S2 and sends it to the allocated computing node.
6. After service containers receive the requests, they need to invoke the access interfaces provided

by the data manager in order to get the data by a logical file path in the unified data space.
Then the service containers execute the services.
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Functional building blocks in the CGSP library for ChinaGrid, developed by Tsinghua University, China [53].
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7. The job manager continuously collects the services’ status in the execution processes to report
the information to the user through the portal.

8. When the job is completed, the service container moves the computing results to the personal
data space in the data manager.

7.5 GRID APPLICATION TRENDS AND SECURITY MEASURES
In this final section, we assess the application trends of grid computing, in line with the progress of
related theories and technologies such as game theory, fuzzy trust model, virtualized data centers,
and the growth of the clouds. Users and resources from multiple administrative organizations are
involved in a grid. We need to prevent not only network attacks to data and resources, but also
combat the selfishness of grid users and remove the distrust among users.

More importantly, we should be aware of the security challenges in grid applications. We need
to establish a trust mode for grid computing. The principles of some grid security enforcement
schemes and mechanisms are presented, based on the lessons learned from the GridSec Project at
the University of Southern California [29,39,40]. Specifically, we describe methods to cope with
the problems of user authentication and resource-access authorization.
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7.5.1 Grid Applications and Technology Fusion
Grid computing has been applied to solve computation-intensive problems in scientific discovery,
engineering design, environment protection, and government management areas. The virtual grids
have been applied in solving difficult academic and mathematical problems through volunteer com-
puting. In commercial enterprise, many companies are using grids for drug discovery, economic
forecasting, seismic analysis, e-commerce, and cloud services. We see a trend that calls for the
fusion of computing, communication, and future Internet technologies. In what follows, we first
review the theories and technologies that are relevant to grid computing. Then we present an exam-
ple to use game theory to cope with the selfishness problem in P2P and grid users.

7.5.1.1 Relevant Theories and Technologies
Grid computing is related to many other computing concepts and technologies. Just to name a few:
clouds, clusters, P2P, parallel processing, and distributed computing are closely relevant to the develop-
ment of grid technology. Other areas like edge computing, grid file systems, e-science, metacomputing,
scientific workflow systems, and semantic grids are all related. In Table 7.9, we identify a few related
theories and technologies that have impacted the development of efficient grids in the future. The rele-
vant chapters or sections in this book are also identified in the table. In Example 7.11, we discuss how
game theory can be applied to upgrade the grid performance in real-life practice.

7.5.1.2 Fusion of Technologies with Theories
Many theories and mathematics such as graph theory, fuzzy sets, game theory, etc. can be applied to
upgrade the computing technology, if proper fusion among them is performed. For example, fuzzy
theory and reputation systems can be applied for trust management in grids and P2P systems [41].
The performance of grids, clouds, and distributed systems can be improved with optimization and
game theory [30,42]. In Example 7.11, we show how to apply game theory to achieve a win-win
optimization situation and to avoid selfish behaviors in degrading the grid and cloud applications.

Table 7.9 Grid Computing and Relevant Theories and Technologies

Theory/Technology Fusion Trend and Relevant Chapters

Cloud Computing Cloud and grid technologies share some common resources and
infrastructures. They are gradually merging in high-tech and service industries.
(Chapters 4–6)

P2P Computing Volunteer grid computing can benefit from P2P computing technology
(Chapter 8)

HP and HA Cluster
Systems

Supercomputers appear in various network platforms, not restricted to
centralized MPP or high-performance or high-availability clusters (Chapter 2)

Data Center Automation Through virtualization, the boundaries among data centers, clouds and
supercomputers are blurred. (Chapters 3, 4, 9)

Fuzzy Theory and
Reputation Systems

Fuzzy theory and reputation systems can be applied for trust management
in grids, clouds, and any distributed systems (Sec.7.5.2, Sec.7.5.3 and
Sec. 8.4 [42])

Game-Theoretic
Optimization

Game theory can be applied to achieve win-win optimization and avoid selfish
behaviors in degrading grid and cloud applications (Example 7.11 and [29])
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Example 7.11 Selfish Grids and A Game-Theoretic Solution

Grid resource owners have the tendency to give higher priority to schedule jobs submitted by local or trusted
users, against the jobs from remote or unknown users. This behavior is known as selfish grids. A grid with a
selfish job scheduling policy will downgrade the overall grid performance or quality of service to unknown
users, especially in an untrusted grid user community. The selfish situation is illustrated in Figure 7.25. For
example, resource site 1 acts in favor of jobs from friends over jobs submitted by foes at site 3. Site 2 may
refuse to outsource grid jobs at all or delay them randomly. Site 4 will encourage to outsource as much as
possible. These behaviors will destroy the load balancing policy or the fairness policy by the grid schedulers.

That is why the overall grid performance may suffer. In 2007, Kwok, Hwang, and Song [30] have proposed
a game-theoretic approach to solving this selfish problem. The idea is to model the grid resource allocation as
a non-cooperative game among multiple players. We need to provide a strategic policy to achieve an all-win
situation by all parties (users) involved. All user jobs competing for the same resources pool must interact with
each other to reach a Nash Equilibrium [35], by which the grid system can achieve a “semi-optimal” through-
put among all jobs processed. The authors also verified the game-theoretic scheduling strategy by NAS
benchmark experiments to show its effectiveness. The proof can be found in [30].

7.5.2 Grid Workload and Performance Prediction
Grid performance is directly related to the collective workload to be executed on a large number of
processors in participating grid sites. Predicting the collective grid workload is a very challenging task,
because heterogeneous resources are highly distributed under the control of different organizations. The
grid workload is represented by a collective load index among all processors. The load index X(t) is the
percentage of processors utilized within a unit time interval [t − 1, t]. All discrete time instances t are
denoted by non-negative integers. For simplicity, assume five minutes per time step. Load index reflects
the CPU utilization rate among all processors in a grid. For example, X(t) = 0.45 implies that 45 percent
of the processors are busy during the observation period.

Do not outsource
delay is okay...

Take some risk to run

I will outsource to
a friendly site

Site 4

Site 2Site 1

1st, friend → Accept
2nd, foe → Reject

...  ...

Site 3

FIGURE 7.25

A conceptual example to illustrate the selfish grid problem and a game-theoretical solution.
(Courtesy of Kwok, Hwang, and Song [30], 2007 )
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Traditional point-value prediction methods apply a very short prediction window. Although they
may work well to predict CPU load in centralized computer systems, they do not work well on
large-scale production grids due to the long execution time expected. In fact, point-value prediction
can hardly cover workload fluctuation in a long time frame. In general, the load index is used to
estimate the percentage of peak performance achievable on a given computational grid. The man-
agement console of such a grid can monitor CPU utilization.

Workload managers in large grid infrastructures are notoriously weak in determining correct
scheduling scenarios, which affects the application execution time on the grid. This section dis-
cusses predicting future workload within a reasonable confidence range. The narrower the prediction
range, the higher the accuracy of prediction. Long-range workload prediction is bound to have some
errors. But we try to minimize these prediction errors by using look-ahead filtering techniques
within a trainable confidence window.

7.5.2.1 Adaptive Workload Prediction
We introduce in Figure 7.26 an adaptive workload prediction process by a time series of events.
The current time is marked at t. The real workload is shown by a series of dots up to time t. The
future load indices can only be predicted beyond time t. The conventional prediction scheme, like
the AR(p) method, predicts the future load indices using load information from the past p point
values. The predicted point values are marked by stars in Figure 7.28. An n-step look-ahead process
predicts the load index X(t + n) using all load data in a historical interval w plus predicted load
values in a look-ahead span of n time steps beyond t. Instead of predicting a point value, which
may not be accurate due to load fluctuation, we use a confidence window to predict X(t + n) within
a range {Xl(t + n), Xu(t + n)}.

Workload traces on two French grids are introduced in this section. Sampling errors are
analyzed. Two grid workload traces come from the AuverGrid and Grid’5000 in France. AuverGrid
is a production grid, built over five clusters totaling 475 processors, which are geographically scat-
tered around the Auvergne area of France. Grid’5000 is an experimental grid platform, built over
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Adaptive prediction of grid workload using confidence windows derived from historical load information and
projected load in lookahead window.

(Courtesy of Wu, Hwang, Yuan, and Zheng [55], 2010 )
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5,000 processors in nine sites throughout France. The Grid Workloads Archive (GWA) collected the
workload traces.

7.5.2.2 Workload Traces on Grid’5000
The grid workload traces on Grid’5000 are shown in Figure 7.27 based on traced experiments con-
ducted in 2006. Job log entries of Grid’5000 consist of two types: those that ran successfully and
those that failed. Measurement errors were possibly caused by failed jobs or by erroneous job
entries. The average workload on Grid’5000 is 10.6 percent. During an observation period of 10
months, Grid’5000 was lightly loaded and fluctuated around the average load. We collected three
traces: Trace 1 for sudden local changes, Trace 2 for sudden level changes, and Trace 3 for gradual
level changes in these performance prediction experiments.

7.5.2.3 Auto-Regression (AR) Method
An auto-regression prediction method was reported in [18] and [46]. The method applies a time
sequence of load samples, X(t). The coefficients used in the AR method are estimated from past
load data sequences. These coefficients are used to predict future load sequence. The AR prediction

method is specified by XðtÞ=∑
p

i=1
φiXðt− 1Þ+ εt at time t, where p is the traceback span, called the

order of the prediction method. The first term gives an estimated value of the current load index
by a weighted sum of past p load values. The p coefficients {φi} are trained from past workload.
The εt term covers the noise at time t, where p is the traceback span, called the order of the predic-
tion method.

The first term gives an estimated value of the current load index by a weighted sum of past p load
values. The p coefficients {φi} are trained from past workload. The εt term covers the noise at time t.
In essence, the AR(p) model predicts the load index X(t + 1) at time t based on the past p load values
{X(t), X(t − 1), …., X(t − p + 1)} using the coefficients fφ1,φ2,…φpg The larger the order p of the
AR(p) method, the higher the prediction accuracy expected. This AR method needs to find the accu-
rate coefficients φi, based on past load indices X(t − i). The method assumes that the series X(t − i) is
linear and stationary. The load series X(t − i) should be maintained to have a zero mean value.
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Workload variation in the Grid’5000 from Jan. to Oct. 2006.
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7.5.2.4 H-Model for Workload Prediction
The hybrid model (H-Model) is an n-step look-ahead workload prediction method specified in
Algorithm 7.1. Two linear arrays Al(i) and Au(i) are used to represent the lower bound and upper
bound of confidence window values. The confidence range is specified by a pair of point values
{Xl(t), Xu(t)}. After the n-step look-ahead confidence window is computed, the Savitzky-Golay filter
is used to smooth the confidence windows. The evaluation checks different trace time span
p parameters in the kernel AR(p) computation against the historical interval w used. These two
parameters {p, w} have a major impact on prediction accuracy. The optimal choice of the window
size w varies with the workload.

The track span p has less impact on the prediction error. Fixed parameter values in the
H-Model may not predict accurately. The confidence window C(t + n) is characterized as
X ±L/2, where L = |Xu(t + n) − Xl(t + n)| is the length of the confidence window predicted at time
t + n. A default value of ε = 5% is applied. In general, we should use a smaller historical interval
w, when n has a smaller or moderate value (say, fewer than 30 time steps). The smaller the con-
fidence window used, the higher the chance of aiding task scheduling or load balancing in a pro-
duction grid environment.

7.5.2.5 Adaptive Prediction Scheme (AH-Model)
Extending the H-Model, an adaptive hybrid model (AH-Model) can be implemented using the his-
torical interval, which is dynamically trained and validated from past workload series. Two adapta-
tions are integrated to capture the workload changes dynamically. The proper choice of historical
interval w can reduce the prediction error. The purpose is to minimize the prediction errors (MSE or
mean square error) by training the historical window.

ALGORITHM 7.1 HYBRID MODEL FOR WORKLOAD PREDICTION WITHIN CONFIDENCE
INTERVAL

Input: AR model parameter p, workload index X(t),look-ahead span n, historical interval w
Output: Confidence window {Xl(t + n), Xu(t + n)} for n-step look-ahead prediction
Procedure:

1. Produce the refined workload index X(t ); // using Kalman filter on workload index X(t) //
2. Generate smoothed workload index X (t);

// using Savitzky-Golay filter on refined workload index X (t)//
3. Predict workload index series [X(t + 1),.., X(t + n)]

//using Algorithm 9.1 on smoothed loads [X(t − p),.., X (t)] //
4. forall i = 1 to n
5. Form A(i ) = smoothed load index [X(t −w + 1),.., X (t )]

followed by predicted load indices [X(t + 1),.., X(t + i )]
6. Compute confidence window {Xl(t + i ), Xu(t + i )} of A(i ) to yield

Al(i ) = Xl (t + i ) and Au(i ) = Xu(t + i )
7. endforall
8. Generate smoothed Als, Aus //using Savitzky-Golay filter//
9. Generate Xl (t + n) = Als (n), the lower end of confidence window

Generate Xu(t + n) = Aus (n), the upper end of confidence window
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7.5.2.6 Benchmark Results on the Grid’5000 System
We report experimental results on implementing the AH-Model in both AuverGrid and Grid’5000
(Figure 7.28). The average MSEs of the AH-Model in two implementations are compared with the
best AR model. The AR method leads to an MSE in the range [2% ~ 30%] on both machines. The
window-based AH-Model has the lowest MSEs, between [0.1% ~ 0.7%]. We reveal the relative per-
formance of the adaptive prediction scheme AH-Model, compared with the hybrid prediction
scheme H-Model. To simplify the comparison, both schemes apply the median of the confidence
window in making predictions. The results are shown in Figure 7.30 based on trace experiments on
the AuverGrid and Grid’5000, respectively.

The point-value AR method is inadequate to predict workload in computational grids, because
they cannot cover load variations in a long execution environment. We developed two new look-
ahead workload prediction schemes for assessing long-term grid performance under fluctuating
loads. We obtained encouraging results to demonstrate the effectiveness of our new prediction
schemes. The main idea is to extend the point value to a confidence window, which is dynamically
adjusted against load variations. The adaptation is done by adjusting the historical interval.

7.5.3 Trust Models for Grid Security Enforcement
Many potential security issues may occur in a grid environment if qualified security mechanisms are
not in place. These issues include network sniffers, out-of-control access, faulty operation, malicious
operation, integration of local security mechanisms, delegation, dynamic resources and services,
attack provenance, and so on. Computational grids are motivated by the desire to share processing
resources among many organizations to solve large-scale problems. Indeed, grid sites may exhibit
unacceptable security conditions and system vulnerabilities.
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Mean square errors of two implementations of AH-Model, compared with the best MSE by using the AR model.
(Courtesy of Wu, Hwang, Yuan, and Zheng [55], 2010 )
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On the one hand, a user job demands the resource site to provide security assurance by issuing a
security demand (SD). On the other hand, the site needs to reveal its trustworthiness, called its trust
index (TI). These two parameters must satisfy a security-assurance condition: TI ≥ SD during the
job mapping process. When determining its security demand, users usually care about some typical
attributes. These attributes and their values are dynamically changing and depend heavily on the
trust model, security policy, accumulated reputation, self-defense capability, attack history, and site
vulnerability. Three challenges are outlined below to establish the trust among grid sites [39].

The first challenge is integration with existing systems and technologies. The resources sites in a
grid are usually heterogeneous and autonomous. It is unrealistic to expect that a single type of
security can be compatible with and adopted by every hosting environment. At the same time, exist-
ing security infrastructure on the sites cannot be replaced overnight. Thus, to be successful, grid
security architecture needs to step up to the challenge of integrating with existing security architec-
ture and models across platforms and hosting environments.

The second challenge is interoperability with different “hosting environments.” Services are
often invoked across multiple domains, and need to be able to interact with one another. The intero-
peration is demanded at the protocol, policy, and identity levels. For all these levels, interoperation
must be protected securely. The third challenge is to construct trust relationships among interacting
hosting environments. Grid service requests can be handled by combining resources on multiple
security domains. Trust relationships are required by these domains during the end-to-end traversals.
A service needs to be open to friendly and interested entities so that they can submit requests and
access securely.

Resource sharing among entities is one of the major goals of grid computing. A trust relation-
ship must be established before the entities in the grid interoperate with one another. The entities
have to choose other entities that can meet the requirements of trust to coordinate with. The entities
that submit requests should believe the resource providers will try to process their requests and
return the results with a specified QoS. To create the proper trust relationship between grid entities,
two kinds of trust models are often used. One is the PKI-based model, which mainly exploits the
PKI to authenticate and authorize entities; we will discuss this in the next section. The other is the
reputation-based model.

The grid aims to construct a large-scale network computing system by integrating distributed,
heterogeneous, and autonomous resources. The security challenges faced by the grid are much
greater than other computing systems. Before any effective sharing and cooperation occurs, a trust
relationship has to be established among participants. Otherwise, not only will participants be
reluctant to share their resources and services, but also the grid may cause a lot of damage [63].

7.5.3.1 A Generalized Trust Model
Figure 7.29 shows a general trust model. At the bottom, we identify three major factors which influ-
ence the trustworthiness of a resource site. An inference module is required to aggregate these fac-
tors. Followings are some existing inference or aggregation methods. An intra-site fuzzy inference
procedure is called to assess defense capability and direct reputation. Defense capability is decided
by the firewall, intrusion detection system (IDS), intrusion response capability, and anti-virus capa-
city of the individual resource site. Direct reputation is decided based on the job success rate, site
utilization, job turnaround time, and job slowdown ratio measured. Recommended trust is also
known as secondary trust and is obtained indirectly over the grid network.
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7.5.3.2 Reputation-Based Trust Model
In a reputation-based model, jobs are sent to a resource site only when the site is trustworthy to
meet users’ demands. The site trustworthiness is usually calculated from the following information:
the defense capability, direct reputation, and recommendation trust. The defense capability refers to
the site’s ability to protect itself from danger. It is assessed according to such factors as intrusion
detection, firewall, response capabilities, anti-virus capacity, and so on. Direct reputation is based
on experiences of prior jobs previously submitted to the site. The reputation is measured by many
factors such as prior job execution success rate, cumulative site utilization, job turnaround time, job
slowdown ratio, and so on. A positive experience associated with a site will improve its reputation.
On the contrary, a negative experience with a site will decrease its reputation.

7.5.3.3 A Fuzzy-Trust Model
In this model [42], the job security demand (SD) is supplied by the user programs. The trust index
(TI) of a resource site is aggregated through the fuzzy-logic inference process over all related para-
meters. Specifically, one can use a two-level fuzzy logic to estimate the aggregation of numerous
trust parameters and security attributes into scalar quantities that are easy to use in the job schedul-
ing and resource mapping process.

The TI is normalized as a single real number with 0 representing the condition with the highest
risk at a site and 1 representing the condition which is totally risk-free or fully trusted. The fuzzy
inference is accomplished through four steps: fuzzification, inference, aggregation, and defuzzifica-
tion. The second salient feature of the trust model is that if a site’s trust index cannot match the job
security demand (i.e., SD > TI), the trust model could deduce detailed security features to guide the
site security upgrade as a result of tuning the fuzzy system.

Security demand

Trustworthiness

Direct reputation

Site utilization

Job slowdown ratioJob turnaround time

Job success rate

Recommendation trust

Firewall

Anti-virus capacity

Intrusion detection

Response capabilities

Defense capacity

Inference & aggregation

FIGURE 7.29

A general trust model for grid computing.
(Courtesy of Song, Hwang, and Kwok [43], 2005 )
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7.5.4 Authentication and Authorization Methods
The major authentication methods in the grid include passwords, PKI, and Kerberos. The password
is the simplest method to identify users, but the most vulnerable one to use. The PKI is the most
popular method supported by GSI. To implement PKI, we use a trusted third party, called the certi-
ficate authority (CA). Each user applies a unique pair of public and private keys. The public keys
are issued by the CA by issuing a certificate, after recognizing a legitimate user. The private key is
exclusive for each user to use, and is unknown to any other users. A digital certificate in IEEE
X.509 format consists of the user name, user public key, CA name, and a secrete signature of the
user. The following example illustrates the use of a PKI service in a grid environment.

Example 7.12 Trust Delegation Using the Proxy Credential in GSI

The PKI is not strong enough for user authentication in a grid. Figure 7.30 shows a scenario where a
sequence of trust delegation is necessary. Bob and Charlie both trust Alice, but Charlie does not trust Bob.
Now, Alice submits a task Z to Bob. The task Z demands many resources for Bob to use, independently.
Bob forwards a subtask Y of Z to Charlie. Because Charlie does not trust Bob and is not sure whether Y is
really originally requested by Alice, the subtask Y from Bob is rejected for resources by Charlie.

For Charlie to accept the subtask Y, Bob needs to show Charlie some proof of entrust from Alice.
A proxy credential is the solution proposed by GSI. A proxy credential is a temporary certificate generated
by a user. Two benefits are seen by using proxy credentials. First, the proxy credential is used by its holder
to act on behalf of the original user or the delegating party. A user can temporarily delegate his right to a
proxy. Second, single sign-on can be achieved with a sequence of credentials passed along the trust
chain. The delegating party (Alice) need not verify the remote intermediate parties in a trust chain.

The only difference between the proxy credential and a digital certificate is that the proxy credential is
not signed by a CA. We need to known the relationship among the certificates of the CA and Alice, and
proxy credential of Alice. The CA certificate is signed first with its own private key. Second, the certificate
Alice holds is signed with the private key of the CA. Finally, the proxy credential sent to her proxy (Bob) is
signed with her private key. The procedure delegates the rights of Alice to Bob by using the proxy
credential.

Private key
of Alice

Private
key

Alice

4. Verify Alice
proxy credential

3. Verify
certificate of Alice

2. Request &
Alice proxy
credential

Bob Charlie The CA

Certificate
of Alice

Certificate
of Bob

Private key
of Charlie

Certificate
of Charlie

Private key
of CA

Certificate
of CA

1. Generate
alice proxy
credential

FIGURE 7.30

Interactions among multiple parties in a sequence of trust delegation operations using the PKI services in a
GT4-enabled grid environment.

464 CHAPTER 7 Grid Computing Systems and Resource Management



First, the generation of the proxy credential is similar to the procedure of generating a user certificate
in the traditional PKI. Second, when Bob acts on behalf of Alice, he sends the request together with
Alice’s proxy credential and the Alice certificate to Charlie. Third, after obtaining the proxy credential,
Charlie finds out that the proxy credential is signed by Alice. So he tries to verify the identity of Alice and
finds Alice trustable. Finally, Charlie accepts Bob’s requests on behalf of Alice. This is called a trust
delegation chain.

7.5.4.1 Authorization for Access Control
The authorization is a process to exercise access control of shared resources. Decisions can be made
either at the access point of service or at a centralized place. Typically, the resource is a host that pro-
vides processors and storage for services deployed on it. Based on a set predefined policies or rules,
the resource may enforce access for local services. The central authority is a special entity which is
capable of issuing and revoking polices of access rights granted to remote accesses. The authority can
be classified into three categories: attribute authorities, policy authorities, and identity authorities.
Attribute authorities issue attribute assertions; policy authorities issue authorization policies; identity
authorities issue certificates. The authorization server makes the final authorization decision.

7.5.4.2 Three Authorization Models
Figure 7.31 shows three authorization models The subject is the user and the resource refers to the
machine side. The subject-push model is shown at the top diagram. The user conducts handshake
with the authority first and then with the resource site in a sequence. The resource-pulling model
puts the resource in the middle. The user checks the resource first. Then the resource contacts its
authority to verify the request, and the authority authorizes at step 3. Finally the resource accepts or
rejects the request from the subject at step 4. The authorization agent model puts the authority in
the middle. The subject check with the authority at step 1 and the authority makes decisions on the
access of the requested resources. The authorization process is complete at steps 3 and 4 in the
reverse direction.
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authority

Subject Resource
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Authorization
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Resource Subject
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3

1
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Authorization
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4

1
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FIGURE 7.31

Three authorization models: the subject-push model, resource-pulling model, and the authorization agent
model.
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7.5.5 Grid Security Infrastructure (GSI)
Although the grid is increasingly deployed as a common approach to constructing dynamic, interdo-
main, distributed computing and data collaborations, “lack of security/trust between different services”
is still an important challenge of the grid. The grid requires a security infrastructure with the following
properties: easy to use; conforms with the VO’s security needs while working well with site policies of
each resource provider site; and provides appropriate authentication and encryption of all interactions.

The GSI is an important step toward satisfying these requirements. As a well-known security
solution in the grid environment, GSI is a portion of the Globus Toolkit and provides fundamental
security services needed to support grids, including supporting for message protection, authentica-
tion and delegation, and authorization. GSI enables secure authentication and communication over
an open network, and permits mutual authentication across and among distributed sites with single
sign-on capability. No centrally managed security system is required, and the grid maintains the
integrity of its members’ local policies. GSI supports both message-level security, which supports
the WS-Security standard and the WS-SecureConversation specification to provide message protection
for SOAP messages, and transport-level security, which means authentication via TLS with support for
X.509 proxy certificates.

7.5.5.1 GSI Functional Layers
GT4 provides distinct WS and pre-WS authentication and authorization capabilities. Both build on the
same base, namely the X.509 standard and entity certificates and proxy certificates, which are used to
identify persistent entities such as users and servers and to support the temporary delegation of
privileges to other entities, respectively. As shown in Figure 7.32, GSI may be thought of as being com-
posed of four distinct functions: message protection, authentication, delegation, and authorization.

TLS (transport-level security) or WS-Security and WS-Secure Conversation (message-level) are
used as message protection mechanisms in combination with SOAP. X.509 End Entity Certificates
or Username and Password are used as authentication credentials. X.509 Proxy Certificates and
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FIGURE 7.32

GSI functional layers at the message and transport levels.
(See Berman, Fox and Hey [5], Foster and Kesselman [15], and Foster [17] for more details )
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WS-Trust are used for delegation. An Authorization Framework allows for a variety of authorization
schemes, including a “grid-mapfile” ACL, an ACL defined by a service, a custom authorization
handler, and access to an authorization service via the SAML protocol. In addition, associated
security tools provide for the storage of X.509 credentials (MyProxy and Delegation services), the
mapping between GSI and other authentication mechanisms (e.g., KX509 and PKINIT for Kerberos,
MyProxy for one-time passwords), and maintenance of information used for authorization (VOMS,
GUMS, PERMIS).

The remainder of this section reviews both the GT implementations of each of these functions
and the standards that are used in these implementations. The web services portions of GT4 use
SOAP as their message protocol for communication. Message protection can be provided either by
transport-level security, which transports SOAP messages over TLS, or by message-level security,
which is signing and/or encrypting portions of the SOAP message using the WS-Security standard.
Here we describe these two methods.

7.5.5.2 Transport-Level Security
Transport-level security entails SOAP messages conveyed over a network connection protected by TLS.
TLS provides for both integrity protection and privacy (via encryption). Transport-level security is
normally used in conjunction with X.509 credentials for authentication, but can also be used without
such credentials to provide message protection without authentication, often referred to as “anonymous
transport-level security.” In this mode of operation, authentication may be done by username and
password in a SOAP message.

7.5.5.3 Message-Level Security
GSI also provides message-level security for message protection for SOAP messages by implement-
ing the WS-Security standard and the WS-Secure Conversation specification. The WS-Security
standard from OASIS defines a framework for applying security to individual SOAP messages;
WS-Secure Conversation is a proposed standard from IBM and Microsoft that allows for an initial
exchange of messages to establish a security context which can then be used to protect subsequent
messages in a manner that requires less computational overhead (i.e., it allows the trade-off of initial
overhead for setting up the session for lower overhead for messages).

GSI conforms to this standard. GSI uses these mechanisms to provide security on a per-message
basis, that is, to an individual message without any preexisting context between the sender and
receiver (outside of sharing some set of trust roots). GSI, as described further in the subsequent
section on authentication, allows for both X.509 public key credentials and the combination of user-
name and password for authentication; however, differences still exist. With username/password,
only the WS-Security standard can be used to allow for authentication; that is, a receiver can verify
the identity of the communication initiator.

GSI allows three additional protection mechanisms. The first is integrity protection, by which a
receiver can verify that messages were not altered in transit from the sender. The second is encryption,
by which messages can be protected to provide confidentiality. The third is replay prevention, by which
a receiver can verify that it has not received the same message previously. These protections are
provided between WS-Security and WS-Secure Conversation. The former applies the keys associated
with the sender and receiver’s X.509 credentials. The X.509 credentials are used to establish a session
key that is used to provide the message protection.
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7.5.5.4 Authentication and Delegation
GSI has traditionally supported authentication and delegation through the use of X.509 certificates
and public keys. As a new feature in GT4, GSI also supports authentication through plain user-
names and passwords as a deployment option. We discuss both methods in this section. GSI uses
X.509 certificates to identify persistent users and services.

As a central concept in GSI authentication, a certificate includes four primary pieces of informa-
tion: (1) a subject name, which identifies the person or object that the certificate represents; (2) the
public key belonging to the subject; (3) the identity of a CA that has signed the certificate to certify
that the public key and the identity both belong to the subject; and (4) the digital signature of the
named CA. X.509 provides each entity with a unique identifier (i.e., a distinguished name) and a
method to assert that identifier to another party through the use of an asymmetric key pair bound to
the identifier by the certificate.

The X.509 certificate used by GSI are conformant to the relevant standards and conventions.
Grid deployments around the world have established their own CAs based on third-party soft-
ware to issue the X.509 certificate for use with GSI and the Globus Toolkit. GSI also supports
delegation and single sign-on through the use of standard X.509 proxy certificates. Proxy certifi-
cates allow bearers of X.509 to delegate their privileges temporarily to another entity. For the
purposes of authentication and authorization, GSI treats certificates and proxy certificates equiva-
lently. Authentication with X.509 credentials can be accomplished either via TLS, in the case of
transport-level security, or via signature as specified by WS-Security, in the case of message-level
security.

Example 7.13 Mutual Authentication between Two Parties

Mutual authentication is a process by which two parties with certificates signed by the CA prove to each
other that they are who they say they are based on the certificate and the trust of the CAs that signed
each other’s certificates. GSI uses the Secure Sockets Layer (SSL) for its mutual authentication protocol,
which is described in Figure 7.33. To mutually authenticate, the first person (Alice) establishes a connec-
tion to the second person (Bob) to start the authentication process.

Alice gives Bob her certificate. The certificate tells Bob who Alice is claiming to be (the identity), what
Alice’s public key is, and what CA is being used to certify the certificate. Bob will first make sure the certi-
ficate is valid by checking the CA’s digital signature to make sure the CA actually signed the certificate
and the certificate hasn’t been tampered with. Once Bob has checked out Alice’s certificate, Bob must
make sure Alice really is the person identified in the certificate.

Bob generates a random message and sends it to Alice, asking Alice to encrypt it. Alice encrypts the
message using her private key, and sends it back to Bob. Bob decrypts the message using Alice’s public
key. If this results in the original random message, Bob knows Alice is who she says she is. Now that Bob
trusts Alice’s identity, the same operation must happen in reverse. Bob sends Alice his certificate, and
Alice validates the certificate and sends a challenge message to be encrypted. Bob encrypts the message
and sends it back to Alice, and Alice decrypts it and compares it with the original. If it matches, Alice
knows Bob is who he says he is.
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7.5.5.5 Trust Delegation
To reduce or even avoid the number of times the user must enter his passphrase when several grids
are used or have agents (local or remote) requesting services on behalf of a user, GSI provides a dele-
gation capability and a delegation service that provides an interface to allow clients to delegate (and
renew) X.509 proxy certificates to a service. The interface to this service is based on the WS-Trust
specification. A proxy consists of a new certificate and a private key. The key pair that is used for the
proxy, that is, the public key embedded in the certificate and the private key, may either be regener-
ated for each proxy or be obtained by other means. The new certificate contains the owner’s identity,
modified slightly to indicate that it is a proxy. The new certificate is signed by the owner, rather than
a CA (see Figure 7.34).

The certificate also includes a time notation after which the proxy should no longer be accepted
by others. Proxies have limited lifetimes. Because the proxy isn’t valid for very long, it doesn’t
have to stay quite as secure as the owner’s private key, and thus it is possible to store the proxy’s
private key in a local storage system without being encrypted, as long as the permissions on the file
prevent anyone else from looking at them easily. Once a proxy is created and stored, the user can
use the proxy certificate and private key for mutual authentication without entering a password.
When proxies are used, the mutual authentication process differs slightly. The remote party receives
not only the proxy’s certificate (signed by the owner), but also the owner’s certificate.

During mutual authentication, the owner’s public key (obtained from her certificate) is used to
validate the signature on the proxy certificate. The CA’s public key is then used to validate the
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FIGURE 7.33

Multiple handshaking in a mutual authentication scheme.
(Courtesy of Foster and Kesselman [15], 2002 )

7.5 Grid Application Trends and Security Measures 469



signature on the owner’s certificate. This establishes a chain of trust from the CA to the last proxy
through the successive owners of resources. The GSI uses WS-Security with textual usernames and
passwords. This mechanism supports more rudimentary web service applications. When using user-
names and passwords as opposed to X.509 credentials, the GSI provides authentication, but no
advanced security features such as delegation, confidentiality, integrity, and replay prevention.
However, one can use usernames and passwords with anonymous transport-level security such as
unauthenticated TLS to ensure privacy.

7.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
Introduction to grid computing can be found in [6,12,36,52]. Comprehensive treatment of grid com-
puting can be found in Foster and Kesselman [15] and Berman, Fox, and Hey [5]. Foster, et al.
[16] links grids to virtual organizations. Grid core technologies are treated in [18,41]. The OGSA
standards are specified in [5]. The Globus Project was reported in [1,15,17]. Grid resouce manage-
ment systems were surveyed in [29,49]. Grid job scheduling and resource brokering can be found
in [4,25,30,44,49]. Resource discovery in grids are reported in Shen and Hwang [40] and Zhang
and Schopf [59]. The Nash Equilibrium was pioneered by Nash [35].

Grid monitoring and accounting systems can be found in [2,10]. The grid economy model was
introduced by Buyya, et al. [8]. BOINC is treated in [7], Folding@Home in [14], and SETI in [39].
Ferreira, et al. reviewed grid computing in research and education [13]. Dacenter on Grid is studied in
[37]. TeraGrid is treated in Chapter 1 in [5], where the DataGrid [21] is also covered in Chapters 15
and 16. The e-Science grid is discussed in [21] and in Chapter 36 in [5]. Grid’5000 was evaluated in
[55]. Grid performance was treated in [32,34,55]. Grid performance prediction was reported by Wu,
et al. [55]. ChinaGrid was reported by Jin, Wu, et al. in [20,26,54]. China’s Vega grid was reported
in Wang, et al. [50] and Xu, et al. [57]. The CGSP was reported by Wu, et al. [53,56].

Trust management and grid security are treated in [3,23,34,44,51]. Condor was introduced in
[47] and in Chapter 11 of [5] for distributed computing. The Gridbus broker system was described
by Buyya, et al. [9]. The Sun Grid Engine was treated in [45]. ChinaGrid’s CGSV middleware for
grid monitoring was reported by Zheng, et al. [60]. Grid security and trust management are studied
in [30,34,42–44]. Additional coverage of grid software tools and grid OS support can be found in
[1,10,17,28,50]. Earlier work on related scalable computing systems can be found in Dongarra,
et al. [11], Taylor [46], and Xu and Hwang [22]. Various grid applications are reported in
[4,5,7,15,18,48].
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A sequence of trust delegations in which new certificates are signed by the owners rather by the CA.
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HOMEWORK PROBLEMS
Problem 7.1
Consider the following list of resources allocation, code files, data transfers, and computation tasks
performed in typical grid experiments. You are asked to execute a typical job on a computational
grid that is available to you. Discuss the resource items that are controlled by the grid resource
management system on your platform. Either the Globus GT4 or the CGSP are candidate systems
to use.

a. Starting, monitoring, and controlling the execution of the resultant processes
b. Putting and getting files
c. Relevant load information: current load and queue state
d. Resources allocated to network transfers
e. Resources with advance reservation
f. Network characteristics and load
g. Relevant load information: available space and bandwidth utilization
h. Versioned source and object codes
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Problem 7.2
Briefly specify the functionality of the software modules GRAM, Nexus, GSI, MDS, and GASS
implemented in the Globus GT-4 middleware library. Try to illustrate an example application in
using each of the five functional modules.

Problem 7.3
Circle only one correct answer in the following question related to the use of GT4 or CGSP middle-
ware tools for grid computing. Justify why you chose your answer. Repeat the question for those
features that are not supported by CGSP.

a. Grid workflow with WSRF support
b. JSDL job submission and legacy job execution using General Running Service
c. Heterogeneous integration using virtual database and virtual table.
d. Multi-Local Scheduler support including PBS, LSF, and Condor

Problem 7.4
Four steps are required to verify proxy credentials of two parties (Bob and Alice) in Figure 7.30.
Extend the trust deletion scheme to three parties (say adding John). Draw a diagram similar to
Figure 7.30 to show all the credentail checking operations in a e GT4-enable grid.

Problem 7.5
In Example 7.11, you have learned the basic concept of a game-theoretic approach to solving the
grid selfishness problem. Now, you are asked to the original paper by Kwok, Hwang, and Song
[30] in details on the game theory and NAS verification experiments. Discuss the advantage of the
game-theoretical solution and its implementation requirements in a real-life grid environment.

Problem 7.6
Compare three perfoirmance prediction methods: AR(p), H-Model, and AH-Model presented in
Section 7.5.2. Discuss their relative merits and limitations in grid workload characterization and per-
formance prediction. Comment on the advantage use of Savitzky-Golay filter and Kalman filter in
the prediction nprocess.

Problem 7.7
Study the Gridbus broker system in Section 7.3.4. Try to use the system to schedule an application
job with many tasks on an available grid or cloud platform. Report on the experimental settings and
performance results obtained. Discuss the strength and weakness of the Gridbus system.

Problem 7.8
Visit the BOINC web site: http://boinc@berkeley.edu and register your desktop or personal compu-
ter as a contributor machine. Join one of the listed grid application projects to gain some concrete
experience in volunteer computing. Report on your research findings and discuss the experimental
results obtained. Comment on the advantages of using a virtual grid platform against traditional
HPC systems and identify the shortcomings or limitations encountered.
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Problem 7.9
Match the seven abbreviated terms and system models on the left with the best-match descriptions
on the right. Just enter the description label (a, b, c, …, g) in the underlined blanks in front of the
specific terms. This is a one-to-one correspondence mapping.

_____OGSA (a) A web service that provides a set of well-defined interfaces
_____ OGSI (b) A globally unique resource identifier that distinguishes a specific grid service

instance from all other grid service instances, but carries no protocol- or
instance-specific information such as network address or supported protocol
bindings

_____ WSRF (c) A true community standard built based on two basic technologies, Globus
Toolkit and web services, that supports, via standard interfaces and
conventions, the creation, termination, management, and invocation of
stateful, transient services as named, managed entities with a dynamic,
managed lifetime

______Grid Service (d) A single abstraction for a grid service instance that encapsulates all the
instance-specific information required to interact with a specific service
instance, and can change over that service’s lifetime

_____ GSH (e) The first implementation specification of a service-oriented grid, which defines
a set of conventions and extensions on the use of Web Services Description
Language (WSDL) and XML Schema to enable stateful web services

_____ GSR (f) The composition of a web service and a stateful resource that is (i) expressed
as an association of an XML document with defined type with a web services
portType, and (ii) is addressed and accessed according to the implied
resource pattern, a conventional use of WS-Addressing endpoint references

_____WS-Esource (g) A family of web service specifications and conventions designed to
standardize representation of, and access to, stateful resources in a
distributed environment

Problem 7.10
Study the grid systems: EGEE, Grid’500, DataGrid, and ChinaGrid in the examples in Section 7.2.
Choose one example system to dig deeper by finding more details from its Web site and published
papers. Conduct an original research on its updated system development. Identify some open pro-
blems discovered and report on your research findings.

Problem 7.11
This problem requires you to run a distributed program (MPI code) on any GT$-enable grid
platform that you have access to or you can set up with a research team. Write a report to explain
the grid experimental setting using the Globus tools. Report the lessons learned and performance
results obtained.

Problem 7.12
Describe how mutual authentication is implemented between two user parties A and B in Figure 7.35
across a grid using the Globus Grid Security Infrastructure and PKI. You need to describe five
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handshaking steps for how B verifies the identity of A. Assume that a trusted certificate authority
(CA) is available to issue X.509 certificates containing the needed public keys to any grid user. Each
user can apply his private key to encrypt a message. The receiving end can apply the sender’s public
key to decrypt the message. User A can verify the identity of B in the exact same operation, except
reversing the roles. You do not need to repeat that reversed process.

Problem 7.13
Distinguish P2P networks from grids and P2P grids by filling in the missing entries in Table 7.10.
Some entries are already given. You may want to review material in Table 1.3, Table 1.5, and
Table 1.9. More material on P2P and P2P grid systems can be found in Chapter 8.

A B
Step 5Step 4

Step 1

Step 3

Step 2

CA

X.509
certificate

FIGURE 7.35

Mutual authentication between two parties using the GSI and X.509 certificate issued from the certificate
authority (CA).

Table 7.10 Comparison among P2P Networks, Grids, and P2P Grids

Features P2P Networks Grid Systems P2P Grids

Applications and peer
or node roles

Distributed file sharing,
content distribution,
peers acting as clients
and servers

System control and
service model

Policy-based control in
a P2P grid, all services
from client machines

System connectivity Static conections with
high-speek links over
grid resources

Resource discovery and
job management

Autonomous peers
without discovery, no
central job scheduler

Representative systems NSF TeraGrid, UK
EGGE Grid, ChinaGrid
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Problem 7.14
This is a survey report about all the P2P grids or volunteer computing grids that can manage to join
as contributing hosts. Compare the relative performance of all the volunteer grids you have used.
Discuss their strengths and weakness in hardware capabilities, software support, and middleware
services provided.

Problem 7.15
Try to virtualize some of the resources in Problems 7.8, 7.13, or 7.14. Repeat one the the three pro-
blems in using virtual machines. Discuss the gains and losses in using a virtualized production grid.
You can also use the EC 2 or other virtualized data centers to conduct the needed experiments.
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SUMMARY
In this chapter, we study peer-to-peer (P2P) networks and their applications. P2P overlay networks
are built over a large number of client computers through virtual networking over the Internet. We
present unstructured, structured, and hybrid overlay networks. Distributed hash tables (DHTs) are
studied for fast routing and locality preservation operations. Fault tolerance and churn resilience are
studied to improve dependability. On the application side, P2P networks are used for distributed file
sharing and content distribution applications. Trust management and copyright protection are studied
with reputation systems and content poisoning techniques. Examples are given to illustrate the
design principles of P2P networks and the protocols applied in real-life applications. We will cover
P2P social networks in Chapter 9.

8.1 PEER-TO-PEER COMPUTING SYSTEMS
P2P computing systems are widely used in distributed file sharing, messaging, online chatting,
video streaming, and social networking. It has been estimated that P2P applications on the Internet
accounted for about 40 percent to 70 percent of the Internet traffic worldwide from 2008 through
2010 and the trend is increasing in light of the popularity of online applications such as Facebook,
Twitter, and YouTube. Unlike a traditional distributed system, P2P networks are autonomous and
self-organized with free participation from the peers or clients. In a P2P network, peers share com-
puting and data resources with others. All peers offer a mixture of online services on a voluntary
basis. There are economical advantages as well as legal problems in today’s P2P networks and their
open applications.

As shown in Figure 8.1, Internet traffic due to e-mail is quite flat and getting lower, compared
with other traffic components. FTP traffic has also declined over the past 15 years. The major traf-
fic surge on the Internet has really been in P2P requests and responses. Even web traffic is declin-
ing with the rise of social networking and digital content downloads. By 2007, 70 percent of
Internet traffic was attributed to P2P applications. This is our motivation for studying P2P systems
in this chapter.

8.1.1 Basic Concepts of P2P Computing Systems
Communication involving two equal role users can be treated as P2P communication; as such, it
can be said that earlier distributed systems also followed a P2P model. Basically, P2P computing is
a technique that takes advantage of computational resources (such as storage, CPU cycles, and
bandwidth) and content resources (such as content files) available at the edges of the Internet to
complete huge tasks, such as distribution of content to a large audience and distributed search
engine and CPU-bound computing tasks.

The resources at an edge network have intermittent availability, as they are added and removed
unexpectedly all the time. P2P computing eliminates the coordination by a central server, and no
peer has a global view of the entire system. Instead, peers act as both servers and clients, sharing
resources and services directly with one another. P2P networks share a number of common charac-
teristics, which are summarized in the following list.
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• Decentralization In a pure P2P computing system, peers are equal and there is no central server
to coordinate the system. Each peer has a partial view of the whole system to construct the
overlay network, and controls its data and resources.

• Self-organization Self-organization means no central management point is required to organize
the peer computing resources and the data resources spreading over the peers. The resources in
P2P computing systems are dynamic or fluctuate in the sense that they come and go at any
time, at will. It would be very costly to dedicate a server to manage these systems.

• Ad hoc connectivity and dynamics The availability of peers is unpredictable. A peer may join
or leave the system at any time. The overlay topologies and the system scales will vary
enormously and rapidly. P2P computing systems should provide stable services even in extra
dynamic environments.

• Anonymity In a decentralized P2P network, peers resort to detour paths to send/receive requests
(i.e., two nodes communicate through some middle nodes). This ensures senders’ anonymity.
Anonymity can be also achieved through hashing.

• Scalability The P2P model eliminates the single point of failure problem related to the traditional
centralized client/server model. Each peer only maintains a limited number of system states and shares
resources directly with others. These features enable the high scalability of P2P computing systems.

• Fault tolerance In a P2P network, all peers are created equal and no peer can dominate the
system or become a single point of failure to pull down the entire system. Resources could be
stored in multiple peers. These features facilitate fault tolerance.
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The distribution of Internet traffic based on application trends.
(Courtesy of CacheLogic Research, 2007 )
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8.1.1.1 Distinction between Client/Server and P2P Architectures
The traditional client/server architecture is formed with many client hosts surrounding a server node;
see Figure 8.2(a). A P2P computing system is formed with peer hosts that are fully distributed with-
out using a centralized server; see Figure 8.2(b). In other words, the client/server architecture is
server-oriented. The server splits a task into many parts and dispatches the parts to the clients. The
clients complete the task assigned to them independently and seldom communicate with one
another. The clients require resources from the server and the server delivers the required resources
to the clients. On the contrary, in a P2P network, participating clients (peers) all play equal roles.
They exchange resources with one another directly. Peers are autonomous, self-organizing, and thus
less structured, less secure, and less controllable than those of client/server systems.

8.1.1.2 Three P2P Network Models
Servers are also used in P2P networks, but they have a different role. Napster, a representative P2P
file-sharing service, uses an index server to manage all file links shared by all peers. Figure 8.3(a)
shows the Napster model. Peers register shared data information on the index server. The address
information of file owners is given to the requester from the index server. Then the file is transferred
between the requester and the owners directly. The Gnutella 0.4 file-sharing system adopts a pure
P2P model, which is illustrated in Figure 8.3(b). Peers only index their own shared files.

Clients

Server

(a) Client/server architecture (b) P2P computing model

Peers

FIGURE 8.2

P2P network model versus client/server architecture.

Control

Data

Index
server

(a) Centralized model (Napster) (b) Pure P2P model (Gnutella 0.4) (c) Hierarchical model (KaZaA)

Control Data

Control

Super peer
Data

FIGURE 8.3

Evolution of P2P network systems from centralized Napster to flat Gnutella and hierarchically structured
KaZaA using super nodes.
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Since there is no central index server, file request messages are flooded to their neighbor peers.
Gnutella 0.6 systems, KaZaA, and Skype leverage the third model, the hierarchical model; see
Figure 8.3(c). A portion of powerful peers are selected as super nodes in the system. The requests
are only flooded among powerful peers, hence increasing scalability. P2P distributed computing sys-
tems always maintain central servers for task management and communication to client peers. How-
ever, client peers do not need to communicate. Therefore, peers in this context refer to computing
systems that make their resources available. P2P platforms act as a middleware foundation to enable
easy development of P2P systems. The platforms provide security services, communication services,
and standard services (indexing, searching, and file sharing).

8.1.1.3 P2P Applications
P2P networks are widely used in Internet applications. Table 8.1 lists some typical P2P applications
and examples. File sharing is the most popular P2P application. P2P content networks deliver data
objects to all audiences. However, unlike client/server networks, the system uses peer resources to
distribute content. Peers locate users and relay the messages directly.

Example 8.1 The Skype Network for Online Video Telephony

Skype is a popular P2P Voice over IP (VoIP) service which attracts more than 500 million registered users
and more than 40 million active users daily. Skype leverages P2P techniques for user profile storage, user
search, media transfer, and NAT traversal. It also supports instant messaging and file transfers. Instead of
the standard Session Initiation Protocol (SIP), Skype uses a proprietary VoIP network. Figure 8.4 shows the
P2P architecture of the Skype online VoIP system.

Skype applies the hybrid P2P model, similar to KaZaA. In fact, these two systems are developed by the
same design group. Any node with a public IP address and having sufficient CPU, memory, and network
bandwidth is a candidate to be a super node. However, users cannot manually control whether it is a super
node or ordinary host. An ordinary host connects to a super node, in order to join the system for VoIP services.

Table 8.1 Typical P2P Applications and Example Network Systems

P2P Application
Area Brief Description

Examples of P2P
Networks

File sharing Queries are forwarded by peers collaboratively. File
objects are transferred directly between peers.

Napster, Gnutella,
KaZaA, eDonkey

Content distribution Nodes forward the content they have received to
other peers until all nodes receive the content.

BitTorrent, PPlive

P2P instant messaging Text messages or video and audio data are relayed by
peers in the systems, instead of central servers.

Skype, MSN

Distributed computing Computationally intensive tasks are split into subtasks.
Nodes process subtasks independently.

SETI@Home,
Folding@Home

Collaboration support Events and messages exchanged are relayed instantly
to all other peer members in the group.

Groove, Magi, AIM

Platforms Platforms are general frameworks that provide support
for P2P computing or use P2P mechanisms.

JXTA, Microsoft .NET
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A super node or ordinary host is also called a Skype client. Each client maintains a list of reachable
nodes. This list is called the host cache, and it contains the IP addresses and ports of a number of super
nodes (typically 200). A number of super nodes, which are run by the service provider, are hardcoded
into the client host cache. After the first login, a client learns other super nodes’ information to fill its
cache. The login server is the only central component in Skype. It stores usernames and passwords for
user authentication. During its login process, a client first chooses a valid entry from its cache to build a
TCP connection. If there is no valid entry in the cache, the client will report a login failure. The client then
contacts the login server for authentication.

A client detects whether it is behind the network address translator (NAT)/firewall or not during its login
process. Online and offline user information is stored and propagated in a decentralized fashion, and so
are user search queries. Users’ buddy lists are stored locally on the Skype clients. Skype claims it uses an
advanced Globe Index technique for quick user search. However, it is unclear how it works since all the
communications, including both control messages and media data, are encrypted. Skype clients prefer to
use TCP for call signaling and UDP for media transfers. However, if it is impossible to communicate
through UDP due to a NAT/firewall, TCP connections are used. In the case that the caller or callee is
behind a NAT/firewall, a valid node which has a publicly accessible IP address is used for signaling and
media data relay. The relay nodes may change during conservations.

Msg exchange
during login

Super node

Ordinary host

Login server

FIGURE 8.4

The Skype architecture and its major components.
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Example 8.2 The SETI@Home Project for Distributed Supercomputing

SETI is an acronym for Search for Extra-Terrestrial Intelligence. The goal of SETI is to analyze radio
signals from the outer space for detecting intelligent life outside Earth. The analysis work is a computa-
tionally intensive task and requires Tflops/second (Tera-floating-point operations per second) proces-
sing power. The SETI@Home project aims to leverage the available CPU cycles at the edge of the
Internet. The project was released by the Space Sciences Laboratory at the University of California,
Berkeley in May 1999. SETI@Home has logged more than 5.2 million participants worldwide and has
been considered the largest distributed computing project. Figure 8.5 illustrates the workload distribu-
tion process.

SETI@Home shares SERENDIP’s (Search for Extraterrestrial Radio Emissions from Nearby Developed
Intelligent Populations) data source, which was recorded on removable tapes and mailed to the laboratory
at UCB. SERENDIP collects signal data sources from outer space at Arecibo using a telescope. The data
sources are divided into small work units which are formed by dividing the 2.5 MHz signal into 256 fre-
quency bands, each about 10 KHz wide. These work units are stored on the servers and are sent to parti-
cipant computers. The programs on client sites analyze the work units during idle cycles. Finally, the
results are reported back to the servers.

Users who would like to donate their computing resources download BOINC (Berkeley Open Infra-
structure for Network Computing), which is a software that enables users to donate their idle computer
time to science projects like SETI@Home. BOINC automatically downloads work units and manages analy-
sis progress. The screensavers on users’ computers display some analysis information when users are not
using their computers. SETI@Home uses the concept of P2P in the sense that it takes advantage of avail-
able computing resources at the edge of the Internet. However, users’ computers do not communicate
directly.
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FIGURE 8.5

Workload distribution process in SETI@Home for volunteer computing.
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8.1.2 Fundamental Challenges in P2P Computing
A P2P computing system eliminates the need for a central coordination point. This makes the sys-
tem more scalable and flexible. In this section, we introduce 11 fundamental technical challenges in
designing and using a P2P network in real-life applications. Solutions to these issues will be studied
in subsequent sections.

8.1.2.1 Heterogeneity in Peer Resources
Basically, P2P computing faces three sources of heterogeneity problems: namely hardware, soft-
ware, and network requirements. Peers offer many different hardware hosts and platform architec-
tures. Incompatibility does exist between the software and the OS at different hosts. Different
network connections and protocols make it even more complex to apply in some real-life applica-
tions. A P2P computing system aggregates diverse resources at the peer nodes. The system should
be designed to handle node heterogeneity transparently.

8.1.2.2 Scalability for Future Growth
This is a fundamental goal of P2P computing systems. The system is able to support web-scale
computers from hundreds to millions, and as the system size grows, the efficiency should not be
affected negatively, or should just degrade gracefully. System scaling is directly related to perfor-
mance and bandwidth. For example, a decentralized P2P file-sharing system uses message forward-
ing for information searching. If the forwarding path length grows linearly with the system size, the
system cannot be scaled to a larger size.

With flooding, the messages consume a considerable network bandwidth. Gnutella version 0.4
took flooding as a query forwarding scheme, and hence was not scalable. Gnutella version 0.6 and
KaZaA leverage some powerful and stable nodes as super peers. Each peer is either a super peer or
assigned to a super peer. Queries are only flooded among super peers, which saves bandwidth con-
sumption. The super-node model is more scalable in this sense.

8.1.2.3 Effective Search of Desired Peers
Data resources spread over the peer nodes in P2P systems. To use or to access a data object, a data
locating operation (or search operation) among the peer nodes is performed first. Apparently, the
data location is important in terms of affecting collective performance. However, there is no central
index server for the shared resources, and each peer only has a partial view of the whole system. It
is difficult to find the right peers for queries. The design of efficient data location algorithms is a
unique challenge in P2P systems.

Search can be classified into two categories: blind searches and informed searches. In a blind
search, peers only have the indices of their own data. When receiving a query, a peer forwards it
to either all its neighbors or a subset of its neighbors without considering from which path it can
receive the query response. In an informed search, peers maintain indices of the data residing on
other peers. For example, a peer keeps track of the data indices of the peers that r hops away
from it. Peers forward queries to the neighbors that can respond with high probability. The
design challenge in a blind search is to find the right peers quickly with low-bandwidth con-
sumption, while the challenge in an informed search is to track peers’ data indices with low con-
trol overhead.
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8.1.2.4 Data Locality and Network Proximity
These are two design objectives in modern P2P applications. Data locality means data with similar
attribute values is kept on close peers. It is an efficient way to support complex query operations
and enable fast data location. Network proximity is measured by the closeness of two peers in the
underlying physical IP network. By taking network proximity into account, one can build a P2P
overlay network in such a way that physically close peers are connected with one another. Thus,
query messages or data items are likely to be exchanged among physically close peers, which not
only improves Quality of Service (QoS) but also saves network bandwidth. Figure 8.6 illustrates the
advantage of network proximity awareness.

Figure 6.5(c) shows a part of the IP network. C1 and C3 belong to one autonomous system
(AS), while C2 and C4 belong to another. If the nodes form an overlay as shown in Figure 8.6(a),
a message from C3 to C1 would traverse the link between two ASes two times. This prolongs the
message delivery delay and consumes unnecessary backbone network bandwidth between AS1 and
AS2. If network proximity is considered and a proximity-aware overlay is built as in Figure 8.6(b),
the message would not transfer the link between two autonomous systems. It is a challenge to find
physically close nodes in a decentralized P2P overlay with a central server and no node has the glo-
bal knowledge.

8.1.2.5 Routing Efficiency
As in IP network, routing routines are demanded in forwarding a message to its destination. They
directly affect the performance of P2P systems. A pure P2P system avoids single points of fail-
ure. However, it still faces failures related to disconnections and unreachability, partitions, and
peer node failures. The system should run properly even if there are failures, and it should repair
failures in an ad hoc way. Replication is an efficient way to improve system availability and
fault tolerance. Maintaining the consistency of replicas in a distributed system is always a big
challenge.

C4C2C1 C3

AS1 AS2

(c) Underlying IP topology

C1 C2

C3 C4

(a) Inefficient overlay (b) Proximity-aware overlay

C1 C2

C3 C4

FIGURE 8.6

Building a proximity-aware P2P overlay network.
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8.1.2.6 Free-Riding Avoidance
Another challenge in P2P computing systems is the free-riding problem. P2P computing systems
aggregate resources at the edge of the Internet to improve performance. The participant peers may
be selfish and unwilling to contribute anything. These peers are called free riders. The free-riding
problem is common in systems that rely on voluntary contributions from individuals since people
are not willing to pay the cost of public goods when they hope someone else will bear the cost
instead. Thus, incentive mechanisms to encourage contributions from individual peers are required.
The incentive mechanism should evaluate peers’ contributions correctly and give awards to the con-
tributors, while maintaining anonymity and defending malicious attacks.

8.1.2.7 Anonymity and Privacy
Peers in P2P systems like to hide their information from others. Anonymity should be an option to
peers, especially for peers in P2P communication systems. There are three levels of anonymity:
namely initiator anonymity, responder anonymity, and mutual anonymity. The first two levels of
anonymity can be further seen as directional anonymity, while the third level can be seen as bidirec-
tional anonymity. Basically, directional anonymity can be implemented using onion routing.

Example 8.3 Onion Routing to Protect Anonymity of Peer Machines

In onion routing, the initiator knows everything. However, intermediate routers does not. Onion routing is
used to hide the identify of the originator of the final destination. This is done by encryption of the incom-
ing message and the next hop information recursively using public keys. It creates a number of layers for
the message. Each layer contains the information of the next hop nodes (called onion routers). Each onion
router removes one layer and forwards the remaining message to the next hop onion router. This way, any
node knows only its immediate sender and who is the next receiver.

Figure 8.7 shows an example of onion routing. The message is sent from A to B. The identity of A is
hidden from C, D, and A, while the message itself is hidden from C and D. Onion routing can be improved
using encryption with symmetric keys. Mutual anonymity requires hiding both the initiator and responder’s
identities, and no others are able to guess the two parties. Encrypting messages and building agents for
peers are possible ways to implement mutual anonymity. However, these techniques bring high overhead
and conflict with some design goals of P2P systems. For example, using encryption incurs cryptography
cost, while using agent conflicts with decentralization.

C to D

to Ato A

msg msg

D D

B B msgB

BDCA

FIGURE 8.7

An example of onion routing for anonymous communication.
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8.1.2.8 Trust and Reputation Management
Lack of trust among peers poses another problem. Peers are strangers to one another, and inevitably
some of them act evilly or in an uncooperative way. It is required in P2P systems to provide a trust-
worthy environment in which peers’ trust is measurable and malicious peers are punishable. How-
ever, P2P systems are fully distributed. Transactions are performed directly between peers. No
central server keeps track of the transactions. Hence, building a trustworthy P2P environment is a
unique challenge.

8.1.2.9 Network Threats and Defense against Attacks
Due to the decentralization and ad hoc characteristics, attacks in P2P systems can be easily per-
formed. Denial of service (DoS) and distributed denial of service (DDoS) attacks are possible by
flooding messages to particular peers and claiming that the victim has all files requested. QoS
attacks can be implemented by serving files slowly or sending different files to requesters. The
anonymity design of P2P systems helps malicious peers easily hide behind others.

Example 8.4 Defense against DDoS Attacks

Figure 8.8 shows a DDoS attack by two malicious nodes through flooding queries throughout the entire
network. The malicious peers flood one or more network nodes with unwanted queries or messages so
that their communication buffers get overflowed, and thus TCP connections get denied. The flooded node
is saturated by these messages and is unable to handle more queries from good peers. A well-designed
P2P network should be able to handle this type of flooding attack to any node in the system. Sometimes
the attack could be initiated from outside the P2P network and use some of the peer nodes simply as
zombies.

8.1.2.10 Churn Resilience
The peers in P2P computing systems are from clients at the edge of the Internet. They come, leave,
and even fail at random. Faulty nodes no longer forward messages. In some cases, failure of a node
would cause others to disconnect from the whole system or lose index information. For example, in
KaZaA, if a super node fails, the nodes assigned to it would lose connections to the system and
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FIGURE 8.8

An example of a DDoS attack in a small P2P network through message flooding.
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have to find other super nodes to connect with. The index information kept in the faulty super node
would be lost. Node failure imposes a great challenge to achieve fault tolerance in P2P networks.
Since there is no central coordinator, peers use periodic heartbeat messages to check the status and
availability of other peers.

8.1.2.11 Collusive Piracy Prevention
Online piracy has hindered the legal and commercial use of P2P file sharing. The illegal file con-
tents are from the peers that have the legal contents and spread them to the pirates. This is called
collusion. An agent recruits clients to send illegal download requests to suspected peers. For each
request, if the suspected peer returns a clean copy, the feedback is 1. Otherwise, the feedback is −1.
If the sum of feedbacks exceeds a predefined threshold, the suspected peer is recognized as a
colluder.

Collusive piracy is the main source of intellectual property violations within the boundary of a
P2P network. Paid clients (colluders) may illegally share copyrighted content files with unpaid cli-
ents (pirates). Such online piracy has hindered the use of open P2P networks for commercial con-
tent delivery. Lou and Hwang [32] have developed a proactive content poisoning scheme to stop
colluders and pirates from alleged copyright infringements in P2P file sharing. The basic idea is to
detect pirates in a timely manner with identity-based signatures and timestamped tokens. This
scheme stops collusive piracy without hurting legitimate P2P clients by targeting poisoning on
detected violators exclusively.

8.1.3 Taxonomy of P2P Network Systems
This section classifies the existing or proposed P2P networks by their structures and functionality.
P2P network systems are identified by their names or by a short description in Figure 8.8. Some of
the well-known networks will be treated in more detail in examples in subsequent sections.

8.1.3.1 Unstructured P2P Overlays
The neighborhood relationships in an unstructured P2P overlay network are randomly connected
without much constraint. Unstructured overlays are easy to build up or down when user anonymity
and minimal administrative overhead are desired. At the time of this writing, many P2P networks can
be started with no structural constraints. Well-known examples include Napster, Gnutella, KaZaA,
Skype, BitTorrent, and eMule. Here are some interesting features in an unstructured P2P overlay:

• Data is distributed randomly over peers.
• The overlay can start with centralized control and gradually shifted to fully decentralized control.
• There are no broadcasting mechanisms (or if there are, they are constrained).
• Flooding queries to entire network may generate heavy network traffic.
• There is no guarantee of a deterministic search result.
• The TTL (time to live) limit on a query message may reach the entire network.

8.1.3.2 Structured P2P Overlays
In a structured P2P overlay network, peer nodes are organized into predefined and restrictive struc-
tures, such as a ring, a chord, or a tree to be characterized in Section 8.2. Good examples of structured
overlays include Chord, CAN, Pastry, and Tapestry. Many P2P networks may start with a random

490 CHAPTER 8 Peer-to-Peer Computing and Overlay Networks



structure, but later adopt a more efficient overlay structure to speed up searches and downloads with
enhanced security and efficiency. Here are some useful features of structured overlays:

• Structured routing mechanisms in the overlay
• Add application-level overlays over the peers
• Reduce routing hops, compared with using random graphs
• Avoid flooding and eliminate hotspots
• Guarantee the search results
• Provide load balancing among the peer nodes
• Provide enhanced scalability and fault tolerance
• Preserve data locality if desired
• Promote self-organization under constraints
• Provide enhanced security protection
• Support node heterogeneity

8.1.3.3 Taxonomy by Structure and Functionality
Figure 8.9 maps existing P2P systems according to their design style and functionality. The bottom
row denotes centralized systems built in the earlier years. The middle row covers unstructured P2P
systems that are decentralized, like Gnutella, FastTrack, and DirectConnect. The upper row is for
decentralized and structured P2P systems. At the lower-left corner is Napster, which is centralized
and unstructured. At the upper-right corner are P2P resource managers, P2P directory services, and
P2P databases that are all decentralized using structured overlays are expected.
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FIGURE 8.9

Classification of various P2P systems by functionality and control style.
(Courtesy of Min Cai, EE 657 Report, University of Southern California, 2007 )
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CSCW refers to computer-supported cooperative work. CAN, Chord, Pastry, and Tapestry are
now all using structured overlays with decentralized control. Functionally speaking, the P2P grids
are mainly for distributed computing and collaboration applications that have no fixed structures.
SETI@Home has centralized control for distributed supercomputing applications. The rest of the
P2P networks fall in various squares in the 2D design space as shown. Note that some lattice
squares are empty or are labeled with a question mark, meaning no systems are being built yet
under that category.

8.2 P2P OVERLAY NETWORKS AND PROPERTIES
Overlay networks are built on top of physical IP networks. The nodes are end hosts from the physi-
cal networks, while the links are virtually built among nodes with TCP connections or simply poin-
ters to IP addresses. The virtual links do not need to have the same weights. Different weights can
be designed for different types of links. Since end hosts are dynamic, overlay networks require pro-
tocols for overlay maintenance. A new node contacts another node which is already on the overlay
network for bootstrapping. Nodes in overlay networks leverage periodic heartbeat messages to ver-
ify neighbor aliveness. If a current neighbor fails, a node may connect to another node according to
the maintenance protocol.

Recall that in Figure 1.16, one can map some nodes from physical IP networks to an overlay net-
work built with virtual links. The mapping is shown by the vertical dashed lines between physical
hosts to virtual nodes called peers. Overlay networks do not require additional physical infrastructure;
hence they are easy to deploy and use. The overlay topology can change based on application. Node
failures are easily recovered since nodes can choose others to connect with. There is no restriction on
the communication protocol. Application designers can define any protocol they like. The underlying
physical networks are transparent to the overlay designers. However, to better utilize network
resources (e.g., network proximity), one should take physical networks into consideration.

A P2P network is a type of overlay network. According to overlay graph properties, P2P net-
works are classified into two categories: namely unstructured and structured overlays. Unstructured
overlay networks are always built based on random graphs. Nodes select their neighbors randomly
from all the peers in the overlay. Structured overlay network graphs, however, have predefined
structures (e.g., ring, hypercube, etc.). Each peer has a unique identifier and can only build neigh-
borhood relationships to the peer nodes whose identifiers have satisfied the predefined requirements.
Some hybrid P2P overlay networks, which leverage the advantages of both unstructured and struc-
tured overlay networks, are also used to reach the advantages of these two types of overlay
networks.

8.2.1 Unstructured P2P Overlay Networks
To build a good unstructured P2P overlay, the node degree (i.e., the number of neighbors) of a peer
and the expected number of nodes that are traversed from one node to another should be kept as
small as possible. In addition, the join or departure operations cannot cause extensive modifications
of the graph. Finally, the overlay can determine the forwarding path easily, when some nodes fail
or depart unexpectedly.
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8.2.1.1 Construction by Random Graphs
The Erdos-Renyi random graph [38] can be considered as a baseline model for unstructured P2P
overlay networks. The probability p that any two vertices (nodes) have an edge is equal and inde-
pendent. The probability that a vertex has a degree of k is as follows:

Pfd = kg =
n− 1
k

� �
pkð1− pÞn−1−k (8.1)

The expected degree of a vertices is Efdg = ðn− 1Þp: Apparently, if p = c/n, then for a large n,
Pfd = kg = ck

k! e
−c: That is how the node degree follows a Poisson distribution. For unstructured

P2P systems, the Erdos-Renyi random graph is too random to design a distributed algorithm for
determination of the forwarding path from one peer to another peer.

8.2.1.2 Small-World Model
Small-world graphs [2] have two prominent properties: a short mean-shortest path length and high
cluster coefficient. For P2P systems, these two properties are important. The former one helps us to
reduce the expected hop count between peer nodes and the latter one facilitates the handling of the
flash crowd. Suppose each node has two types of neighbors, namely nearby neighbors and distant
neighbors. The nearby neighbors of a node i are the nodes whose distances are smaller than p.
Node i also has q distant neighbors that are selected randomly from the nodes that are out of this
scope. A node i builds a link to any node j, where the distance of i and j is smaller than p, that is,
dði, jÞ< p: Node i builds a link to a distant node v with probability dði,vÞ−r, where r is the cluster-
ing exponent. A search query is forwarded to the closest neighbor to final destination. The cluster-
ing exponent r affects the search time.

8.2.1.3 Scale-Free Graph
The scale-free graph model is also widely used in the context of P2P applications. The node degree
follows a power-law distribution, which means the probability that a node has a degree of k is pro-
portional to k−α, where α is a constant and always in the range (2, 3). The graph diameter (i.e., the
longest minimum distance of any two nodes) is of the order of Oð ln nÞ, where n is the number of
nodes in the graph. Thus, the diameter almost remains unchanged when the graph scale grows. In
practice, many real networks are thought to be scale-free, such as social networks and the Internet
graph.

In the Gnutella 0.4 overlay network, the node degree follows a power-law distribution with α
approximately equal to 2.3 [41]. This is mainly because new join nodes are likely to build overlay
connections to the nodes already with high degrees. A scale-free network is also resilient to the ran-
dom node failures. However, if the network is attacked by knowledgeable attackers and some of the
high-degree nodes break down, the graph may be partitioned into several disjointed parts or the
graph diameter will grow quickly. Thus, to build a resilient scale-free graph based on P2P overlays,
high-degree node identities should be hidden if possible.

8.2.1.4 P2P Networks for Distributed File Sharing
The most popular applications that are built on top of unstructured P2P networks are P2P file-
sharing systems. Table 8.2 compares the P2P file-sharing systems Napster, Gnutella, and KaZaA.
These three systems represent three distinct types of P2P service models. Basically, in these
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file-sharing systems, data is distributed randomly over the peers. Flooding on the overlay is used to
find files in response to requests. The TTL is imposed to limit the flooding, in order to save heavy
traffic generated by flooding. Moreover, there is no guarantee on the search results.

The major difference among these systems lies in the fact that Napster applies a centralized con-
trol, Gnutella uses pure P2P networking, and KaZaA applies a hierarchical structure. Napster has a
constant search time. Flooding in Gnutella takes the longest search time across the entire network.
KaZaA performs in between, because binary search is conducted only across the super nodes. Both
Napter and Gnutella have limited scalability. KaZaA has better scalability. However, these three
P2P file-sharing services have all suffered greatly from illegal downloads by copyright violators in
recent years.

Example 8.5 Gnutella (Version 0.4) Networks with Flooding Search

The Gnutella file-sharing application leverages the pure P2P model. Each peer has equal roles and acts as
either a server when uploading files to others or a client when downloading files from others. A peer is also
called a servant. Gnutella defines a number of messages, called descriptors. Flooding-based search is
used to locate highly replicated items, as illustrated in Figure 8.10. Each node sends the requests to multi-
ple neighboring nodes, which can send to more nodes, and thus flood the entire network. This flooding
scheme may create heavy traffic to saturate the network. Therefore, the messages to send or to forward
and the hop count in forwarding must be limited.

Figure 8.11 shows the descriptor header and payload. The header consists of 22 bytes. The descriptor
ID uses the first 16 bytes. It is a unique identifier for the descriptor in the network. The payload descriptor

Table 8.2 P2P File-Sharing Applications Using Unstructured Overlay Networks

P2P Network Napster Gnutella KaZaA

Architecture Centralized model Pure P2P model Hierarchical with super peers
File indices Centralized index

servers keep all links
Each node keeps file
indices for itself only

Super node keeps the indices
for the nodes that connect to
them

Search algorithm Queries are sent to
servers, which return
the requested files

Queries are flooded
on entire overlay
Matching peers reply
to originators

Queries to super nodes with
flooding among themselves and
reply to the originators

Search time (hops) O(1) O(log n) O(log m), m counts supernodes
Search cost (#msgs) O(1) O(d* n), d is node

degree
O(c* m), c is supernode degree

File fetch method Originator gets the
file from a single
peer

Query originator gets
the file directly from
a peer

Originator gets the file from
multiple peers concurrently

Scalability Limited by the
central servers

Limited by the high
search cost

Relatively good scalability due to
super peers

Fault tolerance Single point of failure Good fault tolerance
due to equality
among peers

Super peers are vulnerable to
attacks
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only uses 1 byte. Gnutella defines five main types of descriptor, including Ping (0X00), Pong (0X01), Query
(0X40), QueryHit (0X80), and push (0X80). The TTL and Hops fields use one byte each. TTL is initialized
by the descriptor originator and is decreased by one once the descriptor traverses one servant. When TTL
reaches 0, the descriptor is discarded.

The TTL is used to limit the horizon of the descriptor in order to save the communication cost of unlim-
ited flooding. The Hops field counts the number of hops the descriptor has traveled. The last four bytes in
the header is for payload length, which is followed by variable payload. For example, The Ping has no pay-
load, while other four descriptors, payload is filled with bytes of variable size.

The Ping descriptor is used by servants to discover others. A servant that receives a Ping sends back
one or more Pong descriptors along the path of Ping with a reverse direction. A Pong consists of the
address of the responsible servant and the amount of data it shares. Query descriptors are for search,
while a QueryHit descriptor is the response to a Query. The Push descriptor enables firewalled servants to
share files with others. A new servant contacts bootstrap nodes to join. After joining the system, a servant
communicates with others using descriptors. It sends a Ping to discover more servants to connect with.

In general, the Ping and Query descriptors are sent in a flooding fashion. A servant that receives such
a descriptor will forward the descriptor to its neighboring servants. Clearly, if the horizon of the flooding is
not limited, such descriptors would, on average, be forwarded to d neighbors by each peer, where d is the
average number of neighboring peers of each node. Thus, an n-node Gnutella system must use d*n

FIGURE 8.10

Flooding scheme used in Gnutella to search for peers that can provide files of digital content.
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Gnutella packet descriptor format.
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messages, within which (d-1)*n messages are duplicated. Such a large number of messages limits system
scalability.

Gnutella limits the horizon of flooding with a TTL in each descriptor. The TTL is decreased by one each
time the descriptor is forwarded. If the TTL expires, that is, it reaches 0, the descriptor is discarded without
further forwarding. By default, the TTL is set at 7 since within this horizon, 95 percent of servants can be
reached. However, the requested files may be owed only by the unreached 5 percent of servants. In such
cases, the requests cannot be satisfied, even though files that match the requests do exist.

The flooding search in Gnutella is suitable for highly replicated files (i.e., hay), not for rarely replicated
ones (i.e., needle). Since users often request hay, Gnutella works well in practice. The request originator
downloads the file from one peer directly using HTTP. From version 0.6, Gnutella leverages powerful peers
as ultrapeers to construct hierarchical architecture similar to KaZaA’s. The descriptors are only flooded
among ultrapeers, greatly reducing search cost and improving scalability.

8.2.2 Distributed Hash Tables (DHTs)
As shown in Figure 8.12, a distributed hash table (DHT) is middleware which offers information
search or table lookup services for a distributed system, especially for P2P systems. A hash table is
often represented by (key, value) pairs. DHT stores such pairs in an identifier space. For example,
an identifier space, represented by 64-bit binary strings, can accommodate 264 keys, representing
the same number of data objects. Using separate hash functions, the DHT maps the data objects
into the keys. The (key, data) pairs are distributed to the peers in a P2P network. The identifier of a
peer is the hash value of its address using certain hash function such as SHA-1.

The ownership of the identifier space is distributed among the peer nodes. DHTs provide a
lookup service similar to a hash table: (key, value) pairs used in other mapping services. Any parti-
cipating peer can retrieve the value associated with a given key. In a P2P network structured with
DHT support, the mapping from keys to values is distributed among the peer nodes. Any peer join-
ing or leaving should cause minimal disruption to the entire P2P network. An efficient DHT design
should scale to an extremely large identifier space such as 264 or even greater such as 2256.
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Key mapping in distributed hash tables (DHTs).
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The DHT applies consistent hashing to map keys to nodes. This consistent hashing should be able
to define an abstract notion of proximity or distance between two nodes. Keys are mapped to the
nearest nodes with the minimum distance or maximum proximity. When a new node joins or an exist-
ing node leaves, consistent hashing causes a small impact on existing nodes by reassigning their keys.
For n nodes with k keys, each node is responsible for, at most, ð1+ εÞ/n of the whole ID space with a
high probability. The addition or deletion of a node requires Oð1/nÞ keys to reassign, where
ε = Oðlog nÞ: Thus, the DHT is suitable for P2P systems where nodes leave and join frequently.

The DHT provides two primitive operations: put (key, data) and get (key). The put primitive
stores the date or data index with the key on the node which has the closest identifier to the key,
while the get primitive retrieves the node that stores the data or data index with the key. Peer nodes
form an overlay network. Every node keeps several links to a subset of other nodes. The get request
for a key with identifier k is forwarded over the overlay to the nearest node, until the request arrives
at the node with an identifier closest to k.

Popular P2P networks that use DHTs include BitTorrent’s distributed tracker, the Bitcoin mone-
tary network, the Kad network, the Storm botnet, YaCy, and the Coral Content Distribution Net-
work. Some prominent research projects including the Chord project; the PAST storage utility;
P-Grid, a self-organized and emerging overlay network; and the CoopNet content distribution sys-
tem also apply the DHT in their overlay constructions. Others apply the DHT in resource discovery
in grid computing systems. Resource discovery searches for suitable resource types to match with
user application demands.

8.2.2.1 DHT Deployment
The DHT acts as a substrate to provide two primitives: put (key, data) and get (key). The basic idea
is to map nodes and keys into the identifier space and assign keys to closer nodes in this space.
This enables fast search with guaranteed lookup success and provable bounds on the search time.
Moreover, such overlay networks avoid high search costs by flooding, and thus are more scalable.
However, it should be noted that DHT-based structured P2P overlays only directly support exact-
match search, rather than keyword search. Figure 8.13 shows the role of a DHT in mapping P2P
user applications to desired source machines through proper TCP/IP connections.
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DHT for fast and secure search and other Internet applications.
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8.2.3 Structured P2P Overlay Networks
In a ring structure, each node has two neighbors: its successor and its predecessor along the ring. If
a node A is inserted at the interval between B and C, it has to take these two nodes as its neigh-
bors. In a tree structure, a node can only build neighboring links with its child nodes and parent
node. Although any P2P overlay network that has a logical predefined structure is considered struc-
tured, the most popular structured overlays are DHT-based.

Structured P2P networks employ a globally consistent protocol to ensure that any node can effi-
ciently route a search to some peer that has the desired file, even if the file is extremely rare. Such
a guarantee necessitates a more structured pattern of overlay links. By far the most common type of
structured P2P network is the DHT, in which a variant of consistent hashing is used to assign own-
ership of each file to a particular peer, in a way analogous to a traditional hash table’s assignment
of each key to a particular array slot. Table 8.3 summarizes various structured P2P overlay net-
works; three examples follow the table. An n-node network with b bits per node identifier is consid-
ered here.

• Distributed hash tables Use distributed hashing with key lookup to avoid flooding at the
expense of losing data locality. Good examples are Tapestry, Pastry, Chord, and CAN.

• Tree-structure system Preserves data locality with a tree-structured data access hierarchy.
A good example is the TerraDir system.

• Skip-list-based systems Accelerates query processing by key ordering rather key lookup. Two
good examples are Skip Graphs and SkipNet.

Due to the random selection of neighboring peers, there often exists a topology mismatch
problem between overlay and physical topologies in P2P systems. Location awareness or network
proximity awareness solves the mismatch problem by allowing nodes to select neighboring peers on
overlay networks according to peers’ locations on physical networks.

In DHT-based structured P2P overlays, the neighbors of a node are not selected randomly from
all the peers on the overlay, but only from the ones whose identifiers are subject to special require-
ments. Addition or deletion of a node requires few recovery operations, which facilitates large-scale
deployment. There are different overlay structures for DHT-based overlay networks, which yield

Table 8.3 A Comparison of Three Structured P2P Overlay Networks

Overlay Networks Chord [45] CAN [40] Pastry [39]

Identifier Space Chordal ring with direct
fingers connecting to
nodes in distance
intervals

d-dimensional
coordinates

High-radix identifier
space that divides
nodes into nested
proximity groups

Routing state log n 2d 2× 2b log2bn

Lookup Protocol Matching data key and
node identifier

Mapping key to a point
in the d-dim coordinate

Matching key and prefix
of node identifier

Routing complexity O(log n) O(d × n1/d) Oðlog2bnÞ
Number of messages
per join/leave operation

log2n 2d log2bn
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different structured P2P systems, such as Chord, Pastry, CAN, and Kademlia. This section focuses
on the structures of these structured P2P systems. In Table 8.3, n is the number of nodes in the P2P
network. The quantity 2b for specifying Pastry is the base of the identifier space. The “log” implies
the binary base 2.

A good example of DHT systems, Chord, is introduced in Example 8.6. The identifier space of
m-bit strings is mapped to a unidirectional logical ring modulo 2m. The distance between the identi-
fier id1 and the identifier id2 is measured by the interval traveled from id1 to id2 in a clockwise
direction. Nodes are placed at the position where the node’s identifier can be found. A node with
identifier idx stores the data or data index with key identifiers falling into the interval from the
immediate predecessor of idx to idx itself. Each node keeps m chordal links to the nodes whose
identifiers immediately succeed ðx+ 2iÞmod2m for 0≤ i≤m− 1:

Example 8.6 Chord System—A DHT-Based Chordal Ring

Chord is a typical DHT system which organizes peers in a unidirectional ring augmented with chord links
for scalable search [45]. Nodes and keys are mapped to the same m-bit identifier (ID) space using SHA-1
as the base hash function. A peer’s ID is generated by hashing the peer’s IP address, while a key’s ID is
assigned by hashing the data key. Identifiers are represented on the ring modulo 2m. A peer is responsible
for the ring interval from the previous ID to its own ID. That is, the data (or the index) with keys mapped to
this interval is stored on this peer. The distance from an ID1 to another ID2 is the interval from ID1 along
the clockwise direction of the ring to ID2.

Besides the predecessor and successor on the ring, each node maintains a finger table which consists
of the nodes pointed by the chord links from that node. The i-th ð0≤ i <mÞ entry in a node’s finger table
refers to the node whose identifier is 2i away along the clockwise direction, where m is the identifier length.
A 3-bit identifier ring with four nodes and the finger table of node 8 are shown in Figure 8.14. Node N6 is
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An example of a Chord network with a 16-key search space. The finger table establishes the direct links
between the populated nodes located in various span intervals.
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22 away from N1. Although there are m entries in a peer’s finger table, on the average, a peer’s finger
table contains O(log n) nodal information, where n is the total number of nodes in the search space.

In Figure 8.14, N1’s finger table has three rows. However, the first two rows contain the same node’s
information, that is, N3’s information. This is stemmed from the fact that the identifier range which starts
from a node to its bm − log nc-th entry is within distance 2m=n: Since nodes are randomly distributed on
the identifier ring, an average of one node is within the range 2m=n: Thus, on average, the number of
nodes in a node’s finger table is Oðm − bm − log nc+1Þ = Oðlog nÞ: DHT-based search is often used to
locate rarely replicated items.

To improve robustness, each node maintains a successor list. The list starts from its successor down
the ring. If the current successor fails, a node replaces the fault successor with the first live entry in the
list. A newly coming node of ID X first contacts a bootstrap node, which forwards the join message to X ’s
predecessor Y. The new node joins as Y ’s successor and Y finds entries to fulfill the finger table for the
new node. The nodes whose finger tables should contain X update their tables. The join/leave operation of
a node requires using log2 n messages. Chord uses a stabilization procedure running periodically on each
node to update the successor and finger table entries.

Example 8.7 The CAN System: A Multidimensional Mesh Architecture

CAN (Content Addressable Network) organizes nodes in a virtual d-dimension Cartesian coordinate space
on a d-torus. The coordinate space is dynamically split into n disjoint zones and each node owns one,
where n is the number of nodes. An example of a 2D coordinate space which is partitioned into five nodes
is given in Figure 8.15. Nodes store their neighbors’ information (i.e., IP addresses and the zone informa-
tion that they own) as their route tables. Two nodes are neighbors if their zones span overlap along (d-1)
dimensions and abut along one dimension.
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A CAN network constructed by the repeated partitioning of the 2D coordinated space and its routing process.
(Courtesy of S. Ratnasamy, P. Francis, and R. Karp [40] )

500 CHAPTER 8 Peer-to-Peer Computing and Overlay Networks



In Figure 8.15(a), node B and node C are neighbors of node A, but node D is not A’s neighbor. Keys
are mapped to coordinate space using uniform hash functions. Each key is associated with a d-dimension
vector, which represents its position in the coordinate space. If a key’s position in the coordinate space
falls in the zone owned by a node i, node i stores the pointer to the object related to the key or directly
stores the object. In a d-dimension coordinate space, each node maintains 2d neighbors on average and
the route complexity is of the order of Oððd=4Þðn1=dÞÞ:

A new coming node X contacts a bootstrap node, which is located using the DNS service. The boot-
strap node supplies the address information of some randomly chosen peers populated in the overlay. The
new node randomly chooses a point P in the coordinate space as its position and asks a populated node
to route the join message to the node Y whose zone contains P. The node Y splits its zone into two parts
with equal quota and hands over one subzone to the incoming node.

The CAN overlay uses a greedy routing algorithm. A node greedily forwards the message to its neigh-
bor with coordinates closest to the destination. Figure 8.15(b) shows a 2D CAN overlay and the routing
path from node C to node H. In a CAN overlay with d-dimension coordinates, on the average, each
dimension has n1=d nodes. On a torus, there are 1/4n1=d nodes between any two nodes on the average.
Since a message to its destination traverses all d dimensions, this yields the routing complexity, which is
Oððd=4Þðn1=dÞÞ:

8.2.4 Hierarchically Structured Overlay Networks
A hybrid P2P overlay network holds the features of unstructured and structured overlay network at
the same time. There are always two types of approaches to building hybrid P2P overlay networks.
The first involves adding structured overlays on top of unstructured overlays. For example, one can
embed Chord on top of a Gnutella overlay. The flooding search protocol in Gnutella is suitable for
locating highly replicated files (hays). However, for queries of rarely replicated files (needles),
flooding requires a long time for a response, or even gives no response. A hybrid P2P overlay is
often built by maintaining the primary components while getting the secondary components for
free. In Figure 8.16, the route table of a Pastry node is selected. The global random peer informa-
tion is provided by the leaf set of the Pastry node. In this way, the overhead of Pastry is related to
locate nearby nodes to fill the routing tables.
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The intuition of the hybrid P2P overlay construction by keeping the primary components and getting the
secondary components for free.
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Example 8.8 KaZaA Network Using Super Nodes to Form a Backbone Overlay

KaZaA connects peers in a two-layer hierarchical structure (see Figure 8.17). The upper layer consists of
super nodes that are more powerful in terms of CPU, bandwidth, and stability. Lightweight user nodes are
assumed at the second layer, and are connected to a parent super node. A super node acts as a hub for
user nodes. A user node uploads to its parent super node the filename, content hash, and file description of
each requested file. Thus, each super node maintains the file indices for all of its children nodes. The super
node provides each child with a super-node list, which contains up to 200 super nodes in the system.

In 2006, more than 3 million peers of KaZaA shared more than 3,000 terabytes of digital content,
including MP3s, videos, and games. At one time, more than 50 percent of Internet traffic was generated
by KaZaA users. On average, it takes 56 minutes to connect to the end super node. Each super node has
about 100 to 150 children. In total, the system has roughly 30,000 super nodes. Each super node has
TCP connections to 30–50 other super nodes. The system is not fully connected. Among the super nodes
there is 0.1 percent connectivity with an average of 23 minutes to connect two super nodes.

Each super node acts like a mini-Napster hub by tracking the content and IP addresses of its descen-
dants. The super node is represented with its IP address, port number, workload, timestamp, and similar
data. This list is cached at the user node for use in bootstrapping and failure recovery. KaZaA encrypts all
its signaling traffic. A query from a user node is first submitted to its parent super node. If any files match
the query, the super node directly answers the query. Otherwise, the super node forwards the query to
other super nodes using TTL-limited flooding. KaZaA uses the UUHash to identify files uniquely. Nodes
request files from multiple peers using this unique identifier in order to enable parallel downloading.

The UUHash hashes the first 300 KB of a file using MD5, yielding a 128-bit hash value. It applies a
smallhash function to 300 KB blocks at file offsets 2m MB, with m being an integer from 0 until the offset
reaches the end. The smallhash generates a 32-bit hash value. The MD5 hash and this smallhash are
concatenated, yielding a 160-bit hash as the file identifier. The UUHash is simple since it only hashes a
fraction of the file. This weakness allows users to easily modify large parts of the file without changing the
UUHash identifier. However, copyright infringement is still a serious problem. Both DDoS attacks on super
nodes and content pollution have been encountered in the past.

User nodes

Super nodes

FIGURE 8.17

The KaZaA architecture built with super nodes forming a backbone overlay.
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The system automatically switches to a new download server when the current server fails to deliver.
The system also gives the estimated download time to users. Super nodes are relatively stable; thus node
churns have a limited effect. The bandwidth on a super node is low, even in relaying VoIP traffic. The two-
layer structure takes heterogeneity in capacity into account and enables network proximity awareness by
assigning user nodes to nearby super nodes. Flooding is performed on top of the upper layer, thus improv-
ing scalability. However, it still does not provide real guarantees on search scope and search time.

Example 8.9 Embedding Chord on Top of a Gnutella Network

Figure 8.18 shows the hybrid architecture that results after embedding Chord on top of Gnutella. For any
query, the DHT-based Chord responds almost within the same time as long as there is at least one file to
satisfy the query. Thus, Chord performs well for needle queries.

For queries to hays, it takes longer to respond. In Gnutella version 0.6, a portion of the powerful nodes
(ultrapeers) are selected as hubs for ordinary nodes (leaf peers). Queries for hays are forwarded using
flooding, in order to be responded to, while queries for needles follow the Chord search protocol. Hence,
queries to hays and needles can respond faster.

8.2.4.1 Overlay Complexity Analysis
Table 8.4 summarizes the functional features and complexity characteristics of five P2P networks.
All five are self-organized and cannot support node heterogeneity. Data locality is not preserved in

Gnutella linksGnutella ultrapeerU

H

L

Hybrid ultrapeer (Chord + Gnutella)

Gnutella leaf Chord links

L
L

L

L

L

L

L

L

L

H2

H3

H4

U1

H1

FIGURE 8.18

A hybrid P2P architecture of Gnutella and Chord.
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Table 8.4 Complexity Properties of Six P2P Overlay Networks

Features Gnutella [60] Chord [45] CAN [40] TerraDir SkipNet

Overlay structure Random Circular identifier space Multi-dim.
Cartesian space

Tree data hierarchy Distributed skip list

Design parameters N/A r: Immediate successors d: dimensionality N/A N/A
Routing hops O(N ) O(log N ) O(d ·N1/d) O(h), tree height O(log N )
Node state O(1) O(log N ) O(2 d ) O(1) O(2log N )
Node join O(1) O(log N ) O(2 d ) O(1) O(log N )
Load balancing and
reducing query
hotspots

N/A Via consistent hashing
and virtual nodes

Partitioned space,
zone reassignment,
caching and
replication

Via caching and
replication

Consistent hashing
the suffix of object
name

Fault handling Flooding to
other valid
neighbors

Successors list,
application layer
replication

Multiple realities,
overloading zones

Node replication,
routing to next best
prefix node

Redundant
neighbors at level 0,
survive failures at
boundary

Network proximity No Proximity routing to
finger’s successor with
lowest latency

Topology-aware
overlay and
proximity routing

No Proximity neighbor
selection via
P-Table and
C-Table

Support node
heterogeneity

No No, but might through
virtual nodes

No, but might split
zones proportional
to node capabilities

No No

Self-organization Yes Yes Yes Yes Yes
Guarantee
determinate
searching results

No, only
within
broadcast
scope

Yes Yes Yes Yes

Data locality No No, destroyed by
uniform hashing

No, destroyed by
mapping to hyper
space via uniform
hashing

Yes Yes

Applications N/A CFS [27] Data-centric sensor
networks

Resource discovery Global event
notification service

Courtesy of Min Cai, EE 657 Report, University of Southern California, 2006.
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all five overlay structures. With uniform routing, both Chord and CAN destroy data locality easily.
Network proximity is supported only in Chord, CAN, and SkipNet. They all (except Gnutella) guar-
antee determinate search results. Gnutella applies a random graph. Chord applies a chordal identifier
space using fingers to identify immediate successors.

CAN applies a multidimensional Cartesian space. TerraDir has a tree data hierarchy and Skip-
Net uses a distributed skip list. The major attraction of Gnutella is its constant node state and
node joining time, but its routing time is the longest, O(n). Flooding in Gnutella is an expensive
way to search, but it supports fault tolerance. The rest all support fault tolerance using replication
techniques. O(log n) routing speed is achieved in Chord and SkipNet. The routing time in Terra-
Dir is proportional to the tree height (h) applied. The dimension d of CAN affects its performance
greatly.

8.3 ROUTING, PROXIMITY, AND FAULT TOLERANCE
In this section, two fundamental techniques related to P2P systems will be discussed, namely rout-
ing and locality awareness. In P2P systems, peer nodes are organized in decentralized and self-
organizing overlay networks. The routing algorithms, which indicate how to get to a specific node
from any node, should be distributed and only relay on nodes in the local view of the whole sys-
tem. Locality awareness, also called proximity awareness, is a mechanism to let peer nodes be
prone to connect with physically close peers, in order to reduce average overlay link latency and
backbone network bandwidth consumption. The P2P overlay network is ad hoc. Thus, these
mechanisms are required to tolerate and recover peer failures and disconnections.

8.3.1 Routing in P2P Overlay Networks
Unstructured P2P overlay networks give no indication of how to locate a specified node since
node neighborhoods are randomly selected and are not subject to constraints. The routing algo-
rithms in unstructured P2P overlay networks are always based on blind flooding. When receiving
a message, a peer node simply forwards it to all its neighbors except the one from which it
receives the message. Suppose the number of nodes is n and the average node degree (i.e., the
number of neighbors) is k. The number of messages used for locating a node is nðk− 1Þ on
average.

The number of messages used for locating a node is nðk − 1Þ on average. Since a message fol-
lows the shortest path from the source to the destination, the route complexity, which is defined as
the expected number of overlay hops for a message to reach a specified node from any node, is
directly determined by the overlay graph diameter. Overlay networks based on small-world graphs
have a short diameter, allowing for fast routing. Freenet [10] is such an overlay network.

Example 8.10 Freenet—An Unstructured P2P Network

Freenet is a decentralized storage service, which provides good anonymity and censorship resilience. Its
architecture belongs to unstructured overlay networks since it allows any node to be a neighbor to any
other node. Each node contributes a storage space to the system. Nodes and files are mapped to the
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same ID space using hash functions. A file is
encrypted and stored at a node with the ID closest
to the file’s ID. Files may be split into multiple
chunks, with additional chunks added to provide
redundancy. Each chunk is handled independently
over distributed nodes.
Freenet uses a key-based route protocol to find
requested files. Both publishers and readers of files
are hidden from the outside. Data files that are
stored on a node form a datastore stack, which is
illustrated as an example in Figure 8.19. The stack
is divided into two parts. The top part stores the
keys, node references of the next hop, and data,

while the bottom part only stores keys and node references. When receiving a new file insertion request, a
node puts the information at the top of the stack. If the stack is full, LRU (least recent used) is used to
swap out old entries. Unlike Gnutella, in Freenet, even if the file publishers leave the network, files are still
available.

The routing in Freenet is similar as the routing used in IP. The datastore stacks are taken as routing
tables. For a request of a file with key k, if the key can be found in its routing table, the node stops for-
warding the request and replies to the upstream requester. Otherwise, the node forwards the request to
the node indicated by the next hop reference of the entry with the closed key to k. The horizon of a
request is limited by the TTL. If data is not found when the TTL expires, a failure is reported. If data is
found, it is cached on each node along the request path.

The same process is used for insertion of data: The data to be inserted is cached on each node along
the path to the target node. Thus, a request to a data file will cause the file to be replicated more.
The request originator may connect the node that answered the request, while discarding old nodes that
are least recently used. This is called path folding, and would cause a clustered structure. Path folding
makes the simple routing protocol used in Freenet well performed. Anonymity is achieved by randomly
modifying the source of messages as they traverse the network.

DHT-based structured P2P overlay networks have strict and predefined structures, which
facilitate message routing. Each node is associated with a globally unique identifier. The routing
process to a destination node gradually reduces the identifier’s distance from the message pro-
cessing node to the destination node. Although different structured overlays have different rout-
ing algorithms, the routing complexities are Oðlog nÞ, where n is the number of nodes. We
describe the routing algorithms for three representative structured P2P overlays in the following
examples.

Example 8.11 Table-Lookup Search in a DHT-Based Chord Network

Chord overlay networks resort to finger tables to efficiently route messages. When receiving a message
whose destination is y, a node x forwards it to the node in its finger table which is the closest one to y in
the identifier space. To this end, node x checks its finger table in a reverse order. The first node whose
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An example of a datastore stack of a node in the
Freenet.
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identifier is smaller than y is chosen as the next step node. For example, in Figure 8.20, seven nodes are
populated in a 16-node chord structure. The minimum routing path from node 0 to node 8 is via node 6.

The routing complexity for the chord is Oðlog nÞ for an n-node system. Suppose that node x selects the
i-th entry in its finger table as the next step node z. Then node z is at least 2i away from x in the identifier
space. Since the identifier of the (i + 1)-th entry of x’s finger table is not smaller than y, node y is at most 2i+1

away from x in the identifier space. Therefore, the distance between node x and z is at least equal to the
distance between nodes z and y, which means node z halves the distance between nodes x and y.
After log n steps, the distance between the source node to the destination is equal to 2m=n, where m is the
identifier length. Since the populated nodes are randomly distributed, an average of one node exists in each
of the range 2m=n:

8.3.2 Network Proximity in P2P Overlays
P2P overlay networks are logical structures over IP networks. While randomized overlay graphs are
fault tolerant and have a low diameter, they ignore the network proximity information on the IP net-
works. This causes two physically close peers to be far from each other in the overlay network,
while two nodes that are close in the overlay network are far from each other in the physical net-
work. This scenario is denoted as topology mismatching. The problem also exists in structured P2P
overlay networks. For the CAN network, (Example 8.6, also Figure 8.15a), if nodes C and E belong
to the same autonomous system, while A and G belong to another, the messages from C to G
traverse the links between the two domains three times, which inevitably prolongs the delay and
consumes unnecessary network bandwidth.

As to the structured P2P overlay networks, node neighborhoods are so rigid that it is hard to
optimize them in terms of network proximity awareness. There are three types of approaches to
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An example of the table lookup search in a Chord overlay network.
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exploit network proximity in structured P2P overlays: geographic layout, proximity routing, and
proximity neighbor selection.

8.3.2.1 Geographic Layout
Node identifiers are no longer random. Physically close nodes are assigned adjacent identifiers, and
therefore are close in the overlay network. Since many structured P2P overlay networks (e.g.,
Chord, Pastry, Tapestry) rely on the randomness of node identifiers to guarantee robustness and per-
formance, this approach is only suitable for some special overlays, such as CAN. For example, the
landmark binning scheme can be leveraged to build proximity-aware CAN overlay networks. In this
scenario, m publicly accessible nodes are chosen as landmark nodes. Each node measures the dis-
tance to these nodes and sorts them in terms of increasing distances, which yields an order of land-
mark nodes. The order represents the “bin” the node belongs to.

Physically close nodes are likely to belong to the same or similar bins. The coordinate space of
a CAN overlay network is divided into m! zones, one zone per bin. A new node randomly selects a
point from the zone which associates with its bin and joins. This achieves the goal that physically
close nodes are close in overlay networks. However, nodes are no longer randomly distributed on
the coordinate space. It is possible that a small portion of the nodes occupy most of the identifier
space. These nodes are vulnerable to overloading.

8.3.2.2 Proximity Routing
There are always multiple paths between any two nodes in P2P overlay networks. For the CAN in
Example 8.7 (Figure 8.15b), the node C can follow either path C-A-B or path C-F-B to get to node B.
The idea behind proximity routing is to select the path with minimum delay. However, in distributed
overlay networks, finding this path is as complex as a Traveling Salesman Problem, which is NP-
hard. A heuristic way is that each node selects the closest neighbor as the target node to forward
messages. However, this may increase routing path length. For example, in a Chord overlay network,
if each node selects its successor as the target node, the routing complexity is O(n). Therefore, the
candidate target nodes are limited to a small number. The best example overlay for proximity routing
is the Pastry network. We introduce the Pastry architecture in the following example.

Example 8.12 Pastry—A Proximity-Routing Overlay with Nested Groups

The Pastry is a structured overlay, which has an identifier space coded with high-radix digits. The purpose
is to subdivide the peer nodes into nested groups with layers of subgroups. those nodes in the same
innner-most subgroup are very close neighbors, known as proximity subgroups. The overlay using high
radix identifiers to search the nodes in the nested groups or subgroups. For example, a 128-bit identifier
space can specify a very large P2P network with identifier viewed as base-16 numbers (base 2b for b = 4)
like 65A1FC04. The identifiers are divided into groups with 16 subgroups per each group.

Each data key is stored in a node with the closest identifier. Node addressing defines the subgroups.
Nodes in the same subgroup know each other’s address, Thus, the search time can be significantly
reduced for being in the same proximity group. Furthermore, each node knows the IP address of one
delegate node in some of the other groups. Each node needs to know the IP addresses of all up nodes in
its inner group. The proximity routing is applied to perform fast search in log2b n steps, where 2b = 16.

508 CHAPTER 8 Peer-to-Peer Computing and Overlay Networks



For n = 216 nodes or 64 K nodes, it takes at most 4 routing steps (log16 32K) to route the messages
among 16 groups, compared with log264K = 16 steps needed in using Chord.

With node failures, the Pastry is definitely faster than Chord and CAN. During failure recovery, the
Pastry may take O(n) routing hops at the worst case. Each routing table entry points to a node close to the
local node in the proximity space, among all node identifiers with the appropriate prefix. In a way, Pastry
has the best locality properties. The expected distance traveled by a message is within a small constant in
the proximity space. Pastry is suitable to use in building very large P2P networks. The fast lookup search
within proximity space makes Pastry very suitable to use in very large-scale P2P networks. Details of Pastry
can be found in [21].

8.3.2.3 Proximity Neighbor Selection
Nodes choose physically close nodes as their neighbors in overlay networks. In structured P2P net-
works, the identifiers of a node’s neighbors should be subject to some constraints. For example, in
Pastry networks, the nodes in the i-th row of a node’s routing table should share i-digit long prefix
with the node identifiers. This approach can also be applied in Chord overlay networks. Instead of
fixing the i-th entry of node x’s finger table to the node whose identifier is (x + 2i) mod 2m

(0≤ i<m, m is the length of identifiers), node x selects the physically closest node whose identifier
falls in the range ½x+ 2i, x+ 2i+1�:

This change does not affect routing complexity. Landmark clusters with the dimension reduction
algorithm is a wildly used scheme. Each node measures the delay to m landmark nodes which are
publicly accessible. The measurement yields an m-dimension vector which acts as the node position
in an m-dimension landmark space. The idea behind this is that physically close nodes are also
close in the landmark space. Then, space filling curves are used to map the m-dimension vectors to
a space with lower dimensions. For Chord, the vectors are mapped to one dimension number. The
space-filling curves preserve the proximity information. The mapped results are stored on the over-
lays based on their specific protocol, which facilitates archival of close nodes. The landmark cluster
scheme is coarse-grained and cannot distinguish two physically close nodes. Thus, RTT measure-
ment can be further combined.

Compared with structured overlay networks, unstructured networks are easier to optimize in
terms of network proximity, because the node neighborhood relationships are more flexible in
unstructured overlay networks. The optimization operation is a process of deleting high-cost overlay
connections and adding low-cost ones. The key problem is how to identify high/low-cost overlay
connections and cut/establish them in a decentralized way. A simple approach is that each node
actively measures link costs (i.e., latencies) to its neighbors. The high-cost overlay links are discon-
nected if they are redundant. Nodes probe one another to locate closer nodes and build the overlay
connections.

8.3.3 Fault Tolerance and Failure Recovery
This section covers fault tolerance and failure recovery techniques developed for upholding P2P
operations under faulty and failure conditions.
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8.3.3.1 Faults and Node Failures
Node failures also have a vital impact on P2P overlay connectivity. The links to a node would be
disconnected if the node failed. The extent of the impact on overlay connectivity caused by node
failures depends on the graph property of the overlay and the degree (i.e., number of neighbor
links) of the faulty node. For instance, in a power-law graph-based P2P overlay network like
Gnutella 0.4, failures of a subset of randomly selecting nodes would not fragment the overlay into
disconnected portions. However, failures of some high-degree nodes would easily shatter the overlay
into pieces of disconnected components.

DHT-based structured P2P systems implement Oðlog nÞ lookup time by building Oðlog nÞ neigh-
bor links for every node. The overlay neighbors of a node should be selected according to the pre-
defined rules, rather than selected randomly. For example, in Chord, the i-th entry in a node x’s
finger table should be the successor of ðx+ 2iÞmod 2m, where 0≤ x≤m− 1 and m is the length of
the ID. Structured P2P systems rely on these neighbors to accelerate the lookup service, rather than
guarantee overlay connectivity. Thus, a neighbor failure would delay resource lookups. Overlay
connectivity is guaranteed in other ways. In Chord, each node maintains Oðlog nÞ immediate succes-
sors to achieve this goal.

The aforementioned node faults are simply considered crash failures or silent failures, which
means the fault nodes just do not respond to the messages sent to them (i.e., they stay silent).
Another type of fault is the Byzantine failure, which means the fault nodes behave inconsistently
when communicating with others. Byzantine failures are often triggered by attacks and discussed in
the context of DHT-based P2P systems. DHT-based P2P systems are more vulnerable in the case of
Byzantine failures. An adversary can elaborately select the IP addresses for Byzantine peers and
where the peers join the network in order to put them in critical positions. When processing lookup
requests, the Byzantine peers provide inconsistent answers for the same request, which delays the
lookup service or even makes the system useless. On the other hand, unstructured P2P systems
flood the lookup requests. Thus, there are multiple disjointed paths from the query source to the
nodes which satisfy the requests.

Example 8.13 Failure Effects on Real-Life P2P Networks

The impact of node failures on a P2P network depends on the system architecture and the protocols
applied. In a central index server model such as Napster, the failures of the index servers would pull down
the entire system, since the resource lookup service would be completely down, while in a pure P2P
model such as Gnutella 0.4, failures of individual nodes would have very little impact on lookup services
because all nodes would keep the indexes by themselves.

In a super-node hybrid model like KaZaA, failure of the super nodes would cause index information
loss for those peers that connect with it. This implies that the resource lookup service will be downgraded
or shut down. In a DHT structured P2P network such as Chord, the resource index information is distribu-
ted almost evenly among all the nodes. Thus, the failures of the nodes inevitably deteriorate the perfor-
mance of the lookup service, but do not necessarily pull down the whole system. The resource sharing
service between two nodes would be interrupted if either node fails. P2P networks resort to service backup
and resource relocation to resume file-sharing services.
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8.3.3.2 Analysis of Failure Recovery
Since failures occur frequently, P2P systems demand safe recovery from node failures. Chord
leverages stabilization operations to fix node failures. Another method is to let a node periodically
check the aliveness of a random neighbor in its finger table. In the case of an i-th entry failure in a
chordal ring, node x relocates the successor to ðx+ 2iÞmod 2m, where 0≤ i≤m− 1: Nodes also peri-
odically verify their immediate successor. In Pastry, a failure of a routing table entry is detected
when forwarding lookup requests. As to the method for new node selection from backup node lists,
the random replacement strategy performs better than others in terms of churn if the distribution of
node duration time is highly skewed. Here, the new node is randomly chosen from several nodes to
replace the faulty one. The idea behind this is that the strategy is biased in favor of longer duration
nodes.

8.3.3.3 Fault Tolerance Techniques
Unlike traditional client/server model-based distributed systems, no node in P2P systems has a glo-
bal view. Nodes rely on themselves to detect faults and recover from failures in a fully decentra-
lized fashion. P2P overlay networks ensure stable throughput by providing redundancy. For
example, each node has multiple neighbors for service providers. The question is how many redun-
dancies are adequate. In Chord overlay networks, the successor lists are the key component for con-
nectivity and routing correctness.

Each node maintains a sequential successor list with length Oðlog nÞ, where n is the number of
nodes. If the current successor fails, a node replaces it with the first live entry in its successor list.
Suppose that node fails independently with probability 1/2. The probability that all the nodes in a
node’s successor list fail is ð12Þlog2n = 1/n: Thus, with high probability every node is aware of its
immediate live successor, which is sufficient to guarantee overlay connectivity.

In unstructured P2P overlay networks, node neighborhoods are random and flexible. Nodes are
not required to maintain restrictive structures. Thus, they are considered more reliable than struc-
tured P2P overlays. The reliability of structured P2P networks means predefined structures are
maintained, while reliability demands at least one path between any pair of nodes.

In an overlay network based on a random graph with n nodes, if the probability p with which
there is a link between each pair of nodes is ðlog n+ c+ oð1ÞÞ/n, the overlay network is connected
with probability e−e

−c

: This result can be easily extended to a scenario where there are node and
link failures. Suppose link failures are independent of each other with probability q. In this case, to
achieve the connectivity probability e−e

−c

, the probability is p = ðlog n+ c+ oð1ÞÞ/ð1− qÞn:

8.3.3.4 Failure Analysis
If any node fails with a probability e−aða> 1Þ independently, the base ring is connected with a high
probability that is more than 1− n1−a, where e is the base of the natural logarithm. The results con-
firm that REM overlay is as resilient as the one in which each node maintains log n random neigh-
bors in the presence of random failures. In the preceding analysis, the failure resilience of overlay
networks is evaluated under random failures. However, in a proximity-aware overlay, the failures of
neighbor nodes may be correlated. Physically close nodes may fail concurrently due to network
congestion. Further work should evaluate the fault tolerance for proximity-aware overlays.
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8.3.4 Churn Resilience against Failures
A P2P network often faces disturbance from high node churns. The churns come from unexpected
node joins, departures, or failures. Node failures or sudden departures impose a great adverse effect
on network performance. This is caused by unavailability of data stored on the faulty nodes. The
nodes requesting service from the faulty nodes need to relocate the services elsewhere. Hence, a
P2P overlay network should be designed to be fault tolerant and churn resilient. This section is
devoted to overcoming the difficulties associated with churn and failure conditions that are fre-
quently encountered in a P2P network. A churn-resilient protocol (CRP) is presented to alleviate
churn effects.

8.3.4.1 Churn-Resilient Protocol (CRP)
A solution to increase fault tolerance in proximity-aware overlays is to guarantee connectivity of
critical links, such as random links among clusters or nodes. This can be achieved by providing
backup nodes to build the critical links. For example, in GoCast [47], each node maintains a node
cache as backups. Another example is CRP [24] for construction of proximity-aware and churn-
resilient P2P overlay networks.

The topology of the CRP-enabled overlay design looks like a ring augmented with extra chord
links. However, the overlay topology differs from Chord in that the extra links are not fixed fingers
from nodes. Instead, the chord links are established among nodes satisfying certain proximity prop-
erties. Both network proximity and capacity proximity are applied in CRP. Network proximity is
measured by the latency or closeness of two nodes in physical IP networks. This proximity enables
construction of low-latency chord links. Capacity proximity is measured by the closeness of nodes
with respect to node capacities. Capacity proximity allows the grouping of nodes with similar capa-
cities into clusters.

8.3.4.2 Overlay Construction Using CRP
The initial base ring with three nodes is shown in Figure 8.21(a). The ring is assumed to be unidir-
ectional with clockwise links shown by dotted edges. We assume that all ring links are weighted
with one unit. Node A’s successor and predecessor are B and C, respectively. The fourth node D is
inserted into the interval between A and C in Figure 8.21(b). A chord link weighted with 0.7 is
added between nodes B and D. In Figure 8.21(c), the fifth node E is inserted between nodes C and D.
Two new chord links are added, with weights of 0.6 and 0.8.

A newly inserted node may establish new chord links with other nodes by removing some exist-
ing chord links. An existing chord link is removed when it has higher weight than the added new
links. In Figure 8.21(d), a new node F is inserted between nodes A and D. Two new chord links
are added to connect F with nodes B and E replacing the old link between B and E in Figure 8.21(c).
The newly added chord links must have lower weights than those of the links being replaced. The
overlay is dynamically adapted by replacing higher-weight chord links with lower ones, without chan-
ging any node’s degrees.

In Figure 8.21(e), the links between B and D, A and E in Figure 8.21(d) are replaced with two
new lower-weight links between A and D, B and E. Figure 8.21(f) shows the overlay after the
departure of node E in Figure 8.21(d). The links associated with E are removed. The base ring is
always connected as nodes keep their correct successors. To improve the connectivity, the CRP bor-
rows the idea of the successor list from Chord. Each node maintains a list of Oðlog nÞ successor
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nodes down the base ring. If a node detects a faulty successor, it replaces that successor with the
first live node in the list. In Figure 8.21(e), for example, node C keeps two successor nodes E and D.
If node E fails or leaves, C takes D as its new successor.

8.3.4.3 Performance of CRP Scheme
Figure 8.22 depicts the relative performances of CRP and four other tree-based algorithms. The
notation CRP:q denotes a CRP system with a message replication ratio q. CAM-Chord [56] builds
on Chord overlays. It takes the heterogeneity of node capacities into account. ACOM [9] imple-
ments data dissemination by combining scope-limited flooding and random walks on overlay net-
works. GoCast [47] and Plumtree [23] apply a tree-based gossip scheme for data dissemination. It
can be found that CRP outperforms all other designs in terms of delivery time due to proximity
awareness. The message replication in CRP is close to 0 and can be controlled by adjusting q.

The CRP-enabled overlay networks consider both network proximity and capacity proximity. It
uses a hybridization of scope flooding and tree traversing to disseminate data promptly. The overlay
networks provide redundant proximity links for tree structures for fault resilience. The churn-
resilient CRP-enabled overlay networks provide adequate backup links for the tree structure. Once a
node x receives a departure notification from its parent or detects the failure of its parent by heart-
beat messages, it actively switches its tree parent. The node x prefers its proximity chord neighbor
as the new parent to save on delivery time.
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An example CRP-enabled overlay network design in six steps.
(Courtesy of Li, Xie, Hwang, and Li [24] )
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8.4 TRUST, REPUTATION, AND SECURITY MANAGEMENT
The anonymous and dynamic nature of peer activities makes P2P networks very vulnerable to
abuses by selfish and malicious peers. For example, most P2P file-sharing networks (e.g., Gnutella)
consist of autonomous peers with special self-interests. There is no efficient way to prevent mali-
cious peers from joining open networks. To encourage resource sharing among peers and combat
malicious peer behavior, trust and reputation management becomes critical to maintain the normal
operation of P2P networks.

Without trust, peers will have little incentive to contribute their resources to other peers. The
peers may hesitate to interact with unknown peers due to the concern of receiving corrupted or poi-
soned files or being exploited by malware. Identifying trustworthy peers demands reputation sys-
tems in commercial P2P applications, such as for online shopping, auctioning, content delivery,
pay-per-transaction, etc.

8.4.1 Peer Trust and Reputation Systems
This section characterizes the trust model needed to establish harmony among the peers. We will
define trust matrix for aggregating peer reputations in P2P reputation system development.

8.4.1.1 Peer Trust Characteristics
There are two ways to model the trust or distrust among peers: namely trust and reputation. Trust
refers to the belief of one peer on another, based on his direct experiences with the peer. Reputation
is a collective opinion on a peer by other peers based on recommendations. To face the reality of an
open P2P network, one has to assume that the participating peers in a P2P system do not trust one
another unless proven otherwise.
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Average delivery time of five data dissemination schemes over a P2P network.
(Courtesy of Z. Li, et al. [24] )
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A fair reputation system is thus needed to establish the trust or distrust among peers, based on
recorded historical behaviors of the peers. The purpose is to distinguish good peers from bad ones
through a scientific screening process. The quality of the reputation system is primarily indicated by
its accuracy and effectiveness in updating periodically.

8.4.1.2 Trust Matrix for Computing Reputations
Consider an overlay network for global reputation aggregation in a P2P system over five peers,
denoted by nodes N1, N2,…, N5 of a directed graph shown in Figure 8.23. The trust relationships
among the peers are represented by a square trust matrix M(t) = [mij (t)], where mij (t) is the local
score issued by node iin evaluating node j at time t. All trust scores are fractions in the range (0, 1)
with 0 meaning no trust (or no contact) and 1 for 100 percent trust. Therefore, trust is relatively
measured by these fractions. For the five-node network, the following trust matrix at certain time t
is achieved. Note that all row sums are 1. A zero entry, mij (t) = 0, means node i does not evaluate
node j for lack of direct contact. The diagonal scores are all zero, meaning no peer evaluates
himself.

MðtÞ =

0 0 0 0:2 0:8
0:6 0 0 0 0:4
0 0:7 0 0 0:3
0 0 0 0 0
0:9 0 0 0:1 0

2
66664

3
77775 (8.2)

The edge labels are the local scores issued between all (source, destination) pairs. The frac-
tion value inside each node in Figure 8.23 is the global reputation score of that peer at time t.
This global score is resulted from aggregating all local scores issued by all peers toward the peer
being evaluated. However, all local scores must be weighted by their own global reputations.
In another words, the global reputation is the weighted sum of all local scores. For clarity, all
the global reputation scores are normalized so that their sum is always a “1”. For example, the
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A directed graph showing the trust relationship among five peers in a P2P network.

8.4 Trust, Reputation, and Security Management 515



global scores of the five peers are represented by a reputation vector of five components which
add up to 1.

VðtÞ = fv1ðtÞ, v2ðtÞ, v3ðtÞ, v4ðtÞ, v5ðtÞg = f0:32, 0:001, 0:009, 0:04, 0:63g (8.3)

8.4.1.3 Reputation Systems
A reputation system calculates the global reputation score of a peer by considering the opinions
(i.e., feedback) from all other peers that have interacted with this peer. After a peer completes a
transaction(e.g., downloading a music file), the peer will provide his feedback for other peers to use
in future transactions. By making the reputation scores publicly available, peers are able to make
informed decisions about which peers to trust.

The eBay reputation system is a simple and successful one, since it has a centralized authority to
manage all user feedback scores. However, in an open and decentralized P2P system, peers will not
have any centralized authority to maintain and distribute reputation information. Instead, most exist-
ing P2P reputation systems calculate global reputation scores by aggregating peer feedback in a
fully distributed manner. Building an efficient P2P reputation system is a challenging task due to
several intrinsic requirements of large-scale P2P systems.

To measure peer reputations, one can set up an evaluation system. After each transaction, the
two participant parties evaluate each other by giving an honest score. This is like what we do in
online auction systems such as eBay. Each peer’s reputation can be retrieved from the voting sys-
tem. However, not every peer is trustworthy. The scores from malicious peers are useless, while the
scores from more trustworthy peers are more useful. This advises us to assign different weights to
votes based on the voting peers’ reputations. It should be noted that a peer’s reputation may be dif-
ferent from other peers. The reputations can be expressed with a reputation matrix.

8.4.1.4 Global Reputation Aggregation
As global reputation scores are aggregated from local feedback, the distribution property of feed-
back plays a significant role in the design of an efficient reputation system. Surprisingly, most pre-
vious work either ignored the distribution of peer feedback or assumed an arbitrary random
distribution, which could be misleading. To achieve global reputation scores, each peer calculates
its own parts and all peers cooperatively compute a global matrix. For example, at time t + 1, the
global reputation score of node N5 is computed as follows:

v5ðt+ 1Þ = m15ðtÞ× v1ðtÞ+m25ðtÞ× v2ðtÞ+m35ðtÞ× v3ðtÞ
= 0:8× 0:32+ 0:4× 0:001+ 0:3× 0:009 = 0:2573

(8.4)

Similarly, the remaining global scores for the other four peers are computed to yield the following
updated global reputation vector:

Vðt+ 1Þ = fv1ðt+ 1Þ, v2ðt+ 1Þ, v3ðt+ 1Þ, v4ðt+ 1Þ, v5ðt+ 1Þg
= f0:5673, 0:0063, 0, 0:1370, 0:2573g

(8.5)

This vector is unnormalized. Dividing each peer score by the total sum of all component scores,
one can obtain the following normalized global reputation vector. Note that the sum of the five
peer reputation scores should be 1 in the normalized vector.
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Vðt+ 1Þ = fv1ðt+ 1Þ, v2ðt+ 1Þ, v3ðt+ 1Þ, v4ðt+ 1Þ, v5ðt+ 1Þg
= f0:5862, 0:0065, 0, 0:1416, 0:2657g (8.6)

8.4.1.5 Design Objectives of Reputation Systems
The following six key issues should be addressed in the design of a cost-effective P2P reputation
system:

• High accuracy To help distinguish reputable peers from malicious ones, the system should
calculate the reputation scores as close to their real trustworthiness as possible.

• Fast convergence speed The reputation of a peer varies over time. The reputation aggregation
should converge fast enough to reflect the true changes of peer behaviors.

• Low overhead The system should only consume limited computation and bandwidth resources
for peer reputation monitoring and evaluation.

• Adaptive to peer dynamics A peer joins and leaves an open P2P system dynamically. The
system should adapt to these peer dynamics instead of relying on predetermined peers.

• Robust to malicious peers The system should be robust to various attacks by both independent
and collective malicious peers.

• Scalability The system should be able to scale to serve a large number of peers in terms of
accuracy, convergence speed, and extra overhead per peer.

8.4.1.6 Three Representative Reputation Systems
The PeerTrust system [53] was developed at Georgia Institute of Technology. The system computes
the reputation score of a given peer as the average feedback weighted by the scores of the origina-
tors. Five trust attributes were suggested in this system. The EigenTrust system was developed at
Stanford University [20], which aggregates reputation information using the eigenvector of the trust
matrix over the peers. EigenTrust relies on a good choice of some pretrusted peers. This assumption
may be overly optimistic in a distributed computing environment because the pretrusted peers may
change with time. The PowerTrust reputation system [57] was developed at the University of South-
ern California. PowerTrust will be covered in Section 8.4.3. Table 8.5 compares these three systems
in four technical aspects.

8.4.2 Trust Overlay and DHT Implementation
This section introduces a trust overlay concept for fast aggregation of trust information in global
reputation calculations. Then a DHT implementation of the reputation system is described.

8.4.2.1 Trust Overlay Network (TON)
This is a virtual network on top of a P2P system. A TON is represented by a directed graph in
Figure 8.24. The graph nodes correspond to the peers. The directed edges or links are labeled with
the feedback scores between two interacting peers. The feedback score is issued by a peer (source
of the link) for the service provided by the interacting peer (destination of the link). For example,
node N5 after downloading music files from nodes N2 and N7 issues the feedback scores, 0.7 and
0.3, to the two provider nodes, respectively. If a node gets more than one service from the same
provider, this consumer generates a newly updated score after each transaction.
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Our system can incorporate different methods to generate feedback scores, such as Bayesian
learning. In a TON, every node keeps feedback scores for its neighbors. Because every peer has its
own criteria to generate feedback scores, the feedback will be normalized to local trust scores.
Each node Ni is rated with a global reputation score vi. This global reputation is aggregated from
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A trust overlay network for a P2P trust managment, where the edge is weighted by the peer feedback score
for the service provided. The global reputation of a peer (node) is calculated by the weighted sum of all local
trust scores received on the incoming edges.

(Courtesy of R. Zhou and K. Hwang [57] )

Table 8.5 Comparison of Three P2P Reputation Systems

Reputation
System

Local Trust
Evaluation

Global
Reputation
Aggregation

Implementation
Overhead

Scalability
and
Reliability

EigenTrust at
Stanford
University [20]

Uses sum of
positive and
negative
ratings

Uses pretrust
peers to compute
global scores from
trust matrix

Moderate overhead
experienced in assigning
score managers and in
messaging for global score
aggregation

Limited
scalability and
reliability if
pretrust peers
leave

PeerTrust at
Georgia Tech
[53]

Normalized
rating on each
transaction

Peer calculates
trust score over
five factors in a
distributed manner

Moderate overhead
experienced in global score
calculation over five factors
and on the establishment of
the trust manager

Partially
scalable and
resistant to
malicious
peers

PowerTrust
at USC [57]

Uses Bayesian
method to
generate local
trust scores

Distributed ranking
of power nodes
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dynamic peer
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local trust scores weighted by the global reputations of all in-degree neighbors. For example, the
global reputation score of N2 could be calculated by weighting three incoming local scores (0.8,
0.7, 0.6) from N1, N5, and N10,000, respectively: v2 = 0.8 v1 + 0.7 v5 + 0.6 v10000. Given v1 = 0.04,
v5 = 0.0007, and v10000 = 0.000005, then v2 = 0.8 × 0.04 + 0.7 × 0.0007 + 0.6 × 0.0000005 = 0.032 +
0.00049 + 0.00003 = 0.032493. It is interesting to note that node N1 has a much higher reputation
score v1, compared with v5 and v10000 in this example. Thus, node N1 carries more weight in the
global reputation aggregation process.

8.4.2.2 DHT Implementation
Basically, distributed reputation ranking requires two different hash overlays. One assigns peers to
their score managers and the other ranks the peers by their global reputation scores. Figure 8.25
presents a five-node system built on top of a chord with a 4-bit circular hash space. Node N15 is
the score manager of node N2 whose global reputation is 0.2. Node N15 hashes the reputation value
0.2 using a simple LPH function H(x) = 32x. The resultant hash value is 6.4. Node N15 sends out
Sort_Request{ key = 6.4, (0.2, N2, N15) } message, which is routed to node N8. Node N8 stores the
triplet (0.2, N2, N15), since it is the successor node of hash value 6.4.
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<0.02, N12, N8>

<0.10, N6, N2>
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FIGURE 8.25

Distributed reputation ranking using the locality-preserving hash function over a DHT-based P2P system.
(Courtesy of R. Zhou and K. Hwang [57] )
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Node N2 is the successor node of the maximum hash value 15, so node N2 initiates the process
to find m power nodes. Node N2 is responsible for the hash values in the union of two ranges [15,
16] ∪ [0, 2]. Since it has no corresponding triplets within the range [15, 16], it stores zero triples
with the highest reputation values, that is, k = 0. Therefore, it sends a Top_m_Request(m= 1, k = 0)
message to its predecessor node N15, which finds its stored triplet with value 0.4 being the highest
one. So, node N8 is the most reputable node in this example system. Multiple LPH functions could
be used to prevent cheating by the malicious peers.

8.4.3 PowerTrust: A Scalable Reputation System
Figure 8.26 shows the major building blocks in a PowerTrust system. First, a TON is built on top of
all peers (nodes) in a P2P system. All peers evaluate one another, whenever a transaction takes place
between a peer pair. Therefore, all peers send local trust scores to one another frequently. These
scores are considered the raw data input to the PowerTrust system. The system aggregates the local
scores to calculate the global reputation score of each participating peer. All global scores form a
reputation vector, V = (v1, v2, v3, …, vn), which is the output of the PowerTrust system. All global
scores are normalized with Σi vi = 1, where i = 1, 2, …, n and n is the TON network size.

The system is built with five functional modules, as shown in Figure 8.26. The regular random
walk module supports initial reputation aggregation. The look-ahead random walk (LRW) module
is used to update the reputation score periodically. To this end, the LRW also works with a distrib-
uted ranking module to identify the power nodes. The system leverages the power nodes to update
the global scores’ reputation. PowerTrust achieves high aggregation speed and accuracy, robustness
to resist malicious peers, and high scalability to support large-scale P2P applications.

8.4.3.1 Reputation Convergence Overhead
The convergence overhead is measured as the number of iterations before the global reputation con-
vergence. Convergence means the distance between two consecutive reputation vectors is smaller

Reputation updating

Regular random walk

Initial reputation
aggregation

Look-ahead random walk

Local trust scores

Trust overlay network

Distributed ranking module

Power
nodes

Global reputation scores V

ν3 ... ... ... ... νnν2ν1

FIGURE 8.26

Functional modules in the PowerTrust system for trust score collection and global reputation aggregation.
(Courtesy of Zhou and Hwang [57] )
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than the threshold. The EigenTrust approach relies on a few pretrusted nodes to compute the global
reputations. They assumed that some peers are known to be trustworthy, essentially among the very
first few peers joining the system.

For fairness, the same number of power nodes equal to that of the pretrusted nodes used in
EigenTrust is chosen. Figure 8.27 shows the convergence overheads for these two reputation sys-
tems. Here, the power nodes in PowerTrust and the pretrusted node in EigenTrust are allowed to
leave freely. A sharp drop in iteration count in using PowerTrust to a flat small number less than
50 is observed, when α increases from 0.15 to 1, while EigenTrust still requires more than
100 iterations to converge. The EigenTrust system overhead can reach as high as 400 iterations as
the system increases to 4,000 nodes.

The EigenTrust system converges very slowly. The system cannot guarantee its convergence,
when the pretrusted nodes are allowed to leave the system freely. In the PowerTrust system, the
power nodes are reelected after each aggregation round. Based on the distributed ranking mechan-
ism, the score managers of the departing power nodes notify the system to replace them in a timely
manner with other, more qualified power nodes. The decrease in computation overhead means a sig-
nificant traffic reduction on the network, and less work for all peers involved. The low overhead in
using the PowerTrust system makes it attractive for performing highly scalable P2P applications.

8.4.3.2 Query Success Rate
The PowerTrust system was applied in simulated P2P file-sharing experiments. There are more than
100,000 files in the simulated P2P systems. The number of copies of each file in the system is
determined by a content Power-law distribution with β = 1.2. Each peer is assigned with a number

0.1 0.2 0.3 0.4 0.5 0.6

Greedy factor (α)

0.7 0.8 0.9 1.00.0
0

100

200

300

C
on

ve
rg

en
ce

 o
ve

rh
ea

d

400

500

PowerTrust
EigenTrust

FIGURE 8.27

Convergence overhead of two reputation systems in a P2P network.
(Courtesy of Zhou and Hwang [57] )

8.4 Trust, Reputation, and Security Management 521



of files based on Sarioiu distribution. At each time step, a query is randomly generated at a peer
and completely executed before the next query/time step. The query distribution determines which
file each query searches for. The queries are ranked according to their popularity. A Power-law dis-
tribution with β = 0.63 for queries ranked 1 to 250 and β = 1.24 for the remaining lower ranking
queries is used. This distribution models the query popularity in existing P2P systems. When a
query for a file is issued, the file owner with the highest global reputation is selected to download
the desired file.

The query success rate is measured by the percentage of successful queries over the total number
of queries issued. Every node may respond to a query with unauthentic files. For simplicity, this beha-
vior is modeled as inversely proportional to the node’s global reputation. Both cases of allowing or
disallowing power nodes or pretrusted nodes to leave the system are considered. The case of a
no-trust system, meaning no trust management in the P2P system, is also evaluated. The no-trust sys-
tem randomly selects a node to download the file without considering reputation. Figure 8.28 shows
the results without the departure of power nodes or pretrusted nodes.

There are 1,000 queries issued after each round of global reputation aggregation. The query suc-
cess rate of PowerTrust is maintained at 90 percent after just one round of reputation aggregation.
The query success rate of EigenTrust drops from 85 percent to 50 percent after several aggregation
rounds. This is because the pretrusted nodes may leave the system randomly. The EigenTrust query
success rate drops to a 50 percent low, equal to that of a no-trust system, after 17 rounds of reputa-
tion aggregation.

8.4.4 Securing Overlays to Prevent DDoS Attacks
The security of a P2P network may be in doubt if the peer nodes behave maliciously to attack other
innocent peer machines. The attackers could be hidden in the P2P group. They can view or modify
packet routing or can collude with other peers to stage the attacks or to steal the contents. What can
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Query success rate in distributed file sharing using two reputation systems to compensate for the free
departure of power nodes or pretrusted peers.

(Courtesy of Zhou and Hwang [57] )
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be done to hinder the attacks is crucial to achieve harmonious operation in a P2P network. Four
classes of network attacks often occur in a P2P network:

1. A P2P network could enter churn condition, if large number of peers join or leave the network
rapidly or randomly. Churn could create inconsistent behavior or resources deadlocks.

2. Distributed denial of service (DDoS) attacks are caused by flooding attacks on a target node.
3. Routing attackers attempt to re-route messages in order to steal contents or to stage DDoS attacks.
4. Storage/retrieval attacks are caused by attackers to prevent the delivery of the requested data.

To become resilient to network churns, one can force nodes to sign all messages so that inconsis-
tency can easily detected. To cope with DDoS attacks, one can replicate the content and spread over
the network. The SOS example below presents a more sophisticated solution. For identity spoofing
attacks caused by a peer node to use other node’s identity or to deliver bogus contents. One solution
is to insist that all peers must have certificates signed by a trusted authority. Another solution to pre-
vent proofing is tying the identity with protected IP address or send query to verify the address.

To prevent routing attacks, one solution is to use a converging policy iteratively so that each
hop moves closer to the destination in the ID space. Another solution is to provide multiple paths
to re-route messages around the attackers. Onion routing is also used to hide the identify of the ori-
ginator of the final destination. This done by encryption of the incoming message and the next hop
information recursively using public keys. This way, any node only knows who was the immediate
sender and who is the next receiver. To combat storage/retrieval attacks, one can replicate the data
object to enhance availability.

Example 8.14 SOS Scheme to Prevent DDoS Attacks [21]

SOS is an architecture for Secure Overlay Services, which was proposed by Keromyts, et al. [21] in 2002.
The main goal of SOS to allow a majority of legitimate or authenticated users to communicate with a
secure checkpoint node, where DDoS attacks can be stopped to be forwarded to the final target machine.
This is made possible by making the target address difficult to replicate or legitimate users may be mobile
using changing IP addresses. Good examples of SOS include FBI, police or bank officers, who always
check with their central database.

A SOS system will protect legitimate users and innocent target machines from DDoS attacks. At the
same time, the attackers are blocked or caught. To this end, we need to screen good users into a pre-
approved class. Attackers should not allowed to attack a bound number of distributed end systems. The
construction of an SOS system requires to perform filtering, to hide the proxy as secret servlets, to build
reliable overlays with hidden proxies, and to advertise the trustworthy access points for users to join the
P2P system. The SOS can be also assisted by using the Chord with SOAP servers or adding redundancy
in SOAP servers. More details on the effectiveness of SOS preventing DDoS attacks can be found in [21].

8.5 P2P FILE SHARING AND COPYRIGHT PROTECTION
P2P technology enables files to be shared among peers in a distributed way freely. The client first
performs search operations to locate peers holding the files the client wants. The client downloads
the files directly from these provider nodes. The ultimate goal is to deliver content to all requesters
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as fast as possible. Caching of P2P content is helpful to improve content downloading speed and
traffic locality. This section reviews fast file search methods. Replicas and consistency techniques
to enhance delivery speed and success rate are discussed as well.

8.5.1 Fast Search, Replica, and Consistency
For P2P file-sharing applications, search algorithms play the most import role. A search algorithm
determines which nodes hold the specified files. The performance of a search algorithm is evaluated
by two metrics: query path length and message overhead. Query path length is measured by the
average number of nodes a query message traverses before reaching the destination, while message
overhead is measured by the average number of query messages forwarded for one search
operation.

Search algorithms for file-sharing applications based on structured P2P overlays and unstruc-
tured P2P overlays are different. In a structured P2P overlay application, keys of data objects and
nodes are mapped to the same identifier space and the data object information is stored on the node
that holds the identifier zone within which the key is mapped. Search algorithms are like routing
algorithms in overlay networks. In an unstructured P2P overlay application, however, each node
often only holds the information of the data objects that it shares. The query message has to tra-
verse a lot of nodes until it reaches the destination. In the following paragraphs, we discuss algo-
rithms for structured and unstructured P2P overlay applications.

In structured P2P overlay networks, each node is responsible for a portion of the identifier
space. For example, in Chord, a node is responsible for the range from its predecessor to the node
on the ring identifier space. The information of the data objects whose keys are mapped to the iden-
tifier range held by node x is stored on x. Node x is called the successor of the key. Searching a key
is equal to routing the query message to the successor of the key. Hence, the performance of search
algorithms is similar to that of routing algorithms, which means a key is always located in O(log n)
hops with the overhead of O(log n) messages, where n is the number of nodes in the application.

Search in applications based on unstructured P2P overlay networks is more complicated. Basi-
cally, the search algorithms can be classified as blind search and informed search. Blind search
algorithms are for applications where nodes do not maintain the metadata of files shared by others,
while informed search algorithms are for applications where nodes store some information of the
files shared by others to facilitate the search. Blind search algorithms are often referred to as flood-
ing algorithms.

In flooding algorithms, when a query message is first received, a node forwards it to k randomly
selected neighbors, until the TTL of the message shrinks to 0. The query messages are forwarded
round by round like a wave spreading from the source. Flooding algorithms inevitably bring consid-
erable message overhead. A simple method to reduce overhead is to limit the TTLs of query mes-
sages. However, this would increase the probability that objects far away from the query nodes
cannot be located. Various algorithms have been proposed to reduce message overhead, such as
expanding ring and random walk.

In expanding ring algorithms, a query node is associated with a schedule ft1,t2, :::, tig: Initially,
the TTL of a query message is set to t1 by the query node. If the query cannot be satisfied, the
TTL grows to t2. Eventually, the TTL grows to the maximum value ti. The successive retries facili-
tate overhead reduction at the cost of a slight increase in query path length.
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Random walk algorithms reduce overhead from another aspect. A query node deploys k
independently random walkers. Each walker carries a query message and walks on the overlay graph,
until the desired object is located. Random walk algorithms suffer from the TTL selection problem
just like flooding algorithms do. However, in random walk algorithms, each round only increases the
number of visited nodes by k. Therefore, it is reasonable for walkers to periodically check with the
query node to determine whether to continue or stop. Random walk algorithms generally outperform
expanding ring algorithms and save on message overhead by two orders of magnitude at a cost of a
slightly increase in query path length compared to flooding algorithms.

The principles of scalable blind search algorithms for unstructured P2P overlays are summarized
as follows. First, the algorithms should adopt adaptive termination. Simply limiting the TTL values
does not work well as that would adversely affect search scope. Second, the number of visited
nodes should grow slowly with the increase in search round. This is because only a small portion
of the nodes are required to be visited. If the number of visited nodes grows quickly (e.g., exponen-
tially in flooding algorithms), most of the messages generated at the last several hops are duplicated.

The message overhead incurred by blind search algorithms can be greatly reduced if nodes keep
some information regarding the files shared by others. Informed search algorithms are designed for
this purpose. Each node keeps some information regarding the files shared by others and the infor-
mation is used to guide the forwarding of query messages. The idle case is that each node keeps all
the files shared by others, and thus the query path is only one hop long. However, this is not feasi-
ble because it requires not only unaffordable storage, but also lots of synchronize overhead among
peers.

Search performance can also be enhanced through overlay topology adaptation. In Gnutella, one
can take heterogeneity of node capacity into account by assigning more loads on high-capacity
nodes. High-capacity nodes adaptively build more overlay links and keep the file indices of the
nodes one hop away. Since random walk is biased toward the high-degree node, most queries are
forwarded to the high-capacity nodes and satisfied there. Another topology adaptation is to consider
semantic interests of nodes. Semantically relevant nodes are organized into the same semantic clus-
ters on overlays. Queries are forwarded to semantically relevant clusters for answers. The idea
behind this is that if nodes are semantically relevant, it is likely that they are relevant to the same
queries. BitTorrent is the most popular P2P content distribution application. It uses swarming con-
tent distribution.

Example 8.15 BitTorrent File-Sharing Network

BitTorrent is a P2P content distribution protocol that is widely used in the current Internet. It is reported by
Ipoque that BitTorrent content distribution systems account for 27 percent to 55 percent of Internet traffic.
A BitTorrent system leverages the upload bandwidth of participant peers to achieve high system capacity.
The nodes downloading the same file constitute a torrent. There is no communication between different
torrents. A typical BitTorrent system consists of four components as shown in Figure 8.29.

Seeds are the nodes that have already downloaded the whole file. There is at least one initial seed in
the system at startup. A node that has not gotten the whole file is called a downloader. The tracker
tracks the nodes’ information, including the address and download process information. The tracker also
knows the seeds in the system. The web server hosts the torrent file, which stores the metadata of the file
to be distributed and the tracker’s information.
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The file is divided into pieces of equal size, ranging from 32 KB to 4 MB, with a typical size of 256 KB.
The publisher of the file creates a hash for each piece using the SHA-1 hash function. The hash for each
piece is used to verify the integrity of the piece during downloading and is stored in the torrent file. A file
piece may be further divided into blocks. In this case, each piece is a trading unit, while a block is a
request unit. Only after all the blocks of a piece have been downloaded can this piece be publicly shared
with others.

A new node first gets the torrent file from a web site. By parsing the file, it gets the tracker’s address
and asks the tracker for peers’ information. Usually, the tracker responds with a peer list containing 50
randomly selected peers. The number of TCP connections initialized by a peer is limited to 35 and the
total number of connections of a peer is limited to 55. If ever a client fails to maintain at least 20 connec-
tions initialized by it, it recontacts the tracker to obtain additional peers. To update the tracker’s global
view of the system, active nodes periodically (every 30 minutes) report their states to the tracker or at the
time of joining or departure.

Each peer has a bit-vector indicating the pieces’ availabilities on it, one bit for each piece. The bit-
vectors are exchanged between neighbors. If peer y ’s neighbor x finds that y has a piece that it does not
have, x sends an “interest” message to y to request that piece. The decision by y of whether and when to
send the requested piece to x is based on an incentive strategy called Tit-for-Tat (TFT). All connections
are choked by default. Each peer periodically (every 10 seconds) updates its download rates from all of its
neighbors, and chooses four neighbors.

The TFT is an incentive strategy to combat against free riders, the peers that contribute nothing or very
limited upload bandwidth. A peer also uses an optimistic unchoking strategy to unchoke a uniformly
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The BitTorrent system architecture.
(Courtesy of “BitTorrent Protocol Specification”; www.bittorrent.org/protocol.html, 2006 )

526 CHAPTER 8 Peer-to-Peer Computing and Overlay Networks

http://www.bittorrent.org/protocol.html


chosen peer at random every 30 seconds, which enables the nodes that have no or very limited file pieces
to start up. When unchoked by a neighboring peer, a node selects the file piece that is the least replicated
among its neighbors. This selection is called rarest first (RF) (locally) piece selection. However, for a new
peer that has no file piece, it randomly chooses a piece to download. The RF piece selection scheme is
used to enable random distribution of file pieces on overlay networks, which facilitates the diversities of
pieces on neighboring peers.

Figure 8.30 shows the hierarchical structure of multiple swarms built up in a BitTorrent network.
A swarm is a collection of peer machines that form a virtual cluster under the coordination of special track-
ers. Interswarm traffic is possible if the local swarm cannot satisfy a user request. Multiple trackers
exchange updated directory information to the global view consistently. The idea is quite similar to that of
the KaZaA architecture shown in Figure 8.11. The purpose is to upgrade management efficiency and
shorten search time for users.

By convention, the name of a torrent file has the suffix (.torrent). Torrent files have an “announce” sec-
tion, which specifies the URL of the tracker, and an “info” section, containing the suggested names for the
files, their lengths, the piece length used, and an SHA-1 hash code for each piece, all of which are used

Swarm

Swarm

Swarm

Swarm
Tracker

Tracker

FIGURE 8.30

An operational view of a BitTorrent system built with multiple swarms of resource nodes under the
coordination of special trackers.
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by clients to verify the integrity of the data they receive. The tracker maintains lists of the clients currently
participating in the torrent. Alternatively, in a decentralized tracking which works without a tracker, every
peer acts as a tracker. Azureus was the first BitTorrent client to implement such a system through the
DHT. An alternative and incompatible DHT system, known as Mainline DHT, was later developed and
adopted by BitTorrent, µTorrent, and others.

8.5.1.1 Replica and Consistency
Replication is critical to improving search performance in P2P file-sharing applications. The number
of replicas for an object is affected by the popularity of that object. Intuitively, more replicas should
be created for highly popular objects. The number of nodes that hold the desired objects has a direct
impact on search performance. This is quite intuitive in that as a greater number of desired objects
scatter over the overlays, it becomes easier to find them.

A question related to replication concerns maintaining consistency of replicas. If the data object
is modified or updated by a replica node (i.e., the node maintains a replica of the object), the
updated content should be propagated to all the other replica nodes. Consistency maintenance
schemes provide support for applications dealing with frequently updated contents. Two key issues
of consistency maintenance concern how to track the replicas of an object and how to propagate the
updated contents to the replica nodes. The centralized scheme dedicates one node (often the root
node of the object) to keep the information of all the replica nodes and relies on this node to for-
ward the updated content. However, it lacks scalability.

In the locality-aware and distributed consistency maintenance scheme [25], the nodes that store the
replicas of an object constitute a replica group. The centralized scheme is sufficient for the replica
group with fewer replica nodes. Thus, our focus is on larger replica groups; for example, replica
groups of popular objects. An auxiliary hierarchical overlay network is established for each
replica group: The upper layer is DHT-based and consists of powerful and stable replica nodes of the
key, and the ordinary replica nodes at the second layer attach to physically close upper-layer nodes.
Figure 8.31 shows the structure, where the upper layer is based on a Chord ring structure.

When an updated replica emerges on a node, the corresponding upper-layer node dynamically
initializes a d-ary source-specific tree on top of the upper layer by continuously partitioning the DHT
identifier space. Suppose upper-layer replica node x receives an update request from one of the ordin-
ary replica nodes that attaches to it. Initially, node x holds the whole identifier space represented by
the Chord ring structure. It divides the identifier space into d equal parts. The first node along the
clockwise direction within each part is selected as the representative node of that part. All the repre-
sentative nodes constitute the root node x’s child node set. Each identifier part is further partitioned
into d subparts of equal size, and so on, until there is only one replica node in the identifier part.

The updated content is propagated along the tree structure in a top-down fashion and the upper-
layer replica node takes charge of forwarding the updated content to the ordinary replica nodes that
attach to it. Since the upper-layer node and the ordinary replica nodes that attach to it are physically
close, the updated contents are transferred quickly and network bandwidth consumption is greatly
reduced. The tree structure is destroyed from bottom to top after the update operation completes, in
order to save on maintenance overhead. Now, let’s briefly analyze the time (measured by logical
hops on the overlays) and the control overhead required by an update operation.
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8.5.2 P2P Content Delivery Networks
This section applies P2P technology to digital content networking and distribution. First, three gen-
erations of content delivery networks (CDNs) are reviewed. Then we discuss how P2P technology
can enhance the QoS of CDNs.

8.5.2.1 Three Generations of CDNs
Table 8.6 compares three generations of CDNs in the past 30 years. The early days of online distri-
bution systems follow the client/server architecture using FTP or HTTP services. This generation is
limited by the processing power of a single server. For distributing small files, this approach is still
acceptable. Good examples include the Apache, GetRight, and CuteFTP services. The second gen-
eration is marked by the use of multiple surrogate servers and large-scale distribution networks
mainly for video streaming and software distribution.

The Akamai CDN is a good example of a large-scale CDN as illustrated in Example 8.14. Finally,
the P2P file-sharing networks mark the appearance of the third generation of CDNs. BitTorrent and
eMule are good examples. P2P networks definitely are more cost-effective than the first two genera-
tions. However, severe abuses on copyright violations in P2P file-sharing systems have hindered the
use of open P2P networks for commercial content distribution. We discuss the online piracy problem in
the next two subsections. Selective content poisoning poses a possible solution to this problem.

Example 8.16 A Global Content Distribution Network

In 2004, more than 3,000 companies used CDNs. They spent more than $20 million monthly. CDN provi-
ders have doubled their revenue almost every year since then. In 2005, worldwide CDN revenue grew to
$450 million in the delivery of news, film, sports, music, and video content. Figure 8.32 shows the
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Auxiliary structure for a replica group.
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conceptual architecture of a global-scale CDN, modeled after the Akamai Technologies system. By 2006,
the Akamai CDN provided 80 percent of overall content delivery services. At that time, more than 12,000
surrogate servers were used in various parts of the world in more than 1,000 networks in 62 countries.

This number is now much greater. Surrogate servers are used as cache centers for distributing digital
content more cost-effectively in terms of transmission, storage, access speed, and fault tolerance require-
ments. Each surrogate center is responsible for distributing the requested content to all end users in each
country or region. The CDN content distribution center coordinates the traffic among the servers. For copy-
right protection reasons, open P2P technology is not used here for commercial content distribution.
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FIGURE 8.32

The concept of a global CDN using surrogate servers in major user regions or countries.
(Courtesy of Pallis and Vakali [37] )

Table 8.6 Three Generations of Content Distribution Networks

System
Generations

Network
Architecture

Download
Bandwidth

Content
Applications

Example Systems and
Web Sites

First generation:
client/server
system

Clients access
server using
FTP and HTTP

Limited by
single-server
bandwidth

Small files with
limited
downloads

Apache (www.apache
.com/) GetRight (www
.getright.com/) CuteFTP
(www.cuteftp.com/)

Second
generation:
CDNs

Clients connect
to multiple
servers

Load balancing
among servers

Video
streaming, virus
signatures

Akamai (www.akamai
.com/) SyncCast (www
.synccast.com/)

Third generation:
P2P file-sharing
system

P2P overlay
network

Low; peers are
not secured
and are
unreliable

Large files,
speed is not
critical

BitTorrent (www
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Courtesy of Lou and Hwang [31].
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A P2P network does not require many expensive servers to deliver content. Instead, content is
distributed and shared among the peers. P2P networks feature improvements over conventional
CDNs in terms of content availability and system scalability. Electronic publishing was hindered by
the rapid growth of copyright violations. The major source of illegal P2P content distribution lies in
peer collusion to share copyrighted content with other peers or pirates.

Digital watermarking is often considered for digital copyright protection. Digital watermarking is
injected into a content file so that when a pirated copy is discovered, authorities can find the origin
of the piracy via a unique watermark in each copy. In a P2P network, all peers are sharing exactly
the same file (if it is not poisoned), which effectively defeats the purpose of watermarking. Thus,
watermarking is not a suitable technology for P2P file sharing. By subdividing a large file into
smaller chunks, P2P content delivery allows a peer to download multiple chunks from different
sources. File chunking increases availability and decreases download time. Table 8.7 summarizes
three major P2P CDN families.

P2P networks in the same family have some common features. They are variants or descendants
of their predecessors: BitTorrent, Gnutella, and eMule, respectively. These families are distinguished
primarily by the file-chunking or hashing protocols applied. At the time of this writing, none of
these P2P networks has been built with satisfactory support for copyright protection. The BitTorrent
family applies the strongest hashing at the individual piece or chunklevel, which is most resistant to
poisoning. The Gnutella family applies file-level hashing, which is easily poisoned. The eMule
family applies part-level hashing with fixed chunking.

Our analytical and experimental results show that the eMule family demonstrates a moderate level of
resistance to content poisoning. The ability to detect and identify poisoned chunks is different in the
three P2P network families. The BitTorrent family keeps clean chunks and discards poisoned chunks.

Table 8.7 File Chunking and Hashing Schemes in P2P Content Networks

P2P Networks BitTorrent Family Gnutella Family eMule Family

Chunking Scheme Divides files into fix-
sized chunks (256 KB),
called pieces

Peers negotiate the chunk
size at runtime, 64 KB/chunk

Divides into 9,500 KB
parts, each has 53
(180 KB) chunks

Hash Distribution SHA hashing at piece
level, embedded in
index file

SHA hashing applied to
entire file to generate a
unique file ID, no chunk-level
hashing

MD-4 hashing at part
level, peers exchange
hash set to detect
corrupted contents

Poison Resistance Poison detected at
piece level, each is
handled independently

Poison detected only after
downloading the entire file,
heavy overhead if poisoned

Poison detected at part
level, works if part hash
set is not poisoned

Download Policy Keeps clean and
discards poisoned
pieces, repeats
download until all
chunks are clean

Repeats downloading entire
file until all chunks are clean,
a time-consuming policy

Keeps clean and
discards poisoned
parts, downloads until
all parts are clean

Example Networks BitTorrent, Snark,
BitComet, BNBT,
BitTyrant, Azureus,
JTorrent, etc.

Gnutella, KaZaA, LimeWire,
Phex, Freenet, BareShare,
Swapper, Ares, etc.

eMule, aMule,
Shareaza, iMule,
Morpheus, eDonkey,
FastTrack, etc.
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The Gnutella family must download the entire file before any poisoned chunks can be detected. Because
of part-level hashing, the eMule family will either keep or discard the entire part of 53 chunks.

8.5.2.2 Content Delivery Methods
P2P content distribution applications take advantage of the abundant computing resources at the
edge networks to distribute content. Nodes which are interested in the same content form a P2P
overlay network. The data content is sent out from sources, stored, and forwarded among peers on
the overlay networks. Basically, there are three approaches to distributing data content: flooding-
based, tree-based, and swarm-based. In flooding-based approaches, data content is flooded on the
overlay networks. There are too many duplicated deliveries to be tolerated.

The tree-based approach follows a tree structure and delivers the content along the tree. Since peer
nodes are likely to join, leave, and even fail at any time at will, it is a great challenge to maintain the
tree structure. One can also build multiple trees. Data content is partitioned into several chunks. Each
chunk is delivered along one tree. A node resides at all the trees to get the data objects. Multiple tree-
based approaches enable fast content delivery and improve the robustness of data distribution. How-
ever, vulnerability to node churn is still the most critical concern for this kind of approach.

Swarm-based approaches are built on top of mesh overlay networks. They are also called data-
driven approaches. Data content is pulled by the participants, rather than distributed actively by the
data sources. Data content is also partitioned into small chunks. Each node keeps two “windows”
indicating what it has and which chunk it requires, respectively. Nodes periodically exchange their
“windows” with their neighbors and get the missing chunks actively.

Although swarming content distribution requires more time than the tree-based approach, it is
widely used and deployed in current applications (e.g., PPlive, BT, etc.) because of its scalability
and ease of implementation, among other features. The order of the chunks that a node gets is ran-
dom, that is, no specified schedule is imposed. This is reasonable for applications that do not care
about the arrival order of the chunks (e.g., BitTorrent). However, other applications require control
of orders (e.g., the live streaming applications). In these applications, a chunk must appear on a
node before its playback deadline, or it is useless. Basically, the rule for a node is to get the chunks
whose deadlines are approaching and the chunks which are rarely replicated among its neighbors.

Recently, P2P has become popular in the context of dynamic information dissemination. Nodes
that are interesting in the same event are organized in a P2P overlay network. Data items emerge at
nodes dynamically, which means the data sources are no longer fixed. Data items are replicated and
forwarded among peers. The delivery algorithms in this context are required to distribute the items
appearing in any node to all the others as soon as possible with relative small network resource
consumption. Swarm-based approaches are not suitable in this scenario because they suffer from a
delay-versus-overhead trade-off. That is, to minimize data delivery delay, the intervals of “window”
information exchange should be small.

However, this would increase control overhead. On the other hand, increasing the intervals
would prolong the delivery delay. Building one tree for each potential data source is also not a
good idea due to the considerable maintenance overhead involved. Building one undirected tree
structure for all the sources is optimal for controlling overhead. However, if the data source is a
leaf node, it would take as many as 2h hops to transmit the data item to all members, where h is
the height of tree. Another concern is how to maintain the tree structure under node churn.
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8.5.3 Copyright Protection Issues and Solutions
P2P networks are cost-effective in delivering large files to massive numbers of users. Unfortunately,
today’s P2P networks are grossly abused by illegal distribution of music, games, video streams, and
popular software. These abuses have not only resulted in heavy financial loss in the media and con-
tent industries, but also hindered the legal commercial use of P2P technology. The main sources of
illegal file sharing are peers who ignore copyright laws and collude with pirates. To solve this peer
collusion problem, a copyright-compliant system for legalized P2P content delivery is proposed [31].

The goal is to stop collusive piracy within the boundary of a P2P CDN. In particular, the scheme
appeals to protecting large-scale perishable contents that diminish in value as time elapses. Traditional
CDNs use a large number of surrogate content servers over many globally distributed WANs. The
content distributors need to replicate or cache contents on many servers. The bandwidth demand and
resources needed to maintain these CDNs are very expensive. A P2P content network significantly
reduces the distribution cost, since many content servers are eliminated and open networks are used.
P2P networks improve content availability, as any peer can serve as a content provider. P2P networks
are inherently scalable, because more providers lead to faster content delivery.

Honest or legitimate clients are those that comply with the copyright law not to share contents
freely. Pirates are peers attempting to download some content file without paying or authorization.
The colluders are those paid clients who share the content with pirates. Pirates and colluders coexist
with law-abiding clients. Content poisoning is implemented by deliberate falsifying the file
requested by the pirate. The media industry backed by the Recording Industry Association of Amer-
ica (RIAA) and Motion Picture Association of America (MPAA) has applied unscreened brute force
content poisoning to deter piracy in open P2P file-sharing networks. However, their prevention
results are mixed and controversial.

The media industry fight against all P2P file-sharing services by brute force. Legitimate clients can
still enjoy the flexibility and convenience provided by an open P2P network. The scheme stops pirates
from downloading copyrighted files, even in the presence of colluding peers. A reputation scheme is
used to detect these colluders. A copyright-protected P2P network should benefit both the media indus-
try and Internet user communities [6]. Figure 8.33 suggests a copyright-protected P2P network. As ori-
ginally developed by Lou and Hwang [31], the network is built over a large number of peers. Four
types of peers coexist in the P2P network: clients (honest or legitimate peers), colluders (paid peers
sharing content with others without authorization), distribution agents (trusted peers operated by content
owners for file distribution), and pirates (unpaid clients downloading content files illegally).

To join the system, clients submit requests to a transaction server that handles purchasing and
billing matters. A private key generator (PKG) is installed to generate private keys with identity-
based signatures (IBSes) for securing communication among the peers. The PKG’s role is similar to
a certificate authority (CA) in PKI services. The difference lies in the fact that the CA generates the
public/private key pairs, while PKG only generates the private key.

The transaction server and PKG are only used initially when peers are joining the P2P network.
With IBS, the communication between peers does not require an explicit public key, because the
identity of each party is used as the public key. In our system, file distribution and copyright
protection are completely distributed. Based on past experience, the number of peers sharing
or requesting the same file at any point of time is in the hundreds. Depending on the variation of
the swarm size, only a handful of distribution agents are needed. For example, it is sufficient to use
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10 PC-based distribution agents to handle a swarm size of 2,000 peers. These agents authorize peers
to download and prevent piracy by unpaid peers.

Paid clients, colluders, and pirates are all mixed up without visible labels. The copyright-
protection network is designed to distinguish them automatically. Each client is assigned a bootstrap
agent, selected from one of the distribution agents, as its entry point. In current P2P networks, a
peer can self-assert its username without verification. Therefore, the peer endpoint address (IP
address + port number) instead of the username is used to identify a peer. A peer is considered
fully connected if it is reachable via a listening port on its host.

Table 8.8 summarizes the key protocols and mechanisms used to construct a trusted P2P system.
In this approach, the modified file index format enables pirate detection. Peer Authorization Proto-
col (PAP) authorizes legitimate download privileges to clients. The content distributor applies con-
tent poisoning to disrupt illegal file distribution to unpaid clients. The system is enhanced by
randomized collusion detection. In the system, a content file must be downloaded fully to be useful.
Such a restraint is easily achievable by compressing and encrypting the file with a trivial password
that is known to every peer. This encryption does not offer any protection of the content, except to
package the entire file for distribution.

Private key
generator

Transaction
server

Distribution
agents

Clients

P2P network:
Pirate identification
colluder detection
content delivery

proactive poisoning

Colluders

Pirates

Purchase

K
ey

s

FIGURE 8.33

A secure P2P platform for copyright-protected content delivery.
(Courtesy of Lou and Hwang [31] )

Table 8.8 Mechanisms for Copyright Protection in P2P Networks

Mechanism Protocol Requirements

Secure file indexing File index format is modified to include token and IBS signature.
PAP Peer sends digital receipt to bootstrap agent and obtains an

authorization token. The token must be refreshed periodically.
Proactive content poisoning The token and IBS signature check all download requests and

responses, sending clean or poisoned contents, accordingly.
Random collusion prevention Distribution agents randomly recruit decoys to probe for colluders.

Collusion reports are weighted against client trust rates.
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8.5.4 Collusive Piracy Prevention in P2P Networks
Figure 8.34 illustrates the concept of proactive content poisoning. If a pirate sends a download request
to a distribution agent or a client, based on the protocol definition it will receive poisoned file chunks.
If the download request was sent to a colluder, it will receive clean file chunks. If a pirate shares the
file chunks with another pirate, it could spread the poison. Therefore, it is critical to send poisoned
chunks to pirates to deny their requests. Otherwise, the pirate still can assemble a clean copy from
those colluders who have responded with clean chunks. With poisoning, we exploit the limited poison
detection capability of P2P networks and force a pirate to discard the clean chunks downloaded with
the poisoned chunks. The rationale behind such poisoning is that if a pirate keeps downloading a cor-
rupted file, the pirates will eventually give up their attempts out of frustration.

8.5.4.1 Randomized Colluder Detection
As reported in the GossipTrust paper [58], the gossip protocol and power nodes play a crucial role
in speeding up the reputation aggregation process in a P2P network. Randomized gossiping can
reach consensus among all peers in a distributed manner. This approach exploits massive concur-
rency among millions of active nodes in a very large P2P network. Figure 8.34 shows a simplified
GossipTrust system to identify colluders.

The idea is to associate each {peer, file} pair with a collusion rate. The “0” rate means the peer
was never reported as a colluder. Otherwise, the peer is getting a collusion report of “1,” meaning it
has shared clean content with illegal download requesters. This collusion rate is accumulative in the
same way eBay collects peers’ reputation scores. Figure 8.35 illustrates the collusion detection pro-
cess. Distribution agents randomly recruit clients, called decoys, to send illegal download requests to

Client

Client

Agent

Agent

P2P network

Colluder Colluder

Pirate

Pirate

= Clean Chunks = Poisoned Chunks

FIGURE 8.34

Proactive poisoning in a trusted P2P network, where clean chunks (white) are received by legitimate clients
and poisoned chunks (shaded) by detected pirates.

(Courtesy of Lou and Hwang [31] )
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suspected peers. If an illegal request is returned with a clean file chunk, the decoy reports the collu-
sion event. Since the decoy is randomly chosen, there exists a risk that the report is not trustworthy
either by error or by cheating. Thus, a reputation system is needed to screen the peers.

A new PAP was developed to distinguish pirates from legitimate clients. Detected pirates will
receive poisoned chunks in their repeated attempts. Pirates are thus severely penalized with no chance to
download successfully in a tolerable amount of time. Based on simulation results, a 99.9 percent preven-
tion rate was found in Gnutella, KaZaA, and Freenet, while for eMule, eDonkey, Morpheus, and others
the rate is between 85 percent and 98 percent. This prevention system is shown to be less effective in
protecting poison-resilient networks such as BitTorrent and Azureus. However, the poisoning approach
opens up low-cost P2P technology for copyrighted content delivery. The advantage lies mainly in mini-
mum delivery speed, higher content availability, and copyright compliance (see Figure 8.36).

8.5.4.2 Pirate Download Time and Success Rate
To explore the limit of the trusted P2P system, various file sizes have been experimented. The pro-
tection success rate β is defined by the failure rate of pirates to download a file within a tolerance
threshold θ of time. The θ is set at 20 days for a 700 MB CD-ROM image file and 30 days for a
4.5 GB movie file.

Figure 8.36 simulates all three P2P network families with 100 paid clients, 900 colluders, and
1,000 pirates. This scenario of 90 percent colluders is very unlikely in a real-life P2P network. This
experiment is designed to approximate a worst-case scenario that all pirates adopt an aggressive
peer selection policy. The percentage of pirates that fail to download a clean copy within the time
frame θ as an approximated success rate β is measured. All β curves start with 100 percent initially.
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Distribution
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Client
(decoy)

4: Report
colluder

1: Recruit
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2: Illegal requests

3: Clean

chunks
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FIGURE 8.35

Distribution agent randomly recruiting some clients to probe suspected peers; peer collusion is reported
when a peer supplies a copyrighted file to an illegal requestor.

(Courtesy of Lou and Hwang [31] )
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Without poisoning, the average download time for a client is 1.5 hours. The Gnutella family, includ-
ing KaZaA and LimeWire, has a near-perfect success rate (higher than 99.9 percent). The eMule net-
work has an average of 85 percent after tolerating up to 20 days. These success rates are satisfactory,
because most pirates will give up trying after a few days without success. The Gnutella family including
the KaZaA and LimeWire network has the highest success rate, close to 99.9 percent, for both file sizes.

Trasaction server Client

Msg0: Content
purchasing

Msg1: Digital
receit

Msg2: Digital receipt signature

Msg3: Authentication
request

Msg4: Private key
request

Msg5: Private key
reply

Msg6: Authentication
token

Bootstrap agent PKG

FIGURE 8.36

The protected peer joining process for copyrighted P2P content delivery using seven messages to secure
communications among four parties involved.

(Courtesy of Lou and Hwang [31] )
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Protection success rate of a simulated eMule network by prolonging the delivery delay to an intolerable
magnitude.

(Courtesy of Lou and Hwang [31] )

8.5 P2P File Sharing and Copyright Protection 537



With a tolerance threshold of 20 days in Figure 8.37, the eMule network has an average
98 percent success rate for the 4.5 GB file and 85 percent success rate for the 700 MB file. In
comparison, an average pirate in a BitTorrent network takes about 100 minutes to download the
700 MB file, only marginally longer than a paid client. Hence the success rate drops rapidly
before two hours. This implies that our system does not protect BitTorrent well due to its strong
resistance to content poisoning.

8.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
A good tutorial on P2P systems was given by Ross and Rubestein [38] at IEEE Infocom 2004. The
key concepts of P2P are introduced in Wikipedia [50]. Buford, et al. have treated P2P networking
and applications in a 2008 book [6]. The problem of building overlays for unstructured P2P net-
works has been studied in [13,28,52]. Enabling techniques for P2P computing are discussed in [5].
NetTube [8] leverages the high clustering property of videos and P2P techniques for improving
YouTube services. Keromytis, et al. [21] reported the SOS architecture and operational require-
ments. The Skype protocol was analyzed in [3] and measured in [15].

Reported work on consistent hashing can be found in [21]. Chord was first proposed by Stoica,
et al. [45] and extended by a large number of researchers [12,16]. CAN was proposed by
Ratnasamy, et al. [40]. Pastry was treated by Rowstron and Drusche [39]. Kademlia was proposed
in [35] and measured in [44]. Gnutella was studied in [60] and measured in [17], and Freenet in
[10]. Hybrid overlays are studied in [32]. Gnutella and Napster were also measured and compared
by Sarioiu, et al. in [41]. Network proximity for structured P2P networks was studied in [7,16,54],
while for unstructured P2P networks, studies can be found in [28,52]. The small-world networks is
studied in Kleinberg [22].

P2P churn resilience and fault tolerance are treated in [12,14,23,24,51]. Trust models for P2P
computing have been studied in [19,27,43,49]. Three P2P reputation systems—EigenTrust, PeerTrust,
and PowerTrust—are reported in [20,53,57], respectively. P2P file-sharing and content distribution
technologies can be found in [1,25,37,31,37,41,46]. Data replication and network proximity are
studied in [11,33]. Overlay multicasts were extensively discussed in [9,47,48,56]. P2P video stream-
ing is studied in [8,18,29,36]. BitTorrent has been studied in [4,26,30,59].

Ross and Rubestien [38] have suggested four important research areas for P2P systems: (1)
Locality in DHT-based systems, (2) Using DH to hash or not to hash, (3) Building a trusted sys-
tems from autonomous and untrusted collections, and (4). Building P2P systems to operate in high-
churn environments. These challenges are partially solved in some recent work on churn-resilient
load balancing [42], massive data dissemination [24], P2P trust management [43,57,58], and copy-
right protection [31]. A reputation system for social networking is reported in [55].
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HOMEWORK PROBLEMS
Problem 8.1
You studied the basic idea of DHT in Section 8.3.1. One important DHT-based protocol is
Kademlia [35]. The unique feature of Kademlia is that it has been successfully used in eDonkey/
eMule file-sharing systems. Study the Kademlia paper and compare it with Chord and CAN in
terms of routing complexity, maintenance cost, and scalability. Finally, download the source code
of eMule at www.emule-project.net and study how it works. If possible, modify the client
protocol to measure the eMule system. For measurement, please refer to the paper authored by
M. Steiner [44].

Problem 8.2
P2P VoD (video on demand) systems are different from P2P live streaming systems since P2P-VoD
has less synchrony in the users sharing video content, and thus it is very difficult to leverage end
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users’ resources. Please read the paper [18] authored by Huang, et al. Then list the challenges of
designing P2P VoD systems and explain how PPlive solves these challenges.

Problem 8.3
List the three types of approaches to exploit network proximity in structured P2P overlays and their
advantages and disadvantages. Section 8.3.3 points out that, in Chord overlay networks, a node x
can take the physically closest node whose identifier falls in the range ½x+ 2i, x+ 2i+1� as its i-th
figure entry, which does not affect routing complexity. Why does this hold?

Problem 8.4
Building network proximity-aware overlays would degrade the performance of search algorithms
such as flood-based algorithms and random walk-based algorithms since nodes are clustered into
groups and fewer links are built among the groups. For example, a random walk query message
may be forwarded within a cluster for many hops before reaching the cluster where the resource is
located. You are asked to design a search algorithm for clustered overlay networks.

Problem 8.5
Data delivery can also been implemented on top of a DHT-based structure. The representative
approach is CAM-Chord [56], which builds a capacity-aware Chord overlay and delivers data items
on top of it. CAM-Chord brings no redundant message, that is, to deliver an item to n nodes, only
n message is required. However, maintaining such a structure is nontrivial. Read the paper and
compare CAM-Chord with the ACOM [9] and CRP approaches [24]. Please focus on following
performance metrics: hop complexity, proximity awareness, overlay maintenance overhead, and data
replication ratio.

Problem 8.6
In Table 8.9, compare the routing algorithms of Chord, Pastry, and CAN by briefly filling in the
missing table entries. Let n be the network size (number of peer nodes) and d be the dimension
size. A few of the entries are already given as examples.

Problem 8.7
P2P traffic locality can also been improved by deploying cache at the gateway of the network pro-
vider. However, different from the HTTP access pattern, the popularity distribution of objects (files)

Table 8.9 Comparison of Structured P2P Networks

Features Chord Pastry CAN Kademlia

Route state O(d)

Network structure Chordal ring

Routing complexity O(log n)

Fault tolerance
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does not follow Zipf law. Read the paper [17] and explain how the popularity distribution affects
the cache algorithm. Furthermore, discuss the advantages and shortcomings of different methods to
preserve locality.

Problem 8.8
In Section 8.5.1, you studied the basic search algorithms that do not consider semantic information
of shared content. It has been identified in [60] that building semantic overlays can significantly
improve search performance. Read this paper and their related works. You are asked to describe the
reasons why semantic overlays can enhance search performance.

Problem 8.9
YouTube is one of the largest web sites for user-generated videos. Tens of thousands of videos are
viewed each day by a large number of users. YouTube naturally leverages P2P techniques to allevi-
ate server loading. However, unlike traditional videos, user-generated videos are small. Study the
NetTube paper [8] and discuss the solution for using P2P techniques in YouTube content
distribution.

Problem 8.10
Analyze the fault tolerance of a Chord overlay with respect to the size of the successor list. Is it
sufficient to guarantee a stable Chord ring with high probability in the case that the successor list
size is O(log n) (n is the number of nodes), when every peer fails with probability ½?

Problem 8.11
BitTorrent is wildly used for file sharing. Files are divided into pieces. Nodes exchange the piece
availability information with their neighbors. When a node finds there is a piece that its neighbor
has but it has not downloaded yet, it sends a request for the piece to that neighbor. By default, the
piece size is 256 KB. Perform simulations using the code in http://theory.stanford.edu/~cao/biased-
bt.html to evaluate how piece size affects content distribution performance for files of various sizes.

Problem 8.12
Skype is a P2P-based VoIP system. It has been widely used and studied. Read the papers on Skype
[3]. Then describe the overlay structure of Skype, the bandwidth consumption characteristic, and
the impact of access capacity constraint on VoIP quality.

Problem 8.13
In mesh-based pull methods, each node advertises to its neighbors which data block it has received.
The neighbors explicitly request messages if needed. Tree-based push methods, on the other hand,
deliver data blocks along one or multiple tree structures. It is considered that mesh-based methods
suffer from a trade-off between control overhead and delay, while tree-based methods have a trade-
off between continuity and delay [48]. Read a survey paper on content delivery algorithms [36] and
a comparison study on mesh- and tree-based methods [29].You may consider combining these two
methods by leveraging network coding in tree-based systems.
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Problem 8.14
BitTorrent systems use the so-called “Tit-for-Tat” incentive scheme to enable contribution aware-
ness in content delivery. Some researchers point out that this mechanism is sufficient to ensure fair-
ness, but others are doubtful of this and free-riding is still cheap. Study these three papers in
[20,29,37]. Then answer the following two questions: (1) Which factor makes free riding so easy?
(2) Do you think “Tit-for-Tat” is sufficient to solve the problem? Justify your answers with
reasoning.

Problem 8.15
Match the overlay networks on the left with their best-match descriptions on the right:

_____eMule a) A structured overlay using a coordinated multi-dimensional search space
_____BitTorrent b) An unstructured overlay for anonymous and decentralized storage services
_____Gnutella c) A P2P network for video telephony applications
_____Napster d) An overlay coded with high-radix nested groups for proximity routing
_____SETI@Home e) A P2P file-sharing network using multiple file index trackers
_____KaZaA f) The first P2P network for MP3 music delivery using a centralized control
_____Chord g) A secure overlay service for preventing DDoS or network attacks
_____Pastry h) An unstructured overlay using flooding search for file providers
_____Freenet i) A decentralized P2P network built with multiple super nodes
_____CAN j) A P2P file-sharing network applying hashing at a 9.5 MB part level
_____Skype k) A DHT-based overlay structure with a O(log n) lookup time
_____SOS l) A P2P network for distributed processing of outer space signals

Problem 8.16
Consider a Chord overlay network with 64 keys identified by 6-bit key identifiers. Assume six
nodes (0, 4, 7, 12, 32, 50) are populated at present. The rest are not assigned yet. Answer the fol-
lowing questions using this Chord graph:

a. What are the data keys and node keys stored in node 0?
b. Work out the finger table for node 7. Describe how node 7 uses the finger table to find the

shortest routing path to reach the home node of a document file where data key 3 is located.
c. Describe how to insert a new node 45 into this Chord structure. You need to show the shortest

path on the Chord graph leading to the node holding key 45.
d. Use the finger table at the predecessor node to perform five lookup operations to establish the

finger table for this new node 45.
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SUMMARY
Data-intensive applications and future trends of Internet clouds are discussed along the lines of sup-
porting mobile computing, ubiquitous computing, and social networking. First, public, private, and
science clouds and grid projects are reviewed, including those built by IBM, SGI, Salesforce.com,
NASA, and CERN. Requirements for data-intensive scalable computing are reviewed. Then perfor-
mance metrics are presented for high-performance computing grids and for high-throughput comput-
ing clouds. Cloud mashups, mobility support, and benchmark results on existing grids and clouds
are reported. The emergence of the Internet of Things and cyber-physical systems is assessed.
Finally, we analyze large-scale social networks. In particular, Facebook and Twitter are reviewed
with innovative applications.

9.1 CLOUD TRENDS IN SUPPORTING UBIQUITOUS COMPUTING
This chapter looks into the future of distributed and cloud computing systems and their innovative
applications. Distributed computing has changed rapidly in system structure, scale of operation, and
application domains in recent years. Clustered systems appeared first in the 1990s, which was evi-
denced by the increasing population of cluster-structured massively parallel processors (MPPs) in
the Top 500 supercomputer list. When we crossed into the 2000s grids became popular, appearing
as large-scale clusters of computer clusters. However, the general public has not embraced grids
due to their lack of flexibility in general-purpose applications.

Since 2005, many peer-to-peer (P2P) networks have appeared as file-sharing networks and
online social networks. In fact, e-books, video streaming, movie downloads, and social networking
largely dominate Internet traffic today. Computing clouds over data-center resources did not appear
until 2007. Clouds are still in their infancy stage, even though all the underlying technologies are
there. However, clouds do reflect the latest development trend that emphasizes elasticity and flex-
ibility by scaling out of computing services to automated data centers through virtualization.

Data-intensive applications and future trends of Internet clouds are discussed in this section, along
the lines of supporting mobile computing, ubiquitous computing, and social networking. We assess
the development trends of both public and private clouds, as they appear in many high-performance
or ubiquitous applications. The idea of cloud mashups is studied for agility and scalability. Future
trends in clouds for both business and scientific applications are examined with illustrated examples.

We will evaluate the performance of clouds and distributed systems in Section 9.2. We will
devote Sections 3 and 4 to the emerging Internet of Things (IoT) that naturally extends the current
Internet, as we are in transition from IPv4 (with a 32-bit address space) to IPv6 (with a 128-bit
address space). The IoT may lead to a new wave of IT advances and its application potential may
affect all walks of life and the global economy. Finally, we will study social networks and assess
their impact on the future of a digital society that is wide open to billions of Internet of IoT users.

9.1.1 Use of Clouds for HPC/HTC and Ubiquitous Computing
Ubiquitous cloud computing refers to the use of Internet resources at any place and any time for
any objectives. Today, people can access the Internet via a fixed wire or a mobile wireless

546 CHAPTER 9 Ubiquitous Clouds and the Internet of Things



connection. Science in the cloud has been impacted with a new research environment that leverages
software and services being provided on user demand. New advances in research discovery are
expected in high-energy physics, observatory astronomy, atmospheric modeling, and biomedicine.
Dan Reed [69] of Microsoft Research has assessed the revolution of today’s big-data, many-cores
pervasive clouds and their impact on scientific research in the information age. Some observations
by Reed are discussed below.

9.1.1.1 Herbert Simon on Information Consumption
Recall the statement by Herbert Simon: “What information consumes is rather obvious: it consumes
the attention of its recipients. Hence a wealth of information creates a poverty of attention, and a
need to allocate that attention efficiently among the overabundance of information sources that
might consume it.” This clearly outlines a supply and demand model in the information age. With
ubiquitous sensors, clouds, and mobile devices, we can retrieve information faster and more effec-
tively. We can consume information with much less cost in current and future data-explosive infor-
mation age.

9.1.1.2 Vannevar Bush on Predicting Memex
Another interesting insight was made by Vannevar Bush on the concept of “Memex.” He made his
prediction in 1945, long before the creation of today’s digital computers. He predicted a dream device
as follows: “Consider a future device for individual use, which is a sort of mechanized private file
and library. It needs a name, and to coin one at random, “memex” will do. A memex is a device in
which an individual stores all his books, records, and communications, and which is mechanized so
that it may be consulted with exceeding speed and flexibility. It is an enlarged intimate supplement to
his memory.” What a coincidence ! Today, this “memex” device goes by the name of iPad, smart-
phone, cloud, IoT, virtual reality, and cyber-physical system (CPS), among many others.

9.1.1.3 Cloud Service Trends
Table 9.1 summarizes cloud offerings from eight IT leaders and some startup cloud companies. We
already studied the cloud offerings from Amazon, Google, Microsoft, GoGrid, and Rackspace in
Chapters 4 and 6. Here we examine the remaining cloud service offerings from IBM, SGI, and
Salesforce.com. Other clouds are left for the readers to explore deeper.

9.1.1.4 IBM Cloud Projects
IBM has gradually changed from a hardware/software and system company to a computing services
company. The IBM cloud platforms are mostly built with IBM server clusters supported by IBM
WebSphere and accumulated software assets over the years. Both the z-series and p-series servers at
IBM are being upgraded with virtualization capabilities. In 2007, IBM began launching a number of
cloud-related R&D projects. These projects are extended from IBM’s previous work for on-demand
and autonomous computing using service-oriented architecture (SOA).

IBM Ensembles offer a virtualized cloud system for IaaS services. This system can put together a
large resource pool to simplify management complexity. The purpose is to offer application flexibility
and efficient resource deployment through dynamic server, storage, and network ensembles. IBM also
developed the Tivoli Service Automation Manager (TSAM) for rapid design, deployment, and man-
agement of service processes. WebSphere CloudBurst (WCA) is another platform for managing
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private clouds. IBM LotusLive offers an SaaS cloud for application service development. The services
include an online conference service, coordinated office management, and e-mail services.

9.1.1.5 IBM RC2 Cloud
The computer and IT infrastructures of eight IBM Research Centers are now strongly connected to
form a private cloud, called the Research Compute Cloud (RC2). RC2 is web-based, allowing
more than 3,000 IBM researchers worldwide to share computing resources. It is also IBM’s internal
testbed for promotion of cloud technology. RC2 provides solutions to establish an autonomous

Table 9.1 Some IT Companies Providing Cloud Services or Products

Company, Year Major Cloud Offerings Major User Groups

Amazon
Seattle, 1994

Amazon Web Services (AWS); six
Infrastructure-as-a-Service (IaaS) systems
including EC2 for computing capacity and
S3 for on-demand storage capacity

10,000 businesses and individual
users including the New York Times,
The Washington Post, and Eli Lilly

Enomaly
Toronto, 2004

Elastic Computing Platform integrating
enterprise data centers with commercial
cloud offerings, managing internal and
external resources with virtual machine
(VM) migration

Business Objects, France Telecom,
NBC, Deutsche Bank, Best Buy

Google
Mountain View,
CA, 1998

GAE offering Platform-as-a-Service (PaaS)
capability plus office productivity tools
including Gmail, calendar tools, the Postini
web site creation tool, and security
protection services

Small businesses, enterprises, and
colleges including Arizona State
University and Northwestern University

GoGrid
San Francisco,
2008

Offers web-based storage and deploys
Windows- and Linux-based virtual servers
in the cloud with preinstalled software from
Apache, PHP, and Microsoft SQL

Mostly startups, Web 2.0, and
Software-as-a-Service (SaaS)
companies, plus a few big names like
SAP and Novell

Microsoft
Seattle, 1975

Azure offering a Windows-as-a-service
platform consisting of the OS and
developer services that can be used to
build and enhance web-hosted applications

Epicor, S3Edge, and Micro Focus
using Azure to develop cloud
applications

NetSuite
San Mateo, CA,
1998

A business software suite including
e-commerce, consumer relationship
management (CRM), accounting, and
enterprise resources planning (ERP) tools

Business customers such as Puck
Coffee and Wrigleyville Sports

Rackspace
San Antonio, TX,
1998

Mosso cloud offering a platform for building
web sites; cloud files for a storage service;
and Cloud Servers, an EC2-like service that
provides access to virtualized server
instances

Web developers and SaaS providers
such as Zapproved, which uses
Mosso to deliver an online productivity
tool

Saleforce.com
San Francisco,
1999

Offers CRM tools for sales force
automation, analytics, marketing, and social
networking; Force.com offers a PaaS for
building web applications on the
Salesforce.com infrastructure

500,000 customers in financial
services, communications, and media,
energy, and health care
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computing environment on user demand. At the time of this writing, the RC2 cloud serves more
than 3,000 IBM researchers and developers worldwide as a large testbed for private cloud services.

The system supports machine virtualization, service life-cycle management, and performance
monitoring. The idea is to reduce computing costs by outsourcing jobs to best-fit sites for rapid
resource deployment, and thus optimal execution. The project also evaluates green energy savings
and dynamic resource optimization. In a typical RC2 service setting, the user uses the web service
to submit a new order of RC2 resources such as VMs and storage. Then the user specifies the order
with special service-level agreements (SLAs) regarding resource quantity and capacity classes. RC2
management approves the order with provisioned resources and services, and RC2 monitors the pat-
terns of requested resources and handles billing at the completion of the service.

Example 9.1 IBM Blue Cloud System

In November 2007, IBM announced the Blue Cloud Project based on open standards and open source
software. The project is supported by more than 200 IBM web-scale researchers worldwide. Blue Cloud
combines several existing software and virtualization packages on a specifically designed IBM hardware
server platform. Open source and private software is combined to form the cloud computing environment.
The Blue Cloud is built with x-servers, that are very similar to x86 processors. (Figure 9.1). Linux runs on
these servers supported by XEB-based virtualization software.

Monitoring

Tivoli. Tivoli.

Application

server

WebSphere.

User

DB2.

Provisioning

manager

Developer

Open source Linux with Xen

Tivoli monitoring agent

FIGURE 9.1

Architecture of the BlueCloud system built with IBM hardware and software along with some open source
Linux and Xen.

(Courtesy of IBM BlueCloud Project )
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Special software includes Tivoli for monitoring of virtual cluster operations (see www-01.ibm.com/software/
tivoli/products/monitor for details). DB2 manages structured data, and the Tivoli Provisioning Manager provi-
sions virtual servers to physical nodes (see www-03.ibm.com/systems/power/software/virtualization/index.html
for details). The WebSphere Application Server is used for building application portals. Open source software
is used in the background for building the cloud application to process large-scale data. Xen is used as the
container of running instances of cloud applications. Hadoop is used to process massive amounts of data
based on the MapReduce paradigm.

9.1.1.6 Cloud System from SGI
In February 2010, SGI announced the Cyclone, a large-scale on-demand cloud computing service
for high-performance computing (HPC) applications. Both SaaS and IaaS models are offered on the
Cyclone. The SaaS model offers users prepackaged technical applications covering a wide range of
domains. For example, the system can be used to perform computational fluid dynamics (CFD) and
finite element analysis in both the airplane and automobile industries. With the IaaS model, users
can access SGI’s fastest Altix servers and ICE clusters, which are networking and storage systems
managed and optimized by SGI experts for specific user applications.

Companies today deal with increasingly difficult business problems, ever-growing amounts of
data to manage and process, and pressure to deliver results in record time. Most attack this critical
problem by expanding their IT infrastructure, which often comes with unforeseen administration
and facility costs and lower-than-expected throughput due to data bottlenecks. The SGI Altix ICE
integrated blade cluster was designed for today’s data-intensive problems and avoids these pitfalls.
This innovative new platform raises the efficiency bar, easily scaling to meet virtually any proces-
sing requirements without compromising ease of use, manageability, or price/performance.

Example 9.2 SGI Cyclone Cloud for High-Performance Computing

Figure 9.2 shows the architecture of the SGI Cyclone HPC cloud. The SGI servers can scale up, scale out,
or combine in a hybrid mode to match specific user application requirements. The Cyclone HPC cloud
supports many well-known scientific and engineering applications including OpenFOAM, NUMECA, Acu-
solve, LS-Dyna, Gaussian, Gamess, NAMD, FASTA, and ClustaIW. These cloud applications benefit many
industrial and government sectors including green energy, manufacturing, digital media, entertainment,
financial government, research, and higher education. Customers can expand their compute and storage
capacity with no capital outlay. Advantages are demonstrated by the elimination of lengthy procurement
and installation cycles. Users can request infrastructure as they see fit without worrying about infrastruc-
ture management. The Cyclone cloud platform is protected by SGI firewalls and virtual private network
(VPN) access channels.

Cyclone is an on-demand cloud computing service specifically dedicated to technical applications.
Cyclone supports a number of leading application partners and five technical domains, including computa-
tional fluid dynamics, finite element analysis, computational chemistry and materials, computational
biology, and ontology. Cyclone is available in two service models: SaaS and IaaS. With the SaaS model,
Cyclone customers can significantly reduce time to results by accessing leading-edge open source applica-
tions and best-of-breed commercial software platforms from top independent software vendors. The IaaS
model enables customers to install and run their own applications.
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SGI Altix provides scale-up, Altix ICE provides scale-out, and Altix XE hybrid clusters are used for
hybrid management of cloud servers, all based on Intel Xeon or Itanium processors. Altix is a line of ser-
vers and supercomputers produced by Silicon Graphics, based on Intel processors. Altix servers have
gone through many revisions, the latest being the SGI Altix 4700. This server offers blade configurability in
an uncompromising data-centric architecture capable of sustaining terabytes of data throughput. It fea-
tures “plug and solve” blade configurability in data-centric architecture capable of sustaining terabytes of
data throughput. Like its predecessors, the SGI Altix 4700 platform has been designed for technical users
based on industry-standard CPUs, memory, and I/O.

Cyclone customer
secure login

Results on demandTM

Data/application license loaded

Management server for
pre-& post-processing
and job scheduling

Scale-up Scale-out

Systems workload storage

Hybrid

SGI servers

VPN

VPN

SGI firewall

Persistent
storage

FIGURE 9.2

SGI Cyclone HPC cloud for enabling SaaS and IaaS applications.
(Courtesy of M. Barrenechea, SGI CEO, www.sgi.com/cyclone, Feb. 2010 )
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9.1.1.7 Salesforce.com’s Force.com Cloud
Salesforce.com was established in 1999 to provide online solutions to SaaS, mainly in CRM appli-
cations. Initially, it used third-party cloud platforms to promote its software services. Gradually,
Salesforce.com launched Force.com as a PaaS platform. By 2010, Salesforce.com subscribers
exceeded 2.1 million. Example 9.3 describes the Force.com platform cloud.

Example 9.3 The Force.com Cloud from Salesforce.com

Salesforce.com offers its Force.com platform to support some SaaS and IaaS applications. The platform
allows external developers to create add-on applications that integrate into the main Salesforce.com
hosted applications. It is aimed at enterprise users in business computation applications. In addition
to making CRM easier for users to apply in cloud services, Force.com provides Apex, a proprietary
Java-like programming language, and the Visualforce to simplify the business development cycle. The
AppExchange, is designed to enable multiple users to interact and perform coordinated work easily.
Application services are mainly in the areas of CRM databases, application development, and
customization.

In the security area, Salesforce.com provides not only some mechanisms to protect data integrity, but
also some access control mechanisms to ensure administrative security and record security. The company
introduced Chatter as a “Facebook for the enterprise” in June 2010. The packaging service helps users to
release their application innovations. Users can customize their CRM applications in the Force.com plat-
form. The system features “Contacts,” “Report,” and “Account” tabs. Users can add sets of customized
/novel tabs for specific features in finance and human resources applications. In addition, the Force.com
platform also provides SOAP web service APIs. Mobile support is provided for subscribers with BlackBerry,
iPhone, and Windows mobile devices. The Salesforce.com SaaS and PaaS services can work in more than
a dozen international languages.

9.1.2 Large-Scale Private Clouds at NASA and CERN
In 2010, two large-scale private clouds were under construction in the United States and European
Union. We discuss them in this section to demonstrate the scalable growth of cloud computing plat-
forms. The U.S. cloud, called Nebula, is developed by NASA and is designed for NASA scientists
to run climate models on remote systems provided by NASA. This can save thousands of NASA
users from acquiring supercomputers at their local sites. Furthermore, it enables NASA to build the
complex weather models around its data centers, which is more cost-effective.

The EU cloud is built by CERN in Geneva. This is a large private cloud for distributing data,
applications, and computing resources to thousands of scientists around the world. CERN deals
with large data sets and throughput with a global workforce and a finite budget. Many private
clouds are also under development by the IT industry, large enterprises, and other government agen-
cies. Initially, one can see that most clouds are developed with restricted user groups. Once these
clouds become mature and more secure to use to prove their claimed advantages, they could be
converted to public clouds in the future.
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9.1.2.1 NASA’s Nebula Cloud
Nebula is a cloud computing pilot under development at NASA Ames Research Center (Figure 9.3).
It integrates a set of open source components into a seamless, self-service platform, providing high-
capacity computing, storage, and network connectivity using a virtualized, scalable approach to
achieve cost and energy efficiencies. Nebula is currently being used for education and public out-
reach, for collaboration and public input, and for mission support. Nebula enhances NASA’s ability
to collaborate with external scientists and researchers by providing high-speed data connections and
consistent tool sets and open data APIs used by commercial cloud providers. Built from the ground
up around principles of transparency, Nebula is also an open source project.

When completed, the Nebula platform will offer a turnkey computing solution that can rapidly
address the requirements of a large number of projects. Each component of the Nebula platform will be
available individually, serving SaaS, PaaS, and IaaS needs across the agency. NASA will use Nebula
for mission support, education, and public outreach and to encourage collaboration and public input. In
line with the Obama administration’s efforts to establish an open and transparent government, Nebula
will provide NASA with an easy, efficient, and secure way to interact and share data with the public.
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The Nebula cloud under development at NASA (http://nebula.nasa.gov).
(Courtesy NASA/Ames Research Center )
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9.1.2.2 Nebula Development Status
Nebula is available to NASA’s internal project groups and its research and academic partners. Nebula
is not available for use by private industry or the general public. Nebula is also currently acting as a
testbed for federal cloud computing technology for the Office of Management and Budget. Nebula
uses a containerized data center to house servers on the NASA Ames Research Center campus. These
containerized centers are proven to be the “greenest” form of data center because they are denser, and
thus require less energy to keep them cool. Cloud computing can be three to five times more efficient
than traditional networks or server centers. Another way Nebula is working to make cloud computing
more efficient is to actually turn computers on the network off to save energy. Some estimates show
Nebula to be 50 percent more energy efficient than traditional data centers.

9.1.2.3 CERN Super Cloud
CERN has long been an influential leader in solving complex IT problems. In fact, the World Wide
Web owes a lot to CERN for its usefulness in getting some early work done there. Now, the focus
is on cloud computing, CERN scientists plan to smash two particle beams together in an attempt to
re-create the “big bang” event to uncover the enigma of many fundamental physics phenomena.
The CERN scientists realize the use of cloud computing over their large data centers may be more
cost-effective in performing the required simulation experiments.

Tens of thousands of scientists around the world are feeding off the huge data sets and doing all
kinds of research by themselves. CERN believes the cloud project will allow it to deliver increased
computing performance and offer better infrastructure services to its 10,000 researchers from
85 countries. At CERN, massive amounts of scientific data are processed and must be distributed to
researchers in near real time. As a result, CERN’s cloud infrastructure has to provide the capacity
necessary to support production and analysis of more than 15 petabytes of data per year, processed
by 60,000 CPU cores, allowing scientists to manage workloads themselves as opposed to a centra-
lized IT management department at CERN’s laboratory near Geneva.

Because CERN uses the platform’s Load Sharing Facility (LSF) grid and workload management
solution to enable extensive scalability to analyze its vast amount of research data, the laboratory
chose to partner again with the platform to explore how to more effectively utilize their resources
in a virtualized cloud environment. Platform LSF and its adaptive cluster provide an open, low-cost,
common platform for CERN’s scientists, allowing management of both virtual and physical servers
in the cloud. In addition, scientists can manage their own application environments and control pro-
jects dynamically for maximum flexibility and efficient workload processing.

9.1.2.4 CERN VM Projects
Scientists working on the ALICE (A Large Ion Collider Experiment) collaboration are conducting
heavy ion simulations at CERN. They have been developing and debugging compute jobs on a col-
lection of internationally distributed resources, managed by a scheduler called AliEn, to integrate a
cloud’s dynamically provisioned resources into an existing infrastructure such as the ALICE pool of
computers. The purpose is to ensure that the various AliEn services have the same deployment-
specific information. The CERN VM project developed a way to provide VMs that can be used as
a base supporting the production environment for all large experiments at CERN.
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The CERN VM technology was originally started with the intent to supply portable development
environments that scientists could run on their laptops and desktops. A variety of virtual image for-
mats are now supported, including the Xen images used by Amazon EC2 as well as science clouds.
The challenge was to find a way to deploy these images so that they would dynamically and
securely register with the AliEn scheduler, and thus join the ALICE resource pool.

9.1.2.5 Road Map of CERN Cloud Construction
Nimbus is a cloud OS that allows a user to securely provide context-specific information to a VM
deployed on remote resources. It places minimal compatibility requirements on the cloud provider
and can orchestrate information exchange across many providers. Commercial cloud providers such
as EC2 allow users to deploy groups of unconnected VMs, whereas scientists typically need a
ready-to-use cluster whose nodes share a common configuration and security context. The Nimbus
Context Broker bridges that gap.

Integration of the Nimbus Context Broker with the CERN VM technology has proved a success.
The new system dynamically deploys a VM on the Nimbus cloud at the University of Chicago,
which then joins the ALICE computer pool so that jobs can be scheduled on it. Moreover, with the
addition of a queue sensor that deploys and terminates VMs based on demand, researchers can
experiment with ways to balance the cost of additional resources against their need as evidenced by
jobs in a queue.

In 2009, the CERN started an IaaS setup. The batch computing farm is a critical part of the
CERN data center today. It has the ability to use the IaaS to provision a large number of virtual
batch worker nodes. By doing so, both the VM provisioning system and the batch application itself
have been tested on a large scale. Eventually, the cloud at CERN will be able to sustain 15,000 or
more concurrent virtual batch worker nodes.

9.1.3 Cloud Mashups for Agility and Scalability
In web application development, a mashup is a web page or application that combines data, presen-
tations, or functionality from two or more sources to create a new service. The main characteristics
of the mashup are a combination of virtualization and aggregation. In cloud computing, the cloud
has captured the computing market with dynamic resource allocation from a pool of VM resources.
Table 9.1 listed the diversity of cloud offerings; the resource pool can be employed for both parallel
and distributed computing as demonstrated by the Amazon EC2 and S3 services. On the other hand,
Google’s App Engine (GAE) is primarily driven by web-based service offerings for storage of files,
e-mailing, and messaging, among others.

Not only are AWS and GAE different in terms of their functionalities, but they also can comple-
ment each other. This has triggered the idea of mashing up different clouds to build an intercloud or
cloud of clouds dynamically. We will demonstrate how to mash up GAE and AWS clouds to
achieve the desired features of application agility and performance scalability. In fact, cloud mash-
ups offer a more cost-effective solution to new startups that do not want to invest in cloud hardware
and software to create their own enterprise-level data center or private cloud. A cloud mashup must
be designed to support popular paradigms such as MapReduce on AWS, and yet be controllable via
GAE through easy-to-operate web interfaces.
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9.1.3.1 The Idea of a Cloud Mashup
Any startup in today’s business world needs to keep its operational costs low in the initial years.
This allows the business to recover its initial investments and post profits quickly. This, in turn,
prompts venture capitalists to fund the company in hopes of a quick return on investment and the
ability to supply more capital to allow the company to grow. Thus, it is critical that the company
keep its initial costs low. Consider a startup company working as a social networking portal. It
needs lots of data storage space and servers, as well as associated cooling requirements and infra-
structure such as a physical building to house its equipment. This leads to a moderate to large initial
investment on the part of the company.

One can use the pay-per-use models from public clouds such as AWS and GAE to quickly bring
the business up to speed. This can not only ensure that the loss due to time-to-market is reduced,
but it can also enhance the speed with which one can unleash a new idea into the business world.
Business mashups are also popular today as more and more businesses can complement each other
nicely. Today’s mashups are typically dataflow systems with the interaction scripted in languages
such as JavaScript or PHP. The ProgrammableWeb site, for example, reported more than 2,000
APIs and 5,000 mashups in September 2010 [84]. Commercial mashup examples include Yahoo!
Pipes (http://pipes.yahoo.com/pipes/), Microsoft Popfly (http://en.wikipedia.org/wiki/Microsoft_
Popfly), and IBM’s sMash-enhanced BPEL Web 2.0 [156].

Example 9.4 A Mashup Cloud Designed on the AWS and GAE Platforms

Figure 9.4 shows the concept of mashing up the GAE and AWS platforms. Essentially, one gets user input
files from GAE and uses the AWS infrastructure for MapReduce. To prove the effectiveness of mashups,
the performance of MapReduce on the mashup platform is experimented with scalable EC2 resources.
We demonstrate the results of AWS-GAE mashup experiments conducted at the University of Southern
California [18]. The mashup provider is crucial to link the two cloud platforms together.

The mashup design leverages Google’s web agility with the scaling power of AWS EC2. This
mashup helps a user to write agile software on GAE and use the user inputs to perform parallel com-
puting operations on AWS. Also, the creator can apply parallel computing operations to a user-owned
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User
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Amazon AWS

FIGURE 9.4

The concept of a mashup between the GAE and AWS cloud platforms.
(Courtesy of V. Dixit of University of Southern California [18] )
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cluster. AWS is not very handy as a scalable web interface because the size of EC2 has to be
increased by subscriber request. Also, the name server has to be built by the user to isolate the end
server from becoming directly visible on the network. On the other hand, Google is more cost-effective
in this aspect.

A typical online business such as eBay requires computing power that generates relevant results
for its consumers to increase sales. This is beyond what a web-based architecture such as GAE can
deliver. So, such a business would need a larger computing “farm,” available from Amazon through
its AWS offerings. This model allows users to perform a number of computations on a VM. Con-
sider a business running information located on an Excel spreadsheet in a Windows host and com-
putation code written on a UNIX-based system. In this case, GAE, which has no capability to
“execute” programs, becomes useless. In fact, any executable code needed by a business cannot use
the Google model of service. AWS then becomes the preferred way to accomplish this.

9.1.3.2 Mashup Experimental Results
We tested a word counting program written in Python over a large data set of 2 GB. The job was
submitted from GAE and was executed on an Amazon EC2 platform. Power regression of data was
assumed. The MapReduce scheme was applied for parallel executions on the EC2 cluster of varying
numbers of VM nodes from 1 to 60. The results are plotted in Figure 9.5 after a curve fitting exer-
cise. One can clearly see scalable performance with reduced execution time, as EC2 grows from
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Scalable performance on the mashup cloud with decreasing execution time of a 2 GB dataset on EC2 up
to 60 VM instances.

(Courtesy of V. Dixit of University of Southern California [18] )
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1 to 60 nodes. It takes 1,000 seconds to process 2 GB of data on one node and the time is reduced
to 300 seconds over 60 nodes.

9.1.3.3 Advantages of Cloud Mashups
A startup business that offers web-based applications involving large amounts of storage and that
depends critically on its web page being up all the time should consider a cloud provider offering a
dynamically scaled (load-based scaling) mechanism, as this would lead to increased availability in
the face of a sudden increase in demand, which is common to startups. Also, the ability to quickly
and automatically scale down allows the business to keep operational costs low. The business com-
puting platform needs to deliver not only scalable services, but also agility to survive and compete.
A mashup can combine several platforms or APIs to provide a wider scope of services that allows
more flexibility and agility to users:

• Scalability on the EC2 virtual clusters Scaling the implementation of MapReduce
implementation can be scaled in terms of problem size and virtual cluster size. Regarding cluster
size, the USC experiments run MapReduce from 1 VM node to 40 VM nodes on the EC2
infrastructure. Thus, scaling is well explored on EC2 to yield scalable performance.

• Agility in using GAE interfaces A mashup platform is built by combining GAE and AWS,
essentially using Google’s web interfaces and Amazon’s EC2 computing power. We use GAE
to create a web page that is capable of uploading documents to GAE and running MapReduce
on EC2. The mashup then sends the results back to Google users.

9.1.3.4 Lessons Learned about Cloud Mashups
In creating a scalable and agile mashup, it has been demonstrated that the most popular cloud plat-
forms hold significant promise for entrepreneurs and established companies alike. The various
synergies explored provide insight into what a company would need to do in order to be more scal-
able with increasing users and data and what is required to be agile in such an environment. By not
being tied down to any single platform or implementation, the idea of agility within a mashup has
been demonstrated [20].

SLAs must be established among cloud companies so that a seamless setup can be constructed.
The mashup provider has to provide the functionality manually. Lack of security among cloud pro-
viders could become a bottleneck for scaling applications beyond a few hundred users. However,
this is exactly where the agility of this approach comes into play by allowing the arrangement to be
migrated easily across platform boundaries.

Building a private cloud platform may become even more effective to explore the scalability and
agility of a mashup system, especially when the number of users or data sets grows rapidly. By
employing modular data centers, the costs of uploading data across geographically dispersed cloud
providers can be alleviated. Wide-range benchmark work is still required to validate the effective-
ness of the mashup synergies. MapReduce results demonstrate the feasibility of this approach. The
other synergies for different models, such as Dryad and Pig Latin, may produce contradictory
results due to differences in computing structure and languages used.

9.1.4 Cloudlets for Mobile Cloud Computing
Recently, researchers at Carnegie Mellon University, Microsoft, AT&T, and Lancaster University
[74] proposed a low-cost infrastructure to enable cloud computing using mobile devices. The idea
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is called Cloudlet, and it offers a resource-rich portal for upgrading mobile devices with cognitive
abilities to access distant clouds. This portal should be designed to be trustworthy and use VMs to
explore location-aware cloud applications. The idea can be applied to opportunity discovery, fast
information processing, and intelligent decision making on the road. Cloudlet makes it possible for
mobile devices to access the Internet cloud easily in cost-effective mobile computing services.

9.1.4.1 The Cloudlet Idea
Figure 9.6 illustrates the idea of using cloudlets for mobile cloud computing. Both mobile devices
and centralized clouds or data centers have shortcomings in terms of supporting mobile computing.
Mobile handsets face problems of limited CPU power, storage capacity, and network bandwidth on
smartphones and tablet computers. Mobile devices cannot be used to handle large data sets. How-
ever, the distant cloud on the Internet faces the WAN latency problem. Clouds have to solve this
collision problem of too many (millions) clients logging in to the cloud simultaneously.

To solve this two-sided problem cloudlets are being deployed at convenient sites, such as coffee
shops and bookstores, similar to access points for WiFi services for connecting to the Internet.
Widely deployed cloudlets enable distributed cloud computing and extended resource handling for
these users. The idea is to use the cloudlet as a flexible gateway or portal to access the distant
cloud. The cloudlet can be implemented on PCs, workstations, or low-cost servers. The major inno-
vation lies in using VM-based flexibility to handle requests from different mobile devices.

9.1.4.2 Differences between Cloudlets and Clouds
As Table 9.2 shows, cloudlets are decentralized and self-managed, like a “virtual data center in a
box.” Cloudlets operate with LAN latency and bandwidth with only a few users at a time. Clouds
are centralized at large-scale data centers. They are professionally administrated all the time and
they need large machine rooms with uninterrupted power and cooling. The main problem for a dis-
tant cloud to be accessed by mobile devices lies in the long latency experienced with the Internet or
WANs. The problem becomes more complicated when thousands or millions of users simulta-
neously demand services.
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FIGURE 9.6

VM-based cloudlets for mobile cloud computing applications.
(Courtesy of Satyanarayanan, et al. © IEEE [74] )

9.1 Cloud Trends in Supporting Ubiquitous Computing 559



9.1.4.3 Fast VM Synthesis in Cloudlets
A cloudlet prototype named Kimberley was built at Carnegie Mellon University. This prototype
synthesizes a VM overlay in the cloudlet host. CMU has reported fast VM synthesis times of less
than 100 seconds. In other words, it has created a VM overlay in transient cloudlets that is custo-
mized to bind cloud resources at a distance to satisfy user needs. Figure 9.7 shows the timeline for
dynamic VM synthesis in Kimberley. A small VM overlay is delivered by a mobile device to the
cloudlet that already possesses a base VM. The VM overlay plus the base VM create a special
execution environment for the mobile device to launch its cloud applications through the cloudlet
portal. Trust and security issues are also major factors in cloudlet deployment.

Table 9.2 Differences between Local Cloudlets and Distant Clouds

Cloudlet Cloud

State Only soft state Hard and soft state
Management Self-managed; little to no professional

attention
Professionally administered, 24×7 operator

Environment “Data center in a box” at business
premises

Machine room with power conditioning
and cooling

Ownership Decentralized ownership by local business Centralized ownership by Amazon,
Yahoo!, etc.

Network LAN latency/bandwidth Internet latency/bandwidth
Sharing Few users at a time 100s−1000s of users at a time

Mobile device

Discover & negotiate
use of cloudlet

(base + overlay) → launch VM

Execute launch VM

Create VM residue

Discard VM

Use
cloudlet

Finish use
Done
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FIGURE 9.7

Fast VM synthesis in Kimberley prototype cloudlet built at CMU.
(Courtesy of Satyanarayanan, et al. © IEEE [74] )
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9.1.4.4 Mobility and Security Support in IoT Applications
Table 9.3 summarizes the mobility support, data protection, security infrastructure, and trust man-
agement in mobile computing and cloud-supported IoT applications. The purpose is to safeguard
these cloud computing services in a fixed or mobile distributed computing environment for applica-
tion listed in Table 9.3. Mobility support includes special air interface and mobile API designs and
the use of wireless Public Key Infrastructure (PKI) for mobile access of cloud platforms. VPNs can
be also used to secure cloud platforms. Data protection includes file/log access control, data color-
ing, and copyright compliance. Disaster recovery is also needed in case of hardware/software fail-
ures. Cloud security can be enforced by establishing the root of trust, securing the VM provisioning
process, using software watermarking, and using firewalls and intrusion detection systems (IDSes)
at the host and network levels. Recently, trust overlay networks and reputation systems [43] were
suggested to protect data centers in trusted cloud computing.

9.2 PERFORMANCE OF DISTRIBUTED SYSTEMS AND THE CLOUD
In this section, we will study the performance issues of both distributed HPC systems and clouds or
data-center-based HTC systems. First, we review the data-intensive scalable computing (DISC)
paradigm introduced by Randal Bryant [5]. HPC systems are advancing from Pflops performance in
current supercomputers to exascale systems in the future. HTC systems are primarily measured by
the number of user tasks that can be processed per unit time (i.e., throughput).

In this section, we identify major performance attributes for evaluating HPC systems. Then we
suggest attributes such as sustained speed, system efficiency, and availability for evaluating HPC
systems. HTC systems are evaluated in terms of both throughput and Quality of Service (QoS). We
study the workload characterization method for performance prediction of grid or cloud systems.
Finally, we present some benchmark performance results based on trace experiments conducted at
Tsinghua University in China and cloud benchmark experiments at Indiana University.

Table 9.3 Mobility and Security Support for IoT Applications

IOT Service Level
Mobility Support and Data
Protection Methods

Hardware and Software Measures
for Cloud Security

Data sensing and
networking support

• Special air interfaces

• Mobile API design

• File/log access control

• Data coloring

• Hardware/software root of trust

• Secure provisioning of VMs

• Software watermarking

• Host-based firewalls and IDSes

Support of cloud
platforms for processing
sensed data

• Use of wireless PKI

• User authentication

• Copyright protection

• VPN

• Network-based firewalls and IDSes

• Trust overlay network

• Reputation systems

• OS patch mangement
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9.2.1 Review of Science and Research Clouds
There has been substantial investigation of clouds for research applications and we surveyed the
types of applications that were suitable in Section 6.2.6. We have reviewed some of the research
cloud software being developed. Here we focus on infrastructure used for research in and use of
cloud computing. Interestingly, although commercial clouds have expanded rapidly, this has not
occurred for clouds used for research. These remain smaller than both their commercial counterparts
and the large supercomputers found in the TeraGrid introduced in Chapter 7.

9.2.1.1 FutureGrid [30]
FutureGrid, shown in Figure 9.8, is a NSF project funded as an experimental component of
TeraGrid and designed around the concept of Grid’5000. FutureGrid is led by Indiana University
(hardware, architecture, core software, support) in partnership with Purdue University (HTC hard-
ware), the San Diego Supercomputer Center at the University of California, San Diego (hardware,
INCA, monitoring), the University of Chicago/Argonne National Labs (hardware, Nimbus), the
University of Florida (hardware, VINE, education, and outreach), the University of Southern
California Information Science Institute (Pegasus workflow software to manage experiments), the
University of Tennessee, Knoxville (benchmarking), the University of Texas at Austin/Texas
Advanced Computing Center (hardware, portal), the University of Virginia (interoperability, grid
software), and the Center for Information Services and GWT-TUD from Technische Universtität
Dresden (VAMPIR software).

UC: 7TF IBM 672 cores

PU: 4TF Dell 384 cores

IU: 11TF IBM 1024 cores
      7TF Cray 684 cores
      ˜5TF Data/Memory
      Intensive TTBD
      ˜512 cores

UCSD: 7TF IBM 672 cores

TACC: 12TF Dell 1152 cores

UF: 3TF IBM 256 cores

NID

UC

IU

TACC

UF

1×
10

G

Internet 2l
TeraGrid

PU

1×1G

UCSD
1×10G

LA

1×10G

Core
router 1×10G

1×10G

To GEANT
Dresden, Grid5000,

other European grids

FIGURE 9.8

FutureGrid distributed system testbed across the U.S. continent [30].
(Courtesy of Judy Qiu [30] )
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Although it is an infrastructure project, it involves significant system development to support its
goals. FutureGrid is not a production system, but rather an environment supporting a flexible devel-
opment and testing platform for middleware and application users looking at interoperability, func-
tionality, and performance issues. FutureGrid will make it possible for researchers to conduct
experiments by submitting an experiment plan that is then executed via a sophisticated workflow
engine, preserving the provenance and state information necessary to allow reproducibility.

The testbed includes a geographically distributed set of heterogeneous computing systems, a
data management system that will hold both metadata and a growing library of software images,
and a dedicated network allowing isolatable, secure experiments. The testbed will support
VM-based environments, as well as native operating systems for experiments aimed at minimizing
overhead and maximizing performance. The project partners are integrating existing open source
software packages to create an easy-to-use software environment that supports the instantiation,
execution, and recording of grid and cloud computing experiments.

One of the goals of FutureGrid is to understand the behavior and utility of cloud computing
approaches. Researchers can measure the overhead of cloud technology by requesting linked experi-
ments on both virtual and bare-metal systems. Further, it offers a rich education and teaching platform
for advanced cyberinfrastructure classes. In this regard, it will build tutorials on supported software and
offer a suite of appliances (customized VM-based images) supporting online laboratories such as basic
grid and parallel computing. Figure 9.9 shows the software stack developed in the FutureGrid project.

Further, particular classes can be granted time on FutureGrid for development of curricula
requiring privileges and system destruction capabilities that are hard to grant on conventional pro-
duction systems. FutureGrid offers seven distinct systems (clusters) of about 5,000 cores with differ-
ent optimizations. It also has a dedicated network (except to the Alamo system in Texas) allowing
security isolation and use of a dedicated network impairment device. Clouds provide great flexibil-
ity by building environments on top of hypervisors. FutureGrid follows a different route by dynami-
cally provisioning software as needed onto “bare metal.”

As of November 2010, “rebooting” a node of FutureGrid takes about four minutes [15]. The user
can choose from a variety of different images to provision her test environment. Figure 9.9 shows the
software stack developed in the FutureGrid project. The images need careful security review
and currently include choices at different hypervisor levels (Xen, KVM), operating systems (Linux,
Windows), cloud environments (Nimbus, Eucalyptus, OpenNebula), middleware (gLite, Unicore,
Globus), programming paradigms (MPI, OpenMP, Hadoop, Dryad), and specialized capability such
as distributed shared memory from ScaleMP.

FutureGrid expects available images to increase as users build new and interesting environments
and deposit them in the library. Figure 9.9 shows the FutureGrid software stack. Key components
include portal interfaces; monitoring capability (INCA, Power [greenIT]); the Experiment Manager,
a new feature allowing reproducibility of execution scenarios; image generation and repository fea-
ture; VINE intercloud networking (virtual clusters built with virtual networks); a performance
library; RAIN or Runtime Adaptable InsertioN Service which schedules and deploys images; and
security features including use of isolated network as well as authentication and authorization.

9.2.1.2 Grid’5000 [35]
The Grid’5000 distributed system links nine sites in France as shown in Figure 7.8. Recently, Porto
Alegre, Brazil, was added as a tenth site. Grid’5000 has more than 5,000 cores spread over 1,500 nodes.
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It has been used in a variety of computer science research projects including cloud and grid computing
and green IT with both software systems and performance goals. Grid’5000 aims at providing a highly
reconfigurable, controllable, and monitored experimental platform to its users. Work explores all levels,
including application, programming environment, application runtime, grid, cloud, P2P middleware,
operating system, and network.

FutureGrid user interfaces

Portal

Commandline interfaces

API

Portal

Commandline interfaces

Ticket system

SWE tools

FG core services and software - stratosphere

FG developer and
administrator interfaces

Experiment
management

Image management

Network management

Education support
and tools

Performance
services and tools

Information
services and tools

Account management

Security

FG middleware services and software FG support
services and software

FG dev & support
resources

FG core resources

Inca Vine

Pegasus Nimbus

EucalyptusMoab

User and FG supported software usable in
experiments e.g., Globus, MPL, Hadoop, Dryad

RAIN

FIGURE 9.9

The FutureGrid software stack.
(Courtesy of Judy Qiu [30] )
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9.2.1.3 Magellan [7]
Magellan is the largest of the research clouds and is situated at two U.S. Department of Energy sites:
Argonne [6] and the National Energy Research Scientific Computing Center (NERSC) in California.
Each consists of a medium-sized cluster and storage facilities. The NERSC system has more than 700
nodes and about 6,000 cores, while Argonne has more than 500 nodes and 4,000 cores. The systems
are addressing a wide variety of research issues, including the following:

• Comparing cloud performance and traditional cluster and supercomputing environments for
scientific applications. Of particular interest are applications currently running on local/
departmental clusters, or midrange applications that do not require more than 1,000 cores.

• Testing solid state (flash) storage for data-intensive applications. Flash storage offers substantially
increased bandwidth and IOPS (I/O operation rate), and decreased latency, especially for read-
intensive applications.

• Exploring the portability of applications to cloud systems, and in particular, looking at
MapReduce.

• Providing portals on clouds to offer easier access to applications, databases, or automated
workflows.

• Testing alternative resourcing models. For example, where availability is crucial, a virtual private
cluster could guarantee access to particular research groups for specific periods of time.

• Understanding which scientific applications and user communities are best suited for cloud
computing.

• Understanding the deployment and support issues required to build large science clouds. Is it
cost-effective and practical to operate science clouds? How could commercial clouds be
leveraged?

• Determining how existing cloud software meets the needs of science and whether extending or
enhancing current cloud software improves utility.

• Determining how well cloud computing supports data-intensive scientific applications.
• Determining the challenges in addressing security for a virtualized cloud environment.

9.2.1.4 Open Cirrus [64]
This is a broad consortium of some 14 partners exploring cloud computing. The quite powerful test-
bed consists of more than 600 nodes at four major sites: KIT (Karlsruhe Institute of Technology),
the University of Illinois at Urbana Champaign, HP Labs in Palo Alto, California, and the BigData
cluster at Intel Research in Pittsburgh. The Open Cirrus testbed is designed to support research into
the design, provisioning, and management of services at a global, multidata-center scale.

The open nature of the testbed is designed to encourage research into all aspects of service and
data-center management. In addition, Open Cirrus aims to foster a collaborative community around
the testbed, providing ways to share tools, lessons, and best practices, and ways to benchmark and
compare alternative approaches to service management at data-center scale.

9.2.1.5 Open Cloud Testbed [36]
The Open Cloud Consortium (OCC) is a member-driven organization that supports the development
of standards for cloud computing and frameworks for interoperating between clouds, develops
benchmarks for cloud computing, and supports reference implementations for cloud computing.
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The OCC also manages a testbed for cloud computing, the Open Cloud Testbed, and operates cloud
computing infrastructure to support scientific research, called Open Science Data Cloud, with an
emphasis on data-intensive computing. As of November 2010, the Open Cloud Testbed includes
sites at Chicago (two), California (La Jolla, California), and John Hopkins University, with a total
of 250 nodes and 1,000 cores.

9.2.1.6 Science Clouds [76]
Science Clouds is an open cloud federation providing compute cycles in the cloud for scientific
communities exploring the use of Nimbus. The infrastructure federates sites across Europe and the
United States. As of November 2010, it consists of the Nimbus Cloud at the University of Chicago,
Stratus at the University of Florida, Wispy at Purdue University, and some machines in the Czech
Republic.

9.2.1.7 Sky Computing [43]
This project is aligned with Science Clouds and, like the European Reservoir project, is designed to
federate multiple clouds into a single resource. Linking separate clouds together can help scalability
(increasing the number of resources), but also improves fault tolerance. The federation also supports
the special case of a hybrid cloud—two clouds, one private and one public. Sky Computing has
been developed to extend Nimbus (see Section 6.6.1) to support multiple distinct clouds.

One good example of the Sky Computing project is a demonstration that showed the bioinfor-
matics program BLAST controlled by Hadoop running on 1,000 cores in six different sites: three in
the United States on FutureGrid (discussed earlier) and three on Grid’5000 [5] in Europe. This dis-
tributed federation was enabled by Nimbus for cloud management, offering VM provisioning and
contextualization services, from the University of Florida to enable all-to-all communication among
multiple clouds, and Hadoop for parallel fault-tolerant execution of BLAST. Network virtualization
is also supported in Reservoir [22].

9.2.1.8 Venus-C [79]
Venus-C is a European project exploring the applicability of cloud computing in areas such as
building structure analysis, 3D architecture rendering, prediction of marine species population, risk
prediction for wildfires, metagenomics, system biology, and drug development. The project explores
both Azure (Windows platforms) and Eucalyptus-based infrastructure at two European HPC centers:
the Royal Institute of Technology (KTH, Sweden) and the Barcelona Supercomputing Center (BSC,
Spain). The project will develop interoperability tools between different clouds for various
applications.

9.2.2 Data-Intensive Scalable Computing (DISC)
As elaborated in previous chapters, we live in an era of data explosion. In 2007, Randal Bryant was
among those who called attention to the increasing demand for data-intensive scalable computing.
In this section, we extract some observations he made and compare them to the potential of data-
center-based cloud computing.
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9.2.2.1 Big Data Sources
In today’s data-driven world, huge databases are generated from science in astronomy, genomics,
natural languages, and seismic modeling, among other applications. In addition, scanned books,
newspapers, and historical documents are creating a data ocean. In commerce, corporate sales, stock
market transactions, census data, and airline traffic data all demand the handling of large data sets
on a daily basis. Other good examples come from the areas of entertainment and medicine. Two
sources, according to Bryant, are Wal-Mart and Sloan Digital Sky, as discussed in Example 9.5.

Example 9.5 Wal-Mart Data Warehouse and Sloan Digital Sky Survey [5]

The first example of big data sources comes from the global operations of Wal-Mart. Wal-Mart has 6,000
stores with supply chains involving more than 10,000 manufacturers. Each day, Wal-Mart sells 267 million
items. HP helped Wal-Mart to build data centers to handle 4 petabytes of data daily. Wal-Mart needs to
perform DISC for data mining and management of all its supply chains, understanding market trends, and
formulating pricing strategies.

The second example comes from the Sloan Digital Sky Survey. Its telescope, in the New Mexico Obser-
vatory, captures 200 GB of image data per day. Its latest data set consists of 10 TB of data on 287 million
objects in outer space. Sloan uses SkyServer to provide SQL access in DISC-like data processing
continuously.

To build DISC systems to handle the oceans of data in both examples, one must solve the skinny
processing pipe problem. Use of many-core GPUs has created a possible solution to exploit massive
data-level parallelism in these DISC applications. Cloud computing may be slow compared with super-
computers, but massive parallelism is achieved through the use of large numbers of data centers
collectively.

9.2.2.2 DISC Systems versus Supercomputers
Table 9.4 summarizes four technical differences between DISC systems and conventional super-
computers. In general, supercomputers are essentially used in batch mode and it is difficult to tune
a supercomputer due to limited user control. Heavy data movement or I/O activities exist when
using supercomputers. It is rather challenging to optimize program execution on a supercomputer.
The major advantage of supercomputers lies in their sustained raw speed if everything is put
in order.

On the other hand, DISC systems are HTC data-center clusters which have all the advantages of
server clusters we discussed in previous chapters. In other words, DISC systems are much better in
terms of satisfying a large number of simultaneous users with a high task throughput rate. Data cen-
ters can eliminate all single points of failure. Therefore, they are more reliable and highly available.
Above all, DISC systems are more cost-effective or time/space-efficient for small users. They can
handle distributed computing applications using the cloud service model. Figure 9.10 show the dis-
tinctions between the two supercomputing paradigms. The advantages of using the DISC architec-
ture to satisfy HTC applications in distributing systems or cloud data centers are obvious from this
comparison.
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9.2.3 Performance Metrics for HPC/HTC Systems
HPC performance has been well defined over the years. The most popular metrics used are Gflops
and Tflops in the past, Pflops on top systems now, and Eflops for the future. Parallel benchmarking
programs are available to evaluate HPC systems in batch processing of a large-scale problem.
Well-known benchmark programs include the Linpack Benchmark, NAS, Splash, and Parkbench
[41]. On the other hand, HTC performance on business servers, clusters, data centers, and cloud

Table 9.4 DISC Systems versus Supercomputers

Features Conventional Supercomputers
Data-Intensive Scalable
Computing (DISC)

System
architecture

An HPC system by which data is
retrieved from remote sites and brought
into the system for execution. Heavy
data movement overhead.

An HTC data-center cluster which
collects and maintains data.
Computation collocated with storage for
faster access. No data movement
overhead.

Programming
models

Machine-dependent programs written at
a very low level. Use fewer software
tools; need specialists to optimize.

Machine-independent application
programs on data. Use runtime system
controls to optimize execution through
load balancing, etc.

System access
and use model

Main machine for batch processing
when resources are ready. Uses offline
visualization at remote site.

Interactive access with priority control
and user intervention over large number
of users simultaneously.

Reliability issues Brittle systems with which to recover
from most recent checkpoint. Must
bring down system for maintenance.

Flexible error detection and recovery.
Use redundancy techniques to enter
graceful degraded operations in case of
failure.

Courtesy of Randal Bryant [5].
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Programmer’s perspectives of DISC systems against conventional supercomputers.
(Courtesy of Randal Bryant [5], Reprinted with Permission)
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systems is much more complex a problem to evaluate because the systems are used by many clients
simultaneously.

Thus, HTC performance is attributed to many orthogonal factors. Some of them are measurable
and some are not. The basic assumption is that many (millions or more) independent users may use
the shared resources in the cloud or data centers simultaneously. The goal is to satisfy as many con-
current users as possible, even if each user program is a simple web service, social contact, or sim-
ple cloud storage. In this section, we attempt to present some performance evaluations and QoS
assessment models for both HPC and HTC systems.

9.2.3.1 Basic Performance Attributes
The performance models applied to evaluate MPPs, data-center clusters, and virtualized clouds
could be very different. To fit the layered structure of the cloud computing paradigm, the perfor-
mance metrics of IaaS serve as a basis to model PaaS performance. Similarly, the attributes applic-
able to model PaaS performance serve as a foundation to evaluate SaaS performance. A good
model should be able to cover all the layers of computing services. The model is generic in the
sense that it applies to various cloud platforms under different workload distributions. To assess
QoS in cloud services, the impacts on the top layer (SaaS) should remain transparent to the lower
layers (PaaS and IaaS). A cloud platform should be built to serve many users simultaneously.

Therefore, multitasking is a necessity to assess distributed system performance. Five basic per-
formance metrics are introduced in this section: namely system throughput, multitasking scalability,
availability measure, data security, and cost-effectiveness. This analytical model offers a first-order
approximation to model the performance of any HPC or HTC system, including elastic clouds. One
can always add more performance attributes to expand the model from the user’s perspective to
cover more dimensions or those concerns by service providers. In other words, refined performance
models could be extended from basic attributes to include program behavior, environmental
demand, QoS, and cost-effectiveness.

9.2.3.2 System Throughput and Efficiency
In general, the system throughput of a distributed system or a cloud platform measures the number
of jobs that can be done per unit of time. The throughput measure is attributed to several key fac-
tors that affect the total execution time (Ttotal) of all jobs processed in a given time window. First,
we have to examine all component times in Ttotal. Each job submitted may experience an initiation
time to acquire resources. This overhead time includes the boot time of all machine instances and
the scheduling time of incoming user jobs. The type of the application program limits horizontal
scalability. In general, the overhead can be attributed to five components: infrastructure initiation
delay, resource provisioning delay, interjob communication delay, OS overhead, and loading appli-
cation software overhead.

The OS and software overheads remain constant in running different jobs. The other three time
factors may vary with problem size and system management policies. For simplicity in analysis, we
lump all five time factors into a single overhead time kTo, where To is their sum averaged over
many jobs running in a fixed time interval. The constant k is a platform-dependent coefficient that
varies with specific system configurations. This overhead applies to all three system models pre-
sented in this book. Let Te(n, m) be the effective execution time to complete n independent jobs in
a cloud platform, where m accounts for the number of machine instances in a given system
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configuration. These machine instances could be cluster nodes (or processor cores) if physical ser-
vers are used, or VM counts if a virtualized cloud is used.

We compute the total job execution time (or makespan) with Ttotal = kTo + Te(n, m). Then the
system throughput (π) is defined by:

π = n/Ttotal = n/½kTo + Teðn,mÞ� (9.1)

In the ideal case, the overhead kTo is assumed to be very small or simply zero, compared with the
magnitude of the execution time Te. Hence, the ideal throughput is simply measured by n/Te(n, m).
The system efficiency (α) is defined by normalized throughput as follows:

α = π/½n/Teðn,mÞ� = Teðn,mÞ/½kTo +Teðn,mÞ� (9.2)

System efficiency represents the effective utilization of all provisioned resources in a system.
Note that the parameters n and m in the expression Te(n, m) vary with the workload (user number),
system size (m), the parallel and distributed computing model applied.

9.2.3.3 Multitasking Scalability
Multitasking implies the use of a system to handle many jobs simultaneously or concurrently. Sys-
tem services should be able to scale both horizontally across the machine or cluster size and verti-
cally from applications to middleware, runtime and OS support, and hardware. The ability to scale
resources dynamically is crucial to provide elastic resources. By horizontal scalability, we mean to
increase cloud resources of the same type. For example, the number of VM instances offers such a
measure in a cloud.

Vertical scalability means the increase in performance due to adding more resources along the
service layers. For simplicity in illustrating scalability, we concentrate on horizontal scalability.
However, we consider both scale-up and scale-down situations. Sometimes, scaling down could be
more efficient than scaling up. The potential benefit of a system or cloud platform is largely attribu-
ted to being able to scale resources up and down dynamically, on demand.

We define the multitasking scalability (β) as follows. Recall that m is the number of machine
instances and n is the total number of user jobs (or tasks) being processed. In general, we have
n >> m, because n could be in millions and m only in the hundreds. The upper bound on scalabil-
ity is roughly indicated by the ratio n/m, which is the average number of user jobs executed per
machine instance, when all overhead times To are ignored. The higher the overhead time, the lower
the scalability. Of course, one can increase the magnitude of m to approach n to get a 100 percent
scalability. In reality, achieving a scalability β of around 20 percent is already very good in a real-
life server cluster.

β = ðn/mÞα = ðn/mÞTeðn,mÞ/½kTo + Teðn,mÞ� (9.3)

9.2.3.4 System Availability
System availability (γ) refers to the percentage of time the system is up and running normally. This
percentage reflects the effects of downtime after unexpected failures and scheduled maintenance for
software upgrades. Recall the availability definition given in Example 1.5 in Chapter 1; system
availability is defined by the ratio of MTTF (mean time to failure) to the sum of MTTF and MTTR
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(mean time to repair). That definition applies to all systems (clusters, MPPs, grids, and clouds) stu-
died in this book.

High availability (HA) specifies the performance level of a system with controlled downtime
through quick recovery from failure. The term “continuous availability” (CA) refers an operational
level with almost no failure. Generally speaking, system availability should be the responsibility of
the providers. Usually, availability is maintained sufficiently high with at least five 9s, meaning that
with 99.999 percent of uptime (at most, five minutes of downtime per year) the system can provide
services. Of course, an HA cluster could demand 99.99999 percent availability, meaning only three
seconds of downtime per year. In general, that would be very expensive to achieve in a real-life
machine environment.

9.2.3.5 Security Index
We assessed the vulnerability of commercial cloud platforms in Sections 6.3 and 6.5. Availability is
affected by platform architecture, service models applied, system vulnerability, and resilience to net-
work attacks. Google has hundreds of data centers and more than half a million servers. The plat-
form consists of the server cluster, GFS, and data centers. We discussed security issues in more
detail in Section 6.5. Here we summarize important factors affecting cloud security in a dynamic
cloud environment.

Cloud security is attributed to user confidentiality, data integrity, access control, firewalls, IDSes,
defense capability against viruses or worm attacks, reputation systems, copyright protection, data
lock-in, APIs, data-center security policies, trust negotiation, and security auditing services.
We suggest fine-grained access control at the file level in data centers. Trust among resource sites
can be negotiated with nonconflicting security policies. To secure elastic resources, the reputation
system should be designed to safeguard scattered resource sites and data centers. The resource site
security index (δ) and user-access records should be maintained through periodic auditing.

9.2.3.6 Cost Effectiveness
This refers to the estimate of an effective scale of economy achievable by a given system. The fol-
lowing cost model for clouds is a rough estimation. This model considers costs by both the cloud
service provider and the data-center owner. The provider must pay the data-center owner for the
resources used even if they belong to the same company. Regardless of the cloud service model
applied, the cost of cloud usage is primarily determined by the hours used.

We denote c as the hourly charge to the user by the provider and h as the number of service
hours provided to end users. The total income of the provider from user payment of the service is
calculated by Costp = hc. The total cost the provider paid to the data center is estimated by Costd =
h(d/u), where d is the hourly charge by the data center and u is the utilization rate of the data-center
resources. This rate often falls in the range of 0.6 to 0.8 as estimated by the Berkeley Group. The
cost-effectiveness (μ) of the cloud service is a measure for assessing the profit margin by the service
provider.

μ = ðCostp −CostdÞ/Costd = ðhc− hd/uÞ/ðhd/uÞ = cu/d− 1 (9.4)

As a numeric example, given c = $3/hour, d = $1/hour, and u = 60 percent in using Amazon
EC2, this means the provider has a profit margin of μ = 80 percent on top of its cost if the data-
center resources are 60 percent utilized. This cost model gives a very rough estimate of the profit
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margin by the provider. If the provider charges the user a reduced hourly rate of $2/hour, the profit
will be reduced to only 20 percent of the cost. In general, c is set to be greater than d by a large
margin.

9.2.4 Quality of Service in Cloud Computing
We present the cumulative performance of a cloud platform by a compound metric, called quality
of cloud services (QoCS) and denoted by θ. This metric measures the overall quality of the cloud
service, regardless of the particular service models applied. We use a five-dimensional Kiviat graph to
plot the aggregated cloud performance or to quantify the QoCS graphically. Each Kiviat graph has
five orthogonal dimensions, representing the five performance attributes we introduced earlier. The
Kiviat graph provides a holistic view of the capabilities of the cloud service model. The shaded area
of the Kiviat graph represents the cumulative strength or quality of the cloud service being provided.

Specifically, the larger the shaded area Ashaded on the Kiviat graph for a given user application
running on the cloud platform, the better the QoCS, θ, of the cloud platform being tested for a given
cloud application. The scale and range of these five dimensions are specified by the template Kiviat
graph in Figure 9.11(a). Let Apentagon be the ideal operating area of the pentagon in the Kiviat graph.
The scale on all dimensions is normalized to be 1. In other words, the maximum radius of the penta-
gon is set to be 1 along all dimensions. All five fractional measures are scaled from 0 to 1. The scale
of 0 is located at the center of the perfect pentagon, meaning the lowest values of the five perfor-
mance parameters (α, β, γ, δ, μ). The parameter value of 1 means the highest performance in each
dimension of the measure. We formally defined the QoCS by the following ratio:

θ = Ashaded/Apentagon (9.5)

The lower value of the θ measure means poor performance. The higher value of θ toward 1
implies higher performance. Figures 9.11(b–d) show the corresponding Kiviat graphs for three cloud
services hypothetically running on three cloud platforms. This is based on the aforementioned ana-
lytical modeling of cloud performance. It would be interesting to validate the analytical results with
real-life benchmark experiments on the cloud platforms from Amazon, Google, and Salesforce.com.

Example 9.6 Performance Analysis of Three Cloud Services

Three cloud service models are evaluated analytically by projected hypothetical runs with three known
cloud applications. One can run Amazon EC2 to test IaaS performance. The SaaS test runs on GAE with
Salesforce.com’s CRM software. The Hadoop application is tested on IBM Blue Cloud to project PaaS per-
formance. These projected runs are under two extreme cloud conditions: One corresponds to the best sce-
nario with HA and high security assurance, and the other corresponds to the worst case of low availability
and insecurity. The remaining three dimensions assume attribute values by common-sense estimates.

The small pentagon areas in Figure 9.11(b) and 9.11(d) resulted from the worst-case experiments. In
Figure 9.11(c), the EC2 application is tested on the AWS platform under the best platform conditions with
high efficiency, continuous availability, highly secured data centers, and cost-effective returns. The Kiviat
graph in Figure 9.11(c) reports the best results with a much larger pentagon area. These plots demon-
strate the relative strengths and weaknesses of the three cloud service models in terms of the five attri-
butes (α, β, γ, δ, μ).
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The results shown in Table 9.5 are estimated values of QoCS and the relative rankings of the three
cloud service models under optimistic versus pessimistic assumptions. The pessimistic QoCS results indi-
cate that all three service models have demonstrate about 30 percent of their maximum performance. The
QoCS of the IaaS is very low compared with those for the PaaS and SaaS models shown in Figure 9.11(b)
and 9.11 (c), respectively. This happens because of the scalability constraints and lower cost-effectiveness
values assumed. The QoCS of the PaaS and SaaS models are fairly close to each other, with the PaaS
model being secure and efficient and SaaS being cost-effective.

Table 9.5 Relative Performance of Three Computing Cloud Service Models Applied to an EC2
Application under Two Extreme Security and Availability Conditions

Service Model

QoCS of Cloud
Services θ,
under Worst-
Case Scenario

Ranking Order
under Worst-
Case Scenario

QoCS of Cloud
Services, θ,
under Best-
Case Scenario

Ranking Order
under Best-
Case Scenario

IaaS 19.3661% 3 59.7055% 1
PaaS 25.5026% 1 54.4187% 2
SaaS 22.2344% 2 52.1941% 3

Efficiency (α)

Scalability (β)

Availability (γ )Security (δ )

Cost (μ)
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Kiviat graphs showing the QoCS of three cloud service models under assumed running conditions on
five attribute dimensions.

(Courtesy of K. Hwang and S. Kulkarni, USC 2009 )
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In an optimistic analysis, the QoCS of the three cloud service models are in the range of 50 percent to
60 percent. The IaaS model performs better than the PaaS and SaaS models. This is attributed primarily
to improved efficiency, scalability, and security measures. The PaaS and IaaS models have similar levels of
performance. The PaaS model is slightly higher in performance than the IaaS model, thanks to significant
improvements by providers of PaaS in the areas of efficiency and scalability. However, the ranking of IaaS,
PaaS, and SaaS models varies with specific applications. Benchmark experiments are needed to rank
cloud performance.

9.2.5 Benchmarking MPI, Azure, EC2, MapReduce, and Hadoop
Several detailed benchmarking studies of cloud system have been conducted [23–29] on HPC appli-
cations. Some of these conclusions may be a little misleading as they use technologies such as mes-
sage-passing interface (MPI), which is usually unsuitable for clouds, rather than, say, MapReduce,
whose features we discussed in Chapter 6. Other studies [15,30–38] have taken a more focused
look at scientific problems which, as we discussed in Section 6.2.6, work well with clouds. Some
of the latter results on the performance of Twister were discussed in Section 6.2.2 and are not
repeated here.

9.2.5.1 Competitive Cloud Performance
Our understanding is that clouds offer competitive performance and pricing for applications and
programming paradigms that are well suited to cloud environments. For these cases, one benefits
from the obvious utility computing feature of clouds, and for PaaS, one can also benefit from plat-
form features such as Azure Table/Amazon SimpleDB which are not available on traditional HPC
clusters. Performance-relevant problems with clouds include the bandwidth and cost of transmitting
data to them; performance degradations in I/O which impact latency and bandwidth of MPI; and
consequences of virtualization that negatively impact the affinity between compute and storage and
between different compute instances [39]. Traditional large-scale simulations—often requiring low-
latency, high-bandwidth communications and clever data decomposition schemes—perform very
poorly on clouds.

The costs of various implementations were examined [41] on Amazon EC2 with the conclusions
that compute costs dominated over storage but that costs are sensitive to particular Amazon instance
types (Table 6.13). This sensitivity appears in many studies and suggests that the first step in any
major cloud activity is to optimize the instance types used. Another astronomy application [42]
looked at Amazon EC2 for the Nearby Supernova Factory (SNfactory) analysis environment that
relies upon a complex pipeline of serial processes that execute various image processing algorithms
in parallel on ~10 terabytes of data. This paper found that careful attention was needed to use sto-
rage effectively on EC2 while the original Linux cluster application needed modification to cope
with failures present on clouds. Note that cloud-optimized environments such as MapReduce have
failure tolerance built in.

9.2.5.2 MPI versus MapReduce Performance
Now we describe a set of performance measurements from the SALSA group at Indiana University
comparing MPI, MapReduce, and master-worker approaches on clouds and traditional platforms using
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Linux and Windows [22,39]; further details may be found in papers from this group. Consider the
performance of running the generative topographic mapping (GTM) interpolation algorithm on various
EC2 sizes. The purpose is for dimension reduction to analyze the NIH PubChem data set of 26.4 million
data points in 166 dimensions. Azure tests on variable instances are shown in Figure 9.12.

The EC2 tests were performed on EC2 Large, High-CPU-Extra-Large (HCXL), and High-Memory-
Quadruple-Extra-Large (HM4XL) instances separately. HM4XL and HCXL instances use eight cores
per instance while “large” instances use two cores per instance. The MapReduce implementations lie in
the middle. The low efficiency is due to memory bandwidth effects on individual nodes, which is most
pronounced for DryadLINQ runs on 16 core systems, whereas Hadoop systems had eight cores per
node. This example illustrates that the cloud instance choice does affect the scalable performance.

9.2.5.3 MapReduce on Clouds and Bare Metal
Finally, we look at four different implementations of MapReduce [38] on the SWG computation
introduced earlier (Figure 9.13). We compare MapReduce developed on Azure by the SALSA
group with Hadoop on bare metal and two Amazon implementations: the “official” elastic MapRe-
duce and Hadoop implemented on Amazon instances. The largest effect is a trivial one—the C#
implementation is slower than the Java distance computation. This is removed by dividing out the
single computation performance.

Amazon EC2 is typically six times slower than a mid-range Linux cluster, and 20 times slower
than a modern HPC system. However, the hardware, software, and interconnect on the EC2 cloud
platform limit its performance in terms of raw speed. Clouds are very successful in business appli-
cations. In the scientific arena, data-intensive problems have achieved significant success on clouds,
for two reasons. First, they often have the closely coupled structure that is well supported in clouds.
Second, these are typically “new applications” which are attractive to build from scratch with
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Cloud performance variation with respect to the number of virtual cores used [19].
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programming models suited for clouds. Most of the current studies have looked at test kernels of a
problem, but we can highlight two papers that examine complete applications. Montage delivers
science-grade mosaics of the sky to a community composed of both professional and amateur
astronomers and can naturally be implemented as a service in the cloud.

9.3 ENABLING TECHNOLOGIES FOR THE INTERNET OF THINGS
In ubiquitous computing, the Internet of Things (IoT) provides a network of sensor- or radio-
connected devices that can be uniquely identified and located in the cyber-physical space. This IoT is
mostly wirelessly connected as a self-configuring network of radio-frequency tags, low-cost sensors,
or e-labels. The concept is attributed to original auto-ID tracking in 1999. The term “IoT” combines
RFID technology with today’s IPv6-based Internet technology. All things (objects) have IP addresses,
which can be uniquely identified. The IP-identifiable objects are readable, recognizable, locatable,
addressable, and/or controllable via the Internet, aided by RFID, WiFi, ZigBee, mobile networks, and
GPS. The IoT enabling technologies are covered in this section for object tagging, wireless sensing,
and locating positions. Interesting IoT applications are presented in Section 9.4.

9.3.1 The Internet of Things for Ubiquitous Computing
As introduced in Chapter 1, the IoT is a natural extension of the Internet. The foundation of the IoT
is radio-frequency identification (RFID). This enables the discovery of tagged objects and mobile
devices by browsing an IP address or searching for a database entry. Whereas RFID is a kind of
amoeba of the pervasive computing world, the IoT presents a vision of the future. In the nineteenth
century, computers learned to do as instructed. In the twentieth century, computers learned to think.
In the twenty-first century, computers want to learn how to perceive by sensing and understanding.
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Relative SWG performance of MapReduce on four cloud platforms: Azure MR, Amazon EMR, Hadoop on
EC2, and Hadoop on bare metal [19–22,67,68].
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Everyday objects include not only electronic devices, but also objects such as humans, animals,
food, clothing, homes, vehicles, commodities, trees, hills, and landmarks. The IoT system could
greatly reduce the chances of a company running out of stock or wasting products, as all concerned
parties would know exactly what products are needed. Mislaid items and physical theft would be
affected by the fact that the location of an item would be known to all parties. This demands that all
objects on Earth be radio-tagged, ranging from a milk carton to a truck container to a jumbo jet. Com-
puters identify and manage all tagged objects in the same way humans do. This IoT system will
improve our quality of life and make society cleaner and more secure, convenient, and enjoyable.

9.3.1.1 Ubiquitous Computing
Ubiquitous computing is a post-desktop model of human-computer interaction in which information
processing is integrated into everyday objects and activities. For daily activities, people may engage
in using many pervasive devices simultaneously. They may not even be aware of the existence of
the interactive devices. Although the idea is simple, its application is difficult. If all objects in the
world were equipped with minuscule identifying devices, daily life on our planet could undergo a
major transformation.

The IoT cannot be realized without systems design and engineering, and user interfaces. Con-
temporary human-computer interaction models, whether command-line, menu-driven, or GUI-based,
are inappropriate and inadequate to meet ubiquitous computing demands. The natural IoT paradigm
appropriate to a ubiquitous computing world has yet to emerge. Contemporary devices that lend
support to ubiquitous computing include smartphones, tablet computers, sensor networks, RFID
tags, smart cards, GPS devices, and others.

9.3.1.2 Development of the Internet of Things
In 2005, the concept of the IoT entered the limelight. The IoT should be designed to connect the
world’s objects in a sensory manner. The approach is to tag things through RFID, feel things
through sensors and wireless networks, and think things by building embedded systems that interact
with human activities. A road map for IoT development is shown in Figure 9.14 to anticipate the
desired technology advances to make the IoT a reality in 25 years. In 2002, the U.S. National
Science Foundation (NSF) called for the convergence of cutting-edge technologies including ubiqui-
tous computing and nanotechnology.

In April 2008, the U.S. National Intelligence Council published a report titled “Disruptive Civil
Technologies,” which also identified the IoT as a critical technology on U.S. interests out to 2025.
Quantitatively speaking, the IoT should be designed to encode 50 trillion to 100 trillion objects.
Moreover, the IoT should be designed to follow the movement of those objects. With today’s popu-
lation of more than 6 billion worldwide, that means every person is surrounded by 1,000 to 5,000
objects on a daily basis.

9.3.1.3 Enabling and Synergistic Technologies
Many technologies can be applied to build the IoT infrastructure and specific IoT systems for
special application domains. Supportive technologies are divided into two categories. Enabling
technologies build up the foundations of the IoT. Among the enabling technologies, tracking
(RFID), sensor networks, and GPS are critical. We will further illustrate these in Figure 9.19.
Synergistic technologies play supporting roles, as shown Table 9.6. For example, biometrics
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could be widely applied to personalize the interactions among humans, machines, and objects.
Artificial intelligence, computer vision, robotics, and telepresence can make our lives more auto-
mated in the future.

The IoT development could become more mature and more sophisticated in the next 15 years.
Figure 9.14 shows the major technology advances and key applications that may benefit from the

Ability of devices located
indoors to receive
geolocation signals

Miniaturization, power-
efficient electronics, and
available spectrum

Software agents and
advanced sensor
fusion

Teleoperation and
telepresence: Ability to

monitor and control
distant objects Physical-world

web

Ubiquitous positioning

Locating people and
everyday objects

Vertical-market applications

Surveillance, security,
healthcare, transport,
food safety, document

management

Supply-chain helpers

2000

T
ec

hn
ol

og
y 

re
ac

h

2010 2020

Time

Demand for expedited
logistics

Cost reduction leading
to diffusion into 2nd
wave of applications

RFID tags for
facilitating routing,

inventorying, and loss
prevention

FIGURE 9.14

Technology road map of the Internet of things.
(Source: SRI Consulting Business Intelligence )

Table 9.6 Enabling and Synergistic Technologies for the IoT

Enabling Technologies Synergistic Technologies
Machine-to-machine interfaces Geotagging/geocaching
Protocols of electronic communication Biometrics
Microcontrollers Machine vision
Wireless communication Robotics
RFID Augmented reality
Energy harvesting technologies Telepresence and adjustable autonomy
Sensors and sensor networks Life recorders and personal black boxes
Actuators Tangible user interfaces
Positioning or location technology (GPS) Clean technologies
Software engineering Mirror worlds
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IoT. For example, supply chains are now better supported than before. Vertical market applications
may represent the next wave of advances. Ubiquitous positioning is expected to become a reality as
we move toward 2020. Beyond that, a physical IoT may be in place in a global scale. These
advances will significantly upgrade human abilities, societal outcomes, national productivity, and
quality of life.

9.3.1.4 Architecture of the Internet of Things
The IoT system is likely to have an event-driven architecture. In Figure 9.15, IoT development is
shown with a three-layer architecture. The top layer is formed by driven applications. The appli-
cation space of the IoT is huge, and will be discussed in Section 9.4.1. The bottom layers repre-
sent various types of sensing devices: namely RFID tags, ZigBee or other types of sensors, and
road-mapping GPS navigators. The sensing devices are locally or wide-area-connected in the
form of RFID networks, sensor networks, and GPSes. Signals or information collected at these
sensing devices are linked to the applications through the cloud computing platforms at the mid-
dle layer.

The signal processing clouds are built over the mobile networks, the Internet backbone, and
various information networks at the middle layer. In the IoT, the meaning of a sensing event does
not follow a deterministic or syntactic model. In fact, the SOA model is adoptable here. A large
number of sensors and filters are used to collect the raw data. Various compute and storage clouds
and grids are used to process the data and transform it into information and knowledge formats.
The sensed information is used to put together a decision-making system for intelligence
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The architecture of an IoT consisting of sensing devices that are connected to various applications via mobile
networks, the Internet, and processing clouds.
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applications. The middle layer is also considered as a Semantic web or grid. Some actors (services,
components, avatars) are self-referenced.

9.3.2 Radio-Frequency Identification (RFID)
RFID is applied with electronic labels or RFID tags on any objects being monitored or tracked. The
tagging may be applied to any objects, such as merchandise, tools, smartphones, computers, ani-
mals, or people. The purpose is to identify and track the objects using radio waves or sensing sig-
nals. Some tags can be read from tens or hundreds of meters away via a wireless reader. Most
RFID tags contain at least two major parts. One is an integrated circuit for storing and processing
information, modulating and demodulating a radio-frequency (RF) signal, and other special func-
tions. The other part is an antenna for receiving and transmitting the radio signals.

9.3.2.1 RFID Tags and Device Components
There are generally three types of RFID tags: active RFID tags containing a battery and transmitting
signals autonomously, passive RFID tags which have no battery and require an external source to
provoke signal transmission, and battery-assisted passive RFID tags which require an external
source to wake up the battery but have significantly higher forward link capability. Based on the
radio frequency used, the passive RFID tags operate with from low frequency (LF) to high fre-
quency (HF), ultra high frequency (UHF), and the microwave range. In terms of functionality, there
are three major components of RFID hardware:

• RFID tag A tiny silicon chip attached to a small antenna.
• Reader antenna Used to radiate the energy and then capture the return signal sent back from

the tag. It can be integrated with a handheld reader device or connected to the reader by cable.
• Reader The device station that talks with the tags. A reader may support one or more antennae.

Resembling an electronic barcode, a reader device can detect signals even without a line of sight.

Some RFID readers can identify multiple objects concurrently. And some RFID tag-reader archi-
tectures support security features such as requiring a human operator to input a challenge code
before decoding an ID. RFID devices have varying sizes, power requirements, operating frequen-
cies, amounts of rewritable and nonvolatile storage, and software intelligence. They operate from a
few centimeters to hundreds of meters. However, larger devices having an internal power source
tend to operate at longer ranges. Conversely, very smaller devices have no internal power source.

9.3.2.2 How RFID Works
Innovations in RFID include active, semi-active, and passive RFID tags. These tags can store up to
2 KB of data and are composed of a microchip, antenna, and battery for active and semi-passive
tags. The tag’s components are enclosed within plastic, silicon, or sometimes glass. Data stored in
the microchip waits to be read. The tag’s antenna receives electromagnetic energy from an RFID
reader’s antenna. Using power from its internal battery or power harvested from the reader’s electro-
magnetic field, the tag returns radio signals back to the reader. The reader picks up the tag’s radio
signals and interprets the frequencies as meaningful data.

There are two ways to couple schemes in RFID tags: inductively coupled or capacitively
coupled. Figure 9.16 shows the RFID operations between the RFID tags (e-labels), reading/writing
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devices, and backend computers. RFID tags are still not in widespread use by ordinary people,
because they are expensive and bulky. They are more often used by large businesses, moving or
shipping companies, and service companies. However, RFID tags can make our daily life or work
much easier, more convenient, and accessible to visible or hidden objects surrounding us. These
tags are not that expensive to produce in large quantities, and they can be made small enough to fit
on almost any product or object.

External RF antenna devices can illuminate the tag devices similar to radar illuminating a target.
However, RFID is more effective at operating at shorter ranges. A variety of agencies are defining
the standards and regulating the use of RFID. They include the International Organization for Stan-
dardization (ISO), International Electrotechnical Commission (IEC), ASTM International, DASH7
Alliance, and EPCglobal. RFID has many industrial applications including merchandise tracking
and supply chain management. Its use can improve the efficiency of inventory control and accuracy
of assembly line management. Active and semi-passive RFID tags use internal batteries to power
their circuits. An active tag can also use its own battery to broadcast radio waves to a reader,
whereas a semi-passive tag relies on the reader to supply its power for broadcasting.

Active and semi-passive tags are reserved for reading over 30 to 100 meters, if repeater batteries
are used to boost a tag’s range. For example, a customer finds a pair of jeans in her size on a store
shelf with a radio wand provided by the store. She can order the clothing and pay via her cell phone
with the help of an RFID setting. Passive RFID tags rely entirely on the reader as their power source.
These tags are read only up to 20 feet away. They have lower production costs, meaning they can be
applied to less expensive merchandise. These tags are manufactured to be disposable. A railway car
may apply active RFID tags. A bottle of shampoo may use only a passive tag.

Another factor that influences the cost of RFID tags is data storage. There are three storage
types: read-write, read-only, and write-once-read-many (WORM). A read-write tag’s data can be
added to or overwritten. Read-only tags cannot be added to or overwritten. WORM tags can have
additional data added once, but they cannot be overwritten. Most passive RFID tags cost 7–20
cents each. Active and semi-passive tags are more expensive, and RFID manufacturers typically do
not quote prices for these tags without first determining their range, storage type, and quantity.
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RFID tagging and signals read/write through sensor or WiFi networks.
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The RFID industry’s goal is to get the cost of passive RFID tags down to 5 cents each once more
merchandisers adopt them.

9.3.3 Sensor Networks and ZigBee Technology
Today’s sensor networks are mostly wireless, and are known as wireless sensor networks (WSNs).
A typical WSN consists of spatially distributed autonomous sensors to cooperatively monitor physi-
cal or environmental conditions, such as temperature, sound, vibration, pressure, motion, or pollu-
tants. The development of wireless sensor networks was motivated by military applications such as
battlefield surveillance. WSN technology is now used in many industrial and civilian application
areas, including process monitoring and control, machine health monitoring, environment and habi-
tat monitoring, health care and home automation, and intelligent traffic control.

9.3.3.1 Wireless Sensor Networks
A WSN is a group of specialized transducers with a communications infrastructure intended to
monitor and record conditions at diverse locations. Commonly monitored parameters are tempera-
ture, humidity, pressure, wind direction and speed, illumination intensity, vibration intensity,
sound intensity, power-line voltage, chemical concentrations, pollutant levels, and vital body
functions. A sensor network consists of multiple detection stations called sensor nodes, each of
which is small, lightweight, and portable. Every sensor node is equipped with a transducer,
microcomputer, transceiver, and power source. The transducer generates electrical signals based
on sensed data.

The microcomputer processes and stores the sensor output. The transceiver, which can be hard-
wired or wireless, receives commands from a central computer and transmits data to that computer.
The power for each sensor node is derived from the electric utility or from a battery. A sensor node
may vary in size from that of a shoebox down to a dust grain. The cost of sensor nodes also varies
a lot, ranging from $100’s to a few pennies. Size and cost constraints on sensor nodes are often
decided by energy, memory, computational speed, and bandwidth of the sensors used.

9.3.3.2 Wireless Network Support for Ubiquitous Computing
Table 9.7 compares four classes of wireless networks for ubiquitous computing. The ZigBee net-
works are mainly used in low-cost and low-speed monitoring and control applications, such as
those used in a wireless home area network (WHAN). The GSM/GPRS or CDMA/1 networks are
cellular mobile networks that can cover a wide area for voice and data telecommunications. The
WiFi networks specified in the IEEE 802.11b standard. WiFi is used for wirelessly accessing the
Internet, reading e-mails, or conducting web page searches Bluetooth is mainly used for short-
distance wireless connection of computer peripherals (e.g., keyboard, mouse, printers, etc.). In terms
of data rate, WiFi is the fastest (54 Mbps for 802.11g network). The next is Bluetooth with
720 Kbps and 115 Kbps for the 2.5G GPRS mobile network. ZigBee has the slowest rate of 20–
250 Kbps. However, ZigBee has high reliability and low power/cost advantages.

Network self-organization is expected in a sensor network. Given the large number of nodes
and their potential placement in hostile locations, it is essential that the network be able to self-
organize; manual configuration is not feasible. Moreover, nodes may fail (either from lack of
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energy or from physical destruction), and new nodes may join the network. Therefore, the network
must be able to periodically reconfigure itself so that it can continue to function. Individual nodes
may become disconnected from the rest of the network, but a high degree of connectivity must be
maintained.

Collaborative signal processing is desired in a sensor network. To improve detection/estimation
performance, it is often quite useful to fuse data from multiple sensors. This data fusion requires
the transmission of data and control messages. A user may want to query an individual node or a
group of nodes for information collected in the region. Depending on the amount of data fusion per-
formed, it may not be feasible to transmit a large amount of the data across the network. Instead,
various local sink nodes will collect the data from a given area and create summary messages.
A query may be directed to the sink node nearest to the desired location.

9.3.3.3 Three Generations of Sensor Networks
Table 9.8 classifies WSNs into three generations over the past 30 years. The sensors used in the
first generation were mainly vehicle-placed or air-dropped single sensors. They were quite bulky,
like a shoebox, and weighed in the kilograms. Networks assumed only star or point-to-point topolo-
gies and were powered by large batteries that could last hours or days. In the second generation,
the sensors became smaller, like a pack of playing cards, and weighed in the grams, and worked
with AA batteries that lasted for days or weeks. They appear in client/server or P2P configurations.
The current generation are as large as dust particles, weigh only a negligible amount, and are used
in P2P networks for embedded and remote applications.

Wireless ad hoc sensor networks apply a large number of (mostly stationary) sensors: Aside
from the deployment of sensors on the ocean surface or the use of mobile, unmanned, robotic sen-
sors in military operations, most nodes in a smart sensor network are stationary. Networks of
10,000 or even 100,000 nodes are envisioned in the future. The scalability becomes a demand. Low
energy use is expected in the modern sensors. Since in many applications the sensor nodes will be
placed in a remote area, service of a node may not be possible. In this case, the lifetime of a node
is determined by the battery life, thereby requiring reduced energy expenditures or use of solar
energy to power the devices.

Table 9.7 Wireless Networks for Supporting Ubiquitous Computing

Market Name
Standard ZigBee 802.15.4

GSM/GPRS
CDMA/1XRTT WiFi 802.11g

Bluetooth
802.15.1

Application focus Monitoring and
control

Wide area voice
and data

Web, e-mail,
video

Cable
replacement

System Resources 4 KB–32 KB 18 MB+ 1 MB+ 250 KB+
Battery Life (days) 100–1,000+ 1–7 0.5–5 1–7
Network Size Unlimited (264) 1 32 7
Bandwidth (Kbps) 20–250 64–128+ 54,000+ 720
Range (meters) 1–100+ 1,000+ 1–100 1–10+
Success Metrics Reliability, power,

cost
Reach, quality Speed, flexibility Cost,

convenience
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9.3.3.4 ZigBee Network
The term “ZigBee” is originated from the behavior of honeybees when they return to the beehive.
This is a high-level communication protocol using small, low-power, radio-based sensors as specified
by the IEEE 802.15.4 standard. For example, ZigBee devices are applied in WHANs in wireless light
switches and consumer electronics controlled by short-range radio. The ZigBee technology is simpler
to use and less expensive than Bluetooth or WiFi. The RF applied in ZigBee results in low data rates,
long battery life, and secure networking. The low cost allows the technology to be widely deployed
in wireless control and monitoring applications. The low power usage allows a longer life with
smaller batteries. The mesh networking provides higher availability and an extended operating range.
There are three different types of ZigBee devices, as listed here and shown in Figure 9.28:

• ZigBee coordinator (ZC) This is the most capable ZigBee device serving as the coordinator or
the root of a ZigBee network. There is exactly one coordinator in each network since it is the
device that started the network. It is able to store information about the network, including
acting as the trust center and repository of security keys.

• ZigBee Router (ZR) This can act as an intermediate router, passing on data from end device to
end device.

• ZigBee End Device (ZED) This contains just enough functionality to talk to the parent node
(either the coordinator or the router). The end device cannot relay data from other devices. This
relationship allows the node to be asleep a significant amount of the time, thereby ensuring a
long battery life. A ZED requires the least amount of memory, and therefore can be less
expensive to manufacture than a ZR or ZC.

ZigBee devices are required to conform to the IEEE 802.15.4 Wireless Personal Area Network
(WPAN) standard. The standard specifies the lower protocol layers—the physical layer and
the MAC at the data link layer. This standard operates in the unlicensed 2.4 GHz (worldwide),

Table 9.8 Three Generations of Wireless Sensor Networks

WSN Features
First Generation
(1990s)

Second Generation
(2000s)

Third Generation
(2010s)

Manufacturers Custom constructors
(e.g., for TRSS)

Crossbow Technology,
Inc., Sensoria Corp.,
Ember Corp.

Dust, Inc., and others

Physical Size Large shoebox and up Pack of cards to
shoebox

Dust particle

Weight Kilograms Grams Negligible
Node Architecture Separate sensing,

processing, and
communication

Integrated sensing,
processing, and
communication

Integrated sensing,
processing, and
communications

Topology Point-to-point, star Client/server, P2P P2P
Power Supply
Lifetime

Large batteries; hours,
days, and longer

AA batteries; days to
weeks

Solar; months to years

Deployment Vehicle-placed or air-drop
single sensors

Hand-placed Embedded, sprinkled,
left behind
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915 MHz (Americas), and 868 MHz (Europe) radio
bands. In the 2.4 GHz band there are 16 ZigBee
channels, with each channel requiring 5 MHz of
bandwidth. A typical ZigBee network is illustrated
in Figure 9.17. The radios use direct-sequence
spread spectrum coding, which is managed by the
digital stream into the modulator.

The ZigBee has a data rate of 250 Kb/second
per channel in the 2.4 GHz band, 40 Kb/second per
channel in the 915 MHz band, and 20 Kb/second in
the 868 MHz band. Transmission range is between
10 and 75 meters. The output power of the radio is
generally around 1 mW. The basic channel access
mode is Carrier Sense, Multiple Access/Collision
Avoidance (CSMA/CA). That is, the sensor nodes
talk in the same polite way that people converse.
They check to see that no one is talking before
they start. Therefore, the hidden-terminal problem

can be solved using a pair of RTS (request to send) and CTS (clear to send) handshaking signals
to avoid collision.

9.3.3.5 Power Management in Wireless Sensor Networks
The sensors in most WSNs are in sleep mode a majority of the time. As illustrated in Figure 9.18,
sleeping sensors consume only a few µA. They wake up quickly to process the sensed data and return
to sleep again. Active mode is very brief, to minimize power consumption. This periodic application
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FIGURE 9.17

Structure of a typical ZigBee network.
(Source: http://mesh-matrix.com/en/technology/tech_zigbee.aspx )
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Power management in a typical sensor
application pattern.
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pattern results in a long lifetime for the sensors (months or years) without changing batteries. Good
power management is the key to WSN success.

Example 9.7 Wireless Sensor Networks for Health Monitoring

Wireless sensors offer many possibilities for measuring different parameters of the human body and most
of them are imperceptible and comfortable to use. Wireless sensors and a large communication capacity
make it possible to measure people without inhibiting their everyday life; such wireless measurements are
being implemented in the Ubiquitous City. UWB and ZigBee solutions are studied widely in many coun-
tries all over the world, and thus they have become more popular in hospital and rehabilitation environ-
ments (see Figure 9.19).

Even though a wide selection of commercial sensors are available, many factors—for example, motion
artifacts and noise—have to be considered before implementing a sensor into an application. A large number
of measurements and testing with all used sensors needs to be performed to make sure all results are reliable
and ready to be analyzed by a health care professional. Also, combining and analyzing a large amount of data
from different sensors needs a new kind of approach. In addition, implementing a noninvasive glucose
measurement unit into a wireless health monitoring system is being studied intensively.
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Doctor’s
mobile phone
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IEEE802.15.4/
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communications
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FIGURE 9.19

An example of how measured data can be transferred to doctors or medical professionals using a wireless
sensor network.

(Source: www.infotech.oulu.fi/Annual/2007/pics/opme_19_sm.jpg )
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9.3.4 Global Positioning System (GPS)
Location-based service (LBS) helps people and machines find things and determine their physical
whereabouts. Sensors play a role in dead reckoning, but that approach does not satisfy practical
needs for geolocation. This has triggered the creation of global positioning and navigation systems.
The GPS was developed in 1973 by the U.S. Air Force. Similar developments also occurred in the
European Union, Russia, and China. Generally, the GPS is augmented by other signals and cellular
towers. Fixed or orbiting satellite transmitters broadcast timing signals and receiving device
response signals to locate the position of moving objects.

Radar, lidar, and sonar can all detect relative locations of things using electromagnetic, optical,
and acoustic signals. With help from satellites, some objects can be also located by attaching active
GPS devices to disclose their locations by radio, light, and/or sound. Since 1994, a degraded GPS has
been made available for civilian applications in providing reliable positioning, navigation, and timing
services. For anyone with a GPS receiver, the system will provide accurate location and time informa-
tion for an unlimited number of users in all weather conditions, day and night, anywhere in the world.

9.3.4.1 How GPS works
GPS consists of three parts: the space segment, control segment, and user segment. The U.S. Air
Force develops, maintains, and operates the space and control segments. There are 24 satellites
deployed around the Earth in fixed orbits. The satellites orbit at an altitude of approximately 20,200
KM. GPS satellites broadcast signals from space, by which each GPS receiver calculates its 3D
location (latitude, longitude, and altitude) plus the current time. The space segment is composed of
24 satellites in medium Earth orbit and also includes the boosters required to launch them into
orbit. GPS satellites circle Earth twice a day in very precise orbits and transmit signals to Earth.
GPS devices on the ground receive these signals and use a triangulation method to calculate the
user’s exact location. At different times, different satellites will become visible to the receiver.

As shown in Figure 9.20, the control segment is composed of a master control station and a host
of dedicated and shared ground antennas and monitor stations. The user segment is composed of
hundreds of thousands of U.S. and allied military users of the secure GPS precise positioning ser-
vices. Tens of millions of civil, commercial, and scientific users are only allowed to use a degraded
functionality of the so-called standard positioning services that cannot be used in hostile attack pur-
poses. Essentially, the GPS receiver compares the time a signal was transmitted by a satellite with
the time it was received. The time difference tells the GPS receiver how far away the satellite is.
With distance measured from several satellites, the receiver can determine the user’s position and
display it on the unit’s electronic map.

9.3.4.2 Passive versus Active GPSes
The GPS tracking device makes it possible to track people, vehicles, and other assets, anywhere on
Earth. There are two types of GPS tracking systems: passive and active. In passive tracking, the GPS
is just a receiver, not a transmitter. Passive GPS tracking devices lack a transmission capability to
send the GPS data from the vehicle. Therefore, passive GPS is also known as data loggers used pri-
marily as recording devices. Active GPS tracking units incorporate a method to transmit user informa-
tion from a vehicle. Although satellite uplink of data is available, cellular data communication is the
most common and cost-effective. Automatic incremental updating provides a continuous source of
tracking throughout a recording period. This provides current as well as historical logging positions.
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Passive GPS tracking devices store GPS location data in their internal memory which can then
be downloaded to a computer for viewing at a later time, while active GPS tracking systems send
the data at regular intervals to be viewed in real time. When real-time data is not required, passive
GPS tracking devices tend to be favored more by individual consumers for their compact conveni-
ence and affordability. Concerned parents can install a GPS tracking unit just about anywhere in
their teens’ vehicles to monitor their driving habits and know where they’ve been going, and even
law enforcement officials now rely on passive GPS tracking to trail criminal suspects and enhance
civilian safety via electronic surveillance of parolees. Passive GPS tracking units also serve as a
theft prevention and retrieval aid in consumer as well as commercial vehicles.

9.3.4.3 Operating Principles of GPS
Knowing the distance from the receiver to a fixed-position satellite implies that the receiver is on
the surface of a sphere centered at the satellite. With four satellites, the receiver location is detected
at the intersection of four sphere surfaces. The intersection of two satellite spheres is a circle in gen-
eral. This circle could be reduced to a single point, if the two spheres merely touch on their sur-
faces. Having found those two intersecting sphere surfaces, now we consider how the intersecting
circle intersects with a third satellite signal sphere. A circle and a sphere surface intersect at zero,
one, or two points. With the receiver on the surface of Earth, the receiver needs to choose the point
which is closest to the receiver from at most two intersecting points.

Obviously, this triangulation method may result in some errors in narrowing down to exactly
one point with a minimum of inaccuracy. To locate the point accurately, the receiver has to use a
fourth satellite to hone in almost precisely. The fourth satellite sphere will come very close to the

EGNOS satelliteGPS satellite

Reference station

Master station

Correction
signal

FIGURE 9.20

The ground GPS receiver, which calculates its 3D location from four or more satellites with help from a few
ground reference stations and a master station.
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final two intersecting points of three satellite spheres. The final receiver location is thus decided by
noting the closest point calculated from the two final points to the sphere surface of the fourth satel-
lite. In the case of no error, the precise position is located. Otherwise, some offset—say, 10 meters
from the exact location—could be resulted from the error introduced. To further reduce the errors,
more satellites could be involved, but this could be rather costly.

Each satellite continually transmits messages that include the time the message was transmitted,
precise orbital information (the ephemeris), and the general system health and rough orbits of all GPS
satellites (the almanac). A GPS receiver calculates its position by precisely timing the signals sent by
GPS satellites high above Earth. A GPS receiver must be locked onto the signal of at least three satel-
lites to calculate a 2D position (latitude and longitude) and track movement. With four or more satel-
lites in view, the receiver can determine the user’s 3D position (latitude, longitude, and altitude).

Once the user’s position has been determined, the GPS unit can calculate other information,
such as speed, bearing, track, trip distance, distance to destination, sunrise and sunset times, and
more. The receiver utilizes the messages it receives to determine the transit time of each message
and computes the distances to each satellite. These distances along with the satellites’ locations are
used to compute the position of the receiver. This position is displayed perhaps with a moving map
display or latitude, longitude, and elevation information. Many GPS units show derived information
such as direction and speed calculated from positional changes.

9.3.4.4 Triangulation Location Calculation
This location calculation method is illustrated in Figure 9.20. The receiver uses messages received
from four satellites to determine the satellite positions and time sent. The x, y, and z components of
position and the time sent are designated as [xi, yi, zi, ti], where the index i = 1, 2, 3, or 4 to denote
the satellite. Knowing when the message was received tri, the receiver computes the message’s tran-
sit time as tri – ti. Assuming the message traveled at the speed of light c, the distance traveled is
calculated by di = (tri – ti) × c.

Having discussed how sphere surfaces intersect, we now formulate the equations for the case
when errors are present. Let b denote the clock error or bias, the amount by which the receiver’s
clock is off. The receiver has four unknowns, the three components of GPS receiver position and
the clock bias [x, y, z, b]. The equation of the sphere surfaces is calculated by the following expres-
sion for i = 1, 2, 3, and 4:

ðx− xiÞ2 + ðy− yiÞ2 + ðz− ziÞ2 = ð½tri + b− ti�cÞ2 (9.6)

Multidimensional root finding methods such as the Newton-Raphson method can be used. The
approach is to linearize around an approximate solution—say, [x(k), y(k), z(k), b(k)], at iteration k, then
solve four linear equations derived from the quadratic equations above to obtain the corresponding
values at time instance of k + 1. The Newton-Raphson method converges faster than other position
methods. When more than four satellites are available, the calculation can choose from four possible
results. The error of position calculation is very sensitive to the clock error. Therefore, in the satellite-
based navigation system, clock synchronization is critically important to minimize location errors.

Three satellites are enough to locate the receiver position, since space has three dimensions and
a position near Earth’s surface is assumed. However, even a very small clock error multiplied by
the light speed of satellite signals may result in a large positional error. Therefore, most receivers
use four or more satellites to solve for the receiver’s location and time. The computed time is often
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hidden by most GPS applications, which use only the location information. A few specialized GPS
applications do use the time for time transfer, traffic signal timing, and synchronization of cell
phone base stations.

Although four satellites are required for normal operation, if one dimensional variable is already
known, a receiver can determine its position using only three satellites. For example, a ship or plane
may have known elevation. Some GPS receivers may use additional clues or assumptions (such as reus-
ing the last known altitude, dead reckoning, inertial navigation, or including information from the vehi-
cle computer) to give a less accurate (degraded) position when fewer than four satellites are available.

9.3.4.5 Worldwide Deployment Status
In addition to the GPS deployed by the United States which is now open for global civilian applica-
tions by many countries, Russia has deployed GLONASS (for Global Navigation Satellite System)
for Russian military use exclusively. In the European Union, there is the Gallio positioning system
(EGNSS). By 2011, China had launched 8 satellites for the 31-satellite Beidou navigation system.
The full Beidou system will become operational by 2020.

Civilian GPS applications include navigation, surveying, mapmaking, cellular phones, tectonics,
disaster relief and emergency services, GPS tours, geofencing, recreation, aircraft tracking, and geo-
tagging, among other. Military applications of GPS include navigation, target tracking, missile and
projectile guidance, search and rescue, reconnaissance, and nuclear detonation detection, among
others. The following example shows a civilian application.

Example 9.8 Real-Time Vehicle Tracking Using Active GPS Devices

Active GPS tracking systems find their applications primarily in industries and businesses. These systems
are fast becoming the standard for companies that wish to monitor fleet vehicles as well as other heavy
equipment. Real-time GPS tracking is practical for acquiring immediate and detailed information about
large numbers of vehicles or objects that are being tracked. An example is a car rental business that pro-
vides cars for many customers; real-time vehicle tracking systems could prove beneficial in supplying cur-
rent and historical data on routes taken by all the drivers. The process is divided into the following four
steps:

1. GPS receivers in each car asset receive signals from a network of satellites.
2. The collected satellite information is sent to the communication center via mobile networks.
3. The control center enters calculated location information over global maps.
4. The control center sends commands to each unit to trigger alarms, stop engines, change direction, or

send personal messages, and so on.

9.4 INNOVATIVE APPLICATIONS OF THE INTERNET OF THINGS
In this section, we will review the application domains of the IoT. In particular, case study exam-
ples of the IoT are reported for applications in tracking, retailing, supply chain management, smart
power grid, and smart buildings. Finally, European IoT projects are assessed along with American
cyber-physical system (CPS) projects for general-purpose applications.
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9.4.1 Applications of the Internet of Things
Table 9.9 summarizes IoT applications in three major civilian application domains. Obviously, the
IoT has a lot of military applications, which is beyond the scope of this book. In general, use of the
IoT aims to promote industrial productivity and raise economical growth. The IoT plays important
roles in environment protection, including pollution control, weather forecasting, and disaster avoid-
ance and recovery. In terms of societal impacts, the IoT can make our lives more convenient and
comfortable. Government services, law enforcement, and home and health improvements are the
major beneficiaries.

9.4.1.1 Specific Wireless Sensor Applications
Highlighted below are several applications of sensor networks:

• Military sensor networks to detect and gain as much information as possible about enemy
movements, explosions, and other phenomena of interest

• Sensor networks to detect and characterize chemical, biological, radiological, nuclear, and
explosive attacks and materials

• Sensor networks to detect and monitor environmental changes in plains, forests, oceans, and so on
• Wireless traffic sensor networks to monitor vehicle traffic on highways or in congested parts of

a city
• Wireless surveillance sensor networks for providing security in shopping malls, parking garages,

and other facilities
• Wireless parking lot sensor networks to determine whether the lot is occupied or available

9.4.2 Retailing and Supply-Chain Management
IoT applications will promote business, improve our society, and enhance economical growth.
These include specific IoT applications in railing and logistics services and supply chain manage-
ment. Many industrial, government, and community services can benefit from these applications.
These include activities or initiatives to promote the development of better and more efficient socie-
ties, cities, and governments.

Table 9.9 Some Application Domains of the Internet of Things

Domain Brief Descriptions Indicative Examples

Growth in
industry and
economy

Activities involving financial or commercial
transactions between companies and
organizations

Manufacturing, logistics, service sector,
banking, financial governmental authorities,
intermediaries, etc.

Environment
and natural
resources

Activities regarding the protection,
monitoring, and development of all natural
resources

Agriculture and breeding, recycling,
environmental management services,
energy management, etc.

Society and
daily life

Activities/initiatives regarding the
development and inclusion of societies,
cities, and people

Governmental services toward citizens and
society structures, e-inclusion (aging,
disabled people), etc.
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9.4.2.1 Retailing and Logistics Services
Emergence of RFID applications depends strongly on adoption by retailers, logistics organiza-
tions, and package-delivery companies. In particular, retailers may tag individual objects in
order to solve a number of problems at once: accurate inventorying, loss control, and ability to
support unattended walk-through point of sale terminals (which promise to speed checkout
while reducing both shoplifting and labor costs). Cold-chain auditing and assurance could
require tagging food and medicine with temperature-sensitive materials and/or electronics; ensur-
ing or monitoring whether perishable materials are intact and/or need attention may entail com-
munications among things, refrigeration systems, automated data logging systems, and human
technicians.

For example, at the grocery store, you buy a carton of milk. The milk container would have an
RFID tag that stores the milk’s expiration date and price. When you lift the milk from the shelf, the
shelf would display the milk’s specific expiration date, or the information could be wirelessly sent
to your personal digital assistant or cell phone. The idea is illustrated in Figure 9.25. As you exit
the store, you pass through doors with an embedded tag reader. This reader would tabulate the cost
of all the items in your shopping cart and send the grocery bill to your bank. Product manufacturers
would know what you’ve bought and the store’s computers would know exactly how much of each
product needs to be reordered.

Once you get home, you would put your milk in the refrigerator, which is equipped with a tag
reader. This smart refrigerator would be capable of tracking all of the groceries stored in it. It
would be able to track the food you use and how often you restock your refrigerator, and could let
you know when that milk and other food spoils. Products would also be tracked when they are
thrown into a trash can or recycle bin. Based on the products you buy, your grocery store would
get to know your unique preferences. Instead of receiving generic newsletters with weekly grocery
specials, you might receive one created just for you.

9.4.2.2 Supply Chain Management
Supply chain management can be aided by an IoT system. The idea is to manage a whole network
of related businesses or partners involved in product manufacturing, delivery, and services as
required by end customers. At any given time, market forces could demand changes from suppliers,
logistics providers, locations and customers, and any number of specialized participants in a supply
chain. This variability has significant effects on the supply chain infrastructure, ranging from the
foundation layers of establishing the electronic communication between the trading partners to the
more complex configuration of the processes and the arrangement of workflows that are essential to
a fast production process.

A supply line combines the processes, methodologies, tools, and delivery options to guide colla-
borative partners to work in a sequence to conduct business with high efficiency and delivery
speed. The cooperative companies must work in lock-step quickly as the complexity and speed of
the supply chain increase due to the effects of global competition, rapid price fluctuations, surging
of oil prices, short product life cycles, expanded specialization, and talent scarcity. A supply chain
is an efficient network of facilities that procures materials, transforms these materials to finished
products, and finally distributes the finished products to customers. The following example could
explain how the supply chain can be aided by the IoT, which is particularly tailored to promote
business efficiency and fast growth.
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Example 9.9 Supply Chain Management Aided by the Internet of Things

Supply chain management is a process used by companies to ensure that their supply chain is efficient
and cost-effective. Figure 9.21 illustrates the supply chain for the production and sale of consumer pro-
ducts. The supply chain involves material or component suppliers, distribution centers, communication
links, cloud data centers, a large number of retail stores, corporate headquarters (e.g., Wal-Mart), and
bank payments. These business partners are linked by satellite, Internet, wired and wireless networks,
truck, train, or shipping companies, and electronic banking, cloud providers, and so on. Sensors, RFID
tags, and GPS devices could be placed everywhere along the supply chain. The idea is to promote online
business, e-commerce, or mobile transactions. Supply chain management consists of five major stages:

• Stage 1: Planning and Coordination A plan or strategy must be developed to address how a good or
service can satisfy the needs of customers.

• Stage 2: Material and Equipment Supplies This phase involves building a strong relationship with the
raw material suppliers and planning methods for shipping, delivery, and payment.
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Delivery loaded &
dispatched
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to store
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Sale scanned at
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FIGURE 9.21

Supply chain management in the multipartner business arena.
(Courtesy IGD Academy )
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• Stage 3: Manufacturing and Testing The product is tested, manufactured, and scheduled for delivery.
• Stage 4: Delivery of Products Customer orders are taken and delivery of goods is planned.
• Stage 5: After-Sale Service and Returns Customers may return defective products and the company

addresses customers’ demands. Supply chain software is used by many companies for efficient supply
chain management.

9.4.3 Smart Power Grid and Smart Buildings
Environmental protection is a global issue. Green energy is desired to save energy and to reduce the
effects of global warming. A critical IoT application is promotion of a smart power grid.

9.4.3.1 Smart Power Grid
Various power companies across the United States have or are in the process of upgrading their
power management and distribution systems. Various sensors at individual homes (smart thermo-
stats) can collect information that is sent via a network to main stations (perhaps even local “hubs”)
that can apply complex power management and send control signals back to the grid to save
energy. The smart grid is made possible by applying sensing, measurement, and control devices to
electricity production, transmission, distribution, and consumption.

Example 9.10 A Smart Power Grid Supporting the Internet of Things

A smart grid includes an intelligent monitoring system that keeps track of all electricity flowing in the sys-
tem. Smart meters, a digital upgrade of current utility meters, track energy usage in real time so that both
the customer and the utility company know how much is being used at any given time. Energy is paid for
using “time of day” pricing, meaning electricity will cost more at peak times of use. Figure 9.22 illustrates
IoT support of a smart power grid.

For example, when power is least expensive the user can allow the smart grid to turn on selected
home appliances such as washing machines or factory processes that can run at arbitrary hours. At peak
times it could turn off selected appliances to reduce demand. More involved users would be able to use
the smart meter to view energy usage remotely and make real-time decisions about energy consumption.
A refrigerator or air conditioning system could be turned down remotely while residents are away.

9.4.3.2 Smart Buildings
The IoT could enhance our lives with comfort, convenience, and security, and reduce energy costs
and environmental impacts. The IoT has been suggested in construction of smart buildings in resi-
dential, commercial, industrial, and government settings. This may include alarm systems, access
controls, indoor climate controls, elevators, and so forth. We desire to diffuse IT into lighting, appli-
ances, and furniture in buildings. A smart building can be a shopping mall or a home, a hospital or
a high-rise office tower. Smart buildings need monitoring and regulation of heating, air condition-
ing, lighting, and environmental changes. They can oversee building security, fire suppression, and
elevator operations. Smart building technologies focus on bringing more detailed monitoring and
sensing “awareness” to buildings.
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9.4.4 Cyber-Physical System (CPS)
Computers have become pervasive and ubiquitous. Computing devices appear in TV remote con-
trols, smartphones iPods, elevators, escalators, windshield wipers, thermostats in offices/homes, and
traffic lights at intersections. These devices are so common in our daily lives that we do not even
think of them as computers. Technical people refer to these devices embedded systems that perform
one or more dedicated functions. With the advent of smartphones, GPS navigators, and tablet
computers, embedded systems are turning into a new class of intelligent systems, known as cyber-
physical systems.

A cyber-physical system (CPS) is an embedded system which integrates the computing process
with the physical world as an interactive and intelligent system. CPSes appear in many computer
and TV game systems. The best example is the popular Nintendo Wii interactive gaming system.
Cursor-based CPSes can be found in the automotive, aerospace, health care, robotics, manufactur-
ing, battlefield training, and consumer appliance industries, among others. Thus, a full-fledged CPS
involves embedded computers, network monitors, and intelligent control of physical processes with
humans in the feedback loop. In the physical world, man-machine interactions must be handled in
real time by a CPS. Figure 9.23 shows the abstraction architecture of a typical CPS.

A CPS features tight coordination between the system’s computational and physical elements.
Today, most virtual reality systems tend to focus more on computational elements than on the
intense link between the computational and physical elements. To amend this shortcoming, a CPS
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more efficient, reliable electricity.
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FIGURE 9.22

Smart power grid.
(Source: http://impactnews.com/images/stories/CTA/2009/04/15-grid.jpg. Courtesy of: Community Impact Newspaper )
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should be designed as a network of interacting elements with physical input and output instead of
as a stand-alone device. The notion is extended from the concepts of robotics and sensor networks.
The expectation from the CPS community is to improve the link between computational and physi-
cal elements. The design objectives include the adaptability, autonomy, efficiency, functionality,
reliability, safety, and usability of future CPSes.

These three components interact with one another heavily. Sensor networks and man-machine
interfaces need to be established to glue the three sectors together. In a CPS, the cyberspace and
physical worlds are intertwined. The embedded computing, sensed real-world data, and real-time
responses are all equally important. New understandings and techniques are needed to deal with
this new fusion. New advances are desired to broaden the potential of CPSes in several dimensions.
One is human intervention at the right moment, such as collision avoidance in driving a vehicle.
Doctors need precision in robotic surgery and workers need nano-level manufacturing.

It is desired to design CPSes to replace humans in dangerous or inaccessible environments such
as battlefields, rescue from earthquake rubble, and deep-sea exploration. Users demand close coordi-
nation in air traffic control and war fighting and enhanced efficiency and augmentation of human
capabilities in health care monitoring and life-saving operations. Since 2006, the U.S. National
Science Foundation (NSF) has identified CPS as a key area of research. The NSF and other federal
agencies have sponsored several workshops on CPS in recent years.

The applications of CPS typically fall under sensor-based systems and autonomous systems. For
example, many wireless sensor networks monitor some aspect of the environment and relay the pro-
cessed information to a central node. Other types of CPSes include autonomous automotive sys-
tems, medical monitoring, process control systems, distributed robotics, and automatic pilot
avionics. The following example gives new directions of CPS applications.

Example 9.11 Distributed Robotic Garden Project at MIT

Researchers involved in a distributed robotic garden project at MIT have experimented on a set of robots
to tend a garden of tomato plants. This system combines collaborative work in distributed sensing (each
plant is equipped with a sensor node monitoring its status), navigation, manipulation, and wireless net-
working. The long-term goal is to implement an autonomous greenhouse based on autonomous robots
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Human interaction in
real time

Cyberspace of
embedded systems

FIGURE 9.23

Three major components working interactively and intelligently in a CPS.
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and sensors. Emphasis of the project is on scalability and robustness. The solution was fully distributed
with simple individual components.

The MIT research group constructed a mobile end-effector to manipulate the robotic garden. They
installed intelligent pots to provide distributed sensing and data storage in the system. They consider
plants, pots, and robots to be systems with different levels of mobility, sensing, actuation, and autonomy.
The system transforms energy, water, and nutrients into production. The system studies important pro-
blems in multirobot coordination, force-feedback grasping, and spatial computing. The MIT research group
envisions the following long-term applications of their CPS work:

• Sustainable, organic agriculture Using a large number of robots and embedding intelligence enables
large-scale heterogeneous plant populations that are less prone to deplete the soil of specific nutrients
and might allow for reduction of pesticides by intelligent local combinations of plants. Also, on-demand
watering can reduce water consumption.

• Autonomous farms Providing a variety of products on a small scale in a fully autonomous fashion
enables long-term deployments of human populations on remote areas and outer space missions.

• Green architecture Fruits and vegetables can be cultivated on the inside and outside of buildings where
they positively contribute to room climate and energy efficiency, and support the inhabitants’ diet.

Many scientific areas could be blended together to realize truly intelligent CPSes in addition to
embedded and real-time systems. These areas include avionics, automobiles, power systems, control
theory, and electro-mechanical engineering, among others. It has been suggested that CPS be a
priority area for R&D in federal networking and information technology in the United States.

9.5 ONLINE SOCIAL AND PROFESSIONAL NETWORKING
Online social networking enables many social and professional functions over the Internet. Through
dedicated web sites, P2P connections can be easily established. Social networking has already trans-
formed the way in which people interact in cyberspace. Social networking web sites such as Face-
book, Twitter, LinkedIn, and MySpace are popular today. They provide online services that allow
users to create online profile pages and make friends with those who are registered on the same web
site. According to a recent global Internet traffic report, there were almost 1 billion registered users
among the top 15 social networks (www.ebizmba.com/articles/social-networking-websites).

In early 2011, Facebook was ranked at the top, exceeding 600 million monthly visitors. The
connectivity among the social network’s users and the community behind each special interest
group can be analyzed by large-scale graph theory. A graph-theoretical approach is presented to
analyzing social networks. The purpose is to evaluate social network profiles, user demographics,
security measures, networking features, and search and technical support provided. As case studies,
two social networks are examined: namely Facebook for sharing photos and making friends and
Twitter for microblogging and exchange of ideas.

9.5.1 Online Social Networking Characteristics
Online social networks (OSNs) are formed with individuals or organizations over the Internet. These
individual or organizational entities are related, connected, or associated special interests or specific
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interdependencies. These include personal friendships, kinships, professional orientations, common
interests, financial exchange, like or dislike relationships, community or racial groups, religious or
political beliefs, knowledge or prestige, and celebrity fans. In general, social networks are formed
by complex sets of interpersonal to international relationships among members of our societies or
communities on Earth.

A social network is a structure representing the social relationships of individuals. In a social
network, nodes represent the individuals, and the ties between the nodes represent the relationships
such as friendship, kinship, and colleagueship [3]. OSN services are built to reflect the social rela-
tionships among people. Social networking services are a communication tool among people. Before
these services, online communities that acted as early online social network services did exist—an
example is the bulletin board service (BBS). However, traditional online communities are group-
oriented, which means users are organized in different groups based on different interests and
regions, while modern social networking web sites are always individual-oriented.

9.5.1.1 Online Social Networking Services
An OSN offers special social or professional services through Internet access and web services.
These social networking services are linked by Internet communication among people. Early online
social network services include job hunting, dating, and BBSes. Traditional online communities are
organized in different groups based on different interests and regions, while modern social network-
ing web sites are always individual-oriented or follow P2P interactions. Here are some ideas for
providing OSN services:

• Personal page or profiles for each user linked by social connections
• Social graph traversal along specific social links or networks
• Communication tools among participants or registered users
• Ability to share music, photos, and videos with friends or professional groups
• Operation of a community in special niche areas like health care, sports, and hobbies
• Customized software tools or databases are used in OSN services
• Strong customer loyalty and fast membership growth are seen
• Provider revenue from embedded advertisement and access to premium content

9.5.1.2 Social Networking Properties
In most social networks, each user has a personal page (or profile), which is linked via the user’s
social relationships. This is why modern social networking web sites are individual-oriented. Once a
user accepts other users as “friends,” he will be able to access all permitted contents on those friends’
profile pages. Also, users can access their friends’ lists of friends, and view their profile pages. This
is an example of social graph traversal. Commonly, online social networking web sites provide two
basic communication methods: internal e-mail-like direct messages and public message boards. Also,
users can share information, such as photos, videos, web links, and articles with friends. All the pop-
ular online social networking web sites have these four essential items, but the way they implement
these features is different based on the different service models and market orientations.

However, logically the structure of social networks is P2P-based. Modern popular social net-
works apply mostly a client/server architecture that is open to the general public. This has led to
many problems such as privacy violations, service availability, system stability, network scalability,
and response performance. The service models and functionalities of Facebook and Twitter are

598 CHAPTER 9 Ubiquitous Clouds and the Internet of Things



studied. Users need to understand why they are so successful. To discover the problems they have
caused in cyberspace, users need to generate effective solutions without degrading network
performance.

9.5.1.3 Representative Online Social Networks
Table 9.10 summarizes the top 5 popular OSNs based on the number of registered users. Social net-
working web sites such as Facebook, Twitter, and MySpace are extremely popular today. Logically,
social networking services are P2P networks. However, most of these web sites are installed with a
client/server architecture where the large number of servers form the data center. The five attributes
of QoS are weighted equally to yield the overall rating with a maximum score of 5 with 5 being a
perfect site and 3 being an average site.

Any social network with a rating above 4.0 is considered very good. These attributes could also
be weighted differently to yield different ranking results, depending on the application domain
applied. This means all the data, including blog entries, photos, videos, and social network relation-
ships, is stored and managed on central server clusters owned by the service providers. Although
the traditional architecture has advantages in scalability, because users can access their data from
any client including fixed machines or mobile devices, there are some implementation problems
too. For instance, private personal information could be lost, and large server clusters need to be
monitored during usage rush hours.

Table 9.10 Assessment of Top Five Social Networking Web Sites in April 2011

Name
(Year)

Brief
Description
and
Web Site

Registered
Users

Personal
Profiles

Privacy
Security

Networking
Features

Search
Support

Overall
Rating

Facebook
2004

Content sharing
with large
number of apps;
www.facebook
.com/

600M 4.5 4 5 4.5 4.51

Skype
2003

Video telephony
and instant
messaging;
www.skype
.com

521M 3 4 4 3 3.50

YouTube
2005

Video clips
forwarding and
sharing web
site; www
.youtube.com

500M 3 3 3 4.5 3.38

Twitter
2006

Micro-blogging,
news, and
alerts; www
.twitter.com

175M 3 4 5 5 4.25

MySpace
2003

Customized
social services;
www.myspace
.com

130M 5 3 5 4 3.75
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9.5.1.4 Online Social Networks
A typical OSN platform architecture. It is desirable to customize an OSN to sustain competition in
this field. The social network provider should choose a brand name with its own API interfaces and
profile variables. The chosen forum categories must be relevant to the sufficiently large user com-
munity. The OSN platform must include specific functionalities that make it easy for users to join
and enjoy the services. Furthermore, the provider must prove the online marketing concept to attract
members to join and leave freely. Highly sophisticated software, virtualized data centers, or proces-
sing and storage cloud platforms are needed.

As an on-demand service provider, the OSN platform should be appealing to all Web 2.0 commu-
nities. The social network community must operate reliably with high availability and performance.
Logically, the OSN provides a P2P platform. However, modern popular social networking services
are all built with the client/server architecture for easy management and maintenance. This means that
all blog entries, photos, videos, and social network relationships are stored and managed by private
clouds owned by the service providers. A large social network site must maintain huge data centers.
To serve clients better, many of the data centers are virtualized to provide cloud services.

9.5.1.5 Social Network Benefits
Editorial web sites often include a forum already immersed in Web 2.0 services. Forums are valu-
able but lack the attraction to deliver the same level of value as social network communities.
A full-blown social network community can be built around a forum to result in the following four
operational benefits:

• High return visit rate Users return to the social network community frequently. This opens up
the opportunity for great page impressions and a huge advertising inventory.

• User loyalty Users connect to their friends and will not abandon them easily. They do not
move over to a competing social network. Instead, they show high customer loyalty.

• Virtual growth Members invite their friends to the social network community. This is effective
marketing at a low cost, and the OSN grows by itself.

• Business model With a social network community you can earn revenues through subscriptions
to premium content in addition to advertising revenues.

Twitter does not completely copy all the offline relationships onto the web sites. Hence, the
attraction to use Twitter is far less than Facebook at present (2010). On the other hand, Facebook is
not as open as Twitter. These features make people trust Facebook more than Twitter. Last but not
least, Facebook is more complex in functionality than Twitter. Although Twitter has plenty of third-
party applications, Twitter is still not convenient for beginning users. Facebook has embedded
many common features. If someone does not like to explore third-party applications for some com-
mon functions, she would go to Facebook instead of Twitter, based on the current trend.

9.5.2 Graph-Theoretic Analysis of Social Networks
Social network analysis has emerged as a key technique in modern sociology. It has also gained a
lot of attention in anthropology, biology, communication, economics, geography, information
science, organizational studies, social psychology, and sociolinguistics. Characterizing the existing
relationship among a person’s social group is the main task in social network analysis. Also, users
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are facing a so-called “small-world” society, where all people are related in a short chain of social
acquaintances, one way or another. All social networks are not so chaotic or random as once
assumed, but rather have underlying structures. Some of the social networking rules or behaviors
are analyzed in this section.

Social relationships are often mapped into directed or undirected graphs, sometimes called
acquaintance graphs or simply social connection graphs. The nodes in a social graph correspond to
the users or actors and the graph edges or links refer to the ties or relationships among the nodes.
The graphs can be complex and hierarchically structured to reflect relationships at all levels. There
can be many kinds of ties between the nodes. Social networks operate from the family level up to
national and global levels. There are pros and cons of social networks. Most free societies welcome
social networks. For political or religious reasons, some countries block the use of social networks
to prevent possible abuses.

9.5.2.1 Social Network Graph Properties
Social networks play a critical role in problem solving, running an organization, and the degree to
which individuals succeed in achieving their goals. A social network is simply a map of all of the
relevant ties between all the actor nodes. The network can also be used to measure social capital—
the value that an individual gets from the social network. These concepts are often displayed in a
social network graph. Figure 9.24 shows an example social network graph. The black dots are the
nodes (users) and the lines link the nodes under specified relationships.

9.5.2.2 Node Degree, Reach, Path Length, and Betweenness
The node degree is the number of ties of a node to other actors in the graph. The reach is defined
as the degree any member of a network can reach other members of the network. Path length mea-
sures the distance between pairs of nodes in the network. Average path length is the average of
these distances between all pairs of nodes. Betweenness reveals the extent to which a node lies
between other nodes in the network. The measure reflects the number of people with whom a per-
son is connecting indirectly through his direct links.

B A
C

D

FIGURE 9.24

A graph representation of an example social network.
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9.5.2.3 Closeness and Cohesion
Closeness is the degree to which an individual is near all other individuals in a network (directly or
indirectly). It reflects the ability to access information through network members. Thus, closeness is
the inverse of the sum of the shortest distances between each individual and every other person in the
network. Cohesion is the degree to which actors are connected directly to one another by cohesive
bonds. Groups are identified as “cliques” if every individual is directly tied to every other individual.

9.5.2.4 Social Circles or Clusters
This refers to some structured groups. If there is less stringency of direct contact or as structurally
cohesive blocks, a social circle can be created either loosely or tightly, depending on the stringency
rules applied. Those nodes inside the circle of Figure 9.24 form an isolated cluster. Clustering co-
efficient is the likelihood that two associates of a node are associates themselves.

9.5.2.5 Centralized versus Decentralized Networks
Centrality gives a rough indication of the social power of a node based on how well it “connects”
the network. Betweenness, closeness, and degree are all measures of centrality. Centralized networks
have links dispersed around one or a few nodes, while a decentralized network is one in which
there is little variation between the number of links each node possesses.

9.5.2.6 Bridge and Local Bridge
An edge is a bridge if deleting it would cause its endpoints to lie in different clusters or compo-
nents of a graph. For example, the edge between nodes C and D in Figure 9.24 is a bridge. The
endpoints of a local bridge share no common neighbors. A local bridge is contained in a cycle.

9.5.2.7 Prestige and Radiality
In a social graph, prestige describes a node’s centrality. Degree prestige, proximity prestige, and
status prestige are all measures of prestige. Radiality is the degree to which a network reaches out
and provides novel information and influence.

9.5.2.8 Structural Cohesion, Equivalence, and Holes
Structural cohesion is the minimum number of members who, if removed from a group, would dis-
connect the group. Structural equivalence refers to the extent to which nodes have a common set of
linkages to other nodes. These nodes do not have any ties to one another. A structural hole can be
filled by connecting one or more links to reach other nodes. This is related to social capital: By
linking two disconnected people, you can control their communication.

Example 9.12 Some Graph Representations of Sample Social Networks

Figure 9.25 shows four sample social networks. In part (a), the graph corresponds to a 436-node network
of e-mail exchanges at a corporate research laboratory. However, social network data spans many orders
of magnitude. For example, for a large university, the e-mail exchange network could end up with a
43,553-node network over a two-year period. Counting all instant messages over one month at MSN, one
may end up with 240 million connections. The analysis of large-scale social networks may enable us to
observe global behavior. In Part (b), we show the network of book recommendations. Jon Klienberg [44]
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has identified many epidemic graphs on news, opinions, political mobilization, etc. Models for cascading
behavior is a popular topic in social networks.

9.5.3 Communities and Applications of Social Networks
Niche communities become increasingly important and are highly valuable, particularly for special
interest magazines, radio stations, sports web sites, sports clubs, health web portals, private clinics
which are specialized in certain health topics, industry associations, and companies that are looking
for new ways to interact with their customers or employees. This section discusses a few social
network communities.

(a) Cooperate e-mail exchanges (courtesy of
L. Adamic and E. Adar, 2005)

(b) Book recommendation (courtesy of J. Leskovec,
L. Adamic and B. Huberman 2006)

FIGURE 9.25

Graph representations of two social networks.
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9.5.3.1 Communities in Social Networks
Very large-scale social networks result in very large-scale graphs with millions or hundreds of
millions of user nodes. Such large graphs can often be partitioned into many smaller subgraphs, cor-
responding to various actor communities. Six specialized social network communities are pointing
to different sectors of our society. This list only offers a few examples. One can form many other
communities from online social networking.

• Industry communities Special industrial workers or professionals are often connected with one
another. They share knowledge and work experience.

• Artist communities These network communities are specifically composed to enable artists,
musicians, or celebrities to personalize and intensify their contact with their existing fans as well
as enabling contact among community members.

• Sport communities These are network communities for special interests and activities of
athletes and sport fans. People can find friends, celebrate their passion, and exchange ideas.

• Health communities These are dedicated to the needs of actors concerned about health issues.
• Congresses and event communities These are customized to support all preparations necessary

for congresses and events, as well as all processes thereafter.
• Alumni communities After completing their studies, alumni can find fellow students, stay in

touch, and foster friendships.

Example 9.13 Citation Graph to Partition Research Communities

In a 2010 talk at USC, John Hopcroft [40] identified the use of large-scale graph theory to analyze the impact of
online social networking. He identified the merging of computing and communications in a ubiquitous fashion
and the explosive growth of digital data from networked devices and sensors. Accordingly, Internet search
engines are changing. Internet queries should be able to address high-level questions such as “where I should I
go to college?” in a faster, more personalized, and more intelligent way. He used an example (in Figure 9.26) to
illustrate the tracking of the flow of ideas in scientific literature and evolution of communities in social networks.

Three distinct categories of papers

(a) Graph of referenced papers (b) Graph of referenced papers cleaned up

FIGURE 9.26

Partitioning in paper citation graph to identify research communities.
(Courtesy of Yookyung Jo, Cornell University )
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Figure 9.26(a) shows a citation graph of referenced papers by authors working in related areas. The
dots represent individual papers. The edges link the papers if they reference each either one way or
mutually. Through some cleaning process, certain papers are merged due to self-citation or other con-
cerns. The reduced citation graph in Figure 9.26(b) is obtained with referenced papers cleaned up. One
can partition the cleaned graph into three categories of papers that are related to a similar approach or
based on the same solution model.

In tracking communities in social networks, many authors have revealed interesting statistical
properties of community structure in large social and information networks. Jure Leskovec, et al.
[49] have indicated that the best communities are size 100−150. This data is drawn from the
study of 70 large, sparse, real-world social networks. Such small communities are formed with
special relationships such as family and friends, classmates, and work colleagues. These commu-
nities may overlap in many ways. The peers could be connected inside or outside the community
boundary. He has revealed the fact that there are more connections outside than inside for most
people, which is intuitively valid based on the common experiences of many of us. Other inter-
esting observations include the existence of a core in social networks. Often, the core can be
either unique or shared.

9.5.3.2 Social Network Application Domains
There are an infinite number of applications for social networks. In Table 9.11, we classify those
applications into five specific domains. Examples and their web sites are listed for our readers to
explore. The use of social network services in an enterprise context presents the potential of having
a major impact on the world of business and work. Social networks connect people at a low cost;
this can be beneficial for entrepreneurs and small businesses looking to expand their contact bases.

Table 9.11 Applications of Existing Social Networks

Domains Examples and Web Sites

Business LinkedIn connects professionals (www.linkedin.com) and Hub Culture connects
entrepreneurs (www.hubculture.com).

Education The National School Boards Association and education topics can be researched
online (www.ning.com).

Government The U.S. Centers for Disease Control and Prevention demonstrated the importance
of vaccinations on www.whyville.net, a popular children’s site. The National Oceanic
and Atmospheric Administration has a virtual island on http://secondlife.com, where
people can explore underground caves or explore the effects of global warming.

Medical and health
care

www.patientslikeme.com offers its members the chance to connect with others
dealing with similar issues and research patient data related to their condition.
www.sobercircle.com, which has joined forces with www.onerecovery.com, gives
people in recovery the ability to communicate with one another and strengthen
their recovery.

Online dating Online social networking sites such as Facebook, Second Life, and MySpace are
quickly becoming the new way to find dates online.
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These networks often act as a customer relationship management tool for companies selling pro-
ducts and services. Companies can also use social networks to advertize. With global operations,
social networks can make it easier to promote business around the world.

One example of social networking being used for business purposes is LinkedIn.com, which
aims to interconnect professionals. Another is the use of physical spaces available to members of a
social network. Some hub culture extends invitations only to entrepreneurs and other business suc-
cessors to join a social network. Having a physical presence allows members to network in the real
as well as virtual worlds, adding extra business value. Applications for social networking sites have
extended to businesses, and brands are creating their own sector known as brand networking, which
is based on the idea that a brand can build its consumer relationship by connecting consumers to
the brand image on a platform.

9.5.3.3 LinkedIn for Professional Networking
Social networks for professional connections include LinkedIn.com, Xing.com, and Ecademy.com.
LinkedIn is a business-oriented social networking site. LinkedIn’s main focus is to manage and
build online and/or offline professional networks. LinkedIn has more than 80 million members in
more than 200 countries. A new member joins LinkedIn approximately every second, and about
half of the members are outside the United States. Executives from all Fortune 500 companies are
LinkedIn members. This site allows registered users to maintain a list of contact details of people
they know and trust in business. Users can invite anyone to become a member.

9.5.3.4 Educational Applications
The National School Boards Association reports that almost 60 percent of students who use social
networking talk about education topics online and, surprisingly, more than 50 percent talk specifi-
cally about schoolwork. Yet the vast majority of school districts have stringent rules against nearly
all forms of social networking during the school day—even though students and parents report few
problem behavior online. Social networks focused on supporting relationships between teachers and
between teachers and their students are now used for learning, educator professional development,
and content sharing. Ning for teachers, Learn Central, [60] TeachStreet, and other sites are being
built to foster relationships that include educational blogs, e-portfolios, formal and ad hoc commu-
nities, as well as communication such as chats, discussion threads, and synchronous forums.

9.5.3.5 Government Applications
Social networking tools serve as a quick and easy way for the government to get the opinion of the
public and to keep the public updated on their activity. The U.S. Centers for Disease Control and
Prevention demonstrated the importance of vaccinations on the popular children’s site Whyville and
the National Oceanic and Atmospheric Administration has a virtual island on Second Life where
people can explore underground caves or explore the effects of global warming. Similarly, NASA
has taken advantage of a few social networking tools, including Twitter and Flickr. They use these
tools to promote a vigorous and sustainable path to achieving its boldest aspirations in space.

9.5.3.6 Health Care and Medical Applications
Social networks are beginning to be adopted by health care professionals as a means to manage
institutional knowledge, disseminate P2P knowledge, and highlight individual physicians and
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institutions. The advantage of using a dedicated medical social networking site is that all the
members are screened against the state licensing board list of practitioners. The role of social
networks is especially of interest to pharmaceutical companies who spend approximately 32 percent
of their marketing dollars to influence the opinion leaders of social networks.

A new trend is emerging with social networks created to help members with various physical and
mental ailments. For people suffering from life-altering diseases, PatientsLikeMe offers its members
the chance to connect with others dealing with similar issues and research patient data related to their
condition. For alcoholics and addicts, SoberCircle gives people in recovery the ability to communi-
cate with one another and strengthen their recovery through the encouragement of others who can
relate to their situation. DailyStrength is also a web site that offers support groups for a wide array of
topics and conditions, including the support topics offered by PatientsLikeMe and SoberCircle. Spark-
People offers community and social networking tools for peer support during weight loss.

9.5.3.7 Dating Services
Many social networks provide an online environment for people to communicate and exchange perso-
nal information for dating purposes. Intentions can vary from looking for a one-time date to looking
for a short-term or long-term relationship. Most of these dating services require users to give out
some personal information such as age, gender, location, interests, and perhaps a picture. Releasing
personal information is often discouraged for safety reasons. This allows other users to search or be
searched, but at the same time people can maintain a degree of anonymity. Online dating sites are
similar to social networks in the sense that users create profiles to meet and communicate with others.

Online dating sites usually require a fee, where social networks are free. This difference is one
of the reasons the online dating industry is seeing a massive decrease in revenue due to many users
opting to use free social networking services. Many popular online dating services such as Match.
com, Yahoo! Personals, and eHarmony.com are seeing a decrease in users, where social networks
such as MySpace and Facebook are experiencing an increase in users. The number of Internet users
in the U.S. that visit online dating sites has fallen from a peak of 21 percent in 2003 to 10 percent
in 2006. In other words, social networks are gradually taking over most of the dating services.

9.5.3.8 Privacy Breach in Social Networks
Many people are reluctant to join online social networks for worry about privacy breaches. Still,
the growth of social network members is rather impressive, regardless of the fact of serious abuses
reported every day. For example, many people charge that MyPlace has made public what should
be private matters. As observed by Jon Klienberg, the software we use has a trace of our activ-
ities. Anonymization may not be totally effective in protecting sensitive data in massive social
networks. The following example explains the scenario. Active attacks can easily compromise
privacy by creating new accounts in practice. We need better algorithmic ideas to cope with this
problem.

Example 9.14 Attacking an Anonymized Social Network (Jon Klienberg [44])

Consider the attack scenario: By accident, an organization released an anonymized communication graph
on 100 million users, as shown in Figure 9.27(a). An attacker chooses a small set of user accounts to dig
into their private relations or activities, as shown in Figure 9.27(b). Before the data set is released, the
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attacker may create a small set of new accounts with links among them to form a subgraph H attached to
the targeted accounts, as shown in Figure 9.27(c). When the data set is released, the organization wants
to find H. This is a computationally hard problem, as shown in Figure 9.27(d).

In fact, Kleinberg indicated that the small random graph H will likely be unique and efficiently findable
as shown in Figure 9.27(e), because each edge has a probability of 0.5 percent to be present on a
random graph. Once H is found, one can find the targeted nodes by following the edges from H in
Figure 9.27(f). One can breach privacy with O ((log n)1/2) new nodes. The company should avoid releasing
an anonymized social network. Privacy-preserving mechanisms are still very much in demand to protect
users from such attacks.

9.5.4 Facebook: The World’s Largest Social Network
Facebook was launched by Mark Zuckerberg in 2004. Initially, Facebook was only available to
Harvard University students. Today, anybody older than 13 years of age and with a valid e-mail
address can register on Facebook. In March 2011, it was reported that Facebook had 600 million
active users and a monthly growth rate of 3.57 percent [88], making Facebook the world’s largest
social network. Figure 9.28 shows various services provided.

The largest sector of applications is to enhance communications among the users. Social compari-
son is welcome by job seekers. Playing social games is popular among the youngsters and retirees.
Social selection, sending gifts, and profile enhancement facilitate more frequent social contacts. The
tell-me-about-me, media sharing, playing, naming, dating, and social events are more traditional areas.

100M nodes 100M nodes 100M nodes

100M + 12 nodes 100 M + 12 nodes 100 M + 12 nodes

(f) Finding the target nodes(e) Hidden subgraph H found(d) Attack accounts embedded

(a) A huge network (b) Three users targeted (c) Attack accounts created

FIGURE 9.27

Attack tracking in an anonymized social network.
(Courtesy of Jon Kleinberg [44] )
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This distribution varies with time. Once the privacy and security issues are resolved for social net-
works, the number of registered users will grow even more in the future.

9.5.4.1 Functionality of Facebook
Facebook includes six essential items, as shown in Table 9.12. Facebook needs to improve in terms
of privacy. Compared with Twitter, Facebook has stricter access control, and thus is more secure to
use. However, one must be aware that all personal data is stored on the provider’s servers, including
education and career information as well as personal messages and social links. Security and trust
are the major concerns that prevent users from joining or staying active on Facebook. Users are
willing to share more information because they like to communicate with their real-life friends.

Without registration constraints, maintaining trust among Facebook users is a serious problem.
Facebook uses a network with authentication to authenticate users. A network is a subset of the users
on Facebook with certain authentications. For example, to join a university network, one may have to
register with a university e-mail address, or follow some other authentication method approved by the
network administrator. The friends of this user could identify the user by his profile in the network.

9.5.4.2 Architecture of the Facebook Platform
With 600 million active users, you can imagine how many personal profiles and multimedia infor-
mation items are shared by various social groups on Facebook. You can also imagine how much
user traffic is flowing into the Facebook web site (www.facebook.com). The Facebook platform is

Community
Social good
Fortunes

Naming
Dating
Play with digital pet

Play game

Media sharing

Tell me about me

Send gift

Profile
enhancement

Social selection

Play social game

Social comparison

Enhanced
communication

Misc
Events

FIGURE 9.28

Distribution of 28.4 million Facebook applications, averaged for the week ending November 8, 2007.
(Source: The Facebook Application Ecosystem: Why Some Thrive- and Most Don’t An O’Reilly Radar Report by

Shelly D. Farnham, Ph.D Copyright © 2008 Waggle Labs All rights reserved. Used with Permission )
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essentially a huge data center with a very large storage capacity, intelligent file systems, and search-
ing capabilities. Figure 9.29 illustrates the structure of the Facebook platform.

The platform is formed with a huge cluster of servers. These machines are called ringside social
application servers. The social engine is the core of the server, which performs the functions of
identification, security, rendering, and Facebook integration. Three specific APIs are installed to

Table 9.12 Functionality of Facebook Features

Function Implementation

Profile page Combined profile: profile picture, bio information, friends list, user’s activity log,
public message board, other components selectively displayed

Social graph
traversal

Access through user’s friends list on profile pages, with access control

Communication
tools

Internal e-mail-like message: send and receive private messages among friends;
instant messaging: accessed on the web page, or through third-party client; public
message board: “Wall,” with access control; update status: a short message, like
micro-blogging, with access control

Shared information Photo album: built-in, with access control; links: post links to outside URL, will
appear on the activity log; videos: embedded outside videos on profile page

Access control Every item on the profile page can be set to one of four access control levels: only
me, only friends, friends of friends, or everyone

Special APIs Games, calendars, mobile clients

Pages Sites Networks
Your

network

Community
engine

Control panel

System apps

AppsAppsApps

Facebook API

Facebook
integration Ringside social application server

Open social
integration Ringside API

Extensible API
Open DSL (fbml,*)

Social engine
ID, security,
rendering,
FB integration, etc.

Social graph

- Profiles
- Tags

- Relationships

FIGURE 9.29

The Facebook architecture built with social engine servers and Application Programming Interfaces (APIs).
(Courtesy of Facebook, Inc. 2010 )
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facilitate user access. A community engine provides networking services to users. Requests are
shown as pages, sites, and networks entering the Facebook server from the top. The social engine
executes all sorts of user applications. Open DSL is used to support application execution.

9.5.4.3 Some New Facebook Applications
Successful Facebook applications help users to achieve such social goals as improved communica-
tion, learning about themselves relative to others, finding people with similar interests, improving
self-presentation, engaging in social play, and engaging in social exchanges via gifts and media.
Facebook has greater appeal in the private and personal domain, as opposed to professional
connections.

In late 2010, Mark Zukerberg announced a new form of messaging over the Internet that could
trigger a revolutionary change in Internet communication among trusted friends and social circles.
He feels that the traditional e-mail for epistolary interpersonal communication is outmoded. He pro-
poses a social inbox concept where users can readily access messages from friends and then sort
them based on personal preference. This is something between instant messaging and Twitter. The
more we text or Twitter or make friends through social networking, the less likely we want to
express ourselves in complex ways. In other words, simplicity and convenience will dominate the
future demands of online social networking.

9.5.5 Twitter for Microblogging, News, and Alert Services
Twitter is a microblogging service launched in 2006 by Jack Dorsey, Biz Stone, and Evan Wil-
liams. Each message sent through Twitter can be no more than 140 characters in length. This idea
originated from Short Message Service (SMS) technology over mobile devices such as smartphones.
A user can use SMS to send a message to Twitter, and the message will be forwarded to many
other Twitter users that are related to the sender. Twitter was built to share thoughts or ideas
instantly. But gradually major TV networks and newspapers also started to use Twitter to provide
updated news to the public. Twitter has become a media platform in which ordinary users can be in
the front line of breaking news.

9.5.5.1 Twitter Architecture and Access Control
There are three major components in the Twitter system: crawler, indexer, and searcher. Each com-
ponent differs in the functions it performs. They are used together through balanced coordination to
form a complete system. Figure 9.30 shows the Twitter access architecture in eight steps. Twitter.
com started as a status sharing site that people accessed via their mobile phones. Twitter soon
became a Web 2.0 microblogging site for information sharing and news reporting. As of late 2010,
Twitter had 175 million users. Furthermore, HubSpot reported that Twitter was enjoying an aston-
ishing 18,000 percent growth rate.

9.5.5.2 Twitter Development Trends
Twitter’s success can be attributed to two main factors: elegance in design, and simplicity in adding
third-party improvements. Twitter calls microblog posts from users tweets. The elegance is due to
the character limit in tweet messages. Each tweet has a 140-character limit which is inherited from
text messaging. A comparison between blogging and microblogging gives us a good understanding
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behind Twitter’s popularity. While blogging requires good writing skills and lots of content to fill
pages, Twitter restricts posts to 140 characters, which encourages many people to post.

Simplicity is provided with an HTTP-based open source API and sharing posts with third-party
applications. Twitter’s API consists of two different parts: a Search API and a REST API. The
REST API enables Twitter developers to access core Twitter data. This data includes tweets, time-
lines, and user data. The Search API enables developers to query the tweets. It also provides infor-
mation about trending topics. The usage of both APIs is subject to rate limiting. Twitter may add
these applications to its white list and remove request limitations. The ease and flexible usage of
Twitter APIs have encouraged many developers to write Twitter applications.

9.5.5.3 Functionalities of Twitter
Twitter provides six essential functions in Table 9.13, two of which are access control and API applica-
tions. Simplicity and openness are the keys to Twitter’s popularity. The core service of Twitter is very
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Searcher

Database

8
5

4
7

6, 9

1. The crawler sends a request to the Twitter APL.

2. The Twitter API responds with the Twitter data.

3. The crawler stores the data into files.

4. The indexer reads the stored files as input.

8. The searcher reads associated raw tweets.

7. The searcher reads the data from the database and
    calculates a rank.

5. The indexer stores the data in a database as output.

6. Users send a search query to the searcher.Crawler Indexer

3
1, 2

FIGURE 9.30

Twitter architecture and access protocol sequence.
(Courtesy of Hao Song, USC 2009 )

Table 9.13 Functions of Twitter and Their Implementations

Function Implementation

Profile page Simple profile: profile picture, bio information, followers list, following list, user’s message
timeline

Social graph
traversal

Access through the following and follower’s lists on users’ profile pages, without access
control

Communication
tools

Internal e-mail: send private direct messages to followers; instant messaging: not really
instant, can be implemented by direct messages; public message board: message
timeline, with access control

Share
information

Photo album: third party, like Twitpic, but no combined access control; links: post links
to outside URL, will appear as a message on timeline

Access control Message timeline on profile page can be set access control in two levels: private or
public

API applications Mobile clients, PC clients, photo sharing, automatic news feed
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simple: just sending messages to a group of people. All other uses are contributed by third-party
developers. Twitter provides a very open API, so third-party developers can create powerful clients or
special applications for Twitter. The connections on Twitter are not offline social relationships. Users
can follow someone they do not know in real life. Not everyone on Twitter is using his real name,
and even when real names are used, there is no effective way to identify users. Ever since launched in
2009, Twitter has provided a verified-account service for celebrities and official agencies. However,
the revealing of personal information on Twitter still poses a privacy problem.

Twitter cannot be regarded as a fully trusted network or a reliable acquaintance basis. Consider
two types of accounts: public and protected accounts. Anyone can see updates at public accounts.
For protected accounts, only the users that have been approved can see their updates. In order to
prevent identity confusion, Twitter selects accounts from celebrities to provide verification. The ver-
ified notice is posted on verified accounts. Twitter provides two new features, Twitter Lists and
Location, to support this verification process. Twitter Lists allow users to create a list of Twitter
accounts. The list can help users organize the people they follow. The lists can also support loca-
tion-based services. Location-sensitive applications like those aided by GPS devices can be greatly
simplified with Twitter services.

9.5.5.4 Twitter Applications
Many interesting Twitter applications exist. For instance, one can use the public to help determine
business or fashion trends and identify popular music and movies. Twitter was even used during
the 2008 presidential campaign in the United States to attract young voters to spread then-candidate
Barack Obama’s “Change” message. Twitter also gives users the option to send their current loca-
tions along with their tweets. Twitter provides the Twitter API for developers to request Twitter
data. The API supports REST calls.

Two types of APIs are supported: normal APIs and streaming APIs. Streaming APIs are for
real-time access to the public statuses over a persistent connection. @anywhere offers a service that
developers use to integrate external parties with Twitter. Lastly, Twitter also collects information
about programming libraries that help create Twitter-based applications. Two specific Twitter appli-
cations are described in the following list:

• Fast News Release Twitter is becoming the fastest way to spread breaking news. Massive user
collaboration has given Twitter a clear edge over most news centers. Some news centers have
set up Twitter accounts to encourage users to spread breaking news. For example, CNN
maintains 45 official Twitter accounts with more than 5 million followers. During the election
periods in various countries, Twitter attracted more attention than news centers. Some
governments even warned Twitter.com not to enter maintenance cutoffs in order to receive
continuous information flow. Information to Twitter may consist of photos, links, and videos
that arrive much faster than via conventional news media.

• Alert Systems Twitter provides a system that can connect residents of a city with virtually no cost.
It also increases the capabilities of an alert system by inputting more user-generated data. Some
cities have already opted for Twitter to alert their residents. The Virginia Tech killings in 2007
highlighted the security issues on university campuses. To integrate the e2Campus emergency
notification network with popular social networks, Pacific University of Forest Grove, Oregon,
implemented a Twitter-based alert system for its students, and the trend is likely to grow.
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9.6 BIBLIOGRAPHIC NOTES AND HOMEWORK PROBLEMS
Wide coverage of the principles and paradigms of cloud computing are provided in [8]. Cloud
design and security issues are covered in [70]. Buyya, et al. [9] have introduced a market-oriented
cloud computing framework. Basic cloud research can be found in [1,34,59–62,69–71,94]. Cloud
computing applications are studied in [28,33,48,56,59,61,63,67,68,93]. Science and research clouds
are studied in [13,15,19–23,30,35–39,52,64,76,79]. Trust models for clouds are proposed in
[12,24,42]. Cloud support for ubiquitous computing and mobile applications can be found in
[6,8,16,74]. Public clouds are covered in [6,8,31,34,48,65] and private clouds in [11,72]. Cloud mash-
ups are studied in [18,88]. Google’s experiences on MapReduce and BigTable are reported in [14].

Bryant introduced the DISC paradigm in [5]. The SGI Cyclone was reported in [3]. Data coloring
and cloud watermarking are studied in [42]. Grid and cloud performance, simulation, and benchmark
studies can be found in [9,25,33,50,51,67,68,75,89,90,93]. For science clouds and applications, read-
ers are referred to FutureGrid [30], Grid’5000 [35], Magellan [56], Open Circus and Open Cloud
Testbed [64], Science Clouds [76], Sky Computing [43], and Venus-C [79]. Amazon benchmarking
results are reported in [31,32,75,80]. Cloud security is treated in [12,42,54,55,57,70,83]. Operating
system support for cloud computing can be found in [60,62,72]. Parallel benchmarks and performance
evaluation of clusters, MPPs, and distributed systems can be found in Hwang and Xu [41].

The Internet of Things was treated in [45,73,78]. RFID is treated in [2,81,91,92]. Material on
sensors and ZigBee technologies can be found in [73] and GPS in [78]. Supply chain management
is treated in [91]. The CPS material is based on [17,47,85]. Online social networks are introduced
in [4,7,53,86]. Social network analysis is given in [10,29,40,42,46,49,53,58,82,84]. Facebook is
reported in [23,26,27]. Twitter is reported in [16,42,66,77]. P2P technology for trust management
and social networking can be found in [12,24,43,51,54]. Kleinberg analyzed large-scale social
networks in [44]. Reed assessed clouds, many cores, and clusters in [69].
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HOMEWORK PROBLEMS
Problem 9.1
Describe the shortcomings of mobile devices and distance clouds for mobile cloud computing.
Explain how the cloudlets developed at CMU can alleviate these shortcomings to enable mobile
cloud computing requests submitted from handheld pervasive devices.
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Problem 9.2
Answer the following two questions on GPSes:

a. Compare the four satellite positioning systems developed in the United States, Russia, the
European Union, and China, in terms of their satellite technology, deployment architecture,
coverage areas, precision, capability, and application areas.

b. Explain why a GPS receiver needs to use the signals from four satellites to locate a single point
(a 3D location) on the Earth’s surface.

Problem 9.3
What are the differences between active RFID and passive RFID? Comment on their advantages
and limitations. Do the same for active versus passive GPS receivers.

Problem 9.4
Compare Facebook and Twitter in four reported applications and discuss their relative strengths and
weaknesses in these applications.

Problem 9.5
Workload traces on AuverGrid can be described with three workload patterns including sudden
level change, sudden fluctuation, and gradual level change. What are the three load patterns and
how would you characterize their potential impact on the performance prediction results?

Problem 9.6
The IoT differs from the traditional Internet in many ways. Identify their differences and describe
their distictions in connecting entities, infrastructure and networking, and application domains.

Problem 9.7
Distinguish the following pairs of terminologies:

a. Open source versus proprietary operating systems
b. Internet of Things versus cyber-physical systems
c. Social networks versus professional networks

Problem 9.8
Answer the following two questions on wireless sensor networks:

a. Characterize three generations of wireless sensor networks in terms of their size, weight, power
supply, deployment, and so on.

b. Low power operation is desired in using a wireless sensor network (WSN). Plot the desired
power distribution in using a WSN. You should explain how to minimize power consumption
by operating the WSN in three modes periodically.
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Problem 9.9
Explain how to apply the RFID technology in merchandise positioning during transportation and
counting of the remaining goods in a supermarket.

Problem 9.10
Describe the following technology terms, functional modules, and cloud services associated the
IBM Blue Cloud and RC2 cloud. You may need to get more information from IBM’s web sites or
the IBM Journal of Research and Development for reported achievements.

a. IBM WebSphere
b. Tivoli Service Automation Manager (TSAM)
c. IBM Research Compute Cloud (RC2)
d. Tivoli provisioning manager
e. Linux with Xen

Problem 9.11
Conduct research on the possible use of cloud resources for processing data collected in selected IoT
applications (see Figure 9.19). Propose a solution scheme and the possible cloud resources needed.
You can narrow down the scope of sensor data collected to control the complexity involved.

Problem 9.12
Study the performance metrics for HPC applications (Section 9.2.2) and HTC applications (Section
9.2.3). Research how to improve their accuracy and effectiveness through analysis of real-life HPC
and HTC benchmark experiments on data-center clusters or on cloud platforms that you have
accessed. Suggest new or improved performance metrics that can cover more machine characteris-
tics and application parameters identified in the benchmark experiments.

Problem 9.13
Briefly explain how Facebook and Twitter cope with the security, privacy and copyright violation
issues in online social networking applications. Common protection techniques and unique solutions
to each system should be treated, separtely.

Problem 9.14
Match the following 20 names or abbreviated terms in the left column with the best-match defini-
tions or descriptions in the right column.

Term Description to Be Mapped with the Terms on the Left Column

_____MySpace a) The world’s largest social network in terms of registered users today
_____Cloudlet b) A social network mainly used for video strip forwarding applications
_____Bluetooth c) A natural extension of the Internet involving humans in the loop of control
_____IoT d) A social network for microblogging and news alert applications
_____WiMAX e) A radio tagging technology used in Internet of Things construction
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—cont’d

Term Description to Be Mapped with the Terms on the Left Column

_____RFID f) An infrastructure that supports remote cloud access by mobile devices
_____ZigBee g) A private cloud built by IBM for internal use in R&D applications
_____GPS h) An Internet extension for interconnecting all objects, people, animals, and products
_____Facebook i) An Internet access technology used mainly for its speed and flexibility
_____YouTube j) The most scalable wireless sensor network
_____Twitter k) A fixed wireless technology for broadband Internet access
_____Nebula l) A satellite technology for location-sensitive applications
_____CPS m) A wireless technology used to replace cables in short-range applications
_____RC2 n) One of the most frequently used SaaS applications in the business world
_____LinkedIn o) A social network mainly used in professional networking over the Internet
_____WiFi p) A social network web site specialized in customized social services
_____CRM q) A large private cloud used initially for aerospace and weather forecasting applications
_____Cloudlet r) A public cloud used in IaaS applications under a pay-as-you-go billing system

Problem 9.15
Circle only one answer in each of the following multiple-choice questions:

1. Which one of the following social network properties is correctly stated?
a. The structure holes can be eliminated by filling one or more links to other nodes.
b. The local bridge consists of only one link, like a bridge.
c. The centrality has nothing to do with the node degree.

2. Which design choice was NOT adopted in the Kimberley cloudlet prototype at CMU?
a. The use of an imported virtual machine (VM) from a mobile device.
b. A base VM is deployed in the cloudlet host machine.
c. An imported VM, once deployed in the cloudlet, cannot be removed.

3. Which of the following descriptions of the Internet of Things is correctly stated?
a. The IoT does not apply GPS technology in supply chain management.
b. A smart grid does not explore solar energy or wind power.
c. ZigBee networks are more scalable than WiFi and Bluetooth networks.

4. Which of the following assessments on today’s Facebook applications is correctly stated?
a. The most popular use of Facebook today is to enhance communication.
b. Gift sending and dating services are not supported by Facebook.
c. Personal profiles of Twitter users are better supported than those for Facebook users.

Problem 9.16
Conduct a Google search for technical information on the following two large-scale private clouds.
Describe what you have found out from reliable sources of information. Try to reveal the cloud
platform architecture and its infrastructure bases and scope of major applications.

a. The private cloud under development by NASA in the United States
b. The private cloud under development by CERN in Europe
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Problem 9.17
Briefly describe the following technology terms, functional modules, and cloud services associated
with the SGI Cyclone cloud engine:

a. Scale-up, scale-out, and hybrid management of cloud servers
b. SGI Altix servers and ICE clusters
c. Reported Cyclone HPC applications

Problem 9.18
This problem is related to Example 9.13. Prove that the identification of the attack accounts (sub-
graph H ) and the tracing of the targeted users are solvable mathematically.
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